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1 Introduction

The problem of merging multiple, potentially conflicting bodies of information
arises in various guises. For example, an intelligent agent may receive reports from
differing sources of knowledge that must be combined. As well, an agent may re-
ceive conflicting information from sensors that needs to be reconciled. Alternately,
knowledge bases or databases comprising collections of data may need to be com-
bined into a coherent whole. Even in dealing with a single, isolated, agent the
problem of merging knowledge sets may arise: consider an agent whose beliefs
are modelled by various independent “states of mind”, but where it is desirable
in some circumstances to combine such states of mind into a coherent whole, for
example, before acting in a crucial situation. In all these cases, the fundamental
problem is that of combining knowledge bases that may be mutually inconsistent,
or conflicting, to get a coherent merged set of beliefs.

Given this diversity of situations in which the problem may arise, it is not surpris-
ing that different approaches have arisen for combining sources of information.
The major subtypes of merging that have been proposed are called (following [1])
majority and arbitration operators. In the former case, the majority opinion counts
towards resolving conflicts; in the latter, informally, the idea is to try to arrive at
some consensus. In this paper, we develop a specific framework for defining merge
operations. This framework extends our earlier work in belief revision. In both
cases, the central intuition is that for belief change one begins by expressing the
various knowledge bases, belief sources, etc. in distinct languages, and then (ac-
cording to the belief change operation) in one way or another re-express the knowl-
edge bases in a common language. Two approaches are first presented. In the first
case, the intuition is that for merging knowledge bases, the common information
is in a sense “pooled”. This approach then seems to conform more naturally to the
commonsense notion of merging of knowledge. A key property of this approach is
that knowledge common to the knowledge bases is contained in the merged knowl-
edge base. Thus if one knowledge base contained p ∧ q and another ¬p ∧ ¬q, then
(p∧q)∨(¬p∧¬q) would be in the merged knowledge base. Hence in this approach
to merging, an intuition underlying the merging operation is that (at least) one of
the knowledge bases contains correct information, but it is not known which.

In a second approach, knowledge bases are projected onto a separate knowledge
base (which in the simplest case would consist solely of the set of tautologies).
That is, the knowledge bases we wish to merge are used to augment the knowledge
of a “target” body of knowledge. This second approach then appears to be a natural
extension of belief revision. In this approach, knowledge common to the knowledge
bases may not be contained in the merged knowledge base. Thus if two knowledge
bases contained p∧ q and ¬p∧¬q, respectively, then (p∧ q)∨ (¬p∧¬q) may not
be in the merged knowledge base; for example p ∧ ¬q may be consistent with the
merged knowledge base. Hence, here an intuition underlying the merging operation
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is that perhaps some “common ground” is found between the merged knowledge
bases.

In both approaches, we address the role of entailment-based and consistency-based
integrity constraints with respect to the merge operators. Both approaches have
reasonable properties, compared with postulate sets that have appeared in the liter-
ature. As well, the second type of approach has not, to our knowledge, been investi-
gated previously. The next section describes related work while Section 3 develops
these approaches. Following this, we consider variants on these approaches, includ-
ing prioritised merging. Section 5 briefly considers computational complexity. We
conclude with a discussion. Proofs of theorems are found in an appendix.

2 Background

2.1 Consistency-Based Belief Revision

This subsection summarises our earlier work [2] on consistency-based belief revi-
sion. Throughout this paper, we deal with propositional languages and use the logi-
cal symbols >, ⊥, ¬, ∨, ∧, ⊃, and ≡ to construct formulas in the standard way. We
write LP to denote a language over an alphabet P of propositional letters or atomic
propositions. Formulas are denoted by the Greek letters α, β, α1, . . . . Knowledge
bases are identified with deductively-closed sets of formulas, or belief sets, and are
denoted K, K1, . . . . 2 Thus K = Cn(K), where Cn(·) is the deductive closure in
classical propositional logic of the formula or set of formulas given as argument.
Given an alphabet P , we define a disjoint alphabet P ′ as P ′ = {p′ | p ∈ P}. For
α ∈ LP , α′ is the result of replacing in α each proposition p ∈ P by the corre-
sponding proposition p′ ∈ P ′ (so implicitly there is an isomorphism between P
and P ′, and thus LP and LP ′). This is defined analogously for sets of formulas.
This notation essentially allows us to refer to a formula or set of formulas relative
to a knowledge base. In turn, this means that we can rely on the fact that, while p
and ¬p are mutually contradictory, p and ¬p′, trivially, are not.

A belief change scenario in LP is a triple B = (K, R,C) where K, R, and C
are sets of formulas in LP . Informally, K is a belief set that is to be modified so
that the formulas in R are contained in the result, and the formulas in C are not.
For an approach to revision we have |R| = 1 and C = ∅, and for an approach
to contraction we have R = ∅ and |C| = 1. An extension determined by a belief
change scenario, called a belief change extension, is defined as follows.

2 We note that while we deal solely with belief sets in this paper, our definitions work for
arbitrary sets of formulas.
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Definition 2.1 Let B = (K, R,C) be a belief change scenario in LP .

Define EQ as a maximal set of equivalences EQ ⊆ {p ≡ p′ | p ∈ P} such that

Cn(K ′ ∪R ∪ EQ) ∩ (C ∪ {⊥}) = ∅.

Then Cn(K ′ ∪R ∪ EQ) ∩ LP is a (consistent) belief change extension of B.

If there is no such set EQ then B is inconsistent and LP is defined to be the sole
(inconsistent) belief change extension of B.

Note that in the definition, “maximal” is with respect to set containment (rather
than set cardinality). The exclusive use of “{⊥}” in the definition is to take care of
consistency if C = ∅. Clearly a consistent belief change extension of B is a mod-
ification of K which contains every formula in R, and which contains no formula
in C. We say that EQ determines the respective consistent belief change extension
of B. For a given belief change scenario there may be more than one consistent
belief change extension. We make use of the notion of a selection function c that
for any set I 6= ∅ has as value some element of I . In defining revision, we use such
a selection function to select a specific consistent belief change extension. 3

Definition 2.1 provides a very general framework for specifying belief change. We
can restrict the definition to obtain specific functions for belief revision and con-
traction; here we just deal with revision.

Definition 2.2 (Revision) Let K be a belief set and α a formula, and let (Ei)i∈I be
the family of all belief change extensions of (K, {α}, ∅). Then, we define

1. K+̇cα = Ei as a choice revision of K by α with respect to

some selection function c with c(I) = i.

2. K+̇α =
⋂

i∈I Ei as the (skeptical) revision of K by α.

For instance, (skeptically) revising Cn(p ∧ q) by ¬q results in Cn(p ∧ ¬q). This
belief change extension is determined by {p ≡ p′} from the renamed belief set
{p′ ∧ q′} and the revision formula ¬q. As a second example, we get

{¬p ≡ q} +̇ ¬q = Cn(p ∧ ¬q)

from the renamed knowledge base ¬p′ ≡ q′ and formula ¬q, along with equiva-
lences {p ≡ p′, q ≡ q′}. For a third example, observe that both {p∨q} +̇ (¬p∨¬q)
as well as {p ∧ q} +̇ (¬p ∨ ¬q) result in Cn(p ≡ ¬q), although the former is de-

3 This use of selection functions is slightly different from that in the AGM approach.
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termined by {p ≡ p′, q ≡ q′}, while the latter relies on two such sets, viz. {p ≡ p′}
and {q ≡ q′}.

With respect to related work, and specifically to the foundational AGM postulates
[3], we obtain that the basic postulates are satisfied, along with supplementary pos-
tulate (K+̇7) for both choice and skeptical revision.

Definition 2.1 also leads to a natural and general treatment of both consistency-
based and entailment-based integrity constraints; see [2] for details.

2.2 Belief Merging

In this section we review related work in belief set merging. We focus on two sets
of postulates that have been used to characterise merging, and with respect to which
we compare our own approaches. Following this we briefly survey representative
related work in the literature.

First, Liberatore and Schaerf [4] consider merging two belief bases and propose
the following postulate set to characterise a merge operator that they call an arbi-
tration operator ([5] call this a commutative revision operator). They restrict their
attention to propositional languages over a finite set of atoms; consequently their
merging operator can be expressed as a binary operator on formulas. They provide
the following postulates, which we express as a definition.

Definition 2.3 M is an arbitration operator (or commutative revision operator) iff
M satisfies the following postulates.

(LS1) ` α M β ≡ β M α.
(LS2) ` α ∧ β ⊃ α M β.
(LS3) If α ∧ β is satisfiable then ` α M β ⊃ α ∧ β.
(LS4) α M β is unsatisfiable iff α is unsatisfiable and β is unsatisfiable.
(LS5) If ` α1 ≡ α2 and ` β1 ≡ β2 then ` α1 M β1 ≡ α2 M β2.

(LS6) α M (β1 ∨ β2) =


α M β1 or

α M β2 or

(α M β1) ∨ (α M β2)

(LS7) ` (α M β) ⊃ (α ∨ β).
(LS8) If α is satisfiable then α ∧ (α M β) is satisfiable.

The first postulate asserts that the merging is a commutative operator, while the
next two assert that, for mutually consistent formulas, merging corresponds to their
conjunction. (LS5) ensures that the operator is independent of syntax, while (LS6)
provides a “factoring” postulate, analogous to a similar factoring result in (AGM-
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style) belief revision and contraction. Postulate (LS7) can be taken as distinguish-
ing M from other such operators; it asserts that the result of merging implies the
disjunction of the original formulas. The last postulate informally constrains the
result of merging so that each operator “contributes to” (i.e. is consistent with) the
final result.

Konieczny and Pino Peréz [5] also consider the problem of merging possibly con-
tradictory belief bases. To this end, they consider finite multisets of the form Ψ =
{K1, . . . , Kn} and assume that all belief sets Ki are consistent, finitely repre-
sentable, and therefore representable by a formula. K+n is the multiset consisting
of n copies of K. 4 Multiset union is denoted t, wherein for example {φ}t{φ} =
{φ, φ}. Following [5], we use 5 ∆µ(Ψ) to denote the result of merging the multi-
set Ψ of belief bases given the entailment-based integrity constraint expressed by
µ. They provide the following set of postulates:

Definition 2.4 ([5]) Let Ψ be a multiset of sets of formulas, and φ, µ formulas (all
possibly subscripted or primed). ∆ is an IC merging operator iff it satisfies the
following postulates.

(IC0) ∆µ(Ψ) ` µ.
(IC1) If µ 6` ⊥ then ∆µ(Ψ) 6` ⊥.
(IC2) If

∧
Ψ 6` ¬µ then ∆µ(Ψ) ≡ ∧

Ψ ∧ µ.
(IC3) If Ψ1 ≡ Ψ2 and µ1 ≡ µ2 then ∆µ1(Ψ1) ≡ ∆µ2(Ψ2).
(IC4) If φ ` µ and φ′ ` µ then: ∆µ(φtφ′)∧φ 6` ⊥ implies ∆µ(φtφ′)∧φ′ 6` ⊥.
(IC5) ∆µ(Ψ1) ∧∆µ(Ψ2) ` ∆µ(Ψ1 tΨ2).
(IC6) If ∆µ(Ψ1) ∧∆µ(Ψ2) 6` ⊥ then ∆µ(Ψ1 tΨ2) ` ∆µ(Ψ1) ∧∆µ(Ψ2).
(IC7) ∆µ1(Ψ) ∧ µ2 ` ∆µ1∧µ2(Ψ).
(IC8) If ∆µ1(Ψ) ∧ µ2 6` ⊥ then ∆µ1∧µ2(Ψ) ` ∆µ1(Ψ) ∧ µ2.

The intent is that ∆µ(Ψ) is the belief base closest to the belief multiset Ψ. Of the
postulates, (IC2) states that the result of merging is simply the conjunction of the
belief bases and integrity constraints, when consistent. (IC4) is a fairness postu-
late, that when two belief bases disagree, merging doesn’t give preference to one
of them. (IC5) states that a model of two mergings is in the union of their merg-
ing. With (IC5) we get that if two mergings are consistent then their merging is
implied by their conjunction. Note that merging operators are trivially commuta-
tive. (IC7) and (IC8) correspond to the extended AGM postulates (K+̇7) and
(K+̇8) for revision, but with respect to the integrity constraints. Postulates (IC1)–
(IC6), with tautologous integrity constraints, correspond to basic merging without
integrity constraints in [1].

4 [5] uses the notation Kn.
5 [5] writes ∆µ(Ψ) where we have ∆µ(Ψ).
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A majority operator is characterised in addition by the postulate:

(Maj) ∃n∆µ(Ψ1 tΨ+n
2 ) ` ∆µ(Ψ2)

Thus, given enough repetitions of a belief base Ψ2, this belief base will eventually
come to dominate the merge operation.

An arbitration operator is characterised by the original postulates together with the
following postulate; see [5] for an explanation.

(Arb) Let µ1 and µ2 be logically independent. If ∆µ1(φ1) ≡ ∆µ2(φ2) and
∆µ1≡µ2(φ1 t φ2) ≡ (µ1 ≡ µ2) then ∆µ1∨µ2(φ1 t φ2) ≡ ∆µ1(φ1).

[1] characterises these approaches as trying to minimize global dissatisfaction vs.
trying to minimize local dissatisfaction respectively. Examples are given of a merg-
ing operator using Dalal’s notion of distance [6].

Earlier work on merging operators includes [7] and [8]. The former proposes vari-
ous theory merging operators based on the selection of maximum consistent subsets
in the union of the belief bases; see [9] for a pertinent discussion. The latter pro-
poses an “arbitration” operator that satisfies a subset of the Liberatore and Schaerf
postulates; see [10] for a discussion. [11] first identified and addressed the major-
ity merge operator. [12] gives a framework for defining merging operators, where
a family of merging operators is parameterised by a distance between interpreta-
tions and aggregating functions. The authors suggest that most, if not all, model-
based merging operators can be captured in their approach, along with a selection
of syntax-based operators.

More or less concurrently, [13] proposed a general approach to formulating merg-
ing functions, based on ordinal conditional functions [14]. Roughly, epistemic states
are associated with a mapping from possible worlds onto the set of ordinal numbers.
Various merging operators then can be defined by considering the ways in which
the “Cartesian product” of two epistemic states can be resolved into an ordinal con-
ditional function. [15] also considers the problem of an agent merging information
from different sources, via what is called social contraction. In a manner analo-
gous to the Levi Identity for belief revision, information from the various sources
is weakened to the extent that it can be consistently added to the agent’s belief base.
Last, much work has been carried out in merging possibilistic knowledge bases; see
for example [16].

3 Consistency-Based Approaches to Belief Set Merging

In this section we modify the framework given by Definition 2.1 to deal with belief
set merging, in which multiple sources of information (knowledge bases, etc.) are
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coalesced into a single belief set. We detail two different approaches to belief set
merging in this section, expressible in the general approach.

In the first case, the intuition is that for merging belief sets, the common information
is in a sense “pooled”. This approach then seems to conform to the commonsense
notion of merging of knowledge, in which sets of knowledge are joined to produce
a single knowledge set retaining as much as possible of the contents of the original
knowledge sets. As well, it adheres for the most part to the Liberatore and Schaerf
postulates [4]. In the second approach, knowledge sources are projected onto a
separate knowledge source (which in the simplest case could consist solely of tau-
tologies). That is, the sources we wish to merge are used to augment the knowledge
of another source, which could be thought of as a set of integrity constraints or
alternatively as a set of formulas for revision. This approach generally follows the
postulates given by Konieczny and Pino Peréz [5].

3.1 Multi belief change scenarios

Our approaches to merging are centred around the notion of a multi belief change
scenario:

Definition 3.1 A multi belief change scenario, B, in LP is a triple

B = (K, R, C)

where K is a family (Kj)j∈J of sets of formulas in LP , and R,C ⊆ LP .

Informally,K is a collection of belief sets that are to be merged so that the formulas
in R are contained in the result, and the formulas in C are not. So this is the same
as a belief change scenario as defined in Section 2, except that the single set of
formulas K is extended to several of sets of formulas. R and C will be used to
express entailment-based and consistency-based integrity constraints, respectively.
That is, the formulas in R will all be true in the result of a merging, whereas the
formulas in C will not be contained in the result. While R is intended to represent a
set of entailment-based integrity constraints [17], it could just as easily be regarded
as a set of formulas for revision. Similarly, while C is intended to represent a set of
(negations of) consistency-based integrity constraints [18,19], it could just as easily
be regarded as a set of formulas for contraction. Thus the overall approaches can be
considered as a framework in which merging, revising, and (multiple) contractions
may be carried out in parallel while taking into account integrity constraints.

To begin with, we generalise the notation α′ from Section 2 in the obvious way for
integers i > 0 and sets of integers: for alphabet P , we define P i as P i = {pi |
p ∈ P}, and αi etc. analogous to Section 2. Similarly we define for a set or list of
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positive integers N that PN = {pi | p ∈ P , i ∈ N}. Then αN = {αi | i ∈ N}.
The definition of an extension to a multi belief change scenario will depend on the
specific approach to merging that is being formalised. We consider each approach
in turn in the following two subsections.

3.2 Belief Set Merging

Consider the first approach, in which the contents of belief sets are to be merged.
The issue of integrity constraints is addressed after the basic definitions are given.

Definition 3.2 Let B = (K, ∅, ∅) be a multi belief change scenario in LP , where
K = (Kj)j∈J . Define EQ as a maximal set of equivalences

EQ ⊆ {pk ≡ pl | p ∈ P and k, l ∈ J}

such that

Cn
(⋃

j∈JKj
j ∪ EQ

)
∩ {⊥} = ∅

Then{
α
∣∣∣ {αj | j ∈ J} ⊆ Cn

(⋃
j∈JKj

j ∪ EQ
)}

is a consistent symmetric belief change extension of B.

If there is no such set EQ then B is inconsistent and LP is defined to be the sole
(inconsistent) symmetric belief change extension of B.

Definition 3.3 (Merging) Let K be a family of sets of formulas in LP and let
(Ei)i∈I be the family of all symmetric belief change extensions of (K, ∅, ∅).

Then, we define

1. ∆c(K) = Ei as the choice merging of K with respect to

selection function c with c(I) = i.

2. ∆(K) =
⋂

i∈I Ei as the (skeptical) merging of K.

Of particular interest is binary merging, whereK = {K1, K2}. In this case, we will
write the merge operator ∆ as an infix operator. That is, ∆({K1, K2}) is written as
K1 M K2. Also, given two formulas α, β, we just write α M β.
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Example 1 (p ∧ q ∧ r) M (p ∧ ¬q ∧ s) yields (informally) (p1 ∧ q1 ∧ r1) ∧ (p2 ∧
¬q2 ∧ s2) along with EQ = {p1 ≡ p2, r1 ≡ r2, s1 ≡ s2}. The result of merging is
Cn({p ∧ r ∧ s}) .

Example 2 Let

K1 ≡ p ∧ q ∧ r ∧ s and K2 ≡ ¬p ∧ ¬q ∧ ¬r ∧ ¬s.

We obtain that K1 M K2 yields EQ = ∅ and in fact

K1 M K2 = Cn({(p ∧ q ∧ r ∧ s) ∨ (¬p ∧ ¬q ∧ ¬r ∧ ¬s)}) .

This example is introduced and discussed in [1]; as well it corresponds to the postu-
late (LS7). Consider where K1 and K2 represent two analyst’s forecasts concerning
how four different stocks are going to perform. p represents the fact that the first
stock will rise, etc. The result of merging is a belief set, in which it is believed that
either all will rise, or that all will not rise. That is, essentially, it is believed that one
forecast will hold in its entirety, or the other will. As [1] points out, knowing noth-
ing else and assuming independence of the stock’s movements, this is implausible:
it is possible that some stocks rise while others do not. On the other hand, if we
have reason to believe that one analyst is in fact highly reliable (although we don’t
know which) then the result of Example 2 is reasonable. However this example
illustrates that there are cases wherein this formulation is too strong.

We obtain the following with respect to the postulate sets described in Section 2.2. 6

Theorem 3.1 Let ∆ and∆c be defined as in Definition 3.3, but letting µ, µ1, and
µ2 be >. 7

Then ∆ and∆c satisfy the postulates (IC0), (IC2), (IC3),(IC5), (IC7), (IC8),
as well as the weaker versions of (IC1) 8 and (IC6), and a stronger version of
(IC4):

(IC1′) If K 6` ⊥ for every K ∈ K, then ∆(K) 6` ⊥.
(IC4′) If K 6` ⊥ for every K ∈ K, then for K ∈ K we have ∆(K) ∪K 6` ⊥.
(IC6′) If K1 ∧K2 6` ⊥ then ∆({K1} t {K2}) ` K1 ∧K2.

6 In discussing the IC postulates we will use the notation of [1]; for the LS postulates we
will use the notation of [4].
7 Setting µ, µ1, and µ2 to > reflects the fact that in Definition 3.1 we have R = C = ∅.
For more explanation, see the discussion on integrity constraints following Theorem 3.3.
8 It is straightforward to obtain (IC1) by essentially ignoring inconsistent belief sets. We
remain with the present postulate since it reflects the most natural formulation of merging
in our framework.
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A counterexample to (IC6) is given by

K1 = {Cn(p) , Cn(¬p)}, K2 = {Cn(p)}.

We have ∆(K1) ∧∆(K2) ≡ >∧ p ≡ p, while ∆(K1 tK2) ≡ >. The fact that this
approach fails to satisfy (IC6) as originally given seems reasonable to us, at least
in the context of a non-majority merging operator. Indeed, it proves to be the case
that present approach satisfies a non-majority postulate, viz.:

∆(K1 t K+n
2 ) = ∆(K1 t K2).

This postulate is identified in [1], a weaker version of which is used to define their
arbitration operator.

Theorem 3.2 Let ∆ and∆c be defined as in Definition 3.3.

Then ∆ and∆c satisfy the following postulates.

(1) (LS1), (LS2), (LS3), (LS5), (LS7)

as well as the following weaker versions of the remaining postulates:

(2) (LS4)′ α M β is satisfiable iff α is satisfiable and β is satisfiable.
(LS6)′ (α M β1) ∧ β2 implies α M (β1 ∧ β2).
(LS8)′ If α is satisfiable and β is satisfiable then α ∧ (α M β) is satisfiable.

(3) (LS6c)′ For any selection function c there is a selection function c′ such that
αMc β1 implies αMc′ (β1 ∨ β2) or αMc β2 implies αMc′ (β1 ∨ β2).

Example 3 A counterexample to (LS6) is given by the following.

α ≡ (p ∧ q ∧ r ∧ s) , β1 ≡ (¬p ∧ ¬q) ∨ ¬r , β2 ≡ ¬q ∨ ¬s .

We get that:

α M (β1 ∨ β2) ≡ (p ∧ q ∧ r) ∨ (p ∧ q ∧ s) ∨ (p ∧ r ∧ s) ,

α M β1 ≡ (p ∧ q ∧ s) ∨ (r ∧ s) ,

α M β2 ≡ (p ∧ q ∧ r) ∨ (p ∧ r ∧ s) .

This result echoes similar results in distance-based belief revision. Typically, AGM
revision postulate (K+̇8) fails in such distance-based approaches [20]. Here, (LS6)′

corresponds to AGM revision postulate (K+̇7), while (LS6) is analogous to a “fac-
toring result” in revision that in turn is equivalent to (K+̇7) and (K+̇8).
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While the merging operator is commutative by definition, it is not associative; for
example (((p∨q) M ¬p) M p) 6= (p∨q) M (¬p M p). Lastly, we have the following
result showing that in this approach, merging two belief sets is expressible in terms
of our approach to revision.

Theorem 3.3 Let +̇ and M be given as in Definitions 2.2 and 3.3 (respectively).
Then,

α M β = α+̇β ∩ β+̇α.

As in [2], we can also consider the role of integrity constraints in belief set merg-
ing. However there is a fundamental problem here: given the presence of postulate
(LS7), for (entailment-based) integrity constraint µ and merge operation α M β, it
is unclear what the result should be when α ∨ β ` ¬µ. The simplest solution is to
simply have the result of merging be the inconsistent belief set when this occurs.
Hence in [21] we had the following definition, in place of Definition 3.2. (Other
definitions are unchanged.)

Definition 3.4 Let B = (K, R, C) be a multi belief change scenario in LP , where
K = (Kj)j∈J . Define EQ as a maximal set of equivalences

EQ ⊆ {pk ≡ pl | p ∈ P and k, l ∈ J}}

such that

Cn
(⋃

j∈JKj
j ∪RJ ∪ EQ

)
∩ (CJ ∪ {⊥}) = ∅

Then{
α
∣∣∣ {αj | j ∈ J} ⊆ Cn

(⋃
j∈JKj

j ∪RJ ∪ EQ
)}

is a consistent symmetric belief change extension of B with integrity constraints.

If there is no such set EQ then B is inconsistent and LP is defined to be the sole
(inconsistent) symmetric belief change extension of B.

The sets RJ ensure that the integrity constraints in R are true in each belief set, and
so will be true in the result. Of course, this may come at the cost of inconsistency
for the merged belief set.

Otherwise there are two ways that one can ensure that the result of merging is con-
sistent with an (entailment-based) integrity constraint: For multiset K and integrity
constraint µ, one can ensure that each belief set inK is consistent with µ by revising
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by µ. Alternatively, one can merge the members of K and then revise by µ. Thus in
the first case we define the merging of K = {K1, . . . , Kn} with constraint µ as

∆((Kj+̇µ)j∈J).

In the second case we define the merging as

(∆(Kj)j∈J)+̇µ.

These approaches are not equivalent, as the next example illustrates.

Example 4 Let K1 = Cn(p), K2 = Cn(p ⊃ q), and µ = ¬p ∨ ¬q.

Then K1 M K2 = Cn(p ∧ q) and (K1 M K2)+̇µ = Cn(p ≡ ¬q).

However, K1+̇µ = Cn(p ∧ ¬q), K2+̇µ = Cn(¬p), and

(K1+̇µ) M (K2+̇µ) = Cn(¬q).

This example also shows that neither possibility is strictly stronger than the other.

3.3 Belief Set Projection

In our second approach, the contents of several belief sets are “projected” onto
another designated belief set. Again, the formulation is straightforward within the
framework of belief change scenarios. For belief sets K1, . . . , Kn, we express each
in a distinct language, but project these belief sets onto a distinguished belief set in
which R is believed. (In the simplest case we would have R ≡ >.)

In the following, R and C represent a set of entailment-based and consistency-
based integrity constraints, respectively.

Definition 3.5 Let B = (K, R, C) be a multi belief change scenario in LP , where
K = (Kj)j∈J . Define EQ as a maximal set of equivalences

EQ ⊆ {pj ≡ p | p ∈ P and j ∈ J}

such that

Cn
(⋃

j∈JKj
j ∪R ∪ EQ

)
∩ (C ∪ {⊥}) = ∅.
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Then

Cn
(⋃

j∈JKj
j ∪R ∪ EQ

)
∩ LP

is a consistent projected belief change extension of B.

If there is no such set EQ then B is inconsistent and LP is defined to be the sole
(inconsistent) projected belief change extension of B.

There is an interesting similarity between revision and projection. Revision in some
sense “projects” a belief set onto the formula that we revise with. Similarly, the
actual projection operation “projects” a family of belief sets onto whatever is con-
tained in R.

Definition 3.6 (Merging via Projection) Let K be a family of sets of formulas in
LP , let R and C be sets of formulas in LP , and let (Ei)i∈I be the family of all
projected belief change extensions of (K, R, C).

Then, we define

1. ∇R,C
c (K) = Ei as the choice merging of K with respect to integrity

constraints R and C, and selection function c with c(I) = i.

2. ∇R,C(K) =
⋂

i∈I Ei as the (skeptical) merging of K with respect to integrity

constraints R and C.

As above, for two formulas α and β, we just write αOβ, if R = C = ∅ and we
write αOµβ if R = {µ} and C = ∅.

Example 5 We have that (p ∧ q ∧ r)O(p ∧ ¬q) yields two EQ sets:

EQ1 = {p1 ≡ p, p2 ≡ p, q1 ≡ q, r1 ≡ r, r2 ≡ r} and
EQ2 = {p1 ≡ p, p2 ≡ p, q2 ≡ q, r1 ≡ r, r2 ≡ r}.

The result of merging is p ∧ r ∧ s.

Example 6 Consider the example from [1]:

K1 ≡ p ∧ q ∧ r ∧ s and K2 ≡ ¬p ∧ ¬q ∧ ¬r ∧ ¬s.

In forming a set of equivalences, EQ, we can have precisely one of p1 ≡ p or
p2 ≡ p in EQ, and similarly for the other atomic sentences. Each such set of equiv-
alences then represents one way each forecaster’s prediction for a specific stock
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can be taken into account. Taken all together then we have 24 sets of equivalences,
and in the end we obtain that

K1OK2 = Cn(>) .

We feel that this is a plausible outcome in the interpretation involving the forecasted
movement of independent stocks. Note that if the example were extended so that
multiple possibilities for stock movement were allowed, then we would obtain in
the projection the various compromise positions for the two belief sets. Thus for
example if a stock could either remain the same, or go up or down a little or a lot,
and one forecaster predicted that stocks a and b would go up a lot, and another
predicted that they would both go down a lot, then the projection would have both
stocks moving a lot, although it would be unclear as to whether the movement
would be up or down.

We obtain the following.

Theorem 3.4 Let ∇ and ∇c be defined as in Definition 3.6.

Then ∇ and ∇c satisfy the postulates (IC0), (IC2), (IC3), (IC5), (IC7), (IC8),
as well as versions of (IC1), (IC4), (IC6):

(IC1′) If for every K ∈ K we have K 6` ⊥, and µ 6` ⊥ then ∇µ(K) 6` ⊥. 9

(IC4′) If K1 6` ⊥, K2 6` ⊥ and K1 ` µ, K2 ` µ then:∇µ({K1}t{K2})∧K1 6` ⊥.
(IC6′) If K1 ∧K2 6` ⊥ then ∇({K1} t {K2}) ` K1 ∧K2.

Theorem 3.5 Let ∇ and ∇c be defined as in Definition 3.6.

Then, ∇ and ∇c satisfy the postulates (LS1)–(LS3), (LS5), along with:

(LS4)′ αOβ is satisfiable iff α is satisfiable and β is satisfiable.
(LS8)′ If α is satisfiable and β is satisfiable then α ∧ (αOβ) is satisfiable.

As well, versions for Oc for (LS4)′ and (LS8)′ also hold.

Postulate (LS6) does not hold here; Example 3 provides a counterexample. As
well, the weaker postulate (LS6)′ does not hold. Recall that (LS6)′ is (αOβ1) ∧
β2 implies αO(β1 ∧ β2). However, consider the counterexample, derived from the
stock-moving example (2):

[(p ∧ q)O(¬p ∧ ¬q)] ∧ (p ∧ ¬q)

9 It is straightforward to obtain (IC1) by essentially ignoring inconsistent belief sets. We
remain with the present postulate since it reflects the most natural formulation of projection
in our framework.
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does not imply

(p ∧ q) O [(¬p ∧ ¬q) ∧ (p ∧ ¬q)].

Further, postulate (LS7) does not hold here, as Example 6 illustrates. Hence, pro-
jection is not an arbitration operator (in the sense of [4]). Neither is the projec-
tion operator associative, as the example from the previous subsection, viz. (((p ∨
q)O¬p)Op) 6= (p ∨ q)O(¬pOp), shows.

Last we have the following results relating projection with merging and revision,
respectively:

Theorem 3.6 Let K, ∆ and ∇ be given as in Definitions 3.3 and 3.6 (respectively).
Then

∇(K) ⊆ ∆(K).

That is, in binary terms, αOβ ⊆ α M β.

As well, we have the following analogue to Theorem 3.3:

Theorem 3.7 Let +̇ and ∇ be given as in Definitions 2.2 and 3.6 (respectively).

Then, α+̇β = αOβ>.

3.4 Combining the Approaches

In this section we show an interesting relationship between belief set merging and
projection. Consider the belief multiset {R}t{K1, . . . , Kn}. One can define a new
type of merging operation in which {K1, . . . , Kn} are merged (as in Definition 3.3)
while simultaneously being projected onto R (as in Definition 3.6). Of course, this
is just the merging of {R,K1, . . . , Kn} (according to Definition 3.2), where instead
of taking formulas common to all belief sets, as in Definition 3.3, one just selects
those formulas in (the language of) R. This approach then would appear to provide
a means of incorporating integrity constraints in belief set merging, in which the
belief set R would represent (entailment-based) integrity constraints. However, as
will be seen, this enhanced approach adds nothing over what we already have with
belief set projection.

Formally we have the following. First, we have the definition, extending Defini-
tion 3.2:

Definition 3.7 Let B = (K, R, C) be a multi belief change scenario in LP , where
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K = (Kj)j∈J . Define EQ as a maximal set of equivalences

EQ ⊆ {pk ≡ pl | p ∈ P and k, l ∈ J} ∪ {pj ≡ p | p ∈ P and j ∈ J}

such that

Cn
(⋃

j∈JKj
j ∪R ∪ EQ

)
∩ (C ∪ {⊥}) = ∅.

Then

Cn
(⋃

j∈JKj
j ∪R ∪ EQ

)
∩ LP

is a consistent merge/project belief change extension of B.

If there is no such set EQ then B is inconsistent and LP is defined to be the sole
(inconsistent) symmetric belief change extension of B.

We could then go on and define choice and skeptical versions of this operator, as
we did for merging and projection. However the following result shows that this is
not necessary.

Theorem 3.8 Let B = (K, R, ∅) be a multi belief change scenario in LP .

Then E is a consistent projected belief change extension of B (according to Defini-
tion 3.5) iff E is a consistent merge/project belief change extension of B (according
to Definition 3.7).

Consequently the merge/project belief change extensions of B are exactly the pro-
jected belief change extensions of B. This in turn means that our purported combin-
ing of merging and projection in fact amounts to projection. Expressed differently
we have that, in projecting onto R, allowing interactions among the members of K
is in fact irrelevant with respect to the projection.

4 Additional Merging Operators

In this section we outline further types of merging operators. Our results here are
less formal than in the previous section, partly because we modify or augment
earlier definitions, and partly because the extensions we describe are relatively
straightforward. Nonetheless, the operators described here illustrate the range of
possibilities that may be covered in the overall approach.
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4.1 Rigid merging

More skeptical versions of merging and projection, respectively, can be obtained by
introducing some “rigidity” into the definition of merging operators by modifying
the format of the sets of equivalences EQ determining belief change extensions.

As regards Definition 3.2, we may replace EQ ⊆ {pk ≡ pl | p ∈ P and k, l ∈ J}
by

EQ ⊆ {∧k,l∈J(pk ≡ pl) | p ∈ P} (1)

or even restricted to n-ary conjunctions by

EQ ⊆ {∧k,l∈I(p
k ≡ pl) | p ∈ P and I ⊆ J, |I| = n} .

The result however in general is a quite weak operator. Consider for example where
we have

K1 = Cn(p ∧ ¬q) , K2 = Cn(q ∧ ¬r) , K3 = Cn(r ∧ ¬p) .

Then redefining EQ as in (1) we obtain that ∆({K1, K2, K3}) = Cn(>). Plausibly
however one might expect that ∆({K1, K2, K3}) would contain p ∨ q ∨ r as well
as ¬p ∨ ¬q ∨ ¬r.

More interesting arguably is belief set projection, since the “rigidity” provides us
with an additional means for controlling projection. As regards Definition 3.5, we
can replace EQ ⊆ {pj ≡ p | p ∈ P and j ∈ J} with

EQ ⊆ {∧j∈J(pj ≡ p) | p ∈ P}

or even restricted to n-ary conjunctions by

EQ ⊆ {∧j∈I(p
j ≡ p) | p ∈ P and I ⊆ J, |I| = n} . (2)

As an example, consider four knowledge bases

K1 ≡ p ∧ q ∧ r

K2 ≡ p ∧ q ∧ r

K3 ≡ p ∧ q ∧ ¬r

K4 ≡ p ∧ ¬q ∧ ¬r .
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Now, let us merge these bases by using the type of equivalences in (2) and setting
n = 3. That is, we only consider conjunctions of three equivalences, like (q2 ≡
q)∧ (q3 ≡ q)∧ (q4 ≡ q). Starting from K1

1 ∪K2
2 ∪K3

3 ∪K4
4 , we may clearly add all

ternary equivalences involving p. Regarding q, however, only the above conjunction
can be added, and this is all. As a result, we thus get p ∧ q. This is not obtainable
with any skeptical merging operator discussed in the previous sections.

Interestingly, the above provides us with a type of majority operator (see (Maj) in
Section 2). In fact, adding

K5 ≡ p ∧ q ∧ r

to the four previous knowledge bases triplicates the information in K1, K2, or K5,
respectively. Now, merging the five knowledge bases as above gives us in addition
to p∧ q also r, which corresponds to the information contained in K1, K2, and K5.
More generally, given m knowledge bases, then merging with sets of equivalences
of form (2) where n > m

2
satisfies a form of the majority principle. For instance,

consider K1 = Cn(p) and K2 = Cn(¬p) . While merging ({K1}+m t {K2}) gives
Cn(>) for every m > 0 for both belief set merging and projection in Section 3,
under the above “majority” operator, we obtain K1 as the merge of ({K1}+m t
{K2}) for m > 1.

4.2 Prioritised Merging

Often sources of knowledge are not equally reliable. This is not necessarily an ab-
solute criterion in the sense that one source is generally more reliable than another
one, but rather a matter of expertise in the sense that one source is more authori-
tative on certain subjects, while on others roles may well be interchanged. So for
instance, if you want to gather information for an upcoming journey, you might
want to prefer (in case of conflict) the weather information from one site and the
public transport information from another, although both sites provide information
on both topics.

In our setting, this amounts to attributing to sources different priorities on different
parts of the alphabet, the idea being that such a part defines the language of a certain
subject. For implementing this, we can take advantage of approaches to preference
handling in consistency-based reasoning. Among them, let us follow the one of
preferred subtheories [22] because of its appealing simplicity.

To begin with, consider a family of knowledge bases (Kj)j∈J . We express the pri-
orities among these knowledge bases with respect to different subjects by means of
a hierarchy on the alphabets PJ : A hierarchy associated with a family of knowl-
edge bases (Kj)j∈J is a strict n-ary partition of

⋃
j∈J Pj for n > 0. That is, if

19



(P1, . . . , Pn) is such a hierarchy, we have
⋃

1≤i≤n Pi =
⋃

j∈J Pj and Pi ∩ Pj = ∅
for 1 ≤ i, j ≤ n. Intuitively, items in Pi are preferred to those Pj whenever i < j.
That is, for example, q1 ∈ P5 and q2 ∈ P7 reflects the idea that the contents of
knowledge base K5 regarding q is considered more reliable than that in K7.

Now, we can use the information in a hierarchy to guide the formation of a maximal
set of equivalences. We do this in the context of projected merging, since, as above,
this type of merging is more easily parameterizable than symmetric merging.

Definition 4.1 Let H = (P1, . . . , Pn) be a hierarchy associated with the family of
knowledge bases (Kj)j∈J .

Define EQ as an H-maximal set of equivalences, if EQ =
⋃

1≤i≤n EQi and for all
k such that 1 ≤ k ≤ n we have that

⋃
1≤i≤k EQi is a maximal set of equivalences⋃

1≤i≤kEQi ⊆ {pj ≡ p | p ∈ P , j ∈ J, and pj ∈ ⋃1≤i≤kP
i}

such that

Cn
(⋃

j∈JKj
j ∪R ∪ ⋃1≤i≤kEQi

)
∩ (C ∪ {⊥}) = ∅.

Then

Cn
(⋃

j∈JKj
j ∪R ∪ EQ

)
∩ LP

is a consistent H-projected belief change extension of B.

If there is no such set EQ then B is inconsistent and LP is defined to be the sole
(inconsistent) H-projected belief change extension of B.

The definition of a merging operation is analogous to the previous ones.

As an example, let us reconsider the knowledge bases from Example 2:

K1 ≡ p ∧ q ∧ r ∧ s and K2 ≡ ¬p ∧ ¬q ∧ ¬r ∧ ¬s.

Suppose that the first analyst is more competent on stocks p and q, while the second
is more qualified for stocks r and s. This can be modeled through the following
hierarchy:

H = ({p1, q1, r2, s2}, {p2, q2, r1, s1}) .

We get a single H-projected belief change extension being equivalent to p ∧ q ∧
¬r ∧ ¬s.
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Interestingly, this hierarchical form of merging can be put in correspondence to
revision, and this in a different way than done in the previous section. Assume that
we are given two consistent formulas, 10 K1 and K2 over alphabet P . Then, the
revision of K1 by K2, that is, K1+̇K2, corresponds to the H-projected merge of
K1 and K2 with respect to hierarchy H = ({p1 | p ∈ P}, {p2 | p ∈ P}).

Sometimes it is desirable that knowledge bases remain neutral with respect to cer-
tain propositions. Consider where we have knowledge bases K1 and K2 and al-
phabet {p, q, r}. K1 is trusted more wrt p, and K2 is trusted more wrt q, but nei-
ther is preferred wrt r. Having the hierarchy ({p1, q2, r1, r2}, {p2, q1}), for instance,
doesn’t capture this since it ranks r1, r2 wrt p2, q1. Arguably the partition should be
({p1, q2}, {p2, q1}), which less constrains the possible EQ sets. This can be accom-
modated as follows. A hierarchy is only defined on a certain subset of PJ . Let N
contain the non-ranked propositions, that is,

⋃
j∈J Pj = N ∪ ⋃1≤i≤n Pi. Then, it is

sufficient to replace pj ∈ ⋃
1≤i≤k P i in Definition 4.1 by pj ∈ ⋃

1≤i≤k P i ∪ N in
order to obtain the desired result.

Finally, let us mention that our way of ranking can also be used to put priorities on
general formulas. If K1 is to be trusted over K2 wrt φ, then one needs just introduce
a new atom pφ, along with assertion (or new integrity constraint) (pφ ≡ φ), and then
assert that K1 is to be trusted over K2 wrt pφ.

5 Complexity

In [23], we analysed the computational complexity of reasoning from belief change
scenarios. Specifically, we addressed the following basic reasoning tasks:

Theorem 5.1 ([23])

(1) Deciding whether a belief change scenario B has a consistent belief change
extension is NP -complete;

(2) Given a belief change scenario B and formula φ, deciding whether φ is con-
tained in at least one consistent belief change extension of B is Σ2

P -complete;
and

(3) Given a belief change scenario B and formula φ, deciding whether φ is con-
tained in all consistent belief change extensions of B is Π2

P -complete.

Clearly, the variants of these decision problems for merging and projection fall in
the same complexity class and in fact follow as corollaries of the above result. This
then illustrates an advantage of formulating belief change operations within a uni-
form framework: essentially, properties of the basic framework can be investigated

10 or indeed sets of formulas.
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in a general form; properties of specific operators (or combinations of operators)
are then easily derivable as secondary results.

6 Discussion

We have presented a general consistency-based framework for specifying belief
set merging operators. Two major approaches for merging belief sets were devel-
oped. In the first approach, the intuition is that for merging belief sets, common
information is in a sense “pooled”. This approach then seems to conform to the
commonsense notion of merging of knowledge, in which belief sets are joined to
produce a single belief set retaining as much as possible of the contents of the orig-
inal belief sets. A characteristic of this operation is that sentences common to the
original belief sets are in the merged belief set.

In the second approach, belief sets are projected onto another belief set. That is,
the sets we wish to merge are used to augment the knowledge of another (possibly
empty) belief set. This second approach appears to differ from others that have
appeared in the literature. It is strictly weaker than the first; however this weakness
is not a disadvantage, since, among other things, it avoids the possible difficulty
illustrated in Example 2. This second approach has something of the flavour of
both belief revision and update. With respect to belief revision, projection can be
viewed as a process whereby several belief sets are simultaneously revised with
respect to another. With respect to belief update, semantically, individual models of
a belief set are independently updated. Hence projection is like update, but where
the “granularity” of the operation is at the level of belief sets rather than models.
Thus projection can be regarded as an operator lying intermediate between belief
revision and update.

The role of integrity constraints was examined in these approaches. As well, we also
more briefly considered variant merging operators, including a prioritised approach
to merging, wherein different knowledge sources could within them have (relative)
varying levels of reliability.
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A Proofs

Proof 3.1

The statement of the theorem has R = C = ∅, which corresponds to µ = >
in Definition 2.4. With µ = > we obtain the postulates of [1], where integrity
constraints are not addressed. We remain with Definition 2.4 for uniformity with
our consideration of the project operator, following.

(IC0), (IC1′), (IC2), and (IC3) are all obvious from the definition of merge.

For (IC4′), assume that K 6` ⊥ for every K ∈ K, but that there is Ki ∈ K where
∆(K) ∪Ki ` ⊥.

From Definition 3.2 we obtain that

Cn
(⋃

j∈JKj
j ∪ EQ

)
∪Ki

i ` ⊥

for every set EQ satisfying the terms of the definition.

However, trivially we also have that Ki
i ⊆ Cn

(⋃
j∈JKj

j ∪ EQ
)

for every set EQ

satisfying the terms of the definition, and so
(⋃

j∈JKj
j

)
∪ EQ ` ⊥.

But this contradicts (IC1′), and so there is no Ki ∈ K where ∆(K) ∪ Ki ` ⊥,
establishing what was to be shown.

For (IC5), let K1 = (K1, . . . , Kn) and K2 = (Kn+1, . . . , Km).

If ∆(K1) ∧ ∆(K2) ` ⊥ then the result is immediate; hence assume that ∆(K1) ∧
∆(K2) 6` ⊥.

Let E1 be a symmetric belief change extension of (K1, ∅, ∅) over P{1..n} with cor-
responding set of equivalences EQ1, and let E2 be a symmetric belief change ex-
tension of (K2, ∅, ∅) over P{n+1..m} with corresponding set of equivalences EQ2.

Clearly EQ1 ∪ EQ2 can be extended to a set of equivalences over P{1..m} for
(K1, . . . , Km), from which our result follows.

That we do not obtain (IC6) follows from [5, Theorem 3.3]: a merging opera-
tor that satisfies (IC2), (IC4), and (IC6) cannot satisfy majority independence.
Since ∆ satisfies (IC2), (IC4), and majority independence it cannot thereby sat-
isfy (IC6).

(IC7) and (IC8) are trivial here.
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Proof 3.2

(LS1), (LS4)′, and (LS5) are obvious.

For (LS2), if ` ¬(α ∧ β) then the result is immediate.

If 6` ¬(α ∧ β) then there is a unique set of equivalences determining a single belief
change extension to ({α}, {β}, ∅) given by EQ = {p ≡ p′ | p ∈ P}. It follows in
this case that (α ∧ β) ≡ (α M β). This also serves to show (LS3).

For (LS6)′, we need to show that (α M β1) ∧ β2 implies α M (β1 ∧ β2), or that if⋂
i∈I

Cn({α′} ∪ {β1 ∧ β2} ∪ EQi) ` φ ∧ φ′

then (⋂
i∈I

Cn({α′} ∪ {β1} ∪ EQi)

)
∪ {β2} ` φ ∧ φ′.

The proof is the same as that for (K+̇7) in [2, Theorem 4.2].

For (LS7), we show that if ` (α ∨ β) ⊃ φ for arbitrary φ, then ` (α M β) ⊃ φ. If
` (α ∨ β) ⊃ φ then ` α ⊃ φ and ` β ⊃ φ. But we also have that ` α′ ⊃ φ′ and
` β′ ⊃ φ′ and so by the definition of M we get that φ ∈ α M β and so ` α M β ⊃ φ.

(LS8) follows from the observation that if α 6` ⊥ and β 6` ⊥ then it is an easy
consequence of the definition of M that α M β 6` ¬α, α M β 6` ¬β. (See as well the
proof of (IC4′) in the preceding proof.)

For (LS6c)′, assume that EQ determines symmetric belief change extension of
({α}, {β1 ∨ β2}, ∅), and let c be the function that selects this belief change exten-
sion. From [2, Lemma A.1] we have that EQ determines symmetric belief change
extension of ({α}, {β1}, ∅) or of ({α}, {β2}, ∅). Assume without loss of generality
that EQ determines symmetric belief change extension of ({α}, {β1}, ∅), and let c′

be the function that selects this belief change extension.

We have that α Mc β1 is {φ | {α′} ∪ {β1} ∪ EQ ` φ ∧ φ′} and α Mc (β1 ∨ β2) is
{φ | {α′} ∪ {β1 ∨ β2} ∪EQ ` φ∧ φ′}. Consequently we have that αMc β1 implies
αMc (β1 ∨ β2).

Proof 3.3

We have that φ ∈ α M β iff for every set of equivalences EQ determining a belief
change extension that φ, φ′ ∈ Cn(α′ ∪ β ∪ EQ) , where φ ∈ LP , and φ′ ∈ LP ′ .
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But φ ∈ Cn(α′ ∪ β ∪ EQ) , φ ∈ LP for every such EQ iff φ ∈ α+̇β.

And:

φ′ ∈ Cn(α′ ∪ β ∪ EQ) where φ′ ∈ LP ′ for every such set EQ

iff φ ∈ Cn(α ∪ β′ ∪ EQ) where φ ∈ LP for every such set EQ

iff φ ∈ β+̇α.

Consequently we have φ ∈ α M β iff φ ∈ α+̇β and φ ∈ β+̇α; thus α M β ≡
α+̇β ∩ β+̇α.

Proof 3.4

(IC0), (IC1′), (IC2), and (IC3) are all obvious from the definition of project.
(For (IC2) we would have EQ = {pj ≡ p | p ∈ P and j ∈ J} from which the
result follows.)

For (IC4′), since K1 ` µ we have that there is a maximal set EQ defined using the
language P1 such that K1

1 ∪{µ}∪EQ is consistent. Clearly K1
1 ∪K2

2 ∪{µ}∪EQ
is consistent. Consequently we can extend EQ to a maximal set EQ′, according to
Definition 3.5 over language P1∪P2 such that K1

1 ∪K2
2 ∪{µ}∪EQ′ is consistent,

from which our result obtains.

(IC5) is the same as in Theorem 3.1, but allowing R 6= ∅. (IC6) fails for the same
reason as in Theorem 3.1.

For (IC7), assume that ∇µ1(K) ∧ µ2 6` ⊥ (otherwise our result holds trivially).

We have for every choice of EQ satisfying Definition 3.5 that

∇µ1
c (K) ∧ µ2 = Cn

(
(Cn

(⋃
j∈JKj

j ∪ {µ1} ∪ EQ
)
∩ LP) ∪ {µ2}

)
= Cn

(
(Cn

(⋃
j∈JKj

j ∪ {µ1} ∪ EQ ∪ {µ2}
)
∩ LP)

)
= Cn

(⋃
j∈JKj

j ∪ {µ1, µ2} ∪ EQ
)
∩ LP

=∇µ1∧µ2
c (K)

(IC8) holds, given the consistency condition, by virtue of the fact that we have
equalities in the preceding.
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Proof 3.5

(LS1)–(LS3), (LS4)′, and (LS5) are obvious. ((LS2) follows analogously to the
proof for merging.)

For (LS6), the counterexample is (writing conjunction by juxtaposition and giving
conjunction higher precedence than disjunction):

α is pqrs, β1 is ¬p¬q ∨ ¬r, β1 is ¬q ∨ ¬s.

αO(β1 ∨ β2) is pqrsO(¬q ∨ ¬r ∨ ¬s) which is p ∧ (qrs ∨ ¬qrs ∨ q¬rs ∨ qr¬s).

αOβ1 is pqrsO(¬p¬q ∨ ¬r) which is s ∧ (pqr ∨ ¬pqr ∨ p¬qr ∨ pq¬r ∨ ¬p¬qr).

αOβ2 is pqrsO(¬q ∨ ¬s) which is pr ∧ (qs ∨ ¬qs ∨ q¬s)

(LS8)′ follows from the observation that if α 6` ⊥ and β 6` ⊥ then it is an easy
consequence of the definition of O that αOβ 6` ¬α. That is, one can choose an
initial EQ set by: EQ = {p ≡ p1 | p ∈ P}. The satisfiability of α guarantees
that α ∪ EQ is satisfiable. EQ can subsequently be extended to a maximum set
satisfying Definition 3.5, from which our result follows.

Proof 3.6

Let B = (K, ∅, ∅) be a multi belief change scenario. Toward showing that∇(K) ⊆
∆(K), choose α ∈ LP such that α 6∈ ∆(K). We show that α 6∈ ∇(K), as follows.

Since α 6∈ ∆(K), by Definition 3.3 there is some maximal set of equivalences EQ

and an index i such that Cn
(⋃

j∈JKj
j ∪ EQ

)
∩{⊥} = ∅ and αi 6∈ Cn

(⋃
j∈JKj

j ∪ EQ
)
.

Define

EQ′ = EQ ∪ {pi ≡ p | p ∈ P}
EQ∗ = EQ′ ∪ {pj ≡ p | EQ′ ` pj ≡ p where p ∈ P and j ∈ J}
EQ+ = EQ∗ \ {pj ≡ pk | pj ≡ pk ∈ EQ, p ∈ P and j, k ∈ J}

Clearly

Cn
(⋃

j∈JKj
j ∪ EQ′

)
∩ {⊥} = ∅ and

Cn
(⋃

j∈JKj
j ∪ EQ∗

)
∩ {⊥} = ∅.

As well, we have Cn(EQ∗) = Cn(EQ+).
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We have that EQ+ satisfies the conditions for a maximal set of equivalences ac-
cording to Definition 3.6. The argument is as follows:

We had originally that Cn
(⋃

j∈JKj
j ∪ EQ

)
∩{⊥} = ∅ is a maximal set of equiv-

alences according to Definition 3.3.
As mentioned, Cn

(⋃
j∈JKj

j ∪ EQ′
)
∩{⊥} = ∅ (since the added equivalences

in EQ′ involve a new language, viz. P), and
Cn
(⋃

j∈JKj
j ∪ EQ∗

)
∩{⊥} = ∅ (since EQ∗ simply includes derivable equiv-

alences).
From Cn(EQ∗) = Cn(EQ+) we get that Cn(EQ+) determines a maximal set

of equivalences according to Definition 3.6.

Now let M be a model of
⋃

j∈JKj
j ∪ EQ such that M 6|= αi, and let M ′ be its

extension to a model of
⋃

j∈JKj
j ∪ EQ′.

It follows from the preceding that M ′ is a model of
⋃

j∈JKj
j ∪ EQ+.

But this means that M ′ 6|= α given the equivalences in EQ′, which are retained in
EQ+.

Thus we have that M ′ is a model of
⋃

j∈JKj
j ∪EQ+, M ′ 6|= α, and EQ+ determines

a maximal set of equivalences according to Definition 3.6.

Consequently α 6∈ ∇(K), which was to be shown.

Proof 3.7

This is an easy consequence of Definitions 2.2 and 3.6.

Proof 3.8

Note that Definition 3.7 extends Definition 3.5 by the addition of the term

{pk ≡ pl | p ∈ P and k, l ∈ J} (A.1)

in the specification of EQ.

Let EQ be a set of equivalences according to the given conditions in Definition 3.5.
For convenience, let

Γ = Cn
(⋃

j∈JKj
j ∪R ∪ EQ

)
.

Assume that Γ 6` ⊥; otherwise our result follows trivially.
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We prove the result by showing that for every pk ≡ pl, k, l ∈ J , either Γ ` pk ≡
pl or Γ ` ¬(pk ≡ pl). That is, the extra term (A.1) in the definition of EQ in
Definition 3.7 is in fact redundant.

Let EQ be a set of equivalences according to Definition 3.5. Let p ∈ P . For j, k ∈ J
we have the following possibilities:

(1) pj ≡ p ∈ EQ and pk ≡ p ∈ EQ.
We have that EQ ` pj ≡ pk and so from the monotonicity of classical logic

we obtain Γ ` pj ≡ pk.
(2) pj ≡ p ∈ EQ and pk ≡ p 6∈ EQ.

By assumption we have that Γ 6` ⊥ and from the maximality of EQ we
have that Γ ∪ {pk ≡ p} ` ⊥. Hence Γ ` ¬(pk ≡ p), and since by assumption
we have that Γ ` pj ≡ p we obtain that Γ ` ¬(pk ≡ pj).

(3) pj ≡ p 6∈ EQ and pk ≡ p ∈ EQ.
This is the same as case 2 above.

(4) pj ≡ p 6∈ EQ and pk ≡ p 6∈ EQ.
From the maximality of EQ we have that Γ∪{pj ≡ p} ` ⊥ and Γ∪{pk ≡

p} ` ⊥. Thus Γ ` ¬(pj ≡ p) and Γ ` ¬(pk ≡ p) from which we obtain that
Γ ` pk ≡ pj .

This shows that for every pk ≡ pl, k, l ∈ J , either Γ ` pk ≡ pl or Γ ` ¬(pk ≡ pl),
which was to be shown.
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