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ABSTRACTCONSsistency-based approaches in nonmonotonic reasoning may be expected to yield
multiple sets of default conclusions for a given default theory. Reasoning about such extensions
is carried out at the meta-level. In this paper, we show how such reasoning may be carried
out at the object level for a large class of default theories. Essentially we show how one can
translate a (semi-monotonic) default theaky obtaining a second\’, such thatA’ has a single
extension that encodes every extensiaf oMoreover, our translated theory is only a constant
factor larger than the original (with the exception of unique names axioms). We prove that
our translation behaves correctly. In the approach we can now encode the notedearfsion

from within the framework of standard default logic. Hence one can encode notions such as
skeptical and credulous conclusions, and can reason about such conclusions within a single
extension. This result has some theoretical interest, in that it shows how multiple extensions of
semi-monotonic default theories are encodable with manageable overhead in a single extension.
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1. Introduction

In nonmonotonic reasoning, in so-callednsistency-basedpproaches such as
default logic [REI 80] and autoepistemic logic [MOO 85], one typically obtains not
just a single set of default conclusions, but rather multiple sets of candidate default
conclusions. Consider the by-now hackneyed example wherein Quakers are normally
pacifist, Republicans are normally not, along with adults are normally employed. As-
sume as well that someone is a Quaker, Republican, and an adult. In default logic (see
Section 2) this can be encoded b 50, fioP ALEY 1 R A}). This theory
has twoextensionsr sets of default conclusions, one contain{ig R, A, E, P} and
the other{Q, R, A, E, —~P}. In autoepistemic logic the same example appropriately
encoded yields two analogoaspansion®r possible belief sets.

Reasoning about these extensions (resp. expansions) is carried out at the meta-
level: a default conclusion that appears in some extension (suél) &s called a
credulous(or brave default conclusion, while one that appears in every extension
(such asF) is called askepticalconclusion. Intuitively it might seem that skeptical
inference is the more useful notion. However, this is not necessarily the case. In
diagnosis from first principles [REI 87] for example, in one encoding there is a 1-1
correspondence between diagnoses and extensions of the (encoding) semi-monotonic
default theory. Hence one may want to carry out further reasoning to determine which
diagnosis to pursue. More generally there may be reasons to prefer some extensions
over others, or to somehow synthesize the information found in several extensions.

In this paper, we show how such reasoning can be carried out at the object
level. For a default theonA = (D, W), we translateA to obtain a second theory
A" = (D’,W’), such thatA’ has a single extension that encodes every extension of
A. Given this, one can express in the theory what it means for something to be a skep-
tical or credulous default conclusion. Our result isn't completely general; however it
applies tesemi-monotonidefault theories. The translation has several desirable prop-
erties. The translated theory is only a constant factor larger than the origizs|
with the exception of introduced uniqgue names axioms. As wellpweethat our
translation behaves correctly.

We first show for a set of default®,,, how, using an encoding, we can detect the
case wherein all defaults iR,,, apply. From this, for a default theop U D,,,, W)
we show how to obtain a second theory wherein (informally) either all of the de-
faults in D,,, are applied en masse (if possible) or none of them are. This is done by
naming each of the defaults iR,,, and then expressing in default logic the appli-
cability conditions for the defaults. We develop this in Section 3. In Section 4 we
present our main result, where we show how a default theory can be translated into a
second theory whose extension encodes the extensions of the original. Roughly we
provide an axiomatisation that “locates” maximal sets of applicable defaults; for such
a set, the set of default conclusions is “tagged” with the set name, to distinguish it
from other instances. For example, in our original exampleylet be the name of

the set{ 257, A:E1 andm, 5 be the name of 2P 4:E1 These are maximal




applicable sets of defaults, and from our translation we would obtain a single exten-
sion COﬂtaining{Q(ng),Q(ng),R(m173),R(m273),A(m173), A(m273), fC(’I71173)7
E(ms3),P(ma3),mP(m23)}. As mentioned, we are able to prove that our transla-
tions in fact accomplish what is claimed.

The advantage of this approach is that we can encode the notion of extension
within the framework of standard default logic. Hence one can reason about (skeptical
and credulous) conclusions within the framework of a single extension of a default the-
ory. Thus for example, in a diagnosis setting one could go on and axiomatise notions
of preference among diagnoses having to do with, perhaps, number of faulty compo-
nents, or based on components expected to fail first. This result has some theoretical
interest, in that it shows (for theories that we consider) how multiple extensions are
encodable, with no significant overhead in a single extension. The overall approach
builds on work in [DEL 00].

2. Default Logic

Default logic [REI 80] augments classical logic tgfault rulesof the form <2
A default rule isnormalif g is equivalent toy; it is semi-normalf g implies~. We
sometimes denote thgrerequisitea of a defaulty by PRE), its justification 5 by
JUS6), and itsconsequent by CON(d). Accordingly,PRE D) is the set of prereg-
uisites of all defaults inD; JUS D) and CON(D) are defined analogously. Empty
components, such as no prerequisite or even no justifications, are assumed to be tau-
tological. Semantically, defaults with unbound variables are taken to stand for all
corresponding instances. A set of default ruleand a set of formulad’” form ade-
fault theory(D, W) that may induce a single or multipgxtensionsn the following
way [REI 80].

Definition 2.1 Let (D, W) be a default theory and I&f be a set of formulas. Define
Ey = W and for: > 0:

GD; = {2 eDla€ B, -4 ¢ B,....~0. ¢ B}

Ein = Th(E;) U{CON() | 6 € GD;}

ThenE is an extension fotD, W) if E = |J;°, E;.

Any such extension represents a possible set of beliefs about the world at hand. Fur-
ther, define for a set of formulasand a set of default®, theset of generating default
rulesasGD(D, S) = {6 € D | PRE/) € S and—-JUS0) ¢ S} .

An enumeration(d;);c; of default rules igroundedin a set of formuladV’, if we
have for everyi € I thatW U CON({dy,...,d;—1}) - PREY;). A default theory
(D, W) is said to besemi-monotonidf, for D’ C D” C D, if E’ is an extension of
D’ then there is an extensidti’ of D" whereE’ C E”.



3. Applying All, or None, of a Set of Defaults

In this section we consider the problem of how to apply all defaults in some set, or
none in the set. We will thus work with default theor{g3, W) having some distin-
guished finite subsd?,, C D. For making the seb,,, explicit, we denote such theo-
ries by(D U D,,,, W). The idea is that we wish to obtain extensiongBfU D,,,, W)
subject to the constraint thall defaults inD,,, are applied, ononeare. For example,
in the theory({<2} U {<£, 952} . 0) we would want to obtain an extension con-
taining A, but notB (since both defaults ir{%, %} cannot be jointly applied).

For ({1} U {2, 252} {0}) we would want to obtain an extension containitig
B, andD.

We begin by associating a unigue name with each default. This is done by ex-
tending the original language by a set of constaiissuch that there is a bijective
mappingn : D — N. We writen, instead ofn(J) (and we often abbreviates;, by
n; to ease notation). Also, for defaultalong with its name:, we sometimes write
n : 0 to render naming explicit. To encode the fact that we deal with a finite set of
distinct default rules, we adopt a unique names assertion (Y)N¥ad domain closure
assertion (DCAy) with respect taV. So, for a name se&V = {n4,...,nx}, we add
axioms

UNAy : —(n; =n,) forall n;,n; € N with i #j
DCAy : Vz.name(x)=(x=n1V---Va=ny).

We writeVx € N. P(z) for Va. name(xz) D P(z).

We introduce a new constant as the name of the designated rule Bgf. We
relate the name of the rule set denotedibyvith the names of its members by intro-
ducing a binary predicata, wherein(x,y) is true just if the default named hyis
a member of the set named by In this section, instances of will be of the form
in(-,m). While we could get away with not using (andm) here, this additional
machinery is required in Section 4, and it is most straightforward to introduce it here.
Note that we do not need a full axiomatizationiaf representing set membership,
since we use it in a very restricted fashion.

For applying all, or none, of the defaultsin,,, we need to be able to, first, detect
when a rule has been applied or is blocked and, second, control the application of a
rule based on other prerequisite conditions. There are two cases for a default
to not be applied: the prerequisite is not known to be true (and so its negatids
consistent), or the justification is not consistent (and so its negatibis derivable).

For detecting this case, we introduce a new, special-purpose preblicatSimilarly
we introduce a special-purpose predicai¢l to detect when a rule has been applied.
For controlling application of a rule we introduce predicatkesl andko/1.

1. [MCC 86] first suggested naming defaults using a setspiectfunctions. See also [POO 88,
BRE 94].



We are given a default theotyp U D,,,, W) over language and its set of associ-
ated default name&' U{m}. ? Let

D,, = {nj % | j= 1k:}
(For simplicity, we reuse the symbolsk, m, n;, o, etc. below.) We defing,,,((D U

D,,,W)) = (D’',W’) over L*, obtained by extending to £* with new predicates
symbolsok/1, ko/1, bl/1, ap/1, and namesVU{m}, as follows

D' = DU Dy UDy
W' = WuUWy U{DCAN,UNAyN}
where
_ ajhok(ng):B; | - _
: =ko(m
Dy = {ok(nl)/\ﬁ(/\oa(nk)} (2)
U { ;I?r?z§7 (M--Q&))Dﬂﬂj: ’ j= 1,.k} (3)
Wy = {Vz € Nin(z,m)=(r=n1V..Vx=n)} 4)
U {bl(m) D ko(m)} (5)
U {(Vz € N.in(z,m) D ap(x)) D ap(m)} (6)

Clearly, Dy contains the images of the original rulesiih,. Each rulej; € Dy is
applicable, ifok(n;) is derivable. In fact, we assesk(n;) for everyé; € D,,, unless

we cannot jointly apply all rules oD,,,. That is, before activating the constituent
rules, we have to make sure that none of them will be blocked. This is accomplished
through the justificatiorrko(m) in (2) together with Axiom (5). We block rule (2)
(and with it the derivability of allok(n;)) when we detect that one of, ..., d; is
blocked. That isko(m) will be an immediate consequencetdfm).

Now, we have thaD,, is blocked bl(m)) just if some rule inD,, is blocked.
However, since we must control a whole set of defaults, we must check for the block-
age of one of the constituent default rules in the context of all other rules in the set
applying. For detecting the failure of consistency, we verify fy;, and some set of
formulas$ (cf. Definition 2.1), whethe6 U {1, ..., v} F -0, rather tharS - —3;.

This motivates the prerequisite of the second rule in (3). This corftext, - - - A y),
is not needed for detecting the failure of derivability by means of the first rule in (3),
since this test is effectuated with respect to the final extenSivia ~«; ¢ E.

Finally, as given in (6)D,,, is applied ép(m)) just if every rule inD,,, is applied,;
it is only in this last case that the consequents of the constituent rulés, irare
asserted.

2. We letU stand for disjoint union.



Consider theoryD U D,,,, W), where
D={£} D, ={n £ ny::&}. (7

For Dy andD,,, we obtain (after simplifying and removing redundant defaults):

ok(ny): P ok(nsz): S : =ko(m) - PV-S:
PAap(ni)’  SAap(n2)’  ok(ni)Aok(nsz)’ bl(m)

Thein predicate has instancegi(n, m) andin(ng, m). From (6) we can deduce
[ap(n1) A ap(n2)] > ap(m).

LetW = {=(P A E A S)}. We obtain two extensions, one containifgS, - F
and the other containing, —=(P A.S). For the first case, we obtatik(n;) andok(ns).
If both §; andd, are applicable (which they are) then we concluele ap(n;) and
S A ap(n1) as well asap(m). From this we get? and.S and so—E. For the other
extensions, if the defauktZ is applied, themP v —S is derivable, and s@%
is applicable, from which we obtaibl(m), and soko(m), blocking application of

ol . Consequently neithef 1) -2 nor 222):% can be applied.

ok(ni)Aok(ng) " SAap(nz)

In the next example, defaults inside a set depend upon each other. Cdgisider
D, 1) with

Dm = {nl Zg, %) Z—Q}:%R} .
We get forD and D, the following rules.

ok(ny):Q QANok(nz): R : =ko(m) -QV-R: :0Q
QAap(ny)?’ RAap(n2) 7 ok(n1)Aok(ns)? bl(m) * bl(m)"

We obtainok(n;), and ok(nz), which allow us to apply defauls,, yielding in
turn Q A ap(nq). Given @, we can now apply defauli;, yielding R A ap(na).
From this we deducep(m). We thus get an extension containiggand R. This
example also shows why we cannot avoid the translation by replabingby

Nsepy PREO) Noepy, WSO - pg well, in Section 4, this replacement would result in
/\SEDm CON(9)

an exponential blowup in the encoding.

The next theorem summarizes properties of our approach, and shows that rules are
applied either en masse, or not at all.

Theorem 3.1 Let E be a consistent extension®f, ((DUD,,,, W)) for default theory
(DU D,,, W). We have that:

1) ap(m) € Eiff {ap(ns) | 6 € D,,} UCOND,,) C E

2)bl(m) € Eiff {ap(ns) |6 € D\y} L F

3) ok(ns) € Eiff ap(ns) € E

4) ok(ns) € Eforall 6 € D,, iff ko(m) € E

5) ap(ns) € E implies(ap(m) A in(ns,m)) € E for somes € D,,

6) ap(ns) € Eford € D,, iff {ap(ns) | 0 € D,,} C E.



Theorem 3.2 For default theory(() U D, W), we have thatS,,((0 U D,W)) has
extension® where eithetE N £ = Th(W UCON(D)) or elseE N L = Th(W).

The default theory() U { £}, 0) has an extensioF whereE N £ = Th(f).

Theorem 3.3 Let(D, W) be a (standard) default theory ov€rwith extensiorE and
(respective) set of generating default® (D, E). ThenS,,(0UGD(D, E),W)) has
extensionE’ whereE = E' N L.

4. Encoding extensions using sets

For encoding extensions of a semi-monotonic default thébryiV'), we use the
machinery developed in the previous section to determine maximal (with respect to set
inclusion) sets of applicable defaults. Names are introduced for each suliseand
for each instance of a rule in each subsefofAs well, new predicate symbols are
introduced to further control application of sets of rules. We then give a translation
that yields a second default theof®’, W’). Viewed algorithmically, this second
theory carries out the following: If the original set of defauldsconstitutes the set
of generating defaults of an extension, then a correspondipgliteral is derived;
all default consequences are obtained; and all subsets of the defaults are rendered
inapplicable. If this isn’'t the case (ardlisn’t a set of generating defaults), we proceed
along the partial order induced by set inclusion and consider eveB)\sgt} for every
& € D to see whether it is a set of generating defaults. Crucially, default conclusions
are “tagged” with the name of the set in which they appear so as to eliminate possible
side effects.

To name sets of defaults, we take some fixed enumeré&tipn . ., n;) of N, and
definem as ak-ary function symbol. Then, fat; ¢ N, define

DCA); : Vaq,...,zk. Set-namém(xy,...,x5)) =
(rr=mVar=ni )N AN@r=ng VI =n,).
Intuitively, x; = n, tells us that:; does not belong to the set at hand.
Accordingly, forZ = ..z, andz’ = z..x}, define
UNA ), : VZ, /. set-namém(T)) =
set-namém (7)) = z1 = 7}

/\-~-/\xk:x;€.

The advantage of this “vector-oriented” representation over a dynamic one including
a binary function symbol (as with lists) is that each set has a unique representation.
We writeVz € M. P(x) instead ofvz. set-namér) O P(z). Further, we usé/ for
denoting the set of all valid set-names, that is,

M = {m | DCA); |= set-namém)} .



In order to ease notation, we write; 5 instead ofm(ny,ny,n3,ni,...,n.) when
representing the sefd;,ds}. Also, we abbreviaten(n,,...,n,) by mg and
m(ni,...,n,) by mp. Note the difference between namesandm;, induced by
our notational convention.

We also rely on the “vector-oriented” representation for capturing set member-
ship, denoted byn /2. Consider for instanc& = {n;,n}. Membership is then
axiomatized through the formulas

Yy, za. in(ng, m(z1,22)) = (ng = x1)

Va1, xe. in(ng, m(xy,x2)) = (ng = x3).

While this validatesin(nq,m; 2), it falsifies in(nq, mz). See (15) for the general
case.

We need to be able to refer to separate instances of the same default appearing in
different sets. For this we introduce a function-symb@. Ford; € D; we write
ns;-m; Or nj-m; to name the instance of appearing inD;. This results in name
setN-M = {n-m | n € N,m € M}. Corresponding axioms, as DGAy, and
UNA y.)s, are obtained in a straightforward way. In what follows, we refer to the
various domain closure and unique names axioms pertaining to/, and N-M as
Ax(N).3

Given language, we define a family of language¥m) for m € M as follows.
If Pis ani-ary predicate symbol theR(-) is a distinct ¢+ 1)-ary predicate symbol. If
~ € L theny(m) € L(m) is the formula obtained by replacing all predicate symbols
in v with predicate symbols extended as described, and with teras the(i + 1)%¢
argument. This extra argument is used to index formulas by the (names of) sets in
which they are used.

Lastly, we introduce special-purpose predicates for controlling the application of
sets of defaults. These are summarised in the following table:

Name Use/meaning
mCm' | D, CDyy

ok(e) It is ok to try to apply set/rule
ap(e) Set/rulec is applied
bl(m) Not all rules in setn can be applied

ovr(m) | Some set namea’ is applied andn C m/
ko(m) For setm, bl(m) V ovr(m) is true

Taking all this into account, we obtain the following translation, mapping default the-
ories in language onto default theories in the language obtained by unioning

all language<(m) for m € M and using the aforementioned names and introduced
predicates and functions:

3. Note that names i/ andN-M are obtained from those iN.



Definition 4.1 Given a finite default theoryD, W) over £ and its set of associated
default namesV, define€((D, W)) = (D', W') over L™ by

D = Dy UDpy U D
W' = WDUWWUWMUWEUAJ‘(N)
where
_ a(z)ANin(n,x)Aok(n-z) : B(z) La:f
by = { g ok | ni2fenf 8)
ok(z) : —ko(z
Dy = {VyEN En (y, m)DoE((y x) } (9)
in(n,x)Nok(zx) : ~a(x a:
u { ( )l(;) (z) n:TBED} (20)
(VyeN. in(y,z) De(y,x)]| D=B(x)) Aok(z) : La:f
u { s [n:efen) @y
o (zCy) :—in(z,y)
D = { ey * ey } (12)
Ww = {VeeM alz)|acW} (13)
Wp = {Voz e M.c(ns,z) =CONJ)(z)|d € D} (14)
Wy = {Vai,...,zg. in(ng, m(zq,...,25)) (15)
= (nl = xl) | n; in <n1, . ,nk>}
U {Vx,2'€ M.[3y € N.~in(y,z) Ain(y,x')) (16)
A [Vy.in(y,x) Din(y,2’)) Dz C 2’}
We = {ok(mp)} (17)
U {Vz e M.[Vye M.z Cy>Dbl(y)] D ok(z)} (18)
U {Vz € M. [bl(z) Vovr(z)] D ko(z)} (29)
U {Vz e M. [Vy € N.in(y,z) D ap(y-z)] D ap(z)} (20)
U {Vz,2’ € M.ap(z) D (2’ C z D ovr(z'))} (21)

The rules inDy and D), directly generalise those in (1-3), from treating a single set
namedm to an arbitrary set referenced by variableThe specific consequents used
in the second rule in (3) are dealt with via the axiomslifi/14) that allows us to
quantify over default consequents (via predicgteThis trick avoids the exponential
blowup that would occur in (11) if we were to explicitly give the consequences of the
rules.

The rules in P-/12) provide us with complete knowledge on predicatesndin.
The axioms in Wy, /13) propagate the information iV to all possible contexts.

W takes care of what we need wrt set operations. That is, (15) formalises set
membership, while (16) formalises strict set inclusid#i- axiomatises the control



flow along the partial order induced loy. Axioms (17) and (18) tell us when it &k to
consider a certain set: we always consider the maximursetherwise, via (18), we
consider a set just when every superset is known to be blocked (and so inapplicable).
(29) tells us when the consideration of a set is cancelled. This either happens because
a set is inapplicable (given i) or because it has been explicitly cancelled (given by
ovr). (20) asserts that a set is applied just if all of its member rules are. Once we have
found an applicable set of rules (and hence a set of generating defaults) we need not
consider any subset; (21) annuls the consideration of all such subsets.

For example, consider the following normal default theory:
Agy = ({Tll 1%7712 1%»”3 ;—377”&4 —} (Z)) (22)

From £(A42) we get an extension, where the onbyp®literals” areap(ms,2,4) and
ap(m1,3). Thatis,As has two extensions with generating defaults, the first with
02, 04, and the second withy, 3. Among formulas in the extension 6fA,,) are
A(m17274), A(ng), B(m17274), _\B(ml,g), andD(m17274). To see this, let us take a
closer look at the image dk,,, namelyE(Aqz). For Dy, we get

in(ni,x)Nok(ni-x): A(z)  in(ne2,x)Aok(na-z): B(x)
lA(au)/\ap(*jn»a;) 2B(JJ)/\8P(37,2‘(L‘) (23)

in(nz,x)Nok(ng-z): "B(x)  B(z)Ain(ng,x)Nok(ngs-z): D(x)
ZB(x)hap(ns @) D) Aap(nas) (24)

We get a single nontrivial rule in (10), namely

i'rL('n4,;L')/:)c|>(kaE;c) : - B(x) (25)
and four rules in (11)
([VyeN. in(y,z)ch(I:LZf))]D—\A(ac))/\ok(x): (26)
([vyeN. in(y,w))célzz,;))]DﬁB(;v))/\ok(w) : 27)
([vyeN. in(y,x))cb(lyi,;))]D B(z))Nok(x) : (28)
([VyeN. i (U,I)Dc(y, )]D=D(z))Aok(z) : (29)

bi(z)

Given ok(mp), we may consider any rule ib,,. However, given that'y €

N. in(y,mp) is true, we obtain that (14) andy € N. in(y,mp) D c(y,mp)

are inconsistent and thus imply any formula. Consequently, rules (26) to (29) are
applicable and providél(mp), yielding ko(mp), which in turn blocks (9) for

x = mp. From (16), we obtain (among other relations) » 3 — mp, m1,24 C mp,

mi,3.4 C mp, andmsg s 4 T mp. From (18), we then getk(m1,23), ok(m 2.4),
ok(m1’374), andok(m273,4).

Now, considebk(mq 2,4). From (9), we obtain

Yy € N.in(y,mi,2,.4) D ok(y-mi2.4)

10



yielding ok(ni-m1,2.4), ok(na-mq2,4), andok(ns-mi 24). This allows us to ap-
ply three of the four rules in (23/24) and we obtait{mi 24) A ap(n1-mi2.4),
B(m172,4) A ap(nz-m17274), and D(m172,4) A ap(n4-m17274). From (20), we ob-
tainap(ma 2.4), from which we deduce with (21) in tumvr(mi 2,4), ovr(ma4), .. .,
ovr(my), andovr(my).

Next, considebk(m1 2,3). As with ok(mp), we obtain an inconsistency among
in(nl, m17273), in(ng, m1,273), in(ng, m17273), Vy € N. in(y, m1,273) D) C(y, m1,273),
and (14). This validates the prerequisites of rules (26), (27), and (28), thus yielding
bl(m1 2,3). As above, we then get frof’y, thatok(m 2), ok(ms 3), ok(ma,3). Note
that we have already obtainedr(m; ») fromap(m1 2.4).

Given ok(my 3), (9) provides us wittok(nq-mq,3) andok(ng-mq,3). Using the
two first rulesin (23/24), we geﬁt(ng)/\ap(nl-ng) andﬁB(ng)/\ap(ng-ng).
From (20), we then getp(m 3), from which we deduce with (21) in tursvr(m,),
ovr(mg), andovr(mgy) (again).

Given ok(mg,3), along with the fact thatn(ng,ms3), in(ns,mags), Yy €
N.in(y,ma3) D c(y,me3), and (14) implyB(m2 3) and —~B(m2 3), Rule (27)
and (28) fire and we gé (mo 3).

The next results show that our default theories resulting f€olhave appropriate
properties.

Theorem 4.1 Let £ be a consistent extension &f(D, W)) for semi-monotonic de-
fault theory(D, W'). We have for alb € D and for all D,,,, D,,, C D that:
H(mCm)eEiff-(mCcm/)¢FE
2) in(ns,m) € E iff min(ns,m) ¢ E
3)ok(m) € Eifovr(m) ¢ E
4) ok(m) € E if (ap(m) € E or bl(m) € E)
5)ap(m) € Eiff ko(m) € E
6) ko(m) € Eiff (bl(m) € E or ovr(m) € E)
7)ovr(m) € Eiff ap(m’) € Eandm C m’ € E for somem’ € M.
8) If ap(m) € E thenbl(m') € Eforall m’ € M withm _ m' € E.
9) If ap(m) € E thenovr(m') € E forall m’ € M withm’ C m € E.
10) Ifap(m),ap(m’) € Ethen-(m = m') € E

Theorem 4.2 If (D, W) is a semi-monotonic default theory thé(D,W)) has a
unigue extension.

The next two theorems show that our translation captures an encoding of exten-
sions of a semi-monotonic default theory.
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Theorem 4.3 Let (D, W) be a semi-monotonic default theory andf&be the exten-
sion ofE((D, W)).

Then for anyap(m) € E withm € M, we have thafh({v | v(m) € E}) is an
extension of D, W).

Theorem 4.4 Let (D,W) be a semi-monotonic default theory with extensions
E,, ..., E, and letE be the extension &f((D, W)).

Then, for anyi € {1,...,n}, there is somen € M namingGD(D, E;) such that
ap(m) € E.

Lastly, our claim that a translated theory is a constant factor larger than the original
requires a caveat. UNA yields a quadratic number of unique names assertions. In
practice this is no problem, since any sensible implementation would not explicitly
list such axioms. With the exception of unique names assertions, a translated theory
is a constant factor larger than the original. To see this, it suffices to examine Defini-
tion 4.1. Each of (8, 10, 11, 14, 15) introdude| axioms/rules; (13) introduce§V|
axioms. All remaining terms introduce a single axiom. Moreover, the size of indi-
vidual axioms is similarly bounded. (For example, each instance of (8) is a constant
factor larger than the original default.)

5. Discussion

We have shown how we can encode a semi-monotonic default theory so that the
extension from the encoding represents all extensions of the original theory. The fact
that we encode all extensions of a theory within a single extension means that we can
now encode phenomena of interest, usually dealt with at the metalevel, at the object
level. Specifically we can now encode the notions of skeptical and credulous inference
within a theory. In order to do this, we introduce two new constahte andcred,
for “skeptical” and “credulous” respectively.

A formula is a skeptical inference if it is a member of every extension. In our
approach, this means that it follows in evemp*set”. Hence we define skeptical
inference within a theory, for a given formua by

(Vx € M. ap(z) D v(z)) D v(skep).

For credulous inference, the simplest option is to assert that a formula is a credulous
inference if it is a member of some extension:

(3z € M. ap(x) A y(x)) D vy(cred).

However, this is overly simplistic, since with this definition, a formula and its negation
may be credulous inferences. A more reasonable definition is to assert that a formula
is a credulous inference if it is a member of some extension, and its negation is a
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member of no extension. We can define this notion of credulous inference (indicated
by cred’) for a formulay by means of the default:

dx € M. ap(z) Ay(z) : Vo € M. ap(x) D v(x)
~(cred")

Hence in Example (22), we obtain that is a skeptical inference, whileD is a
cred’ulous inferenceB and—B arecredulous inferences.

We have suggested that the approach may be applicable in diagnosis programs,
such as found in [REI 87]. Similarly, the approach can be used to directly encode
applications expressible in Theorist [POO 88]. That is, there is a correspondence be-
tween so-calledPoole-typetheories and Theorist with constraints [DIX 92]. Since
Poole-type theories are semi-monotonic, this means that our approach can encode any
application encodable in Theorist.

Our approach relies on a first-order language. Despite this, the image of a theory
over a finite language remains finite. As regards implementation, however, it is not
advisable to use a bottom-up grounding approach, as done in many implementations
of extended logic programming [EIT 97, NIE 97]. Instead, a query-oriented approach
seems to be advantageous, because it may rely on unification rather than ground in-
stantiation.

In Definition 4.1, sets of defaults were ordered based on the partial order given
by set containment. This order represents one exampleuadfarenceorder on sets
of defaults. A natural avenue for future work would be to generalise our approach
to address arbitrary preference orders on sets of defaults. In an arbitrary preference
order on sets, one could represent desiderata as found in configuration, scheduling, or
(generally) decision-theoretic problems. This could also be combined with the present
approach yielding an encoding of preferences on extensions. Hence, for our diagnosis
example, we might want to prefer extensions (diagnoses) on the basis of an ordering
based on reliability of components.

6. Conclusion

We have described an approach for encoding default extensions within a single
extension. Using constants and functions for naming, we can refer to default rules, sets
of defaults, and instances of a rule in a set. Via these names we can, first, determine
whether a set of defaults is its own set of generating defaults and, second, consider
the application of sets of defaults ordered by set containment. The translated theory
requires a modest increase in space: except for unigue names axioms, only a constant-
factor increase is needed. The translated theory is a (regular, Reiter) default theory.
Hence we essentially axiomatise the notion of “extensions” for the class of semi-
monotonic default theories, resulting in a single extension. Further, we are able to
prove that our translation behaves correctly.
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Using the approach we can now express notions such as skeptical and credulous in-
ference within a theory. Arguably this will prove beneficial in expressing at the object
level problems and approaches generally expressed at the metalevel. Areas of appli-
cation range from specific areas such as diagnosis, to broadly-applicable approaches
such as Theorist. Lastly, we suggest that the approach may be easily extended to
address arbitrary preferences over sets of defaults.

A. Proofs of Theorems
A.1. Proofs for Section 3

The following definition is used in the proofs.

Definition A.1 ([REI 80]) Let (D, W) be a default theory. For any set of formulas
S, letT'(S) be the smallest set of formul&$ such that

HwcCy,

2) Th(S") = 9,

3) For anyawi e D,ifae S and—j3 ¢ Stheny e S'.
A set of formulag is an extension ofD, W) if T'(E) = E.

With respect to the various translations we adopt the following notation: For a
set of defaults with name: and one of its members with namelet 57", (Sm T and
67” " be the corresponding default rulesiin,. Let 7™ denote the transform of the
|nd|V|duaI default named with x instantiated ton in Dy .

Proof 3.1
1.if part Supposep(ns) € E forall § € D,,. SinceFE is deductively closed and
sinceE contains Formula (6), we deduce tha{m) € E.

only-if part Supposeap(m) € E. By construction, this impliesp(ns) € E for all
d such thatin(ns,m) € E, oré € D,,. By the definition of D and Wp,
however, we havap(ns) € E only if CON(J) A ap(ns) € E. Since this holds
forall 6 € D,,, we obtain{ap(ns) | 6 € D,,,} UCOND,,) C E.

2.if part Suppos€{ap(ns) | 6 € D,,,} € E. Thus, there is somé € D,,, such
thato»™s ¢ GD(D', E). Then, one of the following cases must be true.

-If ~JUS6) € E, then clearly fromWp we getCON(y) A -+ A
CON(0;) D —JUY¥) € E, where{dy,...,0r} = D,,. By Theorem 3.1.3
and the fact thakll is deductively closed, we get that

[CON(61) A -+ ACON() D ~JUSH)] Aok(m) € E.

Henced,,"’ € GD(D', E), thatis,bl(m) € E.
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- Suppos€®RE) A ok(ns) € E. SinceF is deductively closed, we may
distinguish the following cases.

- AssumePRE(J) ¢ E. Consequentlyy,”" € GD(D', E), that is,
bl(m) € E.

- If ok(ns) ¢ E, thend™ ¢ GD(D', E), since this is the only means by
which we can fail to obtaiok(n;s) € E. Henceovr(m) € E; hence from (5) we
getbl(m) € E.

Thus, in all cases we obtain thal{m) € E.
only-if part Supposel(m) € E. We distinguish the following two cases.
-1f 6,/ € GD(D', E), then we have th®RE¢J;) ¢ E for somed; € D,
Therefore(§;)a™ ¢ GD(D’, E) and clearlyap(n;) ¢ E.
-1f 6, € GD(D’, E), then we have for somg € {4y, ...,0;} = D, that

CON(61) A -+ - A CON(S;,) D ~JUS(6;) € E. (30)

Assume{ap(ns) | 6 € D} C E, that is, by definition ofDy that {CON(J) A
ap(ns) | 6 € Dy} C E. SinceE is deductively closed we get from (30) that
-JUS§;) € E and thereforgd;),""’ ¢ GD(D',E) and clearlyap(n;) ¢ E, a
contradiction.

In both cases we thus obtafap(ns) | § € D, } Z E.

if part Supposep(ns) € E. Then we have necessarily thif"s € GD(D', E),
and therefore thd®RE) A ok(ns) € E, and sook(ns) € E.

only-if part Supposek(ns) € E. Then, we have by definition dp,, that

I m)
ok(n1)A-~~Aol?(\/rzs;)A---Aok(nk) € GD(‘D/’ E)

Clearly, we thus havevr(m) ¢ E; this impliesbl(m) ¢ E. As a consequence,

we getg,"™ ¢ GD(D',E) andé,"™ ¢ GD(D', E). We obtain for each

0 € {51,...,5k} = D,, that

PRES) € E and CON(G;) A--- A CONG,) D —~JUS() ¢ E.

Furthermore, the latter givesIUS§) ¢ E. With ok(n1) A--- Aok(ng) A--- A
ok(ny) € E and the fact tha® is deductively closed, we get th&f*"s <
GD(D',E)forall § € D,,. Thatis, sinceZ is deductively closetp(ns) € E
forall 6 € D,,.

if part Supposeovr(m) ¢ E, and sobl(m) ¢ E. As a consequence, we get
6" ¢ GD(D',E) and ¢, ¢ GD(D',E) for somed € D,,. As a
corollary of Theorem 3.1.1-2, we obtain tha;' € GD(D', E) iff (6, ¢
GD(D', E) andg,»"™ ¢ GD(D', E) forall § € D,,). This implies thav;" <
GD(D', E). Thereforeok(ns) € E.
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only-if part If ok(ns) € E, thend* € GD(D', E), thatis,ovr(m) & E.

The if-part is trivial.

For the only-if part, assume thap(ns) € E for someé € D,,. Thendi»"s €
GD(D', E) and therefor@” € GD(D', E).

We also haven(ns, m) € E forall § € D,,. Further,d]* € GD(D’, E) implies
ok(ns) € E forall§ € D,,. By Theorem 3.1.3, this impliesp(ns) € E for all
6 € D,,.

Proof 3.2

1) First, assume that default theof§ U D, W) has an extensiory where
GD(D,E) = D.
From Definition 2.1 we have thdf = U;’io E; where

Ey, = W
B = TH(E)U{y

a:p .
SeDacE,~3¢E}.

Obviously thent = | J;2 ) E; where
Ey = WU{ok(ny)A---Aok(ng)}

Ei+1 = Th(EZ) @] {"}’

“SeDpack,B¢E}.

defines an extension 6D, W U {ok(n1) A - - - A ok(ng)}).

Replacing? with W’ in the above defines an extension&fy, W’ U {ok(n1) A
- Nok(ng)}) aswellas of Dy U Dy, W U{ok(n1) A---Aok(ng)}) or (D', WU
{ok(ni) A -+~ Aok(ng)})

From this it follows that

ELI = WI
E, = Th(W’)U{ok(ni) A--- Aok(ng)}
= ME)U{y|2LeD acr (¢ F ]
Bl = TE)U{y |2 eDac B3¢ E} fori>1

andE’ = J;° _, E! defines an extension ¢D’, W’).

Thus for this case we have th8§,(( U D, W)) has extensios whereE N L =
Th(W U CON(D)).

(Note for this case that havirtgd(m) in our purported extensioA” would contra-
dict the assumption thd® is a set of generating defaults f@ru D, V).
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2) Assume thabD is not a set of generating defaults for default the@@y D, W).
Thus for any set and for

Ey = W
By = Th(Ei)U{’Y

¥€D7QEE13_'5¢E}

we have thatl # | J;°, E;.
In particular this holds fo = Th(WW U CON(D)).
Since 2, E; = Th(W U C) for someC C CON(D), this means that some
defaultd; € D fails to apply. There are two possibilities:
a)a; ¢ E; foreveryi > 0, or
b) -3; € E.
For the first case, assume that there is an extensioof S,,,((# U D, W)) con-
taininga;. Sincea; ¢ W’ \ W we have thatV U C’ I- «; for someC’ ¢ CON(D).

SinceW + «; contradictsa; ¢ E; above, we have that” # () and hence
ap(n) € E’ for some default : 4.

From Theorem 3.1.6 we obtain thgtp(ns) | 6 € D} C E’, hence in particular
ap(n;) € E' and son; € GD;, a contradiction.

Hence there is no extensidif of S,,,(() U D, W)) containingc; .

It follows that Th({W’, bl(m),ok(ni) A--- Aok(nk)}) is an extension of
Sm((0 U D,W)): we have shown that; € E’ is not possible for any purported
extension. Hence,""’ does apply, yieldingl(i), andovr(m). This then prevents
o, and any of)*™ from applying.

In the second case, wheres; € E, sinceE = Th(IW U CON(D)) we get that
W U CON(D) + —3; which, by the previous argument, gives an extensigni(0 U
D, W)) by virtue of the applicability of, "’

Proof 3.3

This follows immediately from the first part of the proof of Theorem 3.2.

A.2. Proofs for Section 4

We first show the following results:

Lemmal Let F be a consistent extension §{(D,W, <)) = (D',W’) for set—
ordered default theoryD, W, <).
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Hy(mCm')e Eiff -(mcm/) ¢ FE
2)in(ns,m) € Eiff min(ns,m) ¢ E

Proof 1

1. By the consistency df, we cannot have botlh = m’ € E and—(m C m/) €
E.

Assume that for som®,,,, D,,» C D, we have neithem C_ m' € E nor—(m C
m') € E. Then, however, the default ru% in D_, is applicable and we
obtain—(m C m') € E, which contradicts our assumption.

We have thus shown that — m’ € E'iff «(m C m') ¢ E.

2. Analogous to Proof 1.1.

Lemma 2 Let E be a consistent extension §{(D,W, <)) = (D',W’) for set—
ordered default theoryD, W, <).

1) We have for allD;, Dy C D that(my = msg) € Eiff (m1 C msg) € W'.
2) We have for alD,,, C D and§ € D thatin(ns,m) € Eiff in(ns,m) € W'.

Proof 2

1) Clearly, we havém, C mg) € Eif (m; T mgy) € W'.

Assume we havém; C mq) € E and(m; C mg) ¢ W’'. Since(m; C ms) &
W' = Ey, there must exist (according to Definition 2.1) some 0 with (m; C
ma) € E; but(my C me) € E;41. Since there are no default rules with consequents
containing positive occurrences ofliterals, we must havém, C ms) € Th(E;).
For the same reason, all positive occurrencegimust stem fromi¥-. In fact, all
positive occurrences af-literals in W (in clause form) come from (16) or (18) in
Wr. For (16), we obtai(m; C ms) € W', a contradiction. (18) can be written
in the form ((m1 T m2) A ¢) V ¢ V ok(m;) for some formulasp, ¢. A proof for
E;  (my C m9) must thus contain the negativk-literal ok(m, ). There are however
no negative occurrences ok-literals in S((D, W, <)), neither inD’ nor in W', a
contraction.

2) Analogous to proof of Lemma 2.1.

Proof 4.1

4+5+6. We show for alD,,, € 2P by induction onc_ thatok(m) € E iff bl(m) € E
orap(m) € E, and thatip(m) € Eiff ko(m) ¢ E, orko(m) € E iff (bl(m) € E or
ovr(m) € E).
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ConsiderD,, € 2P and assume that for al,,, with D,, C D,, we have
ok(m’) € Eiff bl(m’) € W orap(m’) € E, andap(m/) € E iff ko(m') € E,
andko(m) € E iff (bl(m) € E orovr(m) € E).

First, we have the following lemma.

Lemma 3 Given the induction hypothesis, we hawgm) € E iff
for everym’ wherem C m’ we havebl(m’) € E.
Proof 3 The lemma holds trivially forn = mp.

Otherwise, by the induction hypothesis, we haygm’) € FE iff
ko(m') ¢ E for all D,,, with D,, C D,,,. Hencebl(m') ¢ FE since
the only wayovr(m') is derivable is via (19).

By definition of W- and Lemma 1, we have: = m’ € FE for all
Dy, Dy With D,,, C D,

Analogously, we getm = m’) ¢ E for all D,,,, D,,,» with D,;, ¢ D,,.
From this, we get by means &f_, that—(m = m') € E forall D,,,, D,
with D,,, ¢ D,,r.

Consider the following cases.

- There ism’ wherem C m’ € E andap(m’) € E.
BecauseF is deductively closed and contains (21) we derive
ovr(m) € E, andko(m) from (19).

The only way in whiclok(m) can be derived is via (18pl(m’) ¢
E by the induction hypothesis, and so we deducedkéin) ¢ E.

- For everym/ wherem C— m’ € E we haveap(m/) ¢ E.

We obtain that for every such’ thatko(m') € E. As well,
ovr(m') ¢ E sinceovr(m/) is derivable only via (19). Thusl(m') € E.
Thenok(m) € E by (18).

ForD,, = {4; | j = 1.k} € 2P, we distinguish the following cases.

N R € GD(D', E), thenok(m) € E andko(m) & .
The latter impliesbl(m) ¢ E. As a consequence, we ggt"" ¢ GD(D', E) and
6. ¢ GD(D', E) for j = 1..k. Sinceok(m) € E, we thus have for each; €

{61,...,6,} = D,, that
PREJ;) € E
and  CON(d;) A --- A CON(d,) D -JUSJ;) & E. (31)

Furthermore, (31) impliesJUS§;) ¢ E. WithVy € N. in(y,z) D ok(y-x) € E and
the fact thatZ is deductively closed, we get th@t; )" € GD(D’, E) for j = 1..k.
That is, sinceE is deductively closetyp(n;-m) € E for j = 1..k. And from this we
conclude by Theorem 3.1.6 thai(m) € E.
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N Gl @ GD(D', B), then we have théto(m) € E : The
only other possibility is thavk(m) ¢ E. But then by Lemma 3 we would have that
there ism’ wherem C— m/ andap(m’) € E. But then, since® is deductively closed,
we getovr(m) € E via (21) and scko(m) € E.

Consequently we havieo(m) € E. It follows thatap(m) ¢ E: Assume to
the contrary thatp(m) € E. ap(m) is derivable via (20) only. But this means
thatap(n,;-m) € E for everyd; € D,,; henceok(n;-m) € E for everyd; € D,,,
or for in(n;, m). Butok(n;-m) is obtainable only from application of the default

ok(m;) : —ovr(m;) P
VUEN. in(y.2)Dok(y7) " contradiction.

A similar argument established thal{m) ¢ E.

This demonstrates thak(m) € E iff ap(m) € E or bl(m) € E, and that
ap(m) € E iff ko(m) € E and thatko(m) € E iff (bl(m) € E orovr(m) € E)
for all D,, € 2P.

3. This is a corollary of the preceding.

7. The if-part follows immediately from the last line - (21). For the only-if
part, we observe thatr(m) can be derived only from (21).

8. Assume thaip(m) € F for somem and that for somen’ wherem C m’ € F
we havebl(m’) ¢ E. This means thakto(m’) ¢ E sinceko(m’) € E is derivable
only by (19). ko(m') ¢ E impliesap(m) € E (Theorem 4.1.5) and (froffi’-) we
getovr(m) € E. Butthenko(m) € E andap(m) € E, ko(m) € E contradicts
Theorem 4.1.5.

9. This is obvious from (21).

10. Assume thadp(m),ap(m’) € E where(m = m’) € E. Sinceap(m’) € E
we have from (21) thatvr(m) € E andko(m) € E. Butap(m) € E, ko(m) € E
contradicts Theorem 4.1.5.

Proof 4.3 Let (D, W) be a semi-monotonic default theory and#ebe an extension
of (D, W) = (D', W").

We make use of the following definition:
Definition A.2 [(S,m) ={y € L|~(m) € S}.

Assume thatap(m) € E where m is the name ofD,,. We show that
WTh(W UCOND,,)), m) is an extension of D, V).

We haveok(m) € E by Theorem 4.1.4. Let be the least integer such that
ok(m) € E;, and letj be the least integer such thati(m) € E;. (That is, in the
definition of an extension there is some stgpyhereok(m) is asserted. Following
this the defaults corresponding to elementdpf are applied. At (later) step >
we are “done” applying the defaults ang(m) is asserted.)
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Lemma4 [(E;,m)= Th(W) for i as above.

Proof4 Sinceap(m) € E; we haveap(m) € E, and from Theo-
rem 4.1.8 we get thail(m’) € E for all m’ such thatn = m'. Thus
ko(m') € E.

Thus for everym’ wherem C m' and for defaulty; € D,,» we have
ok(n;-m’) ¢ E (since the only wayk(n;-m’) can be inferred is from
(9)). Hence defauld; isn't applied inE. Since this holds for arbitram’
wherem C m/, it follows that | (E;, m) = [(Eo, m) = Th(W). [

Sinceap(m) € E, ko(m) € E via Theorem 4.1.5, so (9) is applicable at steql.
We have:
EZ'+1 - Th(EZ) @] {ok(n]m) | §j € Dm}
Eitkr1 € Th(Eijpx)U {V(m) A ap(n-m) a(m)A”;(g,’:)nA)::(l;(ZT)ﬂ(m) € Dy,
a(m) Ain(n,m) Aok(n-m) € E;1x,—G(m) & E} for0 <k <j—i.

,Th(Ej_l) .

E;

J

N

Observe that fok > j we have [(Ex, m) = |(E;, m) since the name: appears
only in relation to the seD,,.

Define: E}* = |[(Eitk+1, m) for 0 < k.
For later use, we have the following small lemma.
Lemma5
Uimo Bx" = L(E,m).
Proof 5 SinceE]" = |[(Eitk+1,m) for 0 < k we have
U;ozo Eyt = U20=1‘+1 WEk,m) = l(U;O:i-i-l Ex,m)

We also have|(Ey, m) = --- = |(E;,m) = Th(WW) from Lemma 4.
Hence:
Urco B8 = WEo,m)U---U U(Ei,m) U WUpZ;y, Ex,m)
= UUrZo Ex,m)
= [(E,m).
]

We show that the set8]" (0 < k) and|J,—, Ej" satisfy the conditions for an
extension.
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To begin with, we have by definition:
E]T = l(E,'_HH_l,m) for0 <k < j—1. (32)
and in particular fok = 0 we have

Egl = (Ei+17 m) = Th(W) .

For0 < k < j —ithe only applicable defaults with consequents with namere
of the form a(m)“’;(&’)’%‘f(:(_’;’)”) :8m) e expand the right hand side of (32) using
Definition 2.1 to obtain:

By = [(Ih(Eitrg2) U

a(m)ANin(n,m)Aok(n-m) : S(m) I
S (myAap(n-m) e,

{7(m) 7 ap(n-m)
a(m) Ain(n,m) A ok(nm) € Eiigio,73(m) & E} ,m)
= UTh(Eitk42),m)U

l({'y(m) A ap(n-m)

a(m)Ain(n,m)Aok(n-m): B(m) /
~y(m)Aap(n-m) e,

a(m) Ain(n,m) Aok(nm) € E;ygyo,8(m) & E} ,m)

SO

~(m)Aap(n-m)

By = T U{y

a(m)Ain(n,m)Aok(n-m): B(m) c D/,OZ c E}Tu ﬁﬁ ¢ l(E/ITL)}

(e U {y

2 e Dae B¢ L(Em)}.

This together with Lemma 5 shows thatE, m) satisfies the definition of an exten-
sion.

[ ]
Proof 4.4
Define: forD1, Dy C D, D1 < D, iff D1 C Ds.
Let (D,W) be a semi-monotonic default theory with extensidiis ..., E,.

E(D,W) = (D’,W’) be given as in Definition 4.1.
For ease of notation, let; name((GD(D, E;)) fori = 1..n.
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Define inL™:

E' = Th(W’ {CON(d)(m;) A ap(ns-m;),ok(ns-m;) | § € GD(D, E;) fori =1..n}
{=(mi ©my) | (D, D;) ¢<}

{ok(m) | GD(D, E;) C D,, for somei € {1.n}}

{ap(m) | D,,, = GD(D, E;), for somei € {1..n}.}

{ko(m) | D, # GD(D, E;) for everyi € {1..n}}

{bl(m) | GD(D, E;) C D,, forsomei € {1..n}}

{ovr(m) | Dy C GD(D, E;) for somei € {1..n}} )

C Cccccccc

To begin with, we show that for, naming a set of generating defaults(éf, 1)

that
WE',m;) = E. (33)

—If « € W then sinceW C E andW C [(E',m;), we havea € Fiff a €
l(E/ami)-

—-If « € CONGD(D,E;)) then since CONGD(D,E;)) < E and
CONGD(D, E;)) C [(E',m;) againa € [(E',m;)iff « € E.

— Last, we havdV U CON(GD(D, E;)) € E; andW U CONGD(D, E;)) C
L(E';m;). Since E; and [(E’,m;) are deductively closed, this implies that
a € Th(WUCONGD(D, E;))) C E; iff a € Th(W UCONGD(D, E;))) C
l(E/amL)

Consequently for every € £, we have shown that € |(E',m;) iff « € F;,
hence[(E’,m;) = E;.

Second, form; not a name of a set of generating defaults, it follows easily that

WE" m;) = W. (34)

We show next thaE” is an extension of (D, W) = (D', W’), and subsequently
that form; namingn(GD(D, E;)) we haveap(m;) € E'.

To show thatE’ is an extension of D', W’), we first show the following three
propositions:

1) W’ C E’. This holds by the definition of".

2) Th(E') = E’'. This holds by the definition of’.

3) Foranys € D', if PRE) € E' and—JUS§) ¢ E’ thenCON(§) € E'.

To show this, supposeRE) € E’ and—JUS§) ¢ E’. For brevity, we assume

without further mention elementary results arising from deductively-closed sets. E.g.
(and most frequentlyy, 3 € E' iff a A3 € E'.

-If § = 2U™E™) then we havem; = m;) ¢ E'. The definition of £’

—(msCmy)

and the fact thatm; T m;) ¢ E’ implies that(m; T m;) ¢ W', specifically
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(m; © my;) ¢ Wa,and so(D;, D;) ¢ < . But from the definition ofE” this means
that—(m,; C_ m;) € E'.

-If 5 = %TZ?)) then we haven(n;,m;) ¢ E’. As in the preceding
this implies thatin(n;,m;) ¢ W', and in particular thain(n;,m;) ¢ Wy or
0; ¢ D; for D; C D. Consequently, according to the definitionffthis means that

—in(n;, m;) € E'.

S 5 = e )A°"(m)) nay(mi) for §; € D;andD; = {61,...,0;} then
ok(m;) € E' anda;(m;) ¢ E'. Since |(E’, mz) E; for each extensioi; we get
that D; is not a set of generating defaults fdp, W). From the definition off’ we
obtain thatl(m,;) € E'.

S5 = (IVyeN. in(y,m:) Dec(y,m:)]D=B(m;)) Aok(m) : for 5 € D; and D;

bl(m;)

{01,..., 0k} then((y1(m;) A -+ Ayi(m;)) D =6(m;)) Aok(m;) € E'.

For extension®;, we note thatd,,...,d,} € GD(D, E;), since if this were
the case we would hax®@ON(d, ), ..., CON(d;) € E;, and this together witliy; A

-~ Ay:) D —B; and the fact thaE is deductively closed means thap; € E, for

some default;. But this means thatJUS§;) € E;, contradicting the assumption
thatd; € GD(D, E;).

SoforD; = {41,...,d,} we haveD; Z GD(D, E;) for any extensiorE; of
(D, W), and from the definition o2’ we obtain thabl(m;) € E'.

If 6 = geym ol for D; = {41,...,0} thenok(m;) € E'
andko(m;) ¢ E’. Consequently (vidl’=) bl(m;) ¢ E’. Hence from the definition
of E’ this means thaD, = GD(D, E). In the definition of E’ we have that for
everyd; € GD(D, E;) thatok(m;) € E’. Hence for everyy; € D, we have that
ok(n;-m;) € E'.

a(m)Ain(n,m)Aok(n;-m): B(m
Slf 5 = amA 7((7”)2;(7;%)) B8m) for 5; € D then we haven(m) A

in(n,m) A ok(n;-m) € E' and—3(m) ¢ E’. Sinceok(n;-m) € E’, by construc-
tion of £’ we have that there is extensidny such thatD,, = GD(D, E;). Since
I(E',m) = E; we haven € E; and—3 ¢ E;. SinceE; is an extension, we have that
d; € GD(D, E;) and so from the definition af’ we obtainy(m) A ap(n;-m) € E'.
This shows that for any € D', if PREJ) € E' and—JUS§) ¢ E’ thenCON(¢) €
E'.

According to Definition A.1, we geff (E’) C E’ by the minimality of'(E").

To show the converse, we show thatiE E’ theny € T'(E’).

We distinguish the following cases.

— If 4 € W’ then sincdV’ C T'(E’) we obtainu € T'(E").

—1If p e {~(m; T my) | (D;,D;) €<} then(m; C m,) ¢ E’. Since we have
the default%'["”) € D', Condition 3 of the definition of'(E’) requires that

iCmy)
—|(mi C mj) € F(E,)
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—If p € {—in(n;,m;) | &; € D;,D; C D} thenin(n;,m;) ¢ E’. But again,
since we have the defauh% € D', Condition 3 of the definition of'(E”)

requires thatin(n,;, m;) € I'(E’).
— We claim that for alim € M \ {mp}:

1) If D,, D GD(D, E;) for some extensiorE; thenok(m) € T'(E’) and
bl(m) € T'(E’).

2)If D,, = GD(D,E;) for some extensiont; then ok(m) € T(E’)
and ap(m) € I'(E’), and for everyd; € D,, we have CON(;)(m) A
ap(n;-m),ok(n;-m) € T'(E").

3) If D,,, C GD(D, E;) for some extensiot; thenovr(m) € T'(E’).

Since the set of sets of generating defaults of extensiof® gfl") forms a cut of
the lattice of subsets dp, 1.-3. above covers all remaining cases.

We show for allD,,, € D that the claim holds by induction oxn.

Base:By definition,ok(mp) € W= C W/ CT'(E').

+ ok(mD) : =ko(mp)

We have the default e (nm 5 ) Sok(n D y and sincein(ny, mp) € I'(E') we
getok(mp) € F(E’) and ko( D) & E’ hence from Condition 3 of Defini-
tion A.1 we obtairok(n;-mp) € T'(E').

Ain(ny,mp)Aok(ny-m T . .
Similarly we have the default2 ;Aa’;(n:é;) 2): T Sincein(ny, mp) A

ok(ny-mp) € I'(E’), =T & E’, we obtainap(n;-mp) € I'(E’). Sincel'(E’)
is deductively closed we gep(mp) € I'(E’).

Step: ConsiderD,,, C D and assume that for al); such thatD,,, < D; that 1.-3. in
the claim above hold.

Let D,, = {d;,...,dr}. There are the following cases.

1) There is extensio&; whereGD(D, E;) C D,,.

By the induction hypothesis, and in particular 1., for everysuch that
m T m/, we havebl(m') € T'(E’) orm’ = mp € T'(E’). SinceWW contains
the formulavz € M [Vy € M.(z C y) D (bl(y) Vy = mp)] D ok(z) and
sincel'(E") is deductively closed, we have thet(m) € T'(E’).

Observe thaf,, is not a set of generating defaults of an extendith
of (D, W), sinceGD(D, E;) C D,, would contradict the assumption th&f is
an extension of D, W).

SinceD,, is not a set of generating defaults of an extension, one of two

cases hold.
2) WU COND,,) F ~g; for somed; € D,,.
HenceW (m) U CON(D,,)(m) - =3, (m) for somed; € D,,.
SinceW (m) € W andW’ C I'(E’), we have thaCON(D,,)(m) D
-B;(m) € T(E').
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Sinceok(m) € T'(E’), and we havéV, C T'(E’), and we have the rule
([YyeN. m(y’mbcély(;’:))]Dﬁﬁ(m))“k(m) - via Definition A.1 we get thabl(m) €
T(E).

3) For som& € D,, \ GD(D, E;) we havelW U CON(GD(D, E;)) t/
PREJ).

Thus W(m) U CONGD(D, E;))(m) I/ PREJ)(m), so W(m) I/
PREJ)(m) or, using (34)E’ t/ PREJ)(m) or, sinceE’ is logically closed,
PREJ)(m) & E'.

Since forsomé € D,,,, sayd = ¢;, we have thaPRE) ¢ E’ and since
ok(m),in(n;, m) € I'(E’) and since we have the ruié(”f’"%f(‘::gm) %1 via
Definition A.1 we obtain thabl(m) € T'(E").

D,, = GD(D, E;).
First, we havebl(m) ¢ E' by definition of E’ and similarlyovr(m) ¢ E’.

By the induction hypothesis, and in particular 2., for everysuch thatn C

m’, we havebl(m’) € T'(E’) orm’ = mp € T'(E’). SinceW contains the

formulavz € M [Vy € M.(z C y) D (bl(y) Vy = mp)] D ok(z) and since

I'(E’) is deductively closed, we have tha(m) € T'(E’).

Since ok(m) € T'(E’) and ovr(m) ¢ E', so ko(m) ¢ E’. From
ok(m) : ~ko(m) we getvy € N.in(y, m) D ok(y-m) € T'(E’) via Defi-

YyeN. in(y,m)Dok(y-m)
nition A.1.

Claim: First, for everyd; € D,,, = GD(D, E;) we haven;(m) Ain(n;, m) A
ok(n;-m) € T'(E') and—3;(m) ¢ E’. Second, since we have the rule

i (m)Ain(n;,m)Aok(n;-m): 3;(m . . ..
25 (m) Wg(jﬁl)}ap(éjﬂ) ):5:0m) \ve obtain via Definition A.1 that; (m) A

ap(n;) € I'(E').
Proof of Claim: We have thatGD(D, E;) is a set of generating defaults of

(D, E). The proof is by induction on the grounded enumerati®n ;<

of defaults inD,,, = GD(D, E;).

Base:There isd; : %lﬁl € GD(D, F) such thaty, € W and—3; ¢ E.
Soaqq(m) € W' and sincéV’(m) C T'(E’) soa;(m) € T(E').
Also, sinceok(n;-m),in(n;,m) € T'(E’'), soaz(m) A in(ni, m) A
ok(n;-m) € T'(E").
Also —6,(m) € E’ (since |(E',m) = E; andg; € E;).
From Definition A.1 we get thay;(m) A ap(n;-m) € T'(E").

Step: Assume that the claim holds fér.k%.
We have somé&;, € GD(D, E;) such thato; € E, and—8; ¢
E (since we have a grounded enumeration of the defaults in
GD(D, E;)).
By the induction hypothesiB),(m) C T'(E’) and soy;(m) € T'(E").
We haveok(n;-m),in(n;,m) € T'(E"), hencea;(m) A in(n;, m) A
ok(n;-m) € T'(E').
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Also —3;(m) ¢ E’ (since |[(E',m) = E; andg; € E;).
From Definition A.1 we get that;(m) A ap(n;-m) € T'(E").

This takes care of the case whévg, = GD(D, E;).

D,, C GD(D, E;).

By the induction hypothesis we have tha{m;) € T'(E’). Aswell,m = m; €
Wr. SinceWW- contains the formula

Ve,y € M.ap(z) D (y C x D ovr(y))

andW C I'(E’), andI'(E’) is logically closed we gedvr(m) € I'(E’).

We have thus shown that € E’ impliesy € T'(E’). Since bothE’ andI'(E’) are
deductively closed, we get that C T'(E").
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