
Default Reasoning by Deductive Planning

Michael Thielscher

FG Intellektik, TH Darmstadt

Alexanderstra�e 10

D{64283 Darmstadt

Germany

mit@intellektik.informatik.th-darmstadt.de

Torsten Schaub

IRISA

Campus de Beaulieu

F{35042 Rennes Cedex

France

torsten@irisa.fr

Abstract

This paper deals with the automation of reasoning from incomplete information by means

of Default Logics. We provide proof procedures for Default Logics' major reasoning modes,

namely credulous and skeptical reasoning. We start by reformulating the task of credulous

reasoning in Default Logics as deductive planning problems. This interpretation supplies

us with several interesting and valuable insights into the proof theory of Default Logics.

Foremost, it allows us to take advantage of the large number of available methods, algo-

rithms, and implementations for solving deductive planning problems. As an example, we

demonstrate how credulous reasoning in certain variants of Default Logic is implementable

by means of a planning method based on equational logic programming. In addition, our

interpretation allows us to transfer theoretical results, like complexity results, from the �eld

of planning to that of Default Logics. In this way, we have isolated two yet unknown classes

of default theories for which deciding credulous entailment is polynomial.

Our approach to skeptical reasoning relies on an arbitrary method for credulous reason-

ing. It does neither strictly require the inspection of all extensions nor the computation of

entire extensions to decide whether a formula is skeptically entailed. Notably, our approach

abstracts from an underlying credulous reasoner. In this way, it can be used to extend

existing formalisms for credulous reasoning to skeptical reasoning.

Keywords. default logics, deductive planning, credulous and skeptical reasoning, logic pro-

gramming

1 Introduction

The treatment of incomplete information constitutes one of the central problems for complex

information systems. This issue has been isolated in the �eld of arti�cial intelligence by Minsky in

[46], who prompted with it the creation of an area, known as nonmonotonic reasoning . This term

stems from the observation that the addition of information to an incomplete knowledge base

may change the set of drawable conclusions. So far, however, this phenomenon has been studied

primarily from a theoretic point of view. This has led to numerous di�erent nonmonotonic logics

yet only a handful of resulting practical approaches, algorithms or even implementations.

In this paper, we turn to practical issues and consider one of the best known and most-

widely used formalisms for nonmonotonic or, more speci�cally, default reasoning, namely Ray

Reiter's Default Logic [51] along with its descendants. This logical system deals with incomplete

information by providing general rules that allow for exceptional cases. These so-called default

rules are in turn added to a standard �rst order logic.

From the very beginning, an important task was the development of proof theories in order to

automate reasoning in Default Logic, preferably by adopting and extending methods known from

classical automated deduction. However, Reiter himself observed that automating the reasoning



process in the entire framework is problematic because full-edged Default Logic lacks the formal

property of semi-monotonicity . This property, however, is indispensable for proving in a local

fashion, since it allows us to restrict our attention to those parts of a given theory that are

related to what shall be proved. For this purpose, Reiter de�nes in [51] a restricted class of

default theories, called normal theories, that are provably semi-monotonic in general. Using

this observation, he develops in [51] a �rst proof theory for this restricted class based on the

resolution principle.

Nonetheless, it became apparent soon that many interesting problems cannot be encoded

via normal default theories [53]. Moreover, it turned out that apart from semi-monotonicity,

other desirable properties are not present in the original approach. This insight prompted

several authors to develop modi�cations of the �rst approach to Default Logic, e.g.  Lukaszewicz'

Justi�ed Default Logic

1

[39], Brewka's Cumulative Default Logic [8], or Constrained Default

Logic [17]. These three variants turn out to be semi-monotonic even in case of arbitrary default

theories. This is why they are of great interest, especially for automating default reasoning.

In what follows, however, we will mainly focus on the �nally mentioned dialect. The choice of

Constrained Default Logic as our prime exemplar is of course not an arbitrary one. Constrained

Default Logic enjoys several desirable computational properties needed for reasonable proof

procedures. Moreover, it has recently been shown in [18] that in certain fragments of Constrained

Default Logic reasoning is signi�cantly easier than in Reiter's Default Logic. All this renders

our exemplar a prime candidate for computational purposes. However, we show also how our

results can be directly applied to Reiter's original de�nition in case of normal default theories.

Moreover, we illustrate how similar results can be obtained for  Lukaszewicz' variant, while we

do not explicitly consider Cumulative Default Logic due to its tight relationship to Constrained

Default Logic (see [58, 17] for details). An important characteristic feature of Constrained

Default Logic,  Lukaszewicz' variant, and classical Default Logic restricted to normal theories,

is that extensions can be generated in a truly iterative way instead of using the usual �xpoint

construction. This observation shall be the starting point of our analysis.

During the last decade, several calculi designed for classical logic have been applied to de�ne

proof theories for (variants of) Default Logic, e.g. the resolution principle as in [51, 4], the

tableaux method [65] as in [61, 62], or the connection method [6] as in [55, 60]. The aim of this

paper is not to provide just another speci�c implementation technique. Rather, we propose a new

view on the reasoning task in Default Logics by regarding it as a problem solving task or, more

speci�cally, as a planning problem. This view appears to be very natural and straightforward

as soon as extensions can be generated truly iteratively. We claim that this interpretation

reects adequately the nature of what distinguishes Default Logics from classical logic, namely

the additional expressive power provided by default rules. Any formalism for proving in default

theories that employs methods known from classical automated deduction has to comply with

three substantial di�erences between a default � =

� : �

!

(which allows to conclude ! by default if

� holds and � can be consistently assumed) and its classical counterpart, viz. the implication

�!! . First of all, the consistency requirement given by the so-called justi�cation � may

suppress the application of � . Second, as � is a rule instead of a formula, it is impossible to

apply it the other way round, i.e. via contraposition. For instance, we are allowed to conclude

:a from :b given a! b but not by using the default

a : b

b

. Third, the so-called prerequisite �

of a default must be explicitly derivable which means that defaults cannot mutually satisfy their

prerequisites. For example, from a! c and :a! c it is possible to conclude c . This cannot

be obtained from the two defaults

a : c

c

and

:a : c

c

.
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This variant was originally called Modi�ed Default Logic [39].
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These observations suggest a careful distinction between a default and a logical formula. To

this end, we propose to interpret defaults as tools for acting in dynamically changing worlds.

More precisely, starting from some given world knowledge W , which is assumed to be certain, we

identify a particular set of actual beliefs with a particular state of (or situation in) a dynamical

system. This set of beliefs is successively extended by applying defaults which are identi�ed

with actions that transform situations into situations. The task of �nding default proofs, which

means to �nd an appropriate set of defaults that provide such a proof, can then be identi�ed

with the task of �nding an appropriate sequence of actions that transforms the initial set of

beliefs into a situation which classically entails the formula under consideration. In other words,

we intend to identify default proving with solving planning problems.

Although this view seems to be quite natural and shows some interesting and valuable conse-

quences, it has not yet been formally established. Aside from the adequateness of the interpre-

tation of default rules as actions operating on sets of formulas, some merits of this view are the

following ones.

� There exists a variety of systems designed for planning problems which have been thor-

oughly investigated and improved for many years. All of them are candidates for competi-

tive default reasoning systems, provided they are suitable for the particular problem class

determined by Default Logics.

� Pure planning can be regarded as being only a part of a more extensive research �eld

dealing with reasoning about actions and change in general. Other directions of research

related to this �eld may suggest a variety of extensions as regards reasoning with Default

Logics. For instance, abductive planning is concerned with planning problems where the

system may generate and apply additional, i.e. not previously given facts that are necessary

to achieve a goal. Adopting this concept, one may de�ne abductive default reasoning where

it is possible to abduce additional knowledge if it is necessary to obtain a default proof.

� An important task regarding both default reasoning as well as planning consists in �xing

tractable problem classes. A variety of results concerning tractable planning problems have

recently been developed. As will be illustrated later in this paper by two simple example,

these results can often be directly applied to de�ne subclasses of default theories where

the task of �nding default proofs shows the very same complexity. Our examples provide

new classes of default theories in which deciding credulous entailment is polynomial.

We have not yet explicitly mentioned that the preceding discussion is only concerned with one

kind of reasoning in Default Logics, called credulous reasoning. In fact, a Default Logic may in-

duce one or several so-called extensions (i.e. distinct sets of default conclusions) of an underlying

world description. Then, a formula is said to be credulously entailed if it is contained in at least

one extension of the default theory at hand. Other extensions may make no statement at all

about the formula, or even claim its contrary.

2

Indeed, previous work has mainly concentrated

on this reasoning mode.

However, a second kind of reasoning in Default Logics deserves equal rights, namely skeptical

reasoning. For this, a formula is required to be in all extensions of the default theory under

consideration. Apart from the na��ve way of checking this by simply generating and testing all

extensions, only little e�ort has been put into automating skeptical reasoning up to this day. As

a second major contribution of this paper, we formalize a more elaborated procedure to prove

2

Curiously enough, a credulously entailed formula is often called a nonmonotonic theorem in the literature,

despite the fact that it may happen that both a formula and its negation are credulously entailed.
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membership in all extensions. Yet our approach does neither require the computation of all

extensions nor the computation of a single entire extension. Notably, it relies on an (almost)

arbitrary procedure providing credulous proofs. In fact, apart from the provision of certain

complete, preferably minimal sets of credulous default proofs, there is no further restriction on

the underlying credulous reasoner. In this way, our approach to skeptical reasoning abstracts

from the underlying credulous reasoning method. In particular, our method can be founded but

does not rely on the results presented in the �rst part of this paper. Rather it can be used to

extend any formalism for automated credulous reasoning to skeptical reasoning. The basic ideas

can be traced back to Poole's nonmonotonic Theorist formalism [50]: First, it was applied to

a restricted version of this theory [47, 48] and later extended to the entire framework [67].

The paper is organized as follows. We introduce in Section 2 Reiter's classical approach,

 Lukaszewicz' modi�cation to it, and Constrained Default Logic. Furthermore, some fundamental

observations and results concerning the iterative generation of extensions in Constrained Default

Logic are recapitulated. In Section 3, we argue that these results lead in a rather straightforward

way to a formalization of credulous reasoning in terms of deductive planning. We discuss the

merits of this reformulation and illustrate by means of a simple example how complexity results

known from the �eld of planning can be directly applied to formulate analogous results regarding

Default Logic. This section is mainly concerned with Constrained Default Logic but we also

discuss the applicability of our results to  Lukaszewicz' Justi�ed Default Logic. In Section 4,

we exemplify how the aforementioned formalization leads to a concrete proof procedure for

credulous reasoning. We use an approach designed for solving planning problems by appeal to

logic programs augmented by an equational theory [28]. This method turns out to capture a

certain class of default theories in a direct manner. In Section 5, we turn to the problem of

skeptical reasoning and develop a procedure that does neither strictly require the inspection of

all extensions nor the computation of entire extensions. Again, this section is mainly concerned

with Constrained Default Logic but we also discuss the applicability of our results to Reiter's

classical de�nition (in the case of normal default theories). Finally, our results are summarized

in Section 6.

2 Default Logics

The following notions and notations are fundamental for all dialects of Default Logic. A default

�(x) =

�(x) : �(x)

!(x)

consists of three sets of �rst-order formulas, where x denotes a sequence of free

variables occurring in these formulas. A default �(x) is interpreted as a representative of each

instance �(t) where t is a sequence of ground terms. As usual, we call �(t) = Prereq(�(t)) the

prerequisite, �(t) = Justif (�(t)) the justi�cation, and !(t) = Conseq(�(t)) the consequence of

�(t) . Furthermore, if D is a set of defaults then Prereq(D) =

S

�2D

Prereq(�) , Justif (D) =

S

�2D

Justif (�) , and Conseq(D) =

S

�2D

Conseq(�) . A default theory � = (D;W ) consists

of a set of defaults D and a set of closed �rst-order formulas W , called world knowledge or

background knowledge. A closed default theory does not contain defaults with free variables. For

notational convenience, a closed default is simply written as � =

� : �

!

. This paper mainly focuses

on closed default theories. Handling defaults with free variables is discussed in e.g. [51, 37], and

we will briey raise this problem at the end of Section 3 and Section 4, respectively. If each

member of D is of the form

� :!

!

, i.e. if justi�cation and consequence coincide, then � is called a

normal default theory. A default theory (D;W ) is said to be inconsistent i� W is inconsistent.

If F is a set of �rst-order formulas then we denote by Th(F ) the theory determined by F , i.e.

the set of all formulas which are classically entailed by F . Finally, the symbol > (? ) denotes
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a formula which is always true (false).

2.1 The classical approach

Drawing conclusions in default theories is based on the formation of extensions , each of them

representing a possible, maximal set of beliefs. The di�erent ways of constructing a set of

extensions for a default theory characterize the three variants discussed in this section. Reiter's

classical Default Logic uses the following de�nition which is based on a �xpoint construction [51]:

De�nition 2.1 If (D;W ) is a closed default theory and S a set of closed �rst-order formulas

then let �(S) be the smallest set of formulas such that the following conditions are satis�ed:

1. W � �(S) ,

2. Th(�(S)) = �(S) , and

3. for any

� : �

!

2 D , if � 2 �(S) and S [ f�g 6j= ? then ! 2 �(S) .

A set of formulas E is an extension of (D;W ) i� �(E) = E .

Based on the concept of extensions there are two di�erent ways to determine what are the

logical consequences of a default theory. Firstly, a formula is called credulously entailed i� it

is contained in at least one extension. Secondly, a formula is called skeptically entailed i� it is

contained in every extension. In what follows, we concentrate on credulous reasoning and turn

our attention to skeptical reasoning in Section 5.

In Reiter's original paper [51], attention is also restricted to proving membership in one

extension. There, it is pointed out that in view of the automation of proving in default theories,

it is of great practical importance to avoid the generation of an entire extension when trying to

prove the entailment of a particular formula. Rather, one prefers to prove in a local fashion which

means to restrict ones attention to those defaults which are needed to obtain a derivation of the

formula under consideration. The formal property reecting this is called semi-monotonicity

stating that the entailment relation which is de�ned for a default theory is monotonic regarding

additional defaults. More formally, if E is an extension of a theory (D;W ) and D

0

is obtained

by adding elements to D then semi-monotonicity guarantees the existence of an extension E

0

of (D

0

;W ) such that E

0

� E . Hence, if we need defaults D � D

0

to determine a proof

of a formula given the entire theory (D

0

;W ) then semi-monotonicity allows us to conclude

that the formula is indeed credulously entailed by the whole theory. Unfortunately, as pointed

out in [51], semi-monotonicity does not hold in general. As an example, consider an arbitrary

default theory � = (D;W ) and a propositional constant a which does not occur elsewhere

in � . Independently from whatever the extensions of � are, adding the default

: a

:a

makes

the whole theory collapse because (D [ f

: a

:a

g;W ) admits no extensions at all. This illustrates

that it is inevitably necessary to consider the entire set of defaults in general when reasoning

credulously.

On the other hand, semi-monotonicity is guaranteed in case of normal default theories [51].

This observation enabled Reiter to develop a proof theory which admits local proofs according to

the preceding discussion. Based on his work, several authors applied theorem proving methods

to normal default theories during the last decade, e.g. [4, 20, 61, 62].

2.2  Lukaszewicz' De�nition of Justi�ed Extensions

Starting out from the problem of semi-monotonicity,  Lukaszewicz proposed a rede�nition of the

original notion of extensions [39]. He observed that the lack of semi-monotonicity stems from
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requiring the application of a default even if its consequence is inconsistent with its justi�cation

or the justi�cation of other applied defaults.  Lukaszewicz' addresses this problem via a slightly

more complicated de�nition of extensions, where an additional set of formulas J is used to collect

the justi�cations of applied defaults. This set can then be used to suppress the application of

further defaults:

De�nition 2.2 If (D;W ) is a closed default theory and S; T are sets of closed �rst-order

formulas then let �(S; T ) be the pair of smallest sets of formulas (S

0

; T

0

) such that the following

conditions are satis�ed:

1. W � S

0

,

2. Th(S

0

) = S

0

, and

3. for any

� : �

!

2 D , if � 2 S

0

and for any  2 T [ f�g we have that S [ f!g [ fg 6j= ? ,

then ! 2 S

0

and � 2 T

0

.

A set of formulas E is a justi�ed extension of (D;W ) wrt. a set of formulas J i� �(E; J) =

(E; J) .

As regards this de�nition, semi-monotonicity is guaranteed in case of arbitrary default theo-

ries [39]. For instance, the crucial default

: a

:a

can never be applied because the contradiction

between its consequence and its justi�cation are detected in  Lukaszewicz's variant (via condition

3 in the above de�nition). It is, however, noteworthy that the set of justi�cations J of applied

defaults is neither required to be consistent with the entire extension nor to be consistent itself.

2.3 Constrained Default Logic

Constrained Default Logic [57, 58, 17] has recently been developed due to an unintuitive behavior

of classical Default Logic, which is also not addressed in the modi�cation described above. As

�rst pointed out in [49], Reiter's approach is incapable of what is usually called committing to

assumptions :

Example 2.1 Let �

1

denote the default theory (f�

1

=

ho ::ra

sw

; �

2

=

ho : ra

ba

g; fhog) .

3

Ac-

cording to De�nition 2.1, �

1

has exactly one extension, viz. Th(fho; sw ; bag) . Analogously,

according to De�nition 2.2 this is the only justi�ed extension of �

1

(wrt. J = f:ra ; rag ).

Obtaining a single extension of �

1

appears to be counterintuitive since this extension can be

said to be based on the two conicting assumptions ra and :ra (see e.g. [49, 8, 16, 17]).

Rather one expects �

1

to admit two di�erent extensions, one containing sw and the other one

containing ba .

Constrained Default Logic was developed in view of guaranteeing both semi-monotonicity

and commitment to assumptions. Informally, the idea is to extend the consistency requirement

of De�nition 2.2 such that the justi�cations of all applied defaults have to be consistent with

the underlying extension. Example 2.1 | where J = f:ra ; rag | illustrates that this is not

required in  Lukaszewicz' method. As for De�nition 2.2, an additional set of formulas is used,

but now both the justi�cations and consequences of applied defaults are collected. The formal

de�nition is as follows:

3

Read ho as \taking a holiday", ra as \it is raining", sw as \going for a swim", and ba as \joining a

basketball match".

5



De�nition 2.3 If (D;W ) is a closed default theory and S; T are two sets of closed �rst-order

formulas then let �(T ) be the pair of smallest sets of formulas (S

0

; T

0

) such that the following

conditions are satis�ed:

1. W � S

0

� T

0

,

2. Th(S

0

) = S

0

, Th(T

0

) = T

0

, and

3. for any

� : �

!

2 D , if � 2 S

0

and T [ f�g [ f!g 6j= ? then ! 2 S

0

and � ^ ! 2 T

0

.

A pair of sets of formulas (E;C) is a constrained extension of (D;W ) i� �(C) = (E;C) .

The so-called constraints C form a superset of E by construction. C includes the justi�ca-

tions and consequences of all applied defaults and is required to be consistent | provided the

underlying default theory is not inconsistent itself. As for  Lukaszewicz' method, the property of

being semi-monotonic is guaranteed in general wrt. constrained extensions [57, 17]. Moreover,

our example concerning commitment of assumptions is treated satisfactorily:

Example 2.1 (continued) Our default theory �

1

admits two constrained extensions, namely

(Th(fho; swg);Th(fho;:ra ^ swg)) and (Th(fho; bag);Th(fho; ra ^ bag)) . The reason for

not obtaining a single extension is that after having applied �

1

, say, :ra is included in the

corresponding set of constraints and, then, �

2

cannot be applied due to Th(fho;:ra ^ swg) [

frag j= ? .

On the analogy of a result concerning classical Default Logic, it is possible to give a more

intuitive, pseudo-iterative

4

characterization of constrained extensions which is not based on a

�xpoint construction [57, 17]:

Theorem 2.4 If (D;W ) is a closed default theory and E;C are two sets of closed �rst-order

formulas then let E

0

:= W , C

0

:= W , and for each i � 0

E

i+1

:= Th(E

i

) [ f ! j

� : �

!

2 D; � 2 E

i

; C [ f�g [ f!g 6j= ?g

C

i+1

:= Th(C

i

) [ f � ^ ! j

� : �

!

2 D; � 2 E

i

; C [ f�g [ f!g 6j= ?g :

(E;C) is a constrained extension of (D;W ) i� (E;C) = (

S

1

i=0

E

i

;

S

1

i=0

C

i

) .

Based on this observations, the authors of [55, 60] develop a third characterization of con-

strained extensions which enables one to describe the generation process in a truly iterative

manner, i.e. without the necessity of using a �xpoint construction. Stating their result requires

to de�ne the notion of groundedness , which was �rst applied to defaults in [61]:

De�nition 2.5 If (D;W ) is a default theory then a set D

0

� D is called grounded in W

(or simply: grounded) i� there exists an enumeration h�i

i2I

of D

0

such that for each i 2 I ,

W [ Conseq(f�

1

; : : : ; �

i�1

g) j= Prereq(�

i

) :

Based on this de�nition the following result has been proved in [55, 60]:

Theorem 2.6 Let (D;W ) be a default theory and E;C be two sets of formulas. (E;C) is

a constrained extension of (D;W ) i� there exists a maximal (wrt. set inclusion), grounded set

D

0

such that D

0

� D , W [ Justif (D

0

) [ Conseq(D

0

) 6j= ? and the following holds:

4

Observe that the speci�cation of a constrained extension in Theorem 2.4 is not truly iterative, since E

i+1

and C

i+1

make reference to the �nal extension C .
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1. E = Th(W [ Conseq(D

0

))

2. C = Th(W [ Justif (D

0

) [ Conseq(D

0

))

Groundedness is for instance necessary to ensure that defaults do not mutually satisfy their pre-

requisites, e.g. that (Th(fa; bg);Th(fa; bg)) is not a constrained extension of (f

b : a

a

;

a : b

b

g; fg) .

In general, groundedness can be seen as the counterpart of the minimality requirement in the

�xpoint de�nitions 2.1, 2.2, and 2.3.

Theorem 2.6 is fundamental for our results as regards both credulous as well as skeptical

reasoning. To this end, we introduce some further useful notions regarding a proof theory in

Constrained Default Logic.

De�nition 2.7 Let � = (D;W ) be a default theory. We call a subset D

0

� D a base of

extensions (or simply: base) of � i� D

0

is grounded and W [ Justif (D

0

) [ Conseq(D

0

) 6j= ? .

A default proof of a closed formula g from � is a base D

0

such that W [ Conseq(D

0

) j= g .

We say that g is provable by default (or just provable) from � if we can �nd such a default

proof.

5

A trivial base is the empty set, which can be regarded as a default proof of any formula implied

by the background knowledge. Each maximal base determines a single constrained extension

according to Theorem 2.6. Hence, a set of defaults is a base if it can be extended to one or more

constrained extensions in the spirit of Theorem 2.6.

Example 2.2 Recall our default theory �

1

(cf. Example 2.1) augmented by a third default,

viz. �

2

= (f�

1

=

ho ::ra

sw

; �

2

=

ho : ra

ba

; �

3

=

sw : fun

fun

g; fhog) . According to the previous de�nition,

we �nd the four bases fg , f�

1

g , f�

2

g , and f�

1

; �

3

g , respectively. The last two are maximal

and determine the two di�erent constrained extension (Th(fho; bag);Th(fho; ra ^ bag)) and

(Th(fho; sw ; fung);Th(fho;:ra ^ sw ; fung)) of �

2

. Both f�

1

g and f�

1

; �

3

g are default proofs

of sw , and each of the four sets is a default proof of ho since ho 2 W .

Following Theorem 2.6, it is easy to see that our notion of provability coincides with the

de�nition of credulous reasoning:

Proposition 2.8 Let � = (D;W ) be a closed default theory and g be a closed formula.

There exists a constrained extension (E;C) of � such that g 2 E i� g is provable from � .

Proof:

\) ": If (E;C) is a constrained extension then we can �nd a base D

0

such that E =

Th(W [ Conseq(D

0

)) according to Theorem 2.6. Due to g 2 E , D

0

is a default proof of g .

\( ": Assume D

0

to be some default proof of g from � , i.e. W [ Conseq(D

0

) j= g . Then

we can �nd by semi-monotonicity at least one maximal (wrt. set inclusion) base D

00

of � such

that D

00

� D

0

. According to Theorem 2.6 the pair (E;C) where

1. E = Th(W [ Conseq(D

00

))

2. C = Th(W [ Justif (D

00

) [ Conseq(D

00

))

is a constrained extension of � . From D

0

� D

00

and W [ Conseq(D

0

) j= g we conclude by

monotonicity that W [ Conseq(D

00

) j= g , hence g 2 E .

Finally, on the analogy of a result already implicitly used in [51], we make use of the com-

pactness property of �rst-order logic [19], which implies a certain �niteness criterion of default

proofs. This is essential for our results concerning skeptical reasoning in Section 5.

5

Note that an inconsistent default theory has no bases. To be consistent with the usual de�nition of provability,

we therefore extend this de�nition and say that fg is a default proof of any g from an inconsistent � .
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Remark 2.9 If g is provable from a default theory (D;W ) then we can �nd a �nite base of

(D;W ) proving g .

Theorem 2.6 illustrates that extensions can be generated by successively applying defaults.

Moreover, De�nition 2.7 in conjunction with Proposition 2.8 ensure that default proofs can be

found in the very same fashion by successively generating and extending bases. In the following

section, we identify the application of a default with the execution of an action within a current

set of beliefs (along with some constraints), referred to as a situation. Hence, searching for bases

in order to provide a default proof can be formulated as a planning problem. The latter is solved

as soon as the formula we want to prove is a logical consequence of the situation at hand.

3 Planning

Understanding and modeling the ability of humans to reason about dynamically changing worlds

is one of the key issues in Arti�cial Intelligence and Cognitive Science (see e.g. [1]). The fun-

damental concepts to describe the behavior of dynamic systems are situations and actions. A

situation is a snapshot of the world at a particular instant. Actions serve as descriptions of

the dynamical aspect by de�ning how situations can be transformed. An important applica-

tion of this kind of information processing is the �eld of planning , which describes the problem

of searching for a sequence of actions such that its successive application transforms a given

situation into a situation satisfying a certain criterion, given by the goal speci�cation.

In case of deductive planning , situations are represented by means of logical formulas. The

formal concept is as follows:

De�nition 3.1 A deductive planning problem is a quadruple (�;
; I; g) where � , the space

of situations , is a set of sets of formulas, 
 is a set of partially de�ned functions of type � 7! �

(called operations or actions), I 2 � (called initial situation), and g is an arbitrary formula

(the goal speci�cation).

An action a 2 
 is called applicable in a situation S 2 � i� a(S) is de�ned. In this case

the application of a to S yields the new situation a(S) . A solution to a planning problem

consists of a �nite sequence [a

1

; : : : ; a

n

] of actions, called a plan, such that there exist situations

S

0

; : : : ;S

n

2 � where S

0

� I , S

n

j= g , and for each i = 1 : : :n , a

i

is applicable in S

i�1

and

its application yields S

i

.

A planning problem is called solvable if it has a solution.

In what follows, we use the concept of deductive planning problems to develop a proof theory

for credulous reasoning in Constrained Default Logic. To this end, a particular set of beliefs

along with a set of constraints is interpreted as a situation in the sense of De�nition 3.1. To be

more precise, we consider expressions of the form

S [ f co ( � ) g (1)

as situations, where S is a set of closed �rst-order formulas (representing the set of beliefs

Th(S) ), co is a special unique predicate, and � is a closed �rst-order formula (representing

the constraints Th(�) ). Note that even if S is written as a conjunction of its elements, (1) is

not a �rst-order formula. We will discuss the consequences of this fact later in this section.

Based on this representation, each default of a given default theory is interpreted as an

action which, when executed in a situation, changes the current sets of beliefs and constraints,

respectively, in the spirit of Theorem 2.6. We adopt the notion of applicability which is implicitly

8



determined by Theorem 2.6 to de�ne applicability of actions in situations of the form (1).

Altogether, the problem of �nding a default proof within the context of Constrained Default

Logic is interpreted in terms of deductive planning problems as follows:

De�nition 3.2 If � = (D;W ) is a closed default theory and g a formula then the corre-

sponding planning problem P

�;g

= (�;
; I; g) is as follows:

1. The set of possible situations � contains each expression of the form (1) where S is any

closed set of �rst-order formulas and � is a closed �rst-order formula.

2. 
 contains exactly one element �

0

for each � =

� : �

!

2 D . Such an action �

0

2 
 is

de�ned for a situation S 2 � i�

(a) S j= � and

(b) � [ f�g [ f!g 6j= ? where co(�) 2 S .

If �

0

is de�ned then �

0

(S) := (S n fco(�)g) [ f!; co(�^ � ^ !)g .

3. I = W [ fco(W )g .

Note that in general the application of an action is nonmonotonic because a fact co(�) which

holds in some situation S usually becomes false by replacing it by some co(�

0

) . Hence, as the

applicability of an action depends on a fact of this form (via condition 2(b) above), the property

of an action to be applicable in a certain situation might be lost in later situations. This is an

important general characteristic of dynamical systems.

For the sake of simplicity, we will not distinguish between the name � of a default and the

corresponding element �

0

2 
 in what follows. Before formally proving the adequateness of our

formalization, let us illustrate it by the running example.

Example 2.2 (continued) Recall default theory �

2

. If g is the atom fun then a solution

to the corresponding planning problem P

�

2

;g

is depicted in Figure 1. The resulting plan [�

1

; �

3

]

corresponds to the base f�

1

; �

3

g which is a default proof of fun from �

2

. Note that the action

representing �

2

=

ho : ra

ba

is not applicable in the resulting situation due to fho ^ :ra ^ sw ^

fung [ frag [ fbag j= ? .

This example illustrates a one-to-one correspondence between the formation of bases and the

generation of plans. As this observation holds in general, we are able to prove that credulous

reasoning can be adequately modeled by solving deductive planning problems:

Theorem 3.3 Let � be a default theory and g be a closed formula then g is provable from

� i� P

�;g

is solvable.

Proof: If � is inconsistent then W is inconsistent and there is exactly one constrained

extension, viz. (Th(?);Th(?)) (see [57]), i.e. each g is provable from � (recall Footnote 5).

Similarly, since W is part of the initial situation of P

�;g

, [ ] is a solution to g due to g 2

Th(W ) = Th(?) .

Now, assume � = (D;W ) to be consistent.

\) ": If g is provable from � then we can �nd a �nite base D

0

= h�

1

; : : : ; �

n

i � D

proving g according to Remark 2.9. By induction on n we show that there is a solution p to

P

�;g

= (�;
; I; g) which satis�es the following conditions:

1. p contains exactly the elements of D

0

and
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[�

1

; �

3

] f ho; sw; fun; co(ho ^ :ra ^ sw ^ fun) g

�

3

=

sw : fun

fun

fho; swg j= sw

fho ^ :ra ^ swg [ ffung [ ffung 6j= ?

?

[�

1

] f ho; sw ; co(ho ^ :ra ^ sw) g

�

1

=

ho ::ra

sw

fhog j= ho

fhog [ f:rag [ fswg 6j= ?

?

[ ] f ho; co(ho) g

Plan Situation

Testing Applicability

Figure 1: A solution to the planning problem P

�

2

;fun

generating the plan [�

1

; �

3

] .

2. p transforms the initial situation I into a situation S [ fco(�)g such that S � W [

Conseq(D

0

) and � � W [ Justif (D

0

) [ Conseq(D

0

) .

In case n = 0 we have D

0

= fg and W j= g . Since I = W [ fco(W )g due to De�nition 3.2

we conclude that I j= g and, hence, the empty sequence [ ] of actions solves P

�;g

.

If n > 0 then let D

0

n�1

= h�

1

; : : : ; �

n�1

i and �

n

=

�

n

: �

n

!

n

. Clearly, D

0

n�1

is grounded since

D

0

= h�

1

; : : : ; �

n

i is grounded. Furthermore, D

0

n�1

is a default proof of �

n

due to De�nition 2.5.

Thus the induction hypothesis implies that there is a solution p

n�1

to the planning problem

(�;
; I; �

n

) such that p

n�1

contains exactly the elements of D

0

n�1

, and applying p

n�1

to I

yields a situation S

n�1

[ fco(�

n�1

)g such that S

n�1

j= �

n

and

S

n�1

� W [ Conseq(D

0

n�1

) (2)

�

n�1

� W [ Justif (D

0

n�1

) [ Conseq(D

0

n�1

) : (3)

Following De�nition 3.1 and De�nition 3.2, �

n

is applicable in S

n�1

[fco(�

n�1

)g due to S

n�1

j=

�

n

, W [Justif (D

0

)[Conseq(D

0

) 6j= ? , and �

n�1

[f�

n

g[f!

n

g � W [Justif (D

0

)[Conseq(D

0

) .

Applying �

n

to S

n�1

[ fco(�

n�1

)g yields S

n�1

[ f�

n

g [ fco(�

n�1

^ �

n

^ !

n

)g . From (2) it

follows that S

n�1

[ f!

n

g � W [Conseq(D

0

) , hence applying p

n�1

followed by �

n

to I solves

the original planning problem P

�;g

. Furthermore, from (3) we conclude �

n�1

^ �

n

^ !

n

�

W [ Justif (D

0

) [ Conseq(D

0

) .

\( ": Let p = [�

1

; : : : ; �

n

] be a solution to the planning problem P

�;g

. By induction on n

we show that D

0

= h�

1

; : : : ; �

n

i � D is a default proof of g . Furthermore, if S

n

[fco(�)g is the

result of applying p to I then S

n

� W [Conseq(D

0

) and � � W [ Justif (D

0

)[Conseq(D

0

) .

As the base case n = 0 can be proved as above, we directly turn to the induction step and

assume n > 0 . Let p

n�1

= [�

1

; : : : ; �

n�1

] , �

n

=

�

n

: �

n

!

n

, and let S

n�1

[fco(�

n�1

)g be the result

of applying p

n�1

to I . The induction hypothesis implies that D

0

n�1

= f�

1

; : : : ; �

n�1

g is a base

such that again (2) and (3) hold.

From De�nition 3.1, De�nition 3.2, and the fact that �

n

is applicable in S

n�1

[ fco(�

n�1

)g

we conclude that S

n�1

j= �

n

and �

n�1

[f�

n

g[f!

n

g 6j= ? . Hence, D

0

is a base. Furthermore,

from (2) it follows that S

n�1

[ f!

n

g � W [ Conseq(D

0

) and, hence, D

0

is a default proof

of g due to S

n�1

[ f!

n

g j= g . Finally, from (3) we can conclude that �

n�1

^ �

n

^ !

n

�

W [ Justif (D

0

) [ Conseq(D

0

) .
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The above result illustrates that methods to solve deductive planning problems in the sense of

De�nition 3.1 can be applied to address the task of automatically performing credulous reason-

ing in Constrained Default Logic. The question naturally arises whether and how approaches

known from the �eld of planning are applicable to our problem class, which is given by De�ni-

tion 3.2. Today there exists a variety of deductive planning methods. Usually, each framework is

characterized by the particular way it solves the so-called frame problem [43].

6

Many approaches

are based on the situation calculus [43, 45] where each atomic expression contains an additional

argument to characterize a particular situation to which this atom refers. The frame problem

within the situation calculus was tackled by a collection of frame axioms in [25] or [34], by a

nonmonotonic rule in [44], or by so-called successor state axioms in [52]. On the other hand,

there are methods which are not based on the situation calculus and which do not require special

axioms to solve the frame problem, e.g. Strips [21, 36], the Linear Connection Method [5], an

approach [42] based on Linear Logic [23], and a method [28] based on logic programming with

equational theories [31, 22, 27].

A principal di�culty stems from the fact that in our application situations are characterized

by formulas of the form (1), i.e. particularly containing a subformula co(�) where � itself

can be an arbitrary �rst-order formula. This restricts the number of approaches which are

directly applicable, and methods which use the concept of rei�cation appear to be the most

suitable ones. This is so because in rei�ed approaches predicates describing a situation are

treated as terms and they are therefore more exibly manipulable than in �rst-order logic.

The equational logic programming based approach [28] mentioned above is such a method. To

illustrate how the technique developed above can be used to obtain concrete proof systems, we

will investigate the applicability of the aforementioned method to deductive planning problems

de�ned in De�nition 3.2 in the following section.

An interesting suggestion to weaken De�nition 3.1 where a plan is a totally ordered set of

actions, is provided by planning methods which create partial plans such as in [56, 35, 14]. If two

or more actions can be executed in either order then it is not necessary to require the members

which constitute a plan to be totally ordered. This resembles the proof theory developed by

Reiter where a default proof actually consists in several sets of defaults which are ordered among

themselves whereas each such set is unordered.

Aside from developing a large number of planning formalisms and systems, recent work fo-

cused on complexity analyses to �x restricted problem classes that are especially tractable.

Correspondingly, some tractable subclasses of default theories have been �xed in e.g. [33]. The

link provided by our formalization enables us to enrich this collection by adopting results known

from planning. Although a detailed discussion of how to apply such results to Default Logic is

beyond the scope of this paper, we want to illustrate this point by two examples taken from

[3] and [12], respectively. Both examples can be directly adapted to form two classes of default

theories for which credulous entailment is decidable in polynomial time:

Theorem 3.4 Let � = (D;W ) be a propositional, normal default theory such that

1. W is a conjunction of literals,

2. for each � 2 D , Prereq(�) is a conjunction of literals and Justif (�) = Conseq(�) is a

single literal, and

3. there are no �

1

; �

2

2 D such that Prereq(�

1

) [ Prereq(�

2

) j= ? .

6

The (technical) frame problem addresses the task to formalize the natural assumption that facts which hold in

a situation and which are not a�ected by the action to be applied, continue to hold in the resulting situation.
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If g is a conjunction of literals then determining the existence of a default proof of g from �

is polynomial.

Proof: The result follows from Theorem 6.1 in [3] and Theorem 3.3. The former theorem

implies that determining the existence of a solution to the corresponding planning problem P

�;g

is polynomial.

Theorem 3.5 Let � = (D;W ) be a propositional, normal default theory such that

1. W is a conjunction of literals and

2. for each � 2 D , Prereq(�) is a single literal and Justif (�) = Conseq(�) is a conjunction

of literals.

If g is a literal then determining the existence of a default proof of g from � is polynomial.

Proof: The result follows from Theorem 3.8 in [12] and Theorem 3.3. The former theorem

implies that determining the existence of a solution to the corresponding planning problem P

�;g

is polynomial.

Notably, the two previous results hold for all Default Logics mentioned in this paper. This is so

because Constrained Default Logic coincides with Reiter's Default Logic (see Theorem 5.8) as

well as the variants of  Lukaszewicz [39] and Brewka [8] on the class of normal default theories

(see [17] for details).

Likewise, many other complexity results found in the context of planning, e.g. [14, 11, 2, 3]

can be applied to obtain classes of default theories for which credulous reasoning is simpler than

in the general case (which is known to be �

p

2

-complete [24, 66, 13]).

Finally, let us briey illustrate how open defaults can be treated in our representation. Let

�(x) =

�(x) : �(x)

!(x)

be such a default with free variables x . The usual interpretation in default

logics is to take these defaults as representatives for all their in�nitely many ground instanti-

ations. This resembles the usual distinction that is made between an operator and an action

in the context of deductive planning: �(x) is handled as a single operator while each instance

�(t) is called an action, where t is a sequence of ground terms. Based on this re�nement,

De�nition 3.2 can be straightforwardly modi�ed if the notions of applicability and application

are de�ned wrt. instances of members of 
 . Consider, for example, the default theory

�

f�(x) =

bird (x) :ies(x)^:peng (x)

ies(x)

g ; fbird(a); bird(b); peng(b)g

�

then the action �(a) is an instance of the operator �(x) . This action is applicable in the

corresponding initial situation, and its application yields

fbird(a); bird(b); peng(b);ies(a)g [ co ( fbird(a); bird(b); peng(b);:peng(a);ies(a)g )

whereas �(b) is not applicable due to :peng(b) contradicting the background knowledge.

 Lukaszewicz' Variant

Our claim is that the application of deductive planning to reasoning in Default Logics is not re-

stricted to the particular variant we have discussed so far but can be useful in general derivatives,

provided they are semi-monotonic. This shall be illustrated by showing how the main de�nition

above can be modi�ed to serve as an adequate proof mechanism for  Lukaszewicz' variant of
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classical Default Logic [39]. The major di�erence between his de�nition of justi�ed extensions

and constrained extensions is that the former employs a weaker consistency requirement. For-

tunately, as has been shown by Risch [54], it is possible to characterize justi�ed extensions in

the sense of De�nition 2.2 in a truly iterative fashion in analogy to Theorem 2.6:

Theorem 3.6 Let (D;W ) be a default theory and E; J be two sets of formulas. E wrt. J

is a justi�ed extension of (D;W ) i� there exists a maximal (wrt. set inclusion), grounded set

D

0

such that D

0

� D , E [ f�g 6j= ? for each � 2 Justif (D

0

) , and the following holds:

1. E = Th(W [ Conseq(D

0

))

2. J = Justif (D

0

)

Similar to the approach developed in Section 3, this theorem can straightforwardly be used to

formalize the search for a credulous proof in  Lukaszewicz' Default Logic as a deductive planning

problem. To this end, let a situation description be of the form

S [ f ju ( � ) g (4)

where S is a set of closed �rst-order formulas and � is a �rst-order formula while ju is a

special predicate symbol similar to co , i.e. here � is intended to contain the current set of

justi�cations. On the analogy of De�nition 3.2 we then de�ne

De�nition 3.7 If � = (D;W ) is a default theory and g a formula then the corresponding

planning problem P

�;g

= (�;
; I; g) wrt. De�nition 2.2 is as follows:

1. The set of possible situations � contains each expression of the form (4) where both S

and � are closed sets of �rst-order formulas.

2. 
 contains exactly one element �

0

for each � =

� : �

!

2 D . Such an action �

0

2 
 is

de�ned for a situation S 2 � i�

(a) S j= � and

(b) 8 2 � [ f�g: S [ f!g [ fg 6j= ? where ju(�) 2 S .

If �

0

is de�ned then �

0

(S) := (S n fju(�)g) [ f!; ju(�[ f�g)g .

3. I = W [ fju(fg)g .

As in Section 3 it is possible to prove the adequateness of this de�nition as regards credulous

entailment in  Lukaszewicz' variant of Default Logic:

Theorem 3.8 Let � be a closed default theory and g be a closed formula then g is provable

from � i� P

�

(wrt. De�nition 3.7) has a solution.

4 The Equational Logic Programming Approach

To illustrate the applicability of the ideas developed in the previous section, we will use an

approach based on logic programming with an underlying equational theory (ELP for short)

to implement credulous reasoning for a subclass of default theories which we call conjunctive

default theories : If each of the three components of �(x) =

�(x) : �(x)

!(x)

is a conjunction of literals

then � is called a conjunctive default, and � = (D;W ) is a conjunctive default theory i� each
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default in D is conjunctive and W is a set of conjunctions of literals as well.

7

Our class is

similar to the most expressive class of default logics considered by Kautz and Selman [33] who

call them disjunction-free theories, but who additionally require semi-normal defaults, i.e. each

default has to be of the form

�(x) : �(x)^!(x)

!(x)

.

Let us �rst of all briey summarize the notions and notations regarding logic programs with

underlying equational theories as used, for instance, in [22, 27, 63]. A normal logic program [38]

consists of a �nite set of clauses A L

1

; : : : ; L

m

(m � 0 ), where the head A is an atom

and the elements of the body L

1

; : : : ; L

m

are literals. A normal goal is a clause of the form

 L

1

; : : : ; L

m

(m � 0 ) where L

1

; : : : ; L

m

are again literals. If m = 0 then the so-called empty

goal is denoted by 2 . In what follows, we adopt the usual practice and denote variables by

uppercase letters such as X; Y; : : : , and predicate and function symbols are written using lower

case letters.

In a normal equational logic program (P;E) , the program P itself is augmented by a special

equational theory E which de�nes an equality relation on the terms.

8

Formally, such a theory

E consists of a set of expressions s = t which are implicitly assumed to be universally closed.

Two terms s and t are called E-equivalent | written s =

E

t | if they are equal wrt. E .

For instance, if E

C

= fX � Y =

E

C

Y �Xg describes the law of commutativity for the binary

function � then a �X =

E

X � a . A substitution � is called an E-uni�er of two terms s and

t i� s� =

E

t� . If such a substitution exists then s and t are called E-uni�able. For instance,

a �X and b � Y are not uni�able in general, but they are E

C

-uni�able using the E

C

-uni�er

fX 7! b; Y 7! ag . The notion of E-uni�ers is extended to atoms in the obvious way.

An adequate computation procedure for normal equational programs is SLDENF-Resolution

9

[63, 69]: This resolution principle is based on the integration of the equational theory into

the uni�cation procedure [31, 22, 27]. Furthermore, negative subgoals :A are treated by

the negation-as-failure concept [15], i.e. by trying to prove that each derivation of the a�r-

mative part A fails. More formally, let (P;E) be a normal equational logic program and

G =  L

1

; : : : ; L

k

; : : : ; L

m

a normal goal. An SLDENF-derivation of (P;E) [ fGg consists

of a sequence of single SLDENF-steps which are successively applied to G wrt. (P;E) . An

SLDENF-step applied to G wrt. (P;E) consists of selecting a literal L

k

of G ( 1 � k � m ).

If L

k

is positive then let A B

1

; : : : ; B

l

be a new variant of a program clause in P such that

its head A and the selected literal L

k

are E-uni�able with E-uni�er � . Then, the result

of this SLDENF-step is the goal  (L

1

; : : : ; L

k�1

; B

1

; : : : ; B

l

; L

k+1

; : : : ; L

m

)� . If, on the other

hand, L

k

is a negative literal :A then we try to determine whether each SLDENF-derivation

of  A fails: An SLDENF-derivation is successful if it ends up with the empty clause 2 , and

it fails if the �nal goal is non-empty and no further SLDENF-derivation step is possible. If each

SLDENF-derivation of  A fails then the negative literal L

k

� :A has been solved and is

removed from G . Otherwise, the original derivation of (P;E) [ fGg fails at this point. It is

assumed that negative literals are only selected if they are ground [15]. A successful derivation

is also called a refutation. The combination of all E-uni�ers used during a refutation, restricted

to the variables in the original goal, is called computed answer substitution. All these concepts

will be illustrated by examples later in this section.

The most signi�cant feature of the ELP based approach to planning is that a situation is

completely rei�ed by representing the various facts which hold in this situation as terms. These

terms are connected via a binary function symbol denoted by � [28, 26, 29, 30, 70]. This

7

A conjunction of literals is also called a 1CNF-formula, e.g. in [33, 13].

8

As equality relations are intended to be de�ned by the additional theory E , no head of a program clause in

P shall contain the equality predicate =

E

.

9

I.e. linear resolution with selection function on de�nite clauses with equality and negation-as-failure

14



representation technique can be applied to (sets of) conjunctions of literals: An atom p(t) is

represented by the identical term p(t) but p is treated as a function symbol. A negative literal

:p(t) is represented by additionally employing a unary function which denotes the negation of

its argument, illustratively written as [p(t)]

�

. For instance, the formula ho ^ fun ^ :ra can be

represented by the term

( ho � fun ) � ra

�

(5)

where the connective � is written in in�x notation. As a set of formulas can be adequately

interpreted as a conjunction of its elements, a set of conjunctions of literals is treated in the very

same way, i.e. (5) shall as well be a representation of fho; fun ^:rag etc. The formal de�nition

of how to represent conjunctions and sets of conjunctions is as follows:

De�nition 4.1 The representation � of a conjunction (resp. a set of conjunctions) of literals

10

is inductively de�ned by

1. �

a

= a ,

2. �

:a

= a

�

,

3. �

l

1

^:::^l

n

= �

l

1

� � � � � �

l

n

,

4. �

ff

1

;:::;f

n

g

= �

f

1

� � � � � �

f

n

, and

5. �

>

= �

fg

= ;

where a is an atom (treated as a term on the right hand side), l

1

; : : : ; l

n

are literals, f

1

; : : : ; f

n

are conjunctions of literals ( n � 1 ), and ; is a special constant.

To ensure the adequateness of De�nition 4.1, we have to introduce some properties of our

connection function � . Obviously, the occurrence of parentheses and the order of the subterms

should be irrelevant in so far as e.g. fun � (ra

�

� ho) should denote the very same situation

as (5). We therefore employ an equational theory which captures the intention of our special

function symbol. More precisely, � is required to be associative, commutative, and to admit

the constant ; (introduced in the previous de�nition) as its unit element de�ning the empty

situation or, equivalently, the formula > . Formally, the equational theory (AC1) de�ned by the

three axioms

X � ( Y � Z ) = ( X � Y ) � Z

X � Y = Y � X

X � ; = X

(AC1)

is fundamental for our approach, i.e. whenever terms are compared or have to be uni�ed then

comparison and uni�cation is performed modulo (AC1). Due to the �rst axiom of associativity

we are allowed to omit all parentheses at the level of � . Based on this equational theory, we

can make the following observation:

Remark 4.2 Let � and 	 be two sets of conjunctions of literals then

1. � � 	 i� �

�

=

AC1

�

	

,

11

2. � is inconsistent i� �

�

=

AC1

t � t

�

� s for some terms s; t , and

10

For the sake of simplicity, we assume here and in the sequel that no conjunction or set of conjunctions is

redundant in so far as it contains a single literal more than once.

11

Of course this is only true in case neither � nor 	 contain some literal twice or more (recall Footnote 10)

because a 6=

AC1

a � a , say. The reason for not requiring � to be idempotent is explained below.
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3. if � is consistent and f is a literal then � j= f i� �

�

=

AC1

�

f

� s for some term s ,

where � denotes logical equivalence and =

AC1

denotes equality wrt. the theory (AC1).

As our formalism is based on rei�cation, it admits an elegant way to integrate the second

order component, which occurs in situations of the form (1). If � is a conjunction of literals

then the special formula co(�) can be represented by the term

co ( �

�

)

where we treat co as a unary function symbol and �

�

denotes the term representation of �

as de�ned above. For instance, the resulting situation after having applied the �rst default �

1

depicted in Figure 1 can be encoded via

ho � sw � co ( ho � ra

�

� sw ) : (6)

Having discussed the formalization of situations, we now concentrate on the representation

of action descriptions, which are used to transform situations. In the ELP based approach, an

action description is determined by its name a and two terms c

1

� � � � � c

m

, called conditions ,

and e

1

� � � � � e

n

, called e�ects . Such an action description is introduced in the program via a

unit clause based on the ternary predicate action , viz. by

action ( c

1

� � � � � c

m

; a ; e

1

� � � � � e

n

) : (7)

For instance, the fact

action ( sw � co(X) ; �

1

; sw � fun � co(X � fun) ) (8)

will be used later to encode the action corresponding to the default �

3

=

sw : fun

fun

in Example 2.2.

An action description is said to be applicable in a situation represented by the term s i�

its conditions can be satis�ed in s and the resulting situation is consistent. More precisely,

conditions c

1

� � � � � c

m

can be satis�ed in s i� we can �nd a substitution � for the variables

occurring in the conditions such that each c

i

� is contained in s . In other words, we have to

�nd a solution � to the AC1-uni�cation problem

(c

1

� � � � � c

m

� V )�

?

=

AC1

s� (9)

where V is a variable not occurring elsewhere. For instance, the conditions of (8) can be satis�ed

in (6) because the corresponding uni�cation problem

( sw � co(X) � V ) �

?

=

AC1

( ho � sw � co(ho � ra

�

� sw) ) � (10)

is solvable using the AC1-uni�er � = fX 7! ho � ra

�

� sw ; V 7! hog . Now, if an instance of an

action description (7) is applied to a situation s then the resulting situation is computed via

removing the conditions (c

1

�� � ��c

m

)� from s and adding the e�ects (e

1

�� � ��e

n

)� afterwards.

12

To formally perform these two operations, observe that a side e�ect of solving the uni�cation

problem (9) is that the variable V becomes bound to exactly those subterms which are in s

12

Thus, planning in this approach is related to planning in Strips [21, 36] yet it is performed in a purely

deductive context. In [70] or [7] it is illustrated that this fundamental di�erence allows for applying this

approach to more general problem classes in the context of reasoning about actions and change, e.g. postdiction

problems, nondeterministic actions, reasoning about hypothetical developments of a dynamical system [68],

and concurrent actions.
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but not amongst the conditions. Hence, the task left is to add the e�ects (e

1

� � � � � e

n

)� to the

term V � yielding the new situation (V � e

1

� � � � � e

n

)� .

13

For instance, the application of (8)

to (6) via � = fX 7! ho � ra

�

� sw ; V 7! hog results in the new situation term

ho � sw � fun � co ( ho � ra

�

� sw � fun ) :

The reasoning process described so far can be encoded via two program clauses de�ning the

ternary predicate causes with the intended meaning that the instance causes (i; [a

1

; : : : ; a

n

]; g)

is true if the middle argument is a sequence of action names whose successive application to the

situation term i yields the situation term g :

14

causes ( I ; [ ] ; G )  I =

AC1

G:

causes ( I ; [A jP ] ; G )  action (C ; A ; E );

C � V =

AC1

I;

: inconsistent (V �E );

causes (V �E ; P ; G ):

(11)

Hence, if the empty sequence of actions is applied then i and g are required to be identical

modulo (AC1). Otherwise we have to �nd an action description with name A = a

1

, conditions

C , and e�ects E such that an instance of C is contained in i and the resulting situation V �E

is consistent and used as the �rst argument of the recursive call which employs the remainder

P = [a

2

; : : : ; a

n

] of the sequence of actions.

Finally, we have to de�ne the notion of inconsistency in view of our application. According

to De�nition 3.2, 2(b), a situation is de�ned to be inconsistent i� it contains a subterm co(�

�

)

such that � is (classically) inconsistent. The latter condition can be easily �xed via Remark 4.2

so that we need the clause

inconsistent (V � co(X � Y � Y

�

) ) : (12)

Example (8) already illustrates how defaults can be encoded via unit clauses representing the

respective action descriptions. In general, the conditions of an action description of the form (7)

consist of the prerequisite of the corresponding default | e.g. sw in (8) | along with the

subterm co(X) in order to be prepared for changing the current context of reasoning given

by the set of constraints. As it is not intended to lose the prerequisite, it is included in the

e�ects together with the consequence | e.g. fun in (8). Furthermore, the set of constraints

is augmented by both justi�cation and consequence of the default | which both are the atom

fun in (8). Formally, given a �nite set f�

1

=

�

1

: �

1

!

1

; : : : ; �

m

=

�

m

: �

m

!

m

g of closed, conjunctive

defaults, the following program clauses are generated:

action ( �

�

1

� co(X) ; �

1

; �

�

1

� �

!

1

� co(X � �

�

1

� �

!

1

) ) :

.

.

.

action ( �

�

m

� co(X) ; �

m

; �

�

m

� �

!

m

� co(X � �

�

m

� �

!

m

) ) :

(13)

13

Note that this method does not require any additional e�ort to solve the frame problem (c.f. Footnote 6)

because each member of a situation term which is not amongst the conditions or e�ects, respectively, is

obviously contained in the resulting situation term. For this solution to the frame problem it is important

that the function � is not required to be idempotent (i.e. t � t 6=

AC1

t ) since otherwise (10) would have

the second, unintended solution � = fX 7! ho � ra

�

� sw ; V 7! ho � sw � co(ho � ra

�

� sw)g . This would be

undesired as V contains the subterm co(ho � ra

�

� sw ) which shall not be amongst the facts which continue

to be true in the resulting situation (see e.g. [30]).

14

In what follows we adopt the usual Prolog notation [hjt] to denote a sequence with head h and tail t .
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action(ho � co(X); �

1

; ho � sw � co(X � ra

�

� sw)):

action(ho � co(X); �

2

; ho � ba � co(X � ra � ba)):

action(sw � co(X); �

3

; sw � fun � co(X � fun)):

 causes(ho � co(ho); L; sw � Z)

?

�

1

= f I 7! ho � co(ho); L 7! [AjP ]; G 7! sw � Z g

 action(C;A;E); C � V =

AC1

ho � co(ho); :inconsistent(V �E); causes(V �E;P; sw � Z)

?

�

2

= fC 7! ho � co(X); A 7! �

1

; E 7! ho � sw � co(X � ra

�

� sw) g

 ho � co(X) � V =

AC1

ho � co(ho); :inconsistent(V � ho � sw � co(X � ra

�

� sw));

causes(V � ho � sw � co(X � ra

�

� sw); P; sw � Z)

?

�

3

= fX 7! ho; V 7! ; g

 :inconsistent(ho � sw � co(ho � ra

�

� sw)); causes(ho � sw � co(ho � ra

�

� sw); P; sw � Z)

?

 causes(ho � sw � co(ho � ra

�

� sw); P; sw � Z)

?

�

4

= f I

0

7! ho � sw � co(ho � ra

�

� sw); P 7! [ ]; G

0

7! sw � Z g

 ho � sw � co(ho � ra

�

� sw) =

AC1

sw � Z

?

�

5

= fZ 7! ho � co(ho � ra

�

� sw) g

2

Figure 2: An SLDENF-refutation of (P

�

2

;AC1) [ f causes (ho � co(ho); L; sw � Z)g , where

P

�

2

consists of the clauses (11) and (12) along with the facts depicted at the top.

To summarize, a closed, conjunctive default theory � = (D;W ) is translated into the equational

logic program (P

�

;AC1) where P

�

consist of the clauses (11), (12), and (13).

As an example, consider the default theory �

2

of Example 2.2 whose defaults are represented

via the three clauses depicted at the top of Figure 2. Let P

�

2

consist of the clauses (11) and (12)

along with these three facts. As the background knowledge of �

2

is fhog , the initial situation

is represented by the AC1-term ho � co(ho) according to De�nition 3.2. Now, in order to test

whether the planning problem P

�

2

;sw

, say, is solvable we try to derive the empty goal 2 given

the goal  causes (ho � co(ho); L; sw � Z) via SLDENF-resolution and (P

�

2

;AC1) . In other

words, we try to �nd a sequence of actions L such that its application to ho � co(ho) yields

the situation sw � Z for some arbitrary Z . A corresponding SLDENF-refutation is depicted

in Figure 2.

15

Observe that the fourth step (the one not labeled with a uni�er) is justi�ed

by the fact that the goal  inconsistent (ho � sw � co(ho � ra

�

� sw)) fails as the two terms

ho � sw � co(ho � ra

�

� sw) and V � co(X � Y � Y

�

) (cf. clause (12)) are not AC1-uni�able.

The refutation yields the computed answer substitution fL 7! [�

1

]; Z 7! ho � co(ho � ra

�

� sw)g .

Hence, [�

1

] is a solution to our planning problem P

�

2

;sw

.

By investigating this refutation it becomes obvious that applying the second clause in (11)

and solving the �rst three subgoals resembles the topmost planning step depicted in Figure 1.

15

The variables I

0

and G

0

denote new copies of the variables I and G in the �rst program clause of (11).
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This observation provably holds in general:

Lemma 4.3 Let � = (D;W ) be a closed, conjunctive default theory which determines a set

of situations � along with a set of actions 
 according to De�nition 3.2. Furthermore, let

S [ fco(�)g be a situation where both the set of conjunctions S and the conjunction � are

consistent. Then, an action � is applicable in S [ fco(�)g and yields S

0

[ fco(�

0

)g i� the

goal  causes (�

S

� co(�

�

); [�jp]; g) can be reduced to  causes (�

S

0
� co(�

�

0
); p; g) for arbitrary

terms p; g via (P

�

;AC1) and SLDENF-resolution.

Proof: Let � =

� : �

!

. The goal  causes (�

S

� co(�

�

); [�jp]; g) can always be AC1-

uni�ed with the head of the second de�nition of causes in (11) but it is not uni�able with

the head of any other clause, since [�jp] and [ ] are never AC1-uni�able. Using the AC1-uni�er

fI 7! �

S

� co(�

�

); A 7! �; P 7! p; G 7! gg , the resulting goal is

 action (C; �; E) ;

C � V =

AC1

�

S

� co(�

�

) ;

:inconsistent (V �E) ;

causes (V �E; p; g) :

Since � 2 D , the �rst literal in this goal is uni�able with the head of exactly one clause, viz.

the particular clause in (13) which stems from the translation of � . Using the AC1-uni�er

fC 7! �

�

� co(X); E 7! �

�

� �

!

� co(X � �

�

� �

!

)g the resulting goal is

 �

�

� co(X) � V =

AC1

�

S

� co(�

�

) ;

:inconsistent(V � �

�

� �

!

� co(X � �

�

� �

!

)) ;

causes (V � �

�

� �

!

� co(X � �

�

� �

!

); p; g) :

The uni�cation problem corresponding to the �rst literal has a solution i� each element occurring

in �

�

is also contained in �

S

, i.e. if and only if S j= � according to Remark 4.2. In this case,

there is a unique (modulo AC1) most-general uni�er which substitutes X by �

�

and V by a

term v such that �

�

� v =

AC1

�

S

. Hence, the above goal reduces to

 :inconsistent(�

S

� �

!

� co(�

�

� �

�

� �

!

)) ;

causes (�

S

� �

!

� co(�

�

� �

�

� �

!

); p; g) :

Due to Clause (12) de�ning consistency and since there is exactly one subterm with leading

function symbol co in the argument of the �rst literal above, we �nd that  inconsistent (�

S

�

�

!

� co(�

�

� �

�

� �

!

)) fails i� �

�

� �

�

� �

!

does not contain two subterms of the form t and t

�

.

According to Remark 4.2, this is equivalent to � [ f�g [ f!g 6j= ? .

To summarize, we are left with the goal

 causes (�

S

� �

!

� co(�

�

� �

�

� �

!

); p; g) (14)

i� the two requirements (a) and (b) of De�nition 3.2 are satis�ed, i.e. if � is applicable in

S [ fco(�)g . Furthermore, S

0

� S [ f!g and �

0

� � ^ � ^ ! according to De�nition 3.2.

Relating this to our �nal goal (14) proves our claim.

Having proved that the application of the second clause in (11) adequately models the per-

formance of a single planning step, we are now prepared to apply the ELP based approach to
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the problem class discussed in Section 3. Recall that plan p is a solution to a given planning

problem P

�;g

i� g is classically entailed by the situation which is obtained after applying p .

Following Remark 4.2, this can be easily checked in case of a conjunctive theory � and if g is

a variable-free conjunction of literals as well, provided the resulting situation S

n

is consistent.

This is guaranteed whenever the original default theory is consistent.

16

Hence, to ensure that

S

n

j= g , we simply require the corresponding term �

S

n

to be of the form �

g

� z for some

arbitrary term z (see also Figure 2):

Theorem 4.4 Let � = (D;W ) be a consistent closed and conjunctive default theory, g a

variable-free conjunction, and p a �nite sequence of elements of D . Then p is a solution to

the corresponding planning problem P

�;g

i� there is an SLDENF-refutation for  causes (�

W

�

co(�

W

); p; �

g

� Z) wrt. (P

�

;AC1) .

Proof: Let n be the length of p = [�

1

; : : : ; �

n

] .

In case n = 0 , p solves P

�

i� W j= g . Correspondingly, the goal  causes (�

W

�

co(�

W

); [ ]; �

g

� Z) can only be resolved with the �rst de�nition of causes in (11) since [ ]

and [AjP ] are not AC1-uni�able. Hence, we can �nd an SLDENF-refutation for the goal i�

�

W

� co(�

W

) and �

g

�Z are AC1-uni�able which is true i� each element occurring in �

g

is also

contained in �

W

. This is equivalent to W j= g according to Remark 4.2 since W is consistent

by assumption.

If n > 0 then by successively applying Lemma 4.3 n-times we conclude that applying p to

W[fco(W )g yields a situation S[fco(�)g if and only if the goal  causes (�

W

�co(�

W

); p; �

g

�Z)

can be reduced to some  causes (s � co(t); [ ]; �

g

� Z) such that s =

AC1

�

S

and t =

AC1

�

�

.

Now we can easily apply the argument above (where n = 0 ) to obtain the result.

In order to generate a plan, i.e. a default proof, the middle argument in a goal of the form

 causes (i; p; g) can be left variable:

Corollary 4.5 Let � = (D;W ) be a consistent closed and conjunctive default theory and g

a variable-free conjunction. Then g is provable from � i�  causes (�

W

� co(�

W

); P; �

g

� Z)

has an SLDENF-refutation wrt. (P

�

;AC1) .

Each refutation of such a goal determines a binding for the variable P which then denotes a

plan that solves the planning problem under consideration.

In case � is inconsistent, the empty plan solves P

�;g

for any g . Inconsistency of a default

theory means inconsistency of the background knowledge W . This can be checked in conjunctive

default theories wrt. clause (12) using the goal  inconsistent (co(�

W

)) .

On the analogy of the discussion at the very end of the previous section, it is also possible to

formalize open defaults in this approach. For instance, the default �(x) =

bird (x) :ies(x)^:peng (x)

ies(x)

can be encoded via the fact

action ( bird(X) � co(Y ) ; �(X) ; bird(X) � ies(X) � co(Y � ies(X) � peng(X)

�

) ) :

Now, for instance, let �

W

be an abbreviation of the term bird(a) � bird(b) � peng(b) then it is

easy to verify that the goal

 causes ( �

W

� co(�

W

) ; [�(a)] ; G)

can be reduced to

 causes ( �

W

� ies(a) � co(�

W

� ies(a) � peng(a)

�

) ; [ ] ; G)

16

This observation follows inductively from Lemma 4.3 and the fact that the application of a default to a

consistent situation S [ co(�) yields again a consistent situation.
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in the spirit of Lemma 4.3. In contrast, each SLDENF-derivation of

 causes ( �

W

� co(�

W

) ; [�(b)] ; G)

fails.

The reader should be aware of the fact that the approach presented in this section, as it stands,

is just an straightforward implementation of the ideas developed in Section 3. To constitute a

satisfactory and competitive system, improvements regarding e�ciency are needed. For instance,

AC1-uni�cation is known to be hard in general [10, 32] but, as argued in [26], we are only

concerned with very restricted uni�cation problems. This boils down to testing sub-multiset

relations, which can be computed much more e�ciently, namely in polynomial time. Moreover,

loop detecting mechanisms [64] should be applied to suppress the application of defaults that

do not provide new information. These and other aspects have been discussed in e.g. [9].

5 Skeptical Reasoning

Now we turn to the problem of skeptical reasoning in our exemplary default logic, namely

Constrained Default Logic. Recall that a formula is skeptically entailed by a default theory i�

it is contained in all of its extensions.

Example 5.1 Let �

3

= (D

3

;W

3

) be our default theory �

2

(cf. Example 2.2) augmented

by yet another default, viz. �

4

=

ba : fun

fun

. We obtain D

3

= f�

1

=

ho ::ra

sw

; �

2

=

ho : ra

ba

; �

3

=

sw : fun

fun

; �

4

=

ba : fun

fun

g and, as before, W

3

= fhog . �

3

has two constrained extensions, viz.

(Th(fho; sw ; fung);Th(fho;:ra ^ sw ; fung)) and (Th(fho; ba; fung);Th(fho; ra ^ ba; fung)) .

Both of them contain fun , hence this atom is skeptically entailed by �

3

. On the other hand,

neither sw nor ba are in all extensions while ho 2 W

3

trivially is skeptically entailed as well.

Note that in order to prove skeptical entailment of a formula g , it does not su�ce to show

that there is no default proof of :g , i.e. no extension containing :g , because there might be

extensions which make no statement about g at all.

A na��ve way to guarantee membership in every extension is to check all of them. From a

practical point of view, this is obviously not satisfactory, because it does not reect the idea of

locality whose important rôle has already been elaborated in the previous sections. Consider for

instance a default � =

: a

a

and assume that the atom a does not occur elsewhere. Certainly, a

is skeptically entailed whatever the concrete extensions are, since � can be regarded as a kind

of universal or unassailable proof of a . Hence there is no need to check all extensions for a .

Moreover, it is of course di�cult to check exponentially many extensions (in the worst case), or

even to create and investigate entire extensions built up from defaults totally unrelated to the

considered query.

Here, we follow a more promising approach whose underlying principle was originally applied

by Poole [50] to a restricted version of his nonmonotonic Theorist formalism [47, 48], and

which was extended to the entire Theorist framework by the �rst author [67]. Informally,

the approach is based on the notion of a discourse in which two protagonists alternately raise

arguments and counterarguments. Speci�cally, to prove skeptical entailment the �rst protago-

nist tries to �nd a single default proof of the formula under consideration, then his antagonist

replies by giving a counterargument which \annuls" this proof (this shall be formalized below).

Afterwards, it is again the �rst protagonist who searches for another default proof in view of the

restriction determined by the preceding counterargument, and so on. This procedure ends if it

is impossible to �nd either a default proof or a counterargument at some state. In the former
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case, the formula is not skeptically entailed while it is in the latter. Note that this method takes

into account locality: Take, for instance, the default � =

: a

a

which is a default proof of a that

cannot be refuted if a does not occur elsewhere in the theory. In this case, the above procedure

terminates with success after just a single step.

In the sequel, we develop a formal approach along with an algorithm based on the above

description while following the line of [67]. We start with the formal de�nition of skeptical

entailment in Constrained Default Logic. For this purpose, we have to formalize the aforemen-

tioned notion of discourse. This involves in particular the formalization of default proofs taking

into account the restrictions imposed by the antagonist's counterarguments. This is accom-

plished by a simple yet powerful extension to Constrained Default Logic, introduced in [59].

The basic idea is to supplement the set of constraints found in a constrained extension with

some sort of initial consistency constraints.

17

The purpose of these constraints is to direct the

reasoning process by enforcing their consistency. This is a well-known technique, also used in

Theorist [47]. These constraints allow us to capture the aforementioned restrictions on default

proofs. Formally, a default theory becomes a triple (D;W;C

P

);

18

where D and W are as

before and C

P

is some set of formulas. Then, a (pre-)constrained extension is speci�ed as in

Theorem 2.4 with the exception that C

0

:= W [ C

P

: This results in the following counterpart

to Theorem 2.6:

Theorem 5.1 Let (D;W ) be a default theory and E;C be two sets of formulas. (E;C) is

a constrained extension of (D;W ) i� there exists a maximal (wrt. set inclusion), grounded set

D

0

such that D

0

� D , W [ C

P

[ Justif (D

0

) [ Conseq(D

0

) 6j= ? and the following holds:

1. E = Th(W [ Conseq(D

0

))

2. C = Th(W [ Justif (D

0

) [ Conseq(D

0

))

Proof: Analogous to the one in [60].

The only di�erence between the previous speci�cation and the one given in Theorem 2.6 is

that C

P

enters the consistency criterion in Theorem 5.1.

The notion of a base is also extended in the obvious way: A base of a default theory

(D;W;C

P

); is a subset D

0

� D such that D

0

is grounded and W [ C

P

[ Justif (D

0

) [

Conseq(D

0

) 6j= ? . All other notions, like that of a default proof, remain the same. Hence,

the notion of skeptical entailment in Constrained Default Logic is formally de�ned as follows:

De�nition 5.2 A closed formula g is skeptically provable from a default theory � =

(D;W;C

P

) i� for each constrained extension (E;C) of � , we have g 2 E .

Another central rôle is played by the notion of credulous proving from certain bases . This

complements the proof-theoretic counterpart of �nding a default proof under certain restrictions.

Formally, we say that a closed formula g is provable from a base D

0

of some � = (D;W;C

P

)

i� there exists a default proof D

00

of g from � such that D

00

� D

0

. Recall Example 5.1:

Although sw is provable from �

3

, it is not provable from base f�

2

g since �

1

is inapplicable

once �

2

has been applied. This leads us to the following characterization of skeptical entailment

based on the concept of credulous proofs from given bases:

Lemma 5.3 Let � = (D;W;C

P

) be a default theory. A closed formula g is skeptically

provable from � i� it is provable from every base of � .

17

Called pre-constraints in [59].

18

Such a default theory is called a pre-constrained default theory in [59].
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Proof:

\) ": Assume that g is skeptically provable from � . For each base D

0

of � we can �nd

some maximal D

00

� D

0

such that (E

00

; C

00

) is a constrained extension of � , where

E

00

= Th(W [ Conseq(D

00

))

C

00

= Th(W [ C

P

[ Justif (D

00

) [ Conseq(D

00

)) :

From the fact that g is skeptically provable, we conclude that g 2 E

00

. Hence, W[Conseq(D

00

) j=

g . In other words, g is provable from D

0

(by using D

00

).

\( ": Assume that g is provable from every base. For each constrained extension (E

0

; C

0

) of

� = (D;W;C

P

) we can �nd a corresponding maximal base D

0

� D generating this extension

according to Theorem 5.1.

Let D

00

� D

0

be a default proof of g from D

0

, i.e. W [ Conseq(D

00

) j= g . From D

0

being

maximal we conclude that D

00

= D

0

and, hence, g 2 E

0

= Th(W [ Conseq(D

0

)) .

A second crucial point is the formalization of the concept of a counterargument against a

proof. Similar to the standard de�nition, we introduce the notion of orthogonality

19

of bases:

De�nition 5.4 Let (D;W;C

P

) be a default theory. Two bases D

0

and D

00

of (D;W;C

P

)

are called C

P

-orthogonal i�

W [ C

P

[ Justif (D

0

) [ Conseq(D

0

) [ Justif (D

00

) [ Conseq(D

00

) j= ? :

We simply say orthogonal whenever the given set of constraints is empty, i.e. C

P

= fg . For

instance, in Example 5.1 f�

1

g and f�

2

g are orthogonal due to :ra 2 Justif (f�

1

g) and ra 2

Justif (f�

2

g) .

As orthogonality is the formal characterization of what we call \annulling" a counterargument,

we are now prepared to formalize the discourse-based approach described at the beginning. The

following theorem claims that in order to prove skeptical entailment (i.e. provability from every

base according to Lemma 5.3), it su�ces to �nd a default proof and, furthermore, to ensure that

the formula under consideration is skeptically provable from every counterargument (i.e. from

every orthogonal base).

Theorem 5.5 Let � = (D;W;C

P

) be a default theory and g be a closed formula. Then, g

is provable from every base of � i� there exists a default proof D

0

of g from � such that the

following holds: For all bases D

00

of � which are C

P

-orthogonal to D

0

, g is provable from

D

00

.

Proof:

\) ": If g is provable from every base then it is in particular provable from the empty base

fg . Hence, there is a default proof of g from � . Furthermore, by assumption, g is clearly

also provable from every C

P

-orthogonal (wrt. D

0

) base.

\( ": We have to show that g is provable from every base of � . By assumption, g is

provable from every base which is C

P

-orthogonal to D

0

. Now, if D

00

is a base which is not

C

P

-orthogonal to D

0

then the combination D

0

[D

00

is also a base of � because it is obviously

grounded and we also have

W [ C

P

[ Justif (D

0

) [ Conseq(D

0

) [ Justif (D

00

) [ Conseq(D

00

) 6j= ? :

D

0

[ D

00

is a default proof of g from D

00

since just D

0

itself proves g . Hence, g is also

provable from every non-C

P

-orthogonal (wrt. D

0

) base, which proves our claim.

19

The term orthogonality was used in [51] to express that two extensions are mutually contradictory to each

other.
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Example 5.1 (continued) A default proof of fun from �

3

20

is D

0

= f�

1

; �

3

g . There are two

bases orthogonal ( fg-orthogonal, to be precise) to D

0

, namely D

00

1

= f�

2

g and D

00

2

= f�

2

; �

4

g .

Since f�

2

; �

4

g is also a default proof of fun , we conclude that fun is provable from D

00

1

as well

as D

00

2

. Hence, fun is skeptically entailed. On the other hand, although D

0

is also a proof of

sw , this atom is neither provable from D

00

1

nor from D

00

2

, thus it is not skeptically provable.

Furthermore, fg is a proof of ho 2 W

3

. Since fg is not orthogonal to any base, ho is therefore

skeptically entailed as well.

The above theorem suggests to investigate all orthogonal bases. This is likely to be a heavy

task and appears to be no improvement compared to the na��ve way of checking every extension

from the start. Fortunately it su�ces to investigate only minimal (wrt. set inclusion) orthog-

onal bases if we perform skeptical instead of credulous reasoning from these bases. This is a

consequence of the following observation.

Lemma 5.6 Let � = (D;W;C

P

) be a default theory and g be a closed formula. Furthermore,

let D

0

be a base of � . Then, g is provable from every base D

00

� D

0

of � i� g is skeptically

provable from �

D

0
:= (D;W [ Conseq(D

0

); C

P

[ Justif (D

0

)) .

Proof: If D

00

is a base of � such that D

00

� D

0

then D

00

is also a base of �

D

0

. Conversely,

a base D

00

of �

D

0
is also a base of � and, moreover, D

00

is equivalent to D

00

[ D

0

in any

case.

21

Hence, the set of bases of �

D

0

equals the set of bases of � which are supersets of D

0

.

Thus, the claim follows immediately from Lemma 5.3.

Example 5.2 Consider a slight modi�cation of our default theory �

3

(cf. Example 5.1):

Let �

4

= (D

4

;W

4

; fg) where D

4

= f�

0

=

::work

ho

g [ D

3

and W

4

= fg . Furthermore, let

D

0

= f�

0

g be a base of �

4

. From the preceding discussion of Example 5.1, we conclude that

fun is provable from every base D

00

� D

0

of �

4

. Correspondingly, fun is skeptically provable

from �

D

0

= (D

4

; fhog; f:workg) .

22

For skeptical query-answering, we can thus start with a single credulous proof. Then, we have

to ensure the provability of our query from all orthogonal bases | in the spirit of Theorem 5.5.

For this, we take advantage of Lemma 5.6 and we simply investigate the minimal elements among

all orthogonal bases. Then, we create the respective modi�ed default theories (denoted by �

D

0

above) and use each such default theory for a recursive call of the overall algorithm.

Finally, there is an important task left, namely how are we to determine the set of all (minimal)

orthogonal bases given a particular default proof? The key idea is again to map this onto

credulous reasoning. Recall De�nition 5.4 of orthogonality where not only the consequences of

the involved defaults have to be considered but also the justi�cations. For this purpose, we

introduce the notion of normalizing a default theory by adding the justi�cations of each default

to the respective consequences. Formally, if D is a set of defaults then its normalized variant

D is de�ned by

23

D = f

� : �

�^!

j

� : �

!

2 D g :

Based on this concept, the following theorem induces an elegant way of generating orthogonal

bases. For notational convenience, let JC (D) be an abbreviation for Justif (D) [ Conseq(D)

where D is a set of defaults.

20

Whenever there is no mention of any initial constraints, we assume that there are no such constraints. For

�

3

, we thus have (D

3

;W

3

; fg) .

21

We call two bases to be equivalent i� they determine identical sets of constrained extensions.

22

Observe that this is the �rst place where we deal with a non-empty set of initial constraints.

23

In what follows, we assume for simplicity that D provides a one-to-one mapping between default rules and

their normalized format. An easy way of achieving this is to label defaults.
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Theorem 5.7 Let � = (D;W;C

P

) be a default theory and g be a closed formula. Further-

more, let D

0

= f�

1

; : : : ; �

n

g be a �nite base and D

00

be an arbitrary base of � . Then, D

0

and

D

00

are C

P

-orthogonal i� there exists some i 2 f1; : : : ; ng such that D

00

is a default proof of

:(Justif (�

i

) ^ Conseq(�

i

)) from the default theory �

i�1

= (D;W [ JC (f�

1

; : : : ; �

i�1

g); C

P

) .

Proof:

\) ": Since D

0

and D

00

are C

P

-orthogonal, we have

W [ C

P

[ JC (f�

1

; : : : ; �

n

g) [ JC (D

00

) j= ?

according to De�nition 5.4. Following the deduction theorem [19] there must be some i 2

f1; : : : ; ng such that

W [ C

P

[ JC (f�

1

; : : : ; �

i�1

g) [ JC (D

00

) j= :(Justif (�

i

) ^ Conseq(�

i

)) (15)

and the left hand side of (15) is consistent.
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Now, let D

00

� D denote the set of defaults which

correspond to the elements in D

00

� D . Then, D

00

is a base of �

i�1

as D

00

is grounded and

the left hand side of (15) is consistent. Furthermore, (15) and Conseq(D

00

) � Justif (D

00

) [

Conseq(D

00

) imply that that D

00

is a proof of :(Justif (�

i

) ^ Conseq(�

i

)) from �

i�1

.

\( ": If D

00

is a default proof of :(Justif (�

i

) ^ Conseq(�

i

)) from �

i�1

then, we have

W [ C

P

[ JC (f�

1

; : : : ; �

i�1

g) [ JC (D

00

) j= :(Justif (�

i

) ^ Conseq(�

i

)) :

That is, W [C

P

[JC (f�

1

; : : : ; �

i

g)[JC(D

00

) and then also W [C

P

[JC (f�

1

; : : : ; �

i

g)[JC(D

00

)

are inconsistent. Hence, D

0

� f�

1

; : : : ; �

i

g and D

00

are C

P

-orthogonal.

Example 5.1 (continued) We have already observed earlier that �

3

has two bases orthogo-

nal to f�

1

g , viz. D

00

1

= f�

2

g and D

00

2

= f�

2

; �

4

g . Correspondingly, let � = (D

3

;W

3

; fg) , where

D

3

= f�

1

=

ho ::ra

:ra^sw

; �

2

=

ho : ra

ra^ba

; �

3

=

sw : fun

fun

; �

4

=

ba : fun

fun

g , then both D

00

1

and D

00

2

are proofs of

:(Justif (�

1

) ^ Conseq(�

1

)) � sw _ ra since Conseq(�

2

) j= ra .

Now, we are ready to formulate our algorithm for skeptical reasoning in our exemplary sys-

tem, Constrained Default Logic. In fact, Theorem 5.5 (in conjunction with Lemma 5.6) and

Theorem 5.7 provide the formal foundations for this undertaking. The resulting algorithm is

depicted in Figure 3. It starts with searching for a credulous default proof D

0

of the given

formula g (Step 1). Notably, the choice of the (single) credulous default proof is a \don't

care"-choice. That is, the result is independent of what credulous default proof is taken. If

there is no such proof (Step 2) then g cannot be contained in any extension (see Lemma 5.3)

of the default theory at hand. Otherwise, in Step 3 along with Step 3.a, all minimal orthogonal

bases wrt. the proof D

0

are generated according to Theorem 5.7. Note that we employ a func-

tion credulous default proof (�

0

; g

0

) , which is assumed to return minimal (wrt. set inclusion)

proofs of some g

0

from some �

0

. Generating only minimal proofs is su�cient according to

Lemma 5.6. Finally, a recursive call is performed in Step 3.a.1 following the line of Theorem 5.5

and Lemma 5.6. That is, while the consequences of defaults in D

00

are added to W , the jus-

ti�cations of the same defaults are added to the initial constraints of theory �

00

. In this way,

the recursive call focuses on those extensions compatible with D

00

. If at least one of these calls

returns a negative answer then g is not skeptically entailed. Otherwise, a positive answer is

given via Step 4.

24

Note that at least in case i = 0 the left hand side is consistent as D

00

is a base.
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Algorithm skeptically provable

Input � = (D;W;C

P

) :

g :

default theory

closed �rst-order formula

Step 1 D

0

:= credulous default proof (� ; g ) .

Step 2

If there is no such D

0

then return no and stop.

Step 3
Otherwise let D

0

= f�

1

; : : : ; �

n

g . For all i = 1; : : : ; n do the following

Step 3.a Let �

i�1

:= (D;W [ JC (f�

1

; : : : ; �

i�1

g); C

P

) .

For all D

00

:= credulous default proof (�

i�1

; :(Justif (�

i

)^Conseq(�

i

)) )

do the following

Step 3.a.1 Let �

00

= (D;W [ Conseq(D

00

); C

P

[ Justif (D

00

)) .

If skeptically provable (�

00

; g ) = no then return no and stop.

Step 4 Return yes.

Figure 3: This algorithm determines whether a closed formula g is skeptically provable from

a default theory � . It is assumed that credulous default proof (�

0

; g

0

) is a function returning

minimal default proofs of a closed formula g

0

from a default theory �

0

.

Example 5.1 (continued) Let us illustrate our algorithm by applying it to �

3

= (D

3

;W

3

; fg) =

(f�

1

=

ho ::ra

sw

; �

2

=

ho : ra

ba

; �

3

=

sw : fun

fun

; �

4

=

ba : fun

fun

g ; fhog ; fg) and g = fun .

Step 1: Assume that credulous default proof (�

3

; fun) yields D

0

= f�

1

; �

3

g.

Step 3.a: �

0

= (D

3

; fhog; fg).

credulous default proof (�

0

;:(:ra ^ sw)) yields the minimal proof D

00

= f�

2

g.

Step 3.a.1: skeptically provable((D

3

; fho; bag; frag); fun) is called:

Step 1: credulous default proof ((D

3

; fho; bag; frag); fun) yields D

0

= f�

4

g.

Step 3.a: �

0

= (D

3

; fho; bag; frag).

credulous default proof (�

0

;:fun) fails to �nd an orthogonal proof.

Step 4: returns yes .

Step 3.a: �

1

= (D

3

; fho;:ra; swg; fg).

credulous default proof (�

1

;:fun) fails to �nd an orthogonal proof.

Step 4: returns yes .

Hence, fun is skeptically entailed from �

3

.

It is interesting to observe that, apart from the original default theory �

3

and its nor-

malized form �

0

, all other theories are extended by formulas imposing restrictions on the
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corresponding extensions. Observe, for instance, that the transformation of the original de-

fault theory �

3

= (D

3

; fhog; fg) into the theory (D

3

; fho; bag; frag) used in Step 3.a.1 adds

the restrictions imposed by the counterargument D

00

= f�

2

g determined in Step 3.a. In

this way, we are able to focus on the second constrained extension of default theory �

3

(cf. Example 5.1), viz. (Th(fho; ba; fung);Th(fho; ra ^ ba ; fung)) , while the �rst extension,

(Th(fho; sw ; fung);Th(fho;:ra^sw ; fung)) has been eliminated. That is, the former one is the

only constrained extension of default theory (D

3

; fho; bag; frag); fun): In fact, each recursive

call of our algorithm skeptically provable results in a default theory having less extensions than

the default theory at hand. These extensions form a subset of the extensions of the previously

considered default theory.

Reiter's Normal Default Theories

So far, we focused on Constrained Default Logic de�ning the underlying notion of extensions.

At this point, we want to discuss how our results can be applied to Reiter's original de�nition

in the case of normal default theories. The extension to  Lukaszewicz' variant of Default Logic is

analogous and for brevity omitted here. To this end, we illustrate how the algorithm depicted

in Figure 3 can be simpli�ed in case of normal default theories within the context of classical

Default Logic.

For the sake of clarity, we call an extension in the sense of De�nition 2.1 a classical extension.

It has been shown that in case of normal default theories, Reiter's de�nition and the de�nition

of constrained extensions coincide [58, 17]:

Theorem 5.8 Let (D;W ) be a normal default theory and E be a set of formulas. Then, E

is a classical extension of (D;W ) i� (E;E) is a constrained extension of (D;W ) .

Based on this observation, the method developed above for skeptical reasoning in Constrained

Default Logic can be directly applied to classical Default Logic as soon as only normal defaults

are involved. To this end, we do not have to distinguish between justi�cations and consequents

anymore. In this way, the treatment of additional constraints along with the extended notion of

a default theory becomes obsolete. Now, a classical base of a normal default theory (D;W ) is

de�ned as a grounded set D

0

� D such that W [Conseq(D

0

) 6j= ? . Two classical bases D

0

and

D

00

are then called orthogonal i� W [ Conseq(D) [ Conseq(D

0

) j= ? . Following Theorem 5.7

we obtain a similar result which allows for computing orthogonal, classical bases via credulously

reasoning:

Corollary 5.9 Let � = (D;W ) be a closed, normal default theory and g be a closed

formula. Furthermore, let D

0

= f�

1

; : : : ; �

n

g be a �nite, classical base and D

00

be an ar-

bitrary classical base of � . Then, D

0

and D

00

are orthogonal i� there exists some i 2

f1; : : : ; ng such that D

00

is a default proof of :Conseq(�

i

) from the normal default theory

(D;W [ Conseq(f�

1

; : : : ; �

i�1

g)) .

Hence, the algorithm depicted in Figure 3 can be simpli�ed in case of normal default theories

as follows. Steps 1{3 as well as Step 4 remain unchanged (except that there are no constraints

anymore) while Step 3.a and Step 3.a.1 are replaced by

Step 3.a Let �

i�1

:= (D;W [ Conseq(f�

1

; : : : ; �

i�1

g)).

For all D

00

:= credulous default proof (�

i�1

;:Conseq(�

i

))

do the following

Step.3.a.1 If skeptically provable((D;W [ Conseq(D

00

)); g) = no then

return no and stop.
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Thus, using these two modi�cations we obtain an algorithm to perform skeptical reasoning in

Reiter's original approach, provided that attention is restricted to normal defaults. Again, this

algorithm is based on a procedure credulous default proof (�; g) which is assumed to provide

minimal default proofs of g from the normal default theory � . Note that our algorithm does

not require a special procedure as regards this problem, so that any known implementation of

credulous reasoning can be extended to skeptical reasoning in this way.

6 Conclusion

In the �rst part of this paper, we have developed a method which identi�es credulous reasoning

in Default Logics with planning problems. We have illustrated that �nding a default proof can

straightforwardly be modeled by �nding a solution to a deductive planning problem | provided

that the generation of extensions in the considered (fragment of) Default Logic is characterizable

in a truly iterative fashion. Based on our formalization of this concept, we have discussed some

interesting and valuable implications. For instance, our approach should provide a large number

of new proof procedures for Default Logics by applying well-known methods designed for solving

planning problems. As an example, we have investigated a method based on equational logic

programming, which is suitable for a certain subclass of default theories. With this approach

to deductive planning, we have presented a straightforward encoding of credulous reasoning

in Constrained Default Logic. We have argued that treating defaults as actions modifying

particular sets of beliefs (including constraints, or justi�cations as in  Lukaszewicz' variant)

captures the di�erence between a default as a rule and a formula. Furthermore, two particular

complexity results known from the �eld of planning were used to de�ne classes of default theories

for which credulous entailment can be e�ciently computed. From a more general point of view,

we have bridged the gap between the �eld of planning and default reasoning. As a consequence,

there is reason for hope that numerous other complexity results become transferable from the

area of planning to that of Default Logic by means of our bridging results. Among other bene�ts,

this should lead us to even more undiscovered tractable subclasses of Default Logic.

A comparison between our methodology and existing proof theories is di�cult because there is

principally a whole variety of di�erent implementations of our approach depending on the chosen

deductive planning method. Interpreting reasoning in Default Logics as deductive planning

problems cannot be, for instance, said to be either goal-oriented like [51, 55], or bottom up

like [4] because this depends of course on the speci�c planning system being applied. However,

two main features are characteristic for our approach:

First of all, we follow Reiter's philosophy in so far as our method does not require to generate

and test entire extensions. This distinguishes our approach from implementations like [20]

where extensions are approximately computed, or the tableaux based formalisms [61, 62], or the

methods described in [40, 41].

Second, both the consistency check as well as the groundedness requirement are directly asso-

ciated with the application of a default. As regards the consistency requirement, this is reected

in most of the existing approaches, except Reiter's original proof theory where consistency is

checked at the very end of the procedure, or the algorithm presented in [55] where consistency is

guaranteed via computing a pre-compilation step. On the other hand, there are many di�erent

ways of testing groundedness. For instance, Reiter's method does not explicitly take grounded-

ness into account which may lead, as argued in [55], to in�nite loops. Checking groundedness

separately at the end is performed in the tableaux-based approaches [61, 62]. [60] complies with

our approach in describing an incremental veri�cation of both groundedness and consistency.

In the second part of this paper, we have developed an approach to skeptical reasoning in our
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exemplar, Constrained Default Logic. As illustrated at the end, the resulting algorithm is also

applicable, in a simpli�ed form, to classical Default Logic in the case of normal default theories.

In general, this approach is applicable to any semi-monotonic (fragment of) Default Logic, since

then queries are answerable in a local way. We have adopted an idea originally applied to the

Theorist system [47, 48, 67]. This method does not require the investigation of all extensions to

decide membership in all extensions. Moreover, it is based on an arbitrary procedure providing

credulous default proofs. Hence, any known algorithm which is either designed for credulous

reasoning in Constrained Default Logic, or at least for classical Default Logic and normal default

theories, can be extended to skeptical reasoning in this way.
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