
Künstliche Intelligenz manuscript No.
(will be inserted by the editor)

Answer Set Programming Unleashed!

Torsten Schaub · Stefan Woltran

Received: date / Accepted: date

Abstract Answer Set Programming faces an increasing

popularity for problem solving in various domains. While

its modeling language allows us to express many complex

problems in an easy way, its solving technology enables

their effective resolution. In what follows, we detail some

of the key factors of its success.

Answer Set Programming (ASP; [9]) is seeing a rapid pro-

liferation in academia and industry due to its easy and

flexible way to model and solve knowledge-intense com-

binatorial (optimization) problems. To this end, ASP

offers a high-level modeling language paired with high-

performance solving technology. As a result, ASP sys-

tems provide out-off-the-box, general-purpose search

engines that allow for enumerating (optimal) solutions.

They are represented as answer sets, each being a set of

atoms representing a solution. The declarative approach
of ASP allows a user to concentrate on a problem’s

specification rather than the computational means to

solve it. This makes ASP a prime candidate for rapid

prototyping and an attractive tool for teaching key AI

techniques since complex problems can be expressed in

a succinct and elaboration tolerant way. This is eased

Torsten Schaub has been supported by the German Science
Foundation (DFG): projects SCHA 550/9 and 11. Stefan
Woltran has been supported by the Austrian Science Fund
(FWF): project Y698.

T. Schaub
University of Potsdam E-mail: torsten@cs.uni-potsdam.de

S. Woltran
TU Wien E-mail: woltran@dbai.tuwien.ac.at

by the tuning of ASP’s modeling language to knowledge

representation and reasoning (KRR). The resulting im-

pact is nicely reflected by a growing range of successful

applications of ASP [19,20].

Model, ground, and solve

ASP is often designated as a model-ground-and-solve

paradigm due to its work flow, in which a high-level

first-order specification is turned by a grounder into a

propositional format that is then used by a solver to

compute (optimal) solutions of the original problem.

The modeling methodology of ASP follows a guess-
and-check approach: solution candidates are delineated

and tested for feasibility [24]. This may yield none, one,

or multiple answer sets representing solutions. The mod-

eling language of ASP builds upon rules featuring first-

order variables, function symbols, and various forms of

aggregates [3]. In addition, quantitative and qualitative

preferences can be specified for optimization [43,8]. This

results in an expressive high-level language that distin-

guishes ASP from other solving paradigms. Meanwhile,

the core of this language has been standardized [11].

The first-order nature of ASP’s input language lets us

separate the actual problem encoding from its problem

instances. Encodings are expressed via first-order rules
and instances as facts. This separation enables meta-

programming and leaves us with an interesting margin.

Take a block-world planning example. The vanilla way

is to encode blocks-world planning and fix the specific

blocks and locations in the instance. A more suitable



2 Torsten Schaub, Stefan Woltran

approach is to encode planning as such and consider

the blocks-world domain along with its specifics as an

instance. In the most extreme case, one may even en-

code ASP (or modifications thereof) per se and consider

the given (reified) logic program as a problem instance,

which amounts to full-fledged meta-programming.

ASP grounding is concerned with the systematic re-

placement of first-order variables by (admissible) terms [29].

To this end, it relies upon techniques from semi-naive

database evaluation [1]. In fact, grounding a single rule

amounts to view materialization, just as with SQL, or
alternatively, to solving a constraint satisfaction prob-

lem. This already gives a glimpse on the computational

complexity of grounding, which is in general even Turing-

complete (due to the usage of function symbols). Thanks

to the aforementioned standardization efforts, grounders

have become off-the-shelf systems with well-defined in-

put and output formats. This constitutes another dis-

tinguishing feature of ASP.

The core technology used for ASP solving builds

upon techniques originally developed for Satisfiability

Testing (SAT; [7]). At first, ASP systems relied upon

DPLL1 techniques [43,31], whereas modern systems are

based upon Conflict-Driven Clause Learning (CDCL; [34,

44]) [23,2]. While the performance of modern ASP

solvers is at eye-height with today’s SAT solvers, ASP

systems are much more versatile in order to support com-

plex KRR tasks [29]. On the one hand, this is induced by

the need to support ASP’s rich modeling language, in-

cluding aggregates and optimization. On the other hand,

other forms of reasoning need to be supported beyond

satisfiability checking, namely, enumeration, projection,

intersection, union, etc. of solutions. The versatility of
its solvers constitutes yet another distinguishing feature

of ASP.

Foundations

Unlike other modeling languages, ASP comes with solid

logical foundations. As first observed by Pearce [39], ASP

rests upon the (monotonic) logic of here-and-there [27],

a constructive logic featuring a genuine implication con-
nective. This connective captures the semantic essence of

ASP rules. Interestingly, negation is defined in terms of

this implication, which contrasts the historic misconcep-

tion that ASP is built upon the concept of negation-as-

failure. Answer sets are defined as distinguished models

1 Davis–Putnam–Logemann–Loveland [16,15]

in the logic of here-and-there (characterized by a mini-

mality criterion) as detailed in [10].

This simple logical characterization is in a certain

contrast to the origin of ASP. In fact, early definitions

of its semantics relied on fixpoint characterizations [6,

26] reflecting intuitions from neighboring areas like Non-

monotonic Logics, Logic Programming, and Datalog.

Research on ASP at that time mainly focused on its

relationship to other formalisms. For instance, ASP can,

on the one hand, be regarded as a restricted fragment

of default logic [41] (cf. [26]), or, on the other hand, as

an alternative approach to Prolog for treating negation-

as-failure. Furthermore, answer sets can also be charac-

terized by means of second-order logic very similar to

the characterization of minimal models in Circumscrip-

tion [35] (cf. [40]). Many other characterizations can be

found in the literature and their different intuitions rely

on the respective context or purpose. In particular, in

recent years, computational aspects gained importance
and steered research towards further characterizations,

most notably in terms of completion, loop formulas and

variants thereof, see [13,33].

Cosmos

Prolog [14] has been the most influential approach to

employing logic as a programming language. The origi-

nal semantics of ASP was conceived for characterizing

Prolog programs. At that time, logic programs were

expected to have at most one answer set. However, the

different treatment of loops over negation resulted in a

deviation from this principle. This led to the aforemen-

tioned paradigm of ASP in which different solutions are
represented by a multitude of answer sets. In fact, Prolog

should be seen as a programming language whose exe-

cution amounts to proof search via SLD resolution [30].

This execution model is fully transparent to the user.

This is in stark contrast to ASP, whose problem reso-

lution is completely opaque and bestows ASP a much

more declarative flavor than Prolog.

Evidently, ASP is not the only approach for solving

combinatorial (optimization) problems. Related paradigms

are SAT, Constraint Processing (CP; [17]), and (Mixed)
Integer/Linear Programming (MILP; [42]). Closest to

ASP is SAT and its various extensions for MAXSAT, PB,

and QBF solving [7]. All of them offer highly performant

solving technology but fall short in supporting KRR in

its full spectrum. Foremost, the unavailability of mod-



Answer Set Programming Unleashed! 3

eling languages forces users of SAT-based technology

to embed their problem encodings in compilers. This

makes them non-transparent, and hard to modify and to

maintain. In John McCarthy’s words, such approaches

lack elaboration-tolerance [36]. A further consequence of

the propositional input format of SAT-based technology

is that problem encodings and problem instances are

inseparable.

Another major difference lies in the distinct semantic

foundations. While ASP relies on a non-monotonic se-

mantics in the spirit of closed-world reasoning, all afore-
mentioned SAT-based approaches build upon monotonic

logics and thus on open-world reasoning. These foun-

dations allow ASP to model many concepts frequently

encountered in KRR problems in a fairly easy way. This

includes (un)reachability (and transitive closures), in-

ertia (for solving frame problems), defaults, etc. Such

concepts are quite tricky to handle in a monotonic set-

ting. This representational edge can be pinned down by

two formal results. First, SAT can be compiled into ASP

in a modular way but not vice versa [37]. Second, com-

piling ASP to SAT may lead to an exponential blow-up,

unless the language is extended [32]. From a technologi-

cal point of view, ASP can however be regarded as an

instance of Satisfiability Modulo Theories (SMT; [7])

whose theory reasoning accounts for the additional in-

ferences of ASP.

CP and MILP rely also upon monotonic foundations.

Unlike ASP and SAT, however, their focus lies on con-

straints over integer or even real-valued variables.2 To

accommodate such non-Boolean constraints, ASP and

SAT offer hybrid reasoning techniques that integrate

the best of both worlds [5,28].
A prominent representative of closed-world reasoning

are database systems. As mentioned, database queries

can be represented as ASP rules. The latter extend

the database machinery by unbounded recursion. More

precisely, ASP constitutes a proper extension of Data-
log [12].

Challenges

Despite the success of ASP, nontrivial challenges remain.

True declarativity remains the holy grail. ASP is

declarative in strictly separating logic from control. How-

ever, two equivalent encodings may still exhibit signifi-

2 Note that problems over real-valued variables only are not
combinatorial and solvable in polynomial time.

cant performance differences. This calls for sophisticated

methods for source code optimization.

ASP needs more software engineering methodologies

and tools. For instance, the strict separation of logic

and control makes traditional debugging techniques in-

applicable. Also, only few development environments

exist.3

Finally, ASP has to be fit for laymen. ASP attracts

more and more users outside of computer science due

to its declarative- and effectiveness. To consolidate its

applicability by laymen, a simplified user language could
enter ASP standardization efforts.

Conclusion

ASP has come a long way. Having its roots in Non-

monotonic Logics, Logic Programming and Databases,

as well as Satisfiability Testing, the ASP community

can be proud of having taught Tweety how to fly: It

has produced robust declarative systems for KRR by

building upon solid formal foundations.

Resources

– Textbooks and tutorials: [4,18,22,25]

– ASP language standard: [11]

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of
Databases. Addison-Wesley (1995)

2. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances
in WASP. In: F. Calimeri, G. Ianni, M. Truszczyński (eds.)
Proceedings of the Thirteenth International Conference
on Logic Programming and Nonmonotonic Reasoning
(LPNMR’15), Lecture Notes in Artificial Intelligence, vol.
9345, pp. 40–54. Springer-Verlag (2015)

3. Alviano, M., Faber, W.: Aggregates in answer set pro-
gramming. Künstliche Intelligenz (2018). To appear.

4. Baral, C.: Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press
(2003)

5. Barrett, C., Sebastiani, R., Seshia, S., Tinelli, C.: Satisfi-
ability modulo theories. In: Biere et al. [7], chap. 26, pp.
825–885

6. Bidoit, N., Froidevaux, C.: Minimalism subsumes default
logic and circumscription in stratified logic programming.
In: Proceedings of the Second Annual Symposium on
Logic in Computer Science (LICS’87), pp. 89–97. IEEE
Computer Society Press (1987)

3 Exceptions include [38,21].



4 Torsten Schaub, Stefan Woltran

7. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.):
Handbook of Satisfiability, Frontiers in Artificial Intelli-

gence and Applications, vol. 185. IOS Press (2009)
8. Brewka, G., Delgrande, J., Romero, J., Schaub, T.:

asprin: Customizing answer set preferences without a
headache. In: B. Bonet, S. Koenig (eds.) Proceed-
ings of the Twenty-Ninth National Conference on Artifi-
cial Intelligence (AAAI’15), pp. 1467–1474. AAAI Press
(2015). URL http://www.aaai.org/ocs/index.php/AAAI/

AAAI15/paper/view/9535

9. Brewka, G., Eiter, T., Truszczyński, M.: Answer set pro-
gramming at a glance. Communications of the ACM
54(12), 92–103 (2011)

10. Cabalar, P., Pearce, D., Valverde, A.: Answer set program-
ming from a logical point of view. Künstliche Intelligenz
(2018). To appear.

11. Calimeri, F., Faber, W., Gebser, M., Ianni, G.,
Kaminski, R., Krennwallner, T., Leone, N., Ricca,
F., Schaub, T.: ASP-Core-2: Input language format.
Available at https://www.mat.unical.it/aspcomp2013/

ASPStandardization (2012)
12. Ceri, S., Gottlob, G., Tanca, L.: Logic Programming and

Databases. Springer-Verlag (1990)
13. Clark, K.: Negation as failure. In: H. Gallaire, J. Minker

(eds.) Logic and Data Bases, pp. 293–322. Plenum Press
(1978)

14. Clocksin, W., Mellish, C.: Programming in Prolog.
Springer-Verlag (1981)

15. Davis, M., Logemann, G., Loveland, D.: A machine pro-
gram for theorem-proving. Communications of the ACM
5, 394–397 (1962)

16. Davis, M., Putnam, H.: A computing procedure for quan-
tification theory. Journal of the ACM 7, 201–215 (1960)

17. Dechter, R.: Constraint Processing. Morgan Kaufmann
Publishers (2003)

18. Eiter, T., Ianni, G., Krennwallner, T.: Answer Set Pro-
gramming: A Primer. In: S. Tessaris, E. Franconi, T. Eiter,
C. Gutierrez, S. Handschuh, M. Rousset, R. Schmidt
(eds.) Fifth International Reasoning Web Summer School
(RW’09), Lecture Notes in Computer Science, vol. 5689,
pp. 40–110. Springer-Verlag (2009). URL http://www.kr.

tuwien.ac.at/staff/tkren/pub/2009/rw2009-asp.pdf

19. Erdem, E., Gelfond, M., Leone, N.: Applications of ASP.
AI Magazine 37(3), 53–68 (2016)

20. Falkner, A., Friedrich, G., Schekotihin, K., Taupe, R.,
Teppan, E.: Industrial applications of answer set program-
ming. Künstliche Intelligenz (2018). To appear.

21. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: Integrated
development environment for answer set programming.
In: J. Delgrande, W. Faber (eds.) Proceedings of the
Eleventh International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’11), Lecture Notes
in Artificial Intelligence, vol. 6645, pp. 317–330. Springer-
Verlag (2011)

22. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.:
Answer Set Solving in Practice. Synthesis Lectures on
Artificial Intelligence and Machine Learning. Morgan and
Claypool Publishers (2012)

23. Gebser, M., Kaufmann, B., Schaub, T.: Conflict-driven
answer set solving: From theory to practice. Artificial
Intelligence 187-188, 52–89 (2012)

24. Gebser, M., Schaub, T.: Modeling and language extensions.
AI Magazine 37(3), 33–44 (2016)

25. Gelfond, M., Kahl, Y.: Knowledge Representation, Reason-
ing, and the Design of Intelligent Agents: The Answer-Set
Programming Approach. Cambridge University Press
(2014)

26. Gelfond, M., Lifschitz, V.: The stable model semantics
for logic programming. In: R. Kowalski, K. Bowen (eds.)
Proceedings of the Fifth International Conference and
Symposium of Logic Programming (ICLP’88), pp. 1070–
1080. MIT Press (1988)

27. Heyting, A.: Die formalen Regeln der intuitionistischen
Logik. In: Sitzungsberichte der Preussischen Akademie
der Wissenschaften, p. 42–56. Deutsche Akademie der
Wissenschaften zu Berlin (1930). Reprint in Logik-Texte:
Kommentierte Auswahl zur Geschichte der Modernen
Logik, Akademie-Verlag, 1986.

28. Kaminski, R., Schaub, T., Wanko, P.: A tutorial on hybrid
answer set solving with clingo. In: G. Ianni, D. Lembo,
L. Bertossi, W. Faber, B. Glimm, G. Gottlob, S. Staab
(eds.) Proceedings of the Thirteenth International Summer
School of the Reasoning Web, Lecture Notes in Computer

Science, vol. 10370, pp. 167–203. Springer-Verlag (2017)
29. Kaufmann, B., Leone, N., Perri, S., Schaub, T.: Grounding

and solving in answer set programming. AI Magazine
37(3), 25–32 (2016)

30. Kowalski, R.: Predicate logic as programming language.
In: Proceedings IFIP Congress, pp. 569–574. North-
Holland Publishing Company (1974)

31. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G.,
Perri, S., Scarcello, F.: The DLV system for knowledge
representation and reasoning. ACM Transactions on Com-
putational Logic 7(3), 499–562 (2006)

32. Lifschitz, V., Razborov, A.: Why are there so many loop
formulas? ACM Transactions on Computational Logic
7(2), 261–268 (2006)

33. Lin, F., Zhao, Y.: ASSAT: Computing answer sets of a
logic program by SAT solvers. In: Proceedings of the
AAAI Conference on Artificial Intelligence, pp. 112–118.
AAAI/MIT Press (2002)

34. Marques-Silva, J., Sakallah, K.: GRASP: A search algo-
rithm for propositional satisfiability. IEEE Transactions
on Computers 48(5), 506–521 (1999)

35. McCarthy, J.: Applications of circumscription to formal-
izing common-sense knowledge. Artificial Intelligence 28,
89–116 (1986)

36. McCarthy, J.: Elaboration tolerance (1998). URL http:

//www-formal.stanford.edu/jmc/elaboration.html

37. Niemelä, I.: Logic programs with stable model seman-
tics as a constraint programming paradigm. Annals of
Mathematics and Artificial Intelligence 25(3-4), 241–273
(1999)

38. Oetsch, J., Pührer, J., Tompits, H.: Catching the
ouroboros: On debugging non-ground answer-set pro-
grams. Theory and Practice of Logic Programming 10(4-
6), 513–529 (2010)

39. Pearce, D.: Equilibrium logic. Annals of Mathematics and
Artificial Intelligence 47(1-2), 3–41 (2006)

40. Pearce, D., Tompits, H., Woltran, S.: Encodings for equi-
librium logic and logic programs with nested expres-
sions. In: P. Brazdil, A. Jorge (eds.) Proceedings of the



Answer Set Programming Unleashed! 5

Tenth Portuguese Conference on Artificial Intelligence
(EPIA’01), Lecture Notes in Computer Science, vol. 2258,
pp. 306–320. Springer-Verlag (2001)

41. Reiter, R.: A logic for default reasoning. Artificial Intelli-
gence 13(1-2), 81–132 (1980)

42. Schrijver, A.: Theory of linear and integer programming.
Discrete mathematics and optimization. John Wiley &
sons (1999)

43. Simons, P., Niemelä, I., Soininen, T.: Extending and imple-
menting the stable model semantics. Artificial Intelligence
138(1-2), 181–234 (2002)

44. Zhang, L., Madigan, C., Moskewicz, M., Malik, S.: Effi-
cient conflict driven learning in a Boolean satisfiability
solver. In: R. Ernst (ed.) Proceedings of the International
Conference on Computer-Aided Design (ICCAD’01), pp.
279–285. IEEE Computer Society Press (2001)


