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Abstract. Acyclicity constraints are prevalent in knowledge representation and applications where
acyclic data structures such as DAGs and trees play a role. Recently, such constraints have been
considered in the satisfiability modulo theories (SMT) framework, and in this paper we carry out
an analogous extension to the answer set programming (ASP) paradigm. The resulting formalism,
ASP modulo acyclicity, offers a rich set of primitives to express constraints related to recursive
structures. In the technical results of the paper, we relate the new generalization with standard
ASP by showing (i) how acyclicity extensions translate into normal rules, (ii) how weight constraint
programs can be instrumented by acyclicity extensions to capture stability in analogy to unfounded
set checking, and (iii) how the gap between supported and stable models is effectively closed in
the presence of such an extension. Moreover, we present an efficient implementation of acyclicity
constraints by incorporating a respective propagator into the state-of-the-art ASP solver CLASP. The
implementation provides a unique combination of traditional unfounded set checking with acyclicity
propagation. In the experimental part, we evaluate the interplay of these orthogonal checks by
equipping logic programs with supplementary acyclicity constraints. The performance results show
that native support for acyclicity constraints is a worthwhile addition, furnishing a complementary
modeling construct in ASP itself as well as effective means for translation-based ASP solving.
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1. Introduction

Acyclic data structures such as DAGs and trees occur frequently in applications. For instance,
Bayesian [3] and Markov [4, 5] network learning, circuit layout [6], and phylogeny reconstruction [7]
are based on respective conditions. When logical formalisms are used for the specification of such struc-
tures, dedicated acyclicity constraints are called for. Recently, such constraints have been introduced in
the satisfiability modulo theories (SMT) framework [8] for extending Boolean satisfiability (SAT) [9] in
terms of graph-theoretic properties [10, 11]. The idea of satisfiability modulo acyclicity [12] is to view
certain Boolean variables as conditional edges of a graph and to require that the graph remains acyclic
under variable assignments. Moreover, the respective theory propagators for acyclicity have been im-
plemented in the contemporary SAT solvers MINISAT [13] and GLUCOSE [14], which offer a promising
machinery for solving applications involving acyclicity constraints.

In this paper, we consider acyclicity constraints in the context of answer set programming (ASP) [15],
featuring rule-based languages for knowledge representation. The languages used in ASP offer primi-
tives to express, e.g., recursive definitions, defaults, and first-order specifications that are effectively
Booleanized by contemporary ASP tools before the search for answer sets. In fact, one of the first ap-
plications of SAT modulo acyclicity was the implementation of ASP using appropriate translations of
logic programs [12] along with SAT solvers extended by explicit acyclicity constraints and propagators.
The goal of this paper, however, is to go beyond this idea and to incorporate acyclicity constraints as
additional primitives into ASP. Thus, acyclicity constraints become readily available in the context of
extended rule types [16] as well as more demanding reasoning tasks like answer set enumeration and
optimization. The resulting formalism, coined ASP modulo acyclicity in this paper, offers a rich set of
primitives to express constraints related to recursive structures. From this perspective, the new extension
of ASP provides more than what is available in the SAT modulo acyclicity approach as such.

In the technical results, we are mainly interested in relating the new generalization with standard
ASP and a number of results are worked out in this respect. First, we show how acyclicity extensions can
be translated away using normal rules in case a back-end solver does not support acyclicity constraints
natively. Second, by adapting the translations from ASP to SAT modulo acyclicity [12], we obtain tech-
niques to instrument logic programs with internal acyclicity extensions to capture stability in analogy to
unfounded set checking. In this paper, there are particular contributions concerning the formalization of
well-supporting rules and the generalization of such internal instrumentation to weight rules. Depending
on how strict constraints are imposed on well-supporting rules, we obtain two alternative translations of
a weight constraint program P , denoted by TrACYC(P ) and TrACYC+(P ) in the paper, both resulting
in weight constraint programs (modulo acyclicity). Given that TrACYC(P ) ⊆ TrACYC+(P ), there is a
trade-off between the length of the translation and the strength of constraints over well-supporting rules.
Third, we make an interesting observation regarding the semantic gap between supported and stable
models that effectively disappears in the presence of such instrumentation. This is why TrACYC(P ) and
TrACYC+(P ) lend themselves for subsequent translation into other back-end formalisms such as dif-
ference logic or integer programming, and further enable the implementation of ASP (modulo acyclic-
ity) with existing solver technology available in neighboring fields. Finally, we present an efficient
implementation of acyclicity constraints obtained as an extension to the state-of-the-art ASP solver
CLASP [17]. The implementation offers a unique combination of traditional unfounded set [18] checking
and acyclicity propagation [10]. To understand the interplay of both reasoning mechanisms in practice,
we conduct an experimental evaluation comparing different propagation principles, translations, and



J. Bomanson, M. Gebser, T. Janhunen, B. Kaufmann, T. Schaub / Answer Set Programming modulo Acyclicity 3

back-end solvers.
The rest of this paper is structured as follows. Basic notions of answer set programming are recalled

in Section 2. The extension by explicit acyclicity constraints is then worked out in Section 3, character-
izing the relationships between ASP modulo acyclicity and standard ASP, as outlined above, and paving
the way for solving methods implemented in the contemporary ASP solver CLASP. Section 4 is dedicated
to the experimental evaluation of the new extension, considering a variety of back-end solver variants in
comparison to state-of-the-art ASP solvers. Finally, the results of the paper are discussed in Section 5.

2. Background

We consider logic programs built from rules of the following forms:

a← b1, . . . , bn, not c1, . . . , not cm. (1)

{a} ← b1, . . . , bn, not c1, . . . , not cm. (2)

a← k ≤ [b1 = w1, . . . , bn = wn, not c1 = wn+1, . . . , not cm = wn+m]. (3)

Symbols a, b1, . . . , bn, and c1, . . . , cm where n ≥ 0 and m ≥ 0 stand for (propositional) atoms,
k and w1, . . . , wn+m for non-negative integers, and not for (default) negation. Atoms like bi and
negated atoms like not ci are called positive and negative literals, respectively. For a normal (1),
choice (2), or weight (3) rule r, we denote its head atom by head(r) = a and its body by B(r). By
B(r)+ = {b1, . . . , bn} and B(r)− = {c1, . . . , cm}, we refer to the positive and negative body atoms
of r. When r is a weight rule, the respective sequence of weighted literals is denoted by WL(r), and
its restrictions to positive or negative literals are indicated by WL(r)+ and WL(r)−. A normal rule r
such that head(r) ∈ B(r)− is called an integrity constraint, or constraint for short, and we below skip
head(r) and not head(r) for brevity, where head(r) is an arbitrary atom occurring in r only. A weight
constraint program P , or simply a program, is a finite set of rules; P is a choice program if it consists of
normal and choice rules only, and a positive program if it involves neither negation nor choice rules.

Given a program P , let head(P ) = {head(r) | r ∈ P} and At(P ) = head(P ) ∪
⋃

r∈P (B(r)
+ ∪

B(r)−) denote the sets of head atoms or all atoms, respectively, occurring in P . The defining rules of
an atom a ∈ At(P ) are DefP (a) = {r ∈ P | head(r) = a}. An interpretation I ⊆ At(P ) satisfies
B(r) for a normal or choice rule r iff B(r)+ ⊆ I and B(r)− ∩ I = ∅. The weighted literals of a
weight rule r evaluate to vI(WL(r)) =

∑
1≤i≤n,bi∈I wi +

∑
1≤i≤m,ci /∈I wn+i, and I satisfies B(r) iff

k ≤ vI(WL(r)). For any rule r, we write I |= B(r) iff I satisfies B(r), and I |= r iff I |= B(r)
implies head(r) ∈ I . (A choice rule r is actually satisfied by any interpretation I , also in case that
I |= B(r) but head(r) /∈ I , yet we do not apply the notation I |= r to choice rules in the sequel.) The
supporting rules of P with respect to I are SRP (I) = {r ∈ P | head(r) ∈ I, I |= B(r)}. Moreover,
I is a model of P , denoted by I |= P , iff I |= r for every r ∈ P such that r is a normal or weight
rule. A model I of P is a supported model of P when head(SRP (I)) = I . Any positive program P
possesses a unique least model, denoted by LM(P ), which can be computed via the repeated application
of the TP operator defined by TP (I) = head({r ∈ P | I |= B(r)}). Namely, letting TP ↑ 0 = ∅ and
TP ↑ i+ 1 = TP (TP ↑ i) for i ≥ 0, the least fixpoint of TP is obtained in a finite number of steps and
coincides with LM(P ).

For a normal or choice rule r, B(r)I = B(r)+ denotes the reduct of B(r) with respect to an interpre-
tation I , and the reduct B(r)I for a weight rule r of the form (3) is defined as max{0, k−vI(WL(r)−)} ≤
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WL(r)+. The reduct of a program P with respect to an interpretation I is P I = {head(r)← B(r)I |
r ∈ SRP (I)}. Then, an interpretation I is a stable model of P iff I |= P and LM(P I) = I . While any
stable model of P is a supported model of P as well, the converse does not hold in general. However,
the following concept provides a tighter notion of support achieving such a correspondence.

Definition 2.1. A model I ⊆ At(P ) of a program P is well-supported by a set R ⊆ SRP (I) of
rules iff head(R) = I and there is some ordering r1, . . . , rn of R such that, for each 1 ≤ i ≤ n,
head({r1, . . . , ri−1}) |= B(ri)

I .

Proposition 2.2. A (supported) model I ⊆ At(P ) of a program P is stable iff I is well-supported by
some R ⊆ SRP (I).

Since atoms may have several defining rules in a program, it is often the case that several well-
supporting sets of rules exist. The notion of well-support counteracts circularity in the positive depen-
dency graph DG+(P ) = 〈At(P ),�〉 of P , whose edge relation a�b holds for all a, b ∈ At(P ) such that
head(r) = a and b ∈ B(r)+ for some rule r ∈ P . If a�b, we also write 〈a, b〉 ∈ DG+(P ). The strongly
connected components (SCCs) of DG+(P ) are maximal subsets C ⊆ At(P ) such that all contained
atoms are connected to one another by directed paths in DG+(P ). For an atom a ∈ At(P ), we denote the
SCC containing a by SCCP (a). The SCCs S1, . . . , Sn of a program P are central for the modularization
and the compositionality of stable model semantics. Each Si gives rise to a module Pi =

⋃
a∈Si

DefP (a)
and, consequently, the program P can be partitioned into disjoint modules P1, . . . , Pn. An interpreta-
tion I ⊆ At(Pi) is a stable model of the module Pi iff I = LM(Pi

I ∪ {a← | a ∈ I \ Si}). A
collection of interpretations Ii ⊆ At(Pi) for 1 ≤ i ≤ n is compatible iff, for each i, j ∈ {1, . . . , n},
Ii ∩ At(Pj) = Ij ∩ At(Pi). The module theorem [19] states that the stable models of P match the
compatible collections of stable models for the modules P1, . . . , Pn.

While SCCs provide the finest possible granularity for the module theorem to hold, it is clear that
we can form arbitrary unions of SCC-based modules, so that the stable models of the unions and the
stable models of the entire program still match through the compatibility condition. In particular, we will
exploit the traditional scenario of two programs [20], called the bottom B and the top T , such that the
SCCs of B ∪ T are local to B and T , i.e., there is no SCC S of B ∪ T such that both S ∩ head(B) 6= ∅
and S ∩ head(T ) 6= ∅. This implies that head(B) ∩ head(T ) = ∅, and no two atoms a ∈ head(B) and
b ∈ head(T ) can mutually depend on each other in DG+(B ∪ T ). Moreover, one usually picks B and
T such that head(T ) ∩ At(B) = ∅, i.e., the bottom B is a stand-alone program that does not refer to
atoms defined in T , and thus T can intuitively be viewed to be on top of B. Given this, the following
proposition rephrases the splitting set theorem from [20].

Proposition 2.3. An interpretation I ⊆ At(B ∪ T ) is a stable (resp. supported) model of B ∪ T iff

1. IB = I ∩At(B) is a stable (resp. supported) model of B and

2. IT = I ∩At(T ) is a stable (resp. supported) model of T ∪ {a← | a ∈ IB ∩At(T )}.

3. Acyclicity Constraints

In previous work [10], the SAT problem has been extended by explicit acyclicity constraints. The basic
idea is to label edges of a directed graph with dedicated Boolean variables. While satisfying the clauses
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of a SAT instance referring to these labeling variables, also the directed graph consisting of edges whose
labeling variables are true must be kept acyclic. Thus, the graph behind the labeling variables imposes
an additional constraint on satisfying assignments. In what follows, we propose a similar extension of
logic programs subject to stable model semantics.

Definition 3.1. An acyclicity extension of a logic program P is a pair 〈V, e〉, where

1. V is a set of nodes and

2. e : At(P )→ V × V is a partial injection that maps atoms of P to edges.

In the sequel, a program P is called an acyclicity program if it is accompanied by an acyclicity
extension 〈V, e〉. To define the semantics of acyclicity programs, we identify the graph of the acyclicity
check as follows. Given an interpretation I ⊆ At(P ), we write e(I) for the set of edges e(a) induced
by atoms a ∈ I for which e(a) is defined. For a given acyclicity extension 〈V, e〉, the graph e(At(P )) is
the maximal one that can be obtained under any interpretation and is therefore likely to contain cycles.
(Otherwise, the extension can be neglected altogether as no cycles can arise.) To be precise about the
acyclicity condition being imposed, we recall that a graph 〈V,E〉 with the set E ⊆ V × V of edges has
a cycle iff there is a non-trivial directed path from any node v ∈ V back to itself via the edges in E. An
acyclic graph 〈V,E〉 has no cycles of this kind.

Definition 3.2. Let P be an acyclicity program with an acyclicity extension 〈V, e〉. An interpretation
M ⊆ At(P ) is a stable (or supported) model of P subject to 〈V, e〉 iff M is a stable (or supported)
model of P such that the graph 〈V, e(M)〉 is acyclic.

Example 3.3. Consider a directed graph G = 〈V,E〉 and the task of finding a Hamiltonian cycle through
the graph, i.e., a cycle that visits each node in V exactly once. Let us encode the graph G by introducing
the fact node(v) for each v ∈ V and the fact edge(v, u) for each 〈v, u〉 ∈ E. Then, it is sufficient (i)
to pick beforehand an arbitrary initial node, say v0, for the cycle, (ii) to select for each node exactly one
outgoing and one incoming edge to be on the cycle, and (iii) to check that the cycle is not completed
before the path spanning along the selected edges returns to v0. Assuming that a predicate hc is used to
represent selected edges, the following (first-order) rules1 similar to those in [21] express (ii):

1{hc(v, u) : edge(v, u)}1← node(v). (4)

1{hc(u, v) : edge(u, v)}1← node(v). (5)

To enforce (iii), we simply define an acyclicity extension 〈V, e〉, where V is the set of nodes of G and e
maps an atom hc(v, u) to an edge 〈v, u〉 whenever v and u are different from v0. (A simple mechanism
to implement such acyclicity extensions in practice is described in Section 4.) �

Our next objective is to relate acyclicity programs to ordinary logic programs in terms of translations.
Clearly, the fact that logic programs subject to stable model semantics can express reachability in graphs
implies that also acyclicity is expressible. To this end, we present a translation based on elimination
orderings [22], which are closely related to topological orderings for directed graphs.
1Grounders map choice rules with lower and upper bounds to rules of the form (2) along with constraints of the form (3) at the
propositional level.
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Definition 3.4. Let P be an acyclicity program with an acyclicity extension 〈V, e〉. The translation
TrEL(P, V, e) extends P as follows.

1. For each atom a ∈ At(P ) such that e(a) = 〈v, u〉, the rules:

el(v, u)← not a. (6)

el(v, u)← el(u). (7)

2. For each node v ∈ V such that 〈v, u1〉, . . . , 〈v, uk〉 are the edges in e(At(P )) starting from v:

el(v)← el(v, u1), . . . , el(v, uk). (8)

← not el(v). (9)

Moreover, we define the set of new atoms introduced by the translation as

AtEL(P, V, e) = {el(v, u) | 〈v, u〉 ∈ e(At(P ))} ∪ {el(v) | v ∈ V }.

The intuitive reading of the new atom el(v, u) is that the edge 〈v, u〉 ∈ e(At(P )) has been elimi-
nated, meaning that it cannot belong to any cycle. Analogously, the atom el(v) denotes the elimination
of a node v ∈ V . By the rule (6), an edge 〈v, u〉 is eliminated when the atom a such that e(a) = 〈v, u〉 is
false, while the rule (7) is applicable once the end node u is eliminated. Then, the node v gets eliminated
by the rule (8) if all edges starting from it are eliminated. Finally, the constraint (9) ensures that all nodes
are eliminated. That is, the success of the acyclicity test presumes that el(v, u) or el(v), respectively, is
derivable for each edge 〈v, u〉 ∈ e(At(P )) and each node v ∈ V . The fact that TrEL(P, V, e) \P indeed
implements an acyclicity check for the acyclicity program P is made precise below.

Lemma 3.5. Let P be an acyclicity program with an acyclicity extension 〈V, e〉, I ⊆ At(P ) an inter-
pretation, and L the set of atoms a ∈ I for which e(a) is defined. Then, the graph 〈V, e(I)〉 is acyclic iff
L ∪AtEL(P, V, e) is a stable model of the program (TrEL(P, V, e) \ P ) ∪ {a← | a ∈ L}.

Proof:
Define Q = (TrEL(P, V, e) \ P ) ∪ {a← | a ∈ L} and E = AtEL(P, V, e). It is well-known
that any graph, including 〈V, e(I)〉, is acyclic iff its nodes V can be ordered topologically into a se-
quence v1, . . . , vn such that, for all 1 ≤ i ≤ j ≤ n, 〈vi, vj〉 6∈ e(I).

( =⇒ ) Let the graph 〈V, e(I)〉 be acyclic and v1, . . . , vn be some topological ordering of V . Observe
that the interpretation L ∪ E clearly satisfies all rules of the forms (6) to (9). Now consider the least
model N = LM(QL∪E). Certainly, L ⊆ N and N ⊆ head(Q) = L ∪ E. We prove by induction that
also E ⊆ N . Consider each atom vi in the ordering v1, . . . , vn and the induction hypothesis (IH) that
{el(v1), . . . , el(vi−1)} ⊆ N . The atom el(vi) is defined in QL∪E by a single positive rule r of the
form (8) with head(r) = el(vi). Let us take any el(vi, vj) ∈ B(r)+ and consider the two cases j < i
and j ≥ i. If j < i, by IH, el(vj) ∈ N , and since N satisfies all of the rules (7), el(vi, vj) ∈ N . If
j ≥ i, the topological ordering gives 〈vi, vj〉 6∈ e(I), and correspondingly for a such that e(a) = 〈vi, vj〉,
we obtain a 6∈ L. Then, a rule (6) in Q turns into the fact el(vi, vj) in the reduct QL∪E satisfied by N ,
yielding el(vi, vj) ∈ N . Thus, in either case, el(vi, vj) ∈ N . Hence, N |= B(r) and el(vi) ∈ N . As
the argument applies to all v1, . . . , vn, we have that {el(v) | v ∈ V } ⊆ N . In view of the consequent
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satisfaction of the bodies of rules (7), also {el(v, u) | 〈v, u〉 ∈ e(At(P ))} ⊆ N . This completes the
proof of E ⊆ N , and therefore also that of L ∪ E = N = LM(QL∪E). As noted before, L ∪ E |= Q,
and hence L ∪ E is a stable model of Q.

(⇐= ) Let N = L∪E be a stable model of Q. Since N is the least model of QN , each a ∈ N has a
unique index i ≥ 1 such that a ∈ (TQN ↑ i)\ (TQN ↑ i−1). These indices yield a partial strict ordering
of N with the property that, in any compatible total ordering <N of N , each atom a ∈ N is derivable by
at least one rule r ∈ DefQ(a)

N such that

{b ∈ B(r)+ | b <N head(r)} |= B(r). (10)

Take any edge 〈v, u〉 ∈ e(I) associated with an atom a ∈ L such that e(a) = 〈v, u〉. The atom el(v, u) is
derivable by at least one rule r ∈ DefQ(el(v, u))

N such that (10) holds, which can only be of one of two
forms. Either the rule is el(v, u) ←, which has been reduced from a rule of the form (6) containing the
negative body atom a. Since this leads to the contradiction a 6∈ L, the rule must be el(v, u)← el(u), as
in (7), in which case (10) implies that el(u) <N el(v, u). On the other hand, the atom el(v) is derivable
only by a rule of the form el(v) ← el(v, u1), . . . , el(v, uk), as in (8), such that u ∈ {u1, . . . , uk}.
Hence, (10) implies that el(v, u) <N el(v). These observations cover all edges 〈v, u〉 ∈ e(I), so that
el(u) <N el(v) holds. That is, an ordering by <N of the nodes in 〈V, e(I)〉 is topological, and therefore
the graph is acyclic. ut

Theorem 3.6. Let P be an acyclicity program with an acyclicity extension 〈V, e〉, and TrEL(P, V, e) its
translation into an ordinary logic program.

1. If M is a stable model of P subject to 〈V, e〉, then the interpretation N = M ∪ AtEL(P, V, e) is a
stable model of TrEL(P, V, e).

2. If N is a stable model of TrEL(P, V, e), then N \ At(P ) = AtEL(P, V, e) and the projection
M = N ∩At(P ) is a stable model of P subject to 〈V, e〉.

Proof:
The proof is based on the equivalence of the following conditions:

1. M is a stable model of P subject to 〈V, e〉.

2. M is a stable model of P and the graph 〈V, e(M)〉 is acyclic.

3. M is a stable model of P and L∪AtEL(P, V, e) is a stable model of the program (TrEL(P, V, e) \
P ) ∪ {a← | a ∈ L}, where L is the set of atoms a ∈M for which e(a) is defined.

4. M ∪AtEL(P, V, e) is a stable model of TrEL(P, V, e).

The first two conditions are equivalent by Definition 3.2. The second and third item are equivalent by
Lemma 3.5. The last two conditions can be proven equivalent via Proposition 2.3. Indeed, take the
program P for the bottom B, TrEL(P, V, e) \ P for the top T , the interpretation M ∪ AtEL(P, V, e) for
the interpretation I in the proposition, the interpretation M for IB , and L ∪AtEL(P, V, e) for IT . ut

Example 3.7. We will use the following program P as running example for illustrating translations:
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r1: p← q. r3: q ← p. r5: s← p. r7: t← p. r9: x← not y.

r2: p← s, t. r4: {q} ← y. r6: {s} ← y. r8: {t} ← y. r10: y ← not x.

Taken as ordinary logic program, P admits five stable models: {x}, {y}, {s, y}, {t, y}, and {p, q, s, t, y}.
Let us now augment P with an acyclicity extension 〈V, e〉 such that V = {p, q, s, t} and e is the mapping
to edges given by e(p) = 〈q, p〉, e(q) = 〈p, q〉, e(s) = 〈p, s〉, and e(t) = 〈p, t〉. (That is, the nodes and
edges form a subgraph of the positive dependency graph of P .) Then, {p, q, s, t, y} is no longer a stable
model of the resulting acyclicity program because it induces the graph 〈V, {〈q, p〉, 〈p, q〉, 〈p, s〉, 〈p, t〉}〉,
which contains a cycle between the nodes p and q. The acyclicity condition on 〈V, e〉 can also be ex-
pressed in terms of the ordinary program TrEL(P, V, e), extending P by rules of the forms (6)–(9):

el(q, p)← not p. el(p, q)← not q. el(p, s)← not s. el(p, t)← not t.

el(q, p)← el(p). el(p, q)← el(q). el(p, s)← el(s). el(p, t)← el(t).

el(p)← el(p, q), el(p, s), el(p, t). el(q)← el(q, p). el(s). el(t).

← not el(p). ← not el(q). ← not el(s). ← not el(t).

As stated in Theorem 3.6, TrEL(P, V, e) captures the stable models M of P subject to 〈V, e〉, i.e.,
{x}, {y}, {s, y}, and {t, y}, in terms of corresponding stable models M ∪ AtEL(P, V, e), where
AtEL(P, V, e) = {el(q, p), el(p, q), el(p, s), el(p, t), el(p), el(q), el(s), el(t)}. That is, each of the
four stable models of TrEL(P, V, e) includes all atoms of the form el(v, u) or el(v) introduced in the
above program part TrEL(P, V, e) \ P . Moreover, note that {p, q, s, t, y} ∪AtEL(P, V, e) is not a stable
model of TrEL(P, V, e) because there are no well-supporting rules (with respect to the interpretation at
hand) to derive the atoms el(q, p), el(p, q), el(p), and el(q). In general, TrEL(P, V, e) reflects a cycle
in the graph 〈V, e(M)〉 by lack of well-support under M ∪ AtEL(P, V, e) for atoms el(v, u) and el(v)
corresponding to the edges or nodes, respectively, on the cycle. �

Transformations in the other direction are of interest as well, i.e., the goal is to capture stable mod-
els by exploiting the acyclicity constraint. While the existing translation from ASP into SAT modulo
acyclicity [12] provides a starting point for such a transformation, the target syntax is here given by
rules, including weight rules of the form (3), rather than clauses only.

Definition 3.8. Let P be a weight constraint program. The acyclicity translation of P con-
sists of TrACYC(P ) =

⋃
a∈At(P )TrACYC(P, a) with an acyclicity extension 〈At(P ), e〉 such that

e(dep(a, b)) = 〈a, b〉 for each edge 〈a, b〉 ∈ DG+(P ), where TrACYC(P, a) extends DefP (a) for each
atom a ∈ At(P ) as follows.

1. For each edge 〈a, b〉 ∈ DG+(P ), the choice rule:

{dep(a, b)} ← b. (11)

2. For each defining rule r ∈ DefP (a) of the form (1) or (2), the rule:

ws(r)← dep(a, b1), . . . , dep(a, bn), not c1, . . . , not cm. (12)
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3. For each defining rule r ∈ DefP (a) of the form (3), the rule:

ws(r)← k ≤ [dep(a, b1) = w1, . . . , dep(a, bn) = wn,

not c1 = wn+1, . . . , not cm = wn+m]. (13)

4. For DefP (a) = {r1, . . . , rk}, the constraint:

← a, not ws(r1), . . . , not ws(rk). (14)

The rules (12) and (13) specify when a defining rule r provides well-support for the head atom a,
i.e., the dependency of a on B(r)+ = {b1, . . . , bn} is non-circular. The constraint (14) expresses that
a ∈ At(P ) must have a well-supporting rule r ∈ DefP (a) whenever a is true. To this end, respective
dependencies have to be established in terms of choice rules (11). The enforcement of well-support
connects the supported models of the translation, subject to acyclicity, to stable models of the original
program. As is the case with sets of well-supporting rules, in general, the sets of rules captured by the
ws(·) predicate are not necessarily unique for a given stable model. Moreover, the translation aims espe-
cially at sets of well-supporting rules that are compatible with the following constructive characterization
based on the TP operator.

Given a stable model M of a program P , there is a unique strong level ranking [23, 24] of M for P
that maps atoms a ∈ M to indices i ≥ 1 such that a ∈ (TPM ↑ i) \ (TPM ↑ i − 1). For any
a ∈ At(P ) and a set D ⊆ M of atoms, let WSMP (a,D) = {r ∈ DefP (a) | M |= B(r), D |= B(r)M}
denote the set of rules that can be used to derive a, while positively depending on atoms in D only. Then,
minimal (in terms of subset inclusion) choices of D sufficient to derive a according to its level rank can
be characterized as follows.

Definition 3.9. Let M be a stable model of a program P , and a ∈M an atom mapped to index i ≥ 1 in
the strong level ranking of M for P . A TPM -induced set of positive dependencies of a is a minimal set
D ⊆ TPM ↑ i − 1 of atoms such that WSMP (a,D) 6= ∅. Moreover, the set of all TPM -induced sets of
positive dependencies of a is denoted by DM

P (a).

Note that, for every atom a in a stable model M of P , we have that DM
P (a) 6= ∅. Given some choice

of Da ∈ DM
P (a) for each a ∈M , the entire model M is well-supported by R =

⋃
a∈M WSMP (a,Da). In

fact, the well-support provided by R is witnessed by any ordering r1, . . . , rn of R such that the level ranks
of respective head atoms are monotonically increasing. Regarding the acyclicity translation TrACYC(P ),
the set R ∪

⋃
a∈At(P )WSMP (a, ∅) of rules allows for expressing the stability of M in terms of the ws(·)

predicate, where
⋃

a∈At(P )WSMP (a, ∅) accounts for applicable choice rules whose head atoms need not
be included in M . We will make use of such sets of rules to show the correctness of TrACYC(P ) below.

Example 3.10. Consider the following weight constraint program P :

{a}. b← a. c← a.

d← b, not e. d← 1 ≤ [b = 1, e = 1]. d← c.

Let us verify that M = {a, b, c, d} is a stable model of P by computing LM(PM ) via TPM . The
respective TPM -induced sets of positive dependencies and corresponding well-supporting rules are:
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i TPM ↑ i DM
P (·) WSMP (·, ·)

0 ∅
1 {a} DM

P (a) = {∅} WSMP (a, ∅) = {{a}}
2 {a, b, c} DM

P (b) = {{a}} WSMP (b, {a}) = {b← a}
DM

P (c) = {{a}} WSMP (c, {a}) = {c← a}
3 {a, b, c, d} DM

P (d) = {{b}, {c}} WSMP (d, {b}) = {d← b, not e;

d← 1 ≤ [b = 1, e = 1]}
WSMP (d, {c}) = {d← c}

That is, the positive dependencies given by TPM -induced sets of a, b, and c are unique, and likewise the
respective sets of well-supporting rules. The atom d has two TPM -induced sets, {b} and {c}, leading to
two alternative sets of well-supporting rules. In particular, WSMP (d, {b}) consists of two rules that are
both applicable based on the dependency to b. �

Theorem 3.11. Let P be a weight constraint program, and TrACYC(P ) its translation into an acyclicity
program with an acyclicity extension 〈At(P ), e〉.

1. If M is a stable model of P and, for each a ∈ M , some Da ∈ DM
P (a) is fixed, then TrACYC(P )

subject to 〈At(P ), e〉 has the supported model

N = M ∪ {ws(r) | a ∈ At(P ), r ∈WSMP (a, ∅)}
∪ {ws(r) | a ∈M, r ∈WSMP (a,Da)}
∪ {dep(a, b) | a ∈M, b ∈ Da}.

2. If N is a supported model of TrACYC(P ) subject to 〈At(P ), e〉, then M = N ∩At(P ) is a stable
model of P that is well-supported by R = {r | ws(r) ∈ N, head(r) ∈M}.

Proof:
(1.) Let M be a stable model of P and N the interpretation defined as above. Since M = N ∩ At(P )
is a stable model of P ⊆ TrACYC(P ), N satisfies P and M is supported by P . To show that N is a
supported model of TrACYC(P ), we continue by further verifying that N satisfies TrACYC(P ) \ P and
N \M is supported by TrACYC(P ) \ P . Then, we prove that 〈At(P ), e(N)〉 is acyclic.

For satisfaction, consider atoms a ∈ At(P ) defined by rules r ∈ DefP (a) involved in the heads
ws(r) of rules r′ of the form (12) or (13). Let D = {b | dep(a, b) ∈ N} and D′ = {dep(a, b) | b ∈ D},
and assume that N |= B(r′). Due to the form of r′, this implies that M |= B(r), D′ |= B(r′)M , and
D |= B(r)M . Given that D 6= ∅ yields a ∈ M and D = Da by the definition of N , we have that
r ∈ WSMP (a,D). This shows that ws(r) ∈ N and N |= r′. Moreover, for each atom a ∈ M , the
constraint r′ of the form (14) is satisfied because the stability of M guarantees the existence of some rule
r ∈WSMP (a,Da), so that ws(r) ∈ N ∩ B(r′)−.

Regarding support, each atom of the form dep(a, b) ∈ N is supported by a rule of the form (11)
because Da ⊆ M . For any atom of the form ws(r), assume that ws(r) ∈ N . This is only possible if
r ∈WSMP (a,D), where a ∈ At(P ) and D = ∅ or a ∈ M and D = Da. In both cases, M |= B(r) and
D |= B(r)M , which yields {dep(a, b) | b ∈ D} |= B(r′)N , N |= B(r′)N , and N |= B(r′).
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The stability of M yields level ranks for all atoms in M . Moreover, any ordering a1, . . . , an of M
in which the level ranks are monotonically increasing is topological in the following way: for each
1 ≤ i ≤ n, dep(ai, aj) ∈ N implies aj ∈ {a1, . . . , ai−1}, so that j < i for all 〈ai, aj〉 ∈ e(N).
Consequently, the graph 〈At(P ), e(N)〉 is acyclic.
(2.) Let N be a supported model of TrACYC(P ) subject to 〈At(P ), e〉. Consider M = N ∩ At(P )
and R = {r | ws(r) ∈ N, head(r) ∈M}. We show that M |= P , R ⊆ SRP (M), head(R) = M , and
construct an ordering of R to prove that M is well-supported by R.

The facts that N |= TrACYC(P ), P ⊆ TrACYC(P ), and M = N ∩At(P ) imply that M |= P .
To see that R ⊆ SRP (M), take any r ∈ R and its unique counterpart r′ ∈ TrACYC(P ) of the form

(12) or (13) with head(r′) = ws(r). Given that N is a supported model of TrACYC(P ), in which ws(r)
is defined by r′ alone, and since each atom of the form dep(a, b) is likewise defined by a single rule
{dep(a, b)} ← b, we have that N |= B(r′) and {b | dep(a, b) ∈ N} ⊆M . This implies that M |= B(r)
and r ∈ SRP (M).

For any atom a ∈ M , the satisfaction of a rule of the form (14) by N implies that ws(r) ∈ N for
some r ∈ DefP (a). Thus, we have that r ∈ R and a ∈ head(R), which in turn yields head(R) = M .

Since the graph 〈At(P ), e(N)〉 is acyclic, the atoms in At(P ) have a topological ordering a1, . . . , an
such that j < i for any dep(ai, aj) ∈ N . Therefore, the rules in R have an ordering r1, . . . , rm in which
{b | dep(head(ri), b) ∈ N} ⊆ {head(rj) | j < i} for any 1 ≤ i ≤ m. That is, {dep(head(ri), b) ∈ N |
b ∈ head({r1, . . . , ri−1})} |= B(r′i)

M for the unique rule r′i ∈ TrACYC(P ) such that head(r′i) = ws(ri).
This implies that head({r1, . . . , ri−1}) |= B(ri)

M , so that M is well-supported by R. ut

It is well-known that supported and stable models coincide for tight logic programs [25, 26]. The
following theorem shows that translations produced by TrACYC possess an analogous property subject to
the acyclicity extension 〈At(P ), e〉. This opens up an interesting avenue for investigating the efficiency
of stable model computation—using either unfounded set checking, the acyclicity constraint, or both.

Proposition 3.12. Let P be a weight constraint program, TrACYC(P ) its translation into an acyclicity
program with an acyclicity extension 〈At(P ), e〉, and M ⊆ At(TrACYC(P )) an interpretation. Then, M
is a supported model of TrACYC(P ) subject to 〈At(P ), e〉 iff M is a stable model of TrACYC(P ) subject
to 〈At(P ), e〉.

Proof:
Suppose that M is subject to the acyclicity extension 〈At(P ), e〉, i.e., 〈At(P ), e(M)〉 is acyclic.

( =⇒ ) Let M be a supported model of TrACYC(P ). Since M is subject to 〈At(P ), e〉, by the
second item of Theorem 3.11, we have that MB = M ∩ At(P ) is a stable model of P . For MT =
M ∩At(TrACYC(P ) \ P ) and the set F = {a← | a ∈MB ∩MT } of facts, Proposition 2.3 yields that
MT is a supported model of (TrACYC(P ) \ P ) ∪ F . Since TrACYC(P ) \ P is tight, MT is also a stable
model of (TrACYC(P ) \P )∪F . By Proposition 2.3, it follows that M is a stable model of TrACYC(P ).

(⇐= ) The stability of M with respect to TrACYC(P ) implies that M is a supported model too. ut

Example 3.13. The acyclicity translation TrACYC(P ) extends P from Example 3.7 by the following
rules of the forms (11)–(14):



12 J. Bomanson, M. Gebser, T. Janhunen, B. Kaufmann, T. Schaub / Answer Set Programming modulo Acyclicity

{dep(p, q)} ← q. {dep(p, s)} ← s. {dep(p, t)} ← t. {dep(q, y)} ← y.

{dep(q, p)} ← p. {dep(s, p)} ← p. {dep(t, p)} ← p. {dep(s, y)} ← y.

{dep(t, y)} ← y.

ws(r1)← dep(p, q). ws(r2)← dep(p, s), dep(p, t). ← p, not ws(r1), not ws(r2).

ws(r3)← dep(q, p). ws(r4)← dep(q, y). ← q, not ws(r3), not ws(r4).

ws(r5)← dep(s, p). ws(r6)← dep(s, y). ← s, not ws(r5), not ws(r6).

ws(r7)← dep(t, p). ws(r8)← dep(t, y). ← t, not ws(r7), not ws(r8).

ws(r9)← not y. ← x, not ws(r9).

ws(r10)← not x. ← y, not ws(r10).

Along with the acyclicity extension 〈At(P ), e〉 such that e(dep(a, b)) = 〈a, b〉 for all 〈a, b〉 ∈ DG+(P ),
the additional rules in TrACYC(P ) \ P encode well-supports for At(P ) = {p, q, s, t, x, y}. To this end,
rules (12), with heads of the form ws(r) for r ∈ P , rely on dep(head(r), b) for all positive body atoms
b ∈ B(r)+. (A sufficient amount of such atoms is required to establish the bound k in the counterpart
(13) of a weight rule; such conditions will be discussed in Example 3.17 below.) By mapping these
prerequisites to edges, the acyclicity constraint enforces the conditions of well-supporting rules. To
illustrate this idea further, let us inspect the sets of edges related to particular interpretations M ⊆ At(P ):

1. Considering the stable model {x} of P , the choice rules for dep(a, b) atoms are inapplicable, while
ws(r9) holds because y is false. Hence, the only stable model of TrACYC(P ) subject to 〈At(P ), e〉
that corresponds to {x} is {x} ∪ {ws(r9)}, inducing the graph 〈At(P ), ∅〉.

2. The evidently analogous stable model {y} of P is captured by the stable model {y} ∪ {ws(r10)}
of TrACYC(P ) subject to 〈At(P ), e〉. However, the prerequisites of choice rules for dep(q, y),
dep(s, y), and dep(t, y) hold in this case, and adding edges associated with these atoms to the
graph 〈At(P ), ∅〉 does not lead to any cycle. Thus, any combination of dep(q, y), dep(s, y), and
dep(t, y) along with respective atoms among ws(r4), ws(r6), and ws(r8) derived in turn yields
an alternative representation of {y}, where {y}∪ {dep(q, y), dep(s, y), dep(t, y), ws(r4), ws(r6),
ws(r8), ws(r10)} constitutes the maximum of the available options. In total, we obtain eight stable
models N of TrACYC(P ) subject to 〈At(P ), e〉 such that N ∩At(P ) = {y}.

3. A similar situation as with {y} above applies to the stable model {s, y} of P . Here, {s, y} must
be augmented with {dep(s, y), ws(r6), ws(r10)} for expressing well-support, while any combi-
nation of dep(p, s), dep(q, y), and dep(t, y), the latter two accompanied by ws(r4) or ws(r8),
respectively, does not yield a cycle when it is included in addition. Hence, we again obtain eight
stable models N of TrACYC(P ) subject to 〈At(P ), e〉 that represent N ∩ At(P ) = {s, y}, where
{s, y}∪{dep(s, y), ws(r6), ws(r10)} ⊆ N ⊆ {s, y}∪{dep(p, s), dep(q, y), dep(s, y), dep(t, y),
ws(r4), ws(r6), ws(r8), ws(r10)}.

4. The case of the stable model {t, y} of P is analogous to the previous one, yet with dep(t, y) and
ws(r8) playing the roles of dep(s, y) and ws(r6), and vice versa. That is, there are also eight stable
models N of TrACYC(P ) subject to 〈At(P ), e〉 such that N ∩At(P ) = {t, y}.

5. For the final stable model {p, q, s, t, y} of P , there are even further ways to reflect its well-supports
in terms of atoms dep(p, q), dep(p, s), dep(p, t), dep(q, p), dep(s, p), dep(t, p), dep(q, y),
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dep(s, y), and dep(t, y) associated with edges, accompanied by respective derived atoms ws(r)
for r ∈ P \ {r9}. Legal combinations include dep(p, q) or both dep(p, s) and dep(p, t) to
witness well-support for p via r1 or r2. Moreover, to avoid cycles, dep(p, q) and dep(q, p),
dep(p, s) and dep(s, p), as well as dep(p, t) and dep(t, p) must remain mutually exclusive, so
that dep(q, y) or, alternatively, dep(s, y) and dep(t, y) are needed to express initial well-support
via r4 or both r6 and r8. Without going into further details, one can check that there are 19 stable
models N of TrACYC(P ) subject to 〈At(P ), e〉 for which 〈At(P ), e(N)〉 remains acyclic, while
{head(r) | ws(r) ∈ N} = {p, q, s, t, y} holds for each such N .

In total, the five stable models of P give rise to 44 stable models of its acyclicity translation TrACYC(P )
subject to 〈At(P ), e〉, obtained by selecting different atoms dep(a, b) to express that 〈a, b〉 ∈ DG+(P )
can be utilized within well-supporting rules. Due to the acyclicity constraint on corresponding sub-
graphs of DG+(P ), stable models coincide with supported models of TrACYC(P ) subject to 〈At(P ), e〉,
as stated in Proposition 3.12. Notably, the acyclicity requirement is crucial for this correspondence,
and supported models not matching stable models could be obtained otherwise. For instance, supported
models augmenting {p, q, s, t, x} with dep(q, p), dep(s, p), and dep(t, p) as well as dep(p, q) or both
dep(p, s) and dep(p, t) become eligible when dropping the acyclicity extension 〈At(P ), e〉, where in-
herent cycles reflect that {p, q, s, t, x} is not a stable model of P . �

As witnessed by Theorem 3.11 and Proposition 3.12, the translation TrACYC provides means to
capture stability in terms of the acyclicity constraint. However, the computational efficiency of the
translation can be improved when additional constraints governing dep(a, b) atoms are introduced. The
purpose of these constraints is to falsify dependencies in settings where they are not truly needed. We
first concentrate on choice programs and will then extend the consideration to weight rules below. The
following definition adopts the cases from [12] but reformulates them in terms of rules rather than clauses.

Definition 3.14. Let P be a choice program. The strong acyclicity translation of P , denoted by
TrACYC+(P ), extends TrACYC(P ) as follows.

1. For each 〈a, b〉 ∈ DG+(P ), the constraint:

← dep(a, b), not a. (15)

2. For each 〈a, b〉 ∈ DG+(P ) and r ∈ DefP (a) such that b /∈ B(r)+, the constraint:

← dep(a, b), ws(r). (16)

Intuitively, dependencies from a in (15) are not needed if a is false. Similarly, a particular depen-
dency in (16) may safely be omitted if the well-support for a is provided by a rule r not involving this
dependency. That is, the constraints introduced in Definition 3.14 suppress dependencies only if they are
not needed to establish well-support for a particular stable model.

Example 3.15. The strong acyclicity translation TrACYC+(P ) of P from Example 3.7 augments
TrACYC(P ), which adds the rules given in Example 3.13 to P , with the following constraints:
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← dep(p, q), not p. ← dep(q, p), not q. ← dep(s, p), not s. ← dep(t, p), not t.

← dep(p, s), not p. ← dep(q, y), not q. ← dep(s, y), not s. ← dep(t, y), not t.

← dep(p, t), not p.

← dep(p, q), ws(r2). ← dep(q, p), ws(r4). ← dep(s, p), ws(r6). ← dep(t, p), ws(r8).

← dep(p, s), ws(r1). ← dep(q, y), ws(r3). ← dep(s, y), ws(r5). ← dep(t, y), ws(r7).

← dep(p, t), ws(r1).

The addition of these constraints to TrACYC(P ) reduces the number of stable as well as supported models
subject to 〈At(P ), e〉, corresponding to the five stable models of P , from 44 to 10. In particular, addi-
tional models extending the minimal options {y} ∪ {ws(r10)}, {s, y} ∪ {dep(s, y), ws(r6), ws(r10)},
and {t, y} ∪ {dep(t, y), ws(r8), ws(r10)}, described in Items 2–4 of Example 3.13, are eliminated by
constraints of the form (15), requiring atoms a ∈ At(P ) such that dep(a, b) is included in a model to
be true as well. Beyond that, constraints of the form (16) suppress redundant edges for which some
rule is identified as well-supporting without them. This eliminates options, mentioned in Item 5 of Ex-
ample 3.13, such that both dep(p, q) and dep(p, s) or dep(p, t), dep(q, p) and dep(q, y), dep(s, p) and
dep(s, y), or dep(t, p) and dep(t, y) hold in a model. The remaining alternatives to express well-support
for {p, q, s, t, y} distinguish whether r1 or r2 is used for well-supporting the atom p. Moreover, r5 and r6
as well as r7 and r8 provide mutually exclusive ways to derive s or t, respectively, when dep(p, q) in-
dicates well-support for p via r1, while r3 and r4 offer two distinct derivations of q when dep(p, s) and
dep(p, t) yield that r2 is used to derive p. �

We now extend the strong acyclicity translation to weight rules by including additional subprograms.

Definition 3.16. Let P be a weight constraint program, and r ∈ P a weight rule of the form (3) such
that head(r) = a, |{b1, . . . , bn}| = n, and the weights w1, . . . , wn are ordered according to wi−1 ≤ wi

for each 1 < i ≤ n. The strong acyclicity translation TrACYC+(P ) of P is fortified as follows.

1. For 1 < i ≤ n, the rules:

nxt(r, i)← dep(a, bi−1). (17)

nxt(r, i+ 1)← nxt(r, i), i < n. (18)

chk(r, i)← nxt(r, i), dep(a, bi). (19)

2. The weight rule:

red(r)← k ≤ [chk(r, 2) = w2, . . . , chk(r, n) = wn,

not c1 = wn+1, . . . , not cm = wn+m]. (20)

3. For each b ∈ B(r)+, the constraint:

← dep(a, b), red(r). (21)

The idea is to cancel dependencies 〈a, b〉 ∈ DG+(P ) by the constraint (21) when the well-support
obtained through r can be deemed redundant by the rule (20). To this end, the rules of the forms (17) and
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(18) identify an atom bi among b1, . . . , bn of smallest weight having an active dependency from a, i.e.,
dep(a, bi) is true, provided that such an i exists. By the rules of the form (19), any further dependencies
from a to bi+1, . . . , bn are determined, and the rule (20) checks whether the weights associated with the
positive literals bi+1, . . . , bn having an active dependency from a, together with the weights of satisfied
negative literals, are sufficient to reach the bound k. If so, all dependencies from a to B(r)+ are viewed
as redundant and denied by the constraint (21). In particular, note that this check covers cases where,
e.g., negative literals suffice to satisfy the body of a weight rule and positive dependencies play no role.

Example 3.17. The program P from Example 3.7 and TrACYC(P ) given in Example 3.13 can be mod-
ified to yield equivalent weight constraint programs. To this end, assume that the rules with heads p (i.e.,
r1 and r2), ws(r1), and ws(r2) as well as the integrity constraint including p are replaced by:

r0: p← 2 ≤ [s = 1, t = 1, q = 2].

ws(r0)← 2 ≤ [dep(p, s) = 1, dep(p, t) = 1, dep(p, q) = 2].

← p, not ws(r0).

This translation TrACYC(P ) still yields 44 stable as well as supported models subject to 〈At(P ), e〉, rep-
resenting the five stable models of the modified program P . Its strong version TrACYC+(P ) is obtained
by replacing integrity constraints, given in Example 3.15, that mention either ws(r1) or ws(r2) by:

nxt(r0, 2)← dep(p, s). chk(r0, 2)← nxt(r0, 2), dep(p, t).

nxt(r0, 3)← dep(p, t). nxt(r0, 3)← nxt(r0, 2). chk(r0, 3)← nxt(r0, 3), dep(p, q).

red(r0)← 2 ≤ [chk(r0, 2) = 1, chk(r0, 3) = 2].

← dep(p, s), red(r0). ← dep(p, t), red(r0). ← dep(p, q), red(r0).

As in Example 3.15, the addition of such rules to TrACYC(P ) reduces the number of stable as well as
supported models to 10. In particular, redundant models of TrACYC(P ) subject to 〈At(P ), e〉 based on
dep(p, q) along with dep(p, s) or dep(p, t) yield red(r0) via the rule of form (20), so that these atoms
are in turn denied by constraints of the form (21). Hence, well-supports for p relying on dep(p, q) or
both dep(p, s) and dep(p, t) remain mutually exclusive, while selections between r3 and r4, r5 and r6,
or r7 and r8 to provide well-support for the atoms q, s, and t reproduce the six alternatives sketched in
Example 3.15 to represent the stable model {p, q, s, t, y} of P . �

The following result extends Theorem 3.11 to the strong acyclicity translation TrACYC+.

Theorem 3.18. Let P be a weight constraint program, TrACYC+(P ) its strong acyclicity translation
with an acyclicity extension 〈At(P ), e〉, and assume that each weight rule r ∈ P of the form (3) is such
that |{b1, . . . , bn}| = n, i.e., the atoms of positive weighted literals in the body of r are distinct.

1. If M is a stable model of P and, for each a ∈M , some Da ∈ DM
P (a) is fixed, then TrACYC+(P )

subject to 〈At(P ), e〉 has a supported model N such that

N ∩At(TrACYC(P )) = M ∪ {ws(r) | a ∈ At(P ), r ∈WSMP (a, ∅)}
∪ {ws(r) | a ∈M, r ∈WSMP (a,Da)}
∪ {dep(a, b) | a ∈M, b ∈ Da}.
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2. If N is a supported model of TrACYC+(P ) subject to 〈At(P ), e〉, then M = N ∩At(P ) is a stable
model of P that is well-supported by R = {r | ws(r) ∈ N, head(r) ∈M}.

Proof:
(1.) Suppose that M is a stable model of P . By Theorem 3.11, N ∩ At(TrACYC(P )) is a supported
model of TrACYC(P ) subject to 〈At(P ), e〉. We will consider instances of the constraints (15), (16), and
(21) and show by contradiction that each of them is satisfied by a supported model N of TrACYC(P )
augmented with rules of the forms (17), (18), (19), and (20) in TrACYC+(P ).

First, observe that, if a constraint of the form (15) is not satisfied, then dep(a, b) ∈ N and a 6∈ M .
However, the definition of N guarantees that a ∈M if dep(a, b) ∈ N , a contradiction.

Next, let us assume that an instance of (16) is not satisfied by N . Such a constraint concerns a
rule r ∈ DefP (a) such that b 6∈ B(r)+. By the assumption, ws(r) ∈ N , and the definition of N
implies that a ∈ M , b ∈ Da, and r ∈ WSMP (a,Da). Since Da |= B(r)M and b 6∈ B(r)+, however,
Da \ {b} |= B(r)M , a contradiction to the minimality of Da.

Finally, assume that an instance of (21) is not satisfied by any extension of N ∩ At(TrACYC(P )) to
a supported model N of TrACYC(P ) augmented with rules of the forms (17), (18), (19), and (20). The
constraint concerns a weight rule r of the form (3) such that head(r) = a, |{b1, . . . , bn}| = n, and the
weights w1, . . . , wn are ordered according to wi−1 ≤ wi for each 1 < i ≤ n. Given the definition of
nxt(·, ·) by rules of the forms (17) and (18), by induction on 1 < i ≤ n, it follows that nxt(r, i) ∈ N is
required only if there is some j < i for which dep(a, bj) ∈ N , and the same applies to chk(r, i) defined
by rules of the form (19), provided that dep(a, bi) ∈ N . Now, let r′ denote the defining weight rule of
red(r) of the form (20). By the assumption that the constraint in question of the form (21) is not satisfied
by N , we have that N |= B(r′)M and Da \ {bj | j = min{i | bi ∈ Da}} |= B(r)M . Thus, again the
support for a could be obtained via r by a smaller set than Da, a contradiction to the minimality of Da.

We have thus established that there is a supported model N of TrACYC+(P ) subject to 〈At(P ), e〉
such that N ∩At(TrACYC(P )) is a supported model of TrACYC(P ) subject to 〈At(P ), e〉.
(2.) Let N be a supported model of TrACYC+(P ) subject to 〈At(P ), e〉. Since TrACYC+(P ) only ex-
tends TrACYC(P ) by further constraints (15), (16), and (21) and (non-recursive) definitions of new atoms
by rules of the forms (17), (18), (19), and (20), we have that N ∩At(TrACYC(P )) is a supported model
of TrACYC(P ) subject to 〈At(P ), e〉. Theorem 3.11 thus yields that M = N ∩At(P ) is well-supported
by R = {r | ws(r) ∈ N, head(r) ∈M} = {r | ws(r) ∈ N ∩At(TrACYC(P )), head(r) ∈M}, so that
M is a stable model of P . ut

Given that head(TrACYC+(P ) \ TrACYC(P )) ∩ At(TrACYC(P )) = ∅ along with the fact that the
subprogram TrACYC+(P ) \ TrACYC(P ) is tight, the splitting set theorem yields a direct extension of
Proposition 3.12 to TrACYC+.

Corollary 3.19. Let P be a weight constraint program, TrACYC+(P ) its strong acyclicity translation
with an acyclicity extension 〈At(P ), e〉, and M ⊆ At(TrACYC+(P )) an interpretation. Then, M is a
supported model of TrACYC+(P ) subject to 〈At(P ), e〉 iff M is a stable model of TrACYC+(P ) subject
to 〈At(P ), e〉.

The translations TrACYC and TrACYC+ can be adjusted to take SCCs into account and, in practice,
their component-aware versions are implemented. Definitions 3.8, 3.14, and 3.16 require the following
revisions to incorporate SCCs. Given an atom a ∈ At(P ) and the component SCCP (a), the atoms
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dep(a, bi) in the rules (12) and (13) are replaced by bi if bi /∈ SCCP (a). Moreover, rules of the forms
(11), (15), (16), and (21) are only needed if b ∈ SCCP (a). In Definition 3.16, the condition for ordering
the weight rule is refined such that, for some 0 ≤ j ≤ n, {b1, . . . , bj} ⊆ SCCP (a), {bj+1, . . . , bn} ∩
SCCP (a) = ∅, and wi−1 ≤ wi for each 1 < i ≤ j. Then, the rules (17) and (19) are restricted to 1 <
i ≤ j, and the rule (18) to 1 < i < j. Finally, the atoms chk(r, i) in the rule (20) are replaced by bi for
j < i ≤ n. In view of the module theorem, the relationships among models established in Theorems 3.11
and 3.18, Proposition 3.12, and Corollary 3.19 remain valid for the component-aware versions of TrACYC

and TrACYC+, which restrict dep(a, b) atoms to 〈a, b〉 ∈ DG+(P ) such that SCCP (a) = SCCP (b).

Example 3.20. For P from Example 3.7 and a ∈ {p, q, s, t}, we have that SCCP (a) = {p, q, s, t}.
Hence, the component-aware version of TrACYC+(P ) replaces the atoms dep(q, y), dep(s, y), and
dep(t, y) in the rules defining the heads ws(r4), ws(r6), and ws(r8), given in Example 3.13, by y,
and also drops choice rules for such atoms dep(a, y), so that the corresponding edges no longer con-
tribute to the acyclicity extension 〈At(P ), e〉 determined by e(dep(a, b)) = 〈a, b〉. Moreover, among
the constraints shown in Example 3.15, those mentioning some of the three obsolete dep(a, y) atoms
are simply dropped. Then, all stable as well as supported models extending {p, q, s, t, y} for the
component-aware version of TrACYC+(P ) include ws(r4), ws(r6), and ws(r8), given that dep(q, y),
dep(s, y), and dep(t, y) are not needed as prerequisites anymore. As a consequence, the constraints
← dep(a, p), ws(r) for a ∈ {q, s, t} along with a corresponding rule r ∈ {r4, r6, r8} suppress edges
associated with dep(a, p). Since the latter were still admissible in Example 3.15, the component-aware
translation further reduces the number of stable as well as supported models extending {p, q, s, t, y}
from six to two. The two remaining options differ in whether r1 or r2 is used as well-support for p, as
reflected by the atoms dep(p, q) and ws(r1) or dep(p, s), dep(p, t), and ws(r2), respectively. Similar
cases for dep(p, b) atoms with b ∈ {q, s, t} are obtained when r1 and r2 are replaced by r0 according
to Example 3.17, where both possibilities agree on ws(r0). Either way, along with unique extensions of
{x}, {y}, {s, y}, and {t, y}, the component-aware version of TrACYC+(P ) yields six stable as well as
supported models subject to 〈At(P ), e〉, capturing the five stable models of P given in Example 3.7. �

4. Experiments

Acyclicity programs are implemented in the development version 3.2.0-R47179 of CLASP [17], using
a propagator for acyclicity reasoning similar to the one introduced in the SAT modulo acyclicity solver
ACYCGLUCOSE [10],2 and will be supported from the forthcoming release 3.2.0 on. On the one hand, a
program may define the dedicated predicate edge(v, u) to declare the edges e( edge(v, u)) = 〈v, u〉 in
an associated acyclicity extension. For instance, the rule

edge(v, u)← hc(v, u), v 6= v0, u 6= v0.

specifies the acyclicity extension for the Hamiltonian Cycle encoding consisting of (4) and (5) in Ex-
ample 3.3. On the other hand, the tool LP2ACYC [12] implements TrACYC as well as TrACYC+, and
thus allows for capturing stable models by supported models subject to an acyclicity extension. Hence,

2The maintenance of ACYCMINISAT has been discontinued, as its performance is usually dominated in view of the more recent
base SAT solver of ACYCGLUCOSE.
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Figure 1. Example graph for Hamiltonian Cycle, where solid edges indicate respective atoms assigned to true.

program completion [27], performed by LP2SAT [23], is sufficient to map acyclicity programs (with-
out weight rules) obtained by either translation to SAT modulo acyclicity.3 We make use of this for
comparing CLASP to ACYCGLUCOSE, version R845.4

We consider three benchmark classes, Hamiltonian Cycle, Labyrinth, and Sokoban, with instances
stemming from substantial collections utilized in the literature [28, 29, 30]. These benchmarks involve
crucial reachability conditions, which can be expressed in terms of acyclicity. For Hamiltonian Cycle, we
use a linear number of normal rules, corresponding to (4) and (5) in Example 3.3, for enabling a direct
mapping to SAT modulo acyclicity without requiring an additional normalization step (cf. [31]). Such
direct mappings via completion are also applicable to Labyrinth and Sokoban, two planning problems
in which, at each point in time, some reached location must have a path to another location (the starting
position for pushing a box or some grid tile to explore). In both benchmarks, the reached locations can
be inferred at each time point and, assuming that they are provided by a predicate reached(v), edge
atoms edge(v, u) are traced back to them by means of rules as follows:

succ(u)← edge(v, u).

pred(v)← edge(v, u).

← pred(v), not succ(v), not reached(v).

In view of the acyclicity constraint on the graph induced by true edge(v, u) atoms, which can be picked
via choice rules, the integrity constraint enforces any path to start from a location given by reached(v),
so that reachability is guaranteed and continued progressively over time points.

Along with further problem-specific conditions (for Labyrinth and Sokoban), the encoding parts
described so far yield tight acyclicity programs without weight rules. In order to contrast and combine
acyclicity checking with traditional unfounded set checking (cf. [16]), we further augment the encodings
with a non-tight module implementing acyclicity for the mapping e( edge(v, u)) = 〈v, u〉 in standard
ASP according to Definition 3.4. Given that acyclicity and unfounded set checking can be selectively
(de)activated in CLASP, this allows us to apply either or both kinds of propagation to common inputs.
Moreover, the non-tight ASP module can be processed via the translations TrACYC and TrACYC+ to
obtain acyclicity programs whose completion can be passed to CLASP or ACYCGLUCOSE, thus enabling
comparisons between both the available translations as well as SAT modulo acyclicity solvers.

3The translators are available at: http://research.ics.aalto.fi/software/asp/lp2acyc/
4Binaries and benchmarks are available at: http://www.cs.uni-potsdam.de/clasp/?page=experiments
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On the one hand, the different solving approaches can be classified in terms of the technique used
to deal with unfounded sets, where the options are exclusive and below abbreviated as follows: ‘U’
indicates traditional unfounded set checking; ‘T’ stands for the translation TrACYC; ‘T+’ refers to its
strong version TrACYC+; and ‘ ’ expresses that neither of the former means is applied. In addition, the
strength of acyclicity propagation can be varied: ‘A’ represents plain acyclicity checking, detecting a
conflict whenever the graph given by true atoms associated with edges is cyclic; ‘B’ denotes acyclicity
checking enhanced by “backward” inference of forbidden edges, i.e., potential edges that would close a
cycle are identified in order to falsify the corresponding yet unassigned atoms; and ‘ ’ again means that
acyclicity propagation is not performed at all. Given the options in these two orthogonal dimensions, the
resulting solver variants are summarized in Table 1 and further discussed in the following.

First of all, note that the propagation mechanisms for unfounded sets or acyclicity, respectively, are
indeed complementary. To see this, consider the task of finding a Hamiltonian cycle through the example
graph in Figure 1, whose node 1 serves as initial node through which a cycle is admitted. The situation on
the left visualizes a search state in which atoms associated with the edges 〈1, 2〉 and 〈2, 1〉 are assigned
to true, so that atoms labeling other outgoing or incoming edges of the nodes 1 and 2 are falsified in view
of mutual exclusions. Hence, the subgraph induced by the nodes 3, 4, 5, and 6 is separated from node 1,
and unfounded set checking detects a contradiction to the reachability requirement for these nodes. The
cycle through node 1 is, however, exempt from acyclicity checking, while the inherent necessity of some
cycle among the nodes 3, 4, 5, and 6 follows by a counting argument that is not explored by acyclicity
propagation, so that the search has to keep on guessing edges to successively discard individual cycles.
Turning to the situation on the right, atoms labeling the edges 〈1, 2〉 and 〈5, 3〉 are assigned to true, and
those of respective excluded edges falsified. Since all nodes remain potentially reachable from the initial
node 1, unfounded set checking cannot propagate anything here, while backward inference allows for
identifying forbidden edges, whose associated atoms have to be falsified to avoid cycles. In fact, this
applies to the edge 〈3, 5〉, so that 〈3, 4〉 is left as the only outgoing edge of node 3 that can and must be
on a Hamiltonian cycle. Iterating the falsification of forbidden edges by acyclicity propagation and in
turn deriving necessary edges via basic (unit) propagation eventually yields the only Hamiltonian cycle
including the edges 〈1, 2〉 and 〈5, 3〉: 〈1, 2, 5, 3, 4, 6, 1〉. That is, acyclicity propagation with backward
inference omits (possibly wrong) guesses that are otherwise needed with unfounded set checking only.

The target formalism, ASP or SAT modulo acyclicity, predetermines the applicable combinations of
techniques along with respective solvers. While omitting both unfounded set checking and acyclicity
propagation would be unsound, running CLASP as standard ASP solver constitutes a natural baseline. In
the following, we refer to this solver variant by CLASP[U, ], given that it performs unfounded set check-
ing but no acyclicity propagation. Possible extensions by either of the two kinds of acyclicity propagation
are denoted by CLASP[U,A] and CLASP[U,B], distinguishing whether backward inference is applied or
not. Interestingly, the non-tight module specified in Definition 3.4 yields a non-trivial unfounded set iff
the graph induced by true atoms associated with edges includes a cycle. As a consequence, CLASP[U, ]
and CLASP[U,A] detect exactly the same conflicts. We experimentally verified their identical behavior in
terms of conflicts as well as comparable runtimes, and skip redundant results for CLASP[U,A] below. Un-
like that, backward inference complements unfounded set checking in CLASP[U,B] and yields a strictly
stronger propagation. This also applies to the solver variant CLASP[ ,B] in relation to CLASP[ ,A], both
of which omit unfounded set checking and solve acyclicity programs by means of acyclicity propagation.

Mapping acyclicity programs to SAT modulo acyclicity allows for comparing the solvers CLASP and
ACYCGLUCOSE. For both of them, the underlying translation as well as the kind of acyclicity propagation
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Nothing (‘ ’) Acyclicity (‘A’) Backward (‘B’)

Nothing (‘ ’) — CLASP[ ,A] CLASP[ ,B] A
SP

Unfounded set (‘U’)
CLASP[U, ] (CLASP[U,A]) CLASP[U,B]

WASP[U, ]

TrACYC (‘T’) —
CLASP[T,A] CLASP[T,B]

SA
T

ACYCGLUCOSE[T,A] ACYCGLUCOSE[T,B]

TrACYC+ (‘T+’) —
CLASP[T+,A] CLASP[T+,B]

ACYCGLUCOSE[T+,A] ACYCGLUCOSE[T+,B]

Table 1. Overview of solver variants using different techniques for dealing with unfounded sets (listed verti-
cally) as well as acyclicity conditions (listed horizontally). Missing entries, indicated by ‘—’, refer to unsound
combinations of techniques, for which no experimental results are reported below.

can be picked, yielding four variants per solver, indicated by the suffixes ‘[T,A]’, ‘[T,B]’, ‘[T+,A]’,
and ‘[T+,B]’ below. We used the “trendy” configuration, which is CLASP’s default for SAT (modulo
acyclicity) inputs and likewise applicable to acyclicity programs, for all CLASP variants. For comparison,
we also include the standard ASP solver WASP [32], version 2.0, denoted by WASP[U, ] below, as it
performs unfounded set checking yet no acyclicity propagation. All solvers were run single-threaded on
a cluster of Linux machines equipped with Intel Ten-Core Xeon E5-2680 2.80GHz processors, imposing
a limit of 3,600 seconds (one hour) wall-clock time and 16GB memory limit per run.5

Figures 2–4 plot numbers of solved instances in terms of runtime in seconds as well as conflicts. On
the 58 Hamiltonian Cycle instances in Figure 2, each satisfiable and successfully handled by some of
the considered solver variants, it is apparent that the basic translation TrACYC, applied for SAT modulo
acyclicity solvers indicated by abbreviation ‘T’, leads to increased difficulty. The use of backward in-
ference compensates this to some extent in CLASP[T,B], but it does not help ACYCGLUCOSE[T,B]. In
fact, ACYCGLUCOSE[T,B] suffers from eleven memory outs here, while memory is not an issue for other
solver variants or on other benchmarks. This phenomenon is due to the large size of graphs in some of
the instances (up to about 700,000 potential edges), combinatorics of viable edges under TrACYC, and
implementation differences between CLASP and ACYCGLUCOSE: CLASP performs unit propagation as
soon as backward inference yields some atom that must be false, but ACYCGLUCOSE extensively collects
such atoms and corresponding clauses, which leads to memory pollution with ACYCGLUCOSE[T,B]. The
strong translation TrACYC+, however, results in much more robust performance of solver variants based
on ‘T+’. Regarding the benefits of backward inference, CLASP[T+,B] and ACYCGLUCOSE[T+,B] are
both able to complete all 58 Hamiltonian Cycle instances in time, while CLASP[T+,A] and ACYCGLU-
COSE[T+,A] yield outliers and fail in two cases or one, respectively. A similar observation applies to
the ASP variant CLASP[ ,B] in relation to its counterpart CLASP[ ,A], and CLASP[U,B] tends to require
less solving time than CLASP[U, ], which performs unfounded set checking only. In particular, the con-
flicts in the lower part of Figure 2 exhibit quite consistent search reductions due to backward inference on

5Running also the four other benchmark classes considered in preliminary experiments, reported in the workshop version of
this paper [1], with common ASP modulo acyclicity encodings showed that the performance on these benchmarks is largely
dominated by side constraints or the combinatorics of optimization, respectively, rather than the use of different techniques to
deal with acyclicity conditions.
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Figure 2. Comparison of CLASP and ACYCGLUCOSE on 58 Hamiltonian Cycle instances, varying the use of
unfounded set checking (‘U’), translation TrACYC (‘T’), TrACYC+ (‘T+’), or neither of them (‘ ’), along with
acyclicity checking disabled (‘ ’), enabled (‘A’), or enhanced by backward inference (‘B’).

easy instances, where the number of conflicts stays within a few thousands. For more difficult instances,
the interplay with search heuristics is less straightforward, e.g., the maximum number of conflicts en-
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countered by CLASP[U,B] is greater than with CLASP[U, ]. Likewise, WASP[U, ] performs comparable
to CLASP[U, ] in terms of conflicts, where it has some advantage on easy instances, yet this does not
pay off in runtime, and four instances remain uncompleted by WASP[U, ] within the time limit. More
globally, the proximity between the ASP variants of CLASP and SAT modulo acyclicity solvers based
on ’T+’ shows that avoiding redundant edges via TrACYC+ can constitute an appropriate substitute for
unfounded set checking.

Turning to the results on 60 satisfiable Labyrinth instances displayed in Figure 3, we observe a sub-
stantial gap between the variants of CLASP and ACYCGLUCOSE. In fact, each of the instances is solved
in time by at least one CLASP variant (57 of them when considering the variants based on ‘T’ or ‘T+’),
while the four ACYCGLUCOSE variants taken together succeed on 37 instances only. Regarding the latter,
backward inference turns out to be helpful for ACYCGLUCOSE[T,B] and ACYCGLUCOSE[T+,B] in com-
parison to their respective counterparts ACYCGLUCOSE[T,A] and ACYCGLUCOSE[T+,A]. Somewhat
surprisingly, the use of translation TrACYC with ACYCGLUCOSE[T,B] or its strong version TrACYC+

with ACYCGLUCOSE[T+,B] does not yield any major impact, and both lead to 30 instances solved in
time. This is quite different from CLASP, whose variant CLASP[T+,B] solves 50 instances and thus eight
more than CLASP[T,B]. In fact, CLASP[T,B] solves the fewest instances in time among all CLASP vari-
ants, and even CLASP[T,A], skipping backward inference with the same translation, is able to complete
three instances more. However, backward inference brings about search reductions, especially regarding
difficult instances leading to many conflicts, with CLASP[T+,B] as well as the ASP variants CLASP[ ,B]
and CLASP[U,B]. Notably, the most successful variants are based on traditional unfounded set checking,
abbreviated by ‘U’, where backward inference in CLASP[U,B] improves on CLASP[U, ] in terms of both
time and conflicts as well as one more solved instance. The decent performance of CLASP[U, ] does,
however, not carry over to the other standard ASP solver, WASP[U, ], which (in default settings) com-
pletes only 24 instances in time. In fact, the lower part of Figure 3 exhibits that WASP[U, ] encounters
more conflicts than each of the CLASP variants, yet still fewer than those of ACYCGLUCOSE, while the
latter advantage does not amortize in runtime.

The 52 instances of Sokoban, with plots shown in Figure 4, are picked around minimum plan lengths
such that exactly half of the instances are satisfiable. The most apparent observation is that, in con-
trast to Labyrinth before, the variants of ACYCGLUCOSE perform significantly more robustly than those
of CLASP. While each instance is solved by some ACYCGLUCOSE variant, all CLASP variants fail on
ten instances, four of which are satisfiable and six unsatisfiable. Also opposite to the performance on
Labyrinth, the combination of unfounded set checking with backward inference in CLASP[U,B] turns out
to be worst. Interestingly, omitting backward inference leads to slight improvements with CLASP[U, ],
yet CLASP[ ,B] benefits even more from abandoning unfounded set checking. Positive effects due to
backward inference are also confirmed by CLASP[T+,B], which completes four instances more than
CLASP[T+,A], skipping backward inference with the strong translation TrACYC+. As already observed
on Labyrinth, backward inference becomes ineffective when switching to TrACYC for CLASP variants
based on ‘T’. However, the basic translation TrACYC seems generally not a good choice for CLASP, while
its strong version TrACYC+ results in much more robust performance, especially together with backward
inference. The behavior of ACYCGLUCOSE, which outperforms the CLASP variants on Sokoban, pri-
marily benefits from backward inference, leading to substantial improvements and somewhat equalizing
differences between the translations TrACYC and TrACYC+. In terms of conflicts given in the lower part
of Figure 4, WASP[U, ] is close to the ACYCGLUCOSE variants and ahead of CLASP[U, ] as well as
other CLASP variants, but runtimes again do not reflect this. Rather, WASP[U, ] does not complete nine
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Figure 3. Comparison of CLASP and ACYCGLUCOSE variants as in Figure 2 on 60 Labyrinth instances.

satisfiable and nine unsatisfiable instances, including the ten on which all CLASP variants fail as well.
In summary, solving approaches including acyclicity propagation can be competitive to traditional

unfounded set checking or complement it in an effective manner. Most importantly, backward infer-
ence to falsify atoms associated with edges appears to be a useful addition, given the lack of (efficient)
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Figure 4. Comparison of CLASP and ACYCGLUCOSE variants as in Figure 2 on 52 Sokoban instances.

implementations of corresponding principles for unfounded sets. As witnessed by Sokoban, mapping
logic programs (without weight constraints) to acyclicity programs via the strong translation TrACYC+,
along with completion, is a worthwhile approach to utilize solvers for SAT modulo acyclicity. That
is, potential use cases of acyclicity programs are twofold. On the one hand, the native support for an
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acyclicity constraint enriches the spectrum of available modeling constructs, which allows for express-
ing particular problems, e.g., Hamiltonian Cycle, even more compactly than anyway in standard ASP.
On the other hand, the computational mechanisms for acyclicity propagation provide complementary
techniques for ASP solving, where implementations of ASP or SAT modulo acyclicity can be applied
via likewise compact translations, up to extensions like weight rules or optimization statements.

5. Discussion

In this paper, we propose a novel SMT-style extension of ASP by explicit acyclicity constraints in analogy
to SAT modulo acyclicity [10]. These kinds of constraints have not been directly addressed in previous
SMT-style extensions of ASP [33, 34, 35]. The new extension, herein coined ASP modulo acyclicity,
offers a unique set of primitives for applications involving DAGs or tree structures. While other exten-
sions of ASP, such as DLVHEX [36] and CASP [37, 38], could be used to express acyclicity constraints as
well, these approaches are technically so different that a performance comparison with systems having
native acyclicity propagators would not make much sense. Moreover, the current work studies acyclicity
propagators as an alternative to unfounded set checking, and turning off such checks in favor of other
extensions does not seem straightforward either.

The fact that unfounded set checking can be captured through the embedding of ASP into itself (Def-
initions 3.8, 3.14, and 3.16 accompanied by Theorems 3.11 and 3.18) forms perhaps the most interesting
application of our results. The notion of well-supporting rules utilized in this paper resembles source
pointers [16], used in native ASP solvers to record rules justifying true atoms. Although mutual simula-
tions between acyclicity and unfounded set checking are feasible, from release 3.2.0 onward, CLASP [17]
will include the acyclicity propagator as a first-class citizen. Due to an orthogonal implementation, all
other features of CLASP remain at users’ disposal. For instance, it is possible to perform enumeration
and optimization, not supported by ACYCMINISAT and ACYCGLUCOSE [10]. Upon enumeration, the
potential replication of stable (and supported) models due to guesses made about edges representing
dependencies, as introduced by our translations from ASP to itself, can be avoided by means of the
projection capabilities of CLASP [39].

A distinguishing feature of acyclicity propagation is the availability of backward inference of for-
bidden edges, which is achieved by means of a light-weight extension to acyclicity checking, and its
overhead has been reported to be uncritical regardless of the size of acyclicity extensions [10]. While a
corresponding inference mechanism based on unfounded sets is also simple at the conceptual level [40],
no linear implementation is known and existing approaches are either of quadratic time complexity [41]
or incomplete [42]. Thus, the ease of utilizing backward inference can be considered a potential ad-
vantage of propagators for acyclicity, and in our experiments the additional inferences turned out to be
helpful to make the underlying search procedure more robust. In fact, the possibility to infer truth values
for yet unassigned atoms is based on a tight integration of acyclicity propagation into search. Such an
integration goes beyond so-called CEGAR approaches that add constraints to suppress unintended total
assignments. For instance, a respective method for the Hamiltonian Cycle problem [28] feeds a SAT
solver with clauses denying cycles via the edges associated with labeling variables in a putative model.

In addition to the support for acyclicity as a complementary modeling construct in ASP, yet another
contribution of this work is the implementation of translators performing TrACYC and TrACYC+ as for-
mally elaborated in Section 3. The version 1.29 of LP2ACYC implements these translations relative to the
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SCCs of an input program. Given that the translations cover extended rule types, weight constraint pro-
grams output by the grounder GRINGO [21] can be readily processed. In fact, the translations into ASP
modulo acyclicity serve as intermediate representations when compiling logic programs into a variety of
target formalisms [30, 43, 34]. The idea of translation-based ASP builds on such compilations and the
availability of solver technology from neighboring fields that can be harnessed to search for answer sets.
For instance, under the assumption that a logic program at hand contains no weight rules, the final trans-
lation to SAT modulo acyclicity, first described in [12], amounts to simple program completion. Other
target formalisms, such as bit-vector logic, mixed integer programming, and pseudo-Boolean constraints,
are equipped with constructs providing an efficient representation of weight rules. Using ASP modulo
acyclicity as an intermediate representation, the corresponding translations are feasible with back-end
translators [12] that take the features of specific target formalisms into account. Due to analogies to
traditional compilation, we use the term cross-translation for this methodology, where a target represen-
tation is decided at the very last translation step. It is even possible to convey further kinds of primitives
in such an approach, as long as they are visible in the intermediate representation (cf. [34]).
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[34] Liu G, Janhunen T, Niemelä I. Answer Set Programming via Mixed Integer Programming. In: Brewka
G, Eiter T, McIlraith S, editors. Proceedings of the Thirteenth International Conference on Principles of
Knowledge Representation and Reasoning (KR’12). AAAI Press; 2012. p. 32–42. Available from: http:
//www.aaai.org/ocs/index.php/KR/KR12/paper/view/4516.



J. Bomanson, M. Gebser, T. Janhunen, B. Kaufmann, T. Schaub / Answer Set Programming modulo Acyclicity 29

[35] Lee J, Meng Y. Answer Set Programming Modulo Theories and Reasoning about Continuous Changes.
In: Rossi F, editor. Proceedings of the Twenty-third International Joint Conference on Artificial Intelligence
(IJCAI’13). IJCAI/AAAI Press; 2013. p. 990–996. Available from: http://www.aaai.org/ocs/
index.php/IJCAI/IJCAI13/paper/view/6895.

[36] Eiter T, Ianni G, Schindlauer R, Tompits H. DLVHEX: A Prover for Semantic-Web Reasoning under the
Answer-Set Semantics. In: Proceedings of the International Conference on Web Intelligence (WI’06). IEEE
Computer Society; 2006. p. 1073–1074. doi:10.1109/WI.2006.64.

[37] Mellarkod V, Gelfond M, Zhang Y. Integrating Answer Set Programming and Constraint Logic Programming.
Annals of Mathematics and Artificial Intelligence. 2008;53(1-4):251–287. doi:10.1007/s10472-009-9116-y.

[38] Lierler Y. Relating Constraint Answer Set Programming Languages and Algorithms. Artificial Intelligence.
2014;207:1–22. doi:10.1016/j.artint.2013.10.004.

[39] Gebser M, Kaufmann B, Schaub T. Solution Enumeration for Projected Boolean Search Problems. In: van
Hoeve W, Hooker J, editors. Proceedings of the Sixth International Conference on Integration of AI and OR
Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR’09). Springer-
Verlag; 2009. p. 71–86. doi:10.1007/978-3-642-01929-6 7.

[40] Gebser M, Schaub T. Tableau Calculi for Logic Programs under Answer Set Semantics. ACM Transactions
on Computational Logic. 2013;14(2):15:1–15:40. doi:10.1145/2480759.2480767.

[41] Chen X, Ji J, Lin F. Computing Loops With at Most One External Support Rule. In: Brewka G, Lang J,
editors. Proceedings of the Eleventh International Conference on Principles of Knowledge Representation
and Reasoning (KR’08). AAAI Press; 2008. p. 401–410. Available from: http://www.aaai.org/
Library/KR/2008/kr08-039.php.

[42] Drescher C, Walsh T. Efficient Approximation of Well-Founded Justification and Well-Founded Domination.
In: Cabalar P, Son T, editors. Proceedings of the Twelfth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’13). Springer-Verlag; 2013. p. 277–289. doi:10.1007/978-3-642-
40564-8 28.
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