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Testing, Diagnosing, Repairing, and Predicting
from Regulatory Networks and Datasets

by Torsten Schaub and Anne Siegel

We use expressive andhighly efficient tools from the area of Knowledge Representation for dealing
with contradictions occurring when confronting observations in large-scale (omic) datasets with
information carried by regulatory networks.

The availability of high-throughput
methods in molecular biology has led to
a tremendous increase of measurable
data along with resulting knowledge
repositories, gathered on the web usu-
ally within biological networks.
However, both measurements and bio-
logical networks are prone to consider-
able incompleteness, heterogeneity, and
mutual inconsistency, making it difficult
to draw biologically meaningful conclu-
sions in an automated way.

Further probabilistic and heuristic
methods exploit disjunctive causal rules
to derive regulatory networks from high-
throughput -static- experimental data.
For instance, disjunctive causal rules on
influence graphs were originally intro-
duced in random dynamical frameworks
to study global properties of large-scale
networks, using a probabilistic
approach. These were demonstrated
mainly on the transcriptional network of
yeast. However, these methods are
mostly data driven, and they lack the
ability to perform corrections in a fast
and global way. In contrast, efficient
model-driven approaches based on
model checkers - such as multi-valuated
logical formalisms - are available to
confront networks and measured data.
These however, make use of time-series
observations and can only be applied to
small-scale parametered systems, since
they need to consider the full dynamics
of the system.

We have proposed an intermediate
approach to perform diagnosis on large-
scale static datasets. We use a Sign
Consistency Model (SCM), imposing a
collection of constraints on experi-
mental measurements together with
information on cellular regulations
between network components.

The main advantage of SCM lies in its
global approach to confronting networks
and data, since the model allows the
propagation of static information along
the network and localization of contra-

dictions between distant nodes. In con-
trast to available probabilistic methods,
this model is particularly well-suited for
dealing with qualitative knowledge (for
instance, reactions lacking kinetic
details) as well as incomplete and noisy
data. Indeed, SCM is based on influence
(or signed interaction) graphs, a
common representation for a wide range
of dynamical systems, lacking or
abstracted from detailed quantitative
descriptions.

By combining SCM with efficient
Boolean constraints solvers, we address
the problem of detecting, explaining,
and repairing contradictions (called
inconsistencies) in large-scale biological
networks and datasets by introducing a
declarative and highly efficient
approach based on Answer Set
Programming [1]. Moreover, our
approach enables the prediction of
unobserved variations and has shown an

accuracy of over 90% on the entire net-
work of E.Coli along with published
experimental data. Notably, such
genome-wide predictions can be com-
puted in a few seconds.

From the application perspective, the
distinguishing novel features of our
approach are as follows: (i) it is fully
automated, (ii) it is highly efficient, (iii)
it deals with large-scale systems in a
global way, (iv) it detects existing
inconsistencies between networks and
datasets, (v) it diagnoses inconsisten-
cies by isolating their source, (vi) it
offers a flexible concept of repair to
overcome inconsistencies in biological
networks, and finally (vii) it enables
prediction of unobserved variations
(even in the presence of inconsistency).

The efficiency of our approach stems
from advanced Boolean Constraint
Technology, allowing us to deal with
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problems consisting of millions of vari-
ables. Although the basic tools [1] are
implemented in C++ we haveimproved
their accessibility by providing a
Python library as well as a correspon-
ding Web service [2].

Our project is a joint effort between the
Knowledge Representation and
Reasoning group [3] at the University
of Potsdam and the SYMBIOSE Team
[4] at IRISA and INRIA in Rennes. Our
techniques have been developed in
strong collaboration with the Max-
Planck-Institute for Molecular Plant

Physiology in Potsdam with the
GoFORSYS Project [5] as well as
Institut Cochin, Paris [6]. The members
of the group include Martin Gebser,
Carito Guziolowski, Jacques Nicolas,
Max Ostrowski, Torsten Schaub, Anne
Siegel, Sven Thiele, and Philippe Veber.

Links:

[1] http://en.wikipedia.org/wiki/
Answer_set_programming

[2] http://potassco.sourceforge.net

[3] http://www.cs.uni-potsdam.de/
bioasp/sign_consistency.html

[4] http://www.cs.uni-potsdam.de/wv

MCMC Network: Graphical Interface
for Bayesian Analysis of Metabolic Networks

by Eszter Friedman, Istvan Miklés and Jotun Hein

[5] http://www.irisa.fr/symbiose
[6] http://www.goforsys.org
[7] http://www.cochin.inserm.fr
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The Data Mining and Web Search Group at the SZTAKI in collaboration with the Genome Analysis
and Bioinformatics Group at the Department of Statistics, University of Oxford, developed a
Bayesian Markov chain Monte Carlo tool for analysing the evolution of metabolic networks.

“Nothing in biology makes sense except
in the light of evolution”. The famous
quote by Theodosius Dobzhansky
(1900-1975) has been the central thesis
of comparative bioinformatics. In this
field, the biological function, structure
or rules are inferred by comparing enti-
ties (DNA sequences, protein sequences,
metabolic networks, etc.) from different
species. The observed differences
between the entities can be used for pre-
dicting the underlying function, struc-
ture or rule that would be too expensive
and laborious to infer directly in lab.
These comparative methods have been
very successful in silico approaches, for
example, in protein structure prediction.
The idea can be used for inferring meta-
bolic networks, too.

Metabolic networks are under continuous
evolution. Most organisms share a
common set of reactions as a part of their
metabolic networks that relate to essen-
tial processes. A large proportion of reac-
tions present in different organisms, how-
ever, are specific to the needs of indi-
vidual organisms or tissues. The regions
of metabolic networks corresponding to
these non-essential reactions are under
continuous evolution. By comparing
metabolic networks from different
species, we can find out which parts of
the metabolic network are essential (ie
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those that are common in all networks)
and which are non-essential (ie those that
are missing in at least one of the net-
works). Sometimes there is more than
one possible metabolic network that can
synthesise or degrade a specific chem-
ical. These alternative solutions can be
transformed into each other, and the
ensemble of all possible reactions form a
complicated network (see Figure 1).

The central question is: what are the
possible evolutionary pathways through
which one metabolic network might
evolve into another? This question is
especially important to understand in
the fight against drug-resistant bacteria.
Drugs that are designed to protect us
against illness-causing bacteria block
an enzyme that catalyzes one of the
reactions of the metabolic network of
the bacteria. The bacteria, however, can
avoid the effects of the drug by devel-
oping an alternative metabolic pathway.
If we understand how the alternative
pathways evolve we may be able to
design a combination of drugs from
which the bacteria cannot escape
through the development of alternative
pathways.

Analysis of past events is always cou-
pled with some uncertainty about the
nature and order of events that

unfolded. It is therefore crucial to infer
the evolution of metabolic networks
using statistical methods that properly
handle the uncertainty that inevitably
occurs during analysis. Bayesian
methods collect the a priori knowledge
into an ensemble of distributions of
random variables, set up a random
model describing the changes, and cal-
culate the posterior probabilities of
what could happen. The relationship
between the prior and posterior proba-
bilities is described by the Bayes the-
orem as shown in Figure 2. Since the
integral in the denominator is typically
hard to calculate, and the Bayes the-
orem is often written in the form shown
in Figure 3.

The Bayesian theorem in this form can
be used in Monte Carlo methods to
sample from the posterior distribution.
The Markov chain Monte Carlo
(MCMC) method sets up a Markov
chain that converges to the desired dis-
tribution. After convergence, samples
from the Markov chain follow the pre-
scribed distribution.

MCMC Network implements the
above-described Bayesian MCMC
framework for inferring metabolic net-
works. We model the evolution of net-
works with a time-continuous Markov
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