
A new methodology for query-answering in default logics via

structure-oriented theorem proving

Torsten Schaub
IRISA

Campus de Beaulieu
F-35042 Rennes Cedex

France
torsten@irisa.fr

Abstract

We present a new approach to query-answering in default logics. The basic idea is to treat default
rules as classical implications along with some qualifying conditions restricting the use of such rules
while query-answering. We accomplish this by taking advantage of the conception of structure-oriented
theorem proving provided by Bibel’s connection method [3]. We will see that the structure-sensitive
nature of the connection method allows for an elegant characterization of proofs in default logic.
After introducing our basic method for query-answering in default logics, we present a corresponding
algorithm and describe its implementation. Both the algorithm and its implementation are obtained
by slightly modifying an existing algorithm and an existing implementation of the standard connection
method. In turn, we give a couple of refinements of the basic method that lead to conceptually
different algorithms. The approach turns out to be extraordinarily qualified for implementations by
means of existing automated theorem proving techniques. We substantiate this claim by presenting
implementations of the various algorithms along with some experimental analysis.

Even though our method has a general nature, we introduce it in the first part of this paper with the
example of constrained default logic. This default logic is tantamount to a variant due to Brewka [5]
and it coincides with Reiter’s default logic [30] and a variant due to Lukaszewicz on a large fragment
of default logic. Accordingly, our exposition applies to these instances of default logic without any
modifications.

Keywords default logics, query answering, credulous reasoning, theorem proving, connection method

1 Introduction

Reasoning in the absence of complete information constitutes one of the most important facets of
commonsense reasoning. This form of reasoning is frequently accomplished by making default as-
sumptions or simply by default reasoning. A versatile approach to this is Reiter’s default logic [30].
Since its introduction, it has proven to be extremely valuable for formalizing default reasoning in
various domains. Among others, it has been applied to diagnosis [31], natural language [23], inheri-
tance networks [16], terminological logics [1], and databases [8]. In particular, it provides semantics
for truth maintenance systems [6] and diverse forms of logic programming [17]. Hence, default logic
is very expressive and thus of theoretical importance. But expressiveness has its costs. Even though
default logic captures many practical approaches, it is hardly implementable in full generality. The
major cause for this is that regular default logic lacks several properties which are indispensable for
reasonable proof procedures, as discussed in one of the following sections.

So far, this difficulty has been addressed in two different ways. First, it has led to algorithmic
approaches dealing with restricted subclasses of default logic, which enjoy desirable computational
properties [30, 2, 41]. Yet there are only few computational approaches to full-fledged default logic
[19, 42]. Second, it has led to variants of default logic overcoming several shortcomings encountered

1

in the original approach [22, 5, 11]. Although these variants are more easily “implementable” in full
generality, this line has been rarely pursued [32].

In this paper, we address the aforementioned difficulty from a strictly different point of view, namely
the one given by existing automated theorem provers for classical logic. Our approach is driven by
the desire to obtain a simple yet powerful method for default theorem proving that is easily adaptable
by existing implementations of automated theorem provers.

So, the key question is how classical theorem proving differs from default theorem proving. In de-
fault logic, classical logic is augmented by so-called default rules. These rules can be seen as rules
of conjecture whose role is to augment an underlying incomplete first-order theory. They differ from
standard inference rules in sanctioning inferences that rely upon given as well as absent information.
Hence, a default rule α :β

γ has two types of antecedents: A prerequisite α which is established if α is
derivable and a justification β which is established if β is consistent in a certain way. If both conditions
hold, the consequent γ is concluded by default. A set of conclusions sanctioned by a given set of default
rules and by means of classical logic is called an extension of an initial set of facts.

Now, automated theorem provers handle classical logic extremely well. However there are no means
for dealing with default rules. Thus, the difference between classical theorem proving and default
theorem proving rests on the notion of a default rule, like α :β

γ . In contrast to such rules, automated
theorem provers deal with classical implications, like α → γ, or their clausal form. Accordingly, the
previously-raised question reduces to the one upon the difference between implications and default
rules. Roughly speaking, this difference boils down to that between sentential operators and inference
rules on the one hand, and an additional condition given by the consistency check on the other hand.
The last two notions strongly affect the application and the use of default rules as opposed to classical
implications.

As an example, consider the default rule A :¬S
E saying that adults (A) are typically employed (E)

unless they are students (S) along with its sentential counterpart A → E. Of course, given an adult
A (and nothing else) both rules allow us to conclude E. However, given an unemployed person ¬E,
the implication allows us to conclude ¬A (by contraposition) while this is impossible with the default
rule, since an inference rule cannot be applied in reverse order. Also, we can derive E from A and S
with the implication A → E while this is not possible with the default rule, since its justification ¬S
is inconsistent with the premises.

The basic idea of our approach is the following one. In order to allow for default theorem proving
based on classical automated theorem provers, we treat default rules as classical implications along
with some qualifying conditions restricting the use of such rules. In concrete terms, this leads to two
restrictions on classical proofs: First, we restrict admissible proofs to those that are structured in a
certain way in order to account for the concept of an inference rule. Second, we impose a condition
on proofs ensuring the compatible use of default rules preserving their consistency conditions.

In what follows, we develop a new approach to theorem proving in default logics based on the
connection method [3]. We have chosen this method since it relies on analyzing the structure of
formulas and thus allows for structure-oriented theorem proving. Unlike resolution-based methods
that decompose formulas in order to derive a contradiction, the connection method analyses the
structure of formulas for proving their unsatisfiability. This structure-sensitive nature allows for an
elegant characterization of the two aforementioned restrictions on classical proofs. As a consequence,
we obtain a homogeneous characterization of default proofs at the level of the calculus.

In general, there are two approaches to query-answering in default logics. In the credulous approach,
we accept a query if it belongs to one extension of a considered default theory, whereas in the skeptical
approach, we accept a query if it belongs to all extension of the default theory. In the sequel, we
exclusively deal with the more basic approach, namely credulous default reasoning. The given approach
is extended to skeptical reasoning in [45, 40].

Even though our method has a general nature, we introduce it in this paper with the example

2

of constrained default logic [10, 35, 11].1 Afterwards, we discuss in turn how our approach applies
to other variants of default logic. For a complement, we detail in [39] how our method applies
to a prioritized version of default logic, recently proposed by Brewka in [7]. Our initial exemplar,
constrained default logic, enjoys several desirable computational properties needed for reasonable
proof procedures. Moreover, it has recently been shown in [12] that in certain fragments of con-
strained default logic reasoning is significantly easier than in Reiter’s default logic—even though
general goal-directed reasoning remains exponential. All this renders our exemplar a prime candidate
for computational purposes. In general, however, credulous reasoning is ΣP

2 -complete, while skeptical
reasoning is ΠP

2 -complete [18].
The paper is organized as follows. After some formal preliminaries accounting for default logics in

Section 2, we smooth the way for our approach by providing computational characterizations of exten-
sions, queries, and default theories in Section 3. We introduce our basic method for query-answering in
default logics in Section 4. In the subsequent section, we present a corresponding algorithm and sketch
an existing implementation obtained by carefully modifying an existing connection method theorem
prover. This endeavor is driven by our initial desire to obtain a simple yet powerful method for default
theorem proving which is easily adaptable by existing implementations of automated theorem provers.
To this end, the latter implementation provides a case-study in how far an existing theorem prover
for the connection method has to be modified in order to allow for query-answering in default logics.

To a turn, we introduce in Section 6 an equivalent but conceptually different approach to query-
answering in default logics. This results in an algorithm that is orthogonal to the one introduced
in the first part of the paper. Section 7 gives an intermediate summary and contrasts our approach
with other computational approaches to default logic. We provide prototypical implementations of the
different versions of our approach in Section 8. These prototypes provide us with some experimental
results as well as some implementation techniques needed for implementing our approach. Section 9
describes several enhancements and extensions of our approach. Among others, we show how our
approach applies to other variants of default logic and how it can be enriched by lemma handling.
The proofs of all subsequent theorems are given in Appendix A.

2 Default logics

This section gives some basic definitions dealing with default logic. Since our approach is initially
applied to constrained default logic, most of the formal preliminaries account for this variant of de-
fault logic. However, we will try to be as general as possible and indicate each special reference to
this specific variant. Nevertheless, constrained default logic coincides with other default logics, like
Reiter’s [30] and Lukaszewicz’ [22], on the fragment of so-called normal default theories (see below).
Also, it is tantamount to a variant due to Brewka [5] when neglecting representational issues (see
[37, 11] for details). Consequently, the following exposition applies to these instances of default logic
as well. We discuss the adaptation of our approach to the latter variants of default logic in Section 9.

In what follows, we deal with a propositional language LΣ over a finite alphabet Σ. Arguably, the
restriction to a decidable logic is a necessary one. Otherwise the resulting system would not even be
semi-decidable due to the reference to consistency while deriving formulas in default logic (cf. [30]).

As mentioned in the introduction, the central concepts in default logic are default rules along with
their induced extensions of an initial set of facts. In default logics, knowledge is represented by default
theories (D,W) consisting of a consistent2 set of formulas W and a set of default rules D. A normal
default theory is restricted to normal default rules whose justification is equivalent to the consequent.
In any default logic, default rules induce one or more extensions of an initial set of facts: Given a set
of facts W and a set of default rules D, any such extension E is a deductively closed set of formulas

1[11] essentially marries and extends the work found in [10] and [35]. Moreover, constrained default logic, as introduced
in [11], subsumes the variants introduced in [10] and [35].

2The restriction to consistent set of facts is not really necessary, but it simplifies matters.

3

containing W such that, for any α :β
γ ∈ D, if α ∈ E and ¬β ̸∈ E then γ ∈ E.

Now, let us make all this more precise and look at our exemplary variant, constrained default logic
[11]. This variant enjoys several desirable computational properties that are only given for restricted
default theories in Reiter’s default logic. One such desirable property is the existence of extensions.
Another even more important property for query-answering is that of semi-monotonicity, since it allows
us to restrict our attention to default rules relevant for proving a query.3 Moreover, semi-monotonicity
implies the existence of extensions.

In constrained default logic, an extension, E, comes with an underlying set of constraints, C, which
is used for accumulating the set of justifications of the applied default rules. Formally, this amounts
to the usual fixed-point definition given for extensions in default logics:

Definition 2.1 Let (D,W) be a default theory. For any set of formulas T let Υ(T) be the pair of
smallest sets of formulas (S′, T ′) such that

1. W ⊆ S′ ⊆ T ′,

2. S′ = Th(S′) and T ′ = Th(T ′),

3. For any α :β
γ ∈ D, if α ∈ S′ and T ∪ {β} ∪ {γ} ̸⊢ ⊥ then γ ∈ S′ and β ∧ γ ∈ T ′.

A pair of sets of formulas (E,C) is a constrained extension of (D,W) iff Υ(C) = (E,C).

As an example, consider the statements “students are typically adults”, “adults usually drive a car”,
and “adults are typically employed unless they are students” along with a student S. The correspond-
ing default theory is the following one.({

S : A

A
,
A : C

C
,
A : ¬S

E

}
, {S}

)
(2.1)

In both Reiter’s and constrained default logic, this default theory yields a unique extension
Th({S,A,C}) in which a student is an adult driving a car. In this simple example, the constraints
in constrained default logic coincide with the actual extension. It is instructive to verify that the
constraints differ from the extension obtained when substituting the fact S by A. In this case, we
obtain in both default logics the extension Th({A,C,E}), which is supplemented with constraints,
Th({A,C,E,¬S}), in constrained default logic. Apart from supplementing constraints, the difference
between both approaches rests on the different interpretation of consistency.4 In Reiter’s approach,
the consistency of a justification β is checked wrt the extension E by ¬β ̸∈ E, whereas in constrained
default logic the same is done wrt the constraints C by ¬(β ∧ γ) ̸∈ C (where γ is the consequent of
the considered default rule).5 The former condition ensures that each justification β is individually
consistent with a final extension, while the latter enforces the joint consistency of all justifications (of
all applying default rules) with a final extension.

3 The fundamental basis

In this section, we provide the fundamental basis for our approach to query-answering in default logics.
To this end, let us first turn to the two features distinguishing default rules from classical implications,
namely the character of an inference rule and the additional consistency check. While the latter is
handled in the usual manner by testing satisfiability, the former needs a more subtle treatment. In fact,
the character of an inference rule can be captured by the notion of groundedness.6 This fundamental
concept is common to all existing default logics. We call a set of default rules D grounded in a set of
facts W iff there exists an enumeration ⟨δi⟩i∈I of D such that for i ∈ I,

3We discuss semi-monotonicity in detail in Section 3.
4For a general and thorough account on the differences between Reiter’s and constrained default logic, we refer the

reader to [11].
5Observe that both conditions coincide for normal default rules, which (roughly) explains why both approaches

coincide in the case of normal default theories.
6The notion of groundedness was first explicated for default logic in [41], although it was already present in [30].

Groundedness was also studied in [20] in the case of autoepistemic logic.

4

W ∪ Conseq({δ0, . . . , δi−1}) ⊢ Prereq(δi). (3.2)

For convenience, we denote the prerequisite of a default rule δ by Prereq(δ), its justification by
Justif (δ), and its consequent by Conseq(δ).7

In particular, each set of default rules “generating” an extension is grounded in the set of facts.8 In
the above example (2.1), the extension Th({S,A,C}) is generated by the first two default rules. This

results in the enumeration
⟨
S :A
A , A :C

C

⟩
, whose defaults are obviously grounded in {S}. In general,

groundedness distinguishes default rules from classical implications. For instance, the above default
rule A :¬S

E is (trivially) not grounded in the set of facts {¬E} so that reasoning by contraposition
becomes impossible. That is, ¬A is not derivable from ¬E. Moreover, groundedness prevents circular
chains of reasoning. Consider the default rules A :C

C and C :A
A and no facts. In this case, neither A nor

C is derivable since there is no non-empty grounded sequence of default rules.
So, from the perspective of the introductory section, groundedness and consistency constitute the

two qualifying conditions for the application and the use of default rules. In particular, these two
notions allow for characterizing extensions in a considerably simpler way. As a first result, we obtain
a non-fixed point characterization of constrained extensions, which is indispensable for computational
purposes:

Theorem 3.1 Let (D,W) be a default theory and let E and C be sets of formulas. Then, (E,C) is
a constrained extension of (D,W) iff

E = Th(W ∪ Conseq(D′))

C = Th(W ∪ Justif (D′) ∪ Conseq(D′))

for a maximal D′ ⊆ D such that D′ is grounded in W and W ∪ Justif (D′)∪Conseq(D′) is consistent.

That is, an extension is characterized as the deductive closure of the set of facts and the consequents
of a maximal set of default rules which is grounded and preserves consistency. Accordingly, the
computation of a constrained extension boils down to classical deduction along with enforcement of
groundedness and consistency.

This suggests the following approach to query-answering in default logics. In order to verify whether
a formula φ is in some extension E of a default theory (D,W), we have to find a subset of D that allows
for deriving φ and complies with the above requirements. As already noticed in [30], this can only be
accomplished in a reasonable way if we can confine ourselves to default rules relevant for deriving φ.
The formal counterpart of this observation is given by the property of semi-monotonicity—on which
also our approach relies. Formally, semi-monotonicity stipulates that if D′ ⊆ D for two sets of default
rules, then if E′ is an extension of (D′,W) then there is an extension E of (D,W) such that E′ ⊆ E.
Given this property, it is sufficient to consider a relevant subset of default rules while answering a
query, since applying other default rules would only enlarge or preserve the partial extension at hand.

Semi-monotonicity holds only for restricted fragments of Reiter’s default logic, whereas it is enjoyed
by constrained default logic in its full generality. This is one of the reasons why we have chosen
constrained default logic as an illustration of our method.

Anyway, this property leads us to the following corollary to Theorem 3.1 providing a formal charac-
terization of query-answering in constrained default logic.

Corollary 3.2 Let (D,W) be a default theory. Then, φ ∈ E for some constrained extension (E,C)
of (D,W) iff

W ∪ Conseq(D′) ⊢ φ

for some D′ ⊆ D such that D′ is grounded in W and W ∪ Justif (D′) ∪ Conseq(D′) is consistent.

7These projections extend to sets of default rules in the obvious way.
8See Theorem A.1 for a formal formulation.

5

That is, for verifying whether φ is in some extension of a default theory (D,W), it is enough to
determine a grounded and consistent set of default rules D′ ⊆ D that allows for proving φ from the
facts in W and all default rules in D′.

Theorem 3.1 and Corollary 3.2 provide the fundamental basis for our approach to query-answering
in (constrained) default logic. They are strongly rooted in the basic concepts of groundedness and
consistency. Observe that in both specifications the latter concepts constitute rather separate con-
straints on the default rules under consideration. We will stepwisely refine this approach in the two
following sections. In fact, Section 5 strongly relies on the possibility of separating these concepts for
implementing our approach by using existing automated theorem provers.

Another salient feature of the previous specifications is the formation of sequences of default rules.
This will come to the fore more and more in the subsequent sections. In particular in Section 6, where
we provide an alternative approach by meshing together the concepts of groundedness and consistency
for forming sequences of default rules. Moreover, we have shown in [39] that such a combination is
very useful for implementing priorities.

We now turn to the issue of default theorem proving using conventional theorem provers. As argued
in the introductory section, classical theorem provers cannot deal with default rules but conventional
clauses only. As a first step, we thus shift information from the default part into the classical part
of a default theory in order to facilitate the treatment of default theories. To this end, we transform
default theories by substituting default rules by so-called atomic default rules consisting of new atomic
propositions and by extending the facts with a set of implications relating these propositions to the
constituents of the original default rules: For a default theory (D,W) in LΣ, let LΣ′ be the language
obtained by adding the new propositions αδ, βδ, γδ for each δ ∈ D. The function τ maps a default
theory (D,W) in LΣ into a default theory (D′,W ′) in LΣ′ , where

D′ =
{

αδ :βδ
γδ

∣∣∣ δ ∈ D
}

W ′ = W ∪ {Prereq(δ) → αδ, βδ → Justif (δ), γδ → Conseq(δ) | δ ∈ D}.
The resulting default theory (D′,W ′) is called the atomic format of the original default theory (D,W).
That is, (D′,W ′) contains only atomic default rules.

Consider the default rule S :A
A (for short δ1) in default theory (2.1). Applying τ to this theory yields

for δ1 the default rule
Sδ1

:Aδ1
Aδ1

(where Sδ1 and Aδ1 are new propositional letters)9 along with the

implications S → Sδ1 and Aδ1 → A.
The transformation of default theories into their atomic format does not affect the computation of

queries to the original default theory, as shown in [33]:10

Theorem 3.3 [33] Let (D,W) be a default theory in LΣ. Let E,C be sets of formulas in LΣ and E′, C ′

be sets of formulas in LΣ′ such that E = E′ ∩ LΣ and C = C ′ ∩ LΣ. Then, (E,C) is a constrained
extension of (D,W) iff (E′, C ′) is a constrained extension of τ(D,W).

The major advantage of atomic default rules over arbitrary ones is that the constituents of default rules
are not spread over several clauses while transforming them into clausal format. Rather each atomic
default rule can be represented as a single binary clause, as we will see in the next section. Strictly
speaking, this is not absolutely necessary but it simplifies matters drastically. This concerns the formal
presentation of the approach and moreover its implementation by existing automated theorem provers.
With the above transformation, we can (and will) therefore confine ourselves to default theories with
atomic default rules only (without losing generality).

4 A method for query-answering in default logics

In this section, we develop a method for query-answering in default logics based on the connection
method [3]. The connection method allows for testing the unsatisfiability of formulas in conjunctive

9For simplicity, we introduce only two new propositional letters, since δ1 is a normal default rule.
10In fact, this has been shown in [33] for regular as well as constrained default logic.

6

normal form (CNF). Unlike resolution-based methods that decompose formulas in order to derive a
contradiction, the connection method analyses the structure of formulas for proving their unsatisfia-
bility. This structure-sensitive nature allows for an elegant characterization of proofs in default logic,
as we will see below.

4.1 The connection method

In the connection method, formulas in CNF are displayed two-dimensionally in the form of matrices.
A matrix is a set of sets of literals (literal occurrences, to be precise).11 Such a matrix is given in
(4.3) below. Each column of a matrix represents a clause of the CNF of the formula. In order to
show that a sentence φ is entailed by a sentence W , we prove that W ∧ ¬φ is unsatisfiable. In the
connection method this is accomplished by path checking: A path through a matrix is a set of literals,
one from each clause. A connection is an unordered pair of literals which are identical except for the
negation sign (and possible indexes). A mating is a set of connections. A mating spans a matrix if
each path through the matrix contains a connection from the mating. Finally, a formula, like W ∧¬φ,
is unsatisfiable iff there is a spanning mating for its matrix.

Let us briefly illustrate this by verifying whether C is entailed by

S ∧ (S → A) ∧ (A → C).

For this, we prove that conjoining the negated query ¬C to the latter formula yields an unsatisfiable
formula. Transforming the resulting formula into its CNF yields

S ∧ (¬S ∨A) ∧ (¬A ∨ C) ∧ ¬C
whose two-dimensional representation is the following one (by ignoring the arcs).

S

¬S

A

¬A

C

¬C
(4.3)

This matrix has a spanning mating whose connections are represented by arcs linking the respective
literals. This is so because matrix (4.3) contains four paths, like {S,A,¬A,¬C}, all of which contain
at least one connection, like {A,¬A}. In this way, we have shown that C is entailed by S ∧ (S →
A) ∧ (A → C).

In the sequel, we sometimes refer to certain submatrices or supermatrices of a given matrix. We call
a matrix M ′ a submatrix of a matrix M if M ′ is obtainable from M by deleting literals or even clauses
in M . The definition of supermatrices is analogous. We say that a path is complementary or closed if
it contains a connection from a given mating. Otherwise, we say that the path is non-complementary
or open. Finally, we call a matrix complementary if it has a spanning mating or, in other words, if
each path through the matrix contains a connection from a mating at hand.

4.2 Complementarity

In this section, we describe how to turn default theories into matrices and how to verify the comple-
mentarity of the resulting matrices.

Our approach relies on the idea that a default rule can be decomposed into a classical implication
along with two qualifying conditions, one accounting for the character of an inference rule and another
one enforcing the respective consistency condition.12 The computational counterparts of these quali-
fying conditions are given by the proof-oriented concepts of admissibility and compatibility , which we
will introduce in the following two subsections.

11In the sequel, we simply say literal instead of literal occurrences; the latter allow for distinguishing between identical
literals in different clauses.

12As pointed out by one of the referees, an alternative approach is to view the connection method as a meta-theoretic
approach. To this end, one could incorporate default rules by means of so-called “theory connections”, as used for
instance in [3] for incorporating equality or induction. We have not pursued this line of inquiry since it makes the use of
existing automated theorem proving technology more difficult.

7

In order to find out whether a formula φ is contained in some extension of a default theory (D,W) we
proceed as follows. First, we transform the atomic default rules in D into their sentential counterparts.
This yields a set of indexed implications

WD =
{
αδ → γδ

∣∣∣ αδ :βδ
γδ

∈ D
}
.

In what follows, we adopt this notation and write WD′ =
{
αδ → γδ

∣∣∣ αδ :βδ
γδ

∈ D′
}

for any subset D′

of D. Second, we transform both W and WD into their clausal forms, CW and CD. The clauses in
CD, like {¬αδ, γδ}, are called δ-clauses; all other clauses like those in CW are referred to as ω-clauses.
Now, we are ready for query-answering. That is, a query φ is derivable from (D,W) iff there is a
spanning mating for the matrix CW ∪ CD ∪ {¬φ} agreeing with the concepts of admissibility and
compatibility.13

Consider our student example. The encoding of the set of default rules yields the following set, WD,
of implications:

{Sδ1 → Aδ1 , Aδ2 → Cδ2 , Aδ3 → Eδ3}

The indexes denote the respective default rules in default theory (2.1) from left to right. In order to
verify that a student drives a car, C, we first have to transform the fact S (in default theory (2.1)) and
the implications in WD into their clausal form. The resulting clauses are given two-dimensionally as the
first four columns of the matrix in (4.4). The full matrix is obtained by adding the clause containing the
negated query, ¬C. In fact, the matrix has a spanning mating, {{S,¬Sδ1}, {Aδ1 ,¬Aδ2}, {Cδ2 ,¬C}}.
As above, we have indicated these connections in (4.4) as arcs linking the respective literals.

S

¬Sδ1

Aδ1

¬Aδ2

Cδ2

¬Aδ3

Eδ3

¬C
(4.4)

For simplicity, we have refrained from transforming default theory (2.1) into atomic format since
it already consists of atomic formulas. In such a case, let us rather adopt the following two conven-
tions. First, let us agree on simply labeling components of a default rule and allowing for connections
between complementary literals having different indexes (if any at all). Second, let us assume that
we can always distinguish between the prerequisite and the consequent in a δ-clause. Observe that
both conventions are obsolete as soon as we enforce default theories in atomic format by transfor-
mation τ (cf. Section 2). First, we obtain in atomic format two standard connections, rather than a
“mixed” connection between an indexed and unindexed literal, For instance, instead of two clauses
{S} and {¬Sδ1 , Aδ1} (from S, S :A

A) along with the “mixed” connection {S,¬Sδ1}, we would obtain

three clauses {S}, {¬S, Sδ1}, and {¬Sδ1 , Aδ1} (from S, S → Sδ1 ,
Sδ1

:Aδ1
Aδ1

) along with two standard con-

nections {S,¬S} and {Sδ1 ,¬Sδ1}. The same applies to the remaining clauses in matrix (4.4). Second,
observe that in atomic format the distinction between prerequisites and consequents of δ-clause is
trivial. This is so because the prerequisite is given by the negative literal in the δ-clause and the con-
sequent by the positive literal. We support this in two-dimensional notation by stacking prerequisites
over consequents.

The above matrix illustrates yet another point: Not all of the clauses are necessarily involved in
providing a spanning mating for a matrix. A useful concept is then that of a core of a matrix M wrt
a mating Π, which allows for isolating the clauses relevant to the underlying proof. We define the core
of M wrt Π as follows.14

Definition 4.1 Let Π be a mating for the matrix M . Then, we define the core of M wrt Π as

13Without loss of generality, we deal with atomic queries only, since any query can be transformed into “atomic format”
in the spirit of transformation τ (cf. Section 2).

14Recall that we deal with literal occurrences.

8

κ(M,Π) = {c ∈ M | ∃π ∈ Π . c ∩ π ̸= ∅} .

For instance, the core of the preceding matrix relative to the drawn mating is given by the first three
and the last clauses.

So far, it might seem that classical theorem proving with ω- and δ-clauses suffices for querying de-
fault theories. To see that this is not enough, consider again the default rule A :¬S

E along with the fact
¬E. In default logics, there is no way to derive ¬A. However, the resulting matrix, given in (4.5), has
a spanning mating, which amounts to deriving ¬A by contraposition.

¬E

¬Aδ3

Eδ3

A
(4.5)

This example shows that pure deduction with δ-clauses cannot account for the inference rule character
of the original default rules.

4.3 Admissibility

In default logics, the nature of an inference rule is reflected by the property of groundedness, which
relies on forming sequences of default rules. In fact, the connection method allows for imposing a
similar restriction on the clausal counterparts of default rules. This leads us to our first qualifying
condition on proofs given by the concept of admissibility.

Definition 4.2 (Admissibility) Let CW be a set of ω-clauses and CD be a set of δ-clauses and let Π
be a mating for CW ∪CD. Then, (CW ∪CD,Π) is admissible iff there is an enumeration ⟨{¬αδi , γδi}⟩i∈I
of κ(CD,Π) such that for i ∈ I, Π is a spanning mating for

CW ∪
(∪i−1

j=0{{¬αδj , γδj}}
)
∪ {{¬αδi}}. (4.6)

Note that normally not all connections in Π are needed for showing the unsatisfiability of the subma-
trices in (4.6). We say that (CW ∪ CD,Π) is admissible at i in an index set I, if (4.6) holds for i ∈ I.
Moreover, we say that (CW ∪ CD,Π) is admissible wrt I, if it is admissible at all i ∈ I.

The previous definition may be nicely illustrated by the proof in our student example given in (4.4).
There, we obtain the enumeration

⟨{¬Sδ1 , Aδ1}, {¬Aδ2 , Cδ2}⟩,

which in turn leads to the following matrices; each representing a set of clauses as specified in (4.6):

S

¬Sδ1

S

¬Sδ1

Aδ1

¬Aδ2
(4.7)

Observe that the preceding matrices are in fact submatrices of matrix (4.4). Clearly, each of these
submatrices has a spanning mating, so that the original matrix along with its mating, given in (4.4),
constitute an admissible proof. Observe that the proof in the example involving contraposition violates
admissibility. This is so because there is no spanning mating for the submatrix {{¬E}, {¬Aδ3}} of
matrix (4.5).

In the remainder of this subsection, we provide an incremental approach to admissibility. This is
made precise in the following theorem.

Theorem 4.1 Let CW be a set of ω-clauses and CD be a set of δ-clauses. Let Π be a mating for
CW ∪CD such that (CW ∪CD,Π) is admissible wrt I. Let {¬αδ, γδ} be a δ-clause. Then, (CW ∪CD ∪
{{¬αδ, γδ}},Π) is admissible iff Π is a spanning mating for CW ∪

∪
i∈I{{γδi}} ∪ {{¬αδ}}.

9

Informally, this theorem allows us to discard paths through “prerequisites of admissible δ-clauses”
while verifying admissibility. Hence, for verifying the admissibility of the proof given in (4.4), we
can proceed as follows. For illustration, consider also the two submatrices in (4.7). We start with
the set of open paths through all ω-clauses. There is only one such path in our example, {S}. For
verifying the admissibility of15 {¬Sδ1 , Aδ1}, we have to check whether all such open paths contain a
literal complementary to ¬Sδ1 . Since this is the case, we can proceed by verifying the admissibility of
{¬Aδ2 , Cδ2}. For this, we can discard all paths through ¬Sδ1 . Thus, we can restrict ourselves to all
open paths obtained by adding Aδ1 to all open paths through all ω-clauses. There is only one such
path in our example, {S,Aδ1}. As above, this path has to contain a literal complementary to ¬Aδ2 for
confirming the admissibility of the second δ-clause. Clearly, the path {S,Aδ1} ∪ {¬Aδ2} is closed, so
that admissibility is confirmed.

Moreover, the theorem shows that admissibility is in fact the proof-theoretic counterpart of ground-
edness. That is, if CW is the clausal representation of W , then there is a spanning mating for
CW ∪

∪n
i=0{{γδi}} ∪ {{¬αδ}} iff W ∪ Conseq({δ0, . . . , δn}) ⊢ Prereq(δ), where γδi = Conseq(δi). Ob-

serve that the latter corresponds to the condition given for groundedness in (3.2).

4.4 Compatibility

The second qualifying condition for proofs is given by the concept of compatibility; it relies on the
notion of consistency specific to constrained default logic.

Definition 4.3 (Compatibility) Let CW be a set of ω-clauses and CD be a set of δ-clauses and let
Π be a mating for CW ∪ CD. Then, (CW ∪ CD,Π) is compatible iff there is no spanning mating for
CW ∪ CJ where CJ = {{βδ}, {γδ} | {¬αδ, γδ} ∈ κ(CD,Π), βδ = Justif (δ)} .
Notably, this is the first place where we refer to a notion specific to constrained default logic; the entire
preceding exposition involving the concept of admissibility applies to any (semi-monotonic) default
logic.

Consider again our student example. For compatibility, we have to verify that the matrix {{S}} ∪
{{Aδ1}, {Cδ2}} or two-dimensionally

S Aδ1 Cδ2 (4.8)

has no spanning mating. This matrix is formed by the facts {S} and the justifications Aδ1 and Cδ2

of the first two default rules in (2.1). Obviously, matrix (4.8) has no spanning mating, since it has a
non-complementary path, {S,Aδ2 , Eδ3}. We thus obtain an admissible and compatible proof for the
original query, S, asking whether a student drives a car. Note that an open path gives a model of the
considered formula.

In order to give an example for an incompatible proof, consider the matrix

{{S}} ∪ {{A}, {¬S}, {E}}
whose compatibility is verified while answering the query E from the fact S and the default rules S :A

A
and A :¬S

E . This matrix has a spanning mating {{S,¬S}} indicating an incompatible use of default
rules.

In principle, compatibility is separate from admissibility. However, the next theorem shows that
compatibility can be verified on (almost) the same matrices as used for verifying complementarity and
admissibility.

Theorem 4.2 Let CW be a set of ω-clauses and CD be a set of δ-clauses. Let Π be a mat-
ing for CW ∪ CD such that (CW ∪ CD,Π) is admissible. Then, Π is a spanning mating for
CW ∪ CD ∪ {{βδ} | {¬αδ, γδ} ∈ CD, βδ = Justif (δ)} iff Π is a spanning mating for CW ∪ CJ where
CJ = {{βδ}, {γδ} | {¬αδ, γδ} ∈ CD, βδ = Justif (δ)} .

15For illustration, we often explicate the respective δ-clauses rather than expressing things in terms of indexes.

10

This theorem offers the computational advantage of structure and information sharing while query-
answering. Observe that a simpler formulation is obtained for normal default theories. Then, Π is a
spanning mating for CW ∪ CD iff Π is a spanning mating for CW ∪ {{γδ} | {¬αδ, γδ} ∈ CD} .

Above, we have verified the compatibility of the proof obtained in our student example by regarding
the matrix given in (4.8). Theorem 4.2 tells us that this is equivalent to checking whether the following
admissible supermatrix of (4.8) has no spanning mating.16

S

¬Sδ1

Aδ1

¬Aδ2

Cδ2

(4.9)

Even though the latter matrix is larger than the one in (4.8), it shares the structure of the matrices
used for verifying complementarity and admissibility. In fact, it is at the same time a supermatrix of
the largest matrix used for checking admissibility in (4.7) and a submatrix of the actual matrix used
for proving the query C in (4.4). That is, matrix (4.9) is obtained by adding Cδ2 to the rightmost
clause of the right matrix in (4.7). Analogously, we obtain the proof for C in (4.4) by adding the
query clause {¬C} to matrix (4.9). We will take up these ideas in Section 6.

4.5 Characterizing default proofs

In Section 3, we have decomposed default theorem proving in default logic into classical deduction
along with the concepts of groundedness and consistency. In the previous subsections, we have care-
fully mapped these notions onto the connection method. We have accomplished this by identifying
the concepts complementarity, admissibility, and compatibility, as the proof-theoretic counterparts of
classical deduction, groundedness and consistency.

As a result, we obtain the following theorem showing that our method is correct and complete for
constrained default logic:

Theorem 4.3 Let (D,W) be a default theory in atomic format and φ an atomic formula. Then,
φ ∈ E for some constrained extension (E,C) of (D,W) iff there is a spanning mating Π for the
matrix M of W ∪WD ∪ {¬φ} such that (M,Π) is admissible and compatible.

As agreed upon above, we have that WD =
{
αδ → γδ

∣∣∣ αδ :βδ
γδ

∈ D
}
.

Finally, let us summarize our approach in the remainder of this section by means of a coherent
example. Consider the statements “students are typically not employed”, “students are typically
adults”, and “adults are typically employed” along with the corresponding default theory dealing
with a student:({

S : ¬E
¬E

,
S : A

A
,
A : E

E

}
, {S}

)
(4.10)

The encoding of the set of default rules yields the following set of implications:

WD = {Sδ1 → ¬Eδ1 , Sδ2 → Aδ2 , Aδ3 → Eδ3}

As before, the indexes denote the respective default rules in default theory (4.10) from left to right.
Let us consider the query E, asking whether a student is employed. Transforming the fact S, the
implications in WD, and the negated query ¬E into clausal form yields the matrix in (4.11).

S

¬Sδ1

¬Eδ1

¬Sδ2

Aδ2

¬Aδ3

Eδ3

¬E
(4.11)

16Observe that we omit in (4.9) the clauses {Aδ1} and {Cδ2} corresponding to CJ , due to the fact that δ1 and δ2 are
normal default rules.

11

In fact, the matrix has a spanning mating, {{S,¬Sδ2}, {Aδ2 ,¬Aδ3}, {Eδ3 ,¬E}}, whose connections are
indicated as arcs linking the respective literals. This default proof yields the following enumeration:

⟨{¬Sδ2 , Aδ2}, {¬Aδ3 , Eδ3}⟩,
For admissibility, we have to consider the following submatrices of matrix (4.11):

S

¬Sδ2

S

¬Sδ2

Aδ2

¬Aδ3
(4.12)

Observe that each of these submatrices has a spanning mating, so that the original matrix and its
mating, given in (4.11), constitute an admissible proof.

For compatibility, we have to verify that the following matrix has no spanning mating.17

S

¬Sδ2

Aδ2

¬Aδ3

Eδ3

Obviously this is the case since there is a non-complementary path, {S,Aδ2 , Eδ3}. We thus obtain an
admissible and compatible proof for the original query, E, asking whether a student is employed. Note
that we employed Theorem 4.2 for verifying compatibility.

Observe that there is yet another spanning mating for the matrix in (4.11), namely

{{S,¬Sδ1}, {S,¬Sδ2}, {¬Eδ1 , Eδ3}, {Aδ2 ,¬Aδ3}}. (4.13)

This mating discards the negated query ¬E. The cause for this is that we deal with conflicting
defaults. That is, from S we can derive ¬E via the first default rule in default theory (4.11) as well as
E via the second and third default rule. Although the resulting proof can be shown to be admissible,
it is however not compatible:

S

¬Sδ1

¬Eδ1

¬Sδ2

Aδ2

¬Aδ3

Eδ3

This matrix has the spanning mating given in (4.13), too. This shows that the corresponding proof is
not compatible.

The last part of the example stresses the importance of the concept of compatibility. In particular,
it seems advantageous to prune incompatible proofs as early as possible, since defaults might conflict
with each other.

5 Implementing the approach by existing automated theorem
provers

In this section, we pursue our initial goal of providing a simple method for query-answering in default
logics that needs few modifications to existing implementations of automated theorem provers.

There are several ways of implementing our approach by using existing automated theorem provers.
An extreme way would be to prove each query conventionally and to leave the verification of admissi-
bility and compatibility to special-purpose algorithms. This is rather expensive, since one might have
to generate numerous proofs before our qualifying conditions are confirmed or even denied. The op-
posite approach would be to modify an existing automated theorem prover in order to incorporate the
verification of admissibility and compatibility. To this end, however, one has to put consistency-checks
into the “inner-loop” of a theorem prover, which is a difficult and (sometimes) expensive undertaking,
too.

17Observe that we omit the clauses {Aδ2} and {Eδ3} due to the fact that δ2 and δ3 are normal default rules.

12

5.1 An algorithm

In all, both aforementioned approaches do not concur with our initial desire for a simple and feasible
approach to default theorem proving that is easily adaptable by existing implementations of the
connection method, like setheo [21] or ppp [26]. We address this problem in this section by separating
the verification of compatibility (or consistency) from that of complementarity and admissibility. This
is motivated by the incongruity between the “global” notion of consistency employed in default lo-
gics (by referring to the final extension or constraints) and the stepwise execution of inference-steps
encountered in existing theorem provers. In order to avoid the resulting difficulties, we rather pursue an
“off-line” approach by compiling compatibility; thereby taking advantage of the compliant conception
of consistency in constrained default logic. This approach is justified by the following corollary to
Theorem 3.1.

Corollary 5.1 Let (D,W) be a default theory and let E and C be sets of formulas. Then, (E,C)
is a constrained extension of (D,W) iff (E,C) is a constrained extension of (D′,W) for a maximal
D′ ⊆ D such that W ∪ Justif (D′) ∪ Conseq(D′) is consistent.

We say that a default theory (D,W) is compatible iff W ∪ Justif (D) ∪ Conseq(D) is consistent.
Accordingly, we compile a given default theory (D,W) into several compatible default theories (D′,W).
Compiling a default theory (D,W) amounts to computing the generating default rules18 D′ of each
extension of the default theory({

:β∧γ
β∧γ

∣∣∣ α :β
γ ∈ D

}
,W

)
.

Observe that any compatible default theory has a unique constrained extension.
For example, we can turn default theory (2.1) into a single compatible default theory by removing the

last default rule, A :¬S
E . This usually costly computation should be done “off-line” by special-purpose

algorithms, as described in [1] or even [43]. Once this has been done, we can verify whether a query
is in the unique extension of a compatible default theory without any consistency checks. An effective
way of querying multiple compatible default theories is described in [33]. The pre-computation of
compatible default theories has the advantage that we are able prune computations with incompatible
defaults in advance. Thus, for instance, the approach avoids the difficulties with incompatible default
theories sketched at the end of Section 4.

On the other hand, the approach is problematic if there is a large number of compatible default
theories. In fact, there may be an exponential number of such theories in the worst case.19 In general,
such a compilation is favorable whenever its computational cost can be amortized over the total set
of subsequent queries.

The purpose of this compilation approach is to minimize modifications to existing automated theorem
provers. In fact, it turns out that admissibility is more integrative than compatibility as regards such
modifications. We discuss alternative approaches in brief at the end of this section and in more detail
in Section 6.

Let us now turn to the verification of admissibility and complementarity. In fact, we confirm admis-
sibility while systematically checking the complementarity of each path through a matrix. Following
[14], we use compl(p,M) for defining a declarative algorithm for deciding whether a matrix is comple-
mentary and admissible. With it, Eder shows in [14] that a matrix M consisting of ω-clauses only is
complementary iff compl(∅,M) is true wrt the first two conditions of the following definition.

Definition 5.1 Let CW be a set of ω-clauses and CD be a set of δ-clauses. Let p be a set of literals
and let M = CW ′ ∪ CD′ for CW ′ ⊆ CW and CD′ ⊆ CD. Then, we define compl(p,M) relative to CW

as follows.20

18See Definition A.1 for a formal definition.
19This is so because there may be an exponential number of extensions in the worst case.
20For simplicity, we assume in what follows that compl(p,M) is always relative to the original set of ω-clauses CW .

13

1. If M = ∅ then compl(p,M) is false.

2. If M ̸= ∅ and c ∈ M is an ω-clause then compl(p,M) is true iff for all L ∈ c at least one of the
following two conditions holds.

(a) L is complementary to some literal of p.

(b) compl(p ∪ {L},M \ {c}) is true.

3. If M ̸= ∅ and c ∈ M is a δ-clause then compl(p,M) is true iff the following two conditions hold,
where c = {¬αδ, γδ}.

(a) γδ is complementary to some literal of p.

(b) compl({¬αδ}, (M \ {c}) ∪ CW) is true.

As mentioned above, the first two conditions provide a sound and complete algorithmic characteri-
zation of the standard connection method (see [14] for details). In fact, the original characterization
given in [14] differs only in two extremely minor points from the one obtained by deleting Condition (3)
above. First, there is no case-analysis in Condition (2) for distinguishing ω- from δ-clauses. Second,
compl(p,M) is independent of CW in [14]. The latter set represents in Definition 5.1 the original
set of ω-clauses, whereas CW ′ and CD′ function as parameters. This distinction is necessary because
Condition (3b) makes reference to the original set of ω-clauses, given by CW . We will come back to
this below.

Now, let us discuss Definition 5.1 in some detail. Condition (1) accounts for the limiting case where
the matrix is empty. Condition (2) deals with ω-clauses. Each literal L in the ω-clause at hand has
either to be complementary to some literal on the active path p or all paths through p extended by L
and the remaining clauses have to be complementary. The choice of the ω-clause from M is a “don’t
care”-choice. That is, the result is independent of what ω-clause is taken.

Condition (3) deals with δ-clauses. Condition (3a) corresponds to Condition (2a) and says that the
consequent of a default rule γδ can be used for query-answering as any other proposition—provided
Condition (3b) is satisfied. In fact, (3b) “implements” Statement (4.6) in Definition 4.2 and ensures
that the prerequisite αδ of a default rule is derivable in a non-circular way. Observe that we do not
provide two alternatives for resolving γδ in (3b), as done in (2). In fact, we can restrict ourselves to
one of the alternatives in (2a) and (2b) for solving a single literal.21 The purpose of resolving γδ in
analogy to (2a) rather than (2b) is to minimize the “application of default rules” in the course of a
proof search. This minimization is advantageous since the choice of δ-clauses in (3) is a “don’t know”-
choice. That is, one has to find the right one, which means that—in the worst case—all possibilities
have to be tested. The choice is “don’t know” because a selected δ-clause may not lead to an admissible
proof so that Condition (3b) will be falsified.

Another interesting point in Condition (3b) is the addition of the initial set of ω-clauses CW to
(M \ {c}). The need for this is obvious since admissibility has to be verified wrt the given set of
facts represented by CW . Some of these ω-clauses however might have been “consumed” at an earlier
stage. This is so because Eder’s formulation deletes in Condition (2b) ω-clauses after their “usage”.22

So on the one hand, our approach avoids verifying admissibility by ever-increasing submatrices, as
stipulated in Definition 4.2. In this way, it compromises the query-oriented and thus “top-down”-
search for a proof with the “bottom-up” verification of admissibility. On the other hand, an ω-clause
may contribute to the derivation of several “prerequisites”. Thus in the worst case this yields a proof
length bounded by O(|CW | × (|CD|+ 1)), where |M | stands for the number of clauses in a matrix M .

21That is, for any non-empty path p and any (unit-)clause containing a single literal L we can restrict ourselves either
to testing (2a) or (2b). This however renders the choice in (2) a “don’t know”-choice (see below).

22Recall that we want to stick as close as possible to existing technologies, so that we refrain from making additional
changes.

14

We observe how easily complementarity and admissibility can be verified simultaneously by adding
a single condition to the original definition of compl(p,M) in [14]—provided that M represents a com-
patible default theory. Let us illustrate this along with our algorithm by investigating the “compatible”
matrix

{{S}, {¬Sδ1 , Aδ1}, {¬Aδ2 , Cδ2}, {¬C}}

obtained by removing clause {¬Aδ3 , Eδ3} from matrix (4.4). In order to proceed in a query-oriented
way, we “push” the negated query ¬φ on the initial path, and use the ω- and δ-clauses, CW ∪
CD representing the underlying default theory as the initial matrix. That is, we verify whether
compl({¬φ}, CW ∪ CD) is true. Selecting the query clause {¬C} makes us confirm

compl({¬C}, {{S}, {¬Sδ1 , Aδ1}, {¬Aδ2 , Cδ2}}). (5.14)

This can be done by choosing clause {¬Aδ2 , Cδ2} in Condition (3). This choice is not arbitrary, it rather
reflects the connection-driven search used in the connection method. That is, Cδ2 is complementary
to ¬C so that (3a) is satisfied. In addition, we have to establish

compl({¬Aδ2}, {{S}, {¬Sδ1 , Aδ1}}) (5.15)

according to (3b). It is instructive to verify that the latter corresponds to invoking our algorithm on
the second (sub)matrix in (4.7), after applying Condition (2b) to the clause {¬Aδ2}.

Applying Condition (3) to the goal in (5.15) yields

compl({¬Sδ1}, {{S}}) (5.16)

which is true by (2a). Accordingly, the query C is provable from the compatible equivalent of default
theory (2.1) by means of default rules S :A

A and A :C
C .

For a complement, let us consider the proof in (4.5) involving reasoning by contraposition. This
proof is not admissible. We start with

compl({A}, {{¬E}, {¬Aδ3 , Eδ3}}).

We choose {¬Aδ3 , Eδ3} in Condition (3). Since ¬Aδ3 is complementary to A, we have to confirm

compl({¬Aδ3}, {{¬E}}).

Clearly, this is false since there are no complementary literals left. The same result is obtained by
initially choosing {¬E}. Hence, our initial goal is not confirmed which shows that the proof in (4.5)
is not admissible.

The general relation between query-answering in constrained default logic and the above algorithm
is made precise in the following theorem.23

Theorem 5.2 Let (D,W) be a default theory in atomic format and let φ be an atomic formula.
Then, φ ∈ E for some constrained extension (E,C) of (D,W) iff compl({¬φ},M) is true for the
matrix M of W ∪WD′ for some WD′ ⊆ WD such that W ∪ Justif (D′) ∪ Conseq(D′) is consistent.

Observe that merely the choice of the compatible set of default rules D′ is specific to constrained
default logic. Hence this result and with it the underlying algorithm apply to “compatible” default
theories in any (semi-monotonic) default logic—provided that an appropriate notion of compatibility
is provided (cf. Section 9).

The previous exposition is dominated by the view that the integration of consistency into existing
implementations of automated theorem provers is difficult. In particular, we have argued in favor of
special purpose algorithms for compilation into compatible default theories. Without any question,
these algorithms show a better performance than a theorem prover whose failure indicates that the
underlying formula is satisfiable. For coherence, actually, notice that we can also compile default

23Recall that WD′ = {αδ → γδ | αδ : βδ
γδ

∈ D′} for any subset D′ of D.

15

theories into compatible ones by means of compl(p,M). That is, a default theory (D,W) is compatible
iff compl(p,M) is false for the matrix of W ∪ Justif (D) ∪ Conseq(D).

Also, recall that the compilation of default theories leads to difficulties whenever there is a large
number of compatible default theories. Then, an “on-line” approach is definitely preferable over an
“off-line” approach. In fact, this is also accomplishable by means of what we have developed so far.
For this, let (CD)ω be the set of ω-clauses obtained by turning each δ-clause in CD into an ω-clause.
This leads us to the following corollary to Theorem 5.2, which allows us to reason from arbitrary and
thus also non-compatible default theories.

Corollary 5.3 Let (D,W) be a default theory in atomic format and let φ be an atomic formula.
Then, φ ∈ E for some constrained extension (E,C) of (D,W) iff compl({¬φ},M) is true and
compl(Justif (D′),Mω) is false for the matrix M of W ∪WD′ for some WD′ ⊆ WD.

Observe that this corollary relies on Theorem 4.2 which shows that compatibility is verifiable on the
same matrix M as used in compl({¬φ},M). Also, we used the fact that for any (unit-)clause {L}
containing a single literal L, we have that compl(p,M ∪ {{L}}) is true iff compl(p ∪ {L},M) is true.
Hence, we shifted all justifications on the initial path. In this way, the actual matrix M remained the
same in compl({¬φ},M) and compl(Justif (D′),Mω).

5.2 A case-study

Aaron Rothschild has implemented the approach in [33] by slightly extending ppp, a prolog imple-
mentation of a (first-order) theorem prover carrying out the pool-based connection calculus [26]. The
purpose of this implementation was to provide an initial case-study in how far an existing theorem
prover for the connection method has to be modified for incorporating admissibility.

We briefly describe the main idea underlying the implementation while assuming some basic famil-
iarity with the connection method: We prove in a goal-oriented fashion, starting from the goal and
attempting to find complementary paths through the matrix. As soon as a path cannot be comple-
mented using facts only, we call in δ-clauses to achieve complementarity. As in Definition 5.1, we do
not attempt to use ever-increasing submatrices, as stipulated in Definition 4.2 for verifying admissi-
bility. Rather we enforce the admissible application of defaults by two extra conditions resembling
the ones in Condition (3) in Definition 5.1: The first condition (corresponding to (3a)) says that
only connections “into” γδ-literals of δ-clauses {¬αδ, γδ} are permissible in the course of the backward
chained search. In this way, a subgoal is never resolvable by the prerequisite αδ of a default rule.
Once an inference step with a δ-clause is performed, the second condition restricts the resolution of
subgoals with literals of the current path to literals that entered the path after the aforementioned
“default step”. This amounts to discarding the literals of the path p in (3b) in order to avoid circular
chains of inference.

Importantly these two conditions are implemented by simply adding another prolog clause (along
with some case-analysis distinguishing δ- and ω-clauses) to the prolog implementation of ppp. That
is, apart from a single prolog clause the rest of our implementation corresponds to the original
implementation given in [26]. Hence, it was possible to minimize modifications by utilizing as much
of the original implementation as possible.

In practice, however, the length of the proofs had to be limited by a parameter in the size of
O(|CW | × (|CD| + 1)) in order to guarantee completeness in the propositional case. Otherwise the
implementation ran into infinite branches since ppp is a first-order theorem prover that deals with
clause instances. A simpler prolog implementation that relies on the characterization in Definition 5.1
in given in Section 8.

Finally, the question arises how our method can be transposed onto a high-performance theorem-
prover like setheo [21]. In fact, this should not be that difficult provided that we keep separating the
verification of compatibility. setheo is a prolog-technology theorem prover written in the program-
ming language C. It is built on top of the setheo-abstract machine that works with prolog-like rules.

16

To this end, each clause, like {A∨B}, is transformed into its contrapositives, ¬A → B and ¬B → A.
Roughly speaking, this suggests the following two changes for dealing with δ-clauses—apart from
some case-analysis. First, δ-clauses like {¬αδ, γδ} are transformed in a single contrapositive αδ → γδ.
Second, the head of such a “δ-contrapositive” has to be proven by deleting all literals on the active
path. Observe that these two restrictions correspond to Condition (3a) and (3b) in Definition 5.1. A
detailed study of modifying the treatment of contrapositives is given in [44, 25].

6 An alternative approach

In the previous section, we have developed an algorithm for our method while aiming at implementing
the approach by using existing automated theorem provers. For this purpose, we concentrated on min-
imizing the modifications to existing implementations. This has led to a pragmatic solution separating
the verification of compatibility (or consistency) from that of complementarity and admissibility. In
this section, we investigate an alternative approach that requires more modifications to an automated
theorem prover but which allows for integrating the verification of compatibility.

6.1 An alternative characterization of extensions

The fundamental basis for the approach developed in the previous sections was provided by The-
orem 3.1. In particular, we have stressed the fact that semi-monotonicity allows for focusing on
the default rules needed for proving a query, while developing the corresponding characterization of
query-answering in Corollary 3.2.

In fact, semi-monotonicity offers yet another but conceptually different characterization of extensions.
Observe that the specification given in Theorem 3.1 employs a rather “global” notion of consistency.
Now, semi-monotonicity implies that extensions are constructible in a truly iterative way by applying
one applicable default rule after another. This involves an incremental and thus rather local notion of
consistency. To this end, semi-monotonicity leads us to the following corollary to Theorem 3.1 that
provides an alternative characterization of constrained extensions:

Corollary 6.1 Let (D,W) be a default theory and let E and C be sets of formulas. Then, (E,C) is
a constrained extension of (D,W) iff

E = Th(W ∪ Conseq(D′))

C = Th(W ∪ Justif (D′) ∪ Conseq(D′))

for a maximal D′ ⊆ D such that there exists an enumeration ⟨δi⟩i∈I of D′, where for i ∈ I we have
that

1. W ∪ Conseq({δ0, . . . , δi−1}) ⊢ Prereq(δi),

2. W ∪ Conseq({δ0, . . . , δi−1}) ∪ Justif ({δ0, . . . , δi−1}) ̸⊢ ¬Justif (δi) ∨ ¬Conseq(δi).
This specification explicates the formation of sequences of default rules that remained implicit in
Theorem 3.1. In fact, Condition (1) spells out that D′ has to be grounded in W . So the conceptional
difference between the two alternative characterizations rests on the second condition. Condition (2)
expresses the aforementioned notion of incremental consistency. Here, the “consistent” application
of a default rule is checked at each step, whereas this is done jointly for all default rules in D′ in
Theorem 3.1.

Corollary 6.1 provides the fundamental basis for the approach to query-answering, which we develop
in this section. The characterization of query-answering is analogous to the one given in Corollary 3.2.
Observe that in Theorem 3.1 groundedness and consistency constitute rather separate constraints on
the “generating default rules” in D′. We strongly relied on the possibility of separating these concepts
in Section 5. In contrast to this, the concepts of groundedness and consistency are meshed together
in Corollary 6.1. Hence, both concepts jointly direct the formation of sequences of default rules. This
is the salient feature of the approach developed in the sequel. Moreover, we can see in [39] that the
combination of both concepts is very useful for implementing priorities.

17

6.2 Incremental compatibility

Clearly, the “global” notion of compatibility given in Definition 4.3 is inappropriate in order to account
for the above characterization. Rather Condition (2) in Corollary 6.1 requires an incremental approach
in which compatibility is gradually verified each time a δ-clause is considered. This motivates the
following definition.

Definition 6.1 (Incremental compatibility) Let CW be a set of ω-clauses and CD be a set of
δ-clauses and let Π be a mating for CW ∪ CD. Let ⟨{¬αδi , γδi}⟩i∈I be an enumeration of κ(CD,Π).
Then, (CW ∪ CD,Π) is incrementally compatible wrt I iff for all i ∈ I, there is no spanning mating
for

CW ∪
(∪i−1

j=0{{βδj}, {γδj}}
)
∪ {{βδi}} ∪ {{γδi}}, (6.17)

where βδi = Justif (δi).

We say that (CW ∪CD,Π) is compatible at i in an index set I, if (6.17) holds for i ∈ I. Moreover, we
say that (CW ∪CD,Π) is incrementally compatible wrt an index set I, if it is compatible at all i ∈ I.

The next theorem tells us that “global” and incremental compatibility are in fact equivalent.

Theorem 6.2 Let CW be a set of ω-clauses and CD be a set of δ-clauses and let Π be a mating for
CW ∪ CD. Let ⟨{¬αδi , γδi}⟩i∈I be an enumeration of κ(CD,Π). Then, (CW ∪ CD,Π) is compatible iff
(CW ∪ CD,Π) is incrementally compatible wrt I.

Consider our initial student example. Instead of checking whether the matrix in (4.8) has no spanning
mating, we can stepwisely verify whether this holds for the following matrices.

S Aδ1 S Aδ1 Cδ2 (6.18)

In this way, we check first the compatibility of the facts {S} and the consequent of δ1. Then, the
same test is performed on the matrix extended by the consequent of δ2. Note that at each step, it is
sufficient to consider only the non-complementary paths obtained in the previous step.

We obtain the following corollary to Theorem 4.3 and Theorem 6.2. This result shows that our
incremental method is correct and complete for query-answering in constrained default logic.

Corollary 6.3 Let (D,W) be a default theory in atomic format and φ an atomic formula. Then,
φ ∈ E for some constrained extension (E,C) of (D,W) iff there is a spanning mating Π for the matrix
M = CW ∪CD ∪{{¬φ}} of W ∪WD ∪{¬φ} and an enumeration ⟨ci⟩i∈I of κ(CD,Π) such that (M,Π)
is admissible wrt I and incrementally compatible wrt I.

Now, recall that by Theorem 4.2 compatibility and hence also incremental compatibility can be
verified by using δ-clauses, like {¬αδ, γδ}, instead of clauses containing merely the consequent of a
default, like {γδ}, in the case of “admissible matrices”. Consequently, incremental compatibility can
be equivalently verified by replacing the matrices in (6.17) by matrices of the following form:

CW ∪
(∪i−1

j=0{{¬αδj , γδj}}
)
∪ {{¬αδi , γδi}} ∪

(∪i−1
j=0{{βδj}}

)
∪ {{βδi}},

This offers the computational advantage that we can verify incremental compatibility on (almost) the
same matrices as used for verifying admissibility. In fact, admissibility is checked on matrices of the
form (cf. equation (4.6)):

CW ∪
(∪i−1

j=0{{¬αδj , γδj}}
)
∪ {{¬αδi}}

For admissibility, all paths through the latter matrix have to be complementary. For compatibility,
there has to emerge an open path if we replace the clause {{¬αδi}} by the clause {{¬αδi , γδi}}; simply
by adding the consequent of the default δi. In addition, each such open path must not contain a

18

literal complementary to any justification in
(∪i−1

j=0{{βδj}}
)
∪ {{βδi}}. This additional requirement

is obsolete in the case of normal default theories. On the whole, Theorem 4.2 provides a valuable
refinement that allows for structure and information sharing while jointly verifying admissibility and
compatibility.

In order to illustrate this let us look at our initial default proof in (4.4). For verifying its admissibility,
we used the submatrices in (4.12). These are repeated as M1 and M3 below. In fact, we can share
the use of these matrices for testing compatibility. This amounts to considering in turn the following
submatrices of (4.4):

M1 =
S

¬Sδ1
M2 =

S

¬Sδ1

Aδ1

M3 =
S

¬Sδ1

Aδ1

¬Aδ2
M4 =

S

¬Sδ1

Aδ1

¬Aδ2

Cδ2

We start by verifying whether all paths through matrix M1 are complementary. Since this is the
case, M1 is admissible. For checking the compatibility of M2, we merely have to look for a non-
complementary path through the facts, here {{S}} and the consequent of δ1, Aδ1 . All other paths are
complementary by admissibility. In fact, the path {S,Aδ1} is not complementary and so the matrix
M2 is compatible.

For verifying admissibility in the case of matrix M3, we can make use of the information gathered
on M2. In this example, it is enough to check whether adding the negated prerequisite of δ2, ¬Aδ2

closes all open path in matrix M2. In fact, this is the case since {S,Aδ1} is the only open path in the
matrix M2 and {S,Aδ1} ∪ {¬Aδ2} is complementary. The compatibility of matrix M4 is established
in analogy to that of M2; again by reusing the information gathered while verifying admissibility for
M3. The final proof of the query C in (4.4) is obtained by adding the query clause {¬C} to matrix
M4. Clearly, the resulting matrix is complementary so that the proof is completed.

6.3 An alternative algorithm

The general idea of our algorithmic approach is to proceed in a query-oriented manner. We extend
the definition of compl(p,M) as given in Definition 5.1 in the following way. We use a predicate
compl(p, CW , CD) for defining a declarative algorithm for deciding whether a matrix is complementary,
admissible and compatible. The first argument is a set of literals describing a partial path, the second
argument represents a set of ω-clauses, and the last argument accounts for δ-clauses.

Definition 6.2 Let CW be a set of ω-clauses and CD be a set of δ-clauses. Let p be a set of literals
and let CW ′ ⊆ CW and CD′ ⊆ CD. Then, we define compl(p, CW ′ , CD′) relative to CW as follows.24

1. If CW ′ ∪ CD′ = ∅ then compl(p, CW ′ , CD′) is false.

2. If CW ′ ̸= ∅ and c ∈ CW ′ then compl(p, CW ′ , CD′) is true iff the following two conditions hold for
c = c1 ∪ c2.

(a) for all L ∈ c1, L is complementary to some literal of p.

(b) for all L ∈ c2, there is a set of δ-clauses CD′
L
⊆ CD′ such that following two conditions hold.

i. compl(p ∪ {L}, CW ′ \ {c}, CD′
L

) is true.

ii. compl(Justif
(∪

L∈c2 D
′
L

)
, CW ∪

∪
L∈c2 CD′

L
, ∅) is false.

24As above, we assume in what follows that compl(p, CW ′ , CD′) is relative to CW .

19

3. If CD′ ̸= ∅ and c ∈ CD′ then compl(p, CW ′ , CD′) is true iff the following two conditions hold for
c = {¬αδ, γδ}.

(a) γδ is complementary to some literal of p.

(b) There is a set of δ-clauses CD′′ ⊆ CD′ such that {¬αδ, γδ} ∈ CD′ \ CD′′ and the following two
conditions hold.

i. compl({¬αδ}, CW , CD′′) is true.

ii. compl(Justif (D′′ ∪ {δ}), CW ∪ CD′′ ∪ {{¬αδ, γδ}}, ∅) is false.

As in Definition 5.1, CW and CD represent the original set of ω- and δ-clauses, whereas CW ′ and CD′

function as parameters. Condition (1) and (2) correspond to the ones in Definition 5.1. There are two
differences. First, we have separated ω- and δ-clauses. This separation allows for an easier formulation
of Condition (3). Second, we have added Condition (2bii) in order to guarantee the compatibility of
multiple subproofs found in (2bi). We explain the treatment of compatibility in (2bii) in the context
of Condition (3bii) below. Anyway, we have that a matrix M (representing a satisfiable formula)
consisting of ω-clauses only is complementary iff compl(∅,M, ∅) is true wrt the first two conditions of
Definition 6.2.

As in Definition 5.1, Condition (3a) corresponds to Condition (2a) and allows for solving subgoals
on the actual path by the consequent of a default rule γδ—provided Condition (3b) is satisfied.
Condition (3b) combines the verification of admissibility with that of incremental compatibility. For
that, a set of δ-clauses CD′′ is selected from the available set of δ-clauses CD′ . CD′′ is meant to represent
a compatible subset of δ-clauses that allows for deriving the “prerequisite” αδ. In this way, CD′′ can
be seen as the “default proof” of αδ. Condition (3bi) corresponds to Condition (3b) in Definition 5.1;
here it is restricted to the δ-clauses in CD′′ . Condition (3bii) “implements” incremental compatibility.
For coherence, the compatibility of δ-clauses in CD′′ is verified by the part of compl(p, CW , CD)
accounting for ω-clauses only. For this, we turn all δ-clauses in CD′′ ∪ {{¬αδ, γδ}} into ω-clauses and
add the latter ones to the original set of ω-clauses in CW . In this way, we make use of Theorem 4.2
and pass the matrix CW ∪ CD′′ ∪ {{¬αδ}}—whose admissibility is verified Condition (3bi)—to the
compatibility check in (3bii). There, the clause {¬αδ} is extended by γδ. Moreover, we push the
justifications of the default rules in D′′ along with the justification of the considered default rule δ
on the path. This additional requirement is obsolete in the case of normal default theories. The
failure of compl(Justif (D′′ ∪ {δ}), CW ∪ CD′′ ∪ {{¬αδ, γδ}}, ∅) indicates that W ∪Conseq(D′′ ∪ {δ})∪
Justif (D′′ ∪ {δ}) is consistent (by completeness of the standard connection method). A minimal
condition that is equivalent to Condition (3bii) is the following one:

ii .′ compl(Conseq(D′′ ∪ {δ}) ∪ Justif (D′′ ∪ {δ}), CW , ∅) is false

The incoherence of this condition to Condition (3bi) however is not favorable for an efficient algorithm
meshing conditions (3bi) and (3bii). However, in the above algorithm, neither condition benefits from
the information gathered in the other one, since both are verified separately for the sake of simplicity.

In order to illustrate the definition of compl(p, CW , CD) let us reconsider the derivation given in
(5.14) to (5.16). There, we have shown that C is a default conclusion of our initial default theory
(2.1). For this, we have shown that compl({¬C},M) is true for the “compatible” matrix M =
{{S}, {¬Sδ1 , Aδ1}, {¬Aδ2 , Cδ2}}. Now, the restriction to “compatible” matrices is obsolete. Rather
we show that

compl({¬C}, {{S}}, {{¬Sδ1 , Aδ1}, {¬Aδ2 , Cδ2}, {¬Aδ3 , Eδ3}}) is true.

Observe that together, the query clause {¬C}, the ω-clause in {{S}}, and the δ-clauses in
{{¬Sδ1 , Aδ1}, {¬Aδ2 , Cδ2}, {¬Aδ3 , Eδ3}} form the matrix given in (4.4).

As in Section 5, we select clauses in a connection-driven way. Thus, we select the clause {¬Aδ2 , Cδ2}
since Cδ2 is complementary to the literal ¬C on the active path. This establishes Condition (3a).
Next, we have to verify Condition (3b). For this, we have to find a subset CD′′ of the remaining

20

δ-clauses in {{¬Sδ1 , Aδ1}, {¬Aδ3 , Eδ3}} that satisfies Condition (3bi) and (3bii). For illustration, we
direct our subsequent choices along the line sketched by the derivation in (5.14) to (5.16). Accordingly,
we choose CD′′ = {{¬Sδ1 , Aδ1}}. This choice along with the previously chosen δ-clause c = {¬Aδ2 , Cδ2}
yields in turn the following evaluations.25

1. compl({¬Aδ2}, {{S}}, {{¬Sδ1 , Aδ1}}) is true,
since by Condition (3), where c = {¬Sδ1 , Aδ1} and CD′′ = ∅,

(a) compl({¬Sδ1}, {{S}}, ∅) is true by (2a).

(b) compl(∅, {{S}, {¬Sδ1 , Aδ1}}, ∅) is false by (2b) and (1).

2. compl({Cδ2}, {{S}, {¬S,A}, {¬A,C}}, ∅) is false,
since by repeated applications of (2)

(a) compl({Cδ2 , S, A,C}, ∅, ∅) is false.

Items 1. and 2. confirm Condition (3bi) and (3bii) so that our proof of C is completed.
Observe that choosing CD′′ = {{¬Sδ1 , Aδ1}, {¬Aδ3 , Eδ3}} yields the same result, while the choices

CD′′ = ∅ or CD′′ = {{¬Aδ3 , Eδ3}} lead to a failure. One possibility for choosing CD′′ is to consider ever-
increasing subsets of the given set of δ-clauses CD′ . Another—more promising–possibility is to leave
the choice of CD′′ to the admissibility check in (3bi). In concrete terms, this can be accomplished by
passing all δ-clauses in CD′ to Condition (3bi) and adding an additional argument to compl(p, CW , CD)
in order to account for the δ-rules that are actually used for establishing admissibility in (3bi). Then,
the returned set of δ-clauses is checked for compatibility in (3bii). Such an approach is described in
Section 8.

For a complement, consider the default rules S :A
A and A :¬S

E along with the fact S. For answering
the query E, we have to check whether

compl({¬E}, {{S}}, {{¬Sδ1 , Aδ1}, {¬Aδ3 , Eδ3}}) is true.

For solving the negated query ¬E, we have to select clause {¬Aδ3 , Eδ3} in Condition (3). This however
requires by Condition (3bii), where the active path {¬S} is formed by the justification of the default
rule A :¬S

E , that

compl({¬S}, {{S} ∪ CD′′ ∪ {{¬Aδ3 , Eδ3}}}, ∅) is false

for some δ-clauses CD′′ . This is however impossible since any path through the underlying matrix
contains the connection {S,¬S}. That is, the justification ¬S is inconsistent with the set of facts {S}.

Finally, we obtain the following result showing that our incremental algorithm is correct and complete
for query-answering in constrained default logic:

Theorem 6.4 Let (D,W) be a default theory in atomic format and let φ be an atomic formula. Then,
φ ∈ E for some constrained extension (E,C) of (D,W) iff compl({¬φ}, CW , CD) is true, where CW

is the matrix of W and CD is the matrix of WD.

7 Discussion and related work

In this section, we summarize the different versions of our approach developed in the previous sections.
Afterwards, we compare our approach with other proposals found in the literature.

Our approach integrates the distinguishing features of default logics into a classical deduction
method. This allows for a homogeneous characterization and treatment of default proofs at the
level of the calculus. In this way, there are no limits for interactions between the three notions of com-
plementarity, admissibility, and compatibility—corresponding to classical deduction and the concepts
of groundedness and consistency in default logic. Our basic method, say M, relies on Theorem 3.1 and

25Recall that we do not have to add the justification to the path in the case of normal default rules.

21

Algorithm Method Pruning by
admissibility compatibility

A M incremental compilation

A’ M incremental additional test

Ai Mi incremental incremental

Figure 1: A summary of the algorithmic approaches.

provides with admissibility and compatibility two independent concepts restricting default proofs to
classical proofs confirming the two previous properties. To a turn, we refined our approach by meshing
together the concepts of admissibility and (incremental) compatibility. While the resulting method,
say Mi, leaves admissibility unaffected, it offers an incremental approach to compatibility in which the
consistent usage of δ-clauses is gradually verified. Hence, the conceptional difference between the two
methods M and Mi rests on the treatment of consistency. While M relies on a rather global notion of
consistency, Mi employs an incremental and thus rather local notion of consistency.

Apart from the encoding of default rules as implication, a distinguishing feature of our approach
is the formation of sequences of δ-clauses. In M, this formation is mainly affected by the notion of
groundedness, while consistency plays more or less the role of a global constraint. In contrast to
this, groundedness and consistency are meshed together in Mi and hence jointly direct the formation
of sequences of δ-clauses. In both versions, groundedness and consistency are integrated into the
underlying logical calculus. This is another feature distinguishing our methods from others found in
the literature.

We have seen that both methods result in algorithms supporting an easy concurrent verification of
complementarity and admissibility. In other words, groundedness is enforced while query-answering.
The concurrent verification of consistency is added to the algorithm derived from Mi. Moreover, we
have shown in Section 6 that Mi allows for structure and information sharing while jointly verifying
admissibility and (incremental) compatibility. All of the presented algorithms are query-oriented. This
reflects the idea that the theorem prover is in charge of finding a proof that is gradually confirmed
by the concepts of admissibility and compatibility in the course of the proof search. In this way, the
proof search is directed by the notions of groundedness and consistency. A summary of the derived
algorithms along with their features is given in Figure 1.

We have proposed an “off-line” integration of compatibility in order to minimize modifications while
using existing automated theorem provers for implementing our method. This has resulted in the
algorithm given in Definition 5.1, say A, which allows for simultaneously verifying complementarity
and admissibility. This approach is derived from our basic method M that allows for separating the
concepts of admissibility and compatibility. Algorithm A expects matrices stemming from compatible
default theories. In this way, it never runs into redundant computations with incompatible defaults.
This approach is advantageous over all others whenever there are few compatible default theories. In
such a case, the derivation of a query is not “distracted” by any consistency checking, since all conflicts
have been “compiled away”. In fact, we can verify whether a query is in the unique extension of a
compatible default theory without any consistency checks. In the worst case, however, there may be
an exponential number of compatible default theories.

A simple alternative to compiling default theories is described in Corollary 5.3. This variant, say
A’, uses algorithm A but refrains from compiling consistency and rather verifies compatibility for each
completed, admissible proof. This approach shares with A the advantage of minimizing changes to
existing automated theorem provers. Also, it avoids representing a possibly exponential number of
compatible default theories. However, it is a “generate and test” approach in principle, in which we
generate admissible proofs and verify their compatibility afterwards. In the worst case, however, this
belated compatibility check may have to be performed exponentially many times. Consequently, A’

22

may cause a lot of redundancy, since incompatible proofs are not avoided in the course of the proof.
Algorithm Ai is derived from Mi and hence integrates the verification of compatibility (cf. Defini-

tion 6.2). As A’, this approach is not restricted to matrices stemming from compatible default theories.
Rather each δ-clause has to confirm admissibility and compatibility when entering a proof. In this
way, redundant computations with incompatible defaults are avoided. In general, this approach is
advantageous over the other ones whenever a default theory contains many conflicting default rules.
Then, the additional costs of repeated consistency checks can be amortized by pruning many incom-
patible subproofs. The disadvantage of this approach is however that it requires more modifications
to existing automated theorem provers. This renders algorithm Ai orthogonal to A (and A’). Also, the
successive consistency checks may slow down the performance of the prover. This applies in particular
to domains where proofs are usually built from compatible default rules only. A promising way of
avoiding this is to use model checking techniques as described in [43] (see also Section 9).

In all, we argue that the concurrent verification of admissibility while query-answering is indis-
pensable. In particular, we have demonstrated that this can be done with few modifications to an
automated theorem prover. The treatment of compatibility is more subtle. Here, a lot depends on
the underlying theory. That is, if a default theory comprises a feasible number of compatible default
theories, then a pre-compilation of compatibility is favorable. Otherwise, that is, if a default theory
comprises too many compatible default theories, an integration of compatibility is preferable, as done
in Ai. This has been confirmed by our experimental studies (see Section 8). On the whole, the common
general idea of all versions of our approach is to employ a goal-directed search for a proof while min-
imizing redundancy. We will see below that other approaches exhibit a much stronger separation of
the notions of derivability, groundedness, and consistency, which often causes much more redundancy.

A related approach is given in [30] for normal default theories. The first conceptual difference is
given by the encoding of default rules. While we convert default rules into standard implications
(along with some qualifying conditions), Reiter considers initially only their consequents. The latter
requires a separate verification of the prerequisites, which finally leads to an iterative format of default
proofs: Given a default theory (D,W) along with a query φ, the idea is to determine a subset D0

of D such that W ∪ Conseq(D0) ⊢ φ. Next, the problem is to determine a set D1 ⊆ D such that
W ∪ Conseq(D1) ⊢ Prereq(D0). This process is iterated until Dk = ∅ for some k. In a final step,
it is checked whether W ∪

∪k
i=0Conseq(Di) is consistent. In this way, a default proof consists of

numerous successive proofs depending on the number of iterations required for verifying the respective
prerequisites. This leads to meta-theoretic characterization of defaults proofs, since the approach
steps outside the underlying calculus, namely linear resolution. This is due to the iterative format
of default proofs and the separation of consistency checking. In addition, this is a very rigid way of
query-answering. This is so because each derivation of the form W ∪ Conseq(Di) ⊢ Prereq(Di−1) has
to be completed before one can carry on with the next step. In contrast, our approach integrates
groundedness and consistency into the underlying calculus by taking advantage of structure-oriented
theorem proving. This allows for compacting the aforementioned iterations into a single default proof.
In this way, our approach imposes no format on the way we proceed for answering a given query. In
all, the notion of a default proof manifests a second conceptional difference to Reiter’s approach.

From an algorithmic perspective, we observe that Reiter’s procedure is also query-oriented and in
favor of a separate confirmation of consistency, as algorithm A’. That is, consistency is verified after
a proof has been completed. As argued above, this causes a lot of redundancy in the presence of
many proofs built upon incompatible defaults. In particular, one might have to generate numerous
proofs before consistency is confirmed or even denied. Also, in the top-down resolution procedure
of [30] groundedness is not explicitly taken into account, so that the proof procedure may exhibit a
non-terminating behavior when faced with cyclic default rules, like A :C

C and C :A
A (and nothing else).26

Such cyclic inferences are not possible within our algorithm, since groundedness is explicitly checked.

26Observe that this does not render Reiter’s procedure incomplete, since neither A nor C should be derivable in this
case.

23

Camilla Schwind introduced in [41] a tableau-based method for computing extensions of normal
default theories. This work has been extended in [42] to general default theories. Vincent Risch has
adapted the approach in [32] to Lukaszewicz’ variant of default logic [22].

In [42] a tableau-based theorem prover is used to construct a set of generating defaults D′ ⊆ D of an
extension of a default theory (D,W) in Reiter’s default logic. The idea is to start from a tableau, or
simply a matrix in our jargon, representing the set of facts W and the consequences of all default rules
in the original set of default rules D. Then, consequents of default rules are successively removed until
there is an open path through the resulting matrix of W ∪Conseq(D′) (where all defaults in D\D′ have
been removed). This indicates that W∪Conseq(D′) is consistent. Observe that this procedure amounts
to computing compatible default theories (cf. Section 5). Accordingly, we may obtain exponentially
many tableaus, each representing a compatible default theory. Next, each default in D′ and D \ D′

is inspected. For each δ ∈ D′, it is checked that its prerequisite is derivable from the matrix of
W ∪ Conseq(D′) and that its justification is consistent wrt to the same matrix. For each δ ∈ D \D′,
one of the two previous conditions must fail. The inspection of the default rules in D \D′ is obsolete
for normal default rules. In such a case, also the consistency of the justification of the default rules
in D′ is guaranteed since then we are reasoning from a “compatible” set of default rules. In a final
step, groundedness is verified for the default rules in D′. This is done in separation from the previous
steps.

The logical basis of Schwind’s approach is a (fixed-point) criterion resembling the one given in
Theorem 3.1. However, this characterization requires the inspection of all default rules in D due to
the lack of semi-monotonicity in regular default logic. The conceptional differences to our approach
are the following. First, default rules are represented by their consequents which leads necessarily
to a separate derivation of their prerequisites. Although our algorithms show a similar treatment of
prerequisites, this is not stipulated by their underlying methods. Second, the proof procedure in [42]
is merely consistency-driven, ie. only those steps are performed that ensure the consistency of the
formulas under consideration. No query is taken into account since entire extensions are computed.
Third, groundedness of D′ is checked separately at the end of the computation and thus leads to
additional computational costs of the algorithm. As argued in the case of separating consistency, such
a “generate and test” approach may cause a lot of redundancy, since non-grounded proofs are not
avoided in the course of the procedure. The same consideration apply to the approach described in
[32]. This renders both approaches orthogonal to ours.

In [19] a default theory is transformed into a TMS network [13]. The nodes of the TMS reflect any
possible dependency between the formulas of the default theory; thereby the derivability relation is
“coded” into the network. Finally, there exists a one-to-one correspondence between an admissible
labeling of such a TMS network and the set of generating defaults of an extension of the default theory.
However, this encoding requires the computation of a tremendous amount of derivational dependencies
which might not even contribute to the formation of an extension.

In the two last approaches, entire extensions are computed. While the tableau approach is close to
classical theorem proving, the TMS approach is completely abstracted from derivability in the base
language. Once all extensions are computed using any of the two approaches, query-answering may
be performed using a small number of steps (within the respective framework). In the worst case,
however, all—and there may be exponentially many—extensions have to be considered for query-
answering. Other approaches for computing entire extensions of default theories in Reiter’s default
logic are described in [15, 46]. Both approaches use approximation techniques for finding a set of
generating default rules while abstracting from the underlying theorem prover. [9] show that this
leads to an exponential amount of space in order to avoid non-termination.

With our method no such pre-computation of all extensions in their entirety is needed (even though
it is possible [33]). On the other hand, algorithm A may be seen as compromising the “off-line”
computation of compatible sets of defaults with “on-line” query-answering. So our general idea is to
employ a goal-directed search for a proof while minimizing redundancy.

24

A number of other algorithms have been conceived for restricted classes of defaults. In particular,
prerequisite-free normal default theories are attractive candidates for implementations, since they do
not exhibit dependencies between the prerequisites of defaults. Thus, there is no need to enforce
groundedness. Query-answering in our approach then reduces to query-answering in classical logic
with an additional consistency check. Other implementations for this fragment of default logic exist
[2, 29, 4].

Niemelä provides in [27, 28] different methods for nonmonotonic reasoning based on autoepistemic
reasoning. This and other approaches to autoepistemic logic [24] are in principle adaptable to default
logics via certain transformations between default and autoepistemic logic. The discussion of these
approaches is however beyond the scope of this paper.

8 Experiments

In this section, we present prototypical implementations of the algorithms described in the previous
sections. The purpose of this is two-fold. First, we want to show how these approaches can be
implemented. Second, we want to provide some experimental analysis.

We have seen how easily admissibility and compatibility are simultaneously verifiable. Hence, it
will be interesting to investigate whether this is a feasible process. Moreover, we explore the issue of
compatibility by comparing the results obtained in the diverse approaches. In all, we want know which
modifications to an existing automated theorem provers are worthwhile under which circumstances.

We have refrained from using any advanced implementation techniques in order to keep the expo-
sition transparent. Thus, the prototypes are intended to provide transparent case-studies for certain
default reasoning architectures rather than efficient implementations. For instance, none of the given
programs makes use of structure sharing, as suggested in Section 6. Moreover, such enhancements
would influence the different settings in different ways so that the corresponding results would be
hardly comparable. Rather we use in each implementation the same classical inference mechanism
and the same way of consistency checking. This allows for a simple common implementation platform.
For simplicity, we restrict ourselves to normal default theories.

8.1 A straightforward implementation

We start by giving an extremely simple and straightforward prolog implementation of Eder’s algo-
rithm for the standard connection method [14]. This implementation serves two purposes. First, it
provides the basic theorem proving techniques that we will use for our prototypical implementations.
Second, it supplies us with a simple way for consistency checking.

The implementation given in Figure 2 corresponds to the first two conditions given in Definition 5.1.
Matrices are represented by lists of lists of literals. A literal is of the form a or -a. The first program
clause of compl/2 implements Condition (1) in Definition 5.1, while the second one selects clauses
out of the matrix M and initiates their treatment in complC(Path,Clause,MatrixRest) according to
Condition (2) in Definition 5.1. complC/3 verifies that each literal in a considered clause satisfies either
Condition (2a) or (2b). That is, while the first program clause of complC/3 captures the limiting case,
the second one accounts for Condition (2a) and the third one accounts for Condition (2b). Finally,
complL/2 checks whether the negation of the literal Literal is a member of the path Path. Auxiliary
program clauses, like neg/2 are given in Figure 3. The predicates member/2, select/3, etc. have their
obvious meaning and belong to the underlying prolog-system.

As mentioned above, we refrain from using any advanced implementation techniques in order to
provide a simple common implementation platform. For this purpose, we verify the compatibility of
a set of δ-clauses relative to a set of ω-clauses by appeal to compl/2. This results is the predicate
compatible/2 given in Figure 4. compatible/2 takes a list of ω-clauses CW and a list of δ-clauses
CD, unions CW with the consequents of the δ-clauses in CD and checks whether the result satisfies
not(compl([],M)). This amounts to a classical satisfiability test.

25

compl(_Path, []) :- !,fail.
compl(Path, Matrix) :-

select(Clause,Matrix,MatrixRest),!,
complC(Path,Clause,MatrixRest).

complC(_Path, [] ,_Matrix) .
complC(Path, [Literal|ClauseRest], Matrix) :-

complL(Path,Literal),!,
complC(Path,ClauseRest,Matrix).

complC(Path, [Literal|ClauseRest], Matrix) :-
compl([Literal|Path],Matrix),
complC(Path,ClauseRest,Matrix).

complL(Path, Literal) :-
neg(Literal,NegLiteral),!,
member(NegLiteral,Path).

Figure 2: An implementation of Eder’s algorithm.

neg(-Literal, Literal) :- !.
neg(Literal, -Literal) .

split([], [], []) .
split([Clause|MatrixRest], CW , [Clause|CD]) :-

d_clause(Clause),!,
split(MatrixRest,CW,CD).

split([Clause|MatrixRest], [Clause|CW], CD) :-
w_clause(Clause),!,
split(MatrixRest,CW,CD).

d_clause([_AlphaLiteral > _GammaLiteral]).
w_clause(Clause) :-

not(d_clause(Clause)).

omega([] , []) .
omega([[_Alpha>Gamma]|CDRest], [[Gamma]|CWRest]) :-

omega(CDRest,CWRest).

Figure 3: Auxiliary program clauses.

compatible(CW, CD) :-
omega(CD,CDOmega),
union(CW,CDOmega,M),
not(compl([],M)).

Figure 4: A simple way of checking compatibility.

26

sample(students,[sample(studentsC,[
[s], [s],
[s>a], [s>a],
[s> -e], [s> -e],
[a>c], [a>c]
[a>e]]).
]). sample(studentsC,[

[s],
[s>a],
[a>c],
[a>e]
]).

Figure 5: The representation of our example.

compl(Path, M, Proof) :-
split(M,CW,CD),
compl(Path,CW,CD,CW,Proof).

compl(_Path, [], [], _,_Proof) :- !,fail.
compl(Path, CW, CD, M, Proof) :-

select(OmegaClause,CW,CWRest),
select(Literal,OmegaClause,OmegaClauseRest),
complL(Path,Literal),
complW(Path,OmegaClauseRest,CWRest,CD,M,Proof).

compl(Path, CW, CD, M, Proof) :-
select([Alpha>Gamma],CD,CDRest),
complL(Path,Gamma),!,
complD(Path,[Alpha>Gamma],CW,CDRest,M,Proof).

complW(_Path, [] ,_CW,_CD,_M, []) .
complW(Path, [Literal|ClauseRest], CW, CD, M, Proof) :-

complL(Path,Literal),
complW(Path,ClauseRest,CW,CD,M,Proof).

complW(Path, [Literal|ClauseRest], CW, CD, M, Proof) :-
compl([Literal|Path],CW,CD,M,Proof1),
complW(Path,ClauseRest,CW,CD,M,Proof2),
append(Proof1,Proof2,Proof).

complD(_Path, [Alpha>Gamma],_CW, CD, M, [[Alpha>Gamma]|Proof]) :-
neg(Alpha,NegAlpha),
compl([NegAlpha],M,CD,M,Proof).

Figure 6: I: An implementation of algorithm A.

8.2 Implementations separating compatibility

In this section, we give implementations that simultaneously verify admissibility and complementarity
but separate the verification of compatibility. That is, we discuss implementations of the algorithm
given in Definition 5.1.

For illustration, let us start by introducing the underlying representation. Consider the default
theory({

S : A

A
,
S : ¬E
¬E

,
A : C

C
,
A : E

E

}
, {S}

)
.

The representation of this default theory is given in the left column of Figure 5. As mentioned above,
ω-clauses are lists of literals. δ-clauses like {¬S,A} are represented as [s>a]. This allows for an easy
distinction between ω- and δ-clauses; and moreover between “prerequisites” and “consequents” of δ-
clauses. The compatible counterpart of the default theory is given in the right column of Figure 5. For
transparency, we have chosen this naive representation rather than a more efficient one where each
δ-clause in represented only once. Such a representation is used in [33].

The implementation, I say, of the algorithm in Definition 5.1 is given in Figure 6. As in Definition 6.2,
we have separated ω- and δ-clauses. Moreover, we have extended each predicate by two additional
arguments. One containing the original set of ω-clauses and another one accumulating the proof of
the query. Observe that the counterpart of compl/2 in Figure 2 is given by compl/5. The principal

27

difference is that compl/5 selects ω- as well as δ-clauses in a connection-driven way. That is, a clause
is only selected if one of its literals is complementary to a literal on the active path. The counterpart
of complC/3 in Figure 2 is given by complW/6 and complD/6. complW/6 treats ω-clauses and is identical
to complC/3 in Figure 2. δ-clauses are processed by complD/6. Since the complementarity of the con-
sequent Gamma to one of the literals on the active path is checked in compl/5, merely Condition (3b) in
Definition 5.1 remains to be verified by complD/6. This is done by compl([NegAlpha],M,CD,M,Proof).
Observe that this is the point where the original set of ω-clauses M “reenters” the proof. This is nec-
essary for checking admissibility. If the last subgoal in complD/6 succeeds, the δ-clause [Alpha>Gamma]

is added to the proof in Proof.
A query like e is posed to the “knowledge base” studentsC27 in Figure 5 by evaluating the following

prolog query:
?- sample(studentsC,M),compl([-e],M,P).

This yields the answer:
P = [[a>e],[s>a]]

We have tested the implementation on numerous examples. First of all, however, let us consider the
results on the studentsC example given in Figure 5. All results on this example are summarized in
Figure 7. The left column of tables given there shows the results on querying -e; the right one does
the same for the query e. The tables have the following format:28

calleeName/calleeArity callerName/callerArity count

The number given in count expresses the number of calls of calleeName from callerName. Note that we
only keep track of callers inside the considered implementation. In this way, we discard for instance
all calls from predicates in the program given in Figure 2.

The first line of tables in Figure 7 gives the results of implementation I. It is worth noticing that
compl/5 has been called two times from compl/3 on the query e. This expresses the problem with our
naive representation of compatible default theories. In fact, the program tries to prove e first from
the first compatible default theory in Figure 5, which is impossible. Afterwards, it finds a proof by
looking at the second compatible default theory. Usually, connection method theorem provers employ
so-called connection graphs that indicate the location of clauses containing complementary literals.
Clearly, such a datastructure would avoid this problem in our example.

For comparison, we have also implemented algorithm A’. Its implementation, say I’, is obtained by
replacing the definition of compl/3 in Figure 6 by the one given in Figure 8. The results on the students
example are given in the second line of tables in Figure 7. Observe that compatible/2 is called only
once. This indicates that both proofs were initially found. That is, each of them was formed by a set
of compatible default rules. We will take up this algorithmic variant of A in the next subsection.

The major question addressed in this subsection is whether the integration of admissibility slows
down the underlying theorem prover. In order to answer this question let us consider the exemplary
(compatible) matrices az and pyramid along with their classical counterparts azW and pyramidW obtained
by replacing each δ-clause like [a>b] by a Hornclause like [-a,b]. The corresponding “knowledge
bases” are listed in Figure 9. In turn, we query both the “default knowledge bases” and their classical
counterparts with the same query. The results given in Figure 10 speak for themselves. In fact, we
observe that the “default proofs” (in the left column of Figure 10) need in all respects less counts than
their classical counterparts (in the right column). This is a strong argument in favor of our approach
to “on-line” admissibility (or groundedness) checking.

8.3 Implementations integrating compatibility

This section gives implementations that integrate the verification of compatibility. Figure 11 contains
an implementation of algorithm Ai, as described in Definition 6.2. This implementation is obtained

27This is the compatible version of the “knowledge base” students.
28Thanks to Richard O’Keefe, the author of the count program.

28

I studentsC/-e

compl/5 compl/3 1
compl/5 complD/6 1
complD/6 compl/5 1
complL/2 compl/5 4
complW/6 compl/5 1
neg/2 complD/6 1
neg/2 complL/2 4

I’ students/-e

compatible/2 compl/3 1
compl/5 compl/3 1
compl/5 complD/6 1
complD/6 compl/5 1
complL/2 compl/5 4
complW/6 compl/5 1
neg/2 complD/6 1
neg/2 complL/2 6

Ii students/-e

compatible/2 complD/6 1
compl/5 compl/3 1
compl/5 complD/6 1
complD/6 compl/5 1
complL/2 compl/5 4
complW/6 compl/5 1
neg/2 complD/6 1
neg/2 complL/2 6

Iis students/-e

compatible/2 complD/6 4
compl/5 compl/3 1
compl/5 complD/6 4
complD/6 compl/5 1
complL/2 compl/5 7
complW/6 compl/5 4
neg/2 complD/6 1
neg/2 complL/2 21

I studentsC/e

compl/5 compl/3 2
compl/5 complD/6 2
complD/6 compl/5 2
complL/2 compl/5 11
complW/6 compl/5 1
neg/2 complD/6 2
neg/2 complL/2 11

I’ students/e

compatible/2 compl/3 1
compl/5 compl/3 1
compl/5 complD/6 2
complD/6 compl/5 2
complL/2 compl/5 8
complW/6 compl/5 1
neg/2 complD/6 2
neg/2 complL/2 11

Ii students/e

compatible/2 complD/6 2
compl/5 compl/3 1
compl/5 complD/6 2
complD/6 compl/5 2
complL/2 compl/5 8
complW/6 compl/5 1
neg/2 complD/6 2
neg/2 complL/2 13

Iis students/e

compatible/2 complD/6 4
compl/5 compl/3 1
compl/5 complD/6 8
complD/6 compl/5 3
complL/2 compl/5 19
complW/6 compl/5 2
neg/2 complD/6 3
neg/2 complL/2 34

Figure 7: Results in the student example.

compl(Path, M, Proof) :-
split(M,CW,CD),
compl(Path,CW,CD,CW,Proof),
compatible(CW,Proof).

Figure 8: I’: The change for algorithm A’.

29

sample(az,[sample(azW,[sample(pyramid,[sample(pyramidW,[
[a], [a], [a1], [a1],
[a>b], [-a,b], [a2], [a2],
[b>c], [-b,c], [a3], [a3],
[c>d], [-c,d], [a4], [a4],
[d>e], [-d,e], [a5], [a5],
[e>f], [-e,f], [a6], [a6],
[f>g], [-f,g], [a7], [a7],
[g>h], [-g,h], [a8], [a8],
[h>i], [-h,i], [a1>b1], [-a1,b1],
[i>j], [-i,j], [a2>b2], [-a2,b2],
[j>k], [-j,k], [-b1,-b2,c12], [-b1,-b2,c12],
[k>l], [-k,l], [c12>d12], [-c12,d12],
[l>m], [-l,m], [a3>b3], [-a3,b3],
[m>n], [-m,n], [a4>b4], [-a4,b4],
[n>o], [-n,o], [-b3,-b4,c34], [-b3,-b4,c34],
[o>p], [-o,p], [c34>d34], [-c34,d34],
[p>q], [-p,q], [-d12,-d34,e1234], [-d12,-d34,e1234],
[q>r], [-q,r], [-e1234,f1234], [-e1234,f1234],
[r>s], [-r,s], [a5>b5], [-a5,b5],
[s>t], [-s,t], [a6>b6], [-a6,b6],
[t>u], [-t,u], [-b5,-b6,c56], [-b5,-b6,c56],
[u>v], [-u,v], [c56>d56], [-c56,d56],
[v>w], [-v,w], [a7>b7], [-a7,b7],
[w>x], [-w,x], [a8>b8], [-a8,b8],
[x>y], [-x,y], [-b7,-b8,c78], [-b7,-b8,c78],
[y>z] [-y,z] [c78>d78], [-c78,d78],
]).]). [-d56,-d78,e5678], [-d56,-d78,e5678],

[-e5678,f5678], [-e5678,f5678],
[-f1234,-f5678,g] [-f1234,-f5678,g]
]).]).

Figure 9: The az and the pyramid example.

I az/z

compl/5 compl/3 1
compl/5 complD/6 25
complD/6 compl/5 25
complL/2 compl/5 351
complW/6 compl/5 1
neg/2 complD/6 25
neg/2 complL/2 351

I azW/z

compl/5 compl/3 1
compl/5 complW/6 25
complL/2 compl/5 676
complL/2 complW/6 25
complW/6 compl/5 26
complW/6 complW/6 25
neg/2 complL/2 701

I pyramid/g

compl/5 compl/3 1
compl/5 complD/6 12
compl/5 complW/6 16
complD/6 compl/5 12
complL/2 compl/5 653
complL/2 complW/6 16
complW/6 compl/5 17
complW/6 complW/6 16
neg/2 complD/6 12
neg/2 complL/2 669

I pyramidW/g

compl/5 compl/3 1
compl/5 complW/6 28
complL/2 compl/5 731
complL/2 complW/6 28
complW/6 compl/5 29
complW/6 complW/6 28
neg/2 complL/2 759

Figure 10: Results in the az and pyramid example.

30

compl(Path, M, Proof) :-
split(M,CW,CD),
compl(Path,CW,CD,CW,Proof).

compl(_Path, [], [], _,_Proof) :- !,fail.
compl(Path, CW, CD, M, Proof) :-

select(OmegaClause,CW,CWRest),
select(Literal,OmegaClause,OmegaClauseRest),
complL(Path,Literal),
complW(Path,OmegaClauseRest,CWRest,CD,M,Proof).

compl(Path, CW, CD, M, Proof) :-
select([Alpha>Gamma],CD,CDRest),
complL(Path,Gamma),!,
complD(Path,[Alpha>Gamma],CW,CDRest,M,Proof).

complW(_Path, [] ,_CW,_CD,_M, []) .
complW(Path, [Literal|ClauseRest], CW, CD, M, Proof) :-

complL(Path,Literal),
complW(Path,ClauseRest,CW,CD,M,Proof).

complW(Path, [Literal|ClauseRest], CW, CD, M, Proof) :-
compl([Literal|Path],CW,CD,M,Proof1),
complW(Path,ClauseRest,CW,CD,M,Proof2),
append(Proof1,Proof2,Proof),
compatible(M,Proof).

complD(_Path, [Alpha>Gamma],_CW, CD, M, [[Alpha>Gamma]|Proof]) :-
neg(Alpha,NegAlpha),
compl([NegAlpha],M,CD,M,Proof),
compatible(M,[[Alpha>Gamma]|Proof]).

Figure 11: Ii: An implementation of algorithm Ai.

from the one given in Figure 6 by modifying the definitions of complW/6 and complD/6. As stipulated
in Condition (2bii) in Definition 6.2, we extended complW/6 in order to check the compatibility of all
accomplished subproofs. This modification is given by the last two lines of complW/6 in Figure 11.
Analogously, we have added a single line of code to complD/6 in order to check the compatibility of
the considered δ-clause with the accomplished subproof. The results obtained in our simple students
example are the same as for the previous implementations with the exception that compatible/2 is
called twice in the case of the query e. This reflects the fact that two δ-clauses are used for deriving
e. See the tables in the third line of Figure 7.

It is interesting to observe that the implementation avoids the selection of the sets of δ-clauses
CD′

L
and CD′′ in conditions (2bii) and (3bii), respectively. As suggested in Section 6, we leave the

selection of these sets to the theorem prover along with the admissibility check by taking the δ-clauses
obtained from the subproof in Proof in complW/6 and complD/6. In this way, compatibility acts as a
local constraint on subproofs. In fact, we often observed that default proofs in non-artificial examples
were quite rarely corrected by the compatibility check. Hence, the resulting default proofs contained
only few occasions for distracting the theorem prover by choosing incompatible δ-clauses.

For comparison, we have also implemented a “generate-and-test” version, called Iis, in which arbitrary
subsets are generated and afterwards treated by admissibility and compatibility. This has been done
by replacing the definition of complD/6 in Figure 11 by the one given in Figure 12. The predicate
subseq0/2 is provided by the underlying prolog-system and is used to generate subsets (or better
subsequences) of the δ-clauses at hand. Even in our simple students example this yields a drastic
increase of calls to the respective predicates. This can be verified by looking at the tables in the last
line of Figure 7 and comparing them with the ones given for Ii.

In the remainder of this section, we want to analyze the influence of the compatibility check. For
this purpose, we have slightly extended example az, given Figure 9. We have added the ω-clauses

[-c,-b], [z,-c], [z,-g], [z,-k], [z,-o], [z,-s], [z,-w]

to az. We call the resulting example azno. The purpose of the six ω-clauses containing the literal z is
to provide several ways of proving z. However, all of them are denied since c and b are inconsistent by

31

complD(_Path, [Alpha>Gamma],_CW, CD, M, [[Alpha>Gamma]|Proof]) :-
neg(Alpha,NegAlpha),
subseq0(CD,CD1),
compl([NegAlpha],M,CD1,M,Proof),
compatible(M,[[Alpha>Gamma]|CD1]).

Figure 12: The change for implementation Iis.

[-c,-b]. Hence, there is no proof for z. The left column of Figure 13 summarizes the results obtained
in the various implementations. It is interesting to observe that our implementation Ii (integrating
compatibility) invokes fewer times the predicate neg/2 than I’ (which separates compatibility)—even
though Ii performs almost twice as much compatibility checks, namely 3914, as I’, which performs 1957

compatibility checks. This is insofar remarkable since neg/2 is one of the innermost predicates of the
“theorem proving loop”. In this way, the incremental compatibility check pays off. The least number
of calls to neg/2 is done by program I that deals with “compatible matrices”.

Observe that in this example the conflict given by the clause [-c,-b] is located at the “bottom” of
the sequence of δ-clauses given in example az. For a complement, let us thus consider the example
obtained by adding the clauses

[-i,-j], [z,-k], [z,-o], [z,-s], [z,-w]

to az. In this way, we moved the conflict—now given by the clause [-i,-j]—upwards in the sequence
of δ-clauses (cf. Figure 9). We call the resulting example aznon. The right column of Figure 13
summarizes the obtained results. We observe that the number of compatibility checks in Ii is now nine
times larger than in I’. This has to be contrasted with the number of calls to neg/2 that is in Ii only
1.2 times larger than in I’. As above, the least number of calls to neg/2 is obtained in program I.

We observe that program I performs best on the given examples due to the lack of consistency
checking. However, we have already discussed that this approach has its difficulties in the presence
of many conflicting default rules. In such a case, our experiments suggest that it is worthwhile
to integrate compatibility checks in order to prune redundant incompatible subproofs, rather than
to check compatibility separated from the actual proof procedure. The first of the two examples
extending az gives an impression of situations where incremental compatibility checking pays off.

9 Extensions

This sections provides some enhancements and extensions of our approach. A major extension, namely
the incorporation of priorities, is described in [39]. Another major extension is the treatment of
skeptical reasoning. This is discussed in a forthcoming paper [40].

9.1 Other variants of default logic

As discussed in Section 2, constrained default logic coincides with other default logics, like Reiter’s [30]
and Lukaszewicz’ [22], on the fragment of normal default theories. As a consequence, our approach
can also be used for query-answering from normal default theories in these variants.

A closely related approach is cumulative default logic [5] where assertions, ie. formulas labeled with
the justifications and consequents of applied default rules (eg. ⟨α, {α1, . . . , αn}⟩), are used. An asser-
tional default theory is a pair (D,W), where D is a set of default rules and W is a set of assertions.
Informally, an assertional extension of (D,W) is the smallest set of assertions E being deductively
closed under an extended29 theory operator T̂h and containing W such that for any α :β

γ ∈ D, if
⟨α,Supp(α)⟩ ∈ E and Form(E) ∪ Supp(E) ∪ {β, γ} ̸⊢ ⊥ then ⟨γ,Supp(α) ∪ {β, γ}⟩ ∈ E .

The following theorem shows that constrained and cumulative default logic are in fact equivalent for
assertional default theories (D,W) having non-supported facts, ie. Supp(W) = ∅.

29Let Form(ξ) be the asserted formula and Supp(ξ) the support of an assertion ξ: if ξ1, . . . , ξn ∈ T̂h(S) and

Form(ξ1), . . . ,Form(ξn) ⊢ α then ⟨α,∪n
i=1Supp(ξi)⟩ ∈ T̂h(S).

32

I aznoC/z

compl/5 compl/3 2
compl/5 complD/6 13098
compl/5 complW/6 3912
complD/6 compl/5 13098
complL/2 compl/5 348304
complL/2 complW/6 3912
complW/6 compl/5 3912
neg/2 complD/6 13098
neg/2 complL/2 352216

I’ azno/z

compatible/2 compl/3 1957
compl/5 compl/3 1
compl/5 complD/6 5573
compl/5 complW/6 1956
complD/6 compl/5 5573
complL/2 compl/5 152045
complL/2 complW/6 1956
complW/6 compl/5 3913
complW/6 complW/6 9786
neg/2 complD/6 5573
neg/2 complL/2 1053720

Ii azno/z

compatible/2 complD/6 3914
compl/5 compl/3 1
compl/5 complD/6 5573
compl/5 complW/6 1956
complD/6 compl/5 5573
complL/2 compl/5 152045
complL/2 complW/6 1956
complW/6 compl/5 3913
neg/2 complD/6 5573
neg/2 complL/2 983769

I aznonC/z

compl/5 compl/3 2
compl/5 complD/6 385
compl/5 complW/6 128
complD/6 compl/5 385
complL/2 compl/5 11848
complL/2 complW/6 128
complW/6 compl/5 128
neg/2 complD/6 385
neg/2 complL/2 11976

I’ aznon/z

compatible/2 compl/3 65
compl/5 compl/3 1
compl/5 complD/6 745
compl/5 complW/6 64
complD/6 compl/5 745
complL/2 compl/5 14339
complL/2 complW/6 64
complW/6 compl/5 129
complW/6 complW/6 196
neg/2 complD/6 745
neg/2 complL/2 23222

Ii aznon/z

compatible/2 complD/6 585
compl/5 compl/3 1
compl/5 complD/6 745
compl/5 complW/6 64
complD/6 compl/5 745
complL/2 compl/5 14339
complL/2 complW/6 64
complW/6 compl/5 129
neg/2 complD/6 745
neg/2 complL/2 28573

Figure 13: Further results in the az example.

33

Theorem 9.1 [37] Let (D,W) be a default theory and (D,W) the assertional default theory, where
W = {⟨α, ∅⟩ | α ∈ W}. Then, if (E,C) is a constrained extension of (D,W) then there is an assertional
extension E of (D,W) such that E = Form(E) and C = Th(Form(E) ∪ Supp(E)); and, conversely if E
is an assertional extension of (D,W) then (Form(E), Th(Form(E) ∪ Supp(E))) is a constrained exten-
sion of (D,W).

This result has been extended in [38] to arbitrary assertional default theories and default theories
supplied with an initial set of constraints in constrained default logic.

As a consequence, we can use our approach for query-answering from assertional default theories
with non-supported facts without any modifications. For arbitrary assertional default theories, we
merely have to add the formulas in Supp(W) for verifying compatibility. The same applies to our
algorithms, where clauses representing Supp(W) have to be added while checking consistency. The
formal underpinnings for this approach are given in [38].

In order to capture query-answering in Lukaszewicz’ variant of default logic, we have to adjust
the concept of compatibility. All other notions remain the same since this variant enjoys semi-
monotonicity.

9.2 Integration of lemma handling

The integration of lemma handling it is of great practical relevance in automated theorem proving. This
is so because the use of lemmas is often needed for reducing computational efforts. Since computation
in default logics not only involves deduction but also consistency checks, the need to incorporate
lemmas is even greater in default theorem proving than in standard theorem proving.

In [37], we introduced an approach to lemma handling in Reiter’s and constrained default logic.30

Inspired by default logic’s natural distinction between facts and defaults, default lemmas are regarded
as abbreviations for the corresponding default proofs. This results in the concept of a lemma default
rule:

Definition 9.1 [37] Let (D,W) be a default theory and let (E,C) be a constrained extension of (D,W).
Let φ ∈ E and Dφ be a default proof of φ in (E,C) from (D,W). We define a lemma default rule δφ
for φ as

δφ =
:
∧

δ∈Dφ
Justif (δ) ∧

∧
δ∈Dφ

Conseq(δ)

φ
.

A default proof Dφ of φ in (E,C) from (D,W) is a subset of the set of generating default rules31 of
(E,C) such that W ∪ Conseq(Dφ) ⊢ φ.

At the methodical level, we can generate lemma default rules or “lemma δ-clauses” for any proven
query φ. In such a case, we have a spanning mating Π for the matrix M of W ∪WD ∪{¬φ} such that
(M,Π) is admissible and compatible. The default proof is then given by

Dφ = {δ | {¬αδ, γδ} ∈ κ(CD,Π)}.
At the algorithmic level, we can generate lemma default rules for each obtained subproof as follows.
Consider Condition (3b) in Definition 6.2. A “lemma δ-clause” for γδ can be generated from the
default proof

Dφ = {δ | {¬αδ, γδ} ∈ CD′′}.
For general formulas φ, it is sufficient to find a subset Dφ of D such that compl({¬φ}, CW , CDφ) is
true. Similar considerations apply to the implementations in Section 8.

The usage of such lemma default rules is obvious at the methodical level, since they constitute
ordinary albeit prerequisite-free default rules. The distinction between lemma default rules and stan-
dard default rules is more interesting at the algorithmic and implementation level. For using “lemma
δ-clauses”, we can simplify Condition (3) in Definition 6.2 as follows:

30In what follows, we focus on the approach given for constrained default logic.
31See Definition A.1 for a formal definition.

34

4. If CD′ ̸= ∅ and c ∈ CD′ is a lemma δ-clause then compl(p, CW ′ , CD′) is true iff γδ is complementary
to some literal of p for c = {¬αδ, γδ}.

This drastic simplification is possible since neither admissibility nor compatibility have to be verified
for “lemma δ-clauses”. The former is obsolete since lemma default rules are prerequisite-free de-
fault rules, while the latter is redundant because the compatibility with CW has been checked while
generating the lemma. The compatibility with the remaining δ-clauses in the proof is checked at a
higher level of the recursion. Similar considerations apply to the implementations in Section 8.

9.3 Other extensions

This section sketches some extensions and fruitful topics for further research.

Computing extensions Although we have presented the approach so far in a query-oriented set-
ting, it can also be used for computing entire extensions by proceeding “bottom-up”. This can be
accomplished by starting from the clausal representation of the initial set of facts and by successively
extending this matrix by δ-clauses preserving admissibility and compatibility. In this way, we obtain
a matrix representing the facts along with the set of generating default rules of an extension. Then,
a formula belongs to this extension if the matrix is rendered complementary by adding the clausal
representation of the negated formula.

Model checking A promising avenue for future research seems to replace consistency checking by
model checking. The idea is to start with a model of the underlying facts. A default applies if it is
compatible with the current model or if a new model can be constructed from the facts and all defaults
contributing to the current proof. In this way, a model may be reused for several consistency checks
in the course of the proof search. This is motivated by two observations. First, some experiments on
“meaningful” (ie. non-artificial) examples have shown that a “model” is changed quite rarely in the
course of the proof search. That is, on some examples, we observed that the resulting default proofs
contained only few occasions for distracting the theorem prover by choosing incompatible δ-clauses.
This is an argument in favor of integrating a compatibility check that allows for using information
gathered on compatibility checks in the subproofs. Second, the semantics of constrained default logic
[34, 11] stipulates the existence of a single so-called “focused model” which jointly satisfies the facts
along with all generating default rules of an extension.

Other execution models So far, we have only pursued a single execution model. However, our
underlying methods leave room for a variety of procedures for query-answering. One of them has
already been sketched in Section 6, where we discussed an approach to structure-sharing while verifying
admissibility and compatibility. Also, there are parallel execution models of our algorithms. For
instance, observe that all algorithms are non-deterministic and inherently parallel, although parallel
processes have sometimes to be combined after their execution due to compatibility checks as in
Condition (2bii) in Definition 6.2. Another possibility, is to design a “daemon-driven” compatibility
check by using a “daemon process” to keep a watch on the compatibility of the respective subproofs.
All these issues seem to be fruitful avenues for further research.

10 Conclusion

We have presented a new approach to query-answering in default logics by treating default rules as
classical implications along with some qualifying conditions restricting the use of such rules in the
course of the proof search. This has resulted in a novel methodology taking advantage of the con-
ception of structure-oriented theorem proving provided by the connection method. To this end, we
have decomposed default theorem proving (in the connection method) into the verification of comple-
mentarity, admissibility, and compatibility—corresponding to classical deduction and the concepts of
groundedness and consistency in default logic.

35

We introduced in Section 4 our basic method that provides with admissibility and compatibility
two independent concepts restricting default proofs to classical proofs confirming the two previous
properties. To a turn, we refined our approach in Section 6 by meshing together the concepts of
admissibility and (incremental) compatibility. While the former approach relies on a rather global
notion of consistency, the latter employs an incremental and thus rather local notion of consistency.

Apart from the encoding of default rules as implications, a distinguishing feature of our approach
is the formation of sequences of default rules or δ-clauses, respectively. In our basic method, this
formation is primarily directed by the notion of groundedness, while consistency plays more or less
the role of a global constraint. In contrast to this, groundedness and consistency jointly direct the
formation of sequences of δ-clauses in our refined method.

We have discussed in detail the different versions of our approach and their differences to other
approaches found in the literature in Section 7. To summarize, the distinguishing methodical features
of our approach are

• the treatment of default rules as classical implications,

• the formation of sequences of default rules or δ-clauses, respectively, and

• the integration of the concepts of groundedness and consistency into a classical deduction method.

These qualities allow for a homogeneous characterization and treatment of default proofs at the level
of the logical calculus. This makes our approach especially qualified for implementations by means of
existing automated theorem proving techniques. We have substantiated this claim by implementing
the resulting algorithms in diverse settings.

At first, we derived in Section 5 from our basic method an algorithm that supports the joint verifica-
tion of complementarity and admissibility in a very natural way. Notably, the algorithm is obtained by
slightly extending an existing algorithm for the standard connection method due to [14]. However, we
have proposed an “off-line” integration of compatibility by compiling default theories into compatible
default theories. This separation is supported by the independence of admissibility and compatibility
in our basic method. The advantages of this approach are the following. First, the algorithm never
runs into redundant computations with incompatible defaults. Second, it is implementable with very
few modifications to an existing automated theorem prover. This is underpinned by a case-study due
to Aaron Rothschild [33]. In fact, Rothschild was able to implement our algorithm by slightly extend-
ing an existing (simple yet full-fledged) automated theorem prover for the connection method. The
disadvantage however is that one might obtain an exponential number of compatible default theories
in the worst-case. So in general, such an approach is favorable whenever the computational cost of
the compilation can be amortized over the total set of subsequent queries.

Second, we have presented an alternative algorithm based on the refinement of our basic method.
This algorithm fully integrates the concepts of complementarity, admissibility, and compatibility and
accordingly supports their joint verification. Hence, it works with arbitrary default theories and thus
avoids the pre-compilation of default theories into compatible fragments. At the same time, it also
avoids redundant computations with incompatible defaults. On the other hand, this approach requires
more changes to existing automated theorem provers. Also, successive consistency checking may slow
down the performance of the prover. A promising way of avoiding this seems to use model checking
techniques, as sketched in Section 9.

However, our experiments in Section 8 have shown that the latter approach is still favorable over a
belated consistency check that verifies the compatibility of completed, admissible proofs. Moreover,
our experiments have demonstrated that enforcing groundedness while query-answering poses no addi-
tional burden on the theorem prover. Hence, we argue that the concurrent verification of admissibility
and complementarity is indispensable for query-answering in default logic. As discussed in Section 7,
the treatment of compatibility is more subtle. Here, a lot depends on the underlying theory. That
is, if a default theory comprises a feasible number of compatible default theories, then our former

36

approach along with its pre-compilation of compatibility is favorable. Otherwise, that is, if a default
theory comprises many conflicting defaults, an integration of compatibility as accomplished in our
latter approach is preferable.

All of the presented algorithms along with their implementations are query-oriented. This reflects
the idea that the theorem prover is in charge of finding a proof while being directed by the con-
cepts of admissibility and compatibility. On the other hand, our method leaves plenty of room for
other algorithmic approaches, which have not yet been pursued. For instance, Section 6 provides
another valuable refinement that allows for structure and information sharing while jointly verifying
admissibility and compatibility.

Even though our approach has been presented from the perspective of constrained default logic,
it has a general nature that principally allows for query-answering in any (semi-monotonic) default
logic. To this end, one merely has to adjust the concept of compatibility in order to account for the
respective notion of consistency. In particular, we have shown in Section 9 that our approach carries
over to cumulative default logic [5] without any substantial modifications. In the same section, we
have described how lemma handling can be added to our approach.

For a complement, we have applied our approach in [39] to a prioritized version of default logic,
recently introduced by Brewka in [7]. This has been accomplished by stepwisely refining the concepts
developed for prioritized default logic and by mapping them in turn onto the techniques developed in
the preceding sections. This extension of our method has served two purposes. First, it has shown
that our method is flexible enough to be adapted to other conceptions of default logic. Second, it has
shown how priorities can be integrated.

In all, our approach bridges the gap between default logics and classical theorem proving by providing
a simple yet powerful method for default theorem proving that is easily adaptable by existing imple-
mentations of automated theorem provers. In particular, the approach should be easily extensible to
a (decidable) first-order language since it relies on standard theorem proving techniques.

A Proofs of Theorems

In the sequel, we will refer to some definitions and results on which we draw on in the following
chapters. We give these results for the reader’s convenience.

Definition A.1 [36] Let (D,W) be a default theory and S and T sets of formulas. The set of gener-
ating default rules for (S ,T) wrt D is defined as

GD
(S,T)
D =

{
α :β
γ ∈ D

∣∣∣ α ∈ S , T ∪ {β} ∪ {γ} ̸⊢ ⊥
}
.

Theorem A.1 [36] Let (E,C) be a constrained extension of a default theory (D,W). We have

E = Th
(
W ∪ Conseq

(
GD

(E ,C)
D

))
,

C = Th
(
W ∪ Conseq

(
GD

(E ,C)
D

)
∪ Justif

(
GD

(E ,C)
D

))
.

Theorem A.2 [36] Let (E,C) be a constrained extension of (D,W). Then, there exists an enumera-

tion ⟨δi⟩i∈I of GD
(E ,C)
D such that for i ∈ I

W ∪ Conseq({δ0, . . . , δi−1}) ⊢ Prereq(δi).

Theorem A.3 [36] Let (D,W) be a default theory and let E and C be sets of formulas. Define

E0 = W and C0 = W

and for i ≥ 0

Ei+1 = Th(Ei) ∪
{

γ
∣∣∣ α :β

γ ∈ D,α ∈ Ei, C ∪ {β} ∪ {γ} ̸⊢ ⊥
}

Ci+1 = Th(Ci) ∪
{
β ∧ γ

∣∣∣ α :β
γ ∈ D,α ∈ Ei, C ∪ {β} ∪ {γ} ̸⊢ ⊥

}
(E,C) is a constrained extension of (D,W) iff (E,C) = (

∪∞
i=0Ei,

∪∞
i=0Ci).

Proof 3.1 Recall that we have restricted ourselves on page 3 to consistent sets of facts. That is, for
a default theory (D,W) we stipluate that W is consistent.

37

only-if part Let (E,C) be a constrained extension of (D,W).

We define D′ = GD
(E ,C)
D according to Definition A.1.

By Theorem A.1, we have

E = Th(W ∪ Conseq(D′))

C = Th(W ∪ Justif (D′) ∪ Conseq(D′))

By Theorem A.2, we have that D′ is grounded in W .
According to [36, Corollary 4.3.3], we have that W is consistent iff C is consistent. By definition, W

is consistent; hence C is consistent. By Theorem A.1, we obtain that W ∪ Justif (D′) ∪Conseq(D′) is
consistent.

Now, assume D′, and so GD
(E ,C)
D , is not maximal subset of D satisfying the above requirements.

Then, there is a set of default rules D′′ such that GD
(E ,C)
D ⊂ D′′ ⊆ D, D′′ is grounded in W and

W ∪ Justif (D′′)∪Conseq(D′′) is consistent. Consequently, there is a default rule δ′′ ∈ (D′′ \GD(E ,C)
D)

such that W ∪ Conseq(D′) ⊢ Prereq(δ′′). This is so because, by assumption, D′ and D′′ are grounded
in W . The last derivability relation implies that

Prereq(δ′′) ∈ E, (A.19)

since E = Th(W ∪ Conseq(D′)) by Theorem A.1.
By monotonocity, we have that W ∪ Justif (D′ ∪ {δ′′}) ∪Conseq(D′ ∪ {δ′′}) is consistent, since W ∪

Justif (D′′) ∪ Conseq(D′′) is consistent. Hence, we have that

C ∪ Justif (δ′′) ∪ Conseq(δ′′) ̸⊢ ⊥ , (A.20)

since C = Th(W ∪ Justif (D′) ∪ Conseq(D′)) by Theorem A.1.

By Definition A.1, (A.19) and (A.20) imply δ′′ ∈ GD
(E ,C)
D , a contradiction.

if part Let

E = Th(W ∪ Conseq(D′))

C = Th(W ∪ Justif (D′) ∪ Conseq(D′))

for a maximal D′ ⊆ D such that D′ is grounded in W and W ∪ Justif (D′)∪Conseq(D′) is consistent.
According to Theorem A.3, (E,C) is a constrained extension iff (E,C) = (

∪∞
i=0Ei,

∪∞
i=0Ci) such that

E0 = W and C0 = W, and for i ≥ 0

Ei+1 = Th(Ei) ∪
{

γ
∣∣∣ α :β

γ ∈ D,α ∈ Ei, C ∪ {β} ∪ {γ} ̸⊢ ⊥
}

Ci+1 = Th(Ci) ∪
{
β ∧ γ

∣∣∣ α :β
γ ∈ D,α ∈ Ei, C ∪ {β} ∪ {γ} ̸⊢ ⊥

}
We will show that (E,C) = (

∪∞
i=0Ei,

∪∞
i=0Ci). Therefore, we consider the following two cases.

1.
∪∞

i=0Ei ⊆ E,
∪∞

i=0Ci ⊆ C.

We show by induction that Ei ⊆ E and Ci ⊆ C for i ≥ 0.

Base By definition, W ⊆ E. Since E0 = W, we have E0 ⊆ E.

Analogously, we obtain C0 ⊆ C.

Step Let Ei ⊆ E and Ci ⊆ C. Consider η ∈ Ei+1 ∪ Ci+1.

(a) If η ∈ Th(Ei) then, by the induction hypothesis and the fact that E is deductively closed, we
obtain η ∈ E.

(b) Similarly, if η ∈ Th(Ci) we obtain η ∈ C.

(c) Otherwise, η ∈ {β, γ} such that there is a default rule α :β
γ ∈ D where α ∈ Ei and

C ∪ {β} ∪ {γ} ̸⊢ ⊥.

By the induction hypothesis α ∈ E. Hence, there is an i ∈ I such that

38

W ∪ Conseq({δ0, . . . , δi−1}) ⊢ α,

where {δ0, . . . , δi−1} ⊆ D′. Thus, D′ ∪ {α :β
γ } is grounded in W . Also, by definition of C, we

have that W ∪ Justif (D′) ∪ {β} ∪ Conseq(D′) ∪ {γ} is consistent. By maximality of D′, this
implies that α :β

γ ∈ D′. Consequently, γ ∈ E and β ∧ γ ∈ C and both cases for η are covered.

From the three cases, we obtain Ei+1 ⊆ E and Ci+1 ⊆ C.

2. E ⊆
∪∞

i=0Ei, C ⊆
∪∞

i=0Ci.

Since D′ is grounded in W , there is an enumeration ⟨δi⟩i∈I of D′ such that

W ∪ Conseq({δ0, . . . , δi−1}) ⊢ Prereq(δi)

for i ∈ I. With this, we define a sequence ⟨(E′
i, C

′
i)⟩i∈I as follows:

(E′
0, C

′
0) = (W,W)

(E′
i+1, C

′
i+1) = (Th(E′

i ∪ {γi}), Th(C ′
i ∪ {βi ∧ γi})), where δi = αi :βi

γi
.

Clearly, E =
∪∞

i=0E
′
i and C =

∪∞
i=0C

′
i.

Hence, we show inductively that E′
i ⊆

∪∞
i=0Ei and C ′

i ⊆
∪∞

i=0Ci for i ≥ 0.

Base Since E′
0 = C ′

0 = W and E0 = C0 = W, the result is obvious.

Step According to the induction hypothesis, E′
i ⊆

∪∞
i=0Ei and C ′

i ⊆
∪∞

i=0Ci.

Because W ∪ Conseq({δ0, . . . , δi−1}) ⊢ Prereq(δi) we have αi ∈ E′
i and (E′

i+1, C
′
i+1) =

(Th(E′
i ∪ {γi}), Th(C ′

i ∪ {βi ∧ γi})), where δi = αi :βi
γi

.

By the induction hypothesis, we obtain αi ∈
∪∞

i=0Ei. By compactness and monotonicity, there
exists a k such that αi ∈ Ek. By definition of C and the fact that W ∪ Justif (D′)∪Conseq(D′) is
consistent, we obtain that C ∪ {βi} ∪ {γi} ̸⊢ ⊥. Then, Ek |= αi and C ∪ {βi} ∪ {γi} ̸⊢ ⊥, implies
γi ∈ Ek+1 and γi ∧ βi ∈ Ck+1. Hence, γi ∈

∪∞
i=0Ei and γi ∧ βi ∈

∪∞
i=0Ci.

By the definition of E′
i+1 and C ′

i+1 and the fact that
∪∞

i=0Ei and
∪∞

i=0Ci are deductively closed,
we obtain E′

i+1 ⊆
∪∞

i=0Ei and C ′
i+1 ⊆

∪∞
i=0Ci.

Proof 4.1 Let CW be a set of ω-clauses and CD be a set of δ-clauses. Let Π be a mating for CW ∪CD

such that (CW ∪ CD,Π) is admissible wrt I.

only-if part Let (CW ∪ CD ∪ {{¬αδ, γδ}},Π) be admissible for some δ-clause {¬αδ, γδ}. Therefore,
Π is a spanning mating for

CW ∪ (
∪

i∈I{{¬αδi , γδi}}) ∪ {{¬αδ}}.

Then, Π is also a spanning mating for the submatrix

CW ∪ (
∪

i∈I{{γδi}}) ∪ {{¬αδ}}.

This is so because all paths through the latter matrix are also paths through the former matrix.

if part Let Π be a spanning mating for CW ∪
∪

i∈I{{γδi}} ∪ {{¬αδ}}, for some δ-clause {¬αδ, γδ}.
By assumption, (CW ∪ CD,Π) is admissible wrt I. That is, Π is a spanning mating for

CW ∪
(∪i−1

j=0{{¬αδj , γδj}}
)
∪ {{¬αδi}} for i ∈ I.

Since Π is a spanning mating for CW ∪
∪

i∈I{{γδi}} ∪ {{¬αδ}}, we obtain furthermore that Π is a
spanning mating for

CW ∪ (
∪

i∈I{{¬αδi , γδi}}) ∪ {{¬αδ}}.

This implies that (CW ∪ CD ∪ {{¬αδ, γδ}},Π) is admissible.
Proof 4.2 Let CW be a set of ω-clauses and CD be a set of δ-clauses. Let Π be a mating for CW ∪CD

such that (CW ∪ CD,Π) is admissible.

39

only-if part Let Π be a spanning mating for

CW ∪ CD ∪ {{βδ} | {¬αδ, γδ} ∈ CD, βδ = Justif (δ)} .

Then, Π is also a spanning mating for the submatrix

CW ∪ {{γδ} | {¬αδ, γδ} ∈ CD} ∪ {{βδ} | {¬αδ, γδ} ∈ CD, βδ = Justif (δ)} .

This is so because all paths through the latter matrix are also paths through the former matrix.

if part Let Π be a spanning mating for

CW ∪ {{γδ} | {¬αδ, γδ} ∈ CD} ∪ {{βδ} | {¬αδ, γδ} ∈ CD, βδ = Justif (δ)} . (A.21)

By assumption, (CW ∪CD,Π) is admissible wrt some index set I. That is, Π is a spanning mating for

CW ∪
(∪i−1

j=0{{¬αδj , γδj}}
)
∪ {{¬αδi}} for i ∈ I.

Consequently, Π is a spanning mating for

CW ∪ CD ∪ {{¬αδ}} for all {¬αδ, γδ} ∈ CD. (A.22)

Consider the matrix

M = CW ∪ {{¬αδ, γδ} ∈ CD} ∪ {{βδ} | {¬αδ, γδ} ∈ CD, βδ = Justif (δ)} .

By (A.21), all paths through M containing a literal γδ are complementary. By (A.22), all paths through
M containing a literal ¬αδ are complementary. Hence, all paths through M are complementary.
Consequently, Π is a spanning mating for

M = CW ∪ CD ∪ {{βδ} | {¬αδ, γδ} ∈ CD, βδ = Justif (δ)} .

Proof 4.3 Let (D,W) be a default theory in atomic format and let WD =
{
αδ → γδ

∣∣∣ αδ :βδ
γδ

∈ D
}

and φ an atomic formula.

only-if part Let (E,C) be a constrained extension of (D,W) and let φ ∈ E. Then, there is a set of
default rules Dφ ⊆ D such that

1. W ∪ Conseq(Dφ) ⊢ φ,

2. Dφ is grounded in W ,

3. W ∪ Justif (Dφ) ∪ Conseq(Dφ) is consistent.

By assumption, W ∪ Justif (Dφ) ∪ Conseq(Dφ) is consistent. By completeness of the connection
method [3], this implies that the matrix of W ∪ Justif (Dφ) ∪ Conseq(Dφ) has no spanning mating.
That is, there is no spanning mating for CW ∪CJ where CW is the matrix of W and CJ = {{Justif (δ) |
δ ∈ Dφ} ∪ {Conseq(δ) | δ ∈ Dφ}}. Thus, (M,Π) is compatible for the matrix M of W ∪WD ∪ {¬φ}
and any mating Π, if the core of M is given by the δ-clauses in {{¬αδ, γδ} | δ ∈ Dφ}.

We prove the rest of the theorem by induction on the cardinality of Dφ.

Base Dφ = ∅. In this case, we have

W ⊢ φ.

Then, by completeness of the connection method [3], there is a spanning mating Π for the matrix M
of W ∪ {¬φ}. Clearly, (M,Π) is admissible.

40

Step Dφ ̸= ∅. By compactness and the fact that W ∪Conseq(Dφ) ⊢ φ, there is a set {δ0, . . . , δi} ⊆ Dφ

such that

W ∪ Conseq({δ0, . . . , δi}) ⊢ φ.

Consider δj . Clearly, Prereq(δj) ∈ E. Then, by the induction hypothesis, there is a spanning mating
Πj for the matrix Mj of W ∪WDφ\{δj} ∪ {¬Prereq(δj)} such that (Mj ,Πj) is admissible.

Hence each path in Mj contains a connection from Πj . Observe that each such path in Mj contains
the literal ¬Prereq(δj).

Consider the matrix M of

W ∪
i∪

j=0

(
WDφ\{δj} ∪ {¬Prereq(δj),Conseq(δj)}

)
∪ {¬φ}

Observe that each path in M containing a literal ¬Prereq(δj) contains a connection from Πj for some
j ∈ {0, . . . , i}. Hence all paths in M not containing a literal ¬Prereq(δj) contain the set of literals

{Conseq(δ0), . . . ,Conseq(δi)} ∪ {¬φ}.

By completeness of the connection method [3] and the fact that W ∪ Conseq(Dφ) ⊢ φ, there is a
spanning mating Π′ for the matrix M ′ of W ∪ Conseq(Dφ) ∪ {¬φ}.

Consequently, we have that Π = Π′ ∪
∪i

j=0 Πj is a spanning mating for the matrix M .
Now, it remains to be shown that (M,Π) is admissible.
By the induction hypothesis, we have that (Mj ,Πj) is admissible for all j ∈ {0, . . . , i}. Clearly,∪i
j=0Mj ⊂ M and

∪i
j=0 Πj ⊂ Π implies the admissibilty of (M,Π).

if part Let Π be a spanning mating for the matrix M of W∪WD∪{¬φ} such that (M,Π) is admissible
and compatible. Let CD be the set of δ-clauses in M and let CW be the set of ω-clauses in M .

We define

Dφ = {δ | {¬αδ, γδ} ∈ κ(CD,Π)}.

Clearly, (M,Π) is complementary, admissible and compatible if the matrix Mφ of W ∪ WDφ ∪ {¬φ}
along with Π fulfills these conditions.

In what follows, we prove that

1. W ∪ Conseq(Dφ) ⊢ φ,

2. Dφ is grounded in W ,

3. W ∪ Justif (Dφ) ∪ Conseq(Dφ) is consistent.

By semi-monotonicity, the latter conditions imply that there is a constrained extension (E,C) of
(D,W) such that φ ∈ E.

First, we prove Condition 3. Since (Mφ,Π) is compatible, there is no spanning mating for
CW ∪{{βδ}, {γδ} | {¬αδ, γδ} ∈ κ(CD,Π), βδ = Justif (δ)} . Since this is the matrix of W∪Justif (Dφ)∪
Conseq(Dφ), we obtain, by completeness of the connection method [3], that W ∪ Justif (Dφ) ∪
Conseq(Dφ) is consistent.

Since (Mφ,Π) is admissible, there is an enumeration ⟨{¬αδi , γδi}⟩i∈I of κ(CD,Π) such that for i ∈ I,
Π is a spanning mating for

CW ∪
(∪i−1

j=0{{¬αδj , γδj}}
)
∪ {{¬αδi}}.

By compactness, I is finite. That is, I = {0, . . . , n|I|}, where |I| stands for the cardinality of I.
We define I ′ = {0, . . . , n|I|, n|I|+1} and αδ|I|+1

:= φ. By assumption, Π is a spanning mating for Mφ,
viz.

CW ∪
(∪n|I|

j=0{{¬αδj , γδj}}
)
∪ {{¬αδ|I|+1

}}.

41

We prove that W ∪ {γ0, . . . , γi−1} ⊢ αi for i ∈ I ′. Clearly, this implies Condition 1 and 2.
By assumption, Π is a spanning mating for the matrix Mi of

CW ∪
(∪i−1

j=0{{¬αδj , γδj}}
)
∪ {{¬αδi}}

for i ∈ I ′. Consider the matrix M ′
i ,

CW ∪
(∪i−1

j=0{{γδj}}
)
∪ {{¬αδi}}.

Assume that Π is not a spanning mating for M ′
i . Then, there is a path pW through CW such that the

path

pW ∪
i−1∪
j=0

{γδj} ∪ {¬αδi}

is not complementary. However, this path is also a path through Mi, contradicting our initial assump-
tion. Therefore, Π is also a spanning mating for M ′

i . By correctness of the connection method [3],
this implies that W ∪ {γ0, . . . , γi−1} ⊢ αi.
Proof 5.2 Let (D,W) be a default theory in atomic format and let WD = {αδ → γδ | δ ∈ D} and φ
an atomic formula.

Without loss of generality, we assume that W ∪ Justif (D) ∪ Conseq(D) is consistent. Then,
compl({¬φ},M) is true32 for the matrix M of W ∪ WD iff φ ∈ E for the unique constrained ex-
tension (E,C) of (D,W).

According to Theorem 4.3, this is equivalent to the following proposition: compl({¬φ},M) is true
iff there is a spanning mating Π for M ∪ {¬φ} such that (M ∪ {¬φ},Π) is admissible.

Observe that for any clause {L} containing a single literal L, we have that compl(p,M ∪ {{L}}) is
true iff compl(p ∪ {L},M) is true.

In fact, we prove below a slightly stronger statement: For a set of literals p and a matrix M , let Mp

be the matrix
∪

L∈p{{L}} ∪ M. Then, compl(p,M) is true iff there is a spanning mating Π for Mp

such that (Mp,Π) is admissible.
Given a set of literals p and a matrix M = CW ∪ CD consisting of ω- and δ-clauses, we define the

rank of the matrix Mp =
∪

L∈p{{L}} ∪ CW ∪ CD as

ρ(Mp) = (|CD|, |CW |, |p|),

where |S| stands for the number of elements in the set S.
We prove the latter statement by induction on the lexicographic order < on the rank of Mp.

only-if part Let p be a set of literals and let CW ′ ⊆ CW and CD′ ⊆ CD. We prove for M = CW ′∪CD′

that if compl(p,M) is true relative to CW , then there is a spanning mating Π for (M ∪ CW)p such
that ((M ∪ CW)p,Π) is admissible. Clearly, this implies that if compl(p, CW ∪ CD) is true relative to
CW , then there is a spanning mating Π for (CW ∪ CD)p such that ((CW ∪ CD)p,Π) is admissible.

Base Mp = ∅ or ρ(Mp) = (0, 0, 0). Trivial, since compl(∅, ∅) is false according to Condition 1. in
Definition 5.1.33

Step Mp ̸= ∅ or ρ(Mp) ̸= (0, 0, 0). Recall that

Mp = (CW ′ ∪ CD′)p =
∪
L∈p

{{L}} ∪ CW ′ ∪ CD′ .

Assume compl(p,M) is true relative to CW . Consider c ∈ Mp. We distinguish the following three
cases.

1. c ∈ CW ′ . Consider L ∈ c. Since c ∈ CW ′ , we have according to Condition 2. in Definition 5.1 that
one of the following two cases holds.

32Recall that compl(p,M) is always relative to the original set of ω-clauses CW .
33Reasoning by contraposition would be an alternative to prove the same result.

42

(a) L is complementary to some literal of p.

Consequently, there is spanning mating ΠL for the matrix

ML =
∪
K∈p

{{K}} ∪ {{L}} ∪ (M \ {c})

(b) compl(p ∪ {L},M \ {c}) is true.

First, observe, that

ρ
(
(M \ {c})p∪{L}

)
< ρ(Mp).

Thus, we obtain by the induction hypothesis that there is spanning mating ΠL for the matrix

ML =
∪
K∈p

{{K}} ∪ {{L}} ∪ (M \ {c})

such that (ML,ΠL) is admissible.

By (a) and (b), we therefore obtain for all L ∈ c a spanning mating ΠL for the matrix ML. Clearly,
this implies that∪

L∈c
ΠL

is a spanning mating for the matrix

Mp =
∪
K∈p

{{K}} ∪ {{L | L ∈ c}} ∪ (M \ {c}).

Moreover, (Mp,
∪

L∈c ΠL) is admissible since c is an ω-clause and (ML,ΠL) is admissible for some
L ∈ c. This is so because admissibility is verified wrt to the original set of ω-clauses CW and all
δ-clauses in CD′ .

The fact that
∪

L∈c ΠL is a spanning mating for the matrix Mp such that (Mp,
∪

L∈c ΠL) is ad-
missible implies that the same holds for the matrix (M ∪ CW)p.

2. c ∈ CD′ . That is, c = {¬αδ, γδ}.
According to Condition 3. in Definition 5.1, we consider the following two cases.

(a) γδ is complementary to some literal of p.

Consequently, there is spanning mating Πγ for the matrix

Mγ =
∪
K∈p

{{K}} ∪ {{γδ}} ∪ (M \ {c})

Clearly, Πγ is also a spanning mating for the matrix Mγ ∪ CW .

(b) compl({¬αδ}, (M \ {c}) ∪ CW) is true.

First, observe, that

ρ
(
((M \ {c}) ∪ CW){¬αδ}

)
< ρ(Mp).

Thus, we obtain by the induction hypothesis that there is spanning mating Πα for the matrix

Mα = {{¬αδ}} ∪ (M \ {c}) ∪ CW

such that (Mα,Πα) is admissible.

Now, (a) and (b) imply that Πγ ∪ Πα is a spanning mating for the matrix

(M ∪ CW)p =
∪
K∈p

{{K}} ∪ {{¬αδ, γδ}} ∪ (M \ {c}) ∪ CW .

43

It remains to be shown that ((M ∪ CW)p,Πγ ∪ Πα) is admissible. From what we have shown, we

obtain that
(∪

K∈p{{K}} ∪ CW ∪ (CD′ \ {c}),Πγ ∪ Πα

)
is admissible. Also, we have shown that

Πγ ∪ Πα is a spanning mating for
∪

K∈p{{K}} ∪ CW ∪ (CD′ \ {c}) ∪ {{¬αδ}}. This implies that
((M ∪ CW)p,Πγ ∪ Πα) is admissible.

3. c ⊆ p. This case is subsumed by the previous two cases.

if part We prove for M = CW ′ ∪CD′ that if there is a spanning mating Π for Mp such that (Mp,Π)
is admissible, then compl(p,M) is true relative to CW .

Base Mp = ∅ or ρ(Mp) = (0, 0, 0). There is only one path through Mp, namely the empty path, viz
∅. Clearly, this path is not complementary, since it contains no connection. Therefore, there is no
spanning mating for Mp. This trivially verifies the claim.34

Step Mp ̸= ∅ or ρ(Mp) ̸= (0, 0, 0). Recall that

Mp = (CW ′ ∪ CD′)p =
∪
L∈p

{{L}} ∪ CW ′ ∪ CD′ .

Let Π be a spanning mating for Mp such that (Mp,Π) is admissible. Consider c ∈ Mp. We distinguish
the following three cases.

1. c ∈ CW ′ . Consider L ∈ c. Clearly, Π is also a spanning mating for the matrix

ML =
∪
K∈p

{{K}} ∪ {{L}} ∪ (M \ {c})

such that (ML,Π) is admissible. That is, each path through ML contains a connection from Π.
Then, one of the following two cases holds.

(a) L is complementary to some literal of p.

(b) By rewriting ML, we have that Π is a spanning mating for the matrix

(M \ {c})p∪{L}

such that ((M \ {c})p∪{L},Π) is admissible. Observe that

ρ((M \ {c})p∪{L}) < ρ(Mp).

Thus, we obtain by the induction hypothesis that compl(p ∪ {L},M \ {c}) is true.

Since both cases of Condition 2. in Definition 5.1 are covered, we have that compl(p,M) is true.

2. c ∈ CD′ . Without loss of generality, we assume that c is necessary for the complementarity of Mp.
That is, Π is no spanning mating for Mp \ {c}.

In order to show that compl(p,M) is true, we reduce this problem by applying Condition 2. in
Definition 5.1 to all clauses c ∈ CW ′ . As a consequence, compl(p,M) is true iff compl(p ∪ pW ′ , CD′)
is true for all non-complementary paths p ∪ pW ′ where pW ′ is a path through CW ′ . That is, we
have for all such paths p ∪ pW ′ and all π ∈ Π that π ∩ (p ∪ pW ′) = ∅.
Thus, in what follows, we show that compl(p ∪ pW ′ , CD′) is true relative to CW for all non-
complementary paths p ∪ pW ′ .

Consider c = {¬αδi , γδi}. We distinguish the following two cases.

(a) By assumption, Π is a spanning mating for the matrix

{{γδi}} ∪ (M \ {c})p =
∪
K∈p

{{K}} ∪ CW ′ ∪ {{γδi}} ∪ (CD′ \ {c}).

Then, Π is also a spanning mating for all matrices

34Reasoning by contraposition would be an alternative to prove the same result.

44

∪
K∈p∪pW ′

{{K}} ∪ {{γδi}} ∪ (CD′ \ {c}),

for all non-complementary paths p ∪ pW ′ (where pW ′ is a path through CW ′).

Now, all paths through such a matrix are of the form

p ∪ pW ′ ∪ {µ | µ ∈ {¬α, γ} ∈ CD′ \ {c}} ∪ {γδi}.

By assumption, some of these paths are not complementary without γδi . Since γδi cannot be
complementary to any literal in {µ | µ ∈ {¬α, γ} ∈ CD′ \ {c}}, we have that γδi must be
complementary to some negated literal in p ∪ pW ′ .

(b) By assumption, Π is a spanning mating for the matrix {{¬αδi}}∪(M \{c})p. Also, ({{¬αδi}}∪
(M \ {c})p,Π) is admissible wrt {j | j < i}. By admissibility, Π is thus a spanning mating for
the matrix

(CW ∪ {{¬αδj , γδj} | j < i}){¬αδi
}.

In addition,

((CW ∪ {{¬αδj , γδj} | j < i}){¬αδi
},Π)

is admissible wrt {j | j < i}. Accordingly, compl({¬αδi}, {{¬αδj , γδj} | j < i} ∪ CW) is true by
the induction hypothesis. This implies that compl({¬αδi},M \ {c} ∪ CW) is true, since adding
redundant δ-clauses does not change the satisfiability of the former condition.

We have shown in (a) that γδi is complementary to some literal in p ∪ pW ′ (where pW ′ is a path
through CW ′). In (b), we have shown that compl({¬αδi},M \ {c} ∪ CW) is true. Therefore,
compl(p ∪ pW ′ , CD′) is true for all non-complementary paths p∪pW ′ . As shown above, this implies
that compl(p,M) is true.

3. c ⊆ p. This case is subsumed by the first case.

Proof 6.2 Let Π be a mating for CW ∪ CD where CW and CD are sets of ω- and δ-clauses. Let
⟨{¬αδi , γδi}⟩i∈I be an enumeration of κ(CD,Π).

only-if part Assume that (CW ∪ CD,Π) is compatible. Then, there is no spanning mating for

CW ∪
∪
i∈I

{{βδi}, {γδi}}.

Hence there is an open path

p = pW ∪
∪
i∈I

{{βδi}, {γδi}}

through the latter matrix for some path pW through CW . This implies that for all i ∈ I,

pi = pW ∪
∪
j≤i

{{βδj}, {γδj}}

is not complementary. Accordingly, there is no spanning mating for

CW ∪
∪
j≤i

{{βδj}, {γδj}}

for i ∈ I. This demonstrates that (CW ∪ CD,Π) is incrementally compatible wrt I.

45

if part Trivial. This is so becauses checking incremental compatibility for that last δ-clause in the
sequence ⟨{¬αδi , γδi}⟩i∈I is equivalent to checking compatibility.
Proof 6.4 Let (D,W) be a default theory in atomic format and let WD = {αδ → γδ | δ ∈ D} and φ
an atomic formula.

We show that φ ∈ E for some constrained extension (E,C) of (D,W) iff compl({¬φ}, CW , CD) is
true, where CW is the matrix of W and CD is the matrix of WD.

According to Corollary 6.3, this is equivalent to the following proposition: compl({¬φ}, CW , CD) is
true iff there is a spanning mating Π for the matrix M = CW ∪ CD ∪ {{¬φ}} and an enumeration
⟨ci⟩i∈I of κ(CD,Π) such that (M,Π) is admissible wrt I and incrementally compatible wrt I.

As in Proof 5.2, we prove below a slightly stronger statement: For a set of literals p and a matrix
M , let Mp be the matrix

∪
L∈p{{L}} ∪ M. Then, the theorem reduces to this: compl(p, CW , CD) is

true iff there is a spanning mating Π for (CW ∪ CD)p and an enumeration ⟨ci⟩i∈I of κ(CD,Π) such
that ((CW ∪ CD)p,Π) is admissible and incrementally compatible wrt I.

As in Proof 5.2, we define the rank of matrix CW ∪CD along with a set of literals p, (CW ∪CD)p =∪
L∈p{{L}} ∪ CW ∪ CD as

ρ((CW ∪ CD)p) = (|CD|, |CW |, |p|),

where |S| stands for the number of elements in the set S.
In analogy to Proof 5.2, we prove the latter statement by induction on the lexicographic order < on

the rank of (CW ∪ CD)p.

only-if part Let p be a set of literals and let CW ′ ⊆ CW and CD′ ⊆ CD. We prove that if
compl(p, CW ′ , CD′) is true relative to CW , then there is a spanning mating Π for ((CW ′ ∪CD′)∪CW)p

and an enumeration ⟨ci⟩i∈I′ of κ(CD′ ,Π) such that (((CW ′ ∪ CD′) ∪ CW)p,Π) is admissible and in-
crementally compatible wrt I ′. Clearly, this implies that if compl(p, CW , CD) is true relative to CW ,
then there is a spanning mating Π for (CW ∪CD)p and an enumeration ⟨ci⟩i∈I of κ(CD,Π) such that
((CW ∪ CD)p,Π) is admissible and incrementally compatible wrt I.

Base Analogous to Proof 5.2.

Step (CW ′ ∪ CD′)p ̸= ∅ or ρ((CW ′ ∪ CD′)p) ̸= (0, 0, 0). Recall that

(CW ′ ∪ CD′)p =
∪
L∈p

{{L}} ∪ CW ′ ∪ CD′ .

Assume compl(p, CW ′ , CD′) is true relative to CW . Consider c ∈ (CW ′ ∪ CD′)p. We distinguish the
following three cases.

1. c ⊆ p. Analogous to Proof 5.2.

2. c ∈ CW ′ . Consider L ∈ c. Since c ∈ CW ′ , we have according to Condition 2. in Definition 5.1 that
one of the following two cases holds, where c = c1 ∪ c2.

(a) L ∈ c1 and L is complementary to some literal of p.

Consequently, there is spanning mating ΠL for the matrix

ML =
∪
K∈p

{{K}} ∪ {{L}}

(b) L ∈ c2 and there is a set of δ-clauses CD′
L
⊆ CD′ such that compl(p ∪ {L}, CW ′ \ {c}, CD′

L
) is

true.

First, observe, that

ρ
(
((CW ′ \ {c}) ∪ CD′

L
)p∪{L}

)
< ρ((CW ′ ∪ CD′)p).

Thus, we obtain by the induction hypothesis that there is spanning mating ΠL for the matrix

ML =
∪
K∈p

{{K}} ∪ {{L}} ∪ ((CW ′ \ {c}) ∪ CD′
L

)

46

and an enumeration ⟨ci⟩i∈IL of κ(CD′
L
,ΠL) such that (ML,ΠL) is admissible and incrementally

compatible wrt IL.

By (a) and (b), we therefore obtain for all L ∈ c a spanning mating ΠL for the matrix ML. Clearly,
this implies that∪

L∈c
ΠL

is a spanning mating for the matrix

(CW ′ ∪ CD′)p =
∪
K∈p

{{K}} ∪ {{L | L ∈ c}} ∪ ((CW ′ \ {c}) ∪ CD′).

Consider the enumeration ⟨ci⟩i∈I obtained by meshing together the enumerations ⟨ci⟩i∈IL of
κ(CD′

L
,ΠL) for each L ∈ c2 such that ⟨ci⟩i∈I respects the order of δ-clauses in each ⟨ci⟩i∈IL . Clearly,

⟨ci⟩i∈I is an enumeration of κ(CD′ ,
∪

L∈c ΠL). Also it is easy to see that ((CW ′ ∪ CD′)p,
∪

L∈c ΠL)
is admissible wrt I since (ML,ΠL) is admissible for all L ∈ c2.

Moreover, we have that compl(Justif
(∪

L∈c2 D
′
L

)
, CW ∪

∪
L∈c2 CD′

L
, ∅) is false. This implies that

compl(∅,MJ , ∅) is false for the matrix

MJ =
∪

K∈Justif
(∪

L∈c2
D′

L

){{K}} ∪ CW ∪
∪

L∈c2
CD′

L
.

By [14] and the completeness of the connection method, this implies that there is no spanning
mating for MJ . Since ((CW ′∪

∪
L∈c2 CD′

L
)p,

∪
L∈c ΠL) is admissible wrt I, we obtain by Theorem 4.2

that there is no spanning mating for

M ′
J = CW ∪

∪
K∈Justif

(∪
L∈c2

D′
L

){{K}} ∪
∪

K∈Conseq

(∪
L∈c2

D′
L

){{K}}

Accordingly, we have that ((CW ′ ∪
∪

L∈c2 CD′
L

)p,
∪

L∈c ΠL) is compatible. Applying Theorem 6.2
to this along with ⟨ci⟩i∈I yields that ((CW ′ ∪ CD′)p,

∪
L∈c ΠL) is incrementally compatible wrt I.

The fact that
∪

L∈c ΠL is a spanning mating for the matrix (CW ′ ∪ CD′)p and that ⟨ci⟩i∈I is an
enumeration of κ(CD′ ,

∪
L∈c ΠL) such that ((CW ′∪CD′)p,

∪
L∈c ΠL) is admissible and incrementally

compatible wrt I implies that the same holds for the matrix ((CW ′ ∪ CD′) ∪ CW)p.

3. c ∈ CD′ . That is, c = {¬αδ, γδ}.
According to Condition 3. in Definition 5.1, we consider the following two cases.

(a) γδ is complementary to some literal of p.

Consequently, there is spanning mating Πγ for the matrix

Mγ =
∪
K∈p

{{K}} ∪ {{γδ}}

Clearly, Πγ is also a spanning mating for the matrix

Mγ =
∪
K∈p

{{K}} ∪ {{γδ}} ∪ CW ′ ∪ (CD′ \ {c}) ∪ CW .

(b) There is a set of δ-clauses CD′′ ⊆ CD′ such that {¬αδ, γδ} ∈ CD′ \ CD′′ and the following two
conditions hold.

i. compl({¬αδ}, CW , CD′′) is true.
Observe that

47

ρ
(
(CW ∪ CD′′){¬αδ}

)
< ρ((CW ′ ∪ CD′)p).

Thus, we obtain by the induction hypothesis that there is a spanning mating Πα for the
matrix

Mα = {{¬αδ}} ∪ CW ∪ CD′′

and an enumeration ⟨ci⟩i∈I′′ of κ(CD′′ ,Πα) such that (Mα,Πα) is admissible and incremen-
tally compatible wrt I ′′.

ii. compl(Justif (D′′ ∪ {δ}), CW ∪ CD′′ ∪ {¬αδ, γδ}, ∅) is false.
This implies that compl(∅,MJ , ∅) is false for the matrix

MJ =
∪

K∈Justif (D′′∪{δ})
{{K}} ∪ CW ∪ CD′′ ∪ {¬αδ, γδ}.

By [14] and the completeness of the connection method, this implies that there is no span-
ning mating for MJ .
Since Πα is a spanning mating for

Mα = {{¬αδ}} ∪ CW ∪ CD′′

and (Mα,Πα) is admissible wrt I ′′, we have that all paths through ¬αδ or ¬αδi for i ∈ I ′′

in MJ are complementary.
Therefore, there is no spanning mating for

M ′
J = CW ∪

∪
K∈Justif (D′′∪{δ})

{{K}} ∪
∪

K∈Conseq(D′′∪{δ})
{{K}}.

Now, (a) and (b) imply that Πγ ∪ Πα is a spanning mating for the matrix

((CW ′ ∪ CD′) ∪ CW)p =
∪
K∈p

{{K}} ∪ {{¬αδ, γδ}} ∪ ((CW ′ ∪ CD′) \ {c}) ∪ CW .

Consider the enumaration ⟨ci⟩i∈I′ obtained from appending the δ-clause {¬αδ, γδ} to the enumera-
tion ⟨ci⟩i∈I′′ . Clearly, ⟨ci⟩i∈I′ is an enumaration of κ(CD′ ,Πγ∪Πα) since Πγ and Πα refer exclusively
to δ-clauses in CD′′∪{{¬αδ, γδ}}. Now, it remains to be shown that (((CW ′∪CD′)∪CW)p,Πγ∪Πα)
is admissible and incrementally compatible wrt I ′.

For admissibility, observe that
(∪

K∈p{{K}} ∪ CW ∪ CD′′ ,Πγ ∪ Πα

)
is admissible wrt I ′′. Also,

we have shown that Πγ ∪ Πα is a spanning mating for
∪

K∈p{{K}} ∪ CW ∪ CD′′ ∪ {{¬αδ}}. This
implies that (((CW ′ ∪ CD′) ∪ CW)p,Πγ ∪ Πα) is admissible wrt I ′.

For combatibility, observe that there is no spanning mating for the matrix

CW ∪
∪

K∈Justif (D′′∪{δ})
{{K}} ∪

∪
K∈Conseq(D′′∪{δ})

{{K}}.

Since κ(CD′ ,Πγ ∪ Πα) ⊆ CD′′ ∪ {{¬αδ, γδ}}, we obtain that (CW ∪ CD′ ,Πγ ∪ Πα) is compatible.
Consequently, we have that ((CW ′ ∪ CD′) ∪ CW ,Πγ ∪ Πα) is compatible. Applying Theorem 6.2
to this along with ⟨ci⟩i∈I′ yields that ((CW ′ ∪ CD′) ∪ CW ,Πγ ∪ Πα) is incrementally compatible
wrt I ′.

if part We prove that if there is a spanning mating Π for (CW ′ ∪ CD′)p such that ((CW ′ ∪ CD′)p,Π)
is admissible and incrementally compatible wrt to some index set I, then compl(p, CW ′ , CD′) is true
relative to CW .

Base Analogous to Proof 5.2.

48

Step (CW ′ ∪ CD′)p ̸= ∅ or ρ((CW ′ ∪ CD′)p) ̸= (0, 0, 0). Recall that

(CW ′ ∪ CD′)p =
∪
L∈p

{{L}} ∪ CW ′ ∪ CD′ .

Let Π be a spanning mating for (CW ′ ∪ CD′)p such that ((CW ′ ∪ CD′)p,Π) is admissible wrt I.
Consider c ∈ (CW ′ ∪ CD′)p. We distinguish the following three cases.

1. c ⊆ p. Analogous to Proof 5.2.

2. c ∈ CW ′ . Consider L ∈ c. Clearly, Π is also a spanning mating for the matrix

ML =
∪
K∈p

{{K}} ∪ {{L}} ∪ ((CW ′ \ {c}) ∪ CD′)

such that (ML,Π) is admissible and incrementally compatible wrt I. That is, each path through
ML contains a connection from Π. Then, one of the following two cases holds.

(a) L is complementary to some literal of p.

(b) By rewriting ML, we have that Π is a spanning mating for the matrix

((CW ′ \ {c}) ∪ CD′)p∪{L}

such that (((CW ′ \ {c}) ∪ CD′)p∪{L},Π) is admissible and incrementally compatible wrt I.
Observe that

ρ(((CW ′ \ {c}) ∪ CD′)p∪{L}) < ρ((CW ′ ∪ CD′)p).

Thus, we obtain by the induction hypothesis that compl(p ∪ {L}, CW ′ \ {c}, CD′) is true.

Since ((CW ′ ∪ CD′)p,Π) is incrementally compatible wrt I, there is no spanning mating for

CW ∪
∪
i∈I

{βδi} ∪
∪
i∈I

{γδi}.

Since ((CW ′ ∪CD′)p,Π) is admissible wrt I, we obtain by Theorem 4.2, that there is no spanning
mating for the matrix

CW ∪
∪
i∈I

{βδi} ∪
∪
i∈I

{¬αδi , γδi}.

Let I ′ = {i ∈ I | {¬αδi , γδi} ∈ CD′} be set of indexes of all δ-clauses in CD′ . Clearly, there is also
no spanning mating for the matrix

CW ∪
∪
i∈I′

{βδi} ∪
∪
i∈I′

{¬αδi , γδi}.

By [14] and the correctness of the connection method, this implies that

compl(∅, CW ∪
∪

i∈I′{βδi} ∪
∪

i∈I′{¬αδi , γδi}, ∅) is false.

This implies that

compl(
∪

i∈I′{βδi}, CW ∪
∪

i∈I′{¬αδi , γδi}, ∅) is false.

That is, compl(Justif (D′), CW ∪ CD′ , ∅) is false.

Since both cases of Condition 2. in Definition 5.1 are covered, we have that compl(p, CW ′ , CD′) is
true.

49

3. c ∈ CD′ . Without loss of generality, we assume that c is necessary for the complementarity of
(CW ′ ∪ CD′)p. That is, Π is no spanning mating for (CW ′ ∪ CD′)p \ {c}.

In order to show that compl(p, CW ′ , CD′) is true, we reduce this problem by applying Condi-
tion 2. in Definition 6.2 to all clauses c ∈ CW ′ . As a consequence, compl(p, CW ′ , CD′) is true iff
compl(p ∪ pW ′ , ∅, CD′) is true for all non-complementary paths p∪pW ′ where pW ′ is a path through
CW ′ . That is, we have for all such paths p ∪ pW ′ and all π ∈ Π that π ∩ (p ∪ pW ′) = ∅.
Thus, in what follows, we show that compl(p ∪ pW ′ , ∅, CD′) is true relative to CW for all non-
complementary paths p ∪ pW ′ .

Consider c = {¬αδi , γδi}. We distinguish the following two cases.

(a) By assumption, Π is a spanning mating for the matrix

{{γδi}} ∪ (CW ′ ∪ CD′ \ {c})p =
∪
K∈p

{{K}} ∪ CW ′ ∪ {{γδi}} ∪ (CD′ \ {c}).

Then, Π is also a spanning mating for all matrices∪
K∈p∪pW ′

{{K}} ∪ {{γδi}} ∪ (CD′ \ {c}),

for all non-complementary paths p ∪ pW ′ (where pW ′ is a path through CW ′).

Now, all paths through such a matrix are of the form

p ∪ pW ′ ∪ {µ | µ ∈ {¬α, γ} ∈ CD′ \ {c}} ∪ {γδi}.
By assumption, some of these paths are not complementary without γδi . Since γδi cannot be
complementary to any literal in {µ | µ ∈ {¬α, γ} ∈ CD′ \ {c}}, we have that γδi must be
complementary to some negated literal in p ∪ pW ′ .

(b) By assumption, Π is a spanning mating for the matrix {{¬αδi}} ∪ (CW ′ ∪ CD′ \ {c})p. Also,
({{¬αδi}} ∪ (CW ′ ∪CD′ \ {c})p,Π) is admissible and incrementally compatible wrt {j | j < i}.
Let CD′′ = {{¬αδj , γδj} | j < i}
By admissibility, Π is thus a spanning mating for the matrix

(CW ∪ CD′′){¬αδi
}.

In addition,

((CW ∪ CD′′){¬αδi
},Π)

is admissible and incrementally compatible wrt {j | j < i}. By the induction hypothesis, this
implies that compl({¬αδi}, CW , CD′′) is true.

Since ((CW ′ ∪ CD′)p,Π) is incrementally compatible wrt I and {j | j ≤ i} ⊆ I, there is no
spanning mating for the matrix

CW ∪
∪
j≤i

{βδj} ∪
∪
j≤i

{γδj}.

Since ((CW ′∪CD′ \{c})p,Π) is admissible wrt I and {j | j ≤ i} ⊆ I, we obtain by Theorem 4.2,
that there is no spanning mating for the matrix

CW ∪
∪
j≤i

{βδj} ∪
∪
j≤i

{¬αδj , γδj}.

By [14] and the correctness of the connection method, this implies that

compl(∅, CW ∪
∪

j≤i{βδj} ∪
∪

j≤i{¬αδj , γδj}, ∅) is false.

This implies that

compl(
∪

j≤i{βδj}, CW ∪
∪

j≤i{¬αδj , γδj}, ∅) is false.

That is, compl(Justif (D′′ ∪ {δ}), CW ∪ CD′′ ∪ {¬αδ, γδ}, ∅) is false.

50

We have shown in (a) that γδi is complementary to some literal in p ∪ pW ′ (where pW ′

is a path through CW ′). For CD′′ = {{¬αδj , γδj} | j < i}, we have shown in (b) that
compl({¬αδi}, CW , CD′′) is true and compl(Justif (D′′ ∪ {δ}), CW ∪ CD′′ ∪ {¬αδ, γδ}, ∅). There-
fore, compl(p ∪ pW ′ , ∅, CD′) is true for all non-complementary paths p∪pW ′ . As shown above, this
implies that compl(p, CW ′ , CD′) is true.

Acknowledgments

I am indebted to Aaron Rothschild who helped developing some of my initial ideas for query-answering
in default logics. Also, he programmed and tested the extension of ppp. I would like to thank Gerhard
Brewka, James Delgrande, Michael Thielscher, and in particular Stefan Brüning for many useful
discussions and comments on earlier drafts of this paper. Moreover, the comments of the anonymous
referees helped to improve the quality of the paper. This work was supported by the Commission of
the European Communities under grant no. ERB4001GT922433.

References

[1] F. Baader and B. Hollunder. Embedding defaults into terminological knowledge representation formalisms.
In B. Nebel, C. Rich, and W. Swartout, editors, Proceedings of the Third International Conference on the
Principles of Knowledge Representation and Reasoning, pages 306–317, Cambridge, MA, October 1992.

[2] P. Besnard, R. Quiniou, and P. Quinton. A theorem–prover for a decidable subset of default logic. In
Proceedings of the AAAI National Conference on Artificial Intelligence, pages 27–30, 1983.

[3] W. Bibel. Automated Theorem Proving. Vieweg Verlag, Braunschweig, second edition, 1987.

[4] S. Brass. Deduction with supernormal defaults. In P. Schmitt G. Brewka, K. Jantke, editor, Nonmonotonic
and Inductive Logic, pages 153–174. Springer Verlag, 1991.

[5] G. Brewka. Cumulative default logic: In defense of nonmonotonic inference rules. Artificial Intelligence,
50(2):183–205, 1991.

[6] G. Brewka. Nonmonotonic Reasoning: Logical Foundations of Commonsense. Cambridge University Press,
Cambridge, 1991.

[7] G. Brewka. Adding priorities and specificity to default logic. In L. Pereira and D. Pearce, editors, European
Workshop on Logics in Artificial Intelligence (JELIA’94). Springer Verlag, 1994.

[8] M. Cadoli, T. Eiter, and G. Gottlob. Default logic as a query language. In J. Doyle, P. Torasso, and
E. Sandewall, editors, Proceedings of the Fourth International Conference on the Principles of Knowledge
Representation and Reasoning, 1994. Forthcoming.

[9] M. Cadoli and M. Schaerf. A survey on complexity results for non-monotonic logics. Journal of Logic
Programming, 17, 1993.

[10] J. Delgrande and W. Jackson. Default logic revisited. In J. Allen, R. Fikes, and E. Sandewall, editors,
Proceedings of the Second International Conference on the Principles of Knowledge Representation and
Reasoning, pages 118–127, San Mateo, CA, April 1991. Morgan Kaufmann Publishers.

[11] J. Delgrande, T. Schaub, and W. Jackson. Alternative approaches to default logic. Artificial Intelligence,
70:167–237, 1994.

[12] Y. Dimopoulos. The computational value of joint consistency. In L. Pereira and D. Pearce, editors,
European Workshop on Logics in Artificial Intelligence (JELIA’94), volume 838 of Lecture Notes in Artificial
Intelligence, pages 50–65. Springer Verlag, 1994.

[13] J. Doyle. A truth maintenance system. Artificial Intelligence, 12:231–272, 1979.

[14] E. Eder. Relative Complexities of First Order Calculi. Vieweg Verlag, Braunschweig, 1992.

[15] D. Etherington. Reasoning with Incomplete Information. Research Notes in Artificial Intelligence. Pitman
/ Morgan Kaufmann, London, 1988.

[16] D. Etherington and R. Reiter. On inheritance hierarchies with exceptions. In Proceedings of the AAAI
National Conference on Artificial Intelligence, pages 104–108, 1983.

[17] M. Gelfond and V. Lifschitz. Logic programs with classical negation. In Proceedings of the International
Conference on Logic Programming, pages 579–597, 1990.

51

[18] G. Gottlob. Complexity results for nonmonotonic logics. Journal of Logic and Computation, 2(3):397–425,
June 1992.

[19] U. Junker and K. Konolige. Computing the extensions of autoepistemic and default logic with a TMS. In
Proceedings of the AAAI National Conference on Artificial Intelligence, 1990.

[20] K. Konolige. On the relation between default and autoepistemic logic. Artificial Intelligence, 35(2):343–382,
1988.

[21] R. Letz, S. Bayerl, J. Schumann, and W. Bibel. Setheo: A high-performance theorem prover. Journal of
Automated Reasoning, 8(2):183–212, 1992.

[22] W. Lukaszewicz. Considerations on default logic — an alternative approach. Computational Intelligence,
4:1–16, 1988.

[23] R. Mercer. Using default logic to derive natural language suppositions. In Proceedings of Canadian Society
for Computational Studies of Intelligence Conference, pages 14–21, 1988.

[24] R. Moore. Semantical considerations on nonmonotonic logics. Artificial Intelligence, 25:75–94, 1985.

[25] G. Neugebauer. From horn clauses to first order logic: A graceful ascent. Technical Report AIDA–92–21,
FG Intellektik, FB Informatik, TH Darmstadt, 1992.

[26] G. Neugebauer and T. Schaub. A pool-based connection calculus. Technical Report AIDA-91-2, FG
Intellektik, FB Informatik, TH Darmstadt, Alexanderstraße 10, D–64283 Darmstadt, Germany, January
1991.

[27] I. Niemelä. Decision procedure for autoepistemic logic. In Proceedings of the Conference on Automated
Deduction, pages 675–684, Argonne, USA, 1988.

[28] I. Niemelä. A decision method for nonmonotonic reasoning based on autoepistemic reasoning. In J. Doyle,
P. Torasso, and E. Sandewall, editors, Proceedings of the Fourth International Conference on the Principles
of Knowledge Representation and Reasoning, pages 473–484. Morgan Kaufmann Publishers, 1994.

[29] D. Poole, R. Goebel, and R. Aleliunas. Theorist: A logical reasoning system for defaults and diagnosis. In
N. Cercone and G. McCalla, editors, The Knowledge Frontier: Essays in the Representation of Knowledge,
chapter 13, pages 331–352. Springer Verlag, New York, 1987.

[30] R. Reiter. A logic for default reasoning. Artificial Intelligence, 13(1–2):81–132, 1980.

[31] R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57–96, 1987.

[32] V. Risch. Les Tableaux Analytiques au Service des Logiques de Defauts. PhD thesis, Universite Aix-Marseille
II, G.I.A., Parc Scientifique et Technologique de Luminy, April 1993.

[33] A. Rothschild. Algorithmische Untersuchungen zu Defaultlogiken. Master’s thesis, FG Intellektik, FB
Informatik, TH Darmstadt, Alexanderstraße 10, D–64283 Darmstadt, Germany, 1993.

[34] T. Schaub. Assertional default theories: A semantical view. In J. Allen, R. Fikes, and E. Sandewall,
editors, Proceedings of the Second International Conference on the Principles of Knowledge Representation
and Reasoning, pages 496–506, San Mateo, CA, April 1991. Morgan Kaufmann Publishers.

[35] T. Schaub. On commitment and cumulativity in default logics. In R. Kruse and P. Siegel, editors, Pro-
ceedings of European Conference on Symbolic and Quantitative Approaches to Uncertainty, pages 304–309.
Springer Verlag, 1991.

[36] T. Schaub. Considerations on Default Logics. PhD thesis, Technische Hochschule Darmstadt, Alexander-
straße 10, D–64283 Darmstadt, Germany, November 1992.

[37] T. Schaub. On constrained default theories. In B. Neumann, editor, Proceedings of the European Conference
on Artificial Intelligence, pages 304–308. John Wiley & sons, 1992.

[38] T. Schaub. Variations of constrained default logic. In M. Clarke, R. Kruse, and S. Moral, editors, Proceedings
of European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty, pages
312–317. Springer Verlag, 1993.

[39] T. Schaub. Computing queries from prioritized default theories. In Z. Ras and M. Zemankova, editors,
Eighth International Symposium on Methodologies for Intelligent Systems (ISMIS’94), volume 869 of Lecture
Notes in Artificial Intelligence, pages 584–593. Springer Verlag, 1994.

[40] T. Schaub and M. Thielscher. A method for skeptical reasoning in constrained default logic. Technical
report, FG Intellektik, FB Informatik, TH Darmstadt, 1994. In preparation.

52

[41] C. Schwind. A tableaux–based theorem prover for a decidable subset of default logic. In M. E. Stickel,
editor, CADE–10. Springer Verlag, 1990.

[42] C. Schwind and V. Risch. A tableaux–based characterization for default logic. In R. Kruse, editor, Pro-
ceedings of European Conference on Symbolic and Quantitative Approaches to Uncertainty, pages 310–317.
Springer Verlag, 1991.

[43] J. Slaney. SCOTT: A model-guided theorem prover. In Proceedings of the International Joint Conference
on Artificial Intelligence, pages 109–114, 1993.

[44] M. Stickel. A Prolog technology theorem prover. New Generation Computing, 2:371–383, 1984.

[45] M. Thielscher and T. Schaub. Default reasoning by deductive planning. Journal of Automated Reasoning,
1994. Forthcoming.

[46] A. Zhang and W. Marek. On the classification and existence of structures in default logic. Fundamenta
Informaticae, 8(4):485–499, 1990.

53

