
A Glimpse of Answer Set Programming

Christian Anger and Kathrin Konczak and Thomas Linke and Torsten Schaub

Answer Set Programming (ASP) is a declarative paradigm for solving search problems appearing in knowledge repre-
sentation and reasoning. To solve a problem, a programmer designs a logic program so that models of the program
determine solutions to the problem. ASP has been identified in the late 1990s as a subarea of logic programming and is
becoming one of the fastest growing fields in knowledge representation and declarative programming. Major advantages
of ASP are (1) its simplicity, (2) its ability to model effectively incomplete specifications and closure constraints, and
(3) its relation to constraint satisfaction and propositional satisfiability, which allows one to take advantage of advances
in these areas when designing solvers for ASP systems.

1 Introduction

Answer Set Programming (ASP) emerged in the late 1990s
as a new logic programming paradigm [22, 34, 35, 28], ha-
ving its roots in nonmonotonic reasoning, deductive databa-
ses and logic programming with negation as failure. Since its
inception, it has been regarded as the computational embo-
diment of nonmonotonic reasoning and a primary candidate
for an effective knowledge representation tool. This view has
been boosted by the emergence of highly efficient solvers
for ASP [50, 17]. It now seems hard to dispute that ASP
brought new life to logic programming and nonmonotonic
reasoning research and has become a major driving force for
these two fields, helping to dispel gloomy prophecies of their
impending demise.

The basic idea of ASP is to represent a given compu-
tational problem by a logic program whose answer sets cor-
respond to solutions, and then use an answer set solver for
finding answer sets of the program. This approach is close-
ly related to the one pursued in propositional satisfiability
checking (SAT), where problems are encoded as propositio-
nal theories whose models represent the solutions to the gi-
ven problem. Even though syntactically, ASP programs look
like Prolog programs, they are treated by rather different
computational mechanisms. Indeed, the usage of model ge-
neration instead of query evaluation can be seen as a recent
trend in the encompassing field of knowledge representation
and reasoning. ASP is particularly suited for solving difficult
combinatorial search problems. Among these, we find appli-
cations to plan generation, product configuration, diagnosis,
and graph-theoretical problems.

2 Background

We restrict the formal development of ASP to propositional
(normal) logic programs consisting of rules of the form

p0 ← p1, . . . , pm, not pm+1, . . . , not pn , (1)

where n ≥ m ≥ 0, and each pi (0 ≤ i ≤ n) is an atom.
Given such a rule r, we let head(r) denote the head, p0, of r

and body(r) the body, {p1, . . . , pm, not pm+1, . . . , not pn},
of r. Also, let body+(r) = {p1, . . . , pm} and body−(r) =
{pm+1, . . . , pn}. The intuitive reading of such a rule is that
of a constraint on an answer set: If all atoms in body+(r)
are included in the set and no atom in body−(r) is in it, then
head (r) must be included in the answer set.

Answer sets as such are defined via a reduction to negation-
as-failure-free programs: A logic program is called basic if
body−(r) = ∅ for all its rules. A set of atoms X is closed

under a basic program Π if for any r ∈ Π, head (r) ∈ X

whenever body+(r) ⊆ X. The smallest set of atoms which
is closed under a basic program Π is denoted by Cn(Π) and
constitutes the answer set of Π.

For the general case, we need the concept of a reduct of
a program Π relative to a set X of atoms:

ΠX = {head (r)← body
+(r) | r ∈ Π, body

−(r) ∩X = ∅}.

With these formalities at hand, we can define answer set

semantics for logic programs: A set X of atoms is an answer

set of a program Π if Cn(ΠX) = X. This definition is due
to [22], where the term stable model is used; the idea traces
back to [45]. In fact, one may regard an answer set as a
model of a program Π that is somehow “stable” under Π.
In other words, an answer set is closed under the rules of Π,
and it is “grounded in Π”, that is, each of its atoms has a
derivation using “applicable” rules from Π.

For illustration, consider the program

Π = {p← p, q ← not p} .

Among the four candidate sets, we find a single answer set,
{q}, as can be verified by means of the following table:

X ΠX Cn(ΠX)

∅ p ← p

q ←
{q}

{p} p ← p ∅
{q} p ← p

q ←
{q}

{p, q} p ← p ∅
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A noteworthy fact is that posing the query p or q to Π in a
Prolog system leads to non-terminating situation due to its
top-down approach.

Analogously, we may check that the program

Π1 = {p← not q, q ← not p}

has the two answer sets {p} and {q}.

X ΠX Cn(ΠX)

∅ p ←
q ←

{p, q}

{p} p ← {p}
{q} q ← {q}
{p, q} ∅

The two rules in Π1 are mutually exclusive and capture an
indefinite situation: p can be added unless q has been added
and vice versa. We show in the next section how this can be
exploited in modeling problems in ASP.

Unlike the previous examples,

Π2 = {p← not p}

admits no answer set. Interestingly, Π2 offers a straightfor-
ward way to model integrity constraints of form

← p1, . . . , pm, not pm+1, . . . , not pn . (2)

This can be done by introducing a new atom f and replacing
(2) by rule f ← not f, p1, . . . , pm, not pm+1, . . . , not pn .

Whenever the integrity constraint in (2) is violated by a can-
didate set this set is eliminated by the effect observed on
program Π2. The usefulness of integrity constraints can be
observed by adding← p to program Π1. In fact, the integri-
ty constraints ← p eliminates the original answer set {p} of
Π1, so that Π1 ∪ {← p} yields a single answer set {q}.

Although general ASP is principally computationally com-
plete, that is, it can simulate arbitrary Turing machines [6],
one usually deals with decidable fragments. Commonly, we
consider rules with variables that are taken as abbreviations
for all ground instances over a finite set of constants. The
propositional fragment of ASP defined above allows for en-
coding all decision and search problems within NP [48, 33].

3 Modeling

The basic approach to writing programs in ASP follows a
“generate-and-test” strategy. First, one writes a group of
rules whose answer sets would correspond to candidate solu-
tions. Then, one adds a second group of rules, mainly consi-
sting of integrity constraints, that eliminates candidates re-
presenting invalid solutions.

As an example consider the well-known n-queens pro-
blem. The goal is to place n queens on an n×n chessboard
so that no two queens appear on the same row, column, or
diagonal. Let us represent the positioning of the queens by
atoms of the form q(i, j), where 1 ≤ i, j ≤ n. That is, an
atom q(i, j) represents that a queen is at position (i, j).

Let us first give a “generator”. To this end, we build
upon the non-deterministic behavior observed on program
Π1. Also, we introduce an auxiliary atom q′(i, j) indicating
that there is no queen at (i, j). Finally, we need a “domain
predicate” d indicating the dimension of the chessboard. Ac-
cordingly, we obtain:

q(X, Y ) ← d(X), d(Y ), not q
′(X, Y ) (3)

q
′(X, Y ) ← d(X), d(Y ), not q(X, Y ) (4)

So, taking a 1×1 chessboard by adding d(1), we obtain from
(3) and (4) two answer sets, {q(1, 1), d(1)} and {q′(1, 1), d(1)},
just as with program Π1. Accordingly, we obtain by adding
d(1) and d(2) a 2×2 chessboard, generating 16 answer sets,
among which we find:

{q′(1, 1), q′(1, 2), q′(2, 1), q′(2, 2), d(1), d(2)} (5)

{q(1, 1), q′(1, 2), q′(2, 1), q′(2, 2), d(1), d(2)}
q

(6)

{q(1, 1), q′(1, 2), q′(2, 1), q(2, 2), d(1), d(2)}
q

q
(7)

{q(1, 1), q(1, 2), q(2, 1), q(2, 2), d(1), d(2)}
q q

q q
(8)

Now, the “tester” must eliminate candidate sets in which
queens are positioned on the same row, column, or diagonal.
This can be done through the following integrity constraints:

← q(X, Y ), q(X ′
, Y ), X ′ 6= X, (9)

d(X), d(Y ), d(X ′), d(Y ′)

← q(X, Y ), q(X, Y
′), Y ′ 6= Y, (10)

d(X), d(Y ), d(X ′), d(Y ′)

← q(X, Y ), q(X ′
, Y

′), |X −X
′| = |Y − Y

′|, (11)

X
′ 6= X, Y

′ 6= Y, d(X), d(Y ), d(X ′), d(Y ′)

In fact, all rules rule out candidate set (8). Rule (11) eli-
minates set (7). However, none of them accounts for the
requirement that n queens must be put on the board. This
can be achieved by the following pair of rules.

← d(X), hasq(X)

hasq(X) ← d(X), d(Y ), q(X, Y )

The two latter rules eliminate candidate sets (5) and (6).

4 Language Extensions

Classical negation. Normal logic programs provide negati-
ve information implicitly through the closed world assump-
tion [44]. Consider the following rule: cross ← not train.
If train is not derivable, the atom cross becomes true. But
this may lead to a disaster because you have no explicit infor-
mation that there really is no train. An alternative would be
to use an explicit negation operator ¬. Then we can express
the previous rule as follows: cross← ¬train.
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An atom p or a negated atom ¬p is called a literal.
Logic programs with literals are called extended logic pro-

grams [22]. An extended logic program is contradictory [5]
if complementary literals, e.g. train and ¬train, are deri-
vable. In that case, one obtains exactly one answer set, viz
the set of all literals. If a program is not contradictory, the
definition of answer sets of extended logic programs carries
over from normal ones.

Classical negation can be eliminated by a polynomial
transformation, replacing each negated atom ¬p by a new
atom p′ and adding the rules,

q ← p, p
′ and q

′ ← p, p
′
, (12)

for each atom p and q. The rules in (12) generate the set of
all literals in case of contradictory programs. For preserving
only consistent answer sets, we may add constraints ← p, p′

for each atom p, instead of the rules in (12).

Disjunctive logic programs extend normal programs by dis-
junctive information in the head of a rule [22]. More precisely,
the head of a rule is a disjunction q0; . . . ; qk for atoms qi,
where 0 ≤ i ≤ k. E.g. p; q expresses that “p is true or q

is true”. Letting head (r) = {q0, . . . , qk}, a set of atoms
X is closed under a basic program Π if for any r ∈ Π,
head (r) ∩ X 6= ∅ whenever body+(r) ⊆ X. The definition
of ΠX carries over from normal programs. An answer set X

of a disjunctive logic program is a ⊆- minimal set of atoms
being closed under ΠX . For example, the disjunctive logic
program Π = {p; q ←} has the answer sets {p} and {q}.
The set {p, q} is closed under Π{p,q}, but it is not an answer
set of Π since it is not ⊆-minimal. Observe that adding the
rules p ← and q ← to Π makes {p, q} the only answer set
of Π ∪ {p ←, q ←}. If we use disjunction in the n-queens
problem, rules (3) and (4) can be replaced by one rule:

q(X, Y ); q
′(X, Y ) ← d(X), d(Y )

The usage of disjunction raises the complexity of the un-
derlying decision problems, e.g. deciding whether there exists
an answer set X for a given atom p such that p ∈ X is ΣP

2 -
complete [18].

Nested logic programs are logic programs where the bodies
and heads of rules may contain arbitrary boolean expressions
formed from propositional atoms and the symbols > (true)
and ⊥ (false) using negation-as-failure (not), conjunction
(,), and disjunction (;) [30]. Answer sets are similarly defined
as for disjunctive programs under regard that every boolean
expression must be satisfied in the sense of classical logic and
that the reduct ΠX is operating on boolean expressions. For
illustration, consider nested program Π = {(p; not p) ←}.
Taking X = ∅, we obtain Π∅ = {(p;>)←} as reduct and ∅
as the only ⊆- minimal set being closed under Π∅, that is,
the boolean expression (p;>) is trivially satisfied by X = ∅.
For X = {p}, we get Π{p} = {(p;⊥) ←} and {p} as the
⊆-minimal set satisfying the expression (p;⊥). Hence, ∅ and
{p} are the answer sets of nested program {(p; not p) ←}.
In the n-queens problem, rules (3) and (4) can be replaced
by q(X, Y ); not q(X, Y ) ← d(X), d(Y ) , where the usage
of nested expressions avoids using auxiliary predicate q′.

Nested programs can be polynomially translated into dis-
junctive programs [39].

Cardinality constraints are extended literals [49]. They are
of the form l {q1, . . . , qm} u, for m ≥ 1, where l, u are
lower and upper bounds on the cardinality of subsets of
{q1, . . . , qm} satisfied in an encompassing answer set. They
can appear in the head or in the body of a rule. A car-
dinality constraint is satisfied in an answer set X, if the
number of atoms from {q1, . . . , qm} belonging to X is bet-
ween l and u. To ensure in the n-queens problem that ex-
actly one queen is in every column j, we use the expres-
sion 1{q(1, j), . . . , q(n, j)}1, which can be abbreviated by
1{q(X, j) : d(X)}1, a so-called conditional literal [49]. Hence,
the n-queens problem can be encoded with three rules, na-
mely rule (11) and

1{q(X, Y ) : d(X)}1 ← d(Y ) (13)

1{q(X, Y ) : d(Y )}1 ← d(X), (14)

where rules (13) and (14) ensure that there is exactly one
queen in every column and row, respectively.

Deciding whether a normal program with cardinality cons-
traints has an answer set is NP-complete [49].

Preferences. The notion of preference is pervasive in common-
sense reasoning, e.g. in decision making, in part because
preferences constitute a very natural and effective way of
resolving indeterminate situations. In the following, we will
exemplarily consider preferences among rules and so-called
ordered disjunctions.

Rule preferences. A logic program with (static) prefe-
rences is a pair (Π,<) where Π is a logic program and < is a
strict partial order among rules of Π expressing that one rule
has higher priority than another rule. Also, dynamic prefe-
rences can be modeled by taking a special purpose predicate
prec instead of an external order <. In both cases, the idea
is to apply a rule r only if the “question of applicability” has
been settled for all higher preferred rules r′. See [47, 14] for
a survey on strategies for rule preferences.

Ordered disjunctions allow to represent alternative, ran-
ked options in the head of rules [10]. p × q is an ordered
disjunction which means: if possible p, but if p is impossi-
ble then at least q. Ordered disjunctions can be used, e.g.
for the problem of composing a menu. You can choose bet-
ween meat or vegetarian food. In case of choosing meat
you would prefer wine over mineral water, otherwise you
prefer mineral water over wine. These preferences can be
modeled with ordered disjunctions as follows:

meat× vegetarian ←

wine × water ← meat

water × wine ← not meat

This program has answer set {meat,wine}. But in the case
where meat is not possible, e.g. adding the integrity cons-
traint ← meat, the answer set is {vegetarian,water}.

Further preference handling approaches in answer set
programming are preferences among literals [46], ordered
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choice logic programs [8], the preference description langua-
ge PDL [9] for specifying complex preferences structures in
optimization problems, and consistency-restoring rules [4].

Other language extensions include aggregate functions [15],
like sum, count, or min, weak constraints [27] as a variant
of integrity constraints, and weight constraints [49] as an
extension of cardinality constraints.

5 Systems

In recent years, several systems for answer sets computation
have become available, including smodels [50, 49], dlv [17,
27], noMoRe [38, 32], assat [2, 31], and cmodels [12]. Most
of the currently known ASP systems are designed to compute
answer sets for propositional logic programs. In order to deal
with programs containing variables, the systems rely on a
two phase implementation consisting of:

1. elimination of variables for obtaining propositional pro-
grams and handling special system dependent langua-
ge extensions (see Section 4); and

2. computation of answer sets for propositional programs.
Before detailing the second phase, we shortly report on tools
for variable elimination, so-called grounders. Currently, most
ASP systems utilize lparse (the grounder coming with the
smodels system) or the grounder included in dlv. Both
grounders allow for parsing disjunctive programs with classi-
cal negation along with their specific language extensions.

The remainder of this section describes the second pha-
se, dealing with answer set generation of propositional logic
programs. For simplicity, we deal with normal programs only.
In this case, answer sets are (sub)sets of atoms occurring in
a given program as heads of rules. A partial model is defined
as a 3-valued truth assignment for the atoms of a program
with truth values true, false and undefined. Such a 3-valued
model is total if it contains no undefined atoms. General-
ly, the answer set computation in the second phase aims at
extending a given partial model to a total one which is an
answer set (or determining that this is impossible). The com-
putation can be decomposed into alternating deterministic
and non-deterministic parts. We start with the partial model
where all atoms are undefined. Then we try to extend it to an
answer set by computing its deterministic consequences by
means of propagation techniques. These techniques extend
the partial model by increasing the number of atoms being
true or false, respectively. If the obtained model is total, then
it is returned as an answer set. If the model is contradictory,
in the sense that an atom has been assigned both true and
false, then we have detected a situation admitting no ans-
wer sets. Otherwise, we must non-deterministically choose
an undefined atom and “branch” on its possible truth va-
lues true and false. This is done by a case analysis which
recursively applies the described procedure once to the par-
tial model where the chosen atom is assigned true and again
to the partial model where the chosen atom is false1.

1The above procedure is similar to the Davis-Putnam-
Logemann-Loveland procedure [13] for SAT solvers.

Observe that all ASP solvers additionally utilize some
heuristics to guide their choices. The actual heuristics is cru-
cial for the overall system performance, since the number
of choices determines the depth of the (exponential) search
tree. For a detailed discussion of different ASP heuristics
including experimental results see [20].

The smodels system. The basic smodels algorithm can be
described as follows:

smodels(L, U)
1 expand(L, U)
2 if L 6⊆ U then return fail
3 if L = U then exit with L

4 A← select(U \ L)
5 smodels(L ∪ {A}, U)
6 smodels(L,U \ {A})

It computes an answer set between lower bound L and up-
per bound U , or determines that this is impossible. That
is, the two sets L and U aim at capturing all answer sets
X such that L ⊆ X ⊆ U . Observe that partial models are
represented through two sets of atoms L and U , where L

contains all true atoms and U contains all atoms not yet
known to be false (that is, true or undefined); false atoms
are implicitly given by Atm(Π)\U .2 First, smodels compu-
tes deterministic consequences of a partial model at hand by
calling its propagation procedure expand (Line 1). Observe
that expand is based on propagation rules which generalize
the well-founded semantics [53]. In fact, if a call to expand

produces sets L and U such that L is not a subset of U ,
then it follows that there is no answer set between the in-
itially given bounds (Line 2). On the other hand, if L = U

after a call to expand (Line 3), then L is an answer set of
the underlying logic program. More precisely, expand tries
to enlarge lower bound L and, at the same time, it tries to
make upper bound U smaller in such a way that no answer
set is lost. That is, for all answer sets X of a program we
have if condition L ⊆ X ⊆ U holds before calling expand,
then it also holds after the execution of expand. If neces-
sary, smodels then chooses an undefined atom A (Line 4)
and calls itself recursively, first (Line 5) to try to find an
answer set between L ∪ {A} and U , that is, setting A true,
and second (Line 6) to find an answer set between L and
U \ {A}, that is, setting A false. Initially, smodels is called
with ∅ and Atm(Π). This guarantees that all answer sets of
Π are found via backtracking.

The dlv system [17] extents the computation of answer
sets to disjunctive logic programs and dlv specific language
extensions, e.g. aggregate functions and weak constraints.
Its core algorithm is similar to the one of smodels. The
propagation of dlv also relies on computing well-founded
semantics plus back-propagation mechanisms that allow for
additionally marking atoms as being “eventually true”.

The systems assat and cmodels. These two ASP solvers
operate by reducing the problem of answer set computa-
tion to the satisfiability problem of propositional formulas
(via Clark’s completion [11]) and by invoking a SAT solver

2Atm(Π) denotes the set of all atoms occurring in Π.
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to generate answer sets. The fact that answer sets of the
syntactically restricted class of tight programs correspond
to classical models of its completion was discovered by Fa-
ges [21] and used for answer set computation in [2, 12]. For
handling the general case correctly, so-called loop formulas

have to be added [31]. However, complexity considerations
show that an exponential growth in size is likely to be unavoi-
dable, whenever logic programs are mapped into equivalent
propositional formulas [29].

The noMoRe system [38] relies on a graph-based approach.
It has its roots in default logic [45], where extensions are
often characterized through their (unique) set of generating

default rules. Accordingly, noMoRe characterizes answer sets
by means of their set of generating rules. For determining
whether a rule belongs to this set, we must verify that each
positive body atom is derivable and that no negative body
atom is derivable. In fact, an atom is derivable if the set
of generating rules includes a rule having the atom as its
head; or conversely, an atom is not derivable if there is no
rule among the generating rules that has the atom as its
head. Consequently, the formation of the set of generating
rules amounts to resolving positive and negative dependen-
cies among rules. For capturing these dependencies, noMoRe
takes advantage of the concept of a rule dependency graph,
wherein each node represents a rule of the underlying pro-
gram and two types of edges stand for the aforementioned
positive and negative rule dependencies, respectively. Answer
sets now can be expressed by total non-standard 2-colorings
of the rule dependency graph [32, 26]: membership of a rule
in the set of generating rules is indicated through its color.

Other systems. In addition to the above presented ASP sy-
stems there are other systems available, among them we
find the plp system [40] for preference handling, XSB [43]
for computing well-founded semantics, the quip [42] sy-
stem dealing with ASP through quantified boolean formulas,
nlp [36] a front-end for nested logic programs, psmodels [41]
an implementation of ordered disjunctions, and gnt [23] an
system for disjunctive logic programs based on smodels.

In order to foster further development of ASP the auto-
mated benchmarking system asparagus [1, 7] was launched.
Its two principal goals are to provide an infrastructure for
accumulating challenging benchmarks, and to facilitate exe-
cuting ASP solvers under the same conditions, guaranteeing
reproducible and reliable performance results.

6 Applications

ASP has been applied in multiple areas, e.g. product confi-
guration [52, 51], planning [28, 16] and diagnosis [3].

In product configuration one derives a valid configuration
from predefined components, some restrictions on these, and
a set of customer requirements. One example is the configu-

ration of PCs. Take program

computer← (15)

1 {ide disk, scsi disk} ← computer (16)

german layout; us layout← computer (17)

scsi controller← scsi disk (18)

expressing in rule (16) that a computer has an IDE or a SCSI
disk and either a German or US layout keyboard in (17). If
it does have a SCSI disk, rule (18) states that it also needs
a SCSI controller. The answer sets of this program repre-
sent all possible configurations. If you now add the customer
requirements (German keyboard, no SCSI disk)

← scsi disk

german layout←

the remaining answer set, including computer, ide disk, and
german layout, represents the only valid configuration.

This highly declarative way of dealing with configuration
tasks is used e.g. for the configuration of Debian Linux [51].

Planning within ASP is another area that has been exten-
sively studied during the last few years. Consider the blocks
world domain where we want to move blocks from an initi-
al situation to a goal situation. In ASP, we can express the
problem in the following way. We start with the generator:

{mv(B,L, T ) : bl(B) : loc(L)} 1← t(T ), T < last (19)

which generates possible moves (mv) of blocks (bl) to cer-
tain locations3 (loc) for all discrete time steps (t) before time
step last (see rule (19)).

on(B, L, T + 1)← mv(B, L, T ), bl(B), loc(L), (20)

t(T ), T < last

on(B, L, T + 1)← on(B, L, T ), (21)

not ¬on(B, L, T + 1),

bl(B), loc(L), t(T ), T < last

¬on(B, L1, T )← on(B, L, T ), L 6= L1, bl(B), (22)

loc(L), loc(L1), t(T ), T < last

We describe the effect of a move action in (20) by saying
that if block B is moved to location L at time T , it will
be on that location at the next time step T + 1. Inertia
(21) expresses that a block stays on a location, unless it
does not (¬on). The information that a block is not on a
certain location is represented by rule (22), which expresses
uniqueness of location (no block can be at two locations at
the same time).

Now let us look at the tester part of our program.

← 2 {on(B1, B, T ) : bl(B1)}, bl(B), t(T ) (23)

← mv(B,L, T ), on(B1, B, T ), bl(B), bl(B1), (24)

loc(L), t(T ), T < last

3Possible locations are the blocks themselves and the table.
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Integrity constraint (23) expresses that no two blocks
can be on top of the same block (though they can both be
on the table). Via constraint (24) we express that a block
can only be moved, if there is no block on top of it.

We have now described the blocks world domain with
just six rules. Now we only need to specify our initial (i.e. at
time step 0) and goal (at time step last) situations. E.g., we
start with two towers with two blocks each:

on(1, 2, 0) ← on(2, table, 0) ←

on(3, 4, 0) ← on(4, table, 0) ←

To specify our goal situation of just one big tower, we use
integrity constraints. We disallow all answer sets (possible
plans) where the blocks are not in the desired position at
the last time step:

← not on(4, 3, last) ← not on(3, 2, last)

← not on(2, 1, last) ← not on(1, table, last)

The last thing we need to do is to fix the macro last to a
specific number of time steps, representing the length of the
plans to be investigated. For the situation above, we could
e.g. use last = 3, which would give us all possible plans of
length three, i.e., {mv(4, table, 0), mv(3, 2, 1), mv(4, 3, 2)} .

We have refrained from giving explicit instantiations of
the domain predicates bl and t, which would also be needed.

Other Applications of ASP include the Reaction Control
System of the Space Shuttle [37], which has primary respon-
sibility for maneuvering the aircraft while in space. Also, ASP
has been employed e.g. for Constraint Programming [35], for
certain issues pertaining Petri nets [24], for cryptanalysis [25]
and for research in historical linguistics [19].
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