
Künstliche Intelligenz manuscript No.
(will be inserted by the editor)

Interview with Vladimir Lifschitz

Vladimir Lifschitz · Torsten Schaub · Stefan Woltran

Received: date / Accepted: date

Abstract This interview with Vladimir Lifschitz was

conducted by Torsten Schaub at the University of Texas

at Austin in August 2017. The question set was compiled

by Torsten Schaub and Stefan Woltran.

About

Vladimir Lifschitz is among the most influential scien-

tists in the field of Artificial Intelligence (AI). He started

out his work at Stanford with John McCarthy and made

significant contributions in the area of Non-monotonic

Reasoning (NMR). This can be seen a precursor to his

later groundbreaking work connecting NMR with Logic

Programming that led to the definition of the stable

models semantics, and thus the initial foundations of
Answer Set Programming (ASP).

Interview

First of all, thank you very much for taking your time

for an interview for the special issue on Answer Set

Programming of the German journal on Artificial Intel-

ligence.

Thank you for coming to Austin to talk to me.

Torsten Schaub
University of Potsdam E-mail: torsten@cs.uni-potsdam.de

Stefan Woltran
TU Wien E-mail: woltran@dbai.tuwien.ac.at

How did you get started in Non-monotonic Reasoning,

as the precursor of Answer Set Programming?

So I learned about non-monotonic reasoning in the

early 1980s when John McCarthy just started working

on circumscription. Before that I had known almost

nothing about AI; it was not my area at all. My work

in college and graduate school was on logic, proof the-
ory, and intuitionistic logic. And then for a while I was

interested in Operations Research and solving difficult,

NP-hard search problems and I did some work on the

investigation of algorithms, in particular, average run

time of algorithms for solving difficult search problems.

I worked at that time at the University of Texas at El
Paso, where I worked in these areas. At some point, I

learned that Michael Genesereth and John McCarthy

were offering a week long summer school on AI in Cali-

fornia and I decided to enroll just to learn a little bit

about this area that was completely new to me. It was

interesting. So they took turns and what I heard from

Michael Genesereth was a standard nice introduction to

AI. But what John McCarthy talked about was quite

amazing for me because one half of it was an under-

graduate introduction to logic, much too elementary for

me, something that I learned many years before. But

after that he started talking about ideas that were com-

pletely new to me, so that allowed me to see logic in a
completely new way. One aspect of this is that he talked

about applications of logic to formalizing commonsense

reasoning. So he wrote situation calculus formulas on

the board, for instance. That was completely new to me

because I knew that you can apply logic to formalizing



2 Vladimir Lifschitz et al.

mathematics, and I knew that there is also philosophical

logic, when you talk about knowledge and necessity, but

I had never seen anything like the situation calculus.

And then he started explaining circumscription. So he

wrote the circumscription formula on the board and that

was kind of a challenge to me because I thought that

this is a syntactic transformation of formulas, whose

properties — I thought, since I considered myself an

expert in logic — should be obvious to me. So I thought

to me, it was kind of a challenge, and I thought that

I would think about this for a couple of days and all
properties of circumscription will be completely clear to

me, and it turned out that it took many years to figure

it out. So that’s how I started working on this.

For many years, it was just Non-monotonic Rea-

soning for me, and I did not think at all about the

relation of this work to Logic Programming. Although

I must say that when I decided that I wanted to work

on circumscription, I moved to California from UT El

Paso and started working at San José State Univer-

sity, which is geographically close to Stanford, so that I

could come to McCarthy’s seminars. My colleague there,

Michael Beeson, said to me that if you are interested

in Non-monotonic Reasoning, you should think about

negation-as-failure. But I forgot about that comment

for many years and later it turned out that this was a

good idea — so that’s how it all started.

Your initial focus in Non-monotonic Reasoning lay on

circumscription. Why is the appealing idea of “minimal

model reasoning” less present nowadays?
I would say that there were two reasons for this:

First, Logic Programming is better as a knowledge rep-

resentation formalism, when you want to, in particu-

lar, solve the frame problem, which generally was at

that time McCarthy’s main motivation for research on

Non-monotonic Reasoning. McCarthy’s first attempt

to apply circumscription to solving the frame problem

turned out to be completely incorrect. So there was this

famous Yale Shooting domain invented by Steve Hanks

and Drew McDermott that showed that the solution

was incorrect. So many people including myself started

thinking about ways to use circumscription, or other

approaches using circumscription that would solve the
frame problem correctly. And that was difficult. But

when you formalize the common sense law of inertia

using negation-as-failure, you do it in a very natural

way and it works. So that was very impressive to me

and many other people.

And the second advantage was that Logic Program-

ming came with a ready implementation. So there was

Prolog, and you could immediately experiment compu-

tationally with it, even before the invention of answer

set solvers. Still, this other partial implementation was

available, Prolog, and when you worked on circumscrip-

tion everything had to be done manually: you had to

verify all claims by mathematical computations on paper

and being able to experiment that was a tremendous

advantage.

What led Michael Gelfond and you to the idea of the

stable models semantics?

So our work on the stable models semantics started

with a discussion of Michael’s paper published in 1987,

the year before the stable models paper, which was

called “On stratified auto-epistemic theories”. And that

was a very important paper because what Michael did is:

he looked at the semantics of stratified logic programs

proposed a year or two earlier by Apt, Blair, and Walker

and he showed that you could define the same seman-

tics in a much simpler way. The definition of what the

intended model of a stratified logic program is was very

complicated because you had to look at a particular

stratification of your program. And you extracted this
model by this iterated use of fix points corresponding to

strata. And then there was this question — given that

a program can have many different stratifications — so

is it true that for all of them we get the same intended

model? So the model is really determined by the pro-

gram itself and not by stratification. And it is true but
that was not easy to prove. So it was rather complicated.

So what Michael said: If you have a rule with negation,

just think of negation-as-failure as an abbreviation for

the composition of two operators: Classical negation

and then the modal operator L used in Auto-epistemic

Logic, invented by Bob Moore a few years earlier. So you

have this very simple syntactic translation from Logic

Programming to formulas in Auto-epistemic Logic, and

then apply Moore’s semantics. So that was very nice,

very impressive. And also we saw at some point that

there were some non-stratified programs to which of

course the definition by Apt, Blair, and Walker was

not applicable but this construction by reduction to
Auto-epistemic Logic worked and would give the model

that corresponded to its intended meaning. And that

could be processed by Prolog and Prolog would give

correct answers. So we saw immediately the advantages

of this. But the problem with Michael’s work was that



Interview with Vladimir Lifschitz 3

to understand his very simple definition you had to

know Auto-epistemic Logic. And what occurred to us is

that maybe we can reformulate the semantics, so that it

would not include explicit reference to Auto-epistemic

Logic. So we took Moore’s definition of the semantics

of Auto-epistemic Logic and looked at what happens

if we applied it to this specific kind of formulas that

correspond to rules in logic program and reformulated

Moore’s definition directly in terms of logic programs,

so that you would not have to do this two-step process,

translating and then using a very general definition that
applies to arbitrary propositional formulas with a model

operator. And that was the stable models semantics.

Let me add one other thing that is not well known.

Actually the philosophical logician Kit Fine came up

with the same idea independently around the same

time. So actually his name is not often mentioned in the

literature on the history of this subject because Kit Fine

presented his work to philosophers rather than to logic

programmers but he should be viewed as a co-inventor

of stable models semantics.

Since we talk about this, we should also mention the

work of Bidoit and Froidevaux . . .

That’s right. So that paper actually was published

also in ’87 simultaneous with Michael’s and that it was

very similar to Michael’s approach, instead of translating

logic programming rules into formulas with the modal

operator using Auto-epistemic Logic, they turned rules

into defaults in the sense of Reiter and applied Reiter’s

semantics. And although Auto-epistemic Logic and Re-

iter’s Default Logic are not equivalent at all — their

relationship is rather complicated — but in that par-

ticular case, if you simply translate standard programs
with negation-as-failure, the result is the same. So their

work like Michael’s essentially defined stable models but

in an indirect way. And what happened later, with the

paper on stable models and Kit Fine’s paper, is that

the right definition became available that did not refer

to more complicated non-monotonic formalisms.

When and how did you realize the virtue of Answer Set

Programming as a proper paradigm, as opposed to the

initial idea of a semantics for logic programming?
Actually I can give you a precise date: It was on

February 6, 1998. Because that was the date when I

sent an identical message to Ilkka Niemelä and to Mirek

Truszczyński with the same question. I knew that they

were implementing stable models semantics in various

ways and what I wrote to both of them was this, I said:

I am looking for an implemented system that can find

a stable model of a program, which has variables but

no function symbols, is non-disjunctive but includes

[integrity] constraints. And I asked Ilkka: Can your

[system] Smodels do this? Is there anything else that

we can try? And also I asked Mirek about this. That

was of course the time when Smodels existed but its

input language was the language of Prolog. It was the

first version of Smodels, so there were no constraints, no

rules with the empty head. But Ilkka explained to me
how you can model constraints using auxiliary atoms

for falsity. So his answer was “yes”. And as I remember,

the reason why I asked this question was that I wanted

to use systems like Smodels for planning. I understood

that I could describe possible plans of a given length by

a program with many stable models — of course, there

were no choice rules at that point, so that was supposed

to be a very non-stratified logic program with many

stable models — plus [integrity] constraints. So that was

obviously the time when we started doing experiments

like this. And to put this in perspective, this was as I said

in 1998, so that was before the publication of two papers,

one by Ilkka and the other by Marek and Truszczyński

with the words “stable” and “paradigm” in their title.

On the other hand, that was a year after the paper

by Dimopoulos, Nebel, and Köhler called “Encoding

Planning Problems in Non-monotonic Logic Programs”

where they actually used Smodels for planning. But I was

not aware of this, so this idea came to me independently

a year later.

At the International Conference on Logic Programming

(ICLP) in 2016, Ilkka Niemelä and Mirek Truszczyński,

gave you credit for coining the term “Answer Set Pro-

gramming”. What was your motivation for this?

Yes. That was — as I remember — motivated by

the use of the term “stable logic programming” in a

paper by Marek and Truszczyński. And I thought that

“answer set programming” is preferable because at that

time I thought that “answer sets” is a better expression

than “stable models”. And the reason was that at that

time I didn’t think about rules as being similar to for-

mulas. To me, rules were like Reiter’s defaults, rather a
generalization of inference rules. When you say “a stable

model”, it sounds like there are arbitrarily models and

some of them are stable. And since the idea of model as

in classical logic does not apply to sets of inference rules,

I thought that that was not appropriate. So that’s why



4 Vladimir Lifschitz et al.

I supported the idea of using “answer set programming”

rather than “stable logic programming”. But I must

say that now my view is different because now I know

how useful the idea of treating rules in a logic program

as abbreviations for formulas is and stable models are

really models in the sense of classical logic with some

special property. So now I use the term “stable model”

a lot more often than “answer set”. That was different

at that time.

Why has Answer Set Programming not reached the same

status in the US as in Europe?

I don’t know. It’s unfortunate.

Answer Set Programming is often considered as the con-

tinuation of non-monotonic logics. How do you see this

evolution in the light of what happened in general AI?

This non-monotonic reasoning that we talked about

in the beginning, the precursor of ASP, it was a major

contribution to logic but it was invented by prominent

members of the AI community, John McCarthy, Ray

Reiter, and Drew McDermott. And it was described in

this special issue of the AI Journal on Non-monotonic

Reasoning in 1980 and it was in response to AI prob-

lems such as the frame problem. So at that time and
in the early days of ASP, this work was seen as just a

part of AI research. Later with the emergence of answer

set solvers, it turned out that there is a close relation-

ship between ASP and essentially Operations Research,

difficult optimization and search problems. What hap-

pened is that this relationship between ASP and AI
is gradually becoming weaker and weaker. More and

more often, we see applications, where we think of ASP

as a special brand of search methods, a declarative ap-

proach to search. That’s how often ASP is described

now, it’s a declarative approach to search. And, on the

one hand, of course, this is good and in many cases this

is how ASP is useful because it is a powerful declarative

approach to search. On the other hand, I think it is

unfortunate and I am talking not just about the history

of the subject but also my own work, when I compare

what I was working on over the recent years and the

kind of papers that I wrote early. I see this thing that

my work is less and less work on AI and more and more
work on search methods and applications to search. And

I think it is unfortunate that you do not see very often

now papers that would stress the role of ASP as an ap-

proach to the main AI problem, the problem of creating

computational models of intelligence. So, I looked at the

website of Michael Gelfond’s group. Michael is one of

the people who are trying to keep this relationship to

general AI concerns alive. And the words that we see in

the titles of the papers there reflect general AI concerns.

The titles of the papers on the website of their group

mention intentions of agents, and multi agent systems,

and question answering, and inference of information

from natural language conversations, and things of that

kind. But even there, I think you see this kind of titles

when you look at what happened fifteen and twenty

years ago rather than about what is happening now
in the work of other researchers. You see this even less

often and I think that’s unfortunate. It would be great if

we could see this relationship between ASP and general

AI concerns coming back and being again influential.

How come that the relation of Answer Set Programming

to the database world, in particular, to Datalog, is often

overlooked or neglected?

Yes, one aspect of this is that from the deductive

database perspective, there is a crucial relationship of

course between extensional predicates defined by a re-

lational database and intentional predicates defined by

rules. And this relationship, formally, I think it just

does not exist. When you look at user guides on an-

swer set solvers, it is not often emphasized. When you

apply answer set solvers to solving problems, you do

actually often have a separate file with an input, say the

description of a specific graph, which corresponds to a

relational database with a set of facts, and separately

a program itself, which is the definition of the inten-

tional predicates. But unfortunately this is somehow

not emphasized very much in user guides. You could
have input and a particular problem in the same file

and run the solver and get the same results. So I think,

it’s important to remember this relationship.

In this volume, we also have a paper on the logical

foundations of Answer Set Programming. Why did it
take quite a while until the importance of correspond-

ing monotonic logics, viz. the logic of here-and-there,

was recognized by the NMR and ASP community, for

instance, to test strong equivalence?

I don’t know why it took so long but if you are

interested I can tell you the story about how strong

equivalence and the relevance of the logic of here-and-

there was invented.



Interview with Vladimir Lifschitz 5

Yes, with pleasure!

It happened at lunch at the [International Confer-

ence on Logic Programming and Non-monotonic Rea-

soning] LPNMR in 1999 where Esra Erdem, who was

my grad student at that time, and I gave a paper called

“Transformations of Logic Programs Related to Causal-

ity and Planning”. So, what we were doing there is we

were looking at some rules occurring in logic programs

related to describing dynamic domains and planning,

where we saw that sometimes you can modify a rule,

and the stable models will not change if the rule is a
little different. So we proved in this paper two theorems

of this kind that explained that actually modifying rules

somewhat did not affect the answer sets of the program.

So what we verified is what is now called “strong equiv-

alence”. But this term did not exist at this time and

we proved directly based on the definition of answer

set. And on the day when Esra was supposed to give a

talk, we had lunch, she, David Pearce, and I, and we

explained to David what we were proving and he said

that there is also another approach to proving this. And

he explained how to do this essentially by showing that

the two programs are equivalent in the logic of here-and-

there. And from his earlier work, it was clear that if two

programs are equivalent in the logic of here-and-there,

then no matter what you add to them, if you add the

same code, the stable models will be the same. We liked

this very much and in her talk two hours later, Esra

mentioned that she just learned about another way of

proving this. And then, the next step was to find out

whether this method was always applicable. That is,

whether or not it is true that whenever two programs

are strongly equivalent — and the term by the way was
suggested by Michael Gelfond — then this can be always

proved by Pearce’s method. That is, by proving that

they are equivalent in the logic of here-and-there. And

that was more difficult. And we started collaborating

with Agust́ın Valverde on that and proved together this
difficult part of the theorem to have the if-and-only-if

characterization of strong equivalence. And that’s how

this thing was invented. Why it happened in 1999 and

not earlier I don’t know.

Actually, in this logic of here-and-there, negation is de-
fined in terms of implication, which plays the central

role. On the other hand, Answer Set Programming is

usually conceived as being centered upon negation-as-

failure. What is your view on this putative discrepancy?

Yeah, it is an interesting fact. In classical and even

in intuitionistic logic, you can think of negation as an

abbreviation, that is, the negation of F [¬F ] is F implies

falsity [F → ⊥]. So negation is even intuitionistically

a special case of implication. But somehow in earlier

work on stable models, implication, which you find be-

tween the head of a rule and the body of a rule, and

negation, which is applied to atoms in the body, were

treated in completely different ways. And it changed

when we wanted to try to represent rules with aggregates

as formulas. Because to do that, for some aggregates, ag-
gregates that are neither monotone nor anti-monotone,

you have to use implications in the body of a rule, as

Paolo Ferraris suggested. So at that point, it became

clear that it’s good to define stable models for arbitrary

propositional formulas, including nested implications,

and then there is nothing special about negation: nega-

tion can be used as an abbreviation. And that led to

this view of stable models that you can find originally

in Pearce’s definition of a stable model in terms of equi-

librium logic and then later work by Ferraris where he

defined reducts in a new way, in which negation does

not play a special role. And it turned out that if you

apply this definition to the special case of traditional

Prolog-like rules, you get the same concept of a sta-

ble model although now there is nothing special about

negation for you. And that’s to me an amazing fact, a

kind of mathematical curiosity, very very strange and

something you’ll have to live with.

As far as I know, you did your dissertation on intuition-
istic logic? So is Answer Set Programming taking you

back to your roots?

Actually, to some degree yes. And that was actually

meant to be part of my answer to your other question

about major surprises while working on ASP. There were

two major surprises for me, one is that some problems

that I had worked on many years earlier turned out to

be related to the work on ASP. As I mentioned to you,

my very early work was related to intuitionism and then

at some point I worked on hard NP search problems.

And then it turned out that properties and applications

of stable models, on the one hand, are closely related

to intuitionism, they are described by this intermediate
logic of here-and-there, which is intermediate between

intuitionistic and classical logic, and, on the other hand,

it became a tool for solving exactly the kind of knapsack

problems and integer programming problems that I was

interested in. So I would say that these were two major



6 Vladimir Lifschitz et al.

surprises to me. It was like meeting with old friends

many years after I saw them and it turned out that

these guys are again relevant.

Looking backward, what do you consider as the major

highlights in the short history of Answer Set Program-

ming?

I would like to talk about one event that was par-

ticularly striking to me. That this work, at least for

me, why I started working on stable models, was not

meant to be useful in any practical sense because my

interest was related to the desire to understand better

negation-as-failure, not in purely computational terms.

And then it turned out to be useful. And this is some-

thing that happens sometimes in history of science and

every time I find it remarkable. You know, sometimes

your research is motivated by the desire to understand

something more clearly and sometimes by the desire to

create something useful. And in good science, what’s
particular nice, I think, is when your work is motivated

by the desire to understand something but it happens to

be also useful, as a kind of a side-effect of that. And the

kind of prototypical example of that in history of science

was the work by Isaac Newton whose goal — as far as I

understand — was to find out what God was thinking

when he was creating the universe. And to answer this

question, his answer was that he was thinking of second

order differential equations. And to arrive at this an-

swer, he had to invent calculus and classical mechanics,

which happened to be useful. And on a much smaller

scale, that happens in science all the time, and every

time it’s wonderful and amazing that you just want to

clarify something and it unexpectedly turns out to be

useful. And in the history of Answer Set Programming,
it happened also. And the reason why I think this could

happen in this particular case was that we were very

fortunate with people who decided to take part in the

project. Many of them are excellent programmers and

software designers and at the same time they are good

mathematicians. Not strong mathematicians in the sense

that they are interested in proving difficult theorems but

they have good mathematical taste; they understand

what mathematical clarity and elegance is. And the fact

that we have several people in our community like this,

that is, I think, the reason why this miracle happened.

Where has Answer Set Programming left its footprints

and where could it have its major impact in the future?

I think the main accomplishments of our work is

demonstrating the usefulness of a declarative approach

to search and it seems to me that this is where ASP

is different from SAT [Satisfiability Testing]. In some

ways, SAT and work on satisfiability solvers and work on

answer set solvers, they are similar because both of them

do search declaratively but in Answer Set Programming

you really deal with a program written in a declarative

language. And when you use SAT solvers, in many cases,

you don’t have such a declarative program that you can

look at. You have this huge set of clauses which is
generated in a non-declarative way. So this declarative

object, a set of clauses, is hidden; it is not the language

in which the programmer writes. So using SAT solvers

often, even though sets of clauses are declarative objects,

you cannot think of that as declarative programming.

And here we deal with a declarative approach to search

and that is an important accomplishment.

So what I want to see in the future, one thing that

I mentioned before, I would like to see the connections

between ASP and general AI concerns reestablished.

They played an important role earlier and I hope that

will happen. And another thing that I hope will hap-

pen in the future is that Answer Set Programming will

contribute to the further development of formal meth-

ods. When we want to verify formally the correctness

of a program written in any language, you have to have

a complete formal description of the semantics of the

language. And it seems to me that, because Answer Set

Programming is fully declarative, having a completely

precise, mathematically precise definition of the seman-

tics of input languages of answer set solvers is more

realistic. It should be easier to do that than if we deal
with procedural languages or languages not fully declara-

tive such as Prolog or, for instance, functional languages

with non-declarative elements. And for this reason, it

seems to me that when we apply formal methods to

verifying answer set programs, which is the main topic
that is of interest to me now, I hope that we will be

maybe more successful than with other programming

languages because the language, I hope, will lend itself

more easily to a completely formal view.

Looking forward, what do you consider the major mile-
stones in the future?

First, merging answer set solving systems with other

programming tools. They are very useful, often not in

isolation but as elements of systems which have also

some non-declarative parts in them. Secondly, improving



Interview with Vladimir Lifschitz 7

the methodology of Answer Set Programming. The work

on methodology of debugging answer set programs is

still in an infant stage and I hope that there will be some

new accomplishments there. Another important difficult

problem is when you wrote a program that is correct

and you want to optimize this. How do you do this? So

knowledgeable people know which flag you should set to

cause the solver or the grounder to use strategies that

are particularly good for your program, they know what

to experiment with, and there is some kind of wisdom

people may have about what is a good way to write a
rule, what is a bad way to write a rule. But ideally, our

answer set solvers should be like optimizing compilers.

Even if you wrote your program in a non-efficient way,

all the optimization should happen inside. So that you

could only, when you are writing a program, think about

its clarity and correctness, not about optimization. The

solver should take care of this. I hope the day will come

when we will be free to think in terms of correctness,

and the solver will do optimizing for us.

Thank you so much for this interview! I actually learned

quite a lot from it!

Vladimir Lifschitz is a professor of

computer science at the University of

Texas at Austin. His research interests

are in computational logic and knowledge

representation. He is a member of Het-

erodox Academy and leads Texas Action

Group at Austin.


