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Abstract

In this paper, we elaborate the idea that contexts provide an important and

meaningful notion in default reasoning. We demonstrate this by looking at Re-

iter's default logic that has been the prime candidate for formalizing consistency-

based default reasoning ever since its introduction in 1980. This results in a

new context-based approach to default logic, called contextual default logic. The

approach extends the notion of a default rule and supplies each default exten-

sion with a context. In particular, contextual default logic provides a uni�ed

framework for default logics. That is, it allows for embedding existing variants

of default logic along with more traditional approaches like the closed world as-

sumption. Since this is accomplished in a homogeneous way, we gain additional

expressiveness by combining the diverse approaches. A key advantage of con-

textual default logic is that it provides a syntactical instrument for comparing

existing default logics in a uni�ed setting. In particular, the approach reveals

that existing default logics mainly di�er in the way they deal with an explicit or

implicit underlying context.

1 Introduction

In real life, we are quite often faced with incomplete information. Yet we are not

paralyzed by missing information|rather we reason in the absence of information|

and still arrive at plausible conclusions.

A versatile way of reasoning in the absence of information is to reason by default.

Default reasoning puts faith in standard situations. It relies on general rules expressing

expected states of a�airs. In fact, whenever we are reasoning by default we are implicitly

making assumptions about the situation at hand. In this way, our reasoning is driven

�

This is a heavily revised and extended version of the paper \A context-based framework for default

logics" presented at the Eleventh National Conference on Arti�cial Intelligence (AAAI'93).



from certain contexts
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induced by the adopted assumptions. Accordingly, we arrive at

di�erent conclusions depending on which kind of context we consider.

First of all, let us look at two examples reecting di�erent notions of contexts.

Let us �rst turn to a variation of the so-called \broken-arms" example described in

[16]. This example involves a robot, say Roby. Among other rules, we have a default

rule saying that a robot's arm is usable unless it is broken. Now, suppose we are told

that one of Roby's arms, either the left one or the right one, is broken. And we are

given no other detail.

Then, being asked about Roby's arms, we clearly answer that only one arm is usable

but not both.

2

This is so because the default conclusion that an arm is usable relies on

the underlying assumption that it is not broken. After we have drawn the conclusion

that an arm is usable we keep relying on the implicit assumption that it is not broken. In

this way, the underlying assumption becomes a part of our current context of reasoning.

Since we encounter two such assumptions, which are contradictory to each other, our

reasoning can be seen as being driven by two distinct contexts. According to the �rst

one, we may conclude that the left arm is usable while assuming that the right arm is

broken. And in the second context, we imagine that the left arm is broken and therefore

conclude that the right arm is usable. Reconciling these two alternative views directs

us to conclude that only one of the arms is actually usable.

For a second example, let us look at the so-called \holidays" example given in [7].

Assume we are set about packing our bag for a trip to Vancouver. As usual, we do

so by relying on rules of thumb, like if it is possible that it will be warm then take

a T-shirt; if it is possible that it will be cold then take a sweater. Of course, if we

know nothing about the weather, apart from the fact that warm and cold weather are

mutually exclusive, we are willing to take both, our T-shirt and our sweater.

In this example, it makes sense to draw both conclusions simultaneously. We want

to take a T-shirt if it is merely possible for the weather to be �ne, and similarly for

the sweater if there is a chance for cold weather. Of course, it is both possible that the

weather will be warm and possible that the weather will be cold. Hence, we take both

clothes with us to Vancouver. Unlike the \broken-arms" example, we thus encounter a

di�erent situation in the \holidays" example. Here, our reasoning is rather driven by

a single context which is composed of two incompatible subcontexts: One subcontext

captures the possible scenario that it is going to be warm in Vancouver, whereas the

other one deals with a possible cold weather scenario. In this way, warm and cold

weather provide merely possible scenarios of the city of Vancouver.

Here, the underlying assumptions delineate the contexts of reasoning but do not act

as hypothetical premises within a context, as in the \broken-arms" example. There,

an underlying assumption enforced a certain context of reasoning. The account of an

underlying assumptions used in the \holidays" example is weaker. Here, assumptions

generate certain (sub)contexts but they cannot inhibit others and thus tolerate further

incompatible (sub)contexts.

1

So far, there has been no relationship established between the conception of contexts studied in

this paper and the one investigated in [13].

2

Unlike well-known approaches to default reasoning, like autoepistemic [15] and default logic [18].

Cf. [16] for a detailed discussion on this phenomenon.



The two previous examples have shown how di�erently structured contexts may

inuence the process of reasoning by default. In particular, the examples have revealed

the signi�cance of various forms of contexts. In this paper, we pursue further the idea

that contexts provide an important and meaningful notion in default reasoning. We

will demonstrate this by looking at Reiter's default logic [18], which has been the prime

candidate for formalizing consistency-based default reasoning ever since its introduction

in 1980.

In Reiter's default logic, standard �rst-order logic is augmented by non-standard

inference rules, called default rules. These rules di�er from standard inference rules

in sanctioning inferences that rely upon given as well as absent information. Such

inferences therefore could not be made in a standard framework. In fact, default rules

can be seen as rules of conjecture whose role is to augment a given incomplete �rst-order

theory. A set of conclusions sanctioned by a set of default rules is called an extension of

an initial set of facts. Informally, an extension of a set of facts is the set of all formulas

derivable from these facts using standard inference rules and all speci�ed default rules.

Or in Reiter's words [18], the \: : : intuitive idea which must be captured is that of a

set of defaults inducing an extension of some underlying incomplete set of �rst-order

w�s".

As argued above, contexts govern the drawing of default conclusions. Accordingly,

contexts should take an important part in forming extensions in default logic. So,

starting out from Reiter's default logic, the basic idea of our approach to context-based

default reasoning becomes twofold. First, we supply each default extension with an

underlying (sometimes structured) context according to the intuitions sketched above.

Second, we extend the concept of a default rule in order to allow for a variety of di�erent

application conditions which arise naturally from the distinction between an initial set

of facts, a default extension at hand, and its underlying context.

In what follows, we will demonstrate that the context-based approach to default

logic is a very powerful one. In particular, we will prove that it allows for embedding

existing variants of default logic. Notably, we will show that the di�erent uses of

contexts are actually what makes the di�erence between these variants. As a result of

applying the notion of a context to default logic, we obtain a more general but uniform

default reasoning system, which combines the expressiveness of former approaches.

Our approach is in accord with the one taken by Marek and Truszczy�nski in [12].

There, they adopt the view that context-dependent reasoning is the heart of default

and even nonmonotonic reasoning. Their \idea is to relativize the concept of a proof

using a context to control the applicability of rules. Speaking more precisely, a context

determines what is and what is not a valid derivation" [12, p. 2]. They apply this idea in

turn to Reiter's original default logic, logic programming, truth maintenance systems,

and McDermott and Doyle's modal nonmonotonic logic [14]. Hence, this paper might

in some respects be regarded as an extension of [12] for capturing di�erent notions of

contexts encountered in existing variants of default logics.

The rest of the paper is organized as follows. Section 2 addresses the question how

the aforementioned variety of contexts along with their induced forms of reasoning can

be formalized. As a result, we will see that a proper account of consistency provides

an appropriate answer to this question. This is guided by a thorough investigation

into the di�erent conceptions of consistency used in certain variants of default logic.



In Section 3, we introduce contextual default logic, as our formal approach to context-

based default reasoning. Furthermore, we show how the aforementioned examples are

formally dealt with in contextual default logic. Section 4 contains a collection of fur-

ther examples illustrating the expressiveness enjoyed by contextual default logic. In

Section 5, we elaborate on the formal theory of contextual default logic. We give al-

ternative characterizations of extensions in contextual default logic and examine the

formal notion of contexts in more detail. Section 6 continues the formal elaboration

by giving a possible worlds semantics for contextual default logic, which nicely reects

the interplay of contexts through possible worlds. Section 7 demonstrates the power

behind the notion of contexts by showing that existing variants of default logics consti-

tute certain fragments of contextual default logic. The formal analysis is completed in

Section 8, where we describe the formal properties of contextual default logic relying

on some results obtained in the previous section.

2 Notions of consistency in default logics

We have seen in the introductory section how contexts may inuence the default rea-

soning process. So far, however, it is far from clear how di�erent notions of contexts

along with their induced forms of reasoning can be formalized. In what follows, we

will argue that a proper account of consistency provides an appropriate answer to this

question. In particular, we will show how consistency allows for distinguishing between

multiple contexts as opposed to di�erent subcontexts of a wider common context.

Since we explore the notion of contexts in connection with default logic, we have

to account �rst for some formal preliminaries: Classical default logic was de�ned by

Reiter in [18] as a formal account of reasoning in the absence of complete information.

It is based on �rst-order logic, whose sentences are hereafter simply referred to as

formulas (instead of closed formulas). In what follows, we then assume the reader to be

familiar with the basic concepts of �rst order logic (cf. [9]) as well as some acquaintance

with modal logics (cf. [4]) in Section 6. We shall be dealing with a standard �rst

order language (including ? and >, the symbols for \falsum" and \verum") and its

extension by the modal operator 2. We denote derivability and entailment by ` and j=;

respectively (whether dealing with the pure �rst order language or the modal one). We

use Th to denote the �rst order consequence operation, that is Th(S ) = f� j S ` �g:

Further de�nitions and conventions will be introduced when they occur for the �rst

time.

In default logics, default knowledge is incorporated by means of so-called default

rules. A default rule is any expression of the form

� :�



; where �, � and  are formulas.

� is called the prerequisite, � the justi�cation, and  the consequent of the default

rule. Accordingly, a default theory (D;W ) consists of a set of formulas W and a set

of default rules D. Informally, an extension

3

of the initial set of facts W is the set of

all formulas derivable from W by applying classical inference rules and all applicable

default rules. Usually, a default rule

� :�



is applicable, if its prerequisite � is derivable

and its justi�cation � is consistent in a certain way. Intuitively, a default rule may thus

be interpreted as: \If � is known and :� is unknown, then conclude  by default".

3

Formal de�nitions for extensions in existing default logics are given in Section 7.



In all existing default logics, the prerequisite � of a default rule

� :�



is checked wrt

an extension E by requiring � 2 E: However, the aforementioned variants di�er in the

way they account for the consistency of the justi�cation �. For instance, in classical

default logic [18] the consistency of the justi�cation � is checked wrt the extension E

by verifying :� 62 E; whereas in constrained default logic [20, 7] the same is done wrt

a set of constraints C, containing the extension E, by checking :� 62 C:

In default logics, there are thus two extreme notions of consistency: Individual

and joint consistency. The former is employed in classical default logic, whereas the

latter can be found in constrained default logic. Individual consistency requires that no

justi�cation of an applying default rule is contradictory with a given extension, whereas

joint consistency stipulates that all justi�cations of all applying default rules are jointly

consistent with the extension at hand.

Now, the interesting question is how these notions of consistency deal with the

variety of contexts described in the introductory section. In order to illustrate this let

us consider the formalizations of the two examples given there.

As a �rst example, let us take a look at the formalization of the \broken-arms"

example given in [16]. Consider the default theory

4

 (

: :Bl

Ul

;

: :Br

Ur

)

; fBl _ Brg

!

: (1)

The set of facts asserts that either the left arm, Bl, or the right arm, Br, is broken. The

default rules express that an arm is usable, Ul or Ur, unless it is broken, ie. if we can

consistently assume that it is not broken, :Bl or :Br. We observe that altogether the

facts and the justi�cations of the two default rules are inconsistent.

In classical default logic, default theory (1) has one extension containing Ul and Ur

along with the fact Bl _ Br, as depicted in Figure 1 (the circle represents the deductive

closure of the given formulas). That is, classical default logic directs us to conclude

that both arms are usable even though one of them is known to be broken. Both de-

Bl _ Br

Ul Ur

Figure 1: The classical extension in the \broken-arms" example.

fault rules apply, although they have contradictory justi�cations according to the set of

facts. This is so because each justi�cation, :Bl and :Br, is separately consistent with

the extension.

4

The original formulation given in [16] uses so-called semi-normal default rules, like ( :Ul^ :Bl=Ul):

For presentation, we have simpli�ed the justi�cations. This leaves the default theory's formal behavior

una�ected.



In this case, the extension is somehow embedded in an implicit context which gathers

two incompatible subcontexts: A subcontext formed while assuming :Bl and another

one formed under the assumption :Br. In precise terms, this amounts to an extension,

Th(fBl _ Br;Ul;Urg); which is embedded in a wider context, namely

Th(f:Bl;Br;Ul;Urg) [ Th(fBl;:Br;Ul;Urg)

containing two incompatible subcontexts. One subcontext, viz. Th(f:Bl;Br;Ul;Urg); is

formed by the extension and the justi�cation of the default rule

::Bl

Ul

; and the second

one, Th(fBl;:Br;Ul;Urg); is formed by the extension and the justi�cation of the default

rule

::Br

Ur

:

According to [16], the solution to the \broken-arms" example obtained in classical

default logic seems to be rather unintuitive.

5

In particular, the use of contexts in clas-

sical default logic does not coincide with the one suggested in the introductory section.

There, we have argued in favor of two distinct contexts rather than a wider contexts

including two incompatible subcontexts. This is so because in the \broken-arms" ex-

ample the justi�cations act in the sense of underlying assumptions or even implicit

hypotheses, which seem to suggest distinct contexts in the case of inconsistencies.

A di�erent solution to the \broken-arms" example is o�ered by constrained default

logic. In constrained default logic, default theory (1) yields two so-called constrained

extensions, which are extensions supplied with a certain set of constraints. In fact, we

obtain one extension containing Ul and another one containing Ur from default theory

(1). In the �rst constrained extension, the constraints consist of the justi�cation of the

default rule

::Bl

Ul

along with the default rule's consequent and the world knowledge. In

the second constrained extension, the constraints contain the justi�cation of the de-

fault rule

::Br

Ur

; its consequent, and the set of facts. These two constrained extensions

are depicted in Figure 2 (the inner circle represents the extension and the outer circle

stands for the deductively closed set of constraints containing the extension along with

the given formulas). Intuitively, this amounts to two alternative world-descriptions:

Bl _ Br

Ul

:Bl

Bl _ Br

Ur

:Br

Figure 2: The constrained extensions in the \broken-arms" example.

One asserting that the left arm is usable by relying on the assumption that it is not

broken and another one asserting that the right arm is usable based on the assumption

that this arm is not broken.

5

Since we are mainly interested in contexts, we have to refer the reader to the literature [16, 5, 10, 7],

for a more detailed analysis why this is an unintuitive solution.



In both cases, the constraints consist of the respective extension along with the

justi�cation of the applying default rule. While forming both extensions one of the two

default rules is inapplicable since its justi�cation is inconsistent with the justi�cation

of the other default rule that has \already" established a certain context of reasoning.

In this way, each extension is embedded in a context given by the set of constraints.

Hence, in the case of constrained default logic, a context provides an extended world-

description enriched by implicit assumptions given by the justi�cations of the applying

default rules.

In our example, this amounts to reasoning under two distinct contexts. More for-

mally, the �rst extension Th(fBl _ Br;Ulg) is formed while reasoning in the context

Th(f:Bl;Br;Ulg); (2)

while the second extension Th(fBl _ Br;Urg) is embedded in the context

Th(fBl;:Br;Urg): (3)

It is clear that these two contexts coincide with the ones suggested in the introductory

section for the \broken-arms" example.

6

Reconciling the views expressed by the two

extensions by intersecting them yields the conclusion Ul_Ur; saying that either the left

arm or the right arm is usable. According to [16], this corresponds to be the preferred

solution to the \broken-arms" example.

Now, let us turn to our second example in the introductory section: The \holidays"

example. Recall that the intuition behind this example suggests the use of a wider con-

text gathering two incompatible subcontexts. But even though the \holidays" example

relies on di�erent intuitions than the \broken-arms" example, its formalization is very

similar to the one given in (1):

 (

: W

T

;

: C

S

)

; f:W _ :Cg

!

(4)

Here, the set of facts reect the common knowledge that warm, W, and cold weather,

C, are mutually exclusive. The default rules represent the assertions: If it is possible

that it will be warm then take a T-shirt; if it is possible that it will be cold then take

a sweater.

As in the case of the \broken-arms" example, we obtain one extension in classical

default logic and two extensions in constrained default logic. That is, from default

theory (4) we obtain a single classical extension containing T ^ S and two constrained

extensions, one containing T and another one containing S. All these extensions are

given in Figure 3 and 4 and formed in analogy to the ones given for the \broken-arms"

example. Now, however, the intuitively more appealing result is obtained in classi-

cal default logic since it directs us to take both a T-shirt and a sweater with us to

Vancouver.

Again, it is the use of contexts that makes the di�erence. In classical default lo-

gic, the extension is embedded in a single context being composed of two incompatible

subcontexts, namely

6

Also, they should be compared with the subcontexts encountered in classical default logic in the

\broken-arms" example.



:W _ :C

T S

Figure 3: The classical extension in the \holidays" example.

:W _ :C

T

W

:W _ :C

S

C

Figure 4: The constrained extensions in the \holidays" example.

Th(fW;:C;T;Sg) [ Th(f:W;C;T;Sg): (5)

This context corresponds to the one suggested in the introductory section. Moreover,

it has directed our reasoning to the expected conclusions. Opposed to this solution,

obtained in classical default logic, we obtain two alternative extensions based on distinct

contexts in constrained default logic, whose reconciliation would prevent us from taking

both a T-shirt and a Sweater.

So, classical and constrained default logic have exchanged their roles: In the

\broken-arms" example, constrained default logic produces the intuitive result. This

has been with reversed roles in the \holidays" example, where classical default logic

yields the more appealing solution. Hence, none of them is able to account for the

variety of contexts sketched in the introductory section. In this way, classical and

constrained default logic are simply not context-sensitive enough; they cannot account

for the collection of contexts needed for dealing with both examples at the same time.

Rather we observe that both default logics | implicitly or explicitly | use di�erent

but �xed notions of contexts.

In particular, we have seen that the notion of contexts is directly related to that of

consistency. We have seen in classical default logic that the use of individual consistency

requirements in the presence of an inconsistency leads to alternative subcontexts of a

common wider context. This is di�erent in constrained default logic, where the use

of joint consistency requirements yields distinct contexts as soon as an inconsistency

arises. All this will become more apparent in Section 3, where a collection of di�erent

\application conditions" for default rules is discussed.

Finally, the question arises how we can account for the whole variety of contexts

described in the introductory section. In other words, how can we combine the various



notions of contexts in order to provide a more general but uniform setting for default

logic. In order to provide an answer to this question, we also have to compromise

the notions of individual and joint consistency. In particular, we have to deal with

joint consistency requirements in the presence of inconsistent individual consistency

requirements. Therefore, we allow for contexts containing contradictory formulas, like

Bl and :Bl as in the \broken-arms" example in classical default logic, without containing

all possible formulas. Thus, we admit contexts which are not deductively closed. A

useful concept is then that of pointwise closure Th

S

(T ):

De�nition 2.1 Let T and S be sets of formulas. If T is non-empty, the pointwise

closure of T under S is de�ned as

Th

S

(T ) =

[

�2T

Th(S [ f�g):

In addition, Th

S

(;) = Th(S):

If S is a singleton set f'g; we simply write Th

'

(T ) instead of Th

f'g

(T ): Given two sets

of formulas T and S, we say that T is pointwisely closed under S i� T = Th

S

(T ): In

particular, we simply say that T is pointwisely closed whenever T = Th

>

(T ) for any

tautology >.

Let us illustrate these de�nitions and see how the aforementioned contexts can be

represented by means of the concept of pointwise closure. Consider �rst the contexts

obtained in the \broken-arms" example in constrained default logic. The context given

in (2) can now be described as the pointwise closure of the justi�cation of the default

rule

::Bl

Ul

under the facts and the consequent of the same default rule, namely

Th

fBl_Br;Ulg

(f:Blg) (6)

In the same way, we obtain

Th

fBl_Br;Urg

(f:Brg) (7)

for the context in (3). By analogy to (6), (3) is given by the pointwise closure of the

justi�cation of the default rule

::Br

Ur

under the world knowledge and the consequent of

the same default rule. Both contexts are deductively closed sets of formulas.

The more interesting case is given by the context obtained in the \holidays" example

in classical default logic, namely the one given in (5). This context can be described

as the pointwise closure of the justi�cations of the default rules

:W

T

and

:C

S

under the

set f:W _ :C;T;Sg constituting the single extension obtained above. This yields

Th

f:W_:C;T;Sg

(fW;Cg): (8)

In contrast to the contexts given in (6) and (7), the previous context is not deductively

closed. Rather it consists of two deductively closed subcontexts Th(fW;:C;T;Sg) and

Th(f:W;C;T;Sg): In general, such a subcontext is a maximal deductively closed subset

of an entire context.

We will take advantage of the concept of pointwise closure in the next section, where

we de�ne our formal approach to context-based default reasoning.



3 Contextual default logic

In what follows, we introduce a context-based approach to default logic by supplying

default extensions with contexts. Moreover, we introduce an extended concept of a

default rule in order to allow for an assortment of application conditions; thereby going

beyond those conditions found in existing default logics. The resulting system is called

contextual default logic.

In our approach, we consider three sets of formulas: A set of facts W , an extension

E, and a certain context C such that W � E � C: The set of formulas C is somehow

established from the facts, the default conclusions (ie. the consequences of the applied

default rules), as well as all underlying consistency assumptions (ie. the justi�cations of

all applied default rules). In fact, this approach trivially captures the above application

conditions for existing default rules, eg. � 2 E and :� 62 E in the case of classical de-

fault logic.

Yet our approach allows for even more ways of forming application conditions of

default rules. Consider a formula ' and three consistent, deductively closed sets of

formulas W , E, and C such that W � E � C: Six more or less strong application

conditions are obtained which can be ordered from left to right by decreasing strength;

whereby > is read as \implies":

' 2 W > ' 2 E > ' 2 C > :' 62 C > :' 62 E > :' 62 W (9)

We can think of W as a deductively closed set of facts, E as a default extension of

W , and C as the above mentioned context for E. Then, the �rst condition ' 2 W

stands for �rst-order derivability from the facts W . The second condition ' 2 E

stands for derivability from W using �rst-order logic and certain default rules. This

is used in existing default logics as the test for the prerequisite of a default rule. The

third condition, ' 2 C; is the strangest one. It expresses \membership in a context of

reasoning". We will discuss this condition in more detail in Section 4 and 6. The last

three conditions are consistency conditions. The fourth condition :' 62 C corresponds

to the consistency condition used in constrained default logic, the �fth one :' 62 E is

used in classical default logic. Finally, the last condition :' 62 W is the one used for

the closed world assumption [17], where it is restricted to ground negative literals.

This variety of application conditions motivates an extended notion of a default

rule.

De�nition 3.1 A contextual default rule � is an expression of the form

7

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



where �

W

, �

E

, �

C

, �

C

, �

E

, �

W

, and  are formulas.

�

W

, �

E

, �

C

are called the W-, E-, and C-prerequisites, also noted Prereq

W

(�),

Prereq

E

(�), Prereq

C

(�), �

C

, �

E

, �

W

are called the C-, E-, and W-justi�cations, also

7

For simplicity, we restrict ourselves to contextual default rules having only one justi�cation of

each type.



noted Justif

C

(�), Justif

E

(�), Justif

W

(�), and  is called the consequent, also noted

Conseq(�).

8

The six antecedents of a contextual default rule are to be treated along the above

intuitions.

A contextual default theory is a pair (D;W ), where D is a set of contextual default

rules and W is a deductively closed

9

set of formulas. In what follows, we make the

above intuitions precise and introduce the notion of a contextual extension.

A contextual extension is to be a pair (E,C ), where E is a deductively closed set

of formulas and C is a pointwisely closed set of formulas. This leads to the following

de�nition.

De�nition 3.2 Let (D;W ) be a contextual default theory. For any pair of sets of

formulas (T; S) let r(T; S) be the pair of smallest sets of formulas (T

0

; S

0

) such that

W � T

0

� S

0

and the following condition holds:

For any

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D;

if

1: �

W

2 W

2: �

E

2 T

0

3: �

C

2 S

0

4: :�

C

62 S

5: :�

E

62 T

6: :�

W

62 W

then

7: Th



(T

0

) � T

0

8: Th

�

E

(T

0

) � S

0

9: Th

�

C

(S

0

) � S

0

A pair of sets of formulas (E,C ) is a contextual extension of (D;W ) i� r(E;C) =

(E,C ):

Notice that the operator r is in fact parameterized by (D;W ). Furthermore, observe

that Conditions 1-6 basically correspond to the six conditions given in (9).

8

These projections extend to sets of contextual default rules in the obvious way (eg. Justif

E

(�) =

S

�2�

fJustif

E

(�)g ).

9

This is no real restriction, but it simpli�es matters.



Conditions 7-9 capture the result of applying a contextual default rule. Condition 7

ensures that the consequent of an applied contextual default rule belongs to the �nal

extension and that the �nal extension is deductively closed. Condition 8 and 9 account

for the formation of the �nal context. Roughly speaking, they aggregate successful con-

sistency checks, namely the ones given in 4 and 5, respectively. Condition 8 accounts

for the individual consistency of �

E

by enforcing a subcontext consisting of �

E

and

the �nal extension. Condition 9 ensures the joint consistency of �

C

by enforcing the

consistency of �

C

with all �nal subcontexts.

Intuitively, we start from (W;W ) (ie. we take the facts W as our initial version of

E and C) and try to apply a contextual default rule by checking Conditions 1-6 and,

if we are successful, we enforce 7-9. That is, we add  to our current version of E and

we add �^ �

E

and '^ �

C

to our current version of C, for each � in the �nal extension

E and for each ' in the �nal context C.

As a �rst crisp example, let us consider the contextual default theory

 (

A jj : jB j

C

;

jC j : E j :B j

D

)

; Th(fAg)

!

(10)

along with its only contextual extension (E,C ), where

E = Th(fA;C;Dg) (11)

C = Th(fA;C;D;E;Bg) [ Th(fA;C;D;E;:Bg): (12)

The �rst component, E, represents the extension, whereas the second one, C, provides

its context. This contextual extension is generated from the facts by applying �rst the

�rst contextual default rule and then the second one.

Now, the contextual default rule

A jj : jB j

C

applies if its prerequisite A is monotonically derivable (ie. if A is derivable without con-

textual default rules according to Condition 1 in De�nition 3.2) and if its E-justi�cation

B is consistent with the extension E (according to Condition 5). In other words, B

has to be individually consistent. This being the case, we derive C. That is, C is

nonmonotonically derivable by means of the �rst contextual default rule (cf. Condition

2).

Thus, C establishes the prerequisite of the second contextual default rule,

jC j : E j :B j

D

:

In order to derive D, we have to verify the consistency of the two justi�cations E and

:B. E has to be jointly consistent (ie. according to Condition 4, it has to be consistent

with the context C), whereas :B has to be individually consistent (ie. according to

Condition 5, it has to be consistent with the extension E). Since this is ful�lled, we

obtain the above contextual extension satisfying our consistency requirements.



A

C D

E

B :B

Figure 5: The contextual extension of the preceding contextual default theory.

The preceding contextual extension is illustrated in Figure 5. The extension E is

given by the innermost circle, whereas the context C is represented by the two larger

outermost circles. Each such circle stands for a deductively closed set of formulas.

Let us examine in detail the context of the contextual extension of (10). The context

C is composed of two incompatible subcontexts,

Th(fA;C;D;E;Bg) and Th(fA;C;D;E;:Bg):

The �rst subcontext is represented by the left outermost circle in Figure 5, whereas

the second one is given by the right outermost circle in the same �gure. All such

subcontexts contain a common \kernel" given by the extension and all jointly consistent

C-justi�cations, here Th(fA;C;Dg) and E. That is, the common kernel is given by

Th(fA;C;D;Eg):

In Figure 5, the kernel consists of the intersection of the two outermost circles.

As mentioned above, incompatible subcontexts arise whenever we deal with incon-

sistent individual consistency requirements. In this example, the two incompatible

subcontexts are originated by the E-justi�cations B and :B. But why is the joint

consistency of E not a�ected by these two contradictory formulas? This is because

in our approach joint consistency only requires the consistency of a justi�cation with

each subcontext in turn, whereas individual consistency requires the consistency of a

justi�cation with at least one such subcontext.

Now, let us further illustrate our approach by returning to our initial examples.

First, let us look at the \broken arms" example. We have argued in the introductory

section that this example is best accomplished when using two distinct contexts which

in turn lead to two alternative extensions. Furthermore, we have observed in Section 2

that distinct contexts are caused by inconsistent joint consistency requirements. In fact,

the \broken arms" example is handled in an intuitive manner in constrained default

logic which actually treats justi�cations as joint consistency requirements.

All this suggests the use of joint consistency assumptions as a formal account of

the implicit assumptions present in the \broken arms" example. This gives rise to the

following contextual default theory.



 (

jj : :Bl jj

Ul

;

jj : :Br jj

Ur

)

; fBl _ Brg

!

(13)

As expected, this contextual default theory yields two alternative contextual extensions:

(Th(fBl _ Br;Ulg); Th(f:Bl;Br;Ulg)) and (Th(fBl _ Br;Urg); Th(fBl;:Br;Urg))

These two contextual extensions are illustrated in Figure 6. As regards the �rst contex-

Bl _ Br

Ul

:Bl

Bl _ Br

Ur

:Br

Figure 6: The contextual extension in the \broken-arms" example.

tual extension, we believe that the left arm is usable, Ul, while assuming that it is intact,

:Bl. In the second contextual extension, the same holds for the right arm. Obviously,

these two extensions are identical to the ones obtained in constrained default logic. We

will formally account for this relationship in Theorem 7.3 in Section 7. Moreover, the

two contexts are deductively closed and they coincide with the ones given in (2) and (3)

for constrained default logic. As we will see next, however, contexts are not necessarily

deductively closed.

So, let us turn our attention to the \holidays" example. In the introductory section,

we have suggested to deal with this example by means of a wider context gathering two

incompatible subcontexts. Such a context would then direct our reasoning to a single

extension.

On the other hand, we have seen above that subcontexts are originated by individual

consistency requirements. Moreover, we have observed in Section 2 that classical de-

fault logic yields the more appealing result in the case of the \holidays" example. In

fact, classical default logic treats justi�cations as individual consistency requirements.

All this puts forward the use of individual consistency assumptions for formalizing

the \holidays" example in contextual default logic. This results in the following con-

textual default theory.

 (

jj : jW j

T

;

jj : jC j

S

)

; f:W _ :Cg

!

(14)

In analogy to classical default logic, we obtain one contextual extension:

(Th(f:W _ :C;T;Sg); Th(fW;:C;T;Sg) [ Th(f:W;C;T;Sg))



:W _ :C

T S

W C

Figure 7: The contextual extension in the \holidays" example.

This contextual extension is illustrated in Figure 7. In fact, the actual extension

Th(f:W _ :C;T;Sg) coincides with the extension obtained in classical default logic.

That is, both classical and contextual default logic advice us to take both a T-shirt

and a sweater on our trip to Vancouver. Moreover, the context Th(fW;:C;T;Sg) [

Th(f:W;C;T;Sg) corresponds to the one given in (5) for classical default logic. In this

way, contextual default logic explicates the context directing the reasoning process in

classical default logic. That is, in both systems, we deal with a context consisting of

two incompatible subcontexts. The �rst subcontext Th(fW;:C;T;Sg) is created by the

E-justi�cation, W, of the �rst contextual default rule, whereas the second subcontext

Th(f:W;C;T;Sg) is initiated by the E-justi�cation, C, of the second contextual default

rule. The former subcontext representing the warm weather scenario is given by the

left outermost circle in Figure 7, whereas the right outermost circle in Figure 7 stands

for the latter embodying the cold weather scenario.

Finally, contextual default logic allows for combining the two previous examples.

Merging the corresponding contextual default theories results in the following one.

0

@

8

<

:

jj: :Bl jj

Ul

;

jj: :Br jj

Ur

jj:jW j

T

;

jj:jC j

S

9

=

;

;

(

Bl _ Br

:W _ :C

)

1

A

(15)

With this contextual default theory, we arrive at the so-called \holidays with broken

arms" example. Notably, this example cannot be treated adequately by any existing

default logic. This is so because no existing default logic is able to account for the

variety of contexts (or implicit consistency assumptions, respectively) that is needed

for an appropriate treatment of this example.

The two contextual extensions of contextual default theory (15) are given in Fig-

ure 8; thereby, omitting the set of facts fBl _ Br;:W _ :Cg: The �rst extension

Th(f:W _ :C;Bl _ Br;T;S;Ulg) (16)

is formed while reasoning in the context

Th(fW;:C;T;S;:Bl;Br;Ulg) [ Th(f:W;C;T;S;:Bl;Br;Ulg); (17)

and the second extension



Ul

T S

:Bl

W C

Ur

T S

:Br

W C

Figure 8: The contextual extension in the \holidays with broken arms" example.

Th(f:W _ :C;Bl _ Br;T;S;Urg)

is embedded in the context

Th(fW;:C;T;S;Bl;:Br;Urg) [ Th(f:W;C;T;S;Bl;:Br;Urg):

Both extensions direct us to take both a T-shirt and a sweater on our trip to Vancouver.

However, in the �rst extension, we believe that the left arm is usable, while we believe

the same for the right arm in the second extension.

Now, let us detail the case of the �rst contextual extension. This extension is

obtained by applying the contextual default rules

jj : :Bl jj

Ul

;

jj : jW j

T

and

jj : jC j

S

: (18)

The C-justi�cation of the �rst contextual default rule, :Bl; is a joint consistency require-

ment. Therefore, it belongs to each subcontext. Each subcontext in turn is originated

by the E-justi�cations of the last two contextual default rules, namely W and C: They

have to be individually consistent which is ensured by the respective subcontext that

they have in common with the extension at hand.

In the same way, we obtain the second contextual extension.

We present alternative characterizations of contextual extensions and describe their

structure in more detail in Section 5. In Section 7, we give general translation schemata

for default theories in existing default logics into fragments of contextual default logic.

That is, we prove that general default theories in existing default logics correspond

to restricted fragments of contextual default logic. Section 7 therefore deals with the

application conditions usually used in default logics, namely Conditions 2, 4 and 5 in

De�nition 3.2. The remaining ones are discussed in Section 4.

4 Expressiveness of contextual default logic

This section is devoted to the novel application conditions of contextual default rules

and how their interplay may inuence the contents of extensions. The more \classical"

conditions found in existing default logics are discussed in Section 7.



Let us �rst consider the di�erence between W- and E-prerequisites of contextu-

al default rules. In general, W-prerequisites should be preferred over E-prerequisites

whenever a prerequisite has to be veri�ed, ie. whenever it should not be derivable by

default inferences. This cannot be modeled in existing default logics, since they do not

distinguish between �rst-order and default conclusions.

As an example, consider the assertion \usually, we can transplant an organ provided

that the person is proven to be dead". Of course, the antecedent of this rule should

be more than merely concluded by default. For instance, a person whose body is fully

covered with a medical blanket is usually dead, but it takes more evidence for doctors

to remove organs. Now, the above rule can be formalized by means of the contextual

default rule

D jj : O jj

O

; (19)

saying that an organ, O, can be transplanted, if this is consistent with the current

context, and provided that the death, D, of the person has been veri�ed. Importantly,

adding the contextual default rule

jC j : jD j

D

(saying that a person whose body is covered, C, with a blanket is usually dead, D) does

not allow

D jj:O jj

O

to apply, even in the case where W = Th(fCg):

C-prerequisites are a means for weakening antecedents of default rules. This is

because a C-prerequisite allows us not only to refer to default conclusions but also to

their underlying consistency assumptions: A C-prerequisite is satis�ed i� it belongs to

some subcontext. Accordingly, certain contextual default rules can only be applied if

a certain context has been established. For instance, a contextual default rule

jj:jA j

B

may establish, without actually asserting, a consistency assumption A on which other

contextual default rules, like

jjA : jD j

D

; (20)

rely. This can be useful for modularizing contextual default theories. That is, a set

of contextual default rules can be supplied with a certain C-prerequisite A. In this

way, these contextual default rules only apply if a subcontext containing A has been

established. All this rests in the context and does not enter the actual extension.

In addition, C-prerequisites can be advantageous from the computational point of

view. For instance, one can factorize frequently occurring justi�cations. Consider the

contextual default rules

jj:jA j

B

;

jB j:jA j

C

; and

jC j:jA j

D

: Now, proving D in a straightforward

way requires that we check the consistency of A three times. This e�ort for checking

consistency reduces to one if we turn each E-justi�cation A into a C-prerequisite and

add the contextual default rule

jj:jA j

>

: This results in the following contextual default

rules.

jj : jA j

>

;

jjA : jj

B

;

jB jA : jj

C

;

jC jA : jj

D



Now, we can prove D with one consistency check and three tests for membership in a

subcontext. In this respect, C-prerequisites can serve as a \resource-driven" consistency

condition.

Zaverucha takes up the idea of C-prerequisites in [22] in order to address certain

anomalous phenomena discussed in the default logic literature. See [22] for details.

Let us now turn to the di�erence between C- and E-justi�cations of contextual

default rules. As we have seen in (9) in Section 3, C-justi�cations provide stronger con-

ditions that E-justi�cations. Interestingly, this can serve for imposing some priorities

between two implicit assumptions. This cannot be modeled easily in existing default

logics.

Let us consider again the \broken-arms" example. Suppose now that experience

shows that the left arm is more reliable than the right one. As a consequence, we

might want to focus on scenarios in which the left arm is not broken (without actually

asserting this heuristic information within the facts). This amounts to establishing

a precedence among the two implicit assumptions :Bl and :Br in contextual default

theory (13). Such a direct precedence can be modeled in a very straightforward way by

weakening the implicit assumption :Bl wrt :Br. In concrete terms, we have to weaken

the justi�cation of the default rule in (13) in which :Bl occurs by turning it from a C-

into an E-justi�cation. This results in the following contextual default theory:

 (

jj : j :Bl j

Ul

;

jj : :Br jj

Ur

)

; Th(fBl _ Brg)

!

This yields the unique contextual extension (Th(fBl _ Br;Ulg); Th(f:Bl;Br;Ulg)): It

corresponds to the �rst contextual extensions of contextual default theory (13) saying

that the left arm is usable, Ul, while assuming that it is not broken, :Bl.

The use of W-justi�cations is closely related to CWA, the closed world assumption

[17]. CWA has been introduced in order to complete a given set of facts W . In

CWA, a ground negative literal is derivable i� the original atom is not derivable from

W . Considering a database about taxpayers, for instance, an individual is not a dead

person unless stated otherwise. This is the weakest application condition in (9). Given

no other knowledge about an individual, we derive that he is not dead. This can be

modeled by means of the contextual default rule

jj : jj :D

:D

: (21)

The use of W-justi�cations is much closer to the original formulation of CWA than

the usual formalization of CWA by means of E-justi�cations (cf. [18]). As an example,

consider

Bl _ Br:

Applying the CWA to this disjunction yields an inconsistent set of formulas. This is so

because neither Br nor Bl is derivable from Bl _ Br: Hence we add both :Br and :Bl

to the resultant theory under CWA. This renders the resulting theory inconsistent.

Formalizing the above closed-world reasoning by means of W-justi�cations leads us

to the following contextual default theory.



 (

jj : jj :Bl

:Bl

;

jj : jj :Br

:Br

)

; Th(fBl _ Brg)

!

This theory yields an inconsistent contextual extension, (Th(f?g); Th(f?g)): Notice

that this result is in accord with CWA but di�ers from the usual approach of default

logic, where we obtain an inconsistent extension i� the facts are inconsistent.

Formalizing our example by means of E-justi�cations yields the contextual default

theory

 (

jj : j :Bl j

:Bl

;

jj : j :Br j

:Br

)

; Th(fBl _ Brg)

!

having two distinct contextual extensions, (Th(fBl ^ :Brg); Th(fBl ^ :Brg)) and

(Th(f:Bl ^ Brg); Th(f:Bl ^ Brg)): Even though this formalization does not comply with

CWA, it has the advantage of being consistency-preserving.

In general, we can implement the consistency preservation of W-justi�cations by

adding tautological E-justi�cations. In this way, we enforce that the given contextu-

al default rule merely contributes to consistent extensions. Consider the contextual

default theory

 (

jj : j > j :Bl

:Bl

;

jj : j > j :Br

:Br

)

; Th(fBl _ Brg)

!

:

This theory has no contextual extension, as opposed to the last but one theory, where

we obtained an inconsistent contextual extension.

5 Contextual default logic: The formal theory

In the sequel, we give alternative characterizations of contextual extensions and describe

their structure in more detail. First, we de�ne the set of generating contextual default

rules.

De�nition 5.1 Let (D;W ) be a contextual default theory and T and S sets of for-

mulas. The set of generating contextual default rules for (T; S) wrt (D;W ) is de�ned

as

GD

(T;S)

(D;W )

=

(

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D

�

�

�

�

�

�

W

2 W; �

E

2 T; �

C

2 S;

:�

C

62 S; :�

E

62 T; :�

W

62 W

)

In fact, the generating contextual default rules allow for characterizing contextual ex-

tensions, as we will see in Theorem 5.1. In particular, we can now make precise the claim

made before De�nition 3.2: In a contextual extension (E,C ), the set E is deductively

closed and the set C is pointwisely closed.



Theorem 5.1 Let (E,C ) be a contextual extension of (D;W ) and � = GD

(E;C)

(D;W )

.

Then,

Th(W [ Conseq(�)) = Th(E) = E

Th

E[Justif

C

(�)

(Justif

E

(�)) = Th

>

(C) = C:

The �rst equation shows that extensions of contextual default theories are formed in

the same way as in existing default logics. That is, they consist of the initial facts

along with the consequents of all applying contextual default rules. The second equa-

tion describes the respective contexts. A context is the pointwise closure of the E-

justi�cations of the applying contextual default rules (corresponding to the individual

consistency requirements) under the extension and the C-justi�cations of the apply-

ing contextual default rules (corresponding to the joint consistency requirements). It

follows that whenever (E,C ) is a contextual extension, C contains the deductive clo-

sure of E and all formulas involved in joint consistency requirements. In symbols,

Th

�

E [ Justif

C

�

GD

(E;C)

(D;W )

��

� C: Since this set is shared by all subcontexts of a con-

text, we call it the kernel of a context. With it, a context can alternatively be described

as the pointwise closure of the E-justi�cations under the kernel.

As an example, let us consider the �rst contextual extension obtained in the \holi-

days with broken arms" example, which is presented in (16) and (17). The generating

contextual default rules for this contextual extension are given in (18). With these, we

can characterize the aforementioned contextual extension as follows. The extension, E,

presented in (16), is given by

Th(f:W _ :C;Bl _ Brg [ fT;S;Ulg);

where f:W _ :C;Bl _ Brg is the set of facts and fT;S;Ulg is the set of consequents of

the contextual default rules in (18). The context in (17) equals

Th

E[f:Blg

(fW;Cg);

where f:Blg is the set of C-justi�cations and fW;Cg is the set of E-justi�cations of the

contextual default rules in (18). Accordingly, the corresponding kernel is given by

Th(E [ f:Blg);

which is a deductively closed set of formulas. Also, the extension E is deductively

closed, whereas its context is merely pointwisely closed.

In fact, the concept of a kernel provides a meaningful notion in contextual default

logic. In the same way as subcontexts are \spanned" by individual E-justi�cations,

a kernel is jointly \spanned" by a set of C-justi�cations. Thus, intuitively, a kernel

provides a syntactic counterpart to the notion of joint consistency, whereas subcontexts

are related to individual consistency, as discussed in Section 3. Moreover, we will see

in Section 6 that both the concept of a kernel and that of a subcontext have strong

semantical underpinnings. But apart from its structural properties, a kernel, say C

K

,

can be used for de�ning further application conditions supplementing those given in in

(9) in Section 3. That is, for a formula ', we obtain



' 2 C

K

and :' 62 C

K

: (22)

By referring to the kernel C

K

of a context C, both conditions refer to the part of C

that is jointly consistent. In this way, the conditions in (22) discard all E-justi�cations

in C. Since W � E � C

K

� C; we can thus extend equation (9) in the following way:

'2W > '2E > '2C

K

> '2C > :' 62C > :' 62C

K

> :' 62E > :' 62W (23)

The next characterization is similar to the ones usually given to characterize exten-

sions in existing default logics in an inductive format. For clarity, we have factorized

the set of contextual default rules applied at each stage.

Theorem 5.2 Let (D;W ) be a contextual default theory and let E and C be sets of

formulas. De�ne

E

0

= W; C

0

= W

and for i � 0

�

i

=

(

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D

�

�

�

�

�

�

W

2 W; �

E

2 E

i

; �

C

2 C

i

;

:�

C

62 C; :�

E

62 E; :�

W

62 W

)

E

i+1

= Th(W [ Conseq(�

i

))

C

i+1

= Th

W[Conseq(�

i

)[Justif

C

(�

i

)

(Justif

E

(�

i

))

Then, (E,C ) is a contextual extension of (D;W ) i� (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

):

The extension E is built by successively introducing the consequents of all applying con-

textual default rules. Also, the deductive closure is computed at each stage. For each

partial context C

i+1

, the partial extension E

i+1

is unioned with the C-justi�cations

of all applying contextual default rules. This set is unioned in turn with each E-

justi�cation of all applying contextual default rules. Again, the deductive closure is

computed when appropriate. In this way, each partial context C

i+1

is built upon its

kernel, Th(E

i+1

[ Justif

C

(�

i

)):

In order to illustrate this characterization, let us turn our attention to the contex-

tual default theory given in (10). As described in Section 3, the resulting contextual

extension, given in (11) and (12), is obtained from the facts, Th(fAg) by applying the

two given contextual default rules one after another. That is,

�

0

=

(

A jj : jB j

C

)

; �

1

=

(

A jj : jB j

C

;

jC j : E j :B j

D

)

; and �

i

= �

1

for i � 2:

Accordingly, we obtain

E

1

= Th(fAg [ fCg) and C

1

= Th

fAg[fCg[;

(fBg)

and in turn



E

2

= Th(fAg [ fC;Dg) and C

2

= Th

fAg[fC;Dg[fEg

(fB;:Bg):

Obviously, E

i

and C

i

correspond to the �nal contextual extension given in (11) and

(12) for i � 2.

Finally, it is worth mentioning that the speci�cation of �

i

in Theorem 5.2 leaves

open even more application conditions than given in (23). First of all, �

i

could be

modi�ed in order to refer to the �nal extension and its context. This amounts to the

conditions

� 2 E and � 2 C:

These conditions enable \ungrounded" beliefs which are in accord with reasoning pat-

terns found in autoepistemic logic [15]. Second, we could modify the statement for

�

i

in Theorem 5.2 in order to check consistency wrt to partial extensions and their

contexts:

:� 62 E

i

and :� 62 C

i

These conditions have a procedural avor since they refer to a certain stage of the

construction. However, they could turn out to be useful for approximate reasoning.

Of course, we could continue by de�ning \autoepistemic" and \procedural" versions

of the application conditions referring to the kernel given in (22). For clarity, however,

we do not pursue this inquiry any further and rather close this section by summarizing

the aforementioned conditions along with their strength.

We use the notation given in Theorem 5.2 for referring to the conditions given in

(23). Accordingly, we rewrite the conditions given in (22) in the avor of Theorem 5.2

by �

C

K

2 C

K

i

and :�

C

K

62 C

K

; where C

K

i

= Th(W [ Conseq(�

i

) [ Justif

C

(�

i

)): Then,

we can relate the strength of the preceding conditions to our former ones as follows:

�

W

2 W > �

E

2 E

i

>

(

�

C

K

2 C

K

i

> �

C

2 C

i

� 2 E

)

> � 2 C >

> :�

C

62 C >

(

:�

C

K

62 C

K

> :�

E

62 E

:� 62 C

i

)

> :� 62 E

i

> :�

W

62 W

The braces indicate that the respective conditions are not comparable.

6 A possible worlds semantics

In contextual default logic, an extension is supplied with a context which may be

composed of several incompatible subcontexts. These subcontexts share a common

kernel given by the deductive closure of the extension and all formulas relative to joint

consistency requirements. However, they di�er regarding formulas relative to individual

consistency requirements.



In analogy to [3], we employ Kripke structures [4] in order to characterize contextual

extensions. A Kripke structure has a distinguished world, the \actual" world, and a set

of worlds accessible from it (each world is associated with a �rst-order interpretation).

Then, the idea is roughly as follows. In a class of Kripke structures, the actual

worlds characterize an extension, whereas the accessible worlds characterize its context

consisting of a number of subcontexts. In concrete terms, given a contextual extension

(E,C ) and a Kripke structure m, we require that the actual world !

0

of m be a model

of the extension, E, and demand that each world in m accessible from !

0

be a model

of some subcontext of C. Thus, each world of m accessible from the actual world !

0

is

to be a model of the kernel of C.

We follow the de�nitions in [4] of a Kripke structure (called K-model in the sequel)

as a quadruple h!

0

;
;R;Ii; where 
 is a non-empty set (also called a set of worlds),

!

0

2 
 a distinguished world, R a binary relation on 
 (also called the accessibility

relation) and I is a function that de�nes a �rst order interpretation I

!

for each ! 2 
:

As usual, a K-model h!

0

;
;R;Ii is such that the domain of I

!

is a subset of the

domain of I

!

0

whenever (!; !

0

) 2 R:

Formulas in K-models are interpreted using a language enriched in the following

way: In a K-model h!

0

;
;R;Ii; for each ! 2 
, the �rst order interpretation I

!

is

extended so that for each e 2 D

!

(the domain of I

!

), a constant e is introduced, letting

I

!

(e) = e: In every world !, each term is mapped into an element of D

!

as follows:

I

!

(f(t

1

; : : : ; t

n

)) = (I

!

(f)) (I

!

(t

1

); : : : ;I

!

(t

n

)) ; n � 0:

Given a K-model m = h!

0

;
;R;Ii; the modal entailment relation ! j= � (in m) is

de�ned by recursion on the structure of �:

! j= P (t

1

; : : : ; t

n

) i� (I

!

(t

1

); : : : ;I

!

(t

n

)) 2 I

!

(P )

! j= :� i� ! 6j= �

! j= � _ � i� ! j= � or ! j= �

! j= 8x �[x] i� ! j= �[e] for all e 2 D

!

! j= 2� i� !

0

j= � whenever (!; !

0

) 2 R

We write m j= � if !

0

j= � (in m). This means that m is a model of �. We denote

classes of K-models by M . We extend the modal entailment relation j= to classes of

K-models M and write M j= � to mean that each element in M (that is, a K-model)

entails �.

First, we de�ne the class of K-models associated with W as M

W

= fm j m j=

 ^ 2;  2 Wg: We will semantically characterize contextual extensions by maximal

elements of a strict partial order on classes of K-models. Given a contextual default

rule �, its application conditions and the result of applying it are captured by an order

>

�

as follows.



De�nition 6.1 Let � =

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



: Let M and M

0

be distinct classes of

K-models. We de�ne M >

�

M

0

i�

M = fm 2 M

0

j m j=  ^2 ^ 2�

C

^3�

E

g

and

1: M

W

j= �

W

2: M

0

j= �

E

3: M

0

j= 3�

C

4: M

0

6j= 3:�

C

5: M

0

6j= :�

E

6: M

W

6j= :�

W

Given a set of contextual default rules D, the strict partial order >

D

is de�ned as the

transitive closure of the union of all orders >

�

such that � 2 D:

Conditions 1-6 in the preceding de�nition constitute the semantical counterparts

of Conditions 1-6 in De�nition 3.2. Thus, they semantically capture the application

conditions of a contextual default rule. The correspondence between the �rst two and

last two conditions in De�nition 6.1 is obvious, so that we focus on the remaining

context-sensitive conditions. Condition 3 accounts for the applicability condition ex-

pressing \membership in a context of reasoning". Now, in terms of possible worlds, this

boils down to the requirement that all considered K-models possess an accessible world

satisfying �

C

. According to the aforementioned intuition, this amounts to stipulating

that �

C

belongs to some subcontext of the context captured by M

0

. Condition 4 pro-

vides (one half of the) semantical underpinnings for the joint consistency requirement

of C-justi�cations. Notice that this condition is equivalent to

9m 2 M

0

: m j= 2�

C

: (24)

That is, the consistency condition for �

C

corresponds semantically to the requirement

that there is a K-model in which all accessible worlds satisfy �

C

. Hence, following the

above intuition, �

C

belongs to the kernel of the context induced by all such K-models

m.

The other half of the semantical characterization of joint (and individual) consis-

tency is expressed in the speci�cation of M . The K-models in M capture the result of

applying a contextual default rule by gathering the default's conclusion along with its

underlying consistency assumptions. Hence they provide the semantical counterpart to

Conditions 7-9 in De�nition 3.2. This is accomplished by enforcing the satis�ability of

the consequent  in all actual as well as in all worlds accessible from the actual worlds

by stipulating m j=  ^ 2: The joint consistency of �

C

is preserved by requiring that

all accessible worlds satisfy �

C

, ie. m j= 2�

C

: In this way, M forms a subset of all

models m in (24). The individual consistency of �

E

is preserved by enforcing accessible

worlds satisfying �

E

along with  and �

C

, ie. m j= 3( ^ �

C

^ �

E

): Roughly speaking,

such accessible worlds capture the subcontexts \spanned" by E-justi�cations like �

E

(cf. Theorem 6.1 below).



Now, let us give a detailed example illustrating the main idea. Consider contextual

default theory (10)

 (

A jj : jB j

C

;

jC j : E j :B j

D

)

; Th(fAg)

!

along with its contextual extensions described in (11) and (12). In what follows, let �

1

and �

2

stand for the �rst and the second contextual default rule.

In this example, M

W

is the class of all K-models satisfying A and 2A. Starting from

M

W

; we obtain a >

�

1

-greater class M such that

M j= (A ^ C) ^2(A ^ C) ^ 3B:

That is, M >

�

1

M

W

: This is so because M

W

j= A according to Condition 1 in Def-

inition 6.1 and M

W

6j= :B according to Condition 5. On the other hand, M

W

6j= C

thus violating Condition 2 in the case of the second contextual default rule. Therefore,

there is no >

�

2

-greater class of M

W

:

However, M j= C; thus establishing Condition 2 for the second contextual default

rule relative to M . Since moreover M 6j= 3:E and M 6j= B con�rm Condition 4 and 5,

we obtain a >

�

2

-greater class of M ; say M

0

: That is, M

0

>

�

2

M ; where

M

0

j= (A ^ C ^ D) ^2(A ^ C ^ D ^ E) ^ 3B ^ 3:B:

In all, this amounts to a maximal class of K-models, M

0

above M

W

; ie.

M

0

>

f�

1

;�

2

g

M

W

:

According to the intuition given above, M

0

characterizes the contextual extension of

contextual default theory (10) described in (11) and (12). A canonical K-model out

of M

0

is given in Figure 9. This K-model consists merely of three worlds: An actual

world (at the bottom) and two worlds accessible from it. Each world is labeled with

the least set of formulas commonly entailed by all other actual and accessible worlds of

K-models in M

0

: Compare this �gure with Figure 5 illustrating the contextual extension

s

s

s

A

A

A

A

A

AK

�

�

�

�

�

�*

A C D

A C D E :B

A C D E B

Figure 9: A canonical K-model characterizing a contextual extension.

of contextual default theory (10).



In fact, the non-modal formulas entailed by M

0

; given at the actual world, corre-

spond to the extension given in (11). Notice that

M

0

j= 3(A ^ C ^ D ^ E ^ B) ^3(A ^ C ^ D ^ E ^ :B):

These two modal formulas capture the two subcontexts forming a wider common con-

text given in (12). Pictorially, they correspond to the two accessible worlds in Figure 9.

In general, we obtain the following soundness and completeness result that make

precise the intuition given at the start of this section.

10

Theorem 6.1 Let (D;W ) be a contextual default theory. Let M be a class of K-

models, E a deductively closed set of formulas, C a pointwisely closed set of formulas

such that

M = fm j m j= E ^2C

K

^ 3C

J

g

for

C

K

= Th

�

E [ Justif

C

�

GD

(E;C)

(D;W )

��

and C

J

= Justif

E

�

GD

(E;C)

(D;W )

�

:

Then, (E,C ) is a consistent contextual extension of (D;W ) i� M is a >

D

-maximal

non-empty class above M

W

:

Observe that the requirements on a maximal class of K-models correspond to the afore-

mentioned intuitions. Clearly, E is the extension, C the context, C

K

the kernel and C

J

consists of E-justi�cations distinguishing the subcontexts from each other.

Let us illustrate this by means of the �rst contextual extension obtained in the

\holidays with broken arms" example, which is presented in (16) and (17). In this

case, M

W

is given by the class of all K-models satisfying :W _ :C; Bl _ Br and

2(:W _ :C); 2(Bl _ Br): By means of the generating contextual default rules listed

in (18), say �

1

; �

2

and �

3

, we obtain a maximal class of K-models M such that

M >

f�

1

;�

2

;�

3

g

M

W

and

M j= ((:W _ :C) ^ (Bl _ Br) ^ T ^ S ^ Ul)

2((:W _ :C) ^ (Bl _ Br) ^ T ^ S ^ Ul ^ :Bl)

3W ^3C

As above, we give a canonical K-model out of M in Figure 10. For readability, however,

we omit the underlying facts (:W _ :C) ^ (Bl _ Br) when labeling the three possible

worlds. This �gure should be compared with the �rst contextual extension given in

Figure 8.

Now, let us decompose the preceding formula in order to isolate the extension E pre-

sented in (16), the context C presented in (17), the kernel C

K

and the E-justi�cations

C

J

. Clearly, E is given by the non-modal formulas entailed by M : These non-modal

formulas hold in the actual world in Figure 10. The kernel C

K

is given by all formulas

that necessarily hold:

11

10

Given a set of formulas T let 2T stand for ^

�2T

2� and 3T stand for ^

�2T

3�:

11

For simplicity, we still omit the facts (:W _ :C) ^ (Bl _ Br):



s

s

s

A

A

A

A

A

AK

�

�

�

�

�

�*

T S Ul

T S Ul :Bl W

T S Ul :Bl C

Figure 10: A canonical K-model characterizing a contextual extension.

M j= 2(T ^ S ^ Ul ^ :Bl)

They are given by the formulas collectively entailed by the two accessible worlds in

Figure 10. Interestingly, the accessible worlds di�er exactly in the E-justi�cations

given in C

J

; they are possibly entailed by M . To be more precise, we even have

M j= 3(T ^ S ^ Ul ^ :Bl ^W) ^3(T ^ S ^ Ul ^ :Bl ^ C):

Now, each of the two modal conjuncts captures one of the two subcontexts forming the

wider common context given in (17). In this way, a context is completely described

by the set of accessible worlds given in a >

D

-maximal class of K-models, whereas an

extension is captured by the set of actual worlds in the same class of K-models.

Finally, let us return to the application conditions given in Section 5 for exploiting

the kernel C

K

of a context, namely ' 2 C

K

and :' 62 C

K

: In fact, these conditions

have the following semantical counterparts:

M j= 2' and M 6j= 2:'

The correspondence between the �rst conditions is obvious, so that we focus on the

consistency condition. The latter is equivalent to

9m 2 M : m j= 3':

Recall that the consistency condition :' 62 C

K

ignores all individual subcontexts by

focusing on their common kernel. Suppose that the context induced by M contains a

subcontext \spanned" by an E-justi�cations :', ie. M j= 3:': Given no other knowl-

edge, this does not falsify the condition M 6j= 2:'; so that the original consistency con-

dition :' 62 C

K

is satis�ed and the aforementioned E-justi�cations is ignored. Observe

that this does not apply to the consistency condition for C-justi�cations which takes

into account the entire context. That is, if M satis�es 3:' for some E-justi�cations

:' there is no way to satisfy Condition 3 of De�nition 6.1.



7 Embedding default logics

Since its introduction in [18], several variants of Reiter's original default logic have been

proposed, eg. [11, 5, 6, 20, 7]. Each such variant recti�ed purportedly counterintuitive

features of the original approach. However, the evolution of default logic is diverging.

Although it has resulted in diverse variants sharing many interesting properties, it has

altered the notion of a default rule. In particular, most of the aforementioned variants

deal with a di�erent notion of consistency. As we have seen in Section 2, Reiter's default

logic employs some sort of local consistency, whereas others, like constrained default

logic, employ some sort of global consistency.

Up to now, we were compelled to choose one among the respective variants whenever

we want to represent default knowledge. At �rst sight, this seems to be a good solution,

since we may select one of the variants depending on its properties. However, our choice

�xes the notion of a default rule. More freedom would be desirable: We should not be

forced to commit ourselves to just a single variant of default logic, because all facets of

default logic are worth considering.

Fortunately, contextual default logic provides an integrated approach, which allows

for embedding existing variants of default logic. In this section, we show that classical

[18], justi�ed [11] and constrained default logic [20, 7] are embedded in contextual de-

fault logic. Since cumulative default logic [5] is closely connected to constrained default

logic (cf. [21]), we may obtain that variant as well.

Thus, as a result of our context-based approach to default logic, we obtained a

framework for default logics which allows for integrating di�erent variants of default

logic in a more general but uniform system; thereby, combining the expressiveness of

various default logics along with more traditional approaches, like the closed world

assumption.

7.1 Classical default logic

As mentioned in the introductory section, classical default logic employs a sort of local

consistency (which we also called individual consistency), as can be seen from the

following de�nition of classical extensions.

De�nition 7.1 Let (D;W ) be a default theory. For any set of formulas T let �(T )

be the smallest set of formulas T

0

such that

1. W � T

0

;

2. Th(T

0

) = T

0

;

3. For any

� :�



2 D; if � 2 T

0

and :� 62 T then  2 T

0

:

A set of formulas E is a classical extension of (D;W ) i� �(E) = E:

In order to have a comprehensive example throughout this section, let us consider the

following default theory taken from [3]:



 (

: B

C

;

: :B

D

;

: :C ^ :D

E

)

; ;

!

(25)

This default theory has one classical extension Th(fC;Dg). The �rst two default rules

apply, although they have contradictory justi�cations, and then block the third de-

fault rule. Each justi�cation of the applying default rules is separately consistent with

Th(fC;Dg). In this way, the extension is somehow embedded into two (implicit) con-

tradictory subcontexts: One containing the extension and the justi�cation of the �rst

default rule, Th(fC;D;Bg), and another one containing the justi�cation of the second

default rule, Th(fC;D;:Bg).

In order to relate classical with contextual default logic, let us agree on identifying

default theories in classical default logic with contextual default theories as follows.

De�nition 7.2 (Classical default logic) Let (D;W ) be a default theory. We de�ne

�

DL

(D;W ) =

�n

j� j:j� j



�

�

�

� :�



2 D

o

; Th(W )

�

:

Then, classical default logic corresponds to this fragment of contextual default logic.

Theorem 7.1 Let (D;W ) be a default theory and let E be a set of formulas and

C

E

=

n

�

�

�

�

� :�



2 D; � 2 E;:� 62 E

o

: Then, E is a classical extension of (D;W ) and

C = Th

E

(C

E

) i� (E,C ) is a contextual extension of �

DL

(D;W ):

Given a classical extension E, the context C is the pointwise closure of the justi�cations

of the generating

12

default rules under E.

Consider the contextual counterpart of default theory (25):

 (

jj : jB j

C

;

jj : j :B j

D

;

jj : j :C ^ :D j

E

)

; Th(;)

!

We obtain one contextual extension

(Th(fC;Dg); Th(fC;D;Bg) [ Th(fC;D;:Bg))

whose extension corresponds to the classical extension of default theory (25). The

common kernel of the two subcontexts of the context is given by the extension. In

addition, the �rst subcontext, Th(fC;D;Bg)); contains the E-justi�cation of the �rst

contextual default rule, whereas the second one, Th(fC;D;:Bg)); contains additionally

the E-justi�cation of the second contextual default rule. As with classical default logic,

the third contextual default rule is blocked by the other ones.

7.2 Justi�ed default logic

Further evidence for the generality of our approach is that it can easily capture a variant

of default logic due to [11], which we refer to as justi�ed default logic. In this approach,

the justi�cations of the applying default rules are attached to extensions in order to

strengthen the applicability condition of default rules. A justi�ed extension

13

is de�ned

12

Informally, the generating default rules are those which apply in view of E.

13

Originally,  Lukaszewicz called his extensions modi�ed extensions.



as follows.

De�nition 7.3 Let (D;W ) be a default theory. For any pair of sets of formulas (T; S)

let 	(T; S) be the pair of smallest sets of formulas T

0

; S

0

such that

1. W � T

0

,

2. Th(T

0

) = T

0

,

3. For any

� :�



2 D, if � 2 T

0

and 8� 2 S [ f�g: T [ fg [ f�g 6` ? then  2 T

0

and � 2 S

0

.

A pair of sets of formulas (E; J) is a justi�ed extension of (D;W ) i� 	(E; J) = (E; J):

First of all, let us return to default theory (25) in order to illustrate  Lukaszewicz'

approach. This default theory has two justi�ed extensions:

(Th(fC;Dg); fB;:Bg) and (Th(fEg); f:C ^ :Dg):

The �rst one corresponds to the extension obtained in classical default logic. However,

it is supplied with a set of justi�cations, fB;:Bg (which, incidentally, is inconsistent).

The second extension stems from applying the third default rule whose justi�cation

blocks the two other default rules by contradicting their consequents.

Now, let us identify default theories in justi�ed default logic with contextual default

theories in the following way.

De�nition 7.4 (Justi�ed default logic) Let (D;W ) be a default theory. We de�ne

�

JDL

(D;W ) =

�n

j� j:  j�^ j



�

�

�

� :�



2 D

o

; Th(W )

�

:

This leads to the following correspondence.

Theorem 7.2 Let (D;W ) be a default theory and let E be a set of formulas. Then,

(E; J) is a justi�ed extension of (D;W ) and C = Th

E

(J) i� (E,C ) is a contextual

extension of �

JDL

(D;W ):

Notice that J consists of the justi�cations of the generating

14

default rules for E,

whereas C is given by the pointwise closure of the same set of justi�cations under E.

It is interesting to observe how the relatively complicated consistency check in justi-

�ed default logic is accomplishable in contextual default logic. For a justi�ed extension

(E; J) and a default rule

� :�



the condition is 8� 2 J [ f�g: E [ fg [ f�g 6` ?:

In fact, it is two-fold: It consists of a joint and an individual consistency check, ie.

8� 2 J: E [ fg [ f�g 6` ? and E [ fg [ f�g 6` ?: Transposed to the case of a

contextual extension (E,C ) the two subconditions are : 62 C and :(� ^ ) 62 E: The

�rst check cares about the joint consistency of the consequent , whereas the second

one checks whether the conjunction of the justi�cation and consequent of the default

rule is individually consistent.

Now, let us see what happens to default theory (25) if we apply translation �

JDL

:

14

In the sense of justi�ed default logic.



 (

jj : C jB ^ C j

C

;

jj : D j :B ^ D j

D

;

jj : E j :C ^ :D ^ E j

E

)

; Th(;)

!

As with justi�ed default logic, we obtain two contextual extensions:

(Th(fC;Dg); Th(fC;D;Bg) [ Th(fC;D;:Bg)) and (Th(fEg); Th(fE;:C;:Dg));

whose extensions correspond to the extensions obtained in justi�ed default logic. It is

interesting to observe that the respective subcontexts di�er exactly in the justi�cations

attached to the extensions in justi�ed default logic.

7.3 Constrained default logic

Finally, we turn to a default logic which employs a sort of joint consistency, that is,

we consider constrained default logic as introduced in [20, 7]. In constrained default

logic, an extension comes with a set of constraints. A constrained extension is de�ned

as follows.

De�nition 7.5 Let (D;W ) be a default theory. For any set of formulas S let �(S)

be the pair of smallest sets of formulas (T

0

; S

0

) such that

1. W � T

0

� S

0

,

2. T

0

= Th(T

0

) and S

0

= Th(S

0

),

3. For any

� :�



2 D, if � 2 T

0

and S [ f�g [ fg 6` ? then  2 T

0

and �;  2 S

0

.

A pair of sets of formulas (E,C ) is a constrained extension of (D;W ) i� �(C) = (E,C ):

Constrained default logic detects inconsistencies among the justi�cations of default

rules. Thus, we obtain three constrained extensions,

(Th(fCg); Th(fC;Bg)); (Th(fDg); Th(fD;:Bg)); and (Th(fEg); Th(fE;:C;:Dg));

of default theory (25). The �rst extension Th(fCg) comes with the set of constraints

Th(fC;Bg) consisting of the justi�cation B and the consequent C of the �rst default rule.

The constraints Th(fD;:Bg) of the second extension Th(fDg) contain the justi�cation

:B and the consequent D of the second default rule. Finally, we obtain a third extension

Th(fEg) with constraints Th(fE;:C;:Dg) generated by the last default rule.

A default theory in constrained default logic will be identi�ed with a contextual

default theory in the following way.

De�nition 7.6 (Constrained default logic) Let (D;W ) be a default theory. We

de�ne

�

CDL

(D;W ) =

�n

j� j: �^ jj



�

�

�

� :�



2 D

o

; Th(W )

�

:



This yields the following correspondence.

Theorem 7.3 Let (D;W ) be a default theory and let E and C be sets of formulas.

Then, (E,C ) is a constrained extension of (D;W ) i� (E,C ) is a contextual extension

of �

CDL

(D;W ):

Notice that C is always deductively closed whenever (E,C ) is an extension in either

sense.

Finally, let us consider the contextual counterpart of default theory (25) from the

perspective of constrained default logic:

 (

jj : B ^ C jj

C

;

jj : :B ^ D jj

D

;

jj : :C ^ :D ^ E jj

E

)

; Th(;)

!

As a result, we obtain three contextual extensions:

(Th(fCg); Th(fC;Bg)); (Th(fDg); Th(fD;:Bg)); and (Th(fEg); Th(fE;:C;:Dg));

These are identical to the respective constrained extensions.

8 Properties of contextual default logic

In the previous section, we have established correspondences between general default

theories in existing default logics and fragments of contextual default logic. In what

follows, we take advantage of these relationships for giving the formal properties of con-

textual default logic. In turn, we discuss the formal properties of existence of extensions,

semi-monotonicity, orthogonality, and cumulativity.

First of all, we notice that none of these properties is present in Reiter's original

default logic in its full generality. Rather we encounter several restricted subclasses

enjoying one or another of the aforementioned property. Hence we cannot expect that

contextual default logic improves this situation since it is more expressive than any

variant of default logic.

8.1 Existence of extensions

Even though extensions play a central role in default logic, there are default theories

that lack classical extensions (even though they possess justi�ed and constrained ex-

tensions). For instance, the default theory

 (

: :A

A

)

; ;

!

(26)

has no classical extension, whereas it has the justi�ed extension (Th(;); ;) and the

constrained extension (Th(;); Th(;)): Now, applying the transformation given in De�-

nition 7.2 to default theory (26), we obtain the following contextual default theory.



�

DL

�n

::A

A

o

; ;

�

=

�

jj:j:A j

A

; Th(;)

�

(27)

Clearly, the contextual default theory in (27) has no contextual extension. Also,

�

jj: :A jj

A

; Th(;)

�

has no contextual extension. Hence contextual default logic does not guaranteeing the

existence of extensions in general.

In classical default logic, the existence of extensions is guaranteed in the case of

so-called normal default theories [18], whose default rules are of the form

� :�

�

: An even

more pleasant situation is encountered in justi�ed and constrained default logic, where

the existence of extensions is enjoyed in the general case [11, 7]. These observations

lead us to the following fragments of contextual default logic guarantee the existence

of contextual extensions:

D

N

=

n

j� j:j� j

�

�

�

� �; � formulas

o

D

J

=

n

j� j:  j�^ j



�

�

� �; �;  formulas

o

D

C

=

n

j� j: �^ jj



�

�

� �; �;  formulas

o

In general, we obtain the following result.

Theorem 8.1 (Existence) Let (D;W ) be a contextual default theory. Then, (D;W )

has a consistent contextual extension if

D �

(

�

W

j�

E

j�

C

: � ^ � ^  j  j

� ^ 

�

�

�

�

�

�

W

; �

E

; �

C

; �; �;  formulas

)

:

As a corollary, we obtain that we can merge contextual default rules belonging to

the aforementioned classes without loosing the existence of extensions property. For

instance, any contextual default theory whose contextual default rules belong to D

N

and D

C

(the fragments of contextual default logic corresponding to classical and con-

strained default logic) has a consistent contextual extension.

8.2 Semi-monotonicity

Another property which holds for normal default theories in classical default logic is

semi-monotonicity, which stands for monotonicity wrt default rules and stipulates that

adding a set of default rules to a default theory can only preserve or enlarge existing

extensions. As above, a more pleasant situation is encountered in justi�ed and con-

strained default logic, where semi-monotonicity is enjoyed in the general case [11, 7].

As an example, consider the default theory

 (

: B

C

)

; ;

!

(28)

which has in classical, justi�ed, and constrained default logic one extension containing

C. Now, adding the default rule

:D

:B

yields the default theory



 (

: B

C

;

: D

:B

)

; ;

!

(29)

whose only classical extension is Th(f:Bg). This extension does not contain C any-

more, which violates semi-monotonicity. In contrast, we obtain two justi�ed exten-

sions, (Th(fCg); fBg) and (Th(f:Bg); fDg); as well as two constrained extensions,

(Th(fCg); Th(fB;Cg)) and (Th(f:Bg); Th(f:B;Dg)); from the last default theory. That

is, in both cases, we have one extension containing C and another one containing :B.

As above, we can transpose the situation encountered in the variants of default logic

onto contextual default logic. This amounts to the following theorem.

Theorem 8.2 (Semi-monotonicity) Let (D;W ) be a contextual default theory and

D

0

a set of contextual default rules such that

D � D

0

�

(

�

W

j�

E

j�

C

: � ^ � ^  j  j

� ^ 

�

�

�

�

�

�

W

; �

E

; �

C

; �; �;  formulas

)

:

If (E,C ) is a contextual extension of (D;W ), then there is a contextual extension

(E

0

; C

0

) of (D

0

;W ) such that E � E

0

and C � C

0

:

8.3 Orthogonality

Default theories may have alternative classical extensions which are consistent, ie. not

orthogonal to each other. For instance, the default theory

 (

: :B

C

;

: :C

B

)

; ;

!

has two extensions in all of the above mentioned variants of default logic, one containing

C and another one containing B. Hence none of these variants enjoys orthogonality. Of

course, this carries over to contextual default logic. The situation changes in the case

of normal default theories, in which orthogonality is enjoyed in all variants of default

logic. Clearly, this carries over to the corresponding fragments of contextual default

logic, too.

However, a more appropriate notion seems to be that of weak orthogonality, as

suggested in [19, 7] for cumulative and constrained default logic. This notion takes

into account the extension along with its underlying consistency assumptions. For

instance, weak orthogonality holds for constrained default logic. That is, given two

di�erent constrained extensions the constraints of the extensions are always mutually

contradictory.

For contextual default logic, we obtain the following result.

Theorem 8.3 Let (E,C ) and (E

0

; C

0

) be distinct contextual extensions of the con-

textual default theory (D;W ). Let C

K

and C

0

K

be the kernels of C and C

0

. Then,

we have that either C

K

[ C

0

�

0

is inconsistent for C

0

�

0

= Th(E

0

[ f�

0

g) and some �

0

2

Prereq

E

�

GD

(E

0

;C

0

)

(D;W )

�

or C

0

K

[ C

�

is inconsistent for C

�

= Th(E [ f�g) and some � 2

Prereq

E

�

GD

(E;C)

(D;W )

�

:



The theorem shows that multiple extensions stem from incompatibilities between ker-

nels, like C

K

or C

0

K

, and subcontexts, C

0

�

0

or C

�

, of di�erent contextual extensions.

As a corollary, we obtain that contexts of distinct contextual extensions are always

mutually contradictory. That is, we obtain the property of weak orthogonality as

formulated in [7].

Corollary 8.4 (Weak orthogonality) Let (D;W ) be a contextual default theory.

If (E,C ) and (E

0

; C

0

) are distinct contextual extensions of (D;W ), then C [ C

0

is

inconsistent.

8.4 Cumulativity

Intuitively, cumulativity stipulates that the addition of a theorem to the set of premises

does not change the theory under consideration. Classical, justi�ed and constrained

default logic lack this formal property. Since contextual default logic generalizes these

variants, it does not enjoy cumulativity either.

As above, we can take advantage of the results found in the literature and transfer

them to contextual default logic. The cumulativity of prerequisite-free normal default

theories in classical default logic was shown in [8]. In [7], it was shown that constrained

default logic is cumulative on the larger fragment of prerequisite-free default theories.

Consequently, we obtain cumulativity in contextual default logic, if the default rules

are either of the form

jj:j� j

�

or the form

jj: �^ jj



:

9 Conclusion

We have argued that contexts provide an important and meaningful notion in default

reasoning. This has been accomplished by thoroughly investigating the notions of

contexts found in various variants of Reiter's default logic. This study has led to a new

context-based approach to default logic, called contextual default logic.

Contextual default logic is not yet another default logic. Rather it provides a

uni�ed framework for default logics by extending the notion of a default rule and

supplying each extension with a context. Such contexts are formed by pointwisely

closing certain consistency assumptions under a given extension. We have isolated six

di�erent application conditions for default rules. We have shown that only three of

them are employed in existing default logics, even though two of the three remaining

ones correspond to well-known notions, namely �rst-order derivability and the closed

world assumption. The remaining condition expresses \membership in a context" and

allows for accessing the consistency assumptions underlying an extension.

From a synthetic point of view, contextual default logic integrates existing default

logics along with other concepts like the closed world assumption. But apart from the

separate integration of these approaches, we moreover gain expressiveness by combining

them. From an analytical point of view, the key advantage of contextual default lo-

gic is that it provides a syntactical instrument for comparing existing default logics

in a uni�ed setting. In particular, contextual default logic has explicated the context-

dependency of default logics and thus revealed that existing default logics di�er mainly



in the way they deal with an explicit or implicit underlying context. As a result, we have

seen that justi�ed default logic compromises individual and joint consistency, whereas

other variants strictly employ either of them.

From the perspective of existing default logics, there has been no system simulta-

neously accounting for di�erent application conditions of default rules yet. Contex-

tual default logic allows for a uniform representation of di�erent notions of default

rules. Moreover, this approach allows for combining di�erent application conditions

and, therefore, o�ers a greater expressiveness than is obtainable in any existing default

logic.

A Proofs of Theorems

A.1 Proof of alternative characterizations

Proof 5.1 Let (E,C ) be a contextual extension of a contextual default theory (D;W ).

For the sake of readability, let us abbreviate Conseq

�

GD

(E;C)

(D;W )

�

by �, Justif

C

�

GD

(E;C)

(D;W )

�

by �

C

, and Justif

E

�

GD

(E;C)

(D;W )

�

by �

E

.

Accordingly, we have to show that

Th(W [ �) = Th(E) = E and Th

W[�[�

C

(�

E

) = Th

>

(C) = C:

\�" If

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 GD

(E;C)

(D;W )

then �

W

2 W; �

E

2 E; �

C

2 C; and :�

C

62 C;

:�

E

62 E; :�

W

62 W:

Then, by De�nition 3.2, Th



(E) � E and Th

�

E

(E) � C;Th

�

C

(C) � C:

First, we prove Th(W [ �) � E

Consider ' 2 Th(W [ �): Assume ' 62 E:

Consider the following three cases.

1. ' 2 W: By de�nition, W � E: Hence, ' 2 E: A contradiction.

2. ' 2 �: Since Th



(E) � E for all  2 �; we have � � E and thus ' 2 E: A

contradiction.

3. Otherwise, we have W[� j= ': By compactness, there are �nite sets W

0

� W

and �

0

� � such that W

0

[ �

0

j= ':

Since W is deductively closed, we have (

V

(!2W

0

)

!) 2 W and thus

(

V

(!2W

0

)

!) 2 E:

Let � = f

1

; : : : ; 

n

g: Since Th



1

(E) � E; we have

Th

�

f

1

g [ f

V

(!2W

0

)

!g

�

= Th

�

f

V

(!2W

0

[f

1

g)

!g

�

� E;

thus (

V

(!2W

0

[f

1

g)

!) 2 E:

Proceeding in this way with 

2

; : : : ; 

n

; yields

Th

�

f

V

(!2W

0

[�

0

)

!g

�

= Th(W

0

[ �

0

) � E

Since W

0

[ �

0

j= '; this implies ' 2 E: A contradiction.



Second, we prove Th

W[�[�

C

(�

E

) � C by showing that Th(W [ � [ �

C

[ f�

E

g)

for �

E

2 �

E

:

Consider ' 2 Th(W [ � [ �

C

[ f�

E

g): Assume ' 62 C:

Consider the following four cases.

1. ' 2 W [ �: Since Th(W [ �) � E according to what we have just proven

and the fact E � C; we obtain ' 2 C: A contradiction.

2. ' 2 �

C

: Since Th

�

C

(C) � C for all �

C

2 �

C

; we have �

C

� C and thus

' 2 C: A contradiction.

3. ' 2 f�

E

g: Since Th

�

E

(E) � C; we have ' 2 C: A contradiction.

4. Otherwise, an analogous argumentation as in part 3. of the �rst half of this

proof yields ' 2 C: Again, a contradiction.

\�" Clearly, W � Th(W [ �) � Th

W[�[�

C

(�

E

):

Consider

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D:

If �

E

2 Th(W [ �) then �

E

2 E according to what we have just proved.

If �

C

2 Th

W[�[�

C

(�

E

) then �

C

2 C according to what we have just proved.

If additionally, :�

C

62 C; :�

E

62 E; :�

W

62 W then

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2

GD

(E;C)

(D;W )

; whence  2 � and �

C

2 �

C

; �

E

2 �

E

:

Clearly, the last three conditions imply

Th



(Th(W [ �)) � Th(W [ �);

Th

�

E

(Th(W [ �)) � Th

W[�[�

C

(�

E

); and

Th

�

C

(Th

W[�[�

C

(�

E

)) � Th

W[�[�

C

(�

E

):

Accordingly, by the minimality of r(E;C), we have r

1

(E;C) � Th(W [ �) and

r

2

(E;C) � Th

W[�[�

C

(�

E

): Since (E,C ) is a contextual extension, we obtain

E � Th(W [ �) and C � Th

W[�[�

C

(�

E

):

Clearly, E = Th(W [ �) implies Th(E) = E: That is, E is deductively closed.

Moreover, Th

>

(C) = Th

>

(Th

W[�[�

C

(�

E

)) = Th

W[�[�

C

(�

E

) = C: Hence, C is

pointwisely closed.

Proof 5.2 First, observe that we have the following properties

� W �

S

1

i=0

E

i

�

S

1

i=0

C

i

:

� For any

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D,

if �

W

2 W; �

E

2

S

1

i=0

E

i

; �

C

2

S

1

i=0

C

i

;

and :�

C

62

S

1

i=0

C

i

; :�

E

62

S

1

i=0

E

i

; :�

W

62 W:

then Th



(

S

1

i=0

E

i

) �

S

1

i=0

E

i

; Th

�

E

(

S

1

i=0

E

i

) �

S

1

i=0

C

i

; Th

�

C

(

S

1

i=0

C

i

) �

S

1

i=0

C

i

:



By the minimality of r(E;C), we have

15

r

1

(E;C) �

S

1

i=0

E

i

and r

2

(E;C) �

S

1

i=0

C

i

; (30)

regardless of whether (E,C ) is a contextual extension or not.

only-if part Assume (E,C ) is a contextual extension.

\�" We have to show that E

i

� E and C

i

� C for i � 0

Base Clearly, E

0

= W � E and C

0

= W � C:

Step Assume E

i

� E and C

i

� C and consider � 2 E

i+1

[ C

i+1

:

1. � 2 W: Since W � E; we obtain � 2 E:

2. � 2 f�

C

; �

E

; g for

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D such that �

W

2 W;�

E

2

E

i

; �

C

2 C

i

; and :�

C

62 C;:�

E

62 E;:�

W

62 W: That is, � is either

 or �

C

or �

E

for any contextual default rule satisfying the preceding

requirements.

Since E

i

� E and C

i

� C we have �

E

2 E and �

C

2 C:

Altogether, �

W

2 W; �

E

2 E; �

C

2 C; and :�

C

62 C; :�

E

62 E;

:�

W

62 W imply Th



(E) � E and Th

�

E

(E) � C; Th

�

C

(C) � C; by

De�nition 3.2 and all cases for � are covered.

Thus, we have E

i+1

� E and C

i+1

� C; respectively.

\�" From (30) and the fact that (E,C ) = r(E;C) we obtain E �

S

1

i=0

E

i

and

C �

S

1

i=0

C

i

; respectively.

We obtain (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

).

if part Assume (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

).

\�" Now, we have to show that E

i

� r

1

(E;C) and C

i

� r

2

(E;C) for i � 0:

Base Clearly, E

0

= W � r

1

(E;C) and C

0

= W � r

2

(E;C):

Step Assume E

i

� r

1

(E;C) and C

i

� r

2

(E;C) and consider � 2 E

i+1

[ C

i+1

:

1. � 2 W: Since W � r

1

(E;C) we obtain � 2 r

1

(E;C):

2. � 2 f�

C

; �

E

; g for

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D such that �

W

2 W;�

E

2

E

i

; �

C

2 C

i

; and :�

C

62 C;:�

E

62 E;:�

W

62 W: That is, � is either

 or �

C

or �

E

for any contextual default rule satisfying the preceding

requirements.

Since E

i

� r

1

(E;C) and C

i

� r

2

(E;C) we have �

W

2 r

1

(E;C) and

�

E

2 r

2

(E;C): Altogether, �

W

2 W; �

W

2 r

1

(E;C) �

C

2 r

2

(E;C)

and :�

C

62 C; :�

E

62 E; :�

W

62 W imply Th



(r

1

(E;C)) � r

1

(E;C)

and Th

�

E

(r

1

(E;C)) � r

2

(E;C); Th

�

C

(r

2

(E;C)) � r

2

(E;C); and all

cases for � are covered.

Accordingly, we have E

i+1

� r

1

(E;C) and C

i+1

� r

2

(E;C); respectively.
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We refer to the components of r(E;C) as r

1

(E;C) and r

2

(E;C), respectively.



\�" Follows from (30).

We have shown that (

S

1

i=0

E

i

;

S

1

i=0

C

i

) = r(E;C). Together with the assumption

(E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

), we obtain that (E,C ) is a contextual extension of (D;W ).

A.2 Proof of correctness and completeness

In the sequel, we frequently employ the following de�nition.

De�nition A.1 Let (D;W ) be a contextual default theory. Given a possibly in�nite

sequence of contextual default rules � = h�

0

; �

1

; �

2

; : : :i in D, also denoted h�

i

i

i2I

where

I is the index set for �, we de�ne a sequence of classes of K-models hM

i

i

i2I

as follows:

M

0

= M

W

M

i+1

= fm 2 M

i

j m j= 

i

^2

i

^2�

C

i

^ 3�

E

i

g;

where �

i

=

�

W

i

j�

E

i

j�

C

i

: �

C

i

j�

E

i

j�

W

i



i

:

We will be more liberal here about the orders >

�

by relaxing the condition that

M >

�

M

0

holds only if M and M

0

are distinct. That is, there will be cases where

M >

�

M be true. Clearly, this does not a�ect the issues under consideration.

Proof 6.1 (Correctness) Assume (E,C ) is a consistent contextual extension of

(D;W ). The set of generating default rules for (E,C ) wrt D is de�ned in De�ni-

tion 5.1. As an easy adaptation of Theorem 4.3.6. in [21] shows, then there exists an

enumeration h�

i

i

i2I

of GD

(E;C)

(D;W )

such that for i 2 I

Prereq

W

(�

i

) 2 W;

Prereq

E

(�

i

) 2 Th(W [ Conseq(f�

0

; : : : ; �

i�1

g)); (31)

Prereq

C

(�

i

) 2 Th

W[Conseq(f�

0

;:::;�

i�1

g)

(Justif (f�

0

; : : : ; �

i�1

g)):

Let hM

i

i

i2I

be a sequence of classes of K-models obtained from the enumeration h�

i

i

i2I

according to De�nition A.1. We will show that M coincides with

T

i2I

M

i

and is >

D

-

maximal above M

W

:

Since (E,C ) is a contextual extension, it has been proven in Theorem 5.1 that

E = Th

�

W [ Conseq

�

GD

(E;C)

(D;W )

��

:

Then, since M = fm j m j= E ^ 2C

K

^3C

J

g and

C

K

= Th

�

E [ Justif

C

�

GD

(E;C)

(D;W )

��

and C

J

= Justif

E

�

GD

(E;C)

(D;W )

�

;

we have obviously that M =

T

i2I

M

i

:

Firstly, let us show that M

i+1

>

�

i

M

i

for i 2 I:



� First, we prove that M

i

j= Prereq

W

(�

i

);Prereq

E

(�

i

);3Prereq

C

(�

i

) for i 2 I: This

leads to the following three cases:

1. Since M

i

� M

W

and M

W

j= W; then by de�nition of M

i

we have M

i

j= W

for i 2 I: By de�nition, W j= Prereq

W

(�

i

): Hence, M

i

j= Prereq

W

(�

i

) for

i 2 I:

2. Since M

i

� M

W

and M

W

j= W; then by de�nition of M

i

we have M

i

j=

W [ Conseq(�

i�1

) for i 2 I: Now, M

i+1

� M

i

for i 2 I implies that M

i

j=

W [ Conseq(f�

0

; : : : ; �

i�1

g): By (31), it follows that M

i

j= Prereq

E

(�

i

) for

i 2 I:

3. Since M

i

� M

W

and M

W

j= W; then by de�nition of M

i

we have

M

i

j= Conseq(�

i�1

) ^ 2(Conseq(�

i�1

) ^ Justif

C

(�

i�1

)) ^ Justif

E

(�

i�1

)

for i 2 I: Now, M

i+1

�M

i

for i 2 I implies that

M

i

j= 2(W [ Conseq(f�

0

; : : : ; �

i�1

g) [ Justif

C

(f�

0

; : : : ; �

i�1

g))

^3Justif

E

(f�

0

; : : : ; �

i�1

g):

Applying Proposition A.6 to (31) and M

i

, yields M

i

j= 3Prereq

C

(�

i

) for

i 2 I:

It all, it follows that M

i

j= Prereq

W

(�

i

);Prereq

E

(�

i

);3Prereq

C

(�

i

) for i 2 I:

� Let us assume that M

i+1

>

�

i

M

i

fails for some k 2 I: By de�-

nition of hM

i

i

i2I

and the fact that we have just proven that M

i

j=

Prereq

W

(�

i

);Prereq

E

(�

i

);3Prereq

C

(�

i

) for i 2 I; this means that either M

k

j=

3:�

C

k

or M

k

j= :�

E

k

or M

W

j= :�

W

k

for �

k

=

�

W
k

j�

E
k

j�

C
k

: �

C

k

j�

E

k

j�

W

k



k

:

Let us abbreviate W[Conseq(f�

0

; : : : ; �

k�1

g) by E

k

, W[Conseq(f�

0

; : : : ; �

k�1

g)[

Justif

C

(f�

0

; : : : ; �

k�1

g) by C

k

, and Justif

E

(f�

0

; : : : ; �

k�1

g) by J

k

. By de�nition,

M

k

= fm j m j= E

k

^2C

k

^ 3J

k

g:

Now, we have to consider the following three cases.

1. SinceC

k

� C

K

and J

k

� C

J

;we have that C

k

^� is satis�able for each � 2 C

J

and we can apply Corollary A.5 to the de�nition of M

k

and M

k

j= 3:�

C

k

we

obtain that :�

C

k

2 Th

C

k

�

J

k

�

: By monotonicity, :�

W

k

2 C; contradictory

to the fact that �

k

2 GD

(E;C)

(D;W )

:

2. Since E

k

� E and J

k

� C

J

; we have that C

k

^� is satis�able for each � 2 C

J

and we can apply Corollary A.2 to the de�nition of M

k

and M

k

j= :�

E

k

: We

obtain that E

k

j= :�

E

k

: By monotonicity, E j= :�

E

k

: Since E is deductively

closed we have :�

E

k

2 E; contradictory to the fact that �

k

2 GD

(E;C)

(D;W )

:

3. If M

W

j= :�

W

k

; we have W j= :�

W

k

; contradictory to the fact that �

k

2

GD

(E;C)

(D;W )

:

Therefore, M

i+1

>

�

i

M

i

for i 2 I: As a consequence,

T

i2I

M

i

>

GD

(E;C)

(D;W )

M

W

: That is,

M >

D

M

W

:

Secondly, assume M is not >

D

-maximal. Then, there exists a contextual default

rule

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D n GD

(E;C)

(D;W )

such that M

W

j= �

W

;M j= �

E

;M j= 3�

C

;

and M 6j= 3:�

C

;M 6j= :�

E

;M

W

6j= :�

W

: This leads us to the following six cases.



1. Trivially, M

W

j= �

W

implies W j= �

W

: Since W is deductively closed we have

�

W

2 W:

2. Applying Corollary A.2 to the de�nition of M and M j= �

E

yields E j= �

E

: Since

E is deductively closed we have �

E

2 E:

3. Applying Corollary A.5 to the de�nition of M and M j= 3�

C

yields 3�

C

2 C:

4. Since M j= E ^ 2C

K

^ 3C

J

; we get by monotonicity 2C

K

^ 3C

J

6j= 3:�

C

:

By modal logic K, it follows that C

K

^ � 6j= :�

C

whenever � 2 C

J

: Since C =

Th

C

K

(C

J

) we obtain C 6j= :�

C

: Thus, :�

C

62 C:

5. Since M j= E ^ 2C

K

^ 3C

J

; we get by monotonicity E 6j= :�

E

: Since E is

deductively closed, we get :�

E

62 E:

6. Clearly, M

W

6j= :�

W

implies W 6j= :�

W

: Thus, :�

W

62 W:

Of course, �

W

2 W; �

E

2 E; �

C

2 C; and :�

C

62 C; :�

E

62 E; :�

W

62 W imply

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 GD

(E;C)

(D;W )

; a contradiction.

Proof 6.1 (Completeness) Assume M = fm j m j= E ^ 2C

K

^ 3C

J

g is a >

D

-

maximal class of K-models above M

W

:

We de�ne for i � 0

�

i

=

(

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D

�

�

�

�

�

�

W

2 W; �

E

2 E

i

; �

C

2 C

i

;

:�

C

62 C; :�

E

62 E; :�

W

62 W

)

where E

0

= W; C

K

0

= W; and C

J

0

= ; and for i � 0

E

i+1

= Th(E

i

) [ Conseq(�

i

)

C

K

i+1

= E

i

[ Justif

C

(�

i

)

C

J

i+1

= Justif

E

(�

i

)

Furthermore, let C

i

= Th

C

K

i

(C

J

i

) for i � 0.

Then, although the de�nitions of E

i

and C

i

are slightly modi�ed, we have that (E,C )

is a contextual extension i� (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

) according to Theorem 5.2.

Let us abbreviate fm j m j=

S

1

i=0

E

i

^2

S

1

i=0

C

K

i

^3

S

1

i=0

C

J

i

g by N. We will show

that M = N; in order to show that (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

):

Firstly, let us show by induction that M � fm j m j= E

i

^2C

K

i

^3C

J

i

g for i � 0:

Base By de�nition, M

W

j= E

0

^2C

K

0

^3C

J

0

: Since M >

D

M

W

; we get M � fm j m j=

E

0

^ 2C

K

0

^3C

J

0

g:

Step The induction hypothesis is: M j= E

i

^2C

K

i

^ 3C

J

i

Consider � 2 E

i+1

[ C

K

i+1

[ C

J

i+1

: Then, one of the two following cases holds.

1. � 2 Th(E

i

): By the induction hypothesis, M j= � (hence covering the case

� 2 E

i

).



2. � 2 f�

C

; �

E

; g for

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D such that �

W

2 W;�

E

2

E

i

; �

C

2 C

i

; and :�

C

62 C;:�

E

62 E;:�

W

62 W: That is, � is either  or �

C

or �

E

for any contextual default rule satisfying the preceding requirements.

This leads us to the following six cases.

(a) Clearly, �

W

2 W implies M

W

j= �

W

:

(b) By the induction hypothesis, M j= �

E

:

(c) By the induction hypothesis (in view of C

i

= Th

C

K

i

(C

J

i

)), M j= 3�

C

:

(d) Assume M j= 3:�

C

: Since M is non-empty, we obtain that C

K

^ �

is satis�able for each � 2 C

J

. So, Corollary A.5 applies to M and

M j= 3:�

C

: We obtain :�

C

2 Th

C

K

(C

J

) = C; a contradiction. So,

M 6j= 3:�

C

(e) Assume M j= :�

E

: As in the previous case, we obtain that C

K

^ �

is satis�able for each � 2 C

J

. So, Corollary A.2 applies to M and

M j= :�

E

: As a result, E j= :�

E

: Since E is deductively closed, it

follows that :�

E

2 E; a contradiction. So, M 6j= :�

E

:

(f) Clearly, :�

W

62 W implies M

W

6j= :�

W

:

Since M is >

D

-maximal, then M j=  ^2 ^2�

C

^3�

E

must hold and all

cases for � are covered.

From the two cases, we obtain M j= E

i+1

^2C

K

i+1

^3C

J

i+1

:

Therefore, we have shown that M � fm j m j= E

i

^ 2C

K

i

^ 3C

J

i

g for i � 0: So,

M � N:

Secondly, since M is a >

D

-maximal class above M

W

for (D;W ), then M =

T

i2I

M

i

where hM

i

i

i2I

is a sequence of classes of K-models de�ned for some h�

i

i

i2I

according

to De�nition A.1 such that M

i+1

>

�

i

M

i

for i 2 I:

Let us show by induction that N � M

i

for i 2 I:

Base Since M

0

= M

W

and E

0

= C

0

= W; the result is obvious.

Step The induction hypothesis is: N � M

i

Since M

i+1

>

�

i

M

i

for i 2 I we have M

i+1

= fm 2 M

i

j m j= 

i

^ 2

i

^2�

C

i

^

3�

E

i

g and M

W

j= �

W

i

; M

i

j= �

E

i

; M

i

j= 3�

C

i

; and M

i

6j= 3:�

C

i

; M

i

6j= :�

E

i

;

M

W

6j= :�

W

i

where �

i

=

�

W

i

j�

E

i

j�

C

i

: �

C

i

j�

E

i

j�

W

i



i

: This leads us to the following

six cases.

1. Clearly, M

W

j= �

W

i

implies W j= �

W

i

: Since W is deductively closed, we

have �

W

i

2 W:

2. By the induction hypothesis, we have N j= �

E

i

: Suppose that

S

1

i=0

C

K

i

^� is

unsatis�able for some � 2

S

1

i=0

C

J

i

: Then, there is some k such that � 2 C

k

and C

K

k

j= :�: We have shown above that M � fm j m j= E

i

^ 2E

i

^

3C

i

g for i � 0: Then, M j= 2C

K

k

^ 3�: From C

K

k

j= :�; modal logic

K yields 2C

K

k

j= 2:�: Therefore, M j= 2:� ^ 3�: Then, M is empty, a

contradiction. So,

S

1

i=0

C

K

i

^ � is satis�able for each � 2

S

1

i=0

C

J

i

: Since

N j= �

E

i

; we can now apply Corollary A.2 to obtain that

S

1

i=0

E

i

j= �

E

i

:

Since

S

1

i=0

E

i

is deductively closed, we have �

E

i

2

S

1

i=0

E

i

:



3. By the induction hypothesis, we have N j= 3�

C

i

: By Corollary A.5, �

C

i

2

Th

S

1

i=0

C

K

i

(

S

1

i=0

C

J

i

) =

S

1

i=0

C

i

:

By compactness and monotonicity, there exist k

0

and k

00

such that �

E

i

2 E

k

0

and

�

C

i

2 C

k

00

: Let k be the maximum of k

0

and k

00

. Thus, �

E

i

2 E

k

and �

C

i

2 C

k

:

By de�nition, M

i+1

j= 2�

C

i

^ 3�

E

i

hence M j= 2�

C

i

^ 3�

E

i

because M =

T

i2I

M

i

:

4. From M j= 2�

C

i

and M j= 2C

K

^ 3C

J

; it follows by modal logic K that

M j= 3(C

K

^ �

C

i

^ �) for � 2 C

J

: That is, since M is non-empty, C

K

[f�g 6`

:�

C

i

for � 2 C

J

: Since C = Th

C

K

(C

J

); we obtain :�

C

i

62 C:

5. From M j= 3�

E

i

and M j= 2E; it follows by modal logic K that E 6j= :�

E

i

:

That is, since M is non-empty, :�

E

i

62 E:

6. Clearly, M

W

6j= :�

W

i

implies :�

W

i

62 W:

From �

W

i

2 W; �

E

i

2 E

k

; �

C

i

2 C

k

; and :�

C

i

62 C; :�

E

i

62 E; :�

W

i

62 W;

we conclude that 

i

2 E

k+1

and 

i

^ �

C

i

2 C

K

k+1

and �

E

i

2 C

J

k+1

: Hence,

N j= 

i

^ 2

i

^ 2�

C

i

^ 3�

E

i

: By the induction hypothesis and the de�nition of

M

i+1

we obtain N � M

i+1

:

Therefore, we have shown that N �M

i

for i 2 I: That is, N � M :

In all, M = N: That is, fm j m j= E ^ 2C

K

^ 3C

J

g = fm j m j=

S

1

i=0

E

i

^

2

S

1

i=0

C

K

i

^3

S

1

i=0

C

K

i

g: Since M hence N is non-empty, 2

S

1

i=0

C

K

i

^3�

E

is satis�able

for each �

E

2

S

1

i=0

C

J

i

(as 2p ^3q ! 3(p ^ q) and 3? ! ? are valid in modal logic

K ). By Corollary A.2,

S

1

i=0

E

i

j= E: The converse is proved in a similar way, it is just

simpler. Therefore,

S

1

i=0

E

i

= E because

S

1

i=0

E

i

and E are both deductively closed

sets of formulas.

Moreover, Th(

S

1

i=0

C

K

i

) = C

K

; by an analogous argumentation. The rest of

S

1

i=0

C

i

= C is straightforward.

Then, (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

) and according to Theorem 5.2 this means (E,C )

is a contextual extension of (D;W ).

Some modal propositions

modal This subsection summarizes some modal propositions taken from [3] along with

some others needed in the preceding proofs.

Proposition A.1 Let p, q, r, s

1

; : : : ; s

n

be non-modal formulas such that q ^ s

i

is

satis�able for i = 1; : : : ; n.

If j= p ^2q ^3s

1

^ : : : ^3s

n

! r then j= p! r:

Corollary A.2 Let S , T , U and V be sets of non-modal formulas and T ^ u is

satis�able for each u 2 U .

If M = fm j m j= S ^2T ^ 3U g and M j= V then S j= V :



Proposition A.3 Let p, q, r, s

1

; : : : ; s

n

, t be non-modal formulas, with p and q^s

i

^:t

satis�able for i = 1; : : : ; n.

If j= p ^2q ^3s

1

^ : : : ^3s

n

! 2r _3t then j= q! r _ t:

In addition, the following propositions are needed.

Proposition A.4 Let p, q, r, s

1

; : : : ; s

n

be non-modal formulas such that p and q ^ s

i

are satis�able for i = 1; : : : ; n.

If j= p ^2q ^3s

1

^ : : : ^3s

n

! 3r then j= q ^ s

i

! r for some i 2 f1; : : : ; ng

Proof A.4 Assume the contrary. Thus, q ^ s

i

^ :r is satis�able for each i = 1; : : : ; n.

We now construct the K-model m = h!

0

; f!

i

j i = 0; : : : ; ng; f(!

0

; !

i

) j i = 1; : : : ; ng;Ii

such that !

0

j= p and !

i

j= q ^ s

i

^ :r for each i = 1; : : : ; n. Clearly, m contradicts the

validity of p ^ 2q ^ 3s

1

^ : : : ^ 3s

n

! 3r:

Corollary A.5 Let S , T , and U be sets of non-modal formulas and v a non-modal

formula such that S is satis�able and T ^ u is satis�able for each u 2 U .

If M = fm j m j= S ^2T ^3U g and M j= 3v then v 2 Th

T

(U ):

Proof A.5 M j= 3v means S^2T^3U j= 3v: By compactness, S

0

^2T

0

^3U

0

j= 3v

for some �nite subsets S

0

;T

0

and U

0

of S , T and U , respectively. Since the deduction

theorem for material implication holds in modal logic K, we get j= S

0

^2T

0

^3U

0

! 3v:

Applying Proposition A.4, j= T

0

^ u ! v for some u 2 U

0

: That is, T

0

[ fug j= v: By

monotonicity, T [ fug j= v: So, v 2 Th

T

(U ) since u 2 U

0

� U :

Proposition A.6 Let S and T be sets of non-modal formulas and u a non-modal

formula.

If u 2 Th

S

(T ) then 2S ^ 3T j= 3u:

Proof A.6 By de�nition, Th

S

(T ) =

S

t2T

Th(S [ ftg): Thus, u 2 Th

S

(T ) is equivalent

to u 2

S

t2T

Th(T [ ftg): That is, u 2 Th(S [ ftg) for some t 2 T: By modal logic K,

if S ^ t j= u then 2S ^ 3t j= 3u for some t 2 T: By monotonicity of modal logic K,

2S ^3T j= 3u:

A.3 Proofs of relationships to existing default logics

Proof 7.1 In what follows, let (D;W ) be a default theory and (D

0

;W

0

) = �

DL

(D;W ):

For a set of formulas E, let C

E

=

n

�

�

�

�

� :�



2 D; � 2 E;:� 62 E

o

:



only-if part Let E be a classical extension of (D;W ). Let C = Th

E

(C

E

): Then, E

is the smallest set of formulas such that

1. W � E;

2. Th(E) = E;

3. For any

� :�



2 D; if � 2 E and :� 62 E then  2 E:

Then, E (recall that C is de�ned in terms of E) is also the smallest set satisfying

the following properties:

1. By de�nition, W � E: Furthermore, E � C; by de�nition of C. Hence, W �

E � C:

2. For any

j� j:j� j



2 D

0

; if �2 E; :� 62 E then Th



(E) � E; Th

�

(E) � C:

This is so because by De�nition 7.2,

j� j:j� j



2 D

0

i�

� :�



2 D. Furthermore,  2 E

and the fact that E is deductively closed imply Th



(E) � E: By the de�nition of

C

E

, we have � 2 C

E

: Therefore, by de�nition of C, Th(E [ f�g) � C; which in

turn implies Th

�

(E) � C:

Finally, a reductio ad absurdum argument shows that also C is the smallest set satis-

fying the aforementioned properties.

By De�nition 3.2, we thus obtain that (E,C ) is a contextual extension of �

DL

(D;W ):

if part Let (E,C ) be a contextual extension of �

DL

(D;W ): Then, E and C are the

smallest sets of formulas such that

1. W � E � C

2. For any

j� j:j� j



2 D

0

; if 2: �2 E, 4: :� 62 E then 7: Th



(E) � E, 8: Th

�

(E) � C.

Then, E is also the smallest set satisfying the following three properties:

1. By de�nition, W � E:

2. By Theorem 5.1, E = Th(E):

3. For any

� :�



2 D; if � 2 E and :� 62 E then  2 E:

This is so because by De�nition 7.2,

j� j:j� j



2 D

0

i�

� :�



2 D. Furthermore,

Th



(E) � E implies  2 E:

By De�nition 7.1, we thus obtain that E is a classical extension of (D;W ).

Moreover, we have according to Theorem 5.1 that

C = Th

E

�

Justif

E

�

GD

(E;C)

(D

0

;W

0

)

��

= Th

E

�n

�

�

�

�

j� j:j� j



2 D

0

; � 2 E;:� 62 E

o�

= Th

E

�n

�

�

�

�

� :�



2 D; � 2 E;:� 62 E

o�

= Th

E

(C

E

):



Proof 7.2 Analogous to Proof 7.1.

Proof 7.3 Analogous to Proof 7.1.

A.4 Proof of properties

Proof 8.3 The unsatis�able case is trivial.

According to Theorem 5.2, (E,C ) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

) such that E

0

= W and

C

0

= W; and for i � 0

�

i

=

(

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



2 D

�

�

�

�

�

�

W

2 W; �

E

2 E

i

; �

C

2 C

i

;

:�

C

62 C; :�

E

62 E; :�

W

62 W

)

E

i+1

= Th(W [ Conseq(�

i

))

C

i+1

= Th

W[Conseq(�

i

)[Justif

C

(�

i

)

(Justif

E

(�

i

))

Also (E

0

; C

0

) = (

S

1

i=0

E

0

i

;

S

1

i=0

C

0

i

) where �

0

i

; E

0

i

and C

0

i

are de�ned analogously.

Since (E,C ) and (E

0

; C

0

) are distinct, there exists a least k such that �

k

6= �

0

k

and

�

i

= �

0

i

for 0 � i � k:

Then, there is a contextual default rule such that � 2 �

k

but � 62 �

0

k

: As a con-

sequence, Prereq

W

(�) 2 W; Prereq

E

(�) 2 E

k

; Prereq

C

(�) 2 C

k

; and :Justif

C

(�) 62 C;

:Justif

E

(�) 62 E; :Justif

W

(�) 62 W: Since E

i

= E

0

i

and C

i

= C

0

i

for 0 � i � k; we also

have Prereq

E

(�) 2 E

0

k

; and Prereq

C

(�) 2 C

0

k

: Consequently, we have :Justif

C

(�) 2 C

0

or :Justif

E

(�) 2 E

0

:

On the other hand, we have Justif

C

(�) 2 C

K

and Justif

E

(�) 2 C; since � 2 �

k

:

Suppose that :Justif

C

(�) 2 C

0

: Since C

0

= Th

E

0

[Justif

C

(�

0

)

(Justif

E

(�

0

)) according to

Theorem 5.1 for �

0

= GD

(E

0

;C

0

)

(D;W )

; there is �

E

0

2 Justif

E

(�

0

) such that :Justif

C

(�) 2

Th(E

0

[ f�

E

0

g): Since Justif

C

(�) 2 C

K

; we obtain that C

K

[ Th(E

0

[ f�

E

0

g) is incon-

sistent.

Suppose that :Justif

E

(�) 2 E

0

: This implies :Justif

E

(�) 2 C

0

K

since E

0

�

C

0

K

: With � 2 GD

(E;C)

(D;W )

; we have Th(E [ fJustif

E

(�)g) � C and Justif

E

(�) 2

Th(E [ fJustif

E

(�)g): Clearly, we that C

0

K

[ Th(E [ fJustif

E

(�)g) is inconsistent.

Proof 8.1 Let (D;W ) be a contextual default theory. Then, there is a consistent con-

textual default theory (;;W ) which has a unique contextual extension (Th(W ); Th(W )):

From this and Theorem 8.2 the result follows immediately.

Proof 8.2 The inconsistent case is easily dealt with, so that we prove below the

theorem for E and C being consistent.

We de�ne a sequence h�

�

i of subsets of D

0

as follows. For the sake of simplicity, let

us abbreviate Th(W [ Conseq(�

�

)) by E

�

and Th

W[Conseq(�

�

)[Justif

C

(�

�

)

(Justif

E

(�

�

))



by C

�

. Moreover, we say that a contextual default rule

�

W

j�

E

j�

C

: �

C

j�

E

j�

W



applies

wrt (E

�

; C

�

) i� �

W

2 W; �

E

2 E

�

; �

C

2 C

�

; and :�

C

62 C

�

; :�

E

62 E

�

; :�

W

62 W:

�

�

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

GD

(E;C)

(D;W )

if � = 0

S

�<�

�

�

if � is a limit ordinal

�

�

[ f�g if � = � + 1 is a successor ordinal in the case there exists

� =

�

W

j�

E

j�

C

: �^�^ j j

�^

2 D

0

n�

�

such that � applies wrt (E

�

; C

�

)

Since the sequence � is strictly increasing, the process eventually stops. Let � be the

greatest ordinal such that �

�

is de�ned. De�ne

E

0

= Th(E [ Conseq(�

�

)) and C

0

= Th

E[Conseq(�

�

)[Justif

C

(�

�

)

(Justif

E

(�

�

)):

By de�nition, E � E

0

and C � C

0

: Thus, it remains to be shown that (E

0

; C

0

) is a

contextual extension of (D

0

;W ). First, observe the following properties.

1. By de�nition of E

0

and C

0

, clearly W � E

0

: We have also E

0

� C

0

because every

contextual default rule is of the form

�

W

j�

E

j�

C

: �^�^ j j

�^

:

2. If

�

W

j�

E

j�

C

: �^�^ j  j

�^

2 D

0

; and � applies wrt (E

0

; C

0

) , we obtain Th

�^

(E

0

) � E

0

,

Th



(E

0

) � C

0

, Th

�^�^

(C

0

) � C

0

, (otherwise �

�+1

could be de�ned).

Then, by the minimality of r(E

0

; C

0

), we have

16

r

1

(E

0

; C

0

) � E

0

and r

2

(E

0

; C

0

) � C

0

:

Now, assume r

1

(E

0

; C

0

) � E

0

and r

2

(E

0

; C

0

) � C

0

; ie. none of the former inclusions

are proper. Then (provided that E � r

1

(E

0

; C

0

) and C � r

2

(E

0

; C

0

)), there exists a

least ordinal � such that �

�

= �

��1

[ f�g where � =

�

W

j�

E

j�

C

: �^�^ j  j

�^

2 D

0

; such

that � applies wrt (E

0

; C

0

); and � ^  2 E

0

and � ^ � ^  2 C

0

and  2 C

0

, but either

� ^  62 r

1

(E

0

; C

0

) or � ^ � ^  62 r

2

(E

0

; C

0

) or  62 r

2

(E

0

; C

0

): Clearly, �

W

2 W: By

de�nition of �, we have �

E

2 E

��1

and �

C

2 C

��1

: Since � is the least such ordinal, it

follows that �

E

2 r

1

(E

0

; C

0

) and �

C

2 r

1

(E

0

; C

0

): But by de�nition, these, �

W

2 W;

and the consistency conditions imply � ^  2 r

1

(E

0

; C

0

) and � ^ � ^  2 r

2

(E

0

; C

0

)

and  2 r

2

(E

0

; C

0

): Contradiction.

It remains to be shown that E � r

1

(E

0

; C

0

) and C � r

2

(E

0

; C

0

): This can be

proven by applying the same reasoning to a similar sequence of contextual default rules

of GD

(E;C)

(D;W )

.
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We refer to the components of r as r

1

and r

2

, respectively.
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