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Abstract. We introduce a uniform semantical framework for various default

logics in terms of Kripke structures. This possible worlds approach provides

a simple but meaningful instrument for comparing existing default logics in

a uni�ed setting. The possible worlds semantics is introduced by means of

constrained default logic. Also, it easily deals with Brewka's cumulative de-

fault logic. The semantics is then extended to Reiter's original default logic as

well as  Lukaszewicz' variant. The possible worlds approach remedies several

di�culties encountered in former proposals aiming at individual default logics.

Notably, it provides the �rst pure model{theoretic semantics for  Lukaszewicz'

variant of default logic. Since the semantical framework is presented from the

perspective of \commitment to assumptions" we also obtain a very natural

modal interpretation of the notion of commitment.

1 Motivation

Recent research on default logic [10] has produced many derivatives of Reiter's original

formalism. A common feature of all of these variants is their use of constraints, either

on formulas as cumulative default logic [3] or on sets of formulas like justi�ed

1

[7] and

constrained default logic [4, 13]. In other words, all of the descendants of Reiter's

classical default logic employ more \structure" in order to achieve their desired results

such as the existence of extensions and \commitment to assumptions" [9] or the formal

properties of semi{monotonicity and cumulativity [8]. In a similar way, Etherington's

semantics for classical default logic [6] has been extended in order to account for the

additional syntactical structures. As a result, two{folded semantics were proposed

[12] whose second component was intended to capture the enriched structure in de-

fault logics.

1

We will refer to Reiter's default logic as classical default logic and to  Lukaszewicz variant as

justi�ed default logic.



Although the elements of these two{folded semantics are standard �rst{order inter-

pretations, splitting the semantical characterizations of the extension and its under-

lying constraints might appear to be arti�cial. On the other hand, Kripke structures

provide means to establish relations between �rst{order interpretations: a Kripke

structure has a distinguished world, the \actual" world, and a set of worlds accessible

from it (each world is a �rst{order interpretation). As a consequence, a �rst aim

of this work is to avoid two{folded semantics by characterizing extensions in default

logics by means of Kripke structures; thereby, providing an elegant semantical rep-

resentation for the additional syntactical structures used in each variant of classical

default logic. In fact, this approach turns out to be very general, so that we obtain

a uniform semantical framework for comparing existing default logics in a uni�ed

setting.

The idea is roughly as follows. In default logics, our beliefs consist of the conclusions

given by the applying default rules, and the constraints on our beliefs stem from the

justi�cations provided by the same default rules. Then, the intuition behind our

semantics is very natural and easy to understand: the actual world of a Kripke

structure exhibits what we believe and the accessible worlds exhibit what constraints

we have imposed upon our beliefs. Hence, the actual world is our envisioning of how

things are and, therefore, characterizes an extension, whereas the surrounding worlds

additionally deal with the constraints and, therefore, provide a context in which that

envisioning takes place.

Let us put this in more concrete terms by means of constrained default logic. In

constrained default logic, an extension E relies on a set of constraints C. Given a

constrained extension (E,C ) and a Kripke structure m, we stipulate that the actual

world be a model of the extension, E, and demand that each world accessible from

the actual world be a model of the constraints, C. That is, m j= E ^�C:
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The rest of the paper is organized as follows. In Section 2, we �rst reproduce the

basic de�nition of classical and constrained default logic. In Section 3, we introduce

our possible worlds semantics for constrained default logic and show how it char-

acterizes the notion of \commitment to assumptions". Furthermore, we show that

the semantics is able to capture Brewka's cumulative default logic, too. Eventually,

in Sections 4 and 5, we demonstrate that our possible worlds semantics applies to

Reiter's classical and  Lukaszewicz' justi�ed default logic as well. We can then easily

compare default logics and characterize the di�erences between them. In particular,

the semantics reveals that all of the various default logics employ constraints (induced

by the consequents and justi�cations of applied default rules) but di�er basically in

the extent to which the constraints are taken into account. Since this extent is di-

rectly related to the notion of \commitment to assumptions", we also obtain a very

natural semantical characterization of this notion in the context of default logics.

2 From classical to constrained extensions

Classical default logic was de�ned by Reiter in [10] as a formal account of reasoning

in the absence of complete information.

It is based on �rst order logic, whose sentences are hereafter simply referred to as

formulas (instead of closed formulas). In what follows, we then assume the reader

to be familiar with the basic concepts of �rst order logic (cf. [5]) as well as some
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Given a set of formulas S let �S stand for ^

�2S

��:



acquaintance with modal logics (cf. [2]). We shall be dealing with a standard �rst

order language (including ?, the \falsum" symbol) and its extension by the modal

operator �. We denote derivability and entailment by ` and j=; respectively (whether

dealing with the pure �rst order language or the modal one). We use Th to denote the

�rst order consequence operation, that is Th(S ) = f� j S ` �g: Further de�nitions

and conventions will be introduced when they occur for the �rst time.

A default theory (D;W ) consists of a set of formulas W and a set of default rules

D. A default rule is any expression of the form

� : �




where �, � and 
 are formulas. � is called the prerequisite, � the justi�cation, and 


the consequent of the default rule.

Default knowledge is incorporated into the framework as nonmonotonic inference

rules by means of default rules. They sanction inferences that rely upon given as

well as absent knowledge. Such inferences therefore could not be made in a classical

framework. A default rule is applicable, if its prerequisite holds and its justi�cation

is consistent, that is adding its negation does not yield a contradiction.

Informally, an extension of the initial set of facts W is de�ned as the set of all

formulas derivable from W using classical inference rules and all speci�ed default

rules:

De�nition 2.1 Let (D;W ) be a default theory. For any set of formulas S let �(S)

be the smallest set of formulas S

0

such that

1. W � S

0

;

2. Th(S

0

) = S

0

;

3. For any

� :�




2 D; if � 2 S

0

and :� 62 S then 
 2 S

0

:

A set of formulas E is a classical extension of (D;W ) i� �(E) = E:

Classical default logic does not enjoy the desirable features known as \commitment

to assumptions" and \cumulativity". The case of cumulativity is postponed to a later

part. First, we concentrate on the notion of commitment.

Example 2.1 (non{commitment) The default theory

��

: B

C

;

: :B

D

�

; ;

�

has only one classical extension, Th(fC;Dg). Both default rules have been applied,

although they have contradictory justi�cations. Informally, there has been no com-

mitment to the assumption B nor :B [9].

Brewka [3] restored commitment (and cumulativity) in default logic by strengthen-

ing the applicability condition for default rules and making the reasons for believing

something explicit. In order to keep track of the assumptions, he introduced asser-

tions, that is formulas labelled with the set of justi�cations and consequents of the

default rules that have been applied. In [4, 13], it is shown how to retain commitment

(and cumulativity) while dropping the shift of formulas to assertions. For the formal



presentation, we focus on constrained default logic as introduced in [13]
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. The ap-

proach taken by constrained default logic relies basically on dealing with two sets of

formulas of the form (E,C ). A default rule is applicable if its prerequisite holds in E

and its justi�cation is consistent wrt C (while in classical default logic the justi�cation

has to be consistent wrt E).

Since constrained default logic does not alter the language the notion of a default

theory remains the same.

De�nition 2.2 Let (D;W ) be a default theory. For any set of formulas T let �(T )

be the pair of smallest sets of formulas (S

0

; T

0

) such that

1. W � S

0

� T

0

,

2. S

0

= Th(S

0

) and T

0

= Th(T

0

),

3. For any

� :�




2 D, if � 2 S

0

and T [ f�g [ f
g 6` ? then 
 2 S

0

and �; 
 2 T

0

.

A pair of sets of formulas (E,C ) is a constrained extension of (D;W ) i� �(C) =

(E,C ):

Constrained extensions commit to their assumptions as constrained default logic em-

ploys a much stronger consistency check than classical default logic.

Example 2.2 (commitment) The default theory

��

: B

C

;

: :B

D

�

; ;

�

has two constrained extensions, (Th(fCg); Th(fC;Bg)) and (Th(fDg); Th(fD;:Bg)):

It turns out that the semantics proposed in [12] is adequate to characterize constrained

extensions. A preference relation wrt to a set of default rules was de�ned which is sim-

ilar to the one introduced in [6]. Simply, pairs of classes of �rst order interpretations

like (�;

�

�) | called focused models structures | were considered instead of classes

of �rst order interpretations. The idea is that, for a default rule

� :�




to \apply" wrt a

pair (�;

�

�); its prerequisite � must be valid in � whereas the conjunction � ^ 
 of its

justi�cation and consequent must be satis�able in

�

�. Taking into account all default

rules, a maximal focused models structure (�;

�

�) is constructed which corresponds

to a constrained extension, whose constraints correspond to the focused models

�

�.

De�nition 2.3 Let � =

� :�




and � be a class of �rst order interpretations. The

order 3

�

on 2

�

� 2

�

is de�ned as follows. For all (�

1

;

�

�

1

); (�

2

;

�

�

2

) 2 2

�

� 2

�

we

have

(�

1

;

�

�

1

) 3

�

(�

2

;

�

�

2

)

i�

1. 8� 2 �

2

:� j= �;

2. 9� 2

�

�

2

:� j= � ^ 
;

3

As constrained extensions are equivalent to [4]'s extensions of J{default logic, all results carry

over to their J{ and PJ{default logic.



3. �

1

= f� 2 �

2

j � j= 
g;

4.

�

�

1

= f� 2

�

�

2

j � j= � ^ 
g:

The induced order 3

D

is de�ned as the transitive closure of the union of all orders

3

�

such that � 2 D: Clearly, constrained default logic is directly induced by this

semantics. A constrained extension (E,C ) is determined since E is formed by all

formulas that are valid in the class � of a 3

D

{maximal focused model structure

(�;

�

�) whereas the constraints C consist of all formulas valid in the class

�

� (the

so{called focused models).

3 A modal characterization of constrained default

logic

The focused models structures suggest that the ordering induced by a default rule has

a modal nature with the corresponding semantical approach being based on Kripke

structures. Intuitively, a pair (�;

�

�) is to be rendered as a classM of Kripke structures

such that � is captured by the actual worlds in M and

�

� by the accessible worlds in

M. That is consider a non{modal formula �: it is valid in � i� � is valid in M and

it is valid in

�

� i� �� is valid in M.

Correspondingly, the counterpart to a maximal focused models structure happens

to be a class M of Kripke structures such that

(f� non{modal jM j= �g; f� non{modal jM j= ��g)

forms a constrained extension of the default theory under consideration. As always,

the �rst set establishes the extension whereas the second set characterizes its con-

straints.

We follow the de�nitions (cf. Appendix A) in [2] of a Kripke structure (called K{

model in the sequel). As in Appendix A, we use m to denote K-models, M to denote

classes of K{models, and j= to denote the modal entailment relation. We extend the

modal entailment relation j= to classes of K{models M and write M j= � to mean

that each element in M (that is, a K{model) entails �.

In order to characterize constrained extensions semantically, we now de�ne a family

of strict partial orders on classes of K{models. Analogously to [6, 12], given a default

rule �, its application conditions and the result of applying it are captured by an

order �

�

as follows.

De�nition 3.1 Let � =

� :�




: Let M and M

0

be distinct classes of K{models. We

de�ne M �

�

M

0

i�

M = fm 2M

0

j m j= 
 ^�(
 ^ �)g

and

1. M

0

j= �

2. M

0

6j= �:(
 ^ �)



Given a set of default rules D, the strict partial order �

D

amounts to the union of the

strict partial orders �

�

as follows. M �

D

M

0

i� there exists an enumeration h�

i

i

i2I

of some D

0

� D such that M

i+1

�

�

i

M

i

for some sequence hM

i

i

i2I

of subclasses of

M

0

satisfying M

0

=M

0

and M =

T

i2I

M

i

:

Moreover, we de�ne the class of K{models associated with W as M

W

= fm j m j=


 ^ �
; 
 2 Wg and refer to �

D

{maximal classes of K{models above M

W

as the

preferred classes of K{models wrt (D;W ).

As for modal logic, observe that the K{models de�ne the modal system K. It makes

sense because the only property needed is distributivity for the modal operator � to

ensure that the constraints are deductively closed.

As a reminder, we give below the axiom schema (K ) and inference rule (NEC ) that

must be added to a classical �rst order system in order to obtain K:

(K ) �(�! �) ! (��! ��)

(NEC )

�

��

The choice of Condition 2 in De�nition 3.1 is also worth discussing. At �rst glance,

it seems more adequate to require M

0

6j= :�(
 ^ �) since we want to add �(
 ^ �)

and the condition M

0

6j= �:(
 ^ �) does not a priori exclude M

0

j= :�(
 ^ �): We

illustrate why this is needed by means of the next example.

Example 3.1 Consider the default theory

��

: A

A

�

; f:Ag

�

:

With M

W

j= :A; we also have M

W

j= �:A: But using the condition M

0

6j= :�A

would not prevent the \application" of the only default rule.

Notice that Condition 2 in De�nition 3.1 is equivalent to

9m 2M

0

: m j= �(
 ^ �): (1)

That is, the consistency condition in constrained default logic corresponds semanti-

cally to the requirement that there is a K{model which has some accessible world

that satis�es 
 ^ �:

In the following examples, we show how preferred classes of K{models can charac-

terize constrained extensions. At �rst, we give a detailed example that illustrates the

main idea.

Example 3.2 Consider the default theory

��

A : B

C

�

; fAg

�

that yields the constrained extension (Th(fA;Cg); Th(fA;B;Cg)):

In order to characterize this semantically, we start with

M

W

j= A ^ �A:

Since M

W

j= A it remains to ensure that M

W

6j= �:(C ^ B) | which is obvious.

Hence, we obtain a class of K{models M such that

M j= A ^�A ^ C ^ �(C ^B):



Thus, the actual worlds of our K{models satisfy the formulas of the extension

Th(fA;Cg) whereas the surrounding worlds additionally ful�ll the constraints, that

is Th(fA;B;Cg):

In order to have a comprehensive example throughout the text, we extend the above

commitment example as follows.

Example 3.3 (commitment) The default theory

��

: B

C

;

: :B

D

;

: :D ^ :C

E

�

; ;

�

has three constrained extensions: (Th(fCg); Th(fB;Cg)); (Th(fDg); Th(f:B;Dg));

and (Th(fEg); Th(f:D ^ :C;Eg)):

M

W

is the class of all K{models and clearly, we have M

W

6j= �:(C ^ B); M

W

6j=

�:(D ^ :B); and M

W

6j= �:(E ^ :D ^ :C): Therefore, all of the default rules are

potentially \applicable".

Let us detail the case of the �rst constrained extension. We obtain a �

f

:B

C

g

{greater

class

M j= C ^�(C ^ B):

In order to show that there is a �

f

:B

C

;

::B

D

g

{greater class, we would have to show that

M 6j= �:(D ^ :B):

But since �(C ^B) j= �B; we have M j= �(B _ :D) that prevents us from \apply-

ing" the second default rule. Analogously, we do not obtain a �

f

:B

C

;

::D^:C

E

g

{greater

class.

The last example shows how our construction copes with self{incoherent default

theories.

Example 3.4 Consider the default theory

��

: :A

A

�

; ;

�

whose only constrained extension is (Th(;); Th(;)): M

W

is the class of all K{models.

But sinceM

W

j= �:(A ^ :A) condition 2 of De�nition 3.1 is falsi�ed and, therefore,

M

W

is the only preferred class.

An interesting point concerning De�nition 3.1 is that �nding a non{empty M �M

0

such that M j= �(
 ^ �) whenever M

0

6j= �:(
 ^ �) might appear to be impossible,

hence the next proposition.

Proposition 3.1 The empty class of K{models is never preferred wrt (D;W ) when-

ever W is consistent.

As a corollary we obtain that the existence of constrained extensions is guaranteed.

The notion of a preferred class of K{models illustrated above is put into a precise

correspondence with constrained extensions in the following theorem.



Theorem 3.2 (Correctness & Completeness) Let (D;W ) be a default theory.

Let M be a class of K{models and E;C deductively closed sets of formulas such that

M = fm j m j= E ^�Cg:

Then,

(E,C ) is a constrained extension of (D;W ) i� M is a �

D

{maximal class above M

W

:

Then our possible worlds approach amounts to the focused model semantics [12]

presented above: the �rst order interpretations associated with the accessible worlds

take over the role of the focused models.

Corollary 3.3 Let (D;W ) be a default theory, (�;

�

�) a 3

D

{maximal focused models

structure above (f� j � j= Wg; f� j � j= Wg) and M a preferred class of K{models

wrt (D;W ). Then, for �, � non{modal

� j= � i� M j= � and

�

� j= � i� M j= ��:

In the face of the above corollary, observe that a preferred class of K{models contains

\more" di�erent actual worlds than accessible ones. The reason is that focused models

structures (�;

�

�) have the inclusion property

�

� � �:

How does our semantics re
ect the notion of commitment? As already pointed

out, the intuition behind our construction is very natural and easy to understand:

The actual world of a K{model captures what we believe and the surrounding worlds

capture what commitments we have allowed to adopt our beliefs. Therefore, our se-

mantics re
ects the notion of commitment through modal necessity: the commitments

correspond to formulas whose necessity holds.

Since it is proved in [12] that the focused model semantics captures cumulative

default logic [3], Theorem 3.2 and Corollary 3.3 establish a possible worlds seman-

tics for cumulative default logic as is shown next. First, recall that an assertion

is a pair h�; f�

1

; : : : ; �

m

gi; where �;�

1

; : : : ; �

m

are formulas. Applied to an as-

sertion �, Form(�) gives the formula whereas Supp(�) gives its label (called the

support). Also, Brewka had to extend the �rst order consequence relation to as-

sertions: for a set of assertions S,

c

Th(S) is the smallest set of assertions such

that S �

c

Th(S) and if �

1

; : : : ; �

n

2

c

Th(S) and Form(�

1

); : : : ;Form(�

n

) ` 
; then

h
;Supp(�

1

) [ : : : [ Supp(�

n

)i 2

c

Th(S): An assertional default theory is a pair (D;W),

where D is a set of default rules and W is a set of assertions.

De�nition 3.2 Let (D;W) be an assertional default theory. For any set of asser-

tions S let 
(S) be the smallest set of assertions S

0

such that

1. W � S

0

;

2.

c

Th(S

0

) = S

0

;

3. For any

� :�




2 D; if h�;Supp(�)i 2 S

0

and Form(S) [ Supp(S) [ f�g [ f
g 6` ?

then h
;Supp(�) [ f�g [ f
gi 2 S

0

:

A set of assertions E is an assertional extension for (D;W) i� 
(E) = E:



Now, [15] shows that if (E,C ) is a constrained extension of (D;W ) then there is an

assertional extension E of (D; fh�; ;i j � 2 Wg) such that E = Form(E) and C =

Th(Form(E) [ Supp(E)) and conversely, if E is an assertional extension of (D; fh�; ;i j

� 2 Wg) then (Form(E); Th(Form(E) [ Supp(E))) is a constrained extension of

(D;W ). Consequently, our possible worlds semantics also characterizes cumulative

default logic:

Theorem 3.4 Let (D;W) be an assertional default theory. Let M

W

be the class of

all K{models of f� ^ �� j � 2 Form(W); � 2 Supp(W)g: Then, there exists a set of

assertions E which is an assertional extension of (D;W) such that M = fm j m j=

Form(E) ^�Supp(E)g i� M is a preferred class of K{models above M

W

:

In the context of cumulative default logic, naturally the question arises how the notion

of cumulativity can be characterized by our possible worlds semantics. Intuitively,

cumulativity stipulates that the addition of a theorem to the premises does not alter

the set of conclusions. Apart from its theoretical interest, cumulativity is of great

practical relevance. This is, because a cumulative theory operator allows for the use

of lemmata needed for reducing computational e�orts.

First, let us look at the failure of cumulativity in classical default logic:

Example 3.5 (non{cumulativity

4

) The default theory

��

: A

A

;

A _ B : :A

:A

�

; ;

�

has one classical extension, Th(fAg). This extension inevitably contains A _B.

Adding this nonmonotonic theorem to the premises yields the default theory

��

: A

A

;

A _ B : :A

:A

�

; fA _Bg

�

that has now two extensions: Th(fAg) and Th(f:A;Bg). Regardless of whether or

not we employ a skeptical or a credulous notion of theory formation | in both cases

we are changing the set of conclusions.

How assertional default theories restore cumulativity is shown below.

Example 3.6 (cumulativity) The assertional default theory

��

: A

A

;

A _ B : :A

:A

�

; ;

�

has also one extension which contains the assertions hA; fAgi and hA _ B; fAgi.

Adding the assertion hA _B; fAgi to the premises yields the assertional default

theory

��

: A

A

;

A _ B : :A

:A

�

; fhA _B; fAgig

�

that has still the same assertional extension and no other.

4

This example is originally due to David Makinson [8].



In the case of constrained default logic, cumulativity was preserved in [13, 15] by

means of lemma default rules which are prerequisite{free default rules whose justi-

�cation consists of the assumptions underlying the actual lemma which is given in

the consequent. The major di�erence between the addition of assertions to the facts

and the addition of lemma default rules to the set of default rules is that once we

have added an assertion to the premises it is not \retractable" any more whenever an

inconsistency arises. Thus, the addition of assertions is stronger than that of lemma

default rules. Adding an assertion to the premises eliminates all extensions inconsis-

tent with the asserted formula or even its support. On the contrary, lemma default

rules preserve all extensions and, therefore, their purpose is more an abbreviation of

default proofs.

How can those di�erences be envisioned by our semantics? Assume we have a

constrained extension (E,C ) and the corresponding assertional extension E . When-

ever we have a theorem ` 2 E and a minimal set of default rules D

`

� GD

(E ;C )

D

�

=

n

� :�




�

�

� � 2 E; C [ f�g [ f
g 6` ?

o�

which has been used to derive `, there ex-

ists as well an assertion

5

�

`

2 E ; where

�

`

= h`;

S

�2D

`

fJustif (�);Conseq(�)gi:

For a complement, the corresponding lemma default rule is

�

`

=

:

V

�2D

`

Justif (�) ^ Conseq(�)

`

:

Take a default theory (D;W ) and its assertional counterpart (D;W); where W =

fh�; ;i j � 2 Wg: Looking at cumulative default logic, we enforce (by adding the

assertion �

`

to W) that all preferred classes of K{models entail the formula

` ^ �

�

` ^

V

�2D

`

Justif (�) ^ Conseq(�)

�

: (2)

In constrained default logic the addition of the lemma default rule �

`

to the set of

default rules only demands the expression (2) to be entailed by those preferred classes

of K{models, to which generation the lemma default rule has contributed. That is, we

enforce the entailment of (2) only for all preferred classes of K{models M for which

M �

GD

(E ;C )

D

[f�

`

g

M

W

holds.

4 A modal characterization of classical default lo-

gic

The possible worlds approach to default logic presented above turns out to be very

general. The �rst evidence of this arises from the fact that the above semantical

characterization carries over easily to classical default logic. Indeed, the analogue to

De�nition 3.1 can be de�ned as follows.

6

De�nition 4.1 Let � =

� :�




: Let M and M

0

be distinct classes of K{models. We

de�ne M >

�

M

0

i�

M = fm 2M

0

j m j= 
 ^�
 ^ ��g

and

5

Applied to a default rule �; Justif (�) yields its justi�cation whereas Conseq(�) returns its

consequent.

6

Given a set of formulas S let �S stand for ^

�2S

��:



1. M

0

j= �

2. M

0

6j= �:�

The order >

D

is de�ned analogously to that in Section 3.

Even though classical default logic does not employ explicit constraints, there is a

natural counterpart given by the justi�cations of the generating default rules over a

set of formulas E:

C

E

=

n

�

�

�

�

� :�




2 D; � 2 E;:� 62 E

o

7

We obtain a semantical characterization that yields a one{to{one correspondence be-

tween consistent extensions and non{empty >

D

{preferred classes of K{models (an in-

consistent extension trivially corresponds toM

W

being preferred while being empty).

Theorem 4.1 (Correctness & Completeness) Let (D;W ) be a default theory.

Let M be a class of K{models and E be a deductively closed set of formulas such that

M = fm j m j= E ^�E ^ �C

E

g:

Then,

E is a consistent classical extension of (D;W ) i� M is a >

D

{maximal non{empty

class above M

W

:

Comparing De�nition 4.1 with De�nition 3.1, we observe two basic di�erences,

re
ecting the fact that constrained default logic employs a stronger consistency check

than classical default logic. For one thing, the second condition on M

0

is weakened

such that only � instead of 
 ^ � is required to be satis�ed by some accessible world

of some K{model in M

0

. This becomes perfectly clear by comparing the following

formulation of Condition 2 in De�nition 4.1

9m 2M

0

: m j= �� (3)

with the one given in (1). For another thing, De�nition 4.1 requires �� to be valid in

M whereas De�nition 3.1 requires �� to be valid inM. Stated otherwise, the possible

worlds semantics for classical extensions requires only some accessible world satisfying

the justi�cation � whereas the semantics for constrained default logic requires all

accessible worlds to satisfy �.

The conclusion is that from the perspective of commitment, constrained extensions

adopt their beliefs by committing to all consequents and all justi�cations of applied

default rules whereas classical default logic commits to consequents taken together

but only to justi�cations taken separately.

Example 4.1 (non{commitment) The default theory

��

: B

C

;

: :B

D

;

: :D ^ :C

E

�

; ;

�

has only one classical extension: Th(fC;Dg).

M

W

is the class of all K{models and clearly, we have M

W

6j= �:B; M

W

6j=

�:(:B); and M

W

6j= �:(:D ^ :C): That is, all of the default rules are potentially

\applicable".

7

Observe that the membership qualifying property is exactly the third condition in the de�nition

of a classical extension.



From M

W

we can construct a class of K{models M such that M >

f

:B

C

g

M

W

and

M j= C ^�C ^ �B:

Accordingly, we can also construct a class of K{models M

0

such that M

0

>

f

:B

C

;

::B

D

g

M

W

and

M

0

j= C ^�C ^ �B ^D ^ �D ^ �:B:

But it is impossible to obtain a class M

00

such that M

00

>

f

:B

C

;

::B

D

;

::D^:C

E

g

M

W

since

M

0

j= �:(:D ^ :C):

From M

W

; selecting �rst the third default rule leads to a >

f

::D^:C

E

g

{greater class

_

M j= E ^ �E ^ �(:D ^ :C):

From

_

M we can construct a class of K{models

�

M such that

�

M >

f

::D^:C

E

;

:B

C

g

M

W

and

�

M j= E ^ �E ^ �(:D ^ :C) ^ C ^�C ^ �B:

So,

�

M is the empty set of K{models because �(:D ^ :C) j= �:C and �C ^�:C j=

?:

In contrast to Proposition 3.1, the possible worlds semantics for classical default

logic admits the empty set of K{models above some non{empty M

W

: This is the

case whenever a default rule is applied whose consequent contradicts the justi�cation

of some default rule which is itself applied. In particular, this re
ects the failure of

semi{monotonicity in classical default logic whereas constrained default logic enjoys

semi{monotonicity (A default logic is said to be semi{monotonic i� enlarging the set of

default rules of a default theory can only preserve or enlarge the existing extensions.).

In addition, characterizing extensions in default logic strictly by non{empty >

D

{

maximal elements above M

W

avoids post{�ltering mechanisms such as the stability

criterion introduced in [6]. Whenever an incoherent default theory arises, our charac-

terization yields an empty set of K{models. The purpose of the stability criterion is

to ensure the satis�ability of each justi�cation for a given set of default rules. In other

words, the stability criterion guarantees the \continued consistency" of the justi�ca-

tions of the applying default rules. In contrary, we ensure the continued consistency

of justi�cations by requiring the validity of �� in all classes of K{models preferred

by a default rule

� :�




: As a consequence, our characterization yields an empty set of

K{models, whenever an incoherent default theory arises.

Example 4.2 The incoherent default theory

��

: :A

A

�

; ;

�

of Example 3.4 has no classical extension. M

W

is the class of all K{models. Clearly,

M

W

6j= �A but the resulting class

fm 2M

W

j m j= A ^�A ^ �:Ag

is obviously empty.



Finally, let us examine the failure of cumulativity in classical default logic. In Sec-

tion 3, we have characterized by means of a modal expression the solutions preserving

cumulativity. Taking the expression given in (2) but dropping the requirement of joint

consistency yields the following modal expression for classical default logic:

` ^ �` ^ �Justif (D

`

) (4)

where ` is contained in a classical extension E of a default theory (D;W ) and D

`

�

GD

(E;E)

D

is a set of default rules used to derive `.

Let us look at the canonical cumulativity example.

Example 4.3 (non{cumulativity) Consider the default theory

��

: A

A

;

A _ B : :A

:A

�

; fA _Bg

�

obtained from Example 3.5 after adding A_B (so that we are considering ` = A_B).

In addition to the extension Th(fAg), we have obtained a second one: Th(f:A;Bg).

The semantical characterization of the classical extension Th(f:A;Bg) yields a class

of K{models M that is >

f

A_B ::A

:A

g

{greater than M

W

such that

M j= (A _B) ^�(A _ B) ^ :A ^ �:A

Since

D

`

=

�

: A

A

�

;

M obviously does not entail our above modal expression (4):

M 6j= (A _B) ^�(A _ B) ^ �A:

The entailment of the expression (4) in all preferred classes of K{models M such

that M >

GD

(E;E)

D

[f�

`

g

M

W

can be enforced through the corresponding lemma default

rule for classical default logic (cf. [15]): Given ` and D

`

= f�

1

; : : : ; �

n

g � GD

(E;E)

D

as

described above, we obtain

�

`

=

: Justif (�

1

); : : : ; Justif (�

n

)

`

:

5 A modal characterization of justi�ed default lo-

gic

Further evidence for the generality of our approach is that it can easily capture a

variant of default logic due to [7], which we refer to as justi�ed default logic. Indeed,

the analogue to De�nition 3.1 and 4.1 can be de�ned as follows.

De�nition 5.1 Let � =

� :�




: Let M and M

0

be distinct classes of K{models. We

de�ne M B

�

M

0

i�

M = fm 2M

0

j m j= 
 ^�
 ^ ��g

and



1. M

0

j= �

2. M

0

6j= �:� _ �:


The order B

D

is de�ned analogously to that in Section 3.

Compared to the order >

�

given for classical default logic, the only di�erence is that

the condition M

0

6j= �:� has become M

0

6j= �:� _ �:
; that is, M

0

6j= :(�
 ^ ��):

Again, this becomes apparent by regarding Condition 2 in De�nition 5.1, that is

9m 2M

0

: m j= �� ^ �
: (5)

In classical default logic, there has to be a K{model which has some accessible world

satisfying � (see (3) above). In justi�ed default logic, however, all accessible worlds

of such a K{model additionally have to satisfy 
.

Indeed, the de�nition reveals the fact that the same constraints implicitly used

in classical default logic (in the form of C

E

) are explicitly attached to justi�ed ex-

tensions

8

(in the form of J , see below) and, moreover, considered when checking

consistency. That is, semantically classical and justi�ed default logic account for

the justi�cations of the applied default rules in form of the modal propositions ��.

However, in classical default logic they are discarded when checking consistency.

Formally, a justi�ed extension is de�ned as follows.

De�nition 5.2 Let (D;W ) be a default theory. For any pair of sets of formulas

(S; T ) let 	(S; T ) be the pair of smallest sets of formulas S

0

; T

0

such that

1. W � S

0

,

2. Th(S

0

) = S

0

,

3. For any

� :�




2 D, if � 2 S

0

and 8� 2 T [ f�g: S [ f
g [ f�g 6` ? then 
 2 S

0

and � 2 T

0

.

A set of formulas E is a justi�ed extension of (D;W ) wrt to a set of formulas J i�

	(E; J) = (E; J).

 Lukaszewicz has shown in [7] that justi�ed default logic guarantees the existence of

extensions. Semantically, it is obvious that requiring M

0

6j= :(�
 ^ ��) and adding

those K{models entailing �
 ^�� makes it impossible to obtain the empty set of K{

models (in fact, the analogue to Proposition 3.1 holds).  Lukaszewicz has also shown

that his variant enjoys semi{monotonicity. In fact, \applying" a default rule

� :�




enforces all B

D

{greater classes of K{models

_

M to entail �
 ^ ��. Therefore, a later

\application" of a default rule

�

0

:�

0




0

whose consequent 


0

contradicts � (eg. 


0

= :�)

is prohibited since its \application" requires

_

M 6j= �:�

0

_ �:


0

:

Analogously to classical default logic, De�nition 5.1 only requires �� to be valid in

M which is not enough for justi�ed default logic to commit to its assumptions.

Example 5.1 (non{commitment) The default theory

��

: B

C

;

: :B

D

;

: :D ^ :C

E

�

; ;

�

has two justi�ed extensions, Th(fC;Dg) wrt fB;:Bg and Th(fEg) wrt f:D ^ :Cg.

8

Originally,  Lukaszewicz called his extensions modi�ed extensions.



The �rst one is obtained analogously to that in Example 4.1. That is, we obtain a

preferred class

M

0

j= C ^�C ^ �B ^D ^ �D ^ �:B:

Also, selecting �rst the third default rule leads to a class

_

M B

f

::D^:C

E

g

M

W

such

that

_

M j= E ^ �E ^ �(:D ^ :C):

Since we have

_

M j= �:C and

_

M j= �:D none of the other default rules is \applica-

ble". Therefore,

_

M is a (non{empty) preferred class.

Similarly to the case of classical default logic, there is a natural account of con-

straints attached to a set of formulas E justi�ed by J : the justi�cations of the gen-

erating default rules over E, as determined by J , which are simply

C

(E;J)

=

n

�

�

�

�

� :�




2 D; � 2 E;8� 2 J [ f�g: E [ f
g [ f�g 6` ?

o

9

Then, correctness and completeness hold as in the former sections.

Theorem 5.1 (Correctness & Completeness) Let (D;W ) be a default theory.

Let M be a class of K{models, E a deductively closed set of formulas, and J a set of

formulas such that J = C

(E;J)

and

M = fm j m j= E ^�E ^ �C

(E;J)

g:

Then,

E is a justi�ed extension of (D;W ) wrt J i� M is a B

D

{maximal class above M

W

:

The equality J = C

(E;J)

simply states that the implicit constraints C

(E;J)

and the

explicit constraints J coincide.

Notably, our possible worlds semantics is the �rst semantical characterization of

justi�ed default logic which is purely model{theoretic. In [7],  Lukaszewicz had to

characterize justi�ed extension by means of pairs (�; J); where � is a class of �rst

order interpretations and J is a set of formulas. The reason why  Lukaszewicz did

so is that justi�ed default logic allows for inconsistent sets of individually consistent

constraints (so that the focused models semantics cannot be adapted there).

Finally, a remark concerning De�nition 3.1 and 5.1 is in order. Let us compare the

respective consistency condition, that is (1) and (5). We observe that the condition in

constrained default logic requires that there is a K{model which has some accessible

world satisfying 
 ^ �: In contrast, we are faced with a stronger requirement in jus-

ti�ed default logic: there has to be a K{model whose accessible worlds all satisfy 


and some accessible world satis�es �. At �rst glance, this seems to be unintuitive

since constrained default logic has a stronger consistency condition than justi�ed de-

fault logic (compare De�nition 2.2 and 5.2). However, consistency or satis�ability

are always relative to a given set of formulas or class of models, respectively. In

fact, we consider a much more restricted class of K{models M

0

in (1), that is con-

strained default logic, than in (5), that is justi�ed default logic. Given a set of

default rules D

0

such that M

0

�

D

0

M

W

and M

0

B

D

0

M

W

; we have M

0

j= W ^

9

Observe that the membership qualifying property is exactly the third condition in the de�nition

of a justi�ed extension.



Conseq(D

0

) ^ �(W ^ Conseq(D

0

) ^ Justif (D

0

)) in constrained default logic, whereas

we encounter a less restricted class of K{models in justi�ed default logic, that is

M

0

j= W ^ Conseq(D

0

) ^ �(W ^ Conseq(D

0

)) ^ �Justif (D

0

): As a consequence, we

have to employ a stronger satis�ability condition in justi�ed default logic which is

given in (5).

6 Conclusion

We have presented a uniform semantical framework for various default logics in terms

of Kripke structures. That is, we have �rst introduced a possible worlds semantics for

constrained default logic and we have proved that it also captures cumulative default

logic. Then, we have provided a simple modi�cation for that possible worlds semantics

in order to characterize Reiter's classical default logic and in turn  Lukaszewicz' jus-

ti�ed default logic.

Moreover, the approach remedies several di�culties encountered in former propos-

als aiming at individual default logics. First, the approach avoids stability condi-

tions as required in [6] and [7]. Second, the possible worlds semantics avoids two{

folded semantical structures such as focused models structures [12] or frames as in-

troduced in [7]. Thirdly, the approach provides the �rst semantical characterization

of  Lukaszewicz' justi�ed default logic which is purely model{theoretic.

By adopting the perspective of \commitment to assumptions" we have not only

gained a clear criterion on that notion itself but also provided a very natural modal

interpretation by which existing default logics can be compared in a simple but deeply

meaningful manner. In particular, the semantics has revealed that all of the various

default logics employ constraints but di�er in the extent to which the constraints are

considered when checking consistency. Notably, in terms of modalities we have to

switch from � to � whenever we want to preserve \commitment to assumptions".



A Modal logic

We follow the de�nitions in [2] of a Kripke structure (called K{model in the sequel)

as a quadruple h!

0

;
;R;Ii; where 
 is a non{empty set (also called a set of worlds),

!

0

2 
 a distinguished world, R a binary relation on 
 (also called the accessibility

relation) and I is a function that de�nes a �rst order interpretation I

!

for each ! 2 
:

As usual, a K{model h!

0

;
;R;Ii is such that the domain of I

!

is a subset of the

domain of I

!

0

whenever (!; !

0

) 2 R:

Formulas in K{models are interpreted using a language enriched in the following

way: in a K{model h!

0

;
;R;Ii; for each ! 2 
, the �rst order interpretation I

!

is extended so that for each e 2 D

!

(the domain of I

!

), a constant e is introduced,

letting I

!

(e) = e: In every world !, each term is mapped into an element of D

!

as

follows: I

!

(f(t

1

; : : : ; t

n

)) = (I

!

(f)) (I

!

(t

1

); : : : ;I

!

(t

n

)) ; n � 0:

Given a K{model m = h!

0

;
;R;Ii; the modal entailment relation ! j= � (in m)

is de�ned by recursion on the structure of �:

! j= P (t

1

; : : : ; t

n

) i� (I

!

(t

1

); : : : ;I

!

(t

n

)) 2 I

!

(P )

! j= :� i� ! 6j= �

! j= � _ � i� ! j= � or ! j= �

! j= 8x �[x] i� ! j= �[e] for all e 2 D

!

! j= �� i� !

0

j= � whenever (!; !

0

) 2 R

We write m j= � if !

0

j= � (in m). This means that m is a model of �. We denote

classes of K{models by M. We extend the modal entailment relation j= to classes of

K{models M and writeM j= � to mean that each element in M (that is, a K{model)

entails �.

B Proofs of Theorems

Proposition 3.1 The empty class of K{models is never preferred wrt (D;W ) when-

ever W is consistent.

Proof 3.1 Assume that M

;

�

D

M

W

: By de�nition, there then exists a subset

D

0

= f�

0

; �

1

; : : :g of D such thatM

;

= fm j m j= W ^�W ^


i

^�(


i

^ �

i

) for all �

i

=

�

i

:�

i




i

g: By compactness, there is a �nite set fW ^�W ^ 


0

^�(


0

^ �

0

) ^ : : :^ 


k

^

�(


k

^ �

k

)g which is inconsistent. By Corollary C.3, fW^


0

^: : :^


k

g is inconsistent.

That is, W ^ 


0

^ : : : ^ 


k�1

j= :


k

: By modal logic K, �(W ^ 


0

^ : : : ^ 


k�1

) j=

�:


k

and �(W ^ 


0

^ : : : ^ 


k�1

) j= �:(


k

^ �

k

): Then, it cannot be the case that

M

k+1

�

�

k

M

k

because M

j

= fm j m j= W ^ �W ^ 


i

^ �(


i

^ �

i

) for all �

i

=

�

i

:�

i




i

such that i < jg: Therefore, there is no such k and D

0

is empty. So, M

;

=M

W

and, by Corollary C.3, W is inconsistent, a contradiction.

In the sequel, we frequently employ the following de�nition.

De�nition B.1 Let (D;W ) be a default theory. Given a possibly in�nite sequence

of default rules � = h�

0

; �

1

; �

2

; : : :i in D, also denoted h�

i

i

i2I

where I is the index set

for �, we de�ne a sequence of classes of K{models hM

i

i

i2I

as follows:

M

0

= M

W

M

i+1

= fm 2M

i

j m j= 


i

^ �


i

^

�

�

i

g; where �

i

=

�

i

:�

i




i

:

In constrained default logic,

�

is �. In classical and justi�ed default logic,

�

is �.



We will be more liberal here about the orders �

�

; >

�

;B

�

by relaxing the condition that

M �

�

M

0

(similarly M >

�

M

0

and M B

�

M

0

) holds only if M and M

0

are distinct.

That is, there will be cases where M �

�

M (similarly M >

�

M and M B

�

M) be

true. Clearly, this does not a�ect the issues under consideration.

B.1 Proof of correctness and completeness for constrained

default logic

Theorem 3.2 (Correctness & Completeness) Let (D;W ) be a default theory.

Let M be a class of K{models and E;C deductively closed sets of formulas such

that M = fm j m j= E ^�Cg: Then,

(E,C ) is a constrained extension of (D;W ) i� M is a �

D

{maximal class above M

W

:

The unsatis�able case is easily dealt with, so that we prove below the theorem for E

and C being satis�able.

Proof 3.2 (Correctness) Assume (E,C ) is a consistent constrained extension of

(D;W ). The set of generating default rules for (E,C ) wrt D is de�ned as GD

(E ;C)

D

=

n

� :�




�

�

� � 2 E; C [ f�g [ f
g 6` ?

o

: As has been shown in [14], then there exists an

enumeration h�

i

i

i2I

of GD

(E ;C )

D

such that for i 2 I

W [ Conseq(f�

0

; : : : ; �

i�1

g) ` Prereq(�

i

): (6)

Let hM

i

i

i2I

be a sequence of classes of K{models obtained from the enumeration

h�

i

i

i2I

according to De�nition B.1. We will show that M coincides with

T

i2I

M

i

and

is �

D

{maximal above M

W

:

Since (E,C ) is a constrained extension, it has been proven in [14] that

E = Th

�

W [ Conseq

�

GD

(E ;C )

D

��

;

C = Th

�

W [ Justif

�

GD

(E ;C )

D

�

[ Conseq

�

GD

(E ;C )

D

��

:

Then, since M = fm j m j= E ^ �Cg we have obviously that M =

T

i2I

M

i

:

Firstly, let us show that M

i+1

�

�

i

M

i

for i 2 I:

� Since M

i

� M

W

and M

W

j= W; then by de�nition of M

i

we have M

i

j=

W [ Conseq(�

i�1

) for i 2 I: Now, M

i+1

� M

i

for i 2 I implies that M

i

j=

W [ Conseq(f�

0

; : : : ; �

i�1

g): By (6), it follows that M

i

j= Prereq(�

i

) for i 2 I:

� Let us assume that M

i+1

�

�

i

M

i

fails for some k 2 I: By de�nition of

hM

i

i

i2I

and the fact that we have just proven that M

i

j= Prereq(�

i

) for

i 2 I; this means that M

k

j= �:(


k

^ �

k

) for �

k

=

�

k

:�

k




k

: Let us abbre-

viate W [ Conseq(f�

0

; : : : ; �

k�1

g) by E

k

and W [ Conseq(f�

0

; : : : ; �

k�1

g) [

Justif (f�

0

; : : : ; �

k�1

g) by C

k

. By de�nition, M

k

= fm j m j= E

k

^ �C

k

g:

Since E is satis�able, so is E

k

. By applying Corollary C.7 to the de�nition

of M

k

and M

k

j= �:(


k

^ �

k

) we obtain that C

k

j= :(


k

^ �

k

): That is,

C

k

[ f


k

g [ f�

k

g ` ?: By monotonicity, C [ f


k

g [ f�

k

g ` ?; contradictory to

the fact that �

k

2 GD

(E ;C)

D

:



Therefore, M

i+1

�

�

i

M

i

for i 2 I: As a consequence,

T

i2I

M

i

�

GD

(E ;C )

D

M

W

: That is,

M �

D

M

W

:

Secondly, assume M is not �

D

{maximal. Then, there exists a default rule

� :�




2

D nGD

(E ;C )

D

such that M j= � and M 6j= �:(
 ^ �): First, applying Corollary C.3 to

the de�nition of M and M j= � yields E j= �: Second, since M j= E ^�C; we get by

monotonicity �C 6j= �:(
 ^ �); yielding C 6j= :(
 ^ �) by modal logic K. Of course,

E j= � and C 6j= :(
 ^ �) implies

� :�




2 GD

(E ;C )

D

; a contradiction.

Proof 3.2 (Completeness) Assume M = fm j m j= E ^ �Cg is a �

D

{maximal

class of K{models above M

W

:

Let us �rst establish a useful characterization of C, that is

^

C = f� non{modal j

M j= ��g: Obviously, C �

^

C: So,

^

C j= C: In order to prove the converse, notice

that M j= �

^

C: Since E is satis�able, C j=

^

C; by Corollary C.7. Since C and

^

C are

deductively closed, C =

^

C:

According to [15] (E,C ) is a constrained extension i� (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

)

such that E

0

= W and C

0

= W; and for i � 0

E

i+1

= Th(E

i

) [

n




�

�

�

� :�




2 D;� 2 E

i

; C [ f�g [ f
g 6` ?

o

C

i+1

= Th(C

i

) [

n

� ^ 


�

�

�

� :�




2 D;� 2 E

i

; C [ f�g [ f
g 6` ?

o

Let us abbreviate fm j m j=

S

1

i=0

E

i

^�

S

1

i=0

C

i

g by N. We will show that M = N; in

order to show that (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

):

Firstly, let us show by induction that M � fm j m j= E

i

^ �C

i

g for i � 0:

Base By de�nition, M

W

j= E

0

^ �C

0

: Since M �

D

M

W

; we get M � fm j m j=

E

0

^�C

0

g:

Step The induction hypothesis is: M j= E

i

^�C

i

Consider � 2 E

i+1

[ C

i+1

: Then, one of the three following cases holds.

1. � 2 Th(E

i

): By the induction hypothesis, M j= �:

2. � 2 Th(C

i

): By the induction hypothesis, M j= ��:

3. � 2

n

�; 


�

�

�

� :�




2 D;� 2 E

i

; C [ f�g [ f
g 6` ?

o

: That is, � is either 
 or

� such that there is a default rule

� :�




2 D with � 2 E

i

and :(
 ^ �) 62 C:

By the induction hypothesis, M j= �: Using the above characterization

^

C of C, we have M 6j= �:(
 ^ �): Since M is �

D

{maximal, then M j=


 ^ �(
 ^ �) must hold and both cases for � are covered.

From the three cases, we obtain M j= E

i+1

^�C

i+1

:

Therefore, we have shown that M � fm j m j= E

i

^�C

i

g for i � 0: So, M � N:

Secondly, sinceM is a �

D

{maximal class aboveM

W

for (D;W ), thenM =

T

i2I

M

i

where hM

i

i

i2I

is a sequence of classes of K{models de�ned for some h�

i

i

i2I

according

to De�nition B.1 such that M

i+1

�

�

i

M

i

for i 2 I:

Let us show by induction that N �M

i

for i 2 I:

Base Since M

0

=M

W

and E

0

= C

0

= W; the result is obvious.



Step The induction hypothesis is: N �M

i

Since M

i+1

�

�

i

M

i

for i 2 I we have M

i+1

= fm 2M

i

j m j= 


i

^ �(


i

^ �

i

)g

and M

i

j= �

i

and M

i

6j= �:(


i

^ �

i

) where �

i

=

�

i

:�

i




i

:

By the induction hypothesis, we have N j= �

i

: By Corollary C.3,

S

1

i=0

E

i

j=

�

i

: By compactness and monotonicity, there exists k such that E

k

j= �

i

: By

de�nition, M

i+1

j= �(


i

^ �

i

); hence M j= �(


i

^ �

i

) because M =

T

i2I

M

i

:

So, 


i

^ �

i

2 C: Since C is satis�able, :(


i

^ �

i

) 62 C: From E

k

j= �

i

and

:(


i

^ �

i

) 62 C; we conclude that 


i

2 E

k+1

and 


i

^ �

i

2 C

k+1

: Hence, N j=




i

^ �(


i

^ �

i

): By the induction hypothesis and the de�nition of M

i+1

we

obtain N �M

i+1

:

Therefore, we have shown that N �M

i

for i 2 I: That is, N �M:

In all, M = N: That is, fm j m j= E ^ �Cg = fm j m j=

S

1

i=0

E

i

^ �

S

1

i=0

C

i

g:

As a consequence, N j= E: By Corollary C.3,

S

1

i=0

E

i

j= E: Clearly, the converse can

be proved in a similar way. Therefore,

S

1

i=0

E

i

= E because

S

1

i=0

E

i

and E are both

deductively closed sets of formulas.

Returning to M = N; we have N j= �C: Now,

S

1

i=0

E

i

is satis�able since E is.

Applying Corollary C.7,

S

1

i=0

C

i

j= C: Again, the converse can be proved in a similar

way. Then,

S

1

i=0

C

i

= C because

S

1

i=0

C

i

and C are both deductively closed sets of

formulas.

Then, (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

) and according to [15] this means (E,C ) is a con-

strained extension of (D;W ).

B.2 Proof of correctness and completeness for classical de-

fault logic

Theorem 4.1 (Correctness & Completeness) Let (D;W ) be a default theory.

Let M be a class of K{models and E be a deductively closed set of formulas such

that M = fm j m j= E ^�E ^ �C

E

g: Then,

E is a consistent classical extension of (D;W ) i� M is a >

D

{maximal non{empty

class above M

W

:

Proof 4.1 (Correctness) Assume E is a consistent classical extension of (D;W ).

The set of generating default rules for E wrt D is de�ned as GD

E

D

=

n

� :�




�

�

� � 2 E; :� 62 E

o

: As has been shown in [16], then there exists an enumer-

ation h�

i

i

i2I

of GD

E

D

such that for i 2 I

W [ Conseq(f�

0

; : : : ; �

i�1

g) ` Prereq(�

i

): (7)

Let hM

i

i

i2I

be a sequence of classes of K{models obtained from the enumeration

h�

i

i

i2I

according to De�nition B.1. We will show that M coincides with

T

i2I

M

i

and

is >

D

{maximal above M

W

:

Since E is a classical extension, it has been proven in [10] that

E = Th

�

W [ Conseq

�

GD

E

D

��

:

Then, sinceM = fm j m j= E^�E^�C

E

g and C

E

= Justif

�

GD

E

D

�

we have obviously

that M =

T

i2I

M

i

: Clearly, E ^ � is satis�able for each � 2 C

E

.

Firstly, let us show that M

i+1

>

�

i

M

i

for i 2 I:



� Since M

i

� M

W

and M

W

j= W; then by de�nition of M

i

we have M

i

j=

W [ Conseq(�

i�1

) for i 2 I: Now, M

i+1

� M

i

for i 2 I implies that M

i

j=

W [ Conseq(f�

0

; : : : ; �

i�1

g): By (7), it follows that M

i

j= Prereq(�

i

) for i 2 I:

� Let us assume that M

i+1

>

�

i

M

i

fails for some k 2 I: By de�nition of hM

i

i

i2I

and the fact that we have just proven thatM

i

j= Prereq(�

i

) for i 2 I; this means

that M

k

j= �:�

k

for �

k

=

�

k

:�

k




k

: Let us abbreviate W [Conseq(f�

0

; : : : ; �

k�1

g)

by E

k

and Justif (f�

0

; : : : ; �

k�1

g) by C

k

. By de�nition, M

k

= fm j m j= E

k

^

�E

k

^ �C

k

g: Since E

k

� E and C

k

� C

E

; we have that E

k

^ � is satis�able

for each � 2 C

E

and we can apply Corollary C.6 to the de�nition of M

k

and

M

k

j= �:�

k

: We obtain that E

k

j= :�

k

: By monotonicity, E j= :�

k

: Since E is

deductively closed we have :�

k

2 E; contradictory to the fact that �

k

2 GD

E

D

:

Therefore, M

i+1

>

�

i

M

i

for i 2 I: As a consequence,

T

i2I

M

i

>

GD

E

D

M

W

: That is,

M >

D

M

W

:

Secondly, assume M is not >

D

{maximal. Then, there exists a default rule

� :�




2

D n GD

E

D

such that M j= � and M 6j= �:�: As noted above, E ^ � is satis�able for

each � 2 C

E

. First, applying Corollary C.2 to the de�nition of M and M j= � yields

E j= �: Second, since M j= E ^ �E ^ �C

E

; we get by monotonicity �E 6j= �:�;

yielding E 6j= :� by modal logic K. Of course, E j= � and E 6j= :� implies

� :�




2 GD

E

D

;

a contradiction.

Thirdly, assume M is empty. Then, M j= �?: From the de�nition of M and the

fact that E ^ � is satis�able for each � 2 C

E

, Corollary C.6 yields E j= ?: This

contradicts the consistency of E.

Proof 4.1 (Completeness) AssumeM = fm j m j= E^�E^�C

E

g is a non{empty

>

D

{maximal class of K{models above M

W

:

According to [10] E is a classical extension i� E =

S

1

i=0

E

i

such that E

0

= W and

for i � 0

E

i+1

= Th(E

i

) [

n




�

�

�

� :�




2 D;� 2 E

i

;:� 62 E

o

:

De�ne C

0

= ;; and for i � 0

C

i+1

=

n

�

�

�

�

� :�




2 D;� 2 E

i

;:� 62 E

o

:

Let us abbreviate fm j m j=

S

1

i=0

E

i

^�

S

1

i=0

E

i

^�

S

1

i=0

C

i

g by N. We will show that

M = N; in order to show that E =

S

1

i=0

E

i

:

Firstly, let us show by induction that M � fm j m j= E

i

^ �E

i

^ �C

i

g for i � 0:

Base By de�nition, M

W

j= E

0

^ �E

0

^ �C

0

: Since M >

D

M

W

; we get M � fm j

m j= E

0

^�E

0

^ �C

0

g:

Step The induction hypothesis is: M j= E

i

^�E

i

^ �C

i

Consider � 2 E

i+1

[ C

i+1

: Then, one of the two following cases holds.

1. � 2 Th(E

i

): By the induction hypothesis, M j= �:

2. � 2 f�; 
g for some

� :�




2 D such that � 2 E

i

and :� 62 E: By the

induction hypothesis, M j= �: Assume M j= �:�: Since E is deductively

closed, we obtain, by de�nition of C

E

, that E ^ � is satis�able for each

� 2 C

E

. So, Corollary C.6 applies to M and M j= �:�: As a result,



E j= :�: Then, it follows that :� 2 E; a contradiction. So, M 6j= �:�:

SinceM is >

D

{maximal, thenM j= 
^�
^�� must hold and both cases

for � are covered.

From the two cases, we obtain M j= E

i+1

^ �E

i+1

^ �C

i+1

:

Therefore, we have shown thatM � fm j m j= E

i

^�E

i

^�C

i

g for i � 0: So,M � N:

Secondly, sinceM is a >

D

{maximal class aboveM

W

for (D;W ), thenM =

T

i2I

M

i

where hM

i

i

i2I

is a sequence of classes of K{models de�ned for some h�

i

i

i2I

according

to De�nition B.1 such that M

i+1

>

�

i

M

i

for i 2 I:

Let us show by induction that N �M

i

for i 2 I:

Base Since M

0

=M

W

and C

0

� E

0

= W; the result is obvious.

Step The induction hypothesis is: N �M

i

Since M

i+1

>

�

i

M

i

for i 2 I we have M

i+1

= fm 2 M

i

j m j= 


i

^ �


i

^ ��

i

g

and M

i

j= �

i

and M

i

6j= �:�

i

where �

i

=

�

i

:�

i




i

:

By the induction hypothesis, we have N j= �

i

: Suppose that

S

1

i=0

E

i

^ � is

unsatis�able for some � 2

S

1

i=0

C

i

: Then, there is some k such that � 2 C

k

and E

k

j= :�: We have shown above that M � fm j m j= E

i

^ �E

i

^ �C

i

g for

i � 0: Then,M j= �E

k

^��: From E

k

j= :�; modal logic K yields �E

k

j= �:�:

Therefore,M j= �:�^��: Then,M is empty, a contradiction. So,

S

1

i=0

E

i

^� is

satis�able for each � 2

S

1

i=0

C

i

: Since N j= �

i

; we can now apply Corollary C.2

to obtain that

S

1

i=0

E

i

j= �

i

: By compactness and monotonicity, there exists

k such that E

k

j= �

i

: By de�nition, M

i+1

j= ��

i

; hence M j= ��

i

because

M =

T

i2I

M

i

: Since M is non{empty, it follows from M j= ��

i

and M j= �E

by modal logic K that E 6j= :�

i

: That is, :�

i

62 E: From E

k

j= �

i

and :�

i

62 E;

we conclude that 


i

2 E

k+1

and �

i

2 C

k+1

: Hence, N j= 


i

^�


i

^ ��

i

: By the

induction hypothesis and the de�nition of M

i+1

we obtain N �M

i+1

:

Therefore, we have shown that N �M

i

for i 2 I: That is, N �M:

In all, M = N: That is, fm j m j= E ^ �E ^ �C

E

g = fm j m j=

S

1

i=0

E

i

^

�

S

1

i=0

E

i

^ �

S

1

i=0

C

i

g: Since M hence N is non{empty, �

S

1

i=0

E

i

^ �� is satis�able

for each � 2

S

1

i=0

C

i

(as �p ^ �q ! �(p ^ q) and �? ! ? are valid in modal logic

K ). By Corollary C.2,

S

1

i=0

E

i

j= E: The converse is proved in a similar way, it is just

simpler. Therefore,

S

1

i=0

E

i

= E because

S

1

i=0

E

i

and E are both deductively closed

sets of formulas.

Then, E =

S

1

i=0

E

i

and according to [10] this means E is a consistent classical

extension of (D;W ) (if E were not consistent, M would be empty).

B.3 Proof of correctness and completeness for justi�ed de-

fault logic

Theorem 5.1 (Correctness & Completeness) Let (D;W ) be a default theory.

Let M be a class of K{models, E a deductively closed set of formulas, and J a set of

formulas such that J = C

(E;J)

and M = fm j m j= E ^�E ^ �C

(E;J)

g: Then,

E is a justi�ed extension of (D;W ) wrt J i� M is a B

D

{maximal class above M

W

:



The unsatis�able case is easily dealt with, so that we prove below the theorem for

E ^ � being satis�able for each � 2 J (equivalently, M is non{empty as can be seen

from modal logic K).

Proof 5.1 (Correctness) Assume E is a consistent justi�ed extension of (D;W )

wrt J . The set of generating default rules for (E; J) wrt D is de�ned as GD

(E;J)

D

=

n

� :�




�

�

� � 2 E; 8� 2 J [ f�g: E [ f
g [ f�g 6` ?

o

: As has been shown in [11], then

there exists an enumeration h�

i

i

i2I

of GD

(E;J)

D

such that for i 2 I

W [ Conseq(f�

0

; : : : ; �

i�1

g) ` Prereq(�

i

): (8)

Let hM

i

i

i2I

be a sequence of classes of K{models obtained from the enumeration

h�

i

i

i2I

according to De�nition B.1. We will show that M coincides with

T

i2I

M

i

and

is B

D

{maximal above M

W

:

Since E is a justi�ed extension wrt J , it has been proven in [11] that

E = Th

�

W [ Conseq

�

GD

(E;J)

D

��

;

J = Justif

�

GD

(E;J)

D

�

:

Then, since M = fm j m j= E ^�E ^�C

(E;J)

g and C

(E;J)

= Justif

�

GD

(E;J)

D

�

we have

obviously that M =

T

i2I

M

i

: Clearly, if

� :�




2 GD

(E;J)

D

then E ^ 
 ^ � is satis�able

for each � 2 Justif

�

GD

(E;J)

D

�

:

Firstly, let us show that M

i+1

B

�

i

M

i

for i 2 I:

� Since M

i

� M

W

and M

W

j= W; then by de�nition of M

i

we have M

i

j=

W [ Conseq(�

i�1

) for i 2 I: Now, M

i+1

� M

i

for i 2 I implies that M

i

j=

W [ Conseq(f�

0

; : : : ; �

i�1

g): By (8), it follows that M

i

j= Prereq(�

i

) for i 2 I:

� Let us assume that M

i+1

B

�

i

M

i

fails for some k 2 I: By de�nition of

hM

i

i

i2I

and the fact that we have just proven that M

i

j= Prereq(�

i

) for

i 2 I; this means that M

k

j= �:�

k

_ �:


k

for �

k

=

�

k

:�

k




k

: Let us ab-

breviate W [ Conseq(f�

0

; : : : ; �

k�1

g) by E

k

and Justif (f�

0

; : : : ; �

k�1

g) by J

k

.

By de�nition, M

k

= fm j m j= E

k

^ �E

k

^ �J

k

g: Clearly, E

k

� E and

J

k

� J: So, E

k

is satis�able. Also, if

� :�




2 GD

(E;J)

D

then E ^ 
 ^ � is sat-

is�able for each � 2 J

k

: Thus, we can apply Corollary C.5 to the de�nition

of M

k

and M

k

j= �:�

k

_ �:


k

to obtain that E

k

j= :�

k

_ :


k

: That is,

E

k

[ f�

k

g [ f


k

g ` ?: By monotonicity, E [ f�

k

g [ f


k

g ` ?; contradictory to

the fact that �

k

2 GD

(E;J)

D

:

Therefore, M

i+1

B

�

i

M

i

for i 2 I: As a consequence,

T

i2I

M

i

B

GD

(E;J)

D

M

W

: That is,

M B

D

M

W

:

Secondly, assume M is not B

D

{maximal. Then, there exists a default rule

� :�




2

D n GD

(E;J)

D

such that M j= � and M 6j= �:� _ �:
: As noted above, E ^ � is

satis�able for each � 2 C

(E;J)

. First, applying Corollary C.2 to the de�nition of M

andM j= � yields E j= �: Second,M 6j= �:�_�:
 implies by the de�nition ofM and

monotonicity that �E^�C

(E;J)

6j= �:�_�:
: Then, �E^�C

(E;J)

6j= �:
: By modal

logic K, it follows that E^� 6j= :
 whenever � 2 C

(E;J)

: So, E[f
g[f�g is satis�able

for each � 2 J (because J = C

(E;J)

). Returning to �E ^ �C

(E;J)

6j= �:� _ �:
;

another consequence is �E 6j= �:� _ �:
: That is, �E 6j= �
 ! �:�: By modal



logic K, it follows that E 6j= 
 ! :�: So, E [ f
g [ f�g is satis�able. In all,

E [ f
g [ f�g 6` ? whenever � 2 J [ f�g: Together with E j= �; this implies

� :�




2 GD

(E;J)

D

; a contradiction.

Proof 5.1 (Completeness) Assume M = fm j m j= E ^ �E ^ �C

(E;J)

g is a non{

empty B

D

{maximal class of K{models above M

W

:

According to [7] E is a justi�ed extension wrt J i� (E; J) = (

S

1

i=0

E

i

;

S

1

i=0

J

i

) such

that E

0

= W and J

0

= ; and for i � 0

E

i+1

= Th(E

i

) [

n




�

�

�

� :�




2 D;� 2 E

i

;8� 2 J [ f�g: E [ f
g [ f�g 6` ?

o

J

i+1

= J

i

[

n

�

�

�

�

� :�




2 D;� 2 E

i

;8� 2 J [ f�g: E [ f
g [ f�g 6` ?

o

Let us abbreviate fm j m j=

S

1

i=0

E

i

^�

S

1

i=0

E

i

^ �

S

1

i=0

J

i

g by N. We will show that

M = N; in order to show that E =

S

1

i=0

E

i

and J =

S

1

i=0

J

i

:

Firstly, let us show by induction that M � fm j m j= E

i

^ �E

i

^ �J

i

g for i � 0:

Base By de�nition, M

W

j= E

0

^ �E

0

^ �J

0

: Since M B

D

M

W

; we get M � fm j

m j= E

0

^�E

0

^ �J

0

g:

Step The induction hypothesis is: M j= E

i

^�E

i

^ �J

i

Consider � 2 E

i+1

[ J

i+1

: Then, one of the three following cases holds.

1. � 2 Th(E

i

): By the induction hypothesis, M j= �:

2. � 2 J

i

: By the induction hypothesis, M j= ��:

3. � 2 f�; 
g for some

� :�




2 D such that � 2 E

i

and E [ f
g [ f�g 6` ?

for all � 2 J [ f�g: By the induction hypothesis, M j= �: Assume M j=

�:� _ �:
: By de�nition of C

(E;J)

, we obtain that E ^ � is satis�able

for each � 2 C

(E;J)

. Also E is satis�able. So, Corollary C.5 applies to

the de�nition of M and M j= �:� _ �:
: As a result, E j= :� _ :
:

This contradicts the fact that E [ f
g [ f�g 6` ? for all � 2 J [ f�g: So,

M 6j= �:� _ �:
: Since M is B

D

{maximal, then M j= 
 ^�
 ^ �� must

hold and both cases for � are covered.

From the three cases, we obtain M j= E

i+1

^�E

i+1

^ �J

i+1

:

Therefore, we have shown that M � fm j m j= E

i

^�E

i

^�J

i

g for i � 0: So,M � N:

Secondly, sinceM is a B

D

{maximal class aboveM

W

for (D;W ), thenM =

T

i2I

M

i

where hM

i

i

i2I

is a sequence of classes of K{models de�ned for some h�

i

i

i2I

according

to De�nition B.1 such that M

i+1

B

�

i

M

i

for i 2 I:

Let us show by induction that N �M

i

for i 2 I:

Base Since M

0

=M

W

and J

0

� E

0

= W; the result is obvious.

Step The induction hypothesis is: N �M

i

Since M

i+1

B

�

i

M

i

for i 2 I we have M

i+1

= fm 2 M

i

j m j= 


i

^ �


i

^ ��

i

g

and M

i

j= �

i

and M

i

6j= �:�

i

_ �:


i

where �

i

=

�

i

:�

i




i

:

By the induction hypothesis, we have N j= �

i

: Suppose that

S

1

i=0

E

i

^ � is

unsatis�able for some � 2

S

1

i=0

J

i

: Then, there is some k such that � 2 J

k

and

E

k

j= :�: We have shown above that M � fm j m j= E

i

^ �E

i

^ �C

i

g for



i � 0: Then, M j= �E

k

^ ��: From E

k

j= :�; modal logic K yields �E

k

j=

�:�: Therefore, M j= �:� ^ ��: Then, M is empty, a contradiction. So,

S

1

i=0

E

i

^ � is satis�able for each � 2

S

1

i=0

J

i

: Since N j= �

i

; we can now apply

Corollary C.2 to obtain that

S

1

i=0

E

i

j= �

i

: By compactness and monotonicity,

there exists k such that E

k

j= �

i

: By de�nition, M

i+1

j= �


i

^ ��

i

; hence

M j= �


i

^ ��

i

because M =

T

i2I

M

i

: Since M is non{empty, it follows from

M j= �


i

^ ��

i

and M j= �E by modal logic K that E ^ 


i

6j= :�

i

: That is,

E [f


i

g[f�

i

g 6` ?: Also, since M is non{empty, it follows from M j= �


i

and

M j= �E ^ �C

(E;J)

by modal logic K that M j= �(E ^ 


i

^ �) for � 2 C

(E;J)

:

That is, E [ f


i

g [ f�g 6` ? for � 2 J (because J = C

(E;J)

). From E

k

j= �

i

and

E [f


i

g[f�g 6` ? for � 2 J [f�

i

g; we conclude that 


i

2 E

k+1

and �

i

2 J

k+1

:

Hence, N j= 


i

^ �


i

^ ��

i

: By the induction hypothesis and the de�nition of

M

i+1

we obtain N �M

i+1

:

Therefore, we have shown that N �M

i

for i 2 I: That is, N �M:

In all, M = N: That is, fm j m j= E ^ �E ^ �C

(E;J)

g = fm j m j=

S

1

i=0

E

i

^

�

S

1

i=0

E

i

^�

S

1

i=0

J

i

g: Since M hence N is non{empty, �

S

1

i=0

E

i

^�� is satis�able for

each � 2

S

1

i=0

J

i

(as �p ^ �q ! �(p ^ q) and �? ! ? are valid in modal logic K ).

By Corollary C.2,

S

1

i=0

E

i

j= E: The converse is proved in a similar way. Therefore,

S

1

i=0

E

i

= E because

S

1

i=0

E

i

and E are both deductively closed sets of formulas.

Since E =

S

1

i=0

E

i

; the de�nitions of C

(E;J)

and J

i

make it easy to verify that

C

(E;J)

=

S

1

i=0

J

i

That is, J =

S

1

i=0

J

i

:

Then, E =

S

1

i=0

E

i

and J =

S

1

i=0

J

i

; and according to [7] this means E is a justi�ed

extension of (D;W ) wrt J .

C Proofs of some modal propositions

Proposition C.1 Let p, q, r, s

1

; : : : ; s

n

be non{modal formulas such that q ^ s

i

is

satis�able for i = 1; : : : ; n.

If j= p ^�q ^ �s

1

^ : : : ^ �s

n

! r then j= p! r:

Proof C.1 Assume the contrary. Then, p ^ :r is satis�able. It is thus possible to

de�ne the K{model m = h!

0

; f!

i

j i = 0; : : : ; ng; f(!

0

; !

i

) j i = 1; : : : ; ng;Ii such

that !

0

j= p ^ :r and !

i

j= q ^ s

i

for i = 1; : : : ; n. Clearly, m contradicts the validity

of p ^ �q ^ �s

1

^ : : : ^ �s

n

! r even in the limiting case where n = 0.

Corollary C.2 Let S , T , U and V be sets of non{modal formulas and T ^ u is

satis�able for each u 2 U .

If M = fm j m j= S ^�T ^ �U g and M j= V then S j= V :

Proof C.2 Consider v 2 V : M j= v means S ^ �T ^ �U j= v: By compactness,

S

0

^�T

0

^�U

0

j= v for some �nite subsets S

0

;T

0

and U

0

of S , T and U , respectively.

Since the deduction theorem for material implication holds in modal logic K, we get

j= S

0

^ �T

0

^ �U

0

! v: Applying Proposition C.1, j= S

0

! v: That is, S

0

j= v: By

monotonicity, S j= v: So, S j= V :

Corollary C.3 Let S , T and V be sets of non{modal formulas.

If M = fm j m j= S ^�Tg and M j= V then S j= V :



Proof C.3 Apply Corollary C.2 in the limiting case where U is empty (n = 0 in

Proposition C.1).

Proposition C.4 Let p, q, r, s

1

; : : : ; s

n

, t be non{modal formulas, with p and q ^

s

i

^ :t satis�able for i = 1; : : : ; n.

If j= p ^�q ^ �s

1

^ : : : ^ �s

n

! �r _ �t then j= q! r _ t:

Proof C.4 Assume the contrary. Then, q^:r^:t is satis�able. De�ne the K{model

m = h!

0

; f!

i

j i = 0; : : : ; n + 1g; f(!

0

; !

i

) j i = 1; : : : ; n + 1g;Ii with I as follows.

Let !

0

j= p: Let !

n+1

j= q ^ :r ^ :t: For i = 1; : : : ; n, let !

i

j= q ^ s

i

^ :t: Then, m

contradicts the validity of p ^ �q ^ �s

1

^ : : : ^ �s

n

! �r _ �t even in the limiting

case where n = 0.

Corollary C.5 Let S , T and U be sets of non{modal formulas and let p and q be

non{modal formulas such that S is satis�able and T ^ u ^ :q is satis�able for each

u 2 U .

If M = fm j m j= S ^�T ^ �U g and M j= �p _ �q then T j= p _ q:

Proof C.5 M j= �p _ �q means S ^ �T ^ �U j= �p _ �q: By compactness,

S

0

^ �T

0

^ �U

0

j= �p _ �q for some �nite subsets S

0

;T

0

and U

0

of S , T and U ,

respectively. Since the deduction theorem for material implication holds in modal

logic K, we get j= S

0

^�T

0

^�U

0

! �p_�q: Applying Proposition C.4, j= T

0

! p_q:

That is, T

0

j= p _ q: Accordingly, T j= p _ q:

Corollary C.6 Let S , T , U and V be sets of non{modal formulas such that S is

satis�able and T ^ u is satis�able for each u 2 U .

If M = fm j m j= S ^�T ^ �U g and M j= �V then T j= V :

Proof C.6 Consider v 2 V : Then, M j= �v: Since ? and �? are equivalent in

modal logic K, M j= �v _ �?: Applying Corollary C.5, T j= v _ ?: That is, T j= v:

Accordingly, T j= V :

Corollary C.7 Let S , T and U be sets of non{modal formulas such that S is

satis�able.

If M = fm j m j= S ^�Tg and M j= �V then T j= V :

Proof C.7 Apply Corollary C.6 in the limiting case where U is empty (n = 0 in

Proposition C.4).
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