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ABSTRACT.Consistency-based approaches in nonmonotonic reasoning may be expected to yield
multiple sets of default conclusions for a given default theory. Reasoning about such extensions
is carried out at the meta-level. In this paper, we show how such reasoning may be carried
out at the object level for a large class of default theories. Essentially we show how one can
translate a (semi-monotonic) default theory∆, obtaining a second∆′, such that∆′ has a single
extension that encodes every extension of∆. Moreover, our translated theory is only a constant
factor larger than the original (with the exception of unique names axioms). We prove that
our translation behaves correctly. In the approach we can now encode the notion ofextension
from within the framework of standard default logic. Hence one can encode notions such as
skeptical and credulous conclusions, and can reason about such conclusions within a single
extension. This result has some theoretical interest, in that it shows how multiple extensions of
semi-monotonic default theories are encodable with manageable overhead in a single extension.
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1. Introduction

In nonmonotonic reasoning, in so-calledconsistency-basedapproaches such as
default logic [REI 80] and autoepistemic logic [MOO 85], one typically obtains not
just a single set of default conclusions, but rather multiple sets of candidate default
conclusions. Consider the by-now hackneyed example wherein Quakers are normally
pacifist, Republicans are normally not, along with adults are normally employed. As-
sume as well that someone is a Quaker, Republican, and an adult. In default logic (see
Section 2) this can be encoded by:({Q :P

P , R :¬P
¬P , A :E

E }, {Q,R,A}). This theory
has twoextensionsor sets of default conclusions, one containing{Q,R,A,E, P} and
the other{Q,R,A,E,¬P}. In autoepistemic logic the same example appropriately
encoded yields two analogousexpansionsor possible belief sets.

Reasoning about these extensions (resp. expansions) is carried out at the meta-
level: a default conclusion that appears in some extension (such asP ) is called a
credulous(or brave) default conclusion, while one that appears in every extension
(such asE) is called askepticalconclusion. Intuitively it might seem that skeptical
inference is the more useful notion. However, this is not necessarily the case. In
diagnosis from first principles [REI 87] for example, in one encoding there is a 1-1
correspondence between diagnoses and extensions of the (encoding) semi-monotonic
default theory. Hence one may want to carry out further reasoning to determine which
diagnosis to pursue. More generally there may be reasons to prefer some extensions
over others, or to somehow synthesize the information found in several extensions.

In this paper, we show how such reasoning can be carried out at the object
level. For a default theory∆ = (D,W ), we translate∆ to obtain a second theory
∆′ = (D′,W ′), such that∆′ has a single extension that encodes every extension of
∆. Given this, one can express in the theory what it means for something to be a skep-
tical or credulous default conclusion. Our result isn’t completely general; however it
applies tosemi-monotonicdefault theories. The translation has several desirable prop-
erties. The translated theory∆′ is only a constant factor larger than the original∆,
with the exception of introduced unique names axioms. As well, weprove that our
translation behaves correctly.

We first show for a set of defaultsDm how, using an encoding, we can detect the
case wherein all defaults inDm apply. From this, for a default theory(D ∪Dm,W )
we show how to obtain a second theory wherein (informally) either all of the de-
faults inDm are applied en masse (if possible) or none of them are. This is done by
naming each of the defaults inDm, and then expressing in default logic the appli-
cability conditions for the defaults. We develop this in Section 3. In Section 4 we
present our main result, where we show how a default theory can be translated into a
second theory whose extension encodes the extensions of the original. Roughly we
provide an axiomatisation that “locates” maximal sets of applicable defaults; for such
a set, the set of default conclusions is “tagged” with the set name, to distinguish it
from other instances. For example, in our original example, letm1,3 be the name of
the set{Q :P

P , A :E
E } andm2,3 be the name of{R :¬P

¬P , A :E
E }. These are maximal
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applicable sets of defaults, and from our translation we would obtain a single exten-
sion containing{Q(m1,3),Q(m2,3),R(m1,3),R(m2,3),A(m1,3), A(m2,3), E(m1,3),
E(m2,3),P (m1,3),¬P (m2,3)}. As mentioned, we are able to prove that our transla-
tions in fact accomplish what is claimed.

The advantage of this approach is that we can encode the notion of extension
within the framework of standard default logic. Hence one can reason about (skeptical
and credulous) conclusions within the framework of a single extension of a default the-
ory. Thus for example, in a diagnosis setting one could go on and axiomatise notions
of preference among diagnoses having to do with, perhaps, number of faulty compo-
nents, or based on components expected to fail first. This result has some theoretical
interest, in that it shows (for theories that we consider) how multiple extensions are
encodable, with no significant overhead in a single extension. The overall approach
builds on work in [DEL 00].

2. Default Logic

Default logic [REI 80] augments classical logic bydefault rulesof the form α : β
γ .

A default rule isnormal if β is equivalent toγ; it is semi-normalif β impliesγ. We
sometimes denote theprerequisiteα of a defaultδ by PRE(δ), its justificationβ by
JUS(δ), and itsconsequentγ by CON(δ). Accordingly,PRE(D) is the set of prereq-
uisites of all defaults inD; JUS(D) andCON(D) are defined analogously. Empty
components, such as no prerequisite or even no justifications, are assumed to be tau-
tological. Semantically, defaults with unbound variables are taken to stand for all
corresponding instances. A set of default rulesD and a set of formulasW form ade-
fault theory(D,W ) that may induce a single or multipleextensionsin the following
way [REI 80].

Definition 2.1 Let (D,W ) be a default theory and letE be a set of formulas. Define
E0 = W and fori ≥ 0:

GDi =
{
α : β1,...,βn

γ ∈ D
∣∣∣α ∈ Ei,¬β1 6∈ E, . . . ,¬βn 6∈ E

}
Ei+1 = Th(Ei) ∪ {CON(δ) | δ ∈ GDi}

ThenE is an extension for(D,W ) if E =
⋃∞
i=0Ei.

Any such extension represents a possible set of beliefs about the world at hand. Fur-
ther, define for a set of formulasS and a set of defaultsD, theset of generating default
rulesasGD(D,S) = {δ ∈ D | PRE(δ) ∈ S and¬JUS(δ) 6∈ S} .

An enumeration〈δi〉i∈I of default rules isgroundedin a set of formulasW , if we
have for everyi ∈ I thatW ∪ CON({δ0, . . . , δi−1}) ` PRE(δi). A default theory
(D,W ) is said to besemi-monotonicif, for D′ ⊆ D′′ ⊆ D, if E′ is an extension of
D′ then there is an extensionE′′ of D′′ whereE′ ⊆ E′′.

3



3. Applying All, or None, of a Set of Defaults

In this section we consider the problem of how to apply all defaults in some set, or
none in the set. We will thus work with default theories(D,W ) having some distin-
guished finite subsetDm ⊆ D. For making the setDm explicit, we denote such theo-
ries by(D ∪Dm,W ). The idea is that we wish to obtain extensions of(D ∪Dm,W )
subject to the constraint thatall defaults inDm are applied, ornoneare. For example,
in the theory

({
:A
A

}
∪
{

:B
B , C :D

D

}
, ∅
)

we would want to obtain an extension con-
tainingA, but notB (since both defaults in

{
:B
B , C :D

D

}
cannot be jointly applied).

For
({

:A
A

}
∪
{

:B
B , B :D

D

}
, {∅}

)
we would want to obtain an extension containingA,

B, andD.

We begin by associating a unique name with each default. This is done by ex-
tending the original language by a set of constants1 N such that there is a bijective
mappingn : D → N . We writenδ instead ofn(δ) (and we often abbreviatenδi by
ni to ease notation). Also, for defaultδ along with its namen, we sometimes write
n : δ to render naming explicit. To encode the fact that we deal with a finite set of
distinct default rules, we adopt a unique names assertion (UNAN ) and domain closure
assertion (DCAN ) with respect toN . So, for a name setN = {n1, . . . , nk}, we add
axioms

UNAN : ¬(ni = nj) for all ni, nj ∈ N with i 6= j
DCAN : ∀x. name(x) ≡ (x = n1 ∨ · · · ∨ x = nk) .

We write∀x ∈ N. P (x) for ∀x. name(x) ⊃ P (x).

We introduce a new constantm as the name of the designated rule setDm. We
relate the name of the rule set denoted bym with the names of its members by intro-
ducing a binary predicatein wherein(x, y) is true just if the default named byx is
a member of the set named byy. In this section, instances ofin will be of the form
in(·,m). While we could get away with not usingin (andm) here, this additional
machinery is required in Section 4, and it is most straightforward to introduce it here.
Note that we do not need a full axiomatization ofin, representing set membership,
since we use it in a very restricted fashion.

For applying all, or none, of the defaults inDm, we need to be able to, first, detect
when a rule has been applied or is blocked and, second, control the application of a
rule based on other prerequisite conditions. There are two cases for a defaultα : β

γ
to not be applied: the prerequisite is not known to be true (and so its negation¬α is
consistent), or the justification is not consistent (and so its negation¬β is derivable).
For detecting this case, we introduce a new, special-purpose predicatebl/1. Similarly
we introduce a special-purpose predicateap/1 to detect when a rule has been applied.
For controlling application of a rule we introduce predicatesok/1 andko/1.

1. [MCC 86] first suggested naming defaults using a set ofaspectfunctions. See also [POO 88,
BRE 94].
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We are given a default theory(D ∪Dm,W ) over languageL and its set of associ-
ated default namesN ∪̇{m}. 2 Let

Dm =
{
nj : αj : βj

γj

∣∣ j = 1..k
}
.

(For simplicity, we reuse the symbolsj, k,m, nj , αj , etc. below.) We defineSm((D∪
Dm,W )) = (D′,W ′) overL∗, obtained by extendingL to L∗ with new predicates
symbolsok/1, ko/1, bl/1, ap/1, and namesN ∪̇{m}, as follows

D′ = D ∪DN ∪DM

W ′ = W ∪WM ∪ {DCAN ,UNAN}

where

DN =
{
αj∧ok(nj) : βj
γj∧ap(nj)

∣∣∣ j = 1..k
}

(1)

DM =
{

:¬ko(m)
ok(n1)∧···∧ok(nk)

}
(2)

∪
{

:¬αj
bl(m) ,

(γ1∧···∧γk)⊃¬βj :
bl(m)

∣∣∣ j = 1..k
}

(3)

WM = {∀x ∈ N.in(x,m) ≡ (x = n1 ∨...∨ x = nk)} (4)

∪ {bl(m) ⊃ ko(m)} (5)

∪
{(
∀x ∈ N. in(x,m) ⊃ ap(x)

)
⊃ ap(m)

}
(6)

Clearly,DN contains the images of the original rules inDm. Each ruleδj ∈ DN is
applicable, ifok(nj) is derivable. In fact, we assertok(nj) for everyδj ∈ Dm, unless
we cannot jointly apply all rules ofDm. That is, before activating the constituent
rules, we have to make sure that none of them will be blocked. This is accomplished
through the justification¬ko(m) in (2) together with Axiom (5). We block rule (2)
(and with it the derivability of allok(nj)) when we detect that one ofδ1, . . . , δk is
blocked. That is,ko(m) will be an immediate consequence ofbl(m).

Now, we have thatDm is blocked (bl(m)) just if some rule inDm is blocked.
However, since we must control a whole set of defaults, we must check for the block-
age of one of the constituent default rules in the context of all other rules in the set
applying. For detecting the failure of consistency, we verify forDm and some set of
formulasS (cf. Definition 2.1), whetherS∪{γ1, . . . , γk} ` ¬βj rather thanS ` ¬βj .
This motivates the prerequisite of the second rule in (3). This context,(γ1 ∧ · · · ∧ γk),
is not needed for detecting the failure of derivability by means of the first rule in (3),
since this test is effectuated with respect to the final extensionE via¬αj 6∈ E.

Finally, as given in (6),Dm is applied (ap(m)) just if every rule inDm is applied;
it is only in this last case that the consequents of the constituent rules inDm are
asserted.

2. We let∪̇ stand for disjoint union.
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Consider theory(D ∪Dm,W ), where

D =
{

:E
E

}
, Dm =

{
n1 : :P

P , n2 : :S
S

}
. (7)

ForDN andDM , we obtain (after simplifying and removing redundant defaults):

ok(n1) :P
P∧ap(n1) ,

ok(n2) :S
S∧ap(n2) ,

:¬ko(m)
ok(n1)∧ok(n2) ,

¬P∨¬S :
bl(m) .

The in predicate has instances:in(n1,m) andin(n2,m). From (6) we can deduce
[ap(n1) ∧ ap(n2)] ⊃ ap(m).

Let W = {¬(P ∧ E ∧ S)}. We obtain two extensions, one containingP, S,¬E
and the other containingE,¬(P ∧S). For the first case, we obtainok(n1) andok(n2).
If both δ1 andδ2 are applicable (which they are) then we concludeP ∧ ap(n1) and
S ∧ ap(n1) as well asap(m). From this we getP andS and so¬E. For the other
extensions, if the default:EE is applied, then¬P ∨ ¬S is derivable, and so¬P∨¬S :

bl(m)

is applicable, from which we obtainbl(m), and soko(m), blocking application of
:¬ko(m)

ok(n1)∧ok(n2) . Consequently neitherok(n1) :P
P∧ap(n1) nor ok(n2) :S

S∧ap(n2) can be applied.

In the next example, defaults inside a set depend upon each other. Consider(∅ ∪
Dm, ∅) with

Dm =
{
n1 : :Q

Q , n2 : Q :R
R

}
.

We get forDN andDM the following rules.

ok(n1) :Q
Q∧ap(n1) ,

Q∧ok(n2) :R
R∧ap(n2) , :¬ko(m)

ok(n1)∧ok(n2) ,
¬Q∨¬R :

bl(m) , :¬Q
bl(m) .

We obtain ok(n1), and ok(n2), which allow us to apply defaultδ1, yielding in
turn Q ∧ ap(n1). Given Q, we can now apply defaultδ2, yielding R ∧ ap(n2).
From this we deduceap(m). We thus get an extension containingQ andR. This
example also shows why we cannot avoid the translation by replacingDm by∧
δ∈Dm PRE(δ) :

∧
δ∈Dm JUS(δ)∧

δ∈Dm CON(δ) . As well, in Section 4, this replacement would result in

an exponential blowup in the encoding.

The next theorem summarizes properties of our approach, and shows that rules are
applied either en masse, or not at all.

Theorem 3.1 LetE be a consistent extension ofSm((D∪Dm,W )) for default theory
(D ∪Dm,W ). We have that:

1) ap(m) ∈ E iff {ap(nδ) | δ ∈ Dm} ∪ CON(Dm) ⊆ E
2) bl(m) ∈ E iff {ap(nδ) | δ ∈ Dm} 6⊆ E
3) ok(nδ) ∈ E iff ap(nδ) ∈ E
4) ok(nδ) ∈ E for all δ ∈ Dm iff ko(m) 6∈ E
5) ap(nδ) ∈ E implies(ap(m) ∧ in(nδ,m)) ∈ E for someδ ∈ Dm

6) ap(nδ) ∈ E for δ ∈ Dm iff {ap(nδ) | δ ∈ Dm} ⊆ E.
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Theorem 3.2 For default theory(∅ ∪ D,W ), we have thatSm((∅ ∪ D,W )) has
extensionE where eitherE ∩ L = Th(W ∪ CON(D)) or elseE ∩ L = Th(W ).

The default theory
(
∅ ∪

{
:B
¬B
}
, ∅
)

has an extensionE whereE ∩ L = Th(∅).

Theorem 3.3 Let(D,W ) be a (standard) default theory overL with extensionE and
(respective) set of generating defaultsGD(D,E). ThenSm((∅∪GD(D,E),W )) has
extensionE′ whereE = E′ ∩ L.

4. Encoding extensions using sets

For encoding extensions of a semi-monotonic default theory(D,W ), we use the
machinery developed in the previous section to determine maximal (with respect to set
inclusion) sets of applicable defaults. Names are introduced for each subset ofD, and
for each instance of a rule in each subset ofD. As well, new predicate symbols are
introduced to further control application of sets of rules. We then give a translation
that yields a second default theory(D′,W ′). Viewed algorithmically, this second
theory carries out the following: If the original set of defaultsD constitutes the set
of generating defaults of an extension, then a corresponding “ap”-literal is derived;
all default consequences are obtained; and all subsets of the defaults are rendered
inapplicable. If this isn’t the case (andD isn’t a set of generating defaults), we proceed
along the partial order induced by set inclusion and consider every setD\{δ} for every
δ ∈ D to see whether it is a set of generating defaults. Crucially, default conclusions
are “tagged” with the name of the set in which they appear so as to eliminate possible
side effects.

To name sets of defaults, we take some fixed enumeration〈n1, . . . , nk〉 of N , and
definem as ak-ary function symbol. Then, forn⊥ 6∈ N , define

DCAM : ∀x1, . . . , xk. set-name(m(x1, . . . , xk)) ≡

(x1 = n1 ∨ x1 = n⊥) ∧ · · · ∧ (xk = nk ∨ xk = n⊥).

Intuitively, xi = n⊥ tells us thatni does not belong to the set at hand.

Accordingly, for~x = x1..xk and~x′ = x′1..x
′
k define

UNAM : ∀~x, ~x′. set-name(m(~x)) =

set-name(m(~x′)) ≡ x1 = x′1 ∧ · · · ∧ xk = x′k .

The advantage of this “vector-oriented” representation over a dynamic one including
a binary function symbol (as with lists) is that each set has a unique representation.
We write∀x ∈ M. P (x) instead of∀x. set-name(x) ⊃ P (x). Further, we useM for
denoting the set of all valid set-names, that is,

M = {m | DCAM |= set-name(m)} .
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In order to ease notation, we writem1,3 instead ofm(n1, n⊥, n3, n⊥, . . . , n⊥) when
representing the set{δ1, δ3}. Also, we abbreviatem(n⊥, . . . , n⊥) by m∅ and
m(n1, . . . , nk) by mD. Note the difference between namesni andmi, induced by
our notational convention.

We also rely on the “vector-oriented” representation for capturing set member-
ship, denoted byin/2. Consider for instanceN = {n1, n2}. Membership is then
axiomatized through the formulas

∀x1, x2. in(n1,m(x1, x2)) ≡ (n1 = x1)

∀x1, x2. in(n2,m(x1, x2)) ≡ (n2 = x2).

While this validatesin(n1,m1,2), it falsifies in(n1,m2). See (15) for the general
case.

We need to be able to refer to separate instances of the same default appearing in
different sets. For this we introduce a function-symbol·/2. For δj ∈ Di we write
nδj ·mi or nj ·mi to name the instance ofδj appearing inDi. This results in name
setN ·M = {n·m | n ∈ N,m ∈ M}. Corresponding axioms, as DCAN ·M and
UNAN ·M , are obtained in a straightforward way. In what follows, we refer to the
various domain closure and unique names axioms pertaining toN , M , andN ·M as
Ax(N).3

Given languageL, we define a family of languagesL(m) for m ∈ M as follows.
If P is ani-ary predicate symbol thenP (·) is a distinct (i+1)-ary predicate symbol. If
γ ∈ L thenγ(m) ∈ L(m) is the formula obtained by replacing all predicate symbols
in γ with predicate symbols extended as described, and with termm as the(i + 1)st

argument. This extra argument is used to index formulas by the (names of) sets in
which they are used.

Lastly, we introduce special-purpose predicates for controlling the application of
sets of defaults. These are summarised in the following table:

Name Use/meaning
m < m′ Dm ⊂ Dm′

ok(e) It is ok to try to apply set/rulee
ap(e) Set/rulee is applied
bl(m) Not all rules in setm can be applied
ovr(m) Some set namedm′ is applied andm < m′

ko(m) For setm, bl(m) ∨ ovr(m) is true

Taking all this into account, we obtain the following translation, mapping default the-
ories in languageL onto default theories in the languageL+ obtained by unioning
all languagesL(m) for m ∈ M and using the aforementioned names and introduced
predicates and functions:

3. Note that names inM andN ·M are obtained from those inN .
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Definition 4.1 Given a finite default theory(D,W ) overL and its set of associated
default namesN , defineE((D,W )) = (D′,W ′) overL+ by

D′ = DN ∪DM ∪D¬
W ′ = WD ∪WW ∪WM ∪W< ∪Ax(N)

where

DN =
{
α(x)∧in(n,x)∧ok(n·x) : β(x)

γ(x)∧ap(n·x)

∣∣∣ n : α : β
γ ∈ D

}
(8)

DM =
{

ok(x) :¬ko(x)
∀y∈N. in(y,x)⊃ok(y·x)

}
(9)

∪
{
in(n,x)∧ok(x) :¬α(x)

bl(x)

∣∣∣ n : α : β
γ ∈ D

}
(10)

∪
{

([∀y∈N. in(y,x)⊃c(y,x)]⊃¬β(x))∧ok(x) :
bl(x)

∣∣∣ n : α : β
γ ∈ D

}
(11)

D¬ =
{

:¬(x<y)
¬(x<y) ,

:¬in(x,y)
¬in(x,y)

}
(12)

WW = {∀x ∈M. α(x) | α ∈W} (13)

WD = {∀x ∈M. c(nδ, x) ≡ CON(δ)(x) | δ ∈ D} (14)

WM = {∀x1, . . . , xk. in(ni,m(x1, . . . , xk)) (15)

≡ (ni = xi) | ni in 〈n1, . . . , nk〉}

∪ {∀x, x′∈M.[∃y ∈ N.¬in(y, x) ∧ in(y, x′)] (16)

∧ [∀y. in(y, x) ⊃ in(y, x′)] ⊃ x < x′ }

W< = {ok(mD)} (17)

∪ {∀x ∈M.
[
∀y ∈M.x < y ⊃ bl(y)

]
⊃ ok(x)} (18)

∪ {∀x ∈M.
[
bl(x) ∨ ovr(x)

]
⊃ ko(x)} (19)

∪ {∀x ∈M.
[
∀y ∈ N. in(y, x) ⊃ ap(y·x)

]
⊃ ap(x)} (20)

∪ {∀x, x′ ∈M. ap(x) ⊃ (x′ < x ⊃ ovr(x′))} (21)

The rules inDN andDM directly generalise those in (1–3), from treating a single set
namedm to an arbitrary set referenced by variablex. The specific consequents used
in the second rule in (3) are dealt with via the axioms in (WD/14) that allows us to
quantify over default consequents (via predicatec). This trick avoids the exponential
blowup that would occur in (11) if we were to explicitly give the consequences of the
rules.

The rules in (D¬/12) provide us with complete knowledge on predicates< andin.
The axioms in (WW /13) propagate the information inW to all possible contexts.

WM takes care of what we need wrt set operations. That is, (15) formalises set
membership, while (16) formalises strict set inclusion.W< axiomatises the control
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flow along the partial order induced by<. Axioms (17) and (18) tell us when it isok to
consider a certain set: we always consider the maximum setD; otherwise, via (18), we
consider a set just when every superset is known to be blocked (and so inapplicable).
(19) tells us when the consideration of a set is cancelled. This either happens because
a set is inapplicable (given bybl) or because it has been explicitly cancelled (given by
ovr). (20) asserts that a set is applied just if all of its member rules are. Once we have
found an applicable set of rules (and hence a set of generating defaults) we need not
consider any subset; (21) annuls the consideration of all such subsets.

For example, consider the following normal default theory:

∆22 =
({
n1 : :A

A , n2 : :B
B , n3 : :¬B

¬B , n4 : B :D
D

}
, ∅
)
. (22)

From E(∆22) we get an extension, where the only “ap-literals” areap(m1,2,4) and
ap(m1,3). That is,∆22 has two extensions with generating defaults, the first withδ1,
δ2, δ4, and the second withδ1, δ3. Among formulas in the extension ofE(∆22) are
A(m1,2,4), A(m1,3), B(m1,2,4), ¬B(m1,3), andD(m1,2,4). To see this, let us take a
closer look at the image of∆22, namelyE(∆22). ForDN , we get

in(n1,x)∧ok(n1·x) :A(x)
A(x)∧ap(n1·x)

in(n2,x)∧ok(n2·x) :B(x)
B(x)∧ap(n2·x) (23)

in(n3,x)∧ok(n3·x) :¬B(x)
¬B(x)∧ap(n3·x)

B(x)∧in(n4,x)∧ok(n4·x) :D(x)
D(x)∧ap(n4·x) (24)

We get a single nontrivial rule in (10), namely

in(n4,x)∧ok(x) :¬B(x)
bl(x) (25)

and four rules in (11)

([∀y∈N. in(y,x)⊃c(y,x)]⊃¬A(x))∧ok(x) :
bl(x) (26)

([∀y∈N. in(y,x)⊃c(y,x)]⊃¬B(x))∧ok(x) :
bl(x) (27)

([∀y∈N. in(y,x)⊃c(y,x)]⊃ B(x))∧ok(x) :
bl(x) (28)

([∀y∈N. in(y,x)⊃c(y,x)]⊃¬D(x))∧ok(x) :
bl(x) (29)

Given ok(mD), we may consider any rule inDM . However, given that∀y ∈
N. in(y,mD) is true, we obtain that (14) and∀y ∈ N. in(y,mD) ⊃ c(y,mD)
are inconsistent and thus imply any formula. Consequently, rules (26) to (29) are
applicable and providebl(mD), yielding ko(mD), which in turn blocks (9) for
x = mD. From (16), we obtain (among other relations)m1,2,3 < mD,m1,2,4 < mD,
m1,3,4 < mD, andm2,3,4 < mD. From (18), we then getok(m1,2,3), ok(m1,2,4),
ok(m1,3,4), andok(m2,3,4).

Now, considerok(m1,2,4). From (9), we obtain

∀y ∈ N. in(y,m1,2,4) ⊃ ok(y·m1,2,4)
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yielding ok(n1·m1,2,4), ok(n2·m1,2,4), and ok(n4·m1,2,4). This allows us to ap-
ply three of the four rules in (23/24) and we obtainA(m1,2,4) ∧ ap(n1·m1,2,4),
B(m1,2,4) ∧ ap(n2·m1,2,4), andD(m1,2,4) ∧ ap(n4·m1,2,4). From (20), we ob-
tain ap(m1,2,4), from which we deduce with (21) in turnovr(m1,2,4), ovr(m2,4), . . . ,
ovr(m4), andovr(m∅).

Next, considerok(m1,2,3). As with ok(mD), we obtain an inconsistency among
in(n1,m1,2,3), in(n2,m1,2,3), in(n3,m1,2,3), ∀y ∈ N. in(y,m1,2,3) ⊃ c(y,m1,2,3),
and (14). This validates the prerequisites of rules (26), (27), and (28), thus yielding
bl(m1,2,3). As above, we then get fromWM thatok(m1,2), ok(m1,3), ok(m2,3). Note
that we have already obtainedovr(m1,2) from ap(m1,2,4).

Given ok(m1,3), (9) provides us withok(n1·m1,3) andok(n3·m1,3). Using the
two first rules in (23/24), we getA(m1,3)∧ap(n1·m1,3) and¬B(m1,3)∧ap(n3·m1,3).
From (20), we then getap(m1,3), from which we deduce with (21) in turnovr(m1),
ovr(m3), andovr(m∅) (again).

Given ok(m2,3), along with the fact thatin(n2,m2,3), in(n3,m2,3), ∀y ∈
N. in(y,m2,3) ⊃ c(y,m2,3), and (14) implyB(m2,3) and¬B(m2,3), Rule (27)
and (28) fire and we getbl(m2,3).

The next results show that our default theories resulting fromE have appropriate
properties.

Theorem 4.1 LetE be a consistent extension ofE((D,W )) for semi-monotonic de-
fault theory(D,W ). We have for allδ ∈ D and for allDm, Dm′ ⊆ D that:

1) (m < m′) ∈ E iff ¬(m < m′) 6∈ E
2) in(nδ,m) ∈ E iff ¬in(nδ,m) 6∈ E
3) ok(m) ∈ E if ovr(m) 6∈ E
4) ok(m) ∈ E if (ap(m) ∈ E or bl(m) ∈ E)

5) ap(m) ∈ E iff ko(m) 6∈ E
6) ko(m) ∈ E iff (bl(m) ∈ E or ovr(m) ∈ E)

7) ovr(m) ∈ E iff ap(m′) ∈ E andm < m′ ∈ E for somem′ ∈M .

8) If ap(m) ∈ E thenbl(m′) ∈ E for all m′ ∈M withm < m′ ∈ E.

9) If ap(m) ∈ E thenovr(m′) ∈ E for all m′ ∈M withm′ < m ∈ E.

10) If ap(m), ap(m′) ∈ E then¬(m < m′) ∈ E

Theorem 4.2 If (D,W ) is a semi-monotonic default theory thenE((D,W )) has a
unique extension.

The next two theorems show that our translation captures an encoding of exten-
sions of a semi-monotonic default theory.
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Theorem 4.3 Let (D,W ) be a semi-monotonic default theory and letE be the exten-
sion ofE((D,W )).

Then for anyap(m) ∈ E with m ∈ M , we have thatTh({γ | γ(m) ∈ E}) is an
extension of(D,W ).

Theorem 4.4 Let (D,W ) be a semi-monotonic default theory with extensions
E1, ..., En and letE be the extension ofE((D,W )).

Then, for anyi ∈ {1, . . . , n}, there is somem ∈M namingGD(D,Ei) such that
ap(m) ∈ E.

Lastly, our claim that a translated theory is a constant factor larger than the original
requires a caveat. UNAN yields a quadratic number of unique names assertions. In
practice this is no problem, since any sensible implementation would not explicitly
list such axioms. With the exception of unique names assertions, a translated theory
is a constant factor larger than the original. To see this, it suffices to examine Defini-
tion 4.1. Each of (8, 10, 11, 14, 15) introduce|D| axioms/rules; (13) introduces|W |
axioms. All remaining terms introduce a single axiom. Moreover, the size of indi-
vidual axioms is similarly bounded. (For example, each instance of (8) is a constant
factor larger than the original default.)

5. Discussion

We have shown how we can encode a semi-monotonic default theory so that the
extension from the encoding represents all extensions of the original theory. The fact
that we encode all extensions of a theory within a single extension means that we can
now encode phenomena of interest, usually dealt with at the metalevel, at the object
level. Specifically we can now encode the notions of skeptical and credulous inference
within a theory. In order to do this, we introduce two new constantsskep andcred,
for “skeptical” and “credulous” respectively.

A formula is a skeptical inference if it is a member of every extension. In our
approach, this means that it follows in every “ap-set”. Hence we define skeptical
inference within a theory, for a given formulaγ, by

(∀x ∈M. ap(x) ⊃ γ(x)) ⊃ γ(skep).

For credulous inference, the simplest option is to assert that a formula is a credulous
inference if it is a member of some extension:

(∃x ∈M. ap(x) ∧ γ(x)) ⊃ γ(cred).

However, this is overly simplistic, since with this definition, a formula and its negation
may be credulous inferences. A more reasonable definition is to assert that a formula
is a credulous inference if it is a member of some extension, and its negation is a
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member of no extension. We can define this notion of credulous inference (indicated
by cred′) for a formulaγ by means of the default:

∃x ∈M. ap(x) ∧ γ(x) : ∀x ∈M. ap(x) ⊃ γ(x)
γ(cred′)

.

Hence in Example (22), we obtain thatA is a skeptical inference, whileD is a
cred′ulous inference.B and¬B arecredulous inferences.

We have suggested that the approach may be applicable in diagnosis programs,
such as found in [REI 87]. Similarly, the approach can be used to directly encode
applications expressible in Theorist [POO 88]. That is, there is a correspondence be-
tween so-calledPoole-typetheories and Theorist with constraints [DIX 92]. Since
Poole-type theories are semi-monotonic, this means that our approach can encode any
application encodable in Theorist.

Our approach relies on a first-order language. Despite this, the image of a theory
over a finite language remains finite. As regards implementation, however, it is not
advisable to use a bottom-up grounding approach, as done in many implementations
of extended logic programming [EIT 97, NIE 97]. Instead, a query-oriented approach
seems to be advantageous, because it may rely on unification rather than ground in-
stantiation.

In Definition 4.1, sets of defaults were ordered based on the partial order given
by set containment. This order represents one example of apreferenceorder on sets
of defaults. A natural avenue for future work would be to generalise our approach
to address arbitrary preference orders on sets of defaults. In an arbitrary preference
order on sets, one could represent desiderata as found in configuration, scheduling, or
(generally) decision-theoretic problems. This could also be combined with the present
approach yielding an encoding of preferences on extensions. Hence, for our diagnosis
example, we might want to prefer extensions (diagnoses) on the basis of an ordering
based on reliability of components.

6. Conclusion

We have described an approach for encoding default extensions within a single
extension. Using constants and functions for naming, we can refer to default rules, sets
of defaults, and instances of a rule in a set. Via these names we can, first, determine
whether a set of defaults is its own set of generating defaults and, second, consider
the application of sets of defaults ordered by set containment. The translated theory
requires a modest increase in space: except for unique names axioms, only a constant-
factor increase is needed. The translated theory is a (regular, Reiter) default theory.
Hence we essentially axiomatise the notion of “extensions” for the class of semi-
monotonic default theories, resulting in a single extension. Further, we are able to
prove that our translation behaves correctly.
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Using the approach we can now express notions such as skeptical and credulous in-
ference within a theory. Arguably this will prove beneficial in expressing at the object
level problems and approaches generally expressed at the metalevel. Areas of appli-
cation range from specific areas such as diagnosis, to broadly-applicable approaches
such as Theorist. Lastly, we suggest that the approach may be easily extended to
address arbitrary preferences over sets of defaults.

A. Proofs of Theorems

A.1. Proofs for Section 3

The following definition is used in the proofs.

Definition A.1 ([REI 80]) Let (D,W ) be a default theory. For any set of formulas
S, let Γ(S) be the smallest set of formulasS′ such that

1)W ⊆ S′,
2) Th(S′) = S′,

3) For anyα : β
γ ∈ D, if α ∈ S′ and¬β 6∈ S thenγ ∈ S′.

A set of formulasE is an extension of(D,W ) if Γ(E) = E.

With respect to the various translations we adopt the following notation: For a
set of defaults with namem and one of its members with namen, let δma , δm,nb1

, and
δm,nb2

be the corresponding default rules inDM . Let δm,na denote the transform of the
individual default namedn with x instantiated tom in DN .

Proof 3.1

1. if part Supposeap(nδ) ∈ E for all δ ∈ Dm. SinceE is deductively closed and
sinceE contains Formula (6), we deduce thatap(m) ∈ E.

only-if part Supposeap(m) ∈ E. By construction, this impliesap(nδ) ∈ E for all
δ such thatin(nδ,m) ∈ E, or δ ∈ Dm. By the definition ofDN andWD,
however, we haveap(nδ) ∈ E only if CON(δ) ∧ ap(nδ) ∈ E. Since this holds
for all δ ∈ Dm, we obtain{ap(nδ) | δ ∈ Dm} ∪ CON(Dm) ⊆ E.

2. if part Suppose{ap(nδ) | δ ∈ Dm} 6⊆ E. Thus, there is someδ ∈ Dm such
thatδm,nδa 6∈ GD(D′, E). Then, one of the following cases must be true.

- If ¬JUS(δ) ∈ E, then clearly fromWD we get CON(δ1) ∧ · · · ∧
CON(δk) ⊃ ¬JUS(δ) ∈ E, where{δ1, . . . , δk} = Dm. By Theorem 3.1.3
and the fact thatE is deductively closed, we get that

[CON(δ1) ∧ · · · ∧ CON(δk) ⊃ ¬JUS(δ)] ∧ ok(m) ∈ E.

Henceδm,nδb2
∈ GD(D′, E), that is,bl(m) ∈ E.

14



- SupposePRE(δ)∧ ok(nδ) 6∈ E. SinceE is deductively closed, we may
distinguish the following cases.

- AssumePRE(δ) 6∈ E. Consequently,δm,nδb1
∈ GD(D′, E), that is,

bl(m) ∈ E.

- If ok(nδ) 6∈ E, thenδma 6∈ GD(D′, E), since this is the only means by
which we can fail to obtainok(nδ) ∈ E. Henceovr(m) ∈ E; hence from (5) we
getbl(m) ∈ E.

Thus, in all cases we obtain thatbl(m) ∈ E.

only-if part Supposebl(m) ∈ E. We distinguish the following two cases.

- If δm,njb1
∈ GD(D′, E), then we have thatPRE(δj) 6∈ E for someδj ∈ Dm.

Therefore,(δj)
m,nj
a 6∈ GD(D′, E) and clearlyap(nj) 6∈ E.

- If δm,njb2
∈ GD(D′, E), then we have for someδj ∈ {δ1, . . . , δk} = Dm that

CON(δ1) ∧ · · · ∧ CON(δk) ⊃ ¬JUS(δj) ∈ E. (30)

Assume{ap(nδ) | δ ∈ Dm} ⊆ E, that is, by definition ofDN that {CON(δ) ∧
ap(nδ) | δ ∈ Dm} ⊆ E. SinceE is deductively closed we get from (30) that
¬JUS(δj) ∈ E and therefore(δj)

m,nj
a 6∈ GD(D′, E) and clearlyap(nj) 6∈ E, a

contradiction.

In both cases we thus obtain{ap(nδ) | δ ∈ Dm} 6⊆ E.

if part Supposeap(nδ) ∈ E. Then we have necessarily thatδm,nδa ∈ GD(D′, E),
and therefore thatPRE(δ) ∧ ok(nδ) ∈ E, and sook(nδ) ∈ E.

only-if part Supposeok(nδ) ∈ E. Then, we have by definition ofDM that

:¬ovr(m)
ok(n1)∧···∧ok(nδ)∧···∧ok(nk) ∈ GD(D′, E).

Clearly, we thus haveovr(m) 6∈ E; this impliesbl(m) 6∈ E. As a consequence,
we getδm,nδb1

6∈ GD(D′, E) and δm,nδb2
6∈ GD(D′, E). We obtain for each

δ ∈ {δ1, . . . , δk} = Dm that

PRE(δ) ∈ E and CON(δ1) ∧ · · · ∧ CON(δk) ⊃ ¬JUS(δ) 6∈ E.

Furthermore, the latter gives¬JUS(δ) 6∈ E. With ok(n1)∧ · · · ∧ ok(nδ)∧ · · · ∧
ok(nk) ∈ E and the fact thatE is deductively closed, we get thatδm,nδa ∈
GD(D′, E) for all δ ∈ Dm. That is, sinceE is deductively closed,ap(nδ) ∈ E
for all δ ∈ Dm.

if part Supposeovr(m) 6∈ E, and sobl(m) 6∈ E. As a consequence, we get
δm,nδb1

6∈ GD(D′, E) and δm,nδb2
6∈ GD(D′, E) for someδ ∈ Dm. As a

corollary of Theorem 3.1.1-2, we obtain that:δma ∈ GD(D′, E) iff (δm,nδb1
6∈

GD(D′, E) andδm,nδb2
6∈ GD(D′, E) for all δ ∈ Dm). This implies thatδma ∈

GD(D′, E). Thereforeok(nδ) ∈ E.
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only-if part If ok(nδ) ∈ E, thenδma ∈ GD(D′, E), that is,ovr(m) 6∈ E.

The if-part is trivial.

For the only-if part, assume thatap(nδ) ∈ E for someδ ∈ Dm. Thenδm,nδa ∈
GD(D′, E) and thereforeδma ∈ GD(D′, E).

We also havein(nδ,m) ∈ E for all δ ∈ Dm. Further,δma ∈ GD(D′, E) implies
ok(nδ) ∈ E for all δ ∈ Dm. By Theorem 3.1.3, this impliesap(nδ) ∈ E for all
δ ∈ Dm.

Proof 3.2

1) First, assume that default theory(∅ ∪ D,W ) has an extensionE where
GD(D,E) = D.

From Definition 2.1 we have thatE =
⋃∞
i=0Ei where

E0 = W

Ei+1 = Th(Ei) ∪
{
γ
∣∣∣ α : β

γ ∈ D,α ∈ Ei,¬β 6∈ E
}
.

Obviously thenE =
⋃∞
i=0Ei where

E0 = W ∪ {ok(n1) ∧ · · · ∧ ok(nk)}

Ei+1 = Th(Ei) ∪
{
γ
∣∣∣ α : β

γ ∈ D,α ∈ Ei,¬β 6∈ E
}
.

defines an extension of(DN ,W ∪ {ok(n1) ∧ · · · ∧ ok(nk)}).
ReplacingW with W ′ in the above defines an extension of(DN ,W

′ ∪ {ok(n1)∧
· · ·∧ok(nk)}) as well as of(DN ∪DM ,W

′∪{ok(n1)∧· · ·∧ok(nk)}) or (D′,W ′∪
{ok(n1) ∧ · · · ∧ ok(nk)})

From this it follows that

E′−1 = W ′

E′0 = Th(W ′) ∪ {ok(n1) ∧ · · · ∧ ok(nk)}

= Th(E−1) ∪
{
γ
∣∣∣ α : β

γ ∈ D′, α ∈ E−1,¬β 6∈ E′
}

E′i+1 = Th(E′i) ∪
{
γ
∣∣∣ α : β

γ ∈ D′, α ∈ E′i,¬β 6∈ E′
}

for i > 1.

andE′ =
⋃∞
i=−1E

′
i defines an extension of(D′,W ′).

Thus for this case we have thatSm((∅ ∪D,W )) has extensionE whereE ∩ L =
Th(W ∪ CON(D)).

(Note for this case that havingbl(m) in our purported extensionE′ would contra-
dict the assumption thatD is a set of generating defaults for(∅ ∪D,W ).
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2) Assume thatD is not a set of generating defaults for default theory(∅∪D,W ).
Thus for any setE and for

E0 = W

Ei+1 = Th(Ei) ∪
{
γ
∣∣∣ α : β

γ ∈ D,α ∈ Ei,¬β 6∈ E
}
.

we have thatE 6=
⋃∞
i=0Ei.

In particular this holds forE = Th(W ∪ CON(D)).
Since

⋃∞
i=0Ei = Th(W ∪ C) for someC ⊂ CON(D), this means that some

defaultδj ∈ D fails to apply. There are two possibilities:

a)αj 6∈ Ei for everyi ≥ 0, or

b) ¬βj ∈ E.

For the first case, assume that there is an extensionE′ of Sm((∅ ∪ D,W )) con-
tainingαj . Sinceαj 6∈W ′ \W we have thatW ∪ C ′ ` αj for someC ′ ⊂ CON(D).

SinceW ` αj contradictsαj 6∈ Ei above, we have thatC ′ 6= ∅ and hence
ap(n) ∈ E′ for some defaultn : δ.

From Theorem 3.1.6 we obtain that{ap(nδ) | δ ∈ D} ⊆ E′, hence in particular
ap(nj) ∈ E′ and soαj ∈ GDi, a contradiction.

Hence there is no extensionE′ of Sm((∅ ∪D,W )) containingαj .

It follows that Th({W ′, bl(m), ok(n1) ∧ · · · ∧ ok(nk)}) is an extension of
Sm((∅ ∪ D,W )): we have shown thatαj ∈ E′ is not possible for any purported
extension. Henceδm,njb1

does apply, yieldingbl(m), andovr(m). This then prevents
δma and any ofδm,na from applying.

In the second case, where¬βj ∈ E, sinceE = Th(W ∪ CON(D)) we get that
W ∪ CON(D) ` ¬βj which, by the previous argument, gives an extensionSm((∅ ∪
D,W )) by virtue of the applicability ofδm,njb2

Proof 3.3

This follows immediately from the first part of the proof of Theorem 3.2.

A.2. Proofs for Section 4

We first show the following results:

Lemma 1 Let E be a consistent extension ofS((D,W,<)) = (D′,W ′) for set–
ordered default theory(D,W,<).
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1) (m < m′) ∈ E iff ¬(m < m′) 6∈ E
2) in(nδ,m) ∈ E iff ¬in(nδ,m) 6∈ E

Proof 1

1. By the consistency ofE, we cannot have bothm < m′ ∈ E and¬(m < m′) ∈
E.

Assume that for someDm, Dm′ ⊆ D, we have neitherm < m′ ∈ E nor¬(m <

m′) ∈ E. Then, however, the default rule:¬(m<m′)
¬(m<m′) in D¬ is applicable and we

obtain¬(m < m′) ∈ E, which contradicts our assumption.

We have thus shown thatm < m′ ∈ E iff ¬(m < m′) 6∈ E.

2. Analogous to Proof 1.1.

Lemma 2 Let E be a consistent extension ofS((D,W,<)) = (D′,W ′) for set–
ordered default theory(D,W,<).

1) We have for allD1, D2 ⊆ D that (m1 < m2) ∈ E iff (m1 < m2) ∈W ′.
2) We have for allDm ⊆ D andδ ∈ D that in(nδ,m) ∈ E iff in(nδ,m) ∈W ′.

Proof 2

1) Clearly, we have(m1 < m2) ∈ E if (m1 < m2) ∈W ′.
Assume we have(m1 < m2) ∈ E and(m1 < m2) 6∈ W ′. Since(m1 < m2) 6∈

W ′ = E0, there must exist (according to Definition 2.1) somei ≥ 0 with (m1 <

m2) 6∈ Ei but (m1 < m2) ∈ Ei+1. Since there are no default rules with consequents
containing positive occurrences of<-literals, we must have(m1 < m2) ∈ Th(Ei) .
For the same reason, all positive occurrences inEi must stem fromW<. In fact, all
positive occurrences of<-literals inW< (in clause form) come from (16) or (18) in
W<. For (16), we obtain(m1 < m2) ∈ W ′, a contradiction. (18) can be written
in the form((m1 < m2) ∧ φ) ∨ ϕ ∨ ok(m1) for some formulasφ, ϕ. A proof for
Ei ` (m1 < m2) must thus contain the negativeok-literal ok(m1). There are however
no negative occurrences ofok-literals inS((D,W,<)), neither inD′ nor in W ′, a
contraction.

2) Analogous to proof of Lemma 2.1.

Proof 4.1

4+5+6. We show for allDm ∈ 2D by induction on< thatok(m) ∈ E iff bl(m) ∈ E
or ap(m) ∈ E, and thatap(m) ∈ E iff ko(m) 6∈ E, or ko(m) ∈ E iff ( bl(m) ∈ E or
ovr(m) ∈ E).
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ConsiderDm ∈ 2D and assume that for allDm′ with Dm ⊂ Dm′ we have
ok(m′) ∈ E iff bl(m′) ∈ W or ap(m′) ∈ E, andap(m′) ∈ E iff ko(m′) 6∈ E,
andko(m) ∈ E iff ( bl(m) ∈ E or ovr(m) ∈ E).

First, we have the following lemma.

Lemma 3 Given the induction hypothesis, we haveok(m) ∈ E iff

for everym′ wherem < m′ we havebl(m′) ∈ E.

Proof 3 The lemma holds trivially form = mD.

Otherwise, by the induction hypothesis, we haveap(m′) ∈ E iff
ko(m′) 6∈ E for all Dm′ with Dm ⊂ Dm′ . Hencebl(m′) 6∈ E since
the only wayovr(m′) is derivable is via (19).

By definition of W< and Lemma 1, we havem < m′ ∈ E for all
Dm, Dm′ with Dm ⊂ Dm′ .

Analogously, we get(m < m′) 6∈ E for all Dm, Dm′ with Dm 6⊂ Dm′ .
From this, we get by means ofD¬ that¬(m < m′) ∈ E for allDm, Dm′

with Dm 6⊂ Dm′ .

Consider the following cases.

- There ism′ wherem < m′ ∈ E andap(m′) ∈ E.

BecauseE is deductively closed and contains (21) we derive
ovr(m) ∈ E, andko(m) from (19).

The only way in whichok(m) can be derived is via (18).bl(m′) 6∈
E by the induction hypothesis, and so we deduce thatok(m) 6∈ E.

- For everym′ wherem < m′ ∈ E we haveap(m′) 6∈ E.

We obtain that for every suchm′ that ko(m′) ∈ E. As well,
ovr(m′) 6∈ E sinceovr(m′) is derivable only via (19). Thusbl(m′) ∈ E.
Thenok(m) ∈ E by (18).

ForDm = {δj | j = 1..k} ∈ 2D, we distinguish the following cases.

- If ok(m) :¬ko(m)
∀y∈N. in(y,x)⊃ok(y·x) ∈ GD(D′, E), thenok(m) ∈ E andko(m) 6∈ E.

The latter impliesbl(m) 6∈ E. As a consequence, we getδm,njb1
6∈ GD(D′, E) and

δ
m,nj
b2

6∈ GD(D′, E) for j = 1..k. Sinceok(m) ∈ E, we thus have for eachδj ∈
{δ1, . . . , δk} = Dm that

PRE(δj) ∈ E

and CON(δ1) ∧ · · · ∧ CON(δk) ⊃ ¬JUS(δj) 6∈ E. (31)

Furthermore, (31) implies¬JUS(δj) 6∈ E.With ∀y ∈ N. in(y, x) ⊃ ok(y·x) ∈ E and
the fact thatE is deductively closed, we get that(δj)m,na ∈ GD(D′, E) for j = 1..k.
That is, sinceE is deductively closed,ap(nj ·m) ∈ E for j = 1..k. And from this we
conclude by Theorem 3.1.6 thatap(m) ∈ E.
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- If ok(m) :¬ko(m)
∀y∈N. in(y,x)⊃ok(y·x) 6∈ GD(D′, E), then we have thatko(m) ∈ E : The

only other possibility is thatok(m) 6∈ E. But then by Lemma 3 we would have that
there ism′ wherem < m′ andap(m′) ∈ E. But then, sinceE is deductively closed,
we getovr(m) ∈ E via (21) and soko(m) ∈ E.

Consequently we haveko(m) ∈ E. It follows that ap(m) 6∈ E: Assume to
the contrary thatap(m) ∈ E. ap(m) is derivable via (20) only. But this means
that ap(nj ·m) ∈ E for everyδj ∈ Dm; henceok(nj ·m) ∈ E for everyδj ∈ Dm,
or for in(nj ,m). But ok(nj ·m) is obtainable only from application of the default

ok(mi) :¬ovr(mi)
∀y∈N. in(y,x)⊃ok(y·x) , contradiction.

A similar argument established thatbl(m) 6∈ E.

This demonstrates thatok(m) ∈ E iff ap(m) ∈ E or bl(m) ∈ E, and that
ap(m) ∈ E iff ko(m) ∈ E and thatko(m) ∈ E iff ( bl(m) ∈ E or ovr(m) ∈ E)
for all Dm ∈ 2D.

3. This is a corollary of the preceding.

7. The if-part follows immediately from the last line inW< (21). For the only-if
part, we observe thatovr(m) can be derived only from (21).

8. Assume thatap(m) ∈ E for somem and that for somem′ wherem < m′ ∈ E
we havebl(m′) 6∈ E. This means thatko(m′) 6∈ E sinceko(m′) ∈ E is derivable
only by (19). ko(m′) 6∈ E implies ap(m) ∈ E (Theorem 4.1.5) and (fromW<) we
get ovr(m) ∈ E. But thenko(m) ∈ E andap(m) ∈ E, ko(m) ∈ E contradicts
Theorem 4.1.5.

9. This is obvious from (21).

10. Assume thatap(m), ap(m′) ∈ E where(m < m′) ∈ E. Sinceap(m′) ∈ E
we have from (21) thatovr(m) ∈ E andko(m) ∈ E. But ap(m) ∈ E, ko(m) ∈ E
contradicts Theorem 4.1.5.

Proof 4.3 Let (D,W ) be a semi-monotonic default theory and letE be an extension
of E(D,W ) = (D′,W ′).

We make use of the following definition:

Definition A.2 ↓(S,m) = {γ ∈ L | γ(m) ∈ S}.

Assume thatap(m) ∈ E where m is the name ofDm. We show that
↓(Th(W ∪ CON(Dm)),m) is an extension of(D,W ).

We haveok(m) ∈ E by Theorem 4.1.4. Leti be the least integer such that
ok(m) ∈ Ei, and letj be the least integer such thatap(m) ∈ Ej . (That is, in the
definition of an extension there is some step,i, whereok(m) is asserted. Following
this the defaults corresponding to elements ofDm are applied. At (later) stepj > i
we are “done” applying the defaults andap(m) is asserted.)
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Lemma 4 ↓(Ei,m) = Th(W ) for i as above.

Proof 4 Sinceap(m) ∈ Ej we haveap(m) ∈ E, and from Theo-
rem 4.1.8 we get thatbl(m′) ∈ E for all m′ such thatm < m′. Thus
ko(m′) ∈ E.

Thus for everym′ wherem < m′ and for defaultδl ∈ Dm′ we have
ok(nl·m′) 6∈ E (since the only wayok(nl·m′) can be inferred is from
(9)). Hence defaultδl isn’t applied inE. Since this holds for arbitrarym′

wherem < m′, it follows that ↓(Ei,m) = ↓(E0,m) = Th(W ).

Sinceap(m) ∈ E, ko(m) ∈ E via Theorem 4.1.5, so (9) is applicable at stepi+1.

We have:

Ei+1 ⊆ Th(Ei) ∪ {ok(nj ·m) | δj ∈ Dm}

Ei+k+1 ⊆ Th(Ei+k) ∪
{
γ(m) ∧ ap(n·m)

∣∣∣α(m)∧in(n,m)∧ok(n·m) : β(m)
γ(m)∧ap(n·m) ∈ Dm,

α(m) ∧ in(n,m) ∧ ok(n·m) ∈ Ei+k,¬β(m) 6∈ E} for 0 < k < j − i.

Ej ⊆ Th(Ej−1) .

Observe that fork > j we have↓(Ek,m) = ↓(Ej ,m) since the namem appears
only in relation to the setDm.

Define:Emk = ↓(Ei+k+1,m) for 0 ≤ k.

For later use, we have the following small lemma.

Lemma 5 ⋃∞
k=0E

m
k = ↓(E,m).

Proof 5 SinceEmk = ↓(Ei+k+1,m) for 0 ≤ k we have⋃∞
k=0E

m
k =

⋃∞
k=i+1 ↓(Ek,m) = ↓(

⋃∞
k=i+1Ek,m)

We also have↓(E0,m) = · · · = ↓(Ei,m) = Th(W ) from Lemma 4.

Hence:⋃∞
k=0E

m
k = ↓(E0,m) ∪ · · · ∪ ↓(Ei,m) ∪ ↓(

⋃∞
k=i+1Ek,m)

= ↓(
⋃∞
k=0Ek,m)

= ↓(E,m).

We show that the setsEmk (0 ≤ k) and
⋃∞
k=0E

m
k satisfy the conditions for an

extension.
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To begin with, we have by definition:

Emk = ↓(Ei+k+1,m) for 0 ≤ k < j − i. (32)

and in particular fork = 0 we have

Em0 = ↓(Ei+1,m) = Th(W ) .

For0 ≤ k < j − i the only applicable defaults with consequents with namem are
of the form α(m)∧in(n,m)∧ok(n·m) : β(m)

γ(m)∧ap(n·m) . We expand the right hand side of (32) using
Definition 2.1 to obtain:

Emk+1 = ↓(Th(Ei+k+2) ∪{
γ(m) ∧ ap(n·m)

∣∣∣α(m)∧in(n,m)∧ok(n·m) : β(m)
γ(m)∧ap(n·m) ∈ D′,

α(m) ∧ in(n,m) ∧ ok(n·m) ∈ Ei+k+2,¬β(m) 6∈ E
}
,m
)

= ↓(Th(Ei+k+2) ,m) ∪

↓
({
γ(m) ∧ ap(n·m)

∣∣∣α(m)∧in(n,m)∧ok(n·m) : β(m)
γ(m)∧ap(n·m) ∈ D′,

α(m) ∧ in(n,m) ∧ ok(n·m) ∈ Ei+k+2,¬β(m) 6∈ E
}
,m
)

so

Emk+1 = Th(Emk ) ∪
{
γ
∣∣∣α(m)∧in(n,m)∧ok(n·m) : β(m)

γ(m)∧ap(n·m) ∈ D′, α ∈ Emk ,¬β 6∈ ↓(E,m)
}

= Th(Emk ) ∪
{
γ
∣∣∣α : β
γ ∈ D,α ∈ Emk ,¬β 6∈ ↓(E,m)

}
.

This together with Lemma 5 shows that↓(E,m) satisfies the definition of an exten-
sion.

Proof 4.4

Define: forD1, D2 ⊆ D,D1 < D2 iff D1 ⊂ D2.

Let (D,W ) be a semi-monotonic default theory with extensionsE1, . . . , En.
E(D,W ) = (D′,W ′) be given as in Definition 4.1.

For ease of notation, letmi nameζ(GD(D,Ei)) for i = 1..n.
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Define inL+:

E′ = Th
(
W ′ ∪ {CON(δ)(mi) ∧ ap(nδ·mi), ok(nδ·mi) | δ ∈ GD(D,Ei) for i = 1..n}

∪ {¬(mi < mj) | (Di, Dj) 6∈<}
∪ {¬in(nδ,mi) | δ 6∈ Di, Di ⊆ D}
∪ {ok(m) | GD(D,Ei) ⊆ Dm for somei ∈ {1..n}}
∪ {ap(m) | Dm = GD(D,Ei), for somei ∈ {1..n}.}
∪ {ko(m) | Dm 6= GD(D,Ei) for everyi ∈ {1..n}}
∪ {bl(m) | GD(D,Ei) ⊂ Dm for somei ∈ {1..n}}
∪ {ovr(m) | Dm ⊂ GD(D,Ei) for somei ∈ {1..n}}

)
To begin with, we show that formi naming a set of generating defaults of(D,W )

that
↓(E′,mi) = Ei. (33)

– If α ∈ W then sinceW ⊆ E andW ⊆ ↓(E′,mi), we haveα ∈ E iff α ∈
↓(E′,mi).

– If α ∈ CON(GD(D,Ei)) then since CON(GD(D,Ei)) ⊆ E and
CON(GD(D,Ei)) ⊆ ↓(E′,mi) againα ∈ ↓(E′,mi) iff α ∈ E.

– Last, we haveW ∪ CON(GD(D,Ei)) ⊆ Ei andW ∪ CON(GD(D,Ei)) ⊆
↓(E′,mi). Since Ei and ↓(E′,mi) are deductively closed, this implies that
α ∈ Th(W ∪ CON(GD(D,Ei))) ⊆ Ei iff α ∈ Th(W ∪ CON(GD(D,Ei))) ⊆
↓(E′,mi).

Consequently for everyα ∈ L, we have shown thatα ∈ ↓(E′,mi) iff α ∈ Ei,
hence↓(E′,mi) = Ei.

Second, formi not a name of a set of generating defaults, it follows easily that

↓(E′,mi) = W. (34)

We show next thatE′ is an extension ofE(D,W ) = (D′,W ′), and subsequently
that formi namingη(GD(D,Ei)) we haveap(mi) ∈ E′.

To show thatE′ is an extension of(D′,W ′), we first show the following three
propositions:

1)W ′ ⊆ E′. This holds by the definition ofE′.

2) Th(E′) = E′. This holds by the definition ofE′.

3) For anyδ ∈ D′, if PRE(δ) ∈ E′ and¬JUS(δ) 6∈ E′ thenCON(δ) ∈ E′.
To show this, supposePRE(δ) ∈ E′ and¬JUS(δ) 6∈ E′. For brevity, we assume

without further mention elementary results arising from deductively-closed sets. E.g.
(and most frequently)α, β ∈ E′ iff α ∧ β ∈ E′.

- If δ = :¬(mi<mj)
¬(mi<mj)

then we have(mi < mj) 6∈ E′. The definition ofE′

and the fact that(mi < mj) 6∈ E′ implies that(mi < mj) 6∈ W ′, specifically
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(mi < mj) 6∈ WM , and so(Di, Dj) 6∈ < . But from the definition ofE′ this means
that¬(mi < mj) ∈ E′.

- If δ = :¬in(ni,mj)
¬in(ni,mj)

then we havein(ni,mj) 6∈ E′. As in the preceding
this implies thatin(ni,mj) 6∈ W ′, and in particular thatin(ni,mj) 6∈ WM or
δi 6∈ Dj for Dj ⊆ D. Consequently, according to the definition ofE′ this means that
¬in(ni,mj) ∈ E′.

- If δ = in(nj ,mi)∧ok(mi) :¬αj(mi)
bl(mi)

for δj ∈ Di andDi = {δ1, . . . , δk} then
ok(mi) ∈ E′ andαj(mi) 6∈ E′. Since ↓(E′,mi) = Ei for each extensionEi we get
thatDi is not a set of generating defaults for(D,W ). From the definition ofE′ we
obtain thatbl(mi) ∈ E′.

- If δ = ([∀y∈N. in(y,mi)⊃c(y,mi)]⊃¬β(mi))∧ok(mi) :
bl(mi)

for δj ∈ Di andDi =
{δ1, . . . , δk} then((γ1(mi) ∧ · · · ∧ γk(mi)) ⊃ ¬βj(mi)) ∧ ok(mi) ∈ E′.

For extensionEi, we note that{δ1, . . . , δk} 6⊆ GD(D,Ei), since if this were
the case we would haveCON(δ1), . . . ,CON(δk) ∈ Ei, and this together with(γ1 ∧
· · · ∧ γk) ⊃ ¬βj and the fact thatE is deductively closed means that¬βj ∈ Ei for
some defaultδj . But this means that¬JUS(δj) ∈ Ei, contradicting the assumption
thatδj ∈ GD(D,Ei).

So forDi = {δ1, . . . , δk} we haveDi 6⊆ GD(D,Ei) for any extensionEi of
(D,W ), and from the definition ofE′ we obtain thatbl(mi) ∈ E′.

- If δ = ok(mi) :¬ko(mi)
∀y∈N. in(y,mi)⊃ok(y·mi) for Di = {δ1, . . . , δk} thenok(mi) ∈ E′

andko(mi) 6∈ E′. Consequently (viaW<) bl(mi) 6∈ E′. Hence from the definition
of E′ this means thatDi = GD(D,E). In the definition ofE′ we have that for
everyδj ∈ GD(D,Ei) that ok(mi) ∈ E′. Hence for everyδj ∈ Di we have that
ok(nj ·mi) ∈ E′.

- If δ = α(m)∧in(n,m)∧ok(nj ·m) : β(m)
γ(m)∧ap(nj ·m) for δj ∈ D then we haveα(m) ∧

in(n,m) ∧ ok(nj ·m) ∈ E′ and¬β(m) 6∈ E′. Sinceok(nj ·m) ∈ E′, by construc-
tion of E′ we have that there is extensionEi such thatDm = GD(D,Ei). Since
↓(E′,m) = Ei we haveα ∈ Ei and¬β 6∈ Ei. SinceEi is an extension, we have that
δj ∈ GD(D,Ei) and so from the definition ofE′ we obtainγ(m) ∧ ap(nj ·m) ∈ E′.
This shows that for anyδ ∈ D′, if PRE(δ) ∈ E′ and¬JUS(δ) 6∈ E′ thenCON(δ) ∈
E′.

According to Definition A.1, we getΓ(E′) ⊆ E′ by the minimality ofΓ(E′).

To show the converse, we show that ifµ ∈ E′ thenµ ∈ Γ(E′).

We distinguish the following cases.

– If µ ∈W ′ then sinceW ′ ⊆ Γ(E′) we obtainµ ∈ Γ(E′).
– If µ ∈ {¬(mi < mj) | (Di, Dj) 6∈<} then(mi < mj) 6∈ E′. Since we have

the default :¬(mi<mj)
¬(mi<mj)

∈ D′, Condition 3 of the definition ofΓ(E′) requires that
¬(mi < mj) ∈ Γ(E′).
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– If µ ∈ {¬in(ni,mj) | δi ∈ Di, Di ⊆ D} thenin(ni,mj) 6∈ E′. But again,

since we have the default:¬in(ni,mj)
¬in(ni,mj)

∈ D′, Condition 3 of the definition ofΓ(E′)
requires that¬in(ni,mj) ∈ Γ(E′).

– We claim that for allm ∈M \ {mD}:

1) If Dm ⊃ GD(D,Ei) for some extensionEi then ok(m) ∈ Γ(E′) and
bl(m) ∈ Γ(E′).

2) If Dm = GD(D,Ei) for some extensionEi then ok(m) ∈ Γ(E′)
and ap(m) ∈ Γ(E′), and for every δj ∈ Dm we have CON(δj)(m) ∧
ap(nj ·m), ok(nj ·m) ∈ Γ(E′).

3) If Dm ⊂ GD(D,Ei) for some extensionEi thenovr(m) ∈ Γ(E′).
Since the set of sets of generating defaults of extensions of(D,W ) forms a cut of

the lattice of subsets ofD, 1.–3. above covers all remaining cases.

We show for allDm ⊆ D that the claim holds by induction on<.

Base:By definition,ok(mD) ∈W< ⊆W ′ ⊆ Γ(E′).

We have the default ok(mD) :¬ko(mD)
in(n↑,mD)⊃ok(n↑·mD) and sincein(n↑,mD) ∈ Γ(E′) we

get ok(mD) ∈ Γ(E′) andko(mD) 6∈ E′; hence from Condition 3 of Defini-
tion A.1 we obtainok(n↑·mD) ∈ Γ(E′).

Similarly we have the default>∧in(n↑,mD)∧ok(n↑·mD) :>
>∧ap(n↑·mD) . Sincein(n↑,mD) ∧

ok(n↑·mD) ∈ Γ(E′), ¬> 6∈ E′, we obtainap(n↑·mD) ∈ Γ(E′). SinceΓ(E′)
is deductively closed we getap(mD) ∈ Γ(E′).

Step: ConsiderDm ⊆ D and assume that for allDj such thatDm < Dj that 1.-3. in
the claim above hold.

LetDm = {δi, . . . , δk}. There are the following cases.

1) There is extensionEi whereGD(D,Ei) ⊂ Dm.

By the induction hypothesis, and in particular 1., for everym′ such that
m < m′, we havebl(m′) ∈ Γ(E′) orm′ = mD ∈ Γ(E′). SinceW< contains
the formula∀x ∈ M

[
∀y ∈ M. (x < y) ⊃ (bl(y) ∨ y = mD)

]
⊃ ok(x) and

sinceΓ(E′) is deductively closed, we have thatok(m) ∈ Γ(E′).
Observe thatDm is not a set of generating defaults of an extensionE′′

of (D,W ), sinceGD(D,Ei) ⊂ Dm would contradict the assumption thatEi is
an extension of(D,W ).

SinceDm is not a set of generating defaults of an extension, one of two
cases hold.

2)W ∪ CON(Dm) ` ¬βj for someδj ∈ Dm.

HenceW (m) ∪ CON(Dm)(m) ` ¬βj(m) for someδj ∈ Dm.

SinceW (m) ⊆ W ′ andW ′ ⊆ Γ(E′), we have thatCON(Dm)(m) ⊃
¬βj(m) ∈ Γ(E′).
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Sinceok(m) ∈ Γ(E′), and we haveWD ⊆ Γ(E′), and we have the rule
([∀y∈N. in(y,m)⊃c(y,m)]⊃¬β(m))∧ok(m) :

bl(m) , via Definition A.1 we get thatbl(m) ∈
Γ(E′).

3) For someδ ∈ Dm \ GD(D,Ei) we haveW ∪ CON(GD(D,Ei)) 6`
PRE(δ).

Thus W (m) ∪ CON(GD(D,Ei))(m) 6` PRE(δ)(m), so W (m) 6`
PRE(δ)(m) or, using (34)E′ 6` PRE(δ)(m) or, sinceE′ is logically closed,
PRE(δ)(m) 6∈ E′.

Since for someδ ∈ Dm, sayδ = δi, we have thatPRE(δ) 6∈ E′ and since
ok(m), in(nj ,m) ∈ Γ(E′) and since we have the rulein(nj ,m)∧ok(m) :¬αj

bl(m) , via
Definition A.1 we obtain thatbl(m) ∈ Γ(E′).

Dm = GD(D,Ei).

First, we havebl(m) 6∈ E′ by definition ofE′ and similarlyovr(m) 6∈ E′.
By the induction hypothesis, and in particular 2., for everym′ such thatm <

m′, we havebl(m′) ∈ Γ(E′) or m′ = mD ∈ Γ(E′). SinceW< contains the
formula∀x ∈ M

[
∀y ∈ M. (x < y) ⊃ (bl(y) ∨ y = mD)

]
⊃ ok(x) and since

Γ(E′) is deductively closed, we have thatok(m) ∈ Γ(E′).

Since ok(m) ∈ Γ(E′) and ovr(m) 6∈ E′, so ko(m) 6∈ E′. From
ok(m) :¬ko(m)

∀y∈N. in(y,m)⊃ok(y·m) we get∀y ∈ N. in(y,m) ⊃ ok(y·m) ∈ Γ(E′) via Defi-
nition A.1.

Claim: First, for everyδj ∈ Dm = GD(D,Ei) we haveαj(m) ∧ in(nj ,m) ∧
ok(nj ·m) ∈ Γ(E′) and¬βj(m) 6∈ E′. Second, since we have the rule
αj(m)∧in(nj ,m)∧ok(nj ·m) : βj(m)

γj(m)∧ap(nj ·m) we obtain via Definition A.1 thatγj(m)∧
ap(nj) ∈ Γ(E′).

Proof of Claim: We have thatGD(D,Ei) is a set of generating defaults of
(D,E). The proof is by induction on the grounded enumeration〈δj〉j∈I
of defaults inDm = GD(D,Ei).

Base:There isδl : αl : βl
γl
∈ GD(D,E) such thatαl ∈W and¬βl 6∈ E.

Soαl(m) ∈W ′ and sinceW ′(m) ⊆ Γ(E′) soαl(m) ∈ Γ(E′).
Also, sinceok(nl·m), in(nl,m) ∈ Γ(E′), soαl(m) ∧ in(nl,m) ∧
ok(nl·m) ∈ Γ(E′).
Also¬βl(m) 6∈ E′ (since↓(E′,m) = Ei andβl 6∈ Ei).
From Definition A.1 we get thatγl(m) ∧ ap(nl·m) ∈ Γ(E′).

Step: Assume that the claim holds for0..k.
We have someδl ∈ GD(D,Ei) such thatαl ∈ Ek and ¬βl 6∈
E (since we have a grounded enumeration of the defaults in
GD(D,Ei)).
By the induction hypothesisEk(m) ⊆ Γ(E′) and soαl(m) ∈ Γ(E′).
We haveok(nl·m), in(nl,m) ∈ Γ(E′), henceαl(m) ∧ in(nl,m) ∧
ok(nl·m) ∈ Γ(E′).
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Also¬βl(m) 6∈ E′ (since↓(E′,m) = Ei andβl 6∈ Ei).
From Definition A.1 we get thatγl(m) ∧ ap(nl·m) ∈ Γ(E′).

This takes care of the case whereDm = GD(D,Ei).

Dm ⊂ GD(D,Ei).

By the induction hypothesis we have thatap(mi) ∈ Γ(E′). As well,m < mi ∈
W<. SinceW< contains the formula

∀x, y ∈M. ap(x) ⊃ (y < x ⊃ ovr(y))

andW< ⊆ Γ(E′), andΓ(E′) is logically closed we getovr(m) ∈ Γ(E′).

We have thus shown thatµ ∈ E′ impliesµ ∈ Γ(E′). Since bothE′ andΓ(E′) are
deductively closed, we get thatE′ ⊆ Γ(E′).
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