
Optimality Theory as a Family of Cumulative Logics

Ph. Besnard, G. Fanselow, T. Schaub0

Universität Potsdam, D–14439 Potsdam, Germany

January 31, 2003

Abstract. We investigate two formalizations of Optimality Theory, a successful
paradigm in linguistics. We first give an order-theoretic counterpart for the data
and process involved in candidate evaluation. Basically, we represent each constraint
as a function that assigns every candidate a degree of violation. As for the second
formalization, we define (after Samek-Lodovici and Prince) constraints as operations
that select the best candidates out of a set of candidates. We prove that these two
formalizations are equivalent (accordingly, there is no loss of generality with using
violation marks and dispensing with them is only apparent).

Importantly, we show that the second formalization is equivalent with a class of
operations over sets of formulas in a given logical language. As a result, we prove that
Optimality Theory can be characterized by certain cumulative logics. So, applying
Optimality Theory is shown to be reasoning by the rules of cumulative logics.

Keywords: Cumulative logics, non-monotonic logics, Optimality Theory.

1. Introduction

Optimality Theory is a grammatical architecture that was invented
in phonology [Prince & Smolensky 1993] but managed to spread into
the other subdisciplines of linguistics quite successfully. In its standard
version, Optimality Theory (cf [Kager 1999] for instance) is a repre-
sentational rather than a derivational account of grammatical facts: It
comprises of a set of grammatical constraints that evaluate the quality
of candidate structures (i.e., representations), but it does not care how
these candidate structures are generated. (To be to the point, candidate
evaluation is representational but a derivational theory could underly
the generation of candidates.)

In this respect, Optimality Theory only needs a component that
decides which structures are compared with each other. The gram-
matical description of Optimality Theory is thus anchored with an
input component. Inputs could be strings of sounds (in phonology),
sets of morphemes (in morphology) or predicate-argument structures
(in syntax). They are subjected to a gen component that generates
the candidate set on the basis of the input by very general grammat-

0 Corresponding author: Torsten Schaub, Institut für Informatik, Universität
Potsdam, Postfach 900327, D–14439 Potsdam, Germany, torsten@cs.uni-potsdam.de
(Phone: +49 331 977 3080, Fax: +49 331 977 3122)

c© 2003 Kluwer Academic Publishers. Printed in the Netherlands.

llifinal.tex; 31/01/2003; 16:09; p.1

2 Besnard et al.

ical processes. The candidate set is passed on to the eval component
(eval stands for evaluation) that is in charge of selecting the optimal
candidate according to the language at hand, using the grammatical
constraints.

Optimality Theory assumes that the grammatical constraints are
universal (all languages work with the same set of constraints): “sylla-
bles have an onset”, “sentences have a subject” are examples of what
could be a constraint in Optimality Theory.

A constraint is either categorical or graded, where categorical con-
straints are the ones that do not support multiple violations from a
single candidate. E.g., “a declarative sentence has more than one word”
would be categorical: A sentence could violate this once, if at all. In
contrast, a graded constraint can be violated multiply by a candidate.
In the sequel, we consider graded constraints (categorical constraints
can clearly be viewed as a special case).

The grammatical constraints may imply incompatible requirements
for certain structures. E.g., objects should follow the verb (compare
John loves Mary with *John Mary loves) but questions should begin
with the question word (how did she say this vs. *she said this how). For
an object question, the two principles make different predictions (what
did she say vs. *she said what), and we see that the conflict between
the two principles is resolved in favor of the question principle (as far
as English is concerned, but not necessarily so with other languages).

Optimality Theory claims that the grammatical constraints are or-
ganized in a hierarchy. Whenever two options compete, the one with the
better violation profile wins: A candidate structure S is grammatical if
and only if there is no competitor S′ such that the highest constraint
on which S and S′ differ incurs less violations from S′ than from S.

Conflict resolution is thus lexicographic: The numbers of violations
of a candidate with respect to each constraint form a vector (constraints
being considered in decreasing order).

Here is an example. The highest constraint is “the question word
occurs first” (categorical), the next highest constraint is “the verb
group comes second” (categorical), and the lowest constraint is “any
non-subject item occurs after the subject” (graded). Consider the can-
didates: (1) *where she is now?, (2) *she is where now?, (3) where is
she now?, (4) *where is now she? The first constraint rules out (2) (the
only candidate to violate it), and then similarly for (1) with respect to
the second constraint. The last constraint is violated thrice by (4) but
only twice by (3) that is thus the best candidate (the fact that (2) does
not violate the last constraint is irrelevant: (2) was already out).

In Optimality Theory, this is usually visualized in a two-dimensional
table as follows. Rewriting the four candidates (1) to (4) as x1 to x4

llifinal.tex; 31/01/2003; 16:09; p.2

Optimality Theory as a Family of Cumulative Logics 3

and abbreviating the three constraints (from higher to lower) by c1 to
c3, we obtain the configuration1 depicted in Table I:

Table I. Constraint tableau in Optimality Theory (optimal candidate: x3).

c1 c2 c3

x1: *where she is now? ∗
x2: *she is where now? ∗
x3: where is she now? ∗∗
x4: *where is now she? ∗∗∗

The ranking among the contraints is reflected by their decreasing
importance from left to right. With the exception of grey cells, Table I
displays to what extent each candidate (dis)agrees with each constraint.
E.g., the violation of c1 by x2 is indicated by ∗ while the triple violation
of c3 by x4 is represented by ∗∗∗. Grey cells denote data that are not
taken into account (for instance, the cell x2 × c3 is grey to reflect the
aforementioned fact that no matter how well (2) fares with respect to
the last constraint it is irrelevant because (2) is out by virtue of the
first constraint).

Summing up, constraints in Optimality Theory turn out to be rules
with exceptions: They are universal but they are not universally valid
(for instance, there are syllables in English that have no onset). Ac-
cordingly, Optimality Theory provides a methodology to apply rules
with exceptions. However, an early attempt of defining a logic for Op-
timality Theory [Hammond 2000] amounts to specifying a first-order
theory in classical logic although reasoning from rules with exceptions is
known to fall under the umbrella of the so-called non-monotonic logics
[Makinson 1994]. The present paper shows that the logic of Optimality
Theory is no individual logic but a class of cumulative logics (which
are non-monotonic logics).

In Section 2, we provide an order-theoretic formalization for the
usual process of candidate evaluation. In effect, we introduce a formal
representation for candidates and constraints where the relative merit
of two candidates can be assessed (depending on the ranking of the
constraints) from the amount of violations they cause to the constraints.
In Section 3, we show that this formalization is equivalent to a more
abstract one where each constraint is represented as a special operation
that selects the best candidates from any set of candidates. The main

1 Grey cells are cells whose contents are not given (because they are not to be
used, an explanation for this follows Table I; in particular, a grey cell may have the
candidate violating the constraint twice for instance).

llifinal.tex; 31/01/2003; 16:09; p.3

4 Besnard et al.

purpose of this other formalization is to facilitate the transition to
logics as we show in Section 4 that candidate evaluation in Optimality
Theory amounts to a class of cumulative logics.

2. Basic features

Outline. In this section, we give an order-theoretic counterpart for the
data and process involved in candidate evaluation such as exem-
plified by Table I. In effect, we represent each constraint as a
function that assigns every candidate a degree of violation.

Let {vc | c ∈ C} be a family of total functions from U to M such
that the index set C is finite whereas M is any2 well-ordered set.

Using the terminology from Optimality Theory, C consists of con-
straints and U is the universe of all candidates (a non-empty set which
is possibly infinite). Intuitively, vc(x) gives the degree of violation of
the constraint c by the candidate x (for all x and c).

AsM (the co-domain of vc) comes with a well-ordering≤, candidates
can be compared with respect to the violations they make a constraint
to incur: vc(x) ≤ vc(y) means that y violates c at least as much as x
does.

Of course, a < b is defined as a ≤ b and b 6≤ a for all a and b in M .
As an illustration, our above example has vc3(x3) ≤ vc3(x4) while

vc3(x4) 6≤ vc3(x3), hence vc3(x3) < vc3(x4). Also, both vc2(x3) ≤ vc2(x4)
and vc2(x4) ≤ vc2(x3) hold, yielding vc2(x3) = vc2(x4).

A crucial ingredient in Optimality Theory is the ranking of con-
straints, which can be any linear ordering � over the set of all con-
straints. As for notation, c� c′ means that violating c′ is more serious
than violating c.

Table II. Lexicographic ordering over violation
profiles from greatest to least (best): p2, p1, p4, p3.

p2 : 〈{∗}, {}, {}〉 (violation profile for x2)
p1 : 〈 {},{∗}, {∗}〉 (violation profile for x1)
p4 : 〈 {}, {},{∗ ∗ ∗}〉 (violation profile for x4)
p3 : 〈 {}, {}, {∗∗}〉 (violation profile for x3)

2 The set denoted by M (for violation marks) can be thought of as the set of
natural numbers possibly extended with some infinite number(s) if one is careful
enough not to use it to introduce explicit counting which Optimality Theory outlaws.
Usually, one considers a countable M with a greatest element standing for ∞ but
such a restriction need not be adopted in an abstract formalization as intended here.

llifinal.tex; 31/01/2003; 16:09; p.4

Optimality Theory as a Family of Cumulative Logics 5

The ranking of constraints cn � cn−1 � . . . � c2 � c1 induces a
lexicographic order over the set of violation profiles of the candidates
(where 〈vc1(x), . . . , vcn(x)〉 is taken to be the violation profile of x, cf
Table II). There are two ways to go.

– The lexicographic order induced by � yields a partial order over
the candidates:

x ≺ y iff there exists c ∈ C s.t. vc(x) < vc(y) and for all c′ ∈ C,
if vc′(y) < vc′(x) then c′ � c

where x ≺ y expresses that the candidate y violates the constraints
(as ranked) more severely than x does

Clearly, it then need not be the case that any two candidates can
be ranked relative to each other (in our running example, this would
happen for x3 and x4, if c3 were omitted). If that is desired, another
direction is possible as follows.

– The lexicographic preorder induced by � yields a total preorder
over the candidates:

x � y iff there is no c ∈ C s.t. vc(y) < vc(x) where for all c′ ∈ C,
if c� c′ then vc′(x) = vc′(y)

where x � y expresses that the candidate y violates the constraints
(as ranked) at least as much as x does

Notice that each of ≺ and � depends on C and � so that the correct
notation would rather be ≺C and �C (where � is implicit) but the
subscript is omitted here because no confusion arises: C is fixed (and
so is �).

Expectedly enough, ≺ as defined above turns out to be the strict
ordering obtained from � in the usual way:

THEOREM 2.1. x ≺ y iff x � y and y 6� x

COROLLARY 2.1. x ≺ y iff x � y and vc(x) 6= vc(y) for some c ∈ C

THEOREM 2.2. x ≺ y iff there exists c ∈ C which satisfies both
conditions below:

• vc(x) < vc(y)
• vc′(x) ≤ vc′(y) for all c′ ∈ C s.t. c� c′

The fundamental definition can now be given: A candidate is optimal
iff it is a minimal element for � in U .

llifinal.tex; 31/01/2003; 16:09; p.5

6 Besnard et al.

THEOREM 2.3. A candidate is optimal iff it is a minimal element for
≺ in U .

Underlying Theorem 2.2 is the above definition of ≺ which em-
bodies the principle of constraint demotion [Tesar & Smolensky 1998]
such that constraints satisfied by optimal candidates dominate (in the
constraint hierarchy that � governs) constraints violated by optimal
candidates.

In the limiting case where vc(x) = vc(y) for all x, y and c, all
candidates are optimal (a degenerate situation). This happens exactly
when all constraints are vacuous (c is vacuous3 iff vc(x) = vc(y) for all
x and y).

There always exists at least one optimal candidate but there need
not be a unique optimal candidate!

THEOREM 2.4. A candidate x ∈ U is the unique optimal candidate
wrt C ordered by � iff for every other candidate y ∈ U , there exists
c ∈ C such that vc(x) < vc(y) and vc′(x) = vc′(y) for all c′ ∈ C where
c� c′.

Generally, considering only some of the candidates and only some of
the constraints (subject to the given ordering) is enough to discriminate
candidates that may qualify as optimal: current relative winners. They
can be defined, for all K ⊆ U and for all C′ ⊆ C, as follows:

W�(K, C′) =
{
K if C′ = ∅
W�({x ∈ K | ∀y ∈ K, vc(x) ≤ vc(y)}, C′ \ {c}) otherwise

where “otherwise” assumes c ∈ C′ such that c′ � c for all c′ ∈ C′ \ {c}

For an illustration, consider our running example.

W�({x1, x2, x3, x4}, {c1, c2, c3}) = W�({x1, x3, x4}, {c2, c3})
= W�({x3, x4}, {c3})
= W�({x3}, ∅)
= {x3}

THEOREM 2.5. A candidate x ∈ U is an optimal candidate wrt C
ordered by � iff x ∈W�(U , C).

This mimics4 the most concrete manifestation of Optimality Theory
at work. Yet, even abstract approaches can prove to shed light on some
aspects of the theory as illustrated by the next two sections.

3 This is a relative notion, depending on the set of candidates (a constraint c
vacuous wrt U need not be vacuous wrt U ′ 6= U)

4 In this respect, see also the formal construction by [Frank & Satta 1998].

llifinal.tex; 31/01/2003; 16:09; p.6

Optimality Theory as a Family of Cumulative Logics 7

3. Connecting with the formalization of Samek-Lodovici
and Prince

Outline. In this section, we no longer represent constraints as func-
tions that assign each candidate a degree of violation. Instead, we
give an equivalent formalization where constraints are operations
that select the best candidates out of a set of candidates. That is, a
constraint is an operation C that takes a set of candidates X and
yields the winners C(X) among these candidates:

C : X ⊆ U 7→ C(X) ⊆ U

I . C(X) ⊆ X
II . ∀X 6= ∅, C(X) 6= ∅

III . if C(Y ∪ Z) 6= C(Y) and C(Y ∪ Z) 6= C(Z)
then C(Y ∪ Z) = C(Y) ∪ C(Z)

Principles I. and II. are choice and forced choice [Prince 2001]5.
Principle III. is simply divide and conquer (Section 3.2).

[Samek-Lodovici & Prince 1999] introduces a very insightful formal-
ization of constraints as functions over the powerset of the universe of
candidates. However, they depart from the more natural formulation
of constraints and we therefore provide the missing link in Section 3.1.

3.1. Valuations over candidates vs unary operations over
the powerset of candidates

Samek-Lodovici and Prince consider constraints as functions C : P(U) →
P(U) which can be captured here in the obvious way as:

C(K) def= {x ∈ K | vc(x) ≤ vc(y) for all y ∈ K}6

It is shown in Section 3.2 that the move in the converse direction
(from C to vc) is possible, too.

5 While this work was under submission, Alan Prince independently proposed an
analogous formalization with III. replaced by what he calls contextual independence
of choice:

if Y ∩ C(X) 6= ∅ then C(Y ∩ X) = Y ∩ C(X)

6 Due to typographic ambiguity, it is worth giving the details: Consider a con-
straint in Optimality Theory. Formalizing it in the framework developed so far means
considering some c ∈ C (and vc is a total function from U to M). Then, the operation
defined as {x ∈ K | ∀y ∈ K, vc(x) ≤ vc(y)} for all K ⊆ U is an equivalent way of
formalizing the same constraint (the new item is written with capital C to indicate
that it is the same constraint as the original c ∈ C).

llifinal.tex; 31/01/2003; 16:09; p.7

8 Besnard et al.

Following Samek-Lodovici and Prince, the ranking of constraints
cn � cn−1 � . . .� c2 � c1 is elegantly rendered by mere composition
of the corresponding functions Cn ◦Cn−1 ◦ · · · ◦C2 ◦C1 as follows: For
all K ⊆ U , the best candidates in K according to cn � cn−1 � . . . �
c2 � c1 are given as Cn(Cn−1(. . . C1(K) . . .)).

We now show that the formalization of a constraint as done by
Samek-Lodovici and Prince can easily be obtained as a byproduct of
our own formalization:

THEOREM 3.1. For all K ⊆ U ,

W�(K, cn � cn−1 � · · · � c2 � c1) = Cn(Cn−1(. . . C2(C1(K)) . . .))

When reformulated as functions over the powerset of candidates,
constraints exhibit distinctive traits:

THEOREM 3.2. Let c ∈ C. For all X and Y in P(U), the following
properties hold:

(i) C(X) ⊆ X
(ii) if X ⊆ Y then X \ C(X) ⊆ Y \ C(Y)

(iii) if X ∩ C(X ∪ Y) 6= ∅ then C(X) ⊆ C(X ∪ Y)

These are actually the most salient features of constraints, as it will
appear in Section 3.2: Theorem 3.7 and Theorem 3.8 show that (ii) and
(iii) are equivalent with the property which is meant to characterize
constraints defined as unary operations over the powerset of candidates.

3.2. Constraints as unary operations over the powerset of
candidates

Not all C : P(U) → P(U) are constraints (even when C(K) ⊆ K is
implicitly assumed for all K ∈ P(U)) but Samek-Lodovici and Prince
simply claim that “the ordering imposed by a constraint is any form
of partial order on candidates in which every subset in a candidate
set has a maximal element” (consequently, such an ordering induces
strata within the set of candidates as observed by Samek-Lodovici and
Prince). Basically, the ordering must be reconstructed in order to check
whether the function at hand qualifies as a constraint. In their account,
the formal definition of a constraint is accordingly clumsy because the
function C is defined using the order Cˆ whereas the function should
be primitive and the ordering should merely result from it.

llifinal.tex; 31/01/2003; 16:09; p.8

Optimality Theory as a Family of Cumulative Logics 9

A less sloppy approach is to consider unary operations C over the
non-empty7 subsets of U (but still requiring C(K) ⊆ K), imposing for
all K and K′ in P(U) \ {∅} the next condition:

if C(K ∪ K′) 6= C(K) and C(K ∪ K′) 6= C(K′)(1)
then C(K ∪K′) = C(K) ∪ C(K′)

Condition (1) can be given an informal interpretation, arising from
the divide-and-conquer process of applying Optimality Theory: Split
the set of candidates into two parts. Possibly, the winners of one part
take it all (i.e., they are the winners of the whole). Otherwise, it means
that every winner of one part ties with every winner of the other part
and therefore they all are the winners of the whole.

It can be shown that there is no loss of generality by introducing M
(hence defining constraints as valuations) as done in Section 2. Here is
why restriction to a pure order-based formulation referring to strata is
illusory:

Define
vc(z)

def=
⋃
K⊆U

z∈C(K)

K

That is, vc(x) is the set of all candidates that x is at least as good as.89

Clearly, all these comprise a set of violations marks M :

M
def=

⋃
K⊆U

z∈C(K)

K | c ∈ C, z ∈ U

or, in short, M = {vc(z) | c ∈ C, z ∈ U}.

7 Generalization to the empty subset is trivial, hence extension to C : P(U) →
P(U) is taken for granted in the sequel.

8 An equivalent formulation is

vc(x)
def
= {y ∈ U | x ∈ C(K ∪ {y}) for some K ⊆ U}

9 Actually, the simplest formulation is

vc(x)
def
= {y ∈ U | x ∈ C({x, y})}

llifinal.tex; 31/01/2003; 16:09; p.9

10 Besnard et al.

Moreover, condition (1) is essential in passing from C to vc because
it ensures coherence10 (precluding the case C({x, y, z}) = {x, y} when
C({x, y}) = {x} for instance). In particular, two distinct operations C
and C ′ are of course meant to represent two distinct constraints but
this is only guaranteed if both operations enjoy condition (1) in which
case C and C ′ define two distinct valuations (in symbols, vc 6= vc′).

Also, define

vc(x) ≤ vc(y) iff vc(y) ⊆ vc(x)(∗)

The ordering just defined by (∗) is linear over the image of all subsets
of U by vc as condition (1) guarantees:

THEOREM 3.3. Let C : P(U)\{∅} → P(U)\{∅} be such that C(K) ⊆
K for all K ∈ P(U)\{∅}. If C satisfies condition (1) then either vc(x) ≤
vc(y) or vc(y) ≤ vc(x) for all x and y in U .

Furthermore, condition (1) ensures that ≤ is a well-ordering for the
set of violation marks induced from a single constraint:

THEOREM 3.4. Let Ci : P(U) \ {∅} → P(U) \ {∅} be a finite family
such that Ci(K) ⊆ K for all K ∈ P(U) \ {∅}. If each Ci satisfies
condition (1) then ≤ defined by (∗) is well-founded on M =

⋃
i{vci(z) |

z ∈ U} and is a well-ordering for each Mi = {vci(z) | z ∈ U}.

Samek-Lodovici and Prince notice that the class of functions from
P(U) to P(U) is evidently preserved by composition but they can-
not state that constraints form a subclass which is also preserved by
composition. By means of condition (1), we can take care of this:

THEOREM 3.5. Let all f : P(U) → P(U) satisfying condition (1) and
such that f(K) ⊆ K for all K ⊆ U be called an abstract constraint.
If C and C ′ are abstract constraints then C ◦ C ′ is also an abstract
constraint.

We can also verify that repeating a constraint is harmless:

THEOREM 3.6. Let C : P(U) → P(U) be such that C(K) ⊆ K for
all K ⊆ U . If C satisfies condition (1) then C(C(K)) = C(K) for all
K ⊆ U .

COROLLARY 3.1. Let Ci : P(U) → P(U) be a family (for all i in
some I) such that Ci(K) ⊆ K for all K ⊆ U . If each Ci satisfies con-
dition (1) then Cj(Cl(. . . Cj(K) . . .)) = Cl(. . . Cj(K) . . .) for all K ⊆ U
and j, l in I.

10 Samek-Lodovici and Prince have coherence implied by the statement cited
above, another reason why their account is somehow shaky.

llifinal.tex; 31/01/2003; 16:09; p.10

Optimality Theory as a Family of Cumulative Logics 11

Although they do not exhibit such obvious significance, there are
other principles of interest as given in the next theorem.

THEOREM 3.7. Let C : P(U) → P(U) be such that C(K) ⊆ K for all
K ⊆ U . If C satisfies condition (1) then it also satisfies the principles
below:

C(X ∪ Y) ⊆ C(X) ∪ C(Y)(2)

C(X) ⊆ C(X ∪ Y) or C(Y) ⊆ C(X ∪ Y)(3)

if X ⊆ C(Y) then X = C(X)(4)

if X ⊆ Y then X \ C(X) ⊆ Y \ C(Y)(5)

if X ∩ C(X ∪ Y) 6= ∅ then C(X) ⊆ C(X ∪ Y)(6)

if X ⊆ Y \ C(Y) then C(Y \ X) = C(Y) unless C(X) = C(Y) = ∅(7)

None of (2)–(7) is equivalent with (1).

Intuitively, (2) means that the winners for a set of candidates must
be winners for some (but not any!) subset of these candidates. Con-
versely, (3) indicates that the winners for one of any two complementary
subsets of the candidates are winners for all the candidates (but they
need not be the only winners for all the candidates). As for (4), it
expresses that any collection of winners for some set of candidates is
its own set of winners. Next, (5) is the obvious fact that losers remain
losers no matter what additional candidates may enter the picture.
Roughly, (6) states that the members in a group of winners for a set
of candidates all keep or lose the status of a winner together. Lastly,
(7) is another obvious fact to the effect that disregarding any bunch of
losers leaves the set of winners unchanged.

Now, the question arises: Are there constraints beyond the scope of
condition (1)? In view of Theorem 3.2, it can be seen that condition (1)
actually captures all possible constraints when expressed in the form of
functions from sets of candidates to sets of candidates as shown now:

THEOREM 3.8. Let C : P(U)\{∅} → P(U)\{∅}. If all three properties

(i) C(X) ⊆ X
(ii) if X ⊆ Y then X \ C(X) ⊆ Y \ C(Y)

(iii) if X ∩ C(X ∪ Y) 6= ∅ then C(X) ⊆ C(X ∪ Y)

are satisfied for every X and Y in P(U) \ {∅} then condition (1) holds.

Accordingly, every property implied by condition (1) is enjoyed by
all constraints in Optimality Theory.

llifinal.tex; 31/01/2003; 16:09; p.11

12 Besnard et al.

THEOREM 3.9. U being non-empty, vc is a surjective total function
with domain U and well-ordered range iff C : P(U) \ {∅} → P(U) \ {∅}
satisfies condition (1) as well as C(K) ⊆ K for all K ∈ P(U) \ {∅}.
Moreover, vc(x) ≤ vc(y) iff11 x ∈ C({x, y}) for all x and y in U .

Theorem 3.9 means12 that condition (1) characterizes constraints: c
is a constraint13 if and only if C satisfies14 condition (1).

We are now in the position to substantiate, in the next section,
our claim at the end of the introduction that Optimality Theory can
be formalized through cumulative logics: We only need to show that
cumulativity holds for all (logical) operations satisfying condition (1).

4. Constraints as cumulative operations

Outline. In this section, we still consider the formalization of con-
straints as operations that select the best candidates. We show that
this is equivalent with a class of operations over sets of formulas
in a given logical language. As a result, we prove that candidate
evaluation in Optimality Theory can be characterized by certain
cumulative logics. Actually, we relate each operation C (Section 3)
with a cumulative logic L such that L(X) consists of the formulas
concluded from the complete set of formulas standing for “z is not a
winner” for all z not in X . We establish the following equivalence:

C(X) consists of the best candidates out of X
if and only if

L(X) consists of all formulas standing for “z is not a winner”
for all candidates z not in C(X)

Optimality Theory is about handling conflicts, in a specific sense.
Importantly, it deals with conflicting rules (they may have exceptions

11 Due to the conditions at hand, x ∈ C({x, y}) is equivalent with the following:
Whenever {x} ⊆ K ⊆ U , if y ∈ C(K) then x ∈ C(K).

12 Theorem 3.9 does not mean that the correspondence between c (or vc) and C
is one-one. For example, consider U = {x, y}. Let vc1(x) = [] and vc1(y) = [∗]. Also,
let vc2(x) = [∗∗] and vc2(y) = [∗∗∗]. That is, vc1(y) 6= vc2(y). However, the abstract
violation degrees induced by C1 and C2 share the same value, {x, y}, over y. On the
other hand, let vc1(x) = [] and vc1(y) = [∗]. Also, let vc2(x) = [∗] and vc2(y) = [].
That is, vc1(x) = vc2(y) whereas the abstract violation degrees induced by C1 over
x and by C2 over y have distinct values (i.e., {x} and {y}).

13 Formally, c is an element of some C such that vc is as indicated in Section 2
(obviously, requiring surjectivity amounts to disregarding unused violation degrees
but all that results in no loss of generality).

14 As we only consider operations such that C(K) ⊆ K for all K ∈ P(U) \ {∅}.

llifinal.tex; 31/01/2003; 16:09; p.12

Optimality Theory as a Family of Cumulative Logics 13

as noted at the end of the introduction). Now, reasoning with such
rules15 points to the so-called non-monotonic logics [Makinson 1994].

These logics aim at capturing tentative conclusions, like in the fol-
lowing example. Assume that you enter Mr. Johnson’s office (you do
not know what he looks like) and see a single desk in the room, with
a man sitting behind it. Then, you expect him to be Mr. Johnson. In
other words, you conclude that he is Mr. Johnson unless told otherwise.
That is, you would withdraw that conclusion in the face of evidence to
the contrary (e.g., the man tells you he is Mr. Johnson’s associate).
This is where monotonicity breaks down: The set of your conclusions
may decrease while the set of statements you take for granted increases.

Of interest for the abstract analysis of non-monotonic logics is cu-
mulativity as introduced by Makinson in the late eighties. Intuitively,
cumulativity expresses that whenever something expected turns out
to be true, then whatever else was expected is still expected (in the
example, assume that you expected Mr. Johnson to be an accountant,
then, after you find out that the man is actually Mr. Johnson, you do
not stop expecting him to be an accountant).

More formally, cumulativity states that the set of conclusions (in-
cluding the tentative ones) remains exactly the same when the premises
of this set of conclusions are extended with some of these conclusions.
Technically, cumulativity happens to be a property weaker than mono-
tonicity. This is why it is of interest in the area of non-monotonic logics:
Cumulative logics, even when non-monotonic, retain some of the nice
behaviour of monotonic logics.

Let us now introduce the formal definition of cumulativity for arbi-
trary operations (not just logics).

A cumulative operation16 over a poset 〈D,≤〉 is a total function
f : D → D which satisfies the conditions (α)− (β) for all a and b in D:

(α) a ≤ f(a)
(β) a ≤ b ≤ f(a) ⇒ f(a) = f(b)

Taking the poset to be the powerset of U ordered by the superset
relation, constraints in Optimality Theory are cumulative operations:

THEOREM 4.1. Let C : P(U)\{∅} → P(U)\{∅} be such that C(K) ⊆
K for all non-empty K ⊆ U . If C satisfies condition (1) then C is a
cumulative operation (over 〈P(U) \ {∅},⊇〉).

15 The example to come does not necessarily involve conflicting rules. However,
they can enter the picture as follows:

– You expect people to tell you their true surname, not a fake one.
– You expect people to work in their own office, not somebody’s else.

16 Comparing with a well-known notion, closure operations are a special case of
cumulative operations.

llifinal.tex; 31/01/2003; 16:09; p.13

14 Besnard et al.

COROLLARY 4.1. Any constraint in Optimality Theory is a cumula-
tive operation.

All this suggests that every constraint (in Optimality Theory) em-
bodies some form of cumulative reasoning from candidates.

The next step is that any constraint hierarchy in Optimality Theory
is a combination of cumulative logics.

However, it first must be determined in what sense discarding sub-
optimal candidates amounts to applying a cumulative logic.

We define (rather restrictively) a logic as a function L : P(F) →
P(F) where F is the set of all formulas in a given logical language. We
say that L is a cumulative logic if it is also a cumulative operation over
〈P(F),⊆〉.

On the other hand, it has just been shown above that a constraint
is a cumulative operation over 〈P(U),⊇〉. This means that a constraint
almost, but not quite, qualifies as a cumulative logic: Although in
both cases the carrier is some powerset, the orderings at hand are the
converse of one another. As a powerset ordered by set inclusion is a
complemented (distributive) lattice, it is unproblematic to define a cu-
mulative logic out of a constraint as follows. First, the logical language
is fixed just by taking the set of all formulas in the language to be the
set of all candidates.17 Doing so does not mean that a candidate is to
be represented by itself as a formula, it only means:

F def= U

Second, let h : P(U) → P(F) (or equivalently, h : P(U) → P(U)
because F is U) be defined such that every set of candidates is mapped
to a set of formulas by means of the following equality:

h(X) def= X

where stands for set complementation in U (i.e., X = U \ X).
These two steps are straightforward: Since the ordering over P(U)

is to be reversed, a natural solution is to consider set complementation.
The third step finally consists in mirroring C in the upside down lattice,
through L : P(U) → P(U), by making C and L to be duals as follows:

L(X) def= C(X)
17 The reader may object that a logical language requires symbols, whereas U need

not have anything to do with symbols. Clearly, this is well-taken but it is always
possible to introduce a set U ′ of symbols which is in a bijective correspondence with
U and the problem vanishes (but the formal properties become less readable because
there will be an explicit symbol for the correspondence and it will occur repeatedly).

llifinal.tex; 31/01/2003; 16:09; p.14

Optimality Theory as a Family of Cumulative Logics 15

Of course, the underlying idea is that selecting the best candidates
according to a constraint (abstracted by C) collapses to deduction in
a cumulative logic (abstracted by L). The condition is that h be a
homomorphism, in symbols,

h(C(X)) = L(h(X))

and also be bijective (so that h is an isomorphism, actually an auto-
morphism). The next theorem involves the fact that, given C and the
above definitions, the condition is met.

THEOREM 4.2. A constraint over a set of candidates in Optimality
Theory is the dual of a cumulative logic.

According to the interpretation (formally, the automorphism h),
applying a constraint in Optimality Theory is merely reasoning about
losers. Consider some set of candidates X , it amounts to taking as
premises that no candidate outside X is a current winner (obviously!).
Further conclusions will be that other candidates, within X , also fail
to be current winners. That is, all statements (whether premises or
conclusions) involved here are of the form “the candidate z is not a
current winner”. Clearly, the corresponding interpretation of any for-
mula ϕ in F is thus that “x is not a current winner” for a particular18

candidate x. Accordingly, cumulativity holds as this explains why, hav-
ing concluded ϕ, using ϕ as an additional premise does not change the
set of conclusions: Basically, if something has led us to conclude that
“x is not a current winner” then that something is enough to have us
reaching any conclusion “y is not a current winner” which we can draw
when taking “x is not a current winner” as an additional premise (keep
in mind that that “something” can only be a collection of statements
of the form “the candidate z is not a current winner”).

COROLLARY 4.2. A hierarchy of constraints over a set of candidates
in Optimality Theory is a composition of duals of cumulative logics.

Such results greatly differ from previous work [Hammond 2000]
[Besnard, Mercer, Schaub 2000] that provides some way to encode
Optimality Theory in first-order logic or some non-classical logic such
as default logic: Encoding is merely descriptive and need not give any
insight about the nature of the theory being modelled.

So, applying constraints according to Optimality Theory is cumu-
lative reasoning. Strictly speaking, not all cumulative logics are non-
monotonic (as was briefly mentioned, closure operations —they are

18 Remember: F = U . For all x ∈ U , it follows that x ∈ F is a formula standing
for “the candidate x is not a current winner”.

llifinal.tex; 31/01/2003; 16:09; p.15

16 Besnard et al.

monotonic— are a special case of cumulative operations). However, it
is easy to illustrate that applying constraints according to Optimal-
ity Theory is non-monotonic reasoning. Here is an example. Consider
U = {x, y, z}. Let C be such that C({x, y, z}) = {x}. Stated other-
wise, C picks x as the best candidate. Of course, C({x, y}) = {x} and
C({y}) = {y}. Hence, C({y}) 6⊆ C({x, y}). That is,

C({x, z}) 6⊆ C({z})

Equivalently,
C({z}) 6⊆ C({x, z})

Then, L({z}) 6⊆ L({x, z}) by the definition of the automorphism h. In
view of {z} ⊆ {x, z}, it follows that L is not monotonic (failing the
monotonicity principle: if X ⊆ Y then L(X) ⊆ L(Y) for all X and Y).
However, L is cumulative: if X ⊆ Y ⊆ L(X) then L(X) = L(Y) for all
X and Y .

Intuitively, Optimality Theory is not monotonic: In the example
just presented, “y is not a current winner” is concluded from the single
premise “z is not a current winner” (meaning that z does not enter
competition but x does). However, considering the additional premise
“x is not a current winner” (meaning that x does not enter competition
either, hence only y does) precludes “y is not a current winner” to
hold because y being the only candidate evaluated must be the current
winner. In other words, a case where premises extend the premises for
another case lead to fewer conclusions: The set of conclusions does not
expand monotonically with respect to the premises.

THEOREM 4.3. A non-vacuous constraint over a set of candidates in
Optimality Theory is the dual of a non-monotonic cumulative logic.

Notice that the converse of Theorem 4.2 (and similarly Theorem 4.3)
is untrue: There are many (non-monotonic) cumulative logics with no
premise-free consequences while identity is the only operation satisfying
(1) such that all candidates qualify as winners.19

Rather, the class of cumulative logics corresponding to Optimality
Theory is as follows:

19 A simple example of a cumulative logic that fails to correspond to a case in
Optimality Theory is: U = {e1, e2, e3} and the pseudo-constraint f is such that no
candidate is eliminated when all three candidates compete but whenever only two
of these candidates ei and ej compete then ei wins over ej as i < j (in symbols,
f({e1, e2, e3}) = {e1, e2, e3} and f({e1, e2}) = {e1}, etc). The corresponding logic

L(X) = f(X) is cumulative: it is identity except L({e1}) = {e1, e3} and L({e2}) =
L({e3}) = {e2, e3}.

llifinal.tex; 31/01/2003; 16:09; p.16

Optimality Theory as a Family of Cumulative Logics 17

THEOREM 4.4. Given a fixed set S, let C : P(S) \ {∅} → P(S) \ {∅}
and L : P(S)\{S} → P(S)\{S} be duals (i.e., C(S\X) = S\L(X) for
all X ∈ P(S)\{S} while L(S \X) = S \C(X) for all X ∈ P(S)\{∅}).
c is an arbitrary (resp. non-vacuous) constraint iff L is an arbitrary
(resp. non-monotonic) cumulative logic that obeys the property below:

if L(X ∩X ′) 6= L(X) and L(X ∩X ′) 6= L(X ′)(‡)
then L(X ∩X ′) = L(X) ∩ L(X ′)

The interpretation arising from the automorphism h thus indicates
that reasoning in Optimality Theory is essentially disjunction-free as
the logics mentioned in Theorem 4.4 require X ∨X ′ to be in L(X ∩X ′)
whereas, in general, X ∨ X ′ need not have anything to do with the
formulas in X ∩X ′: At least, the canonical inference of ϕ∨ψ from each
of ϕ and ψ must fail when ϕ and ψ are distinct atomic formulas.

5. Conclusion

We have investigated two alternative ways to formalize Optimality
Theory, one where constraints are functions (over candidates) delivering
violation marks and one where constraints are operations (over sets of
candidates) selecting the winners.

We have shown that both approaches are equivalent, but in a sense
stronger than simply yielding the same set of optimal candidates: We
have shown that the latter approach deals with violation marks as
much as the former approach does. As a surprising consequence, all
this means that there is no loss of generality with using violation marks
explicitly and dispensing with violation marks can only be apparent,
not actual.

By means of a simple condition, we have furthermore introduced a
natural characterization of constraints when formulated as operations
over sets of candidates

Settling the issue of “The Logic of Optimality Theory”, we have also
shown that applying a hierarchy of constraints in Optimality Theory
is reasoning according to non-monotonic, cumulative, logics.

Acknowledgements

The authors are grateful to the referees for many constructive remarks.

llifinal.tex; 31/01/2003; 16:09; p.17

18 Besnard et al.

References

[Besnard Ph., Mercer R. E., Schaub T. 2000]
Optimality Theory via Default Logic. Unpublished.

[Besnard Ph., Schaub T. 2000]
What is a (non-constructive) non-monotone logical system? Theoretical
Computer Science 238:489-494, 2000.

[Frank R., Satta G. 1998]
Optimality theory and the generative complexity of constraint viola-
bility. Computational Linguistics 24(1):307-315, 1998.

[Ginsberg M. L. 1994]
AI and Nonmonotonic Reasoning. In Handbook of Logic in Artificial In-
telligence and Logic Programming, Volume 3: Nonmonotonic Reasoning
and Uncertainty Reasoning, Gabbay D. M., Hogger C. J., Robinson J.
A. (eds), pages 1–33. Oxford University Press, 1994.

[Hammond M. 2000]
The Logic of Optimality Theory. ROA (390), 2000.
http://roa.rutgers.edu

[Kager R. 1999]
Optimality Theory. Cambridge Textbooks in Linguistics. Cambridge
University Press, 1999.

[Makinson D. 1994]
General Patterns in Non-Monotonic Reasoning. In Handbook of Logic in
Artificial Intelligence and Logic Programming, Vol. 3: Nonmonotonic
Reasoning and Uncertainty Reasoning, Gabbay D. M., Hogger C. J.,
Robinson J. A. (eds), pages 35–110. Oxford University Press, 1994.

[Prince A. 2001]
Entailed Ranking Arguments. ROA (500), 2001.
http://roa.rutgers.edu

[Prince A., Smolensky P. 1993]
Optimality Theory: Constraint Interaction in Generative Grammars.
Technical Report, Rutgers University, New Brunswick (NJ), and Com-
puter Science Department, University of Colorado, Boulder. 1993.

[Samek-Lodovici V., Prince A. 1999]
Optima. ROA (363), 1999.
http://roa.rutgers.edu

[Tesar B., Smolensky P. 1998]
Learnability in Optimality Theory. Linguistic Inquiry 29:229-268, 1998.

llifinal.tex; 31/01/2003; 16:09; p.18

Optimality Theory as a Family of Cumulative Logics 19

Appendix

Proof (Theorem 2.1) Let us first prove that x ≺ y implies x � y.
Let us assume the contrary. That is,

there exists c such that(¶)
vc(x) < vc(y) and for all c′, if vc′(y) < vc′(x) then c′ � c

there exists c′′ such that(‖)
vc′′(y) < vc′′(x) and for all c′, if c′′ � c′ then vc′(x) = vc′(y)

As � is a total order, either c′′ � c or c� c′′. First, consider c′′ � c.
Applying (‖) yields vc(x) = vc(y), which is a contradiction. Second,
consider c� c′′. In view of vc′′(y) < vc′′(x), applying (¶) yields c′′ � c.
Then, both c′′ � c and c � c′′ hold. A contradiction then arises, even
when assuming that � is not strict because c′′ = c entails that both
vc(y) < vc(x) and vc(x) < vc(y) must hold.
Let us now prove that x ≺ y implies y 6� x. According to (¶), c′ � c
for all c′ such that vc′(y) < vc′(x). Since � is an ordering (hence
an antisymmetric relation), this means that every c′ distinct from c
such that c � c′ satisfies vc′(x) ≤ vc′(y) (due to the fact that ≤ is
a total ordering). Then, it is enough to consider the greatest (in the
sense of �) such c′ which satisfies vc′(x) < vc′(y) (the existence of this
constraint c′ comes from the fact that c obeys vc(x) < vc(y) and from the
fact that � is a total ordering over a finite domain). By construction,
this constraint c′ is such that if c′ � c′′ then vc′′(y) = vc′′(x). Together
with the fact that vc′(x) < vc′(y), this means that y 6� x (the constraint
c′ just constructed plays the role of the undesirable constraint c in the
definition of y � x).
There only remains to prove the other half of the theorem: x � y
together with y 6� x imply x ≺ y. Instead, let us prove that y 6� x
implies x ≺ y (a stronger but unsurprising result). The definition of ≺
makes it clear that either vc′(y) = vc′(x) for all c′ or x ≺ y or y ≺ x.
Assuming y 6� x means that

there exists c′′ such that
vc′′(x) < vc′′(y) and for all c′, if c′′ � c′ then vc′(x) = vc′(y)

which makes vc′(y) = vc′(x) for all c′ to fail. Moreover, y 6� x implies
y 6≺ x (because the first part of this proof shows that x ≺ y implies
x � y). That is, assuming y 6� x only leaves the possibility x ≺ y and
the proof is over.

llifinal.tex; 31/01/2003; 16:09; p.19

20 Besnard et al.

Proof (Corollary 2.1) It clearly follows from Theorem 2.1 that x ≺ y
implies x � y and vc(x) 6= vc(y) for some c. As for proving the converse,
let us assume x � y and vc(x) 6= vc(y) for some c. Consider now
the greatest (in the sense of �) c′′ which satisfies vc′′(x) 6= vc′′(y)
(the existence of this constraint c′′ comes from the fact that c obeys
vc(x) 6= vc(y) and from the fact that � is a total ordering over a
finite domain). By construction, c′′ � c′ implies vc′(x) = vc′(y) for
all c′. According to the definition of x � y, it is then impossible that
vc′′(y) < vc′′(x). Therefore, vc′′(x) < vc′′(y) because vc′′(x) 6= vc′′(y).
For x ≺ y to hold, there then only remains to show that for all c′, if
vc′(y) < vc′(x) then c′ � c′′. This again results from the construction
for c′′: The fact that c′′ � c′ implies vc′(x) = vc′(y) for all c′ also means
that vc′(y) 6= vc′(x) (hence vc′(y) < vc′(x) a fortiori) is possible only if
c′ � c′′. Overall, x ≺ y.

Proof (Theorem 2.2) The result comes from the equivalence between
the two conditions below:

for all c′ 6= c, if c� c′ then vc′(x) ≤ vc′(y)

for all c′ 6= c, if vc′(y) < vc′(x) then c′ � c

Indeed, observe first that vc′(x) ≤ vc′(y) is the contrary to vc′(y) <
vc′(x) and vice versa. Second, the same holds for c � c′ and c′ � c
because � too is a total order. Lastly, the case that c′ = c is examined
in view of vc(x) < vc(y) and the outcome is that

for c′ = c, if c� c′ then vc′(x) ≤ vc′(y)

and
for c′ = c, if vc′(y) < vc′(x) then c′ � c

then are both true: in the latter, the antecedent is false; in the former,
the succedent is true.

Proof (Theorem 2.3) As usual (i.e. apply Theorem 2.1): x is minimal
wrt ≺ in U iff 6 ∃y ∈ U s.t. y ≺ x; x is minimal wrt � in U iff for all
y ∈ U , if y � x then x � y.

Proof (Theorem 2.4) Let us assume that x is the unique optimal
candidate. Reasoning by reductio ad absurdum, let us assume further
that another candidate y exists such that for no c ∈ C do we have both
vc(x) < vc(y) and vc′(x) = vc′(y) for all c′ where c � c′. That is,
there is no c such that vc(x) < vc(y) and for all c′, if c � c′ then
vc′(x) = vc′(y). Now, this simply is y � x. A contradiction then arises
regardless of whether x � y or x 6� y is the case: Firstly, consider x 6�

llifinal.tex; 31/01/2003; 16:09; p.20

Optimality Theory as a Family of Cumulative Logics 21

y. According to Theorem 2.1, y ≺ x follows and this (using Theorem
2.3) contradicts the assumption that x is the unique optimal candidate.
Secondly, consider x � y. As y � x has just been proven, this means
that the only possibility is vc′(x) = vc′(y) for all c′ (verification can be
done by induction starting with the greatest c ∈ C: it trivially is such
that vc′(y) = vc′(x) whenever c� c′; therefore, both vc(y) < vc(x) and
vc(x) < vc(y) must fail in view of x � y and y � x). However, having
x and y identical wrt every constraint in C contradicts the assumption
that x is a unique optimal candidate.
We now show the reverse direction. That is, we prove that x is the
unique optimal candidate whenever the following condition is satisfied:
For every candidate y ∈ U \ {x}, there exists c ∈ C such that vc(x) <
vc(y) and vc′(x) = vc′(y) for all c′ ∈ C where c� c′. Observe that this
condition implies the ones in Theorem 2.2, so that x ≺ y holds for all
y ∈ U \ {x}. Then, applying Theorem 2.3 shows that x is an optimal
candidate. Finally, applying Theorem 2.1 shows that x is the unique
optimal candidate.

Proof (Theorem 2.5) We prove the result by induction on the cardi-
nality of C (or equivalently C′).
Base.
Let us consider the case where the set of all constraints C′ is a singleton
set.

W�(U , {c}) = W�({x ∈ U | ∀y ∈ U , vc(x) ≤ vc(y)}, ∅)
= {x ∈ U | ∀y ∈ U , vc(x) ≤ vc(y)}

Clearly, vc(x) ≤ vc(y) holds for all y ∈ U iff there exists no z in U such
that vc(z) < vc(x), that is, z ≺ x is possible for no z in U (Theorem
2.2) which is equivalent to x being minimal for ≺ in U , i.e., x being
optimal (Theorem 2.3).
Step.
Let us assume that the result holds when the cardinality of C′ is n ≥ 1
and let us show that the result then holds as well for C′ having cardinal-
ity n+1. As for proving the if part of the result, assume x ∈W�(U , C′).
So, x ∈W�({x ∈ U | ∀y ∈ U , vc(x) ≤ vc(y)}, C′ \{c}). Applying the in-
duction hypothesis, x is then optimal in {x ∈ U | ∀y ∈ U , vc(x) ≤ vc(y)}
wrt C′ \ {c}. I.e., there exists no z in {x ∈ U | ∀y ∈ U , vc(x) ≤ vc(y)}
such that for some c′′ ∈ C′ \{c}, vc′′(z) < vc′′(x) and vc′(z) ≤ vc′(x) for
all c′ ∈ C′ \ {c} satisfying c′′ � c′ (Theorem 2.2). That is,

6 ∃z ∈ U s.t.

• ∀y ∈ U , vc(z) ≤ vc(y)

• ∃c′′ ∈ C′ \ {c} s.t.
{
• vc′′(z) < vc′′(x)
• ∀c′ ∈ C′ \ {c}, c′′ � c′ ⇒ vc′(z) ≤ vc′(x)

llifinal.tex; 31/01/2003; 16:09; p.21

22 Besnard et al.

The last subcondition can be extended to all c′ ∈ C′ in view of ∀y ∈
U , vc(z) ≤ vc(y). The case of c′′ ∈ C′ \{c} can be extended to all c′′ ∈ C′
for the following reason: Taking c′′ to be c, it is impossible for vc′′(z) <
vc′′(x) to hold because x ∈ W�({x ∈ U | ∀y ∈ U , vc(x) ≤ vc(y)}, C′ \
{c}), i.e., x ∈ {x ∈ U | ∀y ∈ U , vc(x) ≤ vc(y)}. Summarizing,

6 ∃z ∈ U s.t.

• ∀y ∈ U , vc(z) ≤ vc(y)

• ∃c′′ ∈ C′ s.t.
{
• vc′′(z) < vc′′(x)
• ∀c′ ∈ C′, c′′ � c′ ⇒ vc′(z) ≤ vc′(x)

We now show that ∀y ∈ U , vc(z) ≤ vc(y) (the first condition) is actually
implied by the second condition. Indeed, the second condition clearly
entails vc(z) ≤ vc(x) because c′′ � c for all c′′ ∈ C′ \ {c}. However,
x ∈ {x ∈ U | ∀y ∈ U , vc(x) ≤ vc(y)} due to x ∈ W�({x ∈ U | ∀y ∈
U , vc(x) ≤ vc(y)}, C′ \ {c}). Therefore, ∀y ∈ U , vc(z) ≤ vc(y). Hence,
the first condition can be omitted and we obtain

6 ∃z ∈ U s.t. ∃c′′ ∈ C′ s.t.
{
• vc′′(z) < vc′′(x)
• ∀c′ ∈ C′, c′′ � c′ ⇒ vc′(z) ≤ vc′(x)

Applying Theorem 2.2 then shows that x is a minimal element for ≺
in U . By Theorem 2.3, it follows that x is optimal.
Let us show the reverse direction for the step case of the induction. We
start with assuming that x is optimal in U . That is, y 6≺ x for all y in
U (Theorem 2.3). Theorem 2.2 then implies that, for all y in U , there
exists no c ∈ C′ such that vc(y) < vc(x) and vc′(y) ≤ vc′(x) for all
c′ ∈ C′ satisfying c� c′. Equivalently,

∀y ∈ U ,∀c ∈ C′, vc(y) < vc(x) ⇒ ∃c′ ∈ C′ s.t. c� c′ & vc′(x) < vc′(y)

From now on, c is taken to be the greatest element in C′ wrt �, and it
clearly is such that there can be no c′ as indicated in the above property.
So, vc(x) ≤ vc(y) for all y ∈ U . Hence x ∈ {x ∈ U | ∀y ∈ U , vc(x) ≤
vc(y)}. However, x is optimal in U only if x is optimal in {x ∈ U | ∀y ∈
U , vc(x) ≤ vc(y)} wrt C′ \{c} (otherwise, there would exist w and some
c′ in C′\{c} such that vc′′(w) ≤ vc′′(x) whenever c′ � c′′ ∈ C′\{c} while
vc(w) ≤ vc(y) for each y ∈ U but all this would contradict Theorem 2.2
and Theorem 2.3 as applied to the optimality of x in U). Then, we can
apply the induction hypothesis to conclude x ∈ W�({x ∈ U | ∀y ∈
U , vc(x) ≤ vc(y)}, C′ \ {c}). Therefore, x ∈W�(U , C′).

Proof (Theorem 3.1) Let {c1, . . . , cn} ⊆ C where cn � · · · � c1.

W�(K, cn � · · · � c1)
= W�({x ∈ K | ∀y ∈ K, vc1(x) ≤ vc1(y)}, cn � · · · � c2)

llifinal.tex; 31/01/2003; 16:09; p.22

Optimality Theory as a Family of Cumulative Logics 23

= W�(C1(K), cn � · · · � c2)
...
= W�(Cn(. . . C1(K) . . .), ∅)
= Cn(. . . C1(K) . . .)

Proof (Theorem 3.2) By the definition of C(X), (i) is trivial and (ii)
is clear because if vc(y) < vc(x) for some y ∈ K then vc(y) < vc(x) for
some y ∈ K ′ whenever K ⊆ K ′. As for (iii), assume X∩C(X∪Y) 6= ∅.
I.e., there exists x ∈ X such that vc(x) ≤ vc(y) for all y ∈ X ∪Y . Now,
all z ∈ C(X) satisfy vc(z) ≤ vc(x) because x ∈ X. By transitivity, all
z ∈ C(X) enjoy vc(x) ≤ vc(y) for all y ∈ X ∪ Y .

Proof (Theorem 3.3) The case x = y is trivial, hence we assume
that x and y are distinct. Let G′ be the (non-empty) set of all non-
empty K ′ ⊆ U such that x ∈ C(K ′) while y 6∈ C(K ′). Let G′′ be
the (non-empty) set of all non-empty K ′′ ⊆ U such that y ∈ C(K ′′)
while x 6∈ C(K ′′). There are two cases, depending on whether for each
K ′ ∈ G′ there exists K ′′ ∈ G′′ such that C(K ′∪K ′′) 6= C(K ′). The first
case is when each K ′ ∈ G′ is as just indicated. In view of condition (1),
this yields C(K ′′) ⊆ C(K ′∪K ′′). Therefore, y ∈ C(K ′∪K ′′). So, there
exists some K (namely, K ′ ∪ K ′′) such that K ′ ⊆ K and y ∈ C(K).
As this holds for each K ′ ∈ G′, it follows that ⋃

K′∈G′

K ′

 ⊆

 ⋃
y∈C(K)

K

holds and a trivial consequence is then ⋃

x∈C(K)

K

 ⊆

 ⋃
y∈C(K)

K

which is vc(y) ≤ vc(x) as defined by (∗). The second case is the contrary
to the first case: There exists some K ′ ∈ G′ such that for all K ′′ ∈ G′′,
C(K ′ ∪K ′′) = C(K ′). Hence, for each K ′′ ∈ G′′ there exists K ′ ∈ G′

such that C(K ′ ∪K ′′) 6= C(K ′′). Apply now a similar reasoning as in
the first case, so that ⋃

y∈C(K)

K

 ⊆

 ⋃
x∈C(K)

K

holds which is vc(x) ≤ vc(y) as defined by (∗). Overall, vc(x) and vc(y)
are comparable.

llifinal.tex; 31/01/2003; 16:09; p.23

24 Besnard et al.

Proof (Theorem 3.4) Each constraint Ci (i = 1..n for some n because
the set of all constraints is finite) is a unary operation over the non-
empty subsets of U that satisfies condition (1) and such that Ci(K) ⊆ K
for every K ⊆ U (as was already indicated, we implicitly extend Ci with
Ci(∅) = ∅).
A noticeable consequence is Ci({z}) = {z} for all z ∈ U .
The corresponding valuations are obtained using an alternative defini-
tion for vci as introduced in footnote 9:

vci(x)
def= {y ∈ U | x ∈ Ci({x, y})}

Indeed, consider the definition

vc(z)
def=

⋃
K′⊆U

z∈C(K′)

K ′

We show, for all z ∈ U ,

vc(z) = {w ∈ U | z ∈ C({w, z})}

Clearly, {w ∈ U | z ∈ C({w, z})} ⊆ vc(z). As for the converse in-
clusion, let y ∈ K ′ be such that z ∈ C(K ′). We only consider the
non-trivial case, i.e. K ′ 6= {y, z}. By y ∈ K ′ and z ∈ C(K ′) ⊆ K ′,
condition (1) can apply for C(K ′) to be either C(K ′\{y, z})∪C({y, z})
or C({y, z}) or C(K ′ \ {y, z}). Due to C(K ′ \ {y, z}) ⊆ K ′ \ {y, z} and
z ∈ C(K ′), we obtain z ∈ C({y, z}) so that the converse inclusion is
also proven and the equality of definitions holds:

{w ∈ U | z ∈ C({w, z})} =
⋃

K′⊆U
z∈C(K′)

K ′

For any subset M ′ of M =
⋃

i{vci(z) | z ∈ U}, let

K ′
ci

def= {z ∈ U | vci(z) ∈M ′}

and let
M ′

ci

def= {vci(z) | z ∈ K ′
ci
}

Clearly,
M ′ = M ′

c1 ∪ · · · ∪M
′
cn

To start with, we prove vci(x) ⊆ vci(z) for all x ∈ K ′
ci

and all z ∈
Ci(K ′

ci
) in order to show that M ′

ci
has a maximal element wrt set

inclusion.

llifinal.tex; 31/01/2003; 16:09; p.24

Optimality Theory as a Family of Cumulative Logics 25

Let x ∈ K ′
ci
. Let y ∈ vci(x). Let z ∈ Ci(K ′

ci
). We need to show

y ∈ vci(z).
First, assume y ∈ K ′

ci
. Then, Ci(K ′

ci
) = Ci(K ′

ci
∪ {y}) = Ci((K ′

ci
\

{z}) ∪ {y, z}) which is either Ci(K ′
ci
\ {z}) or Ci({y, z}) or Ci(K ′

ci
\

{z}) ∪ Ci({y, z}) by condition (1). Due to Ci(K ′
ci
\ {z}) ⊆ K ′

ci
\ {z}

and z ∈ Ci(K ′
ci

), the first case is impossible and each of the other two
cases implies that z is in Ci({y, z}). Hence, y ∈ vci(z).
That is, we are done with y ∈ K ′

ci
and, from now on, we can then

assume the opposite possibility y 6∈ K ′
ci

(together with its immediate
consequence x 6= y).
Second, assume y 6∈ Ci(K ′

ci
∪{y}). In view of Ci({y}) = {y}, it follows

that Ci(K ′
ci
∪ {y}) 6= Ci({y}) and Ci(K ′

ci
∪ {y}) 6= Ci(K ′

ci
) ∪ Ci({y}).

For condition (1) not to be violated, Ci(K ′
ci
∪{y}) = Ci(K ′

ci
) must hold.

So, Ci((K ′
ci
\{z})∪{y, z}) = Ci(K ′

ci
). By condition (1), Ci((K ′

ci
\{z})∪

{y, z}) is either Ci(K ′
ci
\{z}) or Ci({y, z}) or Ci(K ′

ci
\{z})∪Ci({y, z}).

Due to Ci(K ′
ci
\ {z}) ⊆ K ′

ci
\ {z} and z ∈ Ci(K ′

ci
), the first case is im-

possible and each of the other two cases implies that z is in Ci({y, z}).
That is, y ∈ vci(z).
Third, assume y ∈ Ci(K ′

ci
∪{y}) (and y 6∈ K ′

ci
). Applying condition (1),

Ci(K ′
ci
∪ {y}) is either Ci(K ′

ci
) or Ci({y}) or Ci(K ′

ci
) ∪ Ci({y}). Ac-

cording to Ci(K ′
ci

) ⊆ K ′
ci

and y 6∈ K ′
ci

while y ∈ Ci(K ′
ci
∪{y}), the first

case is impossible. As for the second case, it simply means that Ci(K ′
ci
∪

{y}) = Ci({y}) = {y}. However, Ci(K ′
ci
∪{y}) = Ci((K ′

ci
\{x})∪{x, y})

which is either Ci(K ′
ci
\{x}) or Ci({x, y}) or Ci(K ′

ci
\{x})∪Ci({x, y})

due to condition (1). The first subcase is impossible because Ci(K ′
ci
\

{x}) ⊆ K ′
ci
\{x} 6⊆ {y} (cf y 6∈ K ′

ci
). Each of the other two subcases im-

plies Ci({x, y}) ⊆ {y} which is impossible because y ∈ vci(x) and x 6= y
(that follows from y 6∈ K ′

ci
as mentioned above). As a consequence, the

third case must hold. In symbols, Ci(K ′
ci
∪ {y}) = Ci(K ′

ci
) ∪ Ci({y}).

Therefore, Ci(K ′
ci

) ∪Ci({y}) = Ci((K ′
ci
\ {z}) ∪ {y, z}) which is either

Ci(K ′
ci
\{z}) or Ci({y, z}) or Ci(K ′

ci
\{z})∪Ci({y, z}) by condition (1).

Due to Ci(K ′
ci
\{z}) ⊆ K ′

ci
\{z} while z ∈ Ci(K ′

ci
) ⊆ Ci(K ′

ci
)∪Ci({y}),

the first alternative is impossible and each of the other two implies that
z is in Ci({y, z}). That is, y ∈ vci(z).
Summing up, all cases (whether y ∈ K ′

ci
or y 6∈ Ci(K ′

ci
∪ {y}) or

y ∈ Ci(K ′
ci
∪ {y}) \K ′

ci
as just considered) entail y ∈ vci(z). That is,

vci(x) ⊆ vci(z) for all x ∈ K ′
ci

and all z ∈ Ci(K ′
ci

).
As each element of M ′

ci
is vci(x) for some x ∈ K ′

ci
, it follows that each

element of M ′
ci

is a subset of any element S of M ′
ci

which is vci(z) for
some z ∈ U such that z ∈ Ci(K ′

ci
) (there clearly exists at least one such

S unless K ′
ci

= M ′
ci

= ∅). Since set inclusion is an ordering relation,
all this means that S is unique and is the greatest element of M ′

ci
.

So, the greatest element exists for each M ′
ci

in each M ′. This means that

llifinal.tex; 31/01/2003; 16:09; p.25

26 Besnard et al.

no M ′
ci

contain a chain which is infinitely ascending for set inclusion.
As there are only finitely many M ′

ci
from M ′, it follows that M (as well

as any M ′) is well-founded for the superset relation.
Linearity proven in Theorem 3.3 allows us to conclude that each Mi =
{vci(z) | z ∈ U} is well-ordered by the superset relation.

Proof (Theorem 3.5) Clearly, C ◦ C ′ is defined from P(U) to P(U)
and (C ◦ C ′)(X) ⊆ X for all X ⊆ U . It only remains to be shown
that C ◦ C ′ satisfies condition (1). Consider the image of some X ∪
Y by C ◦ C ′, in symbols C(C ′(X ∪ Y)). As C ′ obeys condition (1),
C ′(X ∪ Y) is either C ′(X) or C ′(Y) or C ′(X) ∪ C ′(Y). The first two
cases yield that C(C ′(X ∪ Y)) can be C(C ′(X)) or C(C ′(Y)). The last
case is that C(C ′(X ∪ Y)) can be C(C ′(X) ∪ C ′(Y)). As C satisfies
condition (1), C(C ′(X) ∪ C ′(Y)) is either C(C ′(X)) or C(C ′(Y)) or
C(C ′(X))∪C(C ′(Y)). All five possibilities (the two cases above and the
three subcases of the third case) amount to the formulation of condition
(1) for C◦C ′ in the form: C(C ′(X∪Y)) is either C(C ′(X)) or C(C ′(Y))
or C(C ′(X)) ∪ C(C ′(Y)).

Proof (Theorem 3.6) The case C(X) = ∅ is trivial. The case C(X) =
X is also trivial. So, we only need considering a non-empty X such
that X \ C(X) 6= ∅. Assume C(X \ C(X)) ⊆ C(C(X) ∪ (X \ C(X))).
Then, C(X \ C(X)) ⊆ C(X) because C(X) ∪ (X \ C(X)) is X. This
contradicts C(X\C(X)) ⊆ X\C(X) and it follows that the assumption
must fail: C(X \ C(X)) 6⊆ C(C(X) ∪ (X \ C(X))). As a consequence,
C(C(X)∪ (X \C(X))) 6= C(X \C(X)) and C(C(X)∪ (X \C(X))) 6=
C(C(X))∪C(X \C(X)). Taking K to be C(X) and K ′ to be X \C(X),
condition (1) is then contradicted unless C(C(X) ∪ (X \ C(X))) =
C(C(X)). That is, C(X) = C(C(X)).

Proof (Corollary 3.1) Cl(. . . Cj(X) . . .) is taken to be non-empty
because the case Cl(. . . Cj(X) . . .) = ∅ is trivial.
Observe that Cl(. . . Cj(X) . . .) ⊆ Cj(X) and Cj(X\Cl(. . . Cj(X) . . .)) ⊆
X \ Cl(. . . Cj(X) . . .). Assuming Cj(X) ⊆ Cj(X \ Cl(. . . Cj(X) . . .))
would then imply Cl(. . . Cj(X) . . .) ⊆ X \ Cl(. . . Cj(X) . . .) which is
impossible because Cl(. . . Cj(X) . . .) 6= ∅. So, the assumption is false.
Therefore, Cj(X) 6⊆ Cj(X \Cl(. . . Cj(X) . . .)). Hence, Cj(X) 6= Cj(X \
Cl(. . . Cj(X) . . .)). As X is Cl(. . . Cj(X) . . .) (indeed, Cl(. . . Cj(X) . . .)
is clearly a subset of X) unioned with X \ Cl(. . . Cj(X) . . .), applying
condition (1) would then yield a contradiction unless either

Cj(X) = Cj(Cl(. . . Cj(X) . . .))

or

Cj(X) = Cj(Cl(. . . Cj(X) . . .)) ∪ Cj(X \ Cl(. . . Cj(X) . . .))

llifinal.tex; 31/01/2003; 16:09; p.26

Optimality Theory as a Family of Cumulative Logics 27

In view of Cl(. . . Cj(X) . . .) ⊆ Cj(X), it follows that Cl(. . . Cj(X) . . .) ⊆
Cj(Cl(. . . Cj(X) . . .))∪Cj(X\Cl(. . . Cj(X) . . .)). Due to Cj(X\Cl(. . . Cj(X) . . .)) ⊆
X\Cl(. . . Cj(X) . . .), this then yields Cl(. . . Cj(X) . . .) ⊆ Cj(Cl(. . . Cj(X) . . .)).
The converse inclusion is obvious: Cj(Cl(. . . Cj(X) . . .)) ⊆ Cl(. . . Cj(X) . . .).

Proof (Theorem 3.7) Let us prove (2) (and (3) likewise). It is enough
to observe that (1) can be rewritten as C(X∪Y) = C(X) or C(X∪Y) =
C(Y) or C(X ∪ Y) = C(X) ∪ C(Y).
Let us prove (4). Assume X ⊆ C(Y). Hence X ⊆ Y because C(Y) ⊆ Y .
Observe that C(Y \X) ⊆ Y \X. So, the assumption makes it impossible
that C(X∪(Y \X)) = C(Y \X). For (1) not to be contradicted as applied
to X∪(Y \X) it then must be the case that either C(X∪(Y \X)) = C(X)
or C(X ∪ (Y \ X)) = C(X) ∪ C(Y \ X). That is, C(Y) = C(X) or
C(Y) = C(X) ∪ C(Y \ X). Then the assumption now entails X ⊆
C(X) ∪ C(Y \X) hence X ⊆ C(X) in view of C(Y \X) ⊆ Y \X.
Let us prove (5). Assume X ⊆ Y . Consider z ∈ X \ C(X). Therefore,
z ∈ Y . Then, there only remains to show that z 6∈ C(Y). Clearly, z ∈ X
hence z 6∈ C(Y \X) because C(Y \X) ⊆ Y \X. Now, z 6∈ C(X) and
z 6∈ C(Y \X) show that z 6∈ C(X ∪ (Y \X)) because (1), as applied to
X ∪ (Y \X), requires C(X ∪ (Y \X)) to consist at most of C(X) and
C(Y \X). So, z 6∈ C(Y) immediately follows because X ∪ (Y \X) is Y .
Let us prove (6). To simplify notation, we write Y ′ for Y \(X∩Y) (i.e.,
X ∪Y ′ = X ∪Y but X ∩Y ′ = ∅). Assume X ∩C(X ∪Y) 6= ∅. The case
C(X) = C(X ∪ Y ′) is trivial. So we are left with C(X ∪ Y ′) 6= C(X).
Observe that C(X ∪ Y ′) 6= C(Y ′) due to the assumption and the fact
that C(Y ′) ⊆ Y ′. Then (1) entails C(X ∪ Y ′) = C(X) ∪ C(Y ′). So,
C(X) ⊆ C(X ∪ Y).
Let us prove (7). The assumption X ⊆ Y \ C(Y) implies X ⊆ Y , so
C(X ∪ (Y \ X)) = C(Y). The first case is C(Y) = ∅ and C(X) 6= ∅.
The second case is C(X) = ∅ and C(Y) 6= ∅. In either case, C(X∪(Y \
X)) 6= C(X) and assuming C(X ∪ (Y \ X)) 6= C(Y \ X) would then
let (1) to apply, yielding a contradiction. There only remains the case
that C(X) and C(Y) are non-empty. In view of C(X) ⊆ X, assuming
X ⊆ Y \ C(Y) requires C(X ∪ (Y \X)) to be distinct from C(X) and
C(X) ∪ C(Y \X). By (1), C(X ∪ (Y \X)) = C(Y \X).

Proof (Theorem 3.8) In order to prove (1), let us assume C(X∪Y) 6=
C(X) and C(X ∪ Y) 6= C(Y).
Observe that (ii) has the following two instances. First, if z ∈ X but
z 6∈ C(X) then z 6∈ C(X ∪ Y). Second, if z ∈ Y but z 6∈ C(Y) then
z 6∈ C(X ∪Y). The contrapositives are as follows. First, z ∈ C(X ∪Y)
implies that if z ∈ X then z ∈ C(X). Second, z ∈ C(X ∪ Y) implies
that if z ∈ Y then z ∈ C(Y). So, z ∈ C(X∪Y) implies that if z ∈ X or
z ∈ Y then z ∈ C(X) or z ∈ C(Y). By (i), if z ∈ C(X∪Y) then z ∈ X

llifinal.tex; 31/01/2003; 16:09; p.27

28 Besnard et al.

or z ∈ Y . Therefore, z ∈ C(X ∪ Y) implies z ∈ C(X) or z ∈ C(Y).
Hence, assuming Y ∩ C(X ∪ Y) = ∅ yields that z ∈ C(X ∪ Y) implies
z ∈ C(X) in view of (i). In symbols, C(X ∪ Y) ⊆ C(X). Due to
Y ∩C(X ∪Y) = ∅, (i) and C(X ∪Y) 6= ∅ entail X ∩C(X ∪Y) 6= ∅. By
(iii), C(X) ⊆ C(X∪Y). As we have already proved C(X∪Y) ⊆ C(X),
the assumption C(X ∪ Y) 6= C(X) is now contradicted. So, we can
dismiss the extra assumption Y ∩ C(X ∪ Y) = ∅. Of course, we can
dismiss X ∩ C(X ∪ Y) = ∅ in a similar way.
Then, X ∩ C(X ∪ Y) 6= ∅ and Y ∩ C(X ∪ Y) 6= ∅. Applying (iii),
z ∈ C(X) or z ∈ C(Y) implies z ∈ C(X ∪ Y). Overall, z ∈ C(X ∪ Y)
iff z ∈ C(X) or z ∈ C(Y).

Proof (Theorem 3.9) For the if direction, apply Theorem 3.4 with
the definition of vc and (∗) that precede it (considering a family with
exactly one Ci). For the only if direction, apply Theorem 3.2 with the
definition of C preceding it and apply Theorem 3.8.
So, it is possible to map a valuation to a powerset operation obeying
condition (1) and it is possible to map a powerset operation obeying
condition (1) to a valuation. Verification that these two transformations
are essentially inverses of each other is as follows.
As for the first direction, we have to show that mapping a valuation vc

to a powerset operation C and mapping back C to a valuation results
in a valuation which is isomorphic to vc. Here is how we prove this:
Let c ∈ C. Define

C(K) def= {x ∈ K | vc(x) ≤ vc(y) for all y ∈ K}

and
vc′(z) def=

⋃
K′⊆U

z∈C(K′)

K ′

Now, K ′ ⊆ U is such that z ∈ C(K ′) iff z ∈ {u ∈ K ′ | vc(u) ≤
vc(y) for all y ∈ K ′}. This happens iff vc(z) is the least element in the
image of K ′ by vc (remember that ≤ is a well-ordering for the image of
U , as well as any of its subsets, by vc). This is equivalent to K ′ being
a subset of {u ∈ U | vc(z) ≤ vc(u)}. Therefore,⋃

K′⊆U
z∈C(K′)

K ′ = {u ∈ U | vc(z) ≤ vc(u)}

So, vc′(z) = {u ∈ U | vc(z) ≤ vc(u)}. Clearly, vc′(x) ⊆ vc′(w) iff
vc(w) ≤ vc(x) (because ≤ is a well-ordering, hence a total order, for

llifinal.tex; 31/01/2003; 16:09; p.28

Optimality Theory as a Family of Cumulative Logics 29

the image of U by vc). Applying (∗), vc′(w) ≤ vc′(x) iff vc(w) ≤ vc(x)
for all w and x in U .
Also, vc(x) ≤ vc(y) iff x ∈ C({x, y}) (cf the way C(K) is defined).
As for the other direction, we must show that mapping a powerset oper-
ation C to a valuation vc and mapping back vc to a powerset operation
results in C. We prove this as follows.
Consider C : P(U) \ {∅} → P(U) \ {∅} that satisfies condition (1) and
is such that C(K) ⊆ K for all non-empty subsets K of U . Define

vc(z)
def=

⋃
K′⊆U

z∈C(K′)

K ′

We first show, for all z ∈ U ,

vc(z) = {w ∈ U | z ∈ C({w, z})}

Clearly, {w ∈ U | z ∈ C({w, z})} ⊆ vc(z). As for the converse in-
clusion, let y ∈ K ′ such that z ∈ C(K ′). The non-trivial case is
K ′ 6= {y, z}. By y ∈ K ′ and z ∈ C(K ′) ⊆ K ′, condition (1) can
apply for C(K ′) to be either C(K ′ \ {y, z})∪C({y, z}) or C({y, z}) or
C(K ′ \ {y, z}). Due to C(K ′ \ {y, z}) ⊆ K ′ \ {y, z} and z ∈ C(K ′), we
obtain z ∈ C({y, z}) so that the converse inclusion is also proven.
Next, define

C ′(K) def= {x ∈ K | vc(x) ≤ vc(y) for all y ∈ K}

Then, C ′(K) = {x ∈ K | vc(y) ⊆ vc(x) for all y ∈ K} by (∗) and

C ′(K) =
{
x ∈ K | ∀y ∈ K, {w ∈ U | y ∈ C({w, y})} ⊆ {w ∈ U | x ∈ C({w, x})}

}
That is, x ∈ C ′(K) iff x ∈ K has the following property

∀y ∈ K ∀w ∈ U y ∈ C({w, y}) ⇒ x ∈ C({w, x})

We proceed to show C ′ = C by proving that x obeys the property iff x
is in C(K).
We first show that x ∈ C(K) implies the property. So, we assume
x ∈ C(K). Let w ∈ U and y ∈ K such that y ∈ C({w, y}). Let
Kw abbreviate K ∪ {w} (which is just K for w ∈ K). Observe that
x ∈ C({w, x}) (what we must show) holds if x ∈ C(Kw). Indeed, C(Kw)
is either C(K \ {x}) ∪C({w, x}) or C(K \ {x}) or C({w, x}). In view
of x ∈ C(Kw) and C(K \ {x}) ⊆ K \ {x}, the second case is impossible
and either of the remaining two cases implies x ∈ C({w, x}). Hence,
we are left with proving x ∈ C(Kw). We consider two possibilities. (i)

llifinal.tex; 31/01/2003; 16:09; p.29

30 Besnard et al.

Assume w ∈ C(Kw). Should w be in K, C(Kw) = C(K) hence the
conclusion follows: x ∈ C(Kw). So, we can assume w 6∈ K. By condi-
tion (1), C(Kw) is either C(K \ {w, y}) ∪ C({w, y}) or C(K \ {w, y})
or C({w, y}). The second case is impossible, due to the assumption
w ∈ C(Kw) and C(K \ {w, y}) ⊆ K \ {w, y}. Therefore, y ∈ C(Kw).
Due to condition (1), C(Kw) is either C(K) ∪ C({w}) or C(K) or
C({w}). The third case is impossible because y ∈ C(Kw) (clearly, w 6= y
due to w 6∈ K and y ∈ K). So, C(Kw) = C(K) ∪ C({w}). In view
of x ∈ C(K), it follows that x ∈ C(Kw). (ii) Assume alternatively
w 6∈ C(Kw). This implies C({w}) 6⊆ C(Kw) hence C(Kw) 6= C({w})
and C(Kw) 6= C(K) ∪ C({w}) so that C(Kw) = C(K) by condition
(1). Therefore, x ∈ C(Kw).
We now show that the property implies x ∈ C(K). As C(K) is non-
empty, there exists w ∈ C(K) ⊆ K so that identifying w with y in
the property yields C({w, x}). Applying condition (1), C(K) is either
C(K \ {w, x}) ∪ C({w, x}) or C({w, x}) or C(K \ {w, x}). Due to
w ∈ C(K), the third case is impossible and it follows that C({w, x}) ⊆
C(K), hence x ∈ C(K).
Also, it is obvious that vc(x) ≤ vc(y) iff x ∈ C ′({x, y}) = C({x, y}).

Proof (Theorem 4.1) Extending C so as to have C(∅) = ∅, we show
that C is a cumulative operation over 〈P(U),⊇〉. That is, we show that
for all subsets X and Y of U ,

X ⊇ Y ⊇ C(X) ⇒ C(X) = C(Y)

Or, equivalently:

C(X ∪ Y) ⊆ Y ⇒ C(X ∪ Y) = C(Y)

We only consider the non-trivial case X 6⊆ Y . Assume C(X ∪ Y) ⊆ Y
so that we must prove C(X∪Y) = C(Y). First of all, C(X \(X∩Y)) ⊆
X \ (X ∩Y). As X \ (X ∩Y) and Y are clearly disjoint, the assumption
implies C(X \ (X ∩ Y)) 6⊆ C(X ∪ Y) (indeed, C(X \ (X ∩ Y)) is non-
empty because X \ (X ∩Y) 6= ∅ in view of X 6⊆ Y). It then follows that
C((X \ (X ∩ Y))∪ Y) 6= C(X \ (X ∩ Y)) and C((X \ (X ∩ Y))∪ Y) 6=
C(X\(X∩Y))∪C(Y) (due to C(X∪Y) = C((X\(X∩Y))∪Y) which is
a trivial fact). For condition (1) not to be contradicted, it then must be
the case that C((X \(X∩Y))∪Y) = C(Y). That is, C(X∪Y) = C(Y).

Proof (Theorem 4.2) By Theorem 3.9 and the proof of Theorem 4.1
(where it is shown that C is a cumulative operation over 〈P(U),⊇〉)
together with the fact that h is bijective, it is enough to prove that h is
a homomorphism:

h(C(X)) = U \C(X) = C(X) = C(X) = L(X) = L(U \X) = L(h(X))

llifinal.tex; 31/01/2003; 16:09; p.30

Optimality Theory as a Family of Cumulative Logics 31

Indeed, it follows that L is a cumulative logic (i.e., a cumulative oper-
ation over 〈P(U),⊆〉) because

X ⊇ Y ⊇ C(X) ⇒ C(X) = C(Y)

is then equivalent to

X ⊆ Y ⊆ L(X) ⇒ L(X) = L(Y)

Proof (Theorem 4.3) In view of Theorem 4.2, consider the case that
there exists x ∈ U \ C(U). As C is an operation over P(U) \ {∅} such
that C(K) ⊆ K for all K ∈ P(U) \ {∅}, it follows that y ∈ C(U) for
some y ∈ U . So, a consequence of applying condition (1) to U \ {x, y}
unioned with {x, y}, is that C({x, y}) ⊆ C(U). Then, it is easy to
show that C({x, y}) = {y}. Hence, C({x}) 6⊆ C({x, y}). Using h and
reversing 6⊆ by set complementation, L(U \ {x, y}) 6⊆ L(U \ {x}).

Proof (Theorem 4.4) By Theorem 3.9, we only need to show the
equivalence between C and L. To start with, C(S \ X) ⊆ S \ X for
all X ∈ P(S) \ {S}. Hence, X ⊆ S \ C(S \ X). That is, X ⊆ L(X).
Similarly, C enjoys condition (1) which implies that if X ⊇ Y ⊇ C(X)
then C(X) = C(Y) (see the proof for Theorem 4.2). As a special case,
if S \X ⊇ S \Y ⊇ C(S \X) then C(S \X) = C(S \Y). Consequently,
if X ⊆ Y ⊆ S \C(S \X) then S \C(S \X) = S \C(S \Y). Therefore,
if X ⊆ Y ⊆ L(X) then L(X) = L(Y). Hence, L is a cumulative logic.
Yet, L also satisfies (‡) which can be shown from condition (1) below:

if C(X ∪ Y) 6= C(X) and C(X ∪ Y) 6= C(Y)
then C(X ∪ Y) = C(X) ∪ C(Y)

by substituting L(S \X) for S \ C(X) as follows:

if C(X ∩ Y) 6= C(X) and C(X ∩ Y) 6= C(Y)

then C(X ∩ Y) = C(X) ∩ C(Y)

As a trivial consequence, if L(X ∩ Y) 6= L(X) and L(X ∩ Y) 6= L(Y)
then L(X ∩ Y) = L(X) ∩ L(Y). That is, (‡) is verified.
As for the other direction of the equivalence, S \X ⊆ L(S \X) for all
X ∈ P(S) \ {∅} because L is cumulative. Hence, S \ L(S \ X) ⊆ X.
That is, C(X) ⊆ X. Also, C satisfies condition (1) which can be shown
from (‡) below:

if L(X ∩ Y) 6= L(X) and L(X ∩ Y) 6= L(Y)
then L(X ∩ Y) = L(X) ∩ L(Y)

llifinal.tex; 31/01/2003; 16:09; p.31

32 Besnard et al.

by substituting C(S \X) for S \ L(X) as follows:

if L(X ∪ Y) 6= L(X) and L(X ∪ Y) 6= L(Y)

then L(X ∪ Y) = L(X) ∪ L(Y)

As a trivial consequence, if C(X ∪ Y) 6= C(X) and C(X ∪ Y) 6= C(Y)
then C(X ∪ Y) = C(X) ∪ C(Y). That is, condition (1) holds.
In view of Theorem 4.3, the restriction to non-vacuous constraints and
non-monotonic cumulative logics also holds because the remaining case
is unproblematic: If L is non-monotonic then C cannot be vacuous.
That is, there only remains to prove that L being non-monotonic makes
C to be non-vacuous. Since L is non-monotonic, there exist S′ ⊂ S and
S′′ ⊂ S such that S′ ⊂ S′′ while L(S′) 6⊆ L(S′′). Clearly, S \ L(S′′) 6⊆
S \L(S′). Hence, C(S \S′′) 6⊆ C(S \S′). As S \S′ is (S \S′′)∪ (S′′ \S′)
due to S′ ⊂ S′′ ⊂ S, we get C(S \ S′′) 6⊆ C((S \ S′′) ∪ (S′′ \ S′)). So,
C((S \S′′)∪ (S′′ \S′)) 6= C(S \S′′) and C((S \S′′)∪ (S′′ \S′)) 6= C(S \
S′′)∪C(S′′ \S′). Then, condition (1) implies C((S \S′′)∪ (S′′ \S′)) =
C(S′′ \ S′) to hold. That is, C(S \ S′) = C(S′′ \ S′).
Let us assume for the rest of the proof that C is vacuous: C(S) =
S. As S is of course S′ ∪ (S \ S′), this entails C(S′ ∪ (S \ S′)) =
S. By C(S′) ⊆ S′ (while S′ 6= S) and C(S \ S′) ⊆ S \ S′ (while
S 6= S \ S′, otherwise S′ being empty and C being vacuous would yield
C(S \ S′) = S hence S = S \ L(S′) by duality so that L(S′) = ∅ and
L(S′) ⊆ L(S′′) would hold), all this leads to C(S′∪(S\S′)) 6= C(S′) and
C(S′ ∪ (S \ S′)) 6= C(S \ S′). For condition (1) not to be contradicted,
C(S′ ∪ (S \ S′)) = C(S′) ∪ C(S \ S′) must then hold. That is, C(S) =
C(S′) ∪ C(S \ S′). Due to C(S \ S′) = C(S′′ \ S′) as was previously
obtained, it then follows that C(S) = C(S′) ∪ C(S′′ \ S′). Therefore,
C(S) ⊆ S′ ∪ (S′′ \ S′). Consequently, C(S) ⊆ S′′ and C(S) 6= S is
proved so that a contradiction arises.

llifinal.tex; 31/01/2003; 16:09; p.32

