
Künstliche Intelligenz manuscript No.
(will be inserted by the editor)

The Potsdam Answer Set Solving Collection 5.0

Martin Gebser · Roland Kaminski · Benjamin Kaufmann · Patrick

Lühne · Philipp Obermeier · Max Ostrowski · Javier Romero · Torsten

Schaub · Sebastian Schellhorn · Philipp Wanko

Received: date / Accepted: date

Abstract The Potsdam Answer Set Solving Collection,

or Potassco for short, bundles various tools implement-

ing and/or applying Answer Set Programming. The

article at hand succeeds an earlier description of the

Potassco project published in [6]. Hence, we concentrate

in what follows on the major features of the most recent,

fifth generation of the ASP system clingo and highlight

some recent resulting application systems.

1 Answer Set Programming Systems

Answer Set Programming (ASP) offers a declarative and

effective technology for solving knowledge-intense com-

binatorial (optimization) problems. As such, it is often

designated as a model, ground, and solve paradigm that

features a high-level first-order specification language,

which is turned by a grounder into a propositional for-

mat that is finally used by a solver to compute (optimal)

solutions of the original problem. This traditional work-

flow is also followed by the ASP system clingo, which

relies on the grounder gringo and the solver clasp. Their

basic functioning is described in [7,11]. clingo’s input

language slightly extends the ASP language standard [3]

and has been put on firm semantic foundations in its full

extent [5]. In practice, often a more flexible approach is

needed to capture evolving or heterogeneous problem

specifications. The fifth generation of clingo addresses

both via means for controlling solving processes and for

T. Schaub
University of Potsdam E-mail: torsten@cs.uni-potsdam.de

extending them with constraints foreign to ASP. Both

corresponding techniques, multi-shot and theory solving,

are sketched next, and detailed in [10].

Multi-shot solving allows for solving continuously

changing logic programs in an operative way. This can

be controlled via APIs implementing reactive procedures

that loop on grounding and solving while reacting, for

instance, to outside changes or previous solving results.

Such reactions may entail the addition or retraction of

rules that clingo’s operative approach can accommodate

while leaving unaffected program parts intact within

the solver. This avoids re-grounding and benefits from

heuristic scores and constraints learned over time. clingo

supports this by two language constructs. Programs can

be partitioned into (parametrized) subprograms with

directive #program and externally determined atoms can

be declared with #external. While the former enables

grounding and solving procedures to concentrate on

subprograms, for instance, when iteratively unfolding a

transition function, the latter allows us to control the

truth value of atoms, for instance, when incorporating

exogenous information. Paired with APIs for grounding,

solving, assigning truth values, etc. this provides us with

fine-grained control over the ASP solving process and

offers a high degree of customization. Use cases of multi-

shot solving include incremental and reactive reasoning
in general, and more specifically, complex optimization,

planning and monitoring, multi-agent systems, sensor

data handling, etc.

Theory solving allows us to extend the range of ASP

beyond its native constraints. Such extensions concern



2 Martin Gebser et al.

the entire workflow and affect not only the actual solver

but as well the modeling language and its grounder.

clingo provides generic means for adding theory solving

capacities. On the one hand, it offers theory grammars

for expressing theory languages whose expressions are

seamlessly integrated in the grounding process. On the

other hand, a simple API consisting of four methods

offers an easy integration of theory propagators into

the solver, either in C, C++, Lua, or Python. Mean-

while this framework has been instantiated in various

ways. Of interest are for example extensions with linear
constraints over integers and reals [9]:

– clingo[DL] extends clingo with difference constraints

(of form x− y ≤ k) over reals and integers.

– clingo[LP] extends clingo with linear constraints over

reals and integers via an interface to linear program-
ming solvers such as cplex or lpsolve.

– clingcon extends clingo with linear constraints over

integers and global constraints like distinct.

For example, in clingo[DL], the rule

&diff{ end(T)-ini(T) } <= D :- duration(T,D).

can be used to express that a task T respects its dura-

tion D. The atom in the rule head represents an (afore-

mentioned) difference constraint, in which ini(T) and

end(T) are real variables indicating a task’s start and

end times; D is a real number. Theory atoms begin with

‘&’ and are defined by the respective theory grammar.

The ASP solver treats them as common atoms; their

subatomic structure is interpreted by theory propagator,
e.g., handling difference constraints in case of clingo[DL].

2 ASP-based Application Systems

The Potassco suite is in use in various application ar-

eas in academia as well as industry worldwide. One

of the highlights was presumably the use of clasp in

the US-wide auction to re-purpose radio spectrum from

broadcast television to wireless internet [12]. Here is a

selection of applications hosted at potassco.org:

– aspcud [8], a solver for Linux package configuration.

– asprin [2], a general framework for (combined) qual-

itative and quantitative optimization in ASP.

– chasp [13], a composer for musical harmonies.

– plasp [4], a PDDL-based planning system.

– teaspoon [1], a course timetabling system.

All software, further information, and resources are

available at potassco.org.

References

1. Banbara, M., Inoue, K., Kaufmann, B., Okimoto, T.,
Schaub, T., Soh, T., Tamura, N., Wanko, P.: teaspoon:
Solving the curriculum-based course timetabling problems
with answer set programming. Annals of Operations
Research (2018). To appear.

2. Brewka, G., Delgrande, J., Romero, J., Schaub, T.: asprin:
Customizing answer set preferences without a headache.
In: Proceedings of the Twenty-Ninth National Conference
on Artificial Intelligence (AAAI’15), pp. 1467–1474. AAAI
Press (2015).

3. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski,
R., Krennwallner, T., Leone, N., Ricca, F., Schaub, T.:
ASP-Core-2: Input language format.

4. Dimopoulos, Y., Gebser, M., Lühne, P., Romero, J.,
Schaub, T.: plasp 3: Towards effective ASP planning. In:
Proceedings of the Fourteenth International Conference
on Logic Programming and Nonmonotonic Reasoning
(LPNMR’17), pp. 286–300. Springer-Verlag (2017)

5. Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V.,
Schaub, T.: Abstract Gringo. Theory and Practice of
Logic Programming 15(4-5), 449–463 (2015).

6. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M.,
Schaub, T., Schneider, M.: Potassco: The Potsdam answer
set solving collection. AI Communications 24(2), 107–124
(2011)

7. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.:
Answer Set Solving in Practice. Morgan and Claypool
Publishers (2012)

8. Gebser, M., Kaminski, R., Schaub, T.: aspcud: A Linux
package configuration tool based on answer set pro-
gramming. In: Proceedings of the Second International
Workshop on Logics for Component Configuration (Lo-
CoCo’11), Electronic Proceedings in Theoretical Computer
Science (EPTCS), vol. 65, pp. 12–25 (2011)

9. Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T.,
Schellhorn, S., Wanko, P.: Clingo goes linear constraints
over reals and integers. Theory and Practice of Logic
Programming 17(5-6), 872–888 (2017)

10. Kaminski, R., Schaub, T., Wanko, P.: A tutorial on hybrid
answer set solving with clingo. In: Proceedings of the
Thirteenth International Summer School of the Reasoning
Web, pp. 167–203. Springer-Verlag (2017)

11. Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding
and solving in answer set programming. AI Magazine
37(3), 25–32 (2016)

12. Newman, N., Fréchette, A., Leyton-Brown, K.: Deep op-
timization for spectrum repacking. Communications of
the ACM 61(1), 97–104 (2018)

13. Opolka, S., Obermeier, P., Schaub, T.: Automatic genre-
dependent composition using answer set programming. In:
Proceedings of the Twenty-first International Symposium
on Electronic Art (ISEA’15) (2015).


