
Graphs and colorings for answer set programming with
preferences: Preliminary Report

Kathrin Konczak and Torsten Schaub and Thomas Linke

Institut für Informatik, Universität Potsdam
Postfach 90 03 27, D–14439 Potsdam, Germany
{konczak,torsten,linke}@cs.uni-potsdam.de

Abstract. The integration of preferences into answer set programming consti-
tutes an important practical device for distinguishing certain preferred answer
sets from non-preferred ones. To this end, we elaborate upon rule dependency
graphs and their colorings for characterizing different preference handling strate-
gies found in the literature. We start from a characterization of (three types of)
preferred answer sets in terms of totally colored dependency graphs. In turn, we
exemplarily develop an operational characterization of preferred answer sets in
terms of operators on partial colorings for one particular strategy. In analogy
to the notion of a derivation in proof theory, our operational characterization is
expressed as a (non-deterministically formed) sequence of colorings, gradually
turning an uncolored graph into a totally colored one.

1 Introduction

Graphs constitute a fundamental tool within computing science. Similarly, in answer set
programming, graphs are used for deciding whether answer sets exist. Recently, there
is even an increased interest in using graphs as the primary computational model for
computing answer sets [4, 13]. In fact, one of the distinguishing features of answer
set programming is that it provides non-deterministic programming techniques that
usually induce multiple distinct answer sets. For filtering out certain preferred answer
sets, a prominent approach is to incorporate preference handling into answer set pro-
gramming. Up to know, preferences where incorporated into answer set solvers either
by meta-interpretation [6] or by pre-compilation front-ends [5]; therefore, preferences
were never integrated into the solvers themselves. This is where our contribution comes
in. We argue that the aforementioned graph-based approaches provide an appropriate
model for integrating preferences into answer set programming and the corresponding
solvers. We underpin this claim, first, by showing how three among the most prominent
preference handling approaches can be characterized by graph-oriented methods and,
second, by showing how this can be realized by means of an operational semantics. This
is usable for extending graph-based answer set solvers, such as noMoRe [1]. Follow-
ing [10], our idea is to start from an uncolored rule dependency graph and to employ
specific operators that turn a partially colored graph gradually into a totally colored one
that represents a preferred answer set. This approach, developed in [10] for standard
answer set programming, is strongly inspired by the concept of a derivation, in par-
ticular, that of an SLD-derivation [14]. Accordingly, a program has a certain preferred



answer set iff there is a sequence of operations turning the uncolored graph into a totally
colored one, expressing the answer set.

2 Background

A logic program is a finite set of rules such as p0 ← p1, . . . , pm,not pm+1, . . . ,not pn,
where n ≥ m ≥ 0, and each pi (0 ≤ i ≤ n) is an atom. For such a rule r, we let head (r)
denote the head, p0, of r and body(r) the body, {p1, . . . , pm, not pm+1, . . . ,not pn},
of r. Let body+(r) = {p1, . . . , pm} and body−(r) = {pm+1, . . . , pn}. For a set of
rules Π , we write head(Π) = {head(r) | r ∈ Π} and conversely, for an atom p, we
define rule(p) = {r ∈ Π | head (r) = p}. A program is basic if body

−(r) = ∅ for
all its rules. The reduct, ΠX , of a program Π relative to a set X of atoms is defined
by ΠX = {head(r) ← body+(r) | r ∈ Π, body−(r) ∩ X = ∅}. A set of atoms X

is closed under a basic program Π if for any r ∈ Π , head(r) ∈ X if body+(r) ⊆ X .
The smallest set of atoms being closed under a basic program Π is denoted by Cn(Π).
Then, a set X of atoms is an answer set of a program Π if Cn(ΠX) = X . We use
AS(Π) for denoting the set of all answer sets of Π . In what follows, an important
concept is that of the generating rules of an answer set. The set RΠ(X) of generating
rules of a set X of atoms from program Π is given by

RΠ(X) = {r ∈ Π | body+(r) ⊆ X, body−(r) ∩X = ∅}.

An ordered logic program is a pair (Π, <), where Π is a logic program and < ⊆
Π ×Π is a strict partial order. Given, r1, r2 ∈ Π , the relation r1 < r2 expresses that r2

has higher priority than r1. This informal interpretation can be made precise in different
ways. In what follows, we consider three such interpretations: D– [5], B– [3], and W–
preference [17]. Given (Π, <), all of them use < for selecting preferred answer sets
among the standard answer sets of Π . As shown in [17], the three strategies yield an
increasing number of preferred answer sets. That is, D is stronger than W , which is
stronger than B, which is stronger than no preference. For brevity, we give below only
a formal definition of D–preference, and refer the reader to the literature regarding B–
and W– preference [3, 17].

Definition 1. Let (Π, <) be an ordered program and let X be an answer set of Π .
Then, X is called <D–preserving, if there exists an enumeration 〈ri〉i∈I of RΠ(X)
such that for every i, j ∈ I we have that:

1. if ri < rj , then j < i,
2. body+(ri) ⊆ {head(rj) | j < i}, and
3. if ri < r′ and r′ ∈ Π \RΠ(X), then

(a) body+(r′) 6⊆ X or
(b) body−(r′) ∩ {head (rj) | j < i} 6= ∅.

Condition 1 stipulates that 〈ri〉i∈I is compatible with <. Condition 2 makes the prop-
erty of supportness explicit. Although any standard answer set is generated by a sup-
ported sequence of rules, in D–preferences, rules cannot be supported by lower-ranked



rules. Condition 3a separates the handling of unsupported rules from preference han-
dling. Condition 3b guarantees that rules can never be blocked by lower-ranked rules.
For W–preference, the previous concept of order preservation is weakened in Condi-
tion 1 and 3 for suspending both conditions, whenever the head of a preferred rule
is derivable in an alternative way. Roughly speaking, B–preference additionally drops
Condition 2; thus decoupling preference handling from the order induced by consecu-
tive rule applications. Define ASσ((Π, <)) as the set of all <σ–preserving answer sets
for σ ∈ {D, B, W}.

3 Graphs and colorings with preferences

This section lays the graph-theoretical foundations of our approach. A graph is a pair
(V, E) where V is a set of vertices and E ⊆ V × V a set of (directed) edges. A graph
(V, E) is acyclic if E contains no cycles. For W ⊆ V , we denote E ∩ (W ×W ) by
E|W . Also, we abbreviate G = (V ∩ W, E|W ) by G|W . A subgraph of (V, E) is a
graph (W, F ) such that W ⊆ V and F ⊆ E|W .

In the sequel, we are interested in labeled graphs reflecting dependencies among
rules.

Definition 2. Let (Π, <) be an ordered logic program. The ordered rule dependency
graph (DG) Γ(Π,<) = (Π, E0, E1, E2) of (Π, <) is a labeled directed graph with

E0 =
{

(r, r′) | r, r′ ∈ Π, head (r) ∈ body+(r′)
}

;

E1 =
{

(r, r′) | r, r′ ∈ Π, head (r) ∈ body−(r′)
}

;

E2 = {(r, r′) | r, r′ ∈ Π, r′ < r} .

This definition extends the one in [13] by 2-edges for representing preferences among
rules. Whenever clear from the context, we write Γ instead of Γ(Π,<). An i-subgraph
(V, E) of Γ is a subgraph of Γ with E ⊆ Ei for i ∈ {0, 1, 2}.

For illustration, consider the ordered program (Π1, <) = ({r1, . . . , r4}, <), where:

r1 : p←
r2 : b← p

r3 : f ← b, not f ′

r4 : f ′ ← p, not f
r3 < r4 (1)

Among the two standard answer sets of Π1, {p, b, f}, and {p, b, f ′}, the preference
r3 < r4 selects the latter. That is,

ASD((Π1, <)) = {{p, b, f ′}}.1

The DG of (Π1, <) is depicted in Figure 1a. For instance, ({r1, r2, r4}, {(r1, r2)}) is a
0-subgraph of Γ(Π1,<).

We call C a coloring of Γ(Π,<) if C is a mapping C : Π → {⊕,	}. Intuitively, the
colors⊕ and	 indicate whether a rule is supposedly applied or blocked. We sometimes
denote the set of all vertices colored with ⊕ or 	 by C⊕ or C	, respectively. That is,
C⊕ = {r | C(r) = ⊕} and C	 = {r | C(r) = 	}. If C is total, (C⊕, C	) is a binary
partition of Π . That is, Π = C⊕∪C	 and C⊕∩C	 = ∅. Accordingly, we often identify
a coloring C with the pair (C⊕, C	). A partial coloring C induces a pair (C⊕, C	) of



r1n r2n

r4n r3n
? ?

-�

-

� 6�

0 0

1

0

2

⊕n ⊕n

r4n 	n
? ?

-�

-

� 6�

0 0

1

0

2

⊕n ⊕n

⊕n 	n
? ?

-�

-

� 6�

0 0

1

0

2

Fig. 1. (a): The DG of ordered logic program (Π1, <); (b): The (partially) colored DG
(Γ(Π1,<), C2); (c) The totally colored DG (Γ(Π1,<), C3).

sets such that C⊕ ∪ C	 ⊆ Π and C⊕ ∩ C	 = ∅. For comparing partial colorings, C

and C ′, we define C v C ′, if C⊕ ⊆ C ′
⊕ and C	 ⊆ C ′

	. The “empty” coloring (∅, ∅) is
the v-smallest coloring. Accordingly, we define C t C ′ as (C⊕ ∪ C ′

⊕, C	 ∪ C ′
	).

If C is a coloring of Γ, we call the pair (Γ, C) a colored DG . For example, “color-
ing” the DG of (Π1, <) with

C2 = ({r1, r2}, {r3}) (2)

yields the colored graph given in Figure 1b. For simplicity, when coloring, we replace
the label of a node by the respective color.

The central question addressed in this paper is how to compute the total colorings of
DGs that correspond to the preferred answer sets of an underlying program. In fact, the
colorings of interest can be distinguished in a straightforward way. Given an ordered
logic program (Π, <) along with its DG Γ. Let σ ∈ {D, B, W}. Then, for every <σ–
preserving answer set X of Π , define an <σ–preserving admissible coloring C of Γ

as

C = (RΠ(X), Π \RΠ(X)).

By way of the respective generating rules, we associate with any program a set of <σ–
preserving admissible colorings whose members are in one-to-one correspondence with
its <σ–preserving answer sets. Clearly, any <σ–preserving admissible coloring is total;
also, we have X = head (C⊕). We use ACσ((Π, <)) for denoting the set of all <σ–
preserving admissible colorings of a DG Γ(Π,<). For a partial coloring C, we define

ACσ
(Π,<)(C) = {C ′ ∈ ACσ((Π, <)) | C v C ′}

as the set of all <σ–preserving admissible colorings of Γ(Π,<) compatible with C.
Clearly, C1 v C2 implies ACσ

(Π,<)(C1) ⊇ ACσ
(Π,<)(C2). Observe that a partial

coloring C is extendible to a <σ–preserving admissible one C ′, that is, C v C ′ iff
ACσ

(Π,<)(C) is non-empty. For a total coloring C, ACσ
(Π,<)(C) is either empty or sin-

gleton. Regarding program (Π1, <) and coloring C2, we get

ACσ
(Π1 ,<)(C2) = ACσ((Π1, <)) = {({r1, r2, r4}, {r3})}, (3)

for σ ∈ {D, B, W}. Accordingly, define ASσ
(Π,<)(C) as the set of all <σ–preserving

answer sets X of (Π, <) compatible with partial coloring C:

ASσ
(Π,<)(C) = {X ∈ ASσ((Π, <)) | C⊕ ⊆ RΠ(X) and C	 ∩ RΠ(X) = ∅}.



Note that head(C⊕) ⊆ X for any <σ–preserving answer set X ∈ ASΠ(C). As regards
program (Π1, <) and coloring C2, we get

ASσ
(Π1,<)(C2) = {{b, p, f ′}}.

We call a coloring simply admissible, if X is a standard answer set of Π . Also, if X is
a standard answer set of Π , we omit the superscript σ in the above defined sets.

We need the following concepts for describing a rule’s status of applicability.

Definition 3. Let Γ = (Π, E0, E1, E2) be the DG of ordered program (Π, <) and C

be a partial coloring of Γ. For r ∈ Π , we define:

1. r is supported in (Γ, C), if body+(r) ⊆ {head(r′) | (r′, r) ∈ E0, r
′ ∈ C⊕};

2. r is unsupported in (Γ, C), if {r′ | (r′, r) ∈ E0, head(r′) = q} ⊆ C	 for some
q ∈ body+(r);

3. r is blocked (by r′) in (Γ, C), if r′ ∈ C⊕ for some (r′, r) ∈ E1;
4. r is unblocked in (Γ, C), if r′ ∈ C	 for all (r′, r) ∈ E1;
5. r is maximal in (Γ, C) if {r′ | (r′, r) ∈ E2} ⊆ (C⊕ ∪ C	).

Conditions 1–4 express standard concepts of logic programming adapted to DGs (cf.
[10]). The concept expressed in Condition 5 allows for distinguishing rules, all of which
more preferred rules have either been found to be applicable or blocked. Such rules are
maximal insofar as they are not dominated by any preferred rules having an undecided
status of applicability. In what follows, we use S(Γ, C), S(Γ, C), B(Γ, C), B(Γ, C),
and M(Γ, C) for denoting the sets of all supported, unsupported,blocked,unblocked,
and maximal rules in (Γ, C). For illustration, consider the sets obtained regarding
(Γ(Π1,<), C2), given in Figure 1b.

S(Γ(Π1,<), C2) = {r1, r2, r3, r4} S(Γ(Π1,<), C2) = ∅
B(Γ(Π1

, <), C2) = ∅ B(Γ(Π1
, <), C2) = {r1, r2, r4}

M(Γ(Π1,<), C2) = {r1, r2, r4}
(4)

Rule r3 is not maximal in (Γ(Π1,<), C2) because the higher preferred rule r4 is uncol-
ored and thus not known to be blocked or applied.

4 Deciding preferred answersetship from colored graphs

We now develop concepts that allow us to decide whether a (total) coloring represents
an order preserving admissible coloring by purely graph-theoretical means. For this
purpose, we build upon the concept of a support graph and a corresponding charac-
terization proposed in [10]. To begin with, we give the definition of a support graph,
accounting for the notion of recursive support; it is adapted to ordered programs.

Definition 4. Let Γ be the DG of ordered logic program (Π, <) and C be a partial
coloring of Γ. We define a support graph of (Γ, C) as an acyclic 0-subgraph (V, E)
of Γ such that body+(r) ⊆ {head (r′) | (r′, r) ∈ E} for all r ∈ V , C⊕ ⊆ V and
C	 ∩ V = ∅.



Observe that the order < does not influence the support graph. If (Γ, C) has a support
graph, then there is also a maximal support graph (V, E) of (Γ, C) such that V ′ ⊆ V

for all support graphs (V ′, E′) of (Γ, C).
We build upon the following characterization of admissible colorings (along with

their underlying answer sets) for standard logic programs, taken from [10].

Theorem 1. Let Γ be the DG of logic program (Π, ∅) and C be a total coloring of Γ.
Then, C is an admissible coloring of Γ iff C⊕ = S(Γ, C) ∩ B(Γ, C) and (C⊕, E) is a
support graph of (Γ, C) for some E ⊆ (Π ×Π).

For illustration, let us consider program (Π1, ∅). We obtain the admissible colorings

AC((Π1, ∅)) = {({r1, r2, r3}, {r4}), ({r1, r2, r4}, {r3})}

representing answer sets

AS(Π1) = {{p, b, f}, {p, b, f ′}}.

For capturing preferences, we propose the concept of a height function. To begin
with, we develop this concept for D–preferences.

Definition 5. Let Γ be the DG of ordered logic program (Π, <), C be a total coloring
of Γ and let (V, E0, E1, E2) be a subgraph of Γ.

We define a D–height function of (V, E0, E1, E2) as a function h : V → IN such
that for all r ∈ Π , we have

1. h(r′) < h(r) if (r′, r) ∈ E2,
2. if r ∈ C⊕ then we have h(r′) < h(r) if (r′, r) ∈ E0 and r′ ∈ C⊕ , and
3. if r ∈ C	∩V then there exists an r′ ∈ C⊕ such that (r′, r) ∈ E1 and h(r′) < h(r).

The values attributed by a height function reflect a possible order of rule consideration
(not necessarily application). In this respect, Condition 1 stipulates that higher ranked
rules must be considered before lower ranked rules; in this way, h respects the prefer-
ences from <. If (V, E0) forms a support graph of (Γ, C), then Condition 2 ensures
that rules are never supported by rules having a greater h-value. Condition 3 expresses
that rules colored with 	, must be blocked by rules with a smaller h-value (that is, in-
tuitively, already applied rules). It is instructive to observe that every height function
induces a partial order on Π extending the given partial order <. Furthermore, this in-
duced order is always extendible to a total order of Π respecting an enumeration of
the generating rules, given in Definition 1. A more detailed analysis is given in the full
paper [11].

Taking the concept of a D–height function together with Theorem 1, we obtain a
characterization of <D–preserving admissible colorings.

Theorem 2. Let Γ = (Π, E0, E1, E2) be the DG of ordered logic program (Π, <) and
C be a total coloring of Γ. Then, C is a <D–preserving admissible coloring iff

1. C⊕ = S(Γ, C) ∩ B(Γ, C) and
2. for some E′

0 ⊆ E0, we have



(a) (C⊕, E′
0) is a support graph of (Γ, C) and

(b) there exists a D–height function of (S(Γ, C), E ′
0, E1|S(Γ,C), E2|S(Γ,C)).

Conditions 1 and 2a are the ones found in Theorem 1 for standard admissible colorings,
while Condition 2b selects the <D–preserving ones by means of a D–height function.
For this, only supported rules are taken into account; unsupported rules are inapplicable
anyway. Now, the height function ties the arcs E ′

0 of the (standard) support graph to the
ones reflecting blockage E1|S(Γ,C) and preference E2|S(Γ,C). This guarantees that the
underlying answer set can only be formed in an order preserving way.

For illustration, consider (Π1, <). For the admissible coloring ({r1, r2, r4}, {r3}),
we detect only the following D–height function hD:

hD(r1) = 1, hD(r2) = 2, hD(r3) = 4, hD(r4) = 3. (5)

For admissible coloring ({r1, r2, r3}, {r4}), there is no D–height function because
r3 < r4 and the blockage of r4 by r3 lead to a contradiction between Condition 1
and 3 in Definition 5. Hence, only ({r1, r2, r4}, {r3}) is <D–preserving and {p, b, f ′}
is the only <D–preserving answer set.

For B– and W–preferences, we can define similar height functions in an analogous
way.

Definition 6. Let Γ be the DG of ordered logic program (Π, <), C be a total coloring
of Γ and let (V, E0, E1, E2) be a subgraph of Γ.

We define a B–height function of (V, E0, E1, E2) as a function h : V → IN such
that for all r ∈ Π we have

1. h(r′) < h(r) if (r′, r) ∈ E2,
2. if r ∈ C	 ∩ V one of the following conditions is fulfilled:

(a) there exists r′ ∈ C⊕ such that (r′, r) ∈ E1 and h(r′) < h(r);
(b) rule(head (r)) ∩ C⊕ 6= ∅

Note that a B–height function does not take into account 0-edges, since B–preference
decouples supportedness from preference handling [3]. If X = head (C⊕) is a set of
atoms, then rule(head (r)) ∩ C⊕ 6= ∅ states that head (r) ∈ X for some r ∈ Π .
Hence, Condition 2b weakens the concept of order preservation given in Condition 3 of
Definition 5, whenever the head of a blocked rule is derived by another applied rule. By
this weakening, more admissible colorings are <B–preserving than <D–preserving.

The next definition addresses W–preferences.

Definition 7. Let Γ be the DG of ordered logic program (Π, <), C be a total coloring
of Γ and let (V, E0, E1, E2) be a subgraph of Γ.

We define a W–height function of (V, E0, E1, E2) as a function h : V → IN such
that for all r ∈ Π we have

1. h(r′) < h(r) if (r′, r) ∈ E2,
2. if r ∈ C⊕ then is one of the following conditions fulfilled:

(a) we have h(r′) < h(r) if (r′, r) ∈ E0 and r′ ∈ C⊕

(b) there exists an r′ ∈ rule(head (r)) ∩ C⊕ such that h(r′) < h(r),



3. if r ∈ C	 ∩ V then one of the following conditions is fulfilled:
(a) there exists r′ ∈ C⊕ such that (r′, r) ∈ E1 and h(r′) < h(r);
(b) there exists an r′′ ∈ rule(head(r)) ∩ C⊕ such that h(r′′) < h(r).

W–height functions combine supportedness and preference handling similar to D–
height functions. In contrast to D–height functions, however, Definition 7 allows for
supporting and blocking a rule r by lower ranked rules, if head (r) is derived by some
applied rule with a lower h-value than r. Hence, Condition 2b and 3b weaken the con-
cept of order preservation given in Definition 5, but they are not so generous as the
conditions for a B–height function given in Definition 6. For this reason, the conditions
for the existence of a D–height function are stronger that than for a W–height function,
which are stronger conditions than for a B–height function.

For illustration, consider ordered logic program (Π1, <). For admissible coloring
({r1, r2, r4}, {r3}), the D–height function given in (5) is also a B– as well as a W–
height function. Observe that h(r1) = 2, h(r2) = 1, h(r3) = 4, h(r4) = 3 provides
an alternative B–height function. No σ–height function is obtained for the second ad-
missible coloring, corresponding to answer set {p, b, f}, for any σ ∈ {D, B, W}.

In analogy to to Theorem 2, B– and W–height functions allow us to characterize
<B– and <W –preserving admissible colorings.

Theorem 3. Theorem 2 still holds, when replacing D by either B or W .

For illustration, consider program (Π1, <). As above, ({r1, r2, r3}, {r4}) is neither
<B– nor <W –preserving since head (r4) is not derivable in an alternative way. Hence,
({r1, r2, r4}, {r3}) is a <σ–preserving admissible coloring for σ ∈ {D, B, W}.

Whenever no preferences are given, Theorem 2 and 3 fall back to characterizations
of standard admissible colorings:

Corollary 1. Let Γ be the DG of ordered logic program (Π, ∅) and C be a total col-
oring of Γ. Then, C is an admissible coloring iff C is a <σ–preserving admissible
coloring for σ ∈ {D, B, W}.

5 Operational characterization

In this section, we exemplarily provide an operational characterization of <D–preserv-
ing answer sets; for brevity, the corresponding characterizations for B– and W–prefer-
ences are omitted. The idea is to start with the empty coloring and to successively apply
operators that turn a partial coloring C into another one C ′ such that C v C ′. This is
done until a total coloring is obtained that corresponds to a <D–preserving answer set.

For this, it is necessary to introduce a new color �, which only appears in interme-
diate partial colorings. That is, a partial coloring is now a partial mapping C : Π →
{⊕,	,�}. Analogously, we define C� = {r ∈ Π | C(r) = �}. We color a vertex r

with� in a partial coloring C, if r must be colored with	 in the final total coloring but
there is not yet any justification for coloring r with 	. As before, C is a total coloring
if C⊕ ∪ C	 = Π and C� = ∅. Furthermore, C v C ′ if C⊕ ⊆ C ′

⊕, C	 ⊆ C ′
	 and

C� ⊆ C ′
	 ∪C ′

�. We define C tC ′ as (C⊕ ∪C ′
⊕, C	 ∪C ′

	, (C� ∪C ′
�) \ (C	 ∪C ′

	)).
We denote the set of all partial colorings of a DG Γ(Π,<) by CΓ(Π,<)

. Whenever clear



from the context, we simply write C. Otherwise, all concepts from the previous sections
directly carry over, since they keep relying on rules belonging to C⊕ and C	 only.

We concentrate first on operations deterministically extending partial colorings.

Definition 8. Let Γ be the DG of ordered logic program (Π, <) and C be a partial
coloring of Γ. Then, define PΓ : C→ C as PΓ(C) = C ′ where

C ′
⊕ = C⊕ ∪ (S(Γ, C) ∩ B(Γ, C) ∩M(Γ, C)),

C ′
	 = C	 ∪ S(Γ, C) ∪ (B(Γ, C) ∩M(Γ, C)), and

C ′
� = C� \ C ′

	.

For standard logic programs Π , PΓ is defined in [10] by means of standard colors C⊕

and C	 only. Definition 8 thus offers an extension of operatorPΓ , augmented by a third
color for dealing with ordered logic programs. A coloring is extended by maximal rules
only, with the exception of unsupported rules (cf. Condition 3a in Definition 1). The
idea is to propagate along a D–height function, while excluding unsupported rules and
coloring them with 	.

A partial coloring C is closed under PΓ , if C = PΓ(C). Note that C v PΓ(C).
In fact, PΓ(C) is not guaranteed to be a partial coloring. To see this, observe that
PΓ(({a ← not a}, ∅, ∅)) would be ({a ← not a}, {a ← not a, ∅}), which is no
mapping and thus no partial coloring. Interestingly, PΓ exists on colorings expressing
preferred answer sets (cf. Theorem 4 below). Now, we can define our principal propa-
gation operator in the following way.

Definition 9. Let Γ be the DG of ordered logic program (Π, <) and C a partial color-
ing of Γ. Then, define P∗

Γ(C) as the v-smallest partial coloring closed under PΓ and
containing C.

Although P∗
Γ is not always defined, it is on colorings expressing preferred answer sets.

Theorem 4. Let Γ be the DG of ordered logic program (Π, <) and C a partial coloring
of Γ. If ACD

(Π,<)(C) 6= ∅, then P∗
Γ(C) exists.

Essentially, P∗
Γ(C) amounts to computing the deterministic “consequences” of a given

partial coloring C. In fact, P∗
Γ(C) is monotonic and preserves preferred answer sets in

the following sense.

Theorem 5. Let Γ be the DG of ordered logic program (Π, <) and C be a partial
coloring of Γ.

1. If ACD
(Π,<)(C

′) 6= ∅ and C v C ′, then P∗
Γ(C) v P∗

Γ(C ′);
2. ACD

(Π,<)(C) = ACD
(Π,<)(P

∗
Γ(C)).

In [10], it is shown for standard programs that P∗
Γ amounts to Fitting’s operator [7].

Therefore, Definition 9 can be viewed as an extension of Fitting’s operator to ordered
programs. The next operation draws upon the maximal support graph of colored DGs.

Definition 10. Let Γ be the DG of ordered logic program (Π, <) and C be a partial
coloring of Γ. Furthermore, let (V, E) be a maximal support graph of (Γ, C) for some
E ⊆ (Π ×Π). Then, define UΓ : C→ C as

UΓ(C) = (C⊕, Π \ V, C� ∩ V ).



A 2-ary version of UΓ was proposed in [10] for standard programs. This operator allows
for coloring rules with 	 whenever it is clear from the given partial coloring that they
will remain unsupported. Observe that C	 ⊆ Π \ V and C� ∩ V = C� \ (Π \ V ).
As with P∗

Γ , operator UΓ(C) is an extension of C. Unlike P∗
Γ , however, UΓ allows for

coloring nodes unconnected with the already colored part of the graph. Although UΓ is
not defined in general, it is on colorings guaranteeing the existence of support graphs.

Theorem 6. Let Γ be the DG of ordered logic program (Π, <) and C be a partial
coloring of Γ. If (Γ, C) has a support graph, then UΓ(C) exists.

We show in the full paper [11] that UΓ is reflexive, idempotent, monotonic, and pre-
ferred answer set preserving. That is, for partial colorings C and C ′ of Γ such that
ACD

Π (C) 6= ∅ and ACD
Π (C ′) 6= ∅, we have C v UΓ(C), UΓ(C) = UΓ(UΓ(C)), and if

C v C ′, then UΓ(C) v UΓ(C ′). Moreover, we have ACD
Π (C) = ACD

Π (UΓ(C)). Note
that unlike PΓ , UΓ leaves the support graph of (Γ, C) unaffected.

Now we develop a strategy for choice operations based on supported of rules.

Definition 11. Let Γ = (Π, E0, E1, E2) be the DG of ordered logic program (Π, <)
and C be a partial coloring of Γ. For r ∈ (Π ∩M(Γ, C)) \ (C⊕ ∪ C	), we define the
following operatorsD◦

Γ : C→ C for ◦ ∈ {⊕,	}:

1. D⊕
Γ (C) = (C⊕ ∪ {r}, C	, C�), if r ∈ S(Γ, C);

2. D	
Γ (C) = (C⊕, C	 ∪ {r}, ((C� ∪ Rp) \ {r}), if r 6∈ S(Γ, C) ∪ S(Γ, C),

where non-empty Rp = rule(p) \ C	 for some p ∈ body+(r).

The D⊕
Γ operator colors a maximal, supported rule r with ⊕, that is, r is taken to be

applied. D	
Γ colors a maximal, up to now neither supported nor unsupported rule with

	. That is, r must be unsupported and thus belong to C	 in the final total coloring. For
guaranteeing this, it must be ensured that for some atom p ∈ body+(r) all rules r′ with
head (r′) = p are eventually inapplicable. This is accomplished by coloring all rules
in Rp with �. In this way, p is excluded from all preferred answer sets obtained from
C. Observe that blocked rules are never colored 	 by D	

Γ in order to guarantee Con-
dition 3 in Definition 5. Similarly, unsupported rules are taken care of by propagation
operations. For illustration, consider (Π6, <), where:

r1 : a← r1 < r2

r2 : b← not a
(6)

We obtain PΓ((∅, ∅, ∅)) = (∅, ∅, ∅). If D	
Γ would color maximal, (supported,) blocked

rules, then D	
Γ ((∅, ∅, ∅)) = (∅, {r2}, ∅). But then, PΓ would not detect the miscolor-

ing PΓ((∅, {r2}, ∅)) = ({r1}, {r2}, ∅) which is an admissible coloring but no <D–
preserving one. That is, there is no corresponding <D–preserving answer set.

The above operator takes preference into account in two ways. First, it restricts
the choice of r to rules belonging to M(Γ, C). Second, it eliminates the coloration of
blocked rules and delegates it to the deterministic operator PΓ . While both measures
clearly restrict the possible number of overall choices, a further non-determinism is cre-
ated in Condition 2 in Definition 11 through the choice of p ∈ body+(r). Interestingly,



the choice of p has further repercussions since it amounts to excluding all rules r with
head (r) = p from C⊕. That is, whenever such a choice is made further propagation
follows, which leads to a more constrained situation. We are currently investigating the
effect of this in an experimental study.

Combining our deterministic operators with the choice operator yields an opera-
tional characterization of order preserving admissible colorings. For this, for a partial
coloring C we define (PU)∗Γ(C) as the v- smallest partial coloring containing C and
being closed under PΓ and UΓ .

Theorem 7. Let Γ be the DG of ordered logic program (Π, <) and let C be a total
coloring of Γ. Then, C is a <D–preserving admissible coloring of Γ iff there exists a
sequence (Ci)0≤i≤n with the following properties:

1. C0 = (PU)∗Γ ((∅, ∅, ∅))
2. Ci+1 = (PU)∗Γ(D◦

Γ(Ci)) for some ◦ ∈ {⊕,	} and 0 ≤ i < n;
3. Cn = C.

The formation of sequences is driven by the coloration of maximal rules. Operators
PΓ ,UΓ and D◦

Γ color along a D–height function, where lower valued rules are colored
first. That is, the sequence starts by coloring most preferred rules and ends with the
lowest ones.

For illustration, consider the coloring sequence in Figure 2, obtained for <D–pre-
serving answer set {b, p, f ′} of program (Π1, <). First, maximal rules r1 and r2 are

r1m r2m

r4m r3m
? ?

-�

-

� 6�

0 0

1

0

2

(PU)∗Γ
7−→

⊕m ⊕m

r4m r3m
? ?

-�

-

� 6�

0 0

1

0

2

D
⊕

Γ
7−→

⊕m ⊕m

⊕m r3m
? ?

-�

-

� 6�

0 0

1

0

2

(PU)∗Γ
7−→

⊕m ⊕m

⊕m 	m
? ?

-�

-

� 6�

0 0

1

0

2

Fig. 2. A coloring sequence.

colored by (PU)∗Γ . From the remaining uncolored rules, only r4 is maximal and (since
being supported) taken to be ⊕ by D⊕

Γ . This leads to coloring r3 by (PU)∗Γ since it
is maximal and blocked. The resulting admissible coloring ({r1, r2, r4}, {r3}) is <D–
preserving and reflects the <D–preserving answer set {p, b, f ′}. Note that coloring a
maximal, supported and blocked rule r in the absence of a blocker of r would lead
to illegal total colorings, which are admissible but not order preserving. For example,
coloring r4 with 	 instead of ⊕ after (PU)∗Γ would lead to coloring r3 with ⊕ by PΓ .
The resulting total coloring ({r1, r2, r3}, {r4}) is admissible, but not <D– preserving.

To illustrate the usage of �, consider the following program (Π7, <), where

r1 : a← c

r2 : b← not c

r3 : c← not b

r2 < r1

r3 < r2
(7)



(PU)∗Γ cannot color any rule. Only r1 is maximal and available for our choice op-
erator. By r 6∈ S(Γ(Π7,<), (∅, ∅, ∅)), we color r1 by D	

Γ , which leads to coloring
(∅, {r1}, {r3}) = (PU)∗Γ ((∅, {r1}, {r3})). Applying D⊕

Γ to maximal rule r2 and ap-
plying (PU)∗Γ lead to total coloring ({r2}, {r1, r3}, ∅), which is <D–preserving and
corresponds to the only existing <D–preserving answer set {b}. The successful color-
ing sequence is given in Figure 3. Note that the DG contains the 2-edge (r1, r3) since
< is transitive.

r2m

r3m r1m
?

6

-@
@

@
@I

�

-�
6� �

12 2

0

2

D
	

Γ
7−→

r2m

�m 	m
?

6

-@
@

@
@I

�

-�
6� �

12 2

0

2

D
⊕

Γ
((PU)∗Γ)

7−→

⊕m

	m 	m
?

6

-@
@

@
@I

�

-�
6� �

12 2

0

2

Fig. 3. A (successful) coloring sequence.

In the full paper [11], other sequences of partial colorings leading to <D–preserving
admissible colorings are considered. For example, starting with the empty coloring
C0 = (∅, ∅, ∅) and obtaining C i+1 by P∗

Γ(D◦
Γ(Ci)), thus disposing of UΓ . In this

way, the coloration of unsupported rules is entirely accomplished by D	
Γ . Although

this avoids using (deterministic) operator UΓ , it delegates the treatment of unsupported
rules to a non-deterministic operator, which seems not advisable from a computational
point of view. Furthermore, we discuss an alternative support-driven operational char-
acterization using an incremental version of UΓ .

6 Discussion, related work, and conclusions

Many approaches to adding preferences to answer set programming can be found in the
literature [16, 2, 8, 19, 9, 3, 5, 18]. Among them, we have chosen the three approaches,
interpreting preferences as inducing a selection function among the answer sets of the
underlying program [3, 5, 17]. Up to now, the latter approaches have either been imple-
mented by meta-interpretation [6] or by pre-compilation front-ends [5]. The advantage
of both approaches is that one can harness existing answer sets solvers without any need
for modification. On the other hand, it remains unclear whether the “selection of answer
sets” cannot be realized more efficiently within a solver by restricting its search space.
For instance, “weight-based” approaches, as pursed in the dlv [12] and smodels [15]
systems, can be implemented rather efficiently through branch-and-bound techniques.
Such a quantitative approach is unfortunately inapplicable in our setting.

For addressing this problem, we have put forward the usage of graphs and color-
ings as an appropriate computational model. Preferences are simply taken as a third
type of edges in a graph, reflecting an additional dependency among rules. In particu-
lar, we have demonstrated that this approach allows us to capture all three “selection



function” approaches to preferences in a uniform setting by means of the concept of a
height function. To a turn, we have exemplarily developed an operational characteriza-
tion for one of these strategies. For this purpose, we have extended a recently proposed
operational framework for graph-based computation of answer sets [10]. Apart from
the extension of colorings by a third “transitory” coloring � (comparable to dlv’s
“must be true”), we have extended the deterministic and non-deterministic oper-
ations by preference handling. This is done through the restriction of propagation and
choice operations to those rules that are not dominated by any preferred rules whose ap-
plication status is indeterminate (viz. M(Γ, C)). We have prototypically implemented
different operational variants, using different operators; the resulting Prolog implemen-
tation is available at

http://www.cs.uni-potsdam.de/∼konczak/system/GCplp.
An integration into the noMoRe system is envisaged in the near future.

Acknowledgements

The authors were partially supported by the German Science Foundation (DFG) under
grant FOR 375/1 and SCHA 550/6, TP C and they were partially funded by the In-
formation Society Technologies programme of the European Commission, Future and
Emerging Technologies under the IST-2001-37004 WASP project.

References

1. C. Anger, K. Konczak, and T. Linke. noMoRe: Non-monotonic reasoning with logic pro-
grams. In S. Flesca et al., editors, Proceedings of the Eighth European Conference on Logics
in Artificial Intelligence (JELIA’02), pages 521–524. Springer, 2002.

2. G. Brewka. Well-Founded Semantics for Extended Logic Programs with Dynamic Prefer-
ences. Journal of Artificial Intelligence Research, 4:19-36, 1996.

3. G. Brewka and T. Eiter. Preferred Answer Sets for Extended Logic Programs. Artificial
Intelligence, 109(1-2):297-356, 1999.

4. G. Brignoli, S. Costantini, O. D’Antona, and A. Provetti. Characterizing and computing
stable models of logic programs: the non-stratified case. In C. Baral and H. Mohanty, editors,
Proceedings of the Conference on Information Technology, Bhubaneswar, India, pages 197–
201. AAAI Press, 1999.

5. J. Delgrande, T. Schaub and H. Tompits. A Framework for Compiling Preferences in Logic
Programs. Theory and Practice of Logic Programming, 3(2):129-187, March 2003.

6. T. Eiter, W. Faber, N. Leone, G. Pfeifer. Computing preferred answer sets by meta-
interpretation in answer set programming. Theory and Practice of Logic Programming,
3(4-5):463-498, 2003.

7. M. Fitting. Fixpoint semantics for logic programming a survey. Theoretical Computer Sci-
ence, 278(1-2):25–51, 2002.

8. M. Gelfond and T. Son. Reasoning with Prioritized Defaults. Third International Workshop
on Logic Programming and Knowledge Representation, volume 1471 of Lecture Notes in
Computer Science, pages 164-223. Springer-Verlag, 1997.

9. B. Grosof. Prioritized Conflict Handling for Logic Programs. In J. Maluszynsk, editor, Logic
Programming: Proceedings of the 1997 International Symposium, pages 197-211. The MIT
Press, 1997.



10. K. Konczak, T. Linke and T. Schaub. Graphs and colorings for answer set programming:
Abridged Report, 2003. To appear.

11. K. Konczak, T. Linke and T. Schaub. Graphs and colorings for answer set programming with
preferences, 2003. In preparation.

12. N. Leone, W. Faber, G. Pfeifer, T. Eiter, G. Gottlob, C. Koch, C. Mateis, S. Perri and F. Scar-
cello. The DLV System for Knowledge Representation and Reasoning. ACM Transactions
on Computational Logic, 2003. To appear.

13. T. Linke. Graph theoretical characterization and computation of answer sets. In B. Nebel,
editor, Proceedings of the International Joint Conference on Artificial Intelligence, pages
641–645. Morgan Kaufmann Publishers, 2001.

14. J. Lloyd. Foundations of Logic Programming. Springer, 1987.
15. I. Niemelä, P. Simons and T. Soininen. Extending and implementing the stable model se-

mantics. Artificial Intelligence, 138(1-2):181-234, 2002.
16. C. Sakama and K. Inoue. Prioritized Logic Programming and its Application to Common-

sense Reasoning. Artificial Intelligence, 123(1-2):185-222, 2000.
17. T. Schaub and K. Wang. A semantic framework for preference handling in answer set pro-

gramming. Theory and Practice of Logic Programming, 3(4-5):569-607, 2003.
18. K. Wang, L. Zhou and F. Lin. Alternating fixpoint theory for logic programs with priority.

In Proceedings of the First International Conference on Computational Logic, volume 1861
of Lecture Notes in Computer Science, pages 164-178. Springer-Verlag, 2000.

19. Y. Zhang. Two results for prioritized logic programming. In Theory and Practice of Logic
Programming, 3(2):223-242, 2003.


