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Abstract Answer Set Programming faces an increasing

popularity for problem solving in various domains. While

its modeling language allows us to express many complex

problems in an easy way, its solving technology enables

their effective resolution. In what follows, we detail some

of the key factors of its success.

Answer Set Programming (ASP; [9]) is seeing a rapid pro-

liferation in academia and industry due to its easy and

flexible way to model and solve knowledge-intense com-

binatorial (optimization) problems. To this end, ASP

offers a high-level modeling language paired with high-

performance solving technology. As a result, ASP sys-

tems provide out-off-the-box, general-purpose search

engines that allow for enumerating (optimal) solutions.

They are represented as answer sets, each being a set of

atoms representing a solution. The declarative approach
of ASP allows a user to concentrate on a problem’s

specification rather than the computational means to

solve it. This makes ASP a prime candidate for rapid

prototyping and an attractive tool for teaching key AI

techniques since complex problems can be expressed in

a succinct and elaboration tolerant way. This is eased
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by the tuning of ASP’s modeling language to knowledge

representation and reasoning (KRR). The resulting im-

pact is nicely reflected by a growing range of successful

applications of ASP [19,20].

Model, ground, and solve

ASP is often designated as a model-ground-and-solve

paradigm due to its work flow, in which a high-level

first-order specification is turned by a grounder into a

propositional format that is then used by a solver to

compute (optimal) solutions of the original problem.

The modeling methodology of ASP follows a guess-
and-check approach: solution candidates are delineated

and tested for feasibility [24]. This may yield none, one,

or multiple answer sets representing solutions. The mod-

eling language of ASP builds upon rules featuring first-

order variables, function symbols, and various forms of

aggregates [3]. In addition, quantitative and qualitative

preferences can be specified for optimization [43,8]. This

results in an expressive high-level language that distin-

guishes ASP from other solving paradigms. Meanwhile,

the core of this language has been standardized [11].

The first-order nature of ASP’s input language lets us

separate the actual problem encoding from its problem

instances. Encodings are expressed via first-order rules
and instances as facts. This separation enables meta-

programming and leaves us with an interesting margin.

Take a block-world planning example. The vanilla way

is to encode blocks-world planning and fix the specific

blocks and locations in the instance. A more suitable
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approach is to encode planning as such and consider

the blocks-world domain along with its specifics as an

instance. In the most extreme case, one may even en-

code ASP (or modifications thereof) per se and consider

the given (reified) logic program as a problem instance,

which amounts to full-fledged meta-programming.

ASP grounding is concerned with the systematic re-

placement of first-order variables by (admissible) terms [29].

To this end, it relies upon techniques from semi-naive

database evaluation [1]. In fact, grounding a single rule

amounts to view materialization, just as with SQL, or
alternatively, to solving a constraint satisfaction prob-

lem. This already gives a glimpse on the computational

complexity of grounding, which is in general even Turing-

complete (due to the usage of function symbols). Thanks

to the aforementioned standardization efforts, grounders

have become off-the-shelf systems with well-defined in-

put and output formats. This constitutes another dis-

tinguishing feature of ASP.

The core technology used for ASP solving builds

upon techniques originally developed for Satisfiability

Testing (SAT; [7]). At first, ASP systems relied upon

DPLL1 techniques [43,31], whereas modern systems are

based upon Conflict-Driven Clause Learning (CDCL; [34,

44]) [23,2]. While the performance of modern ASP

solvers is at eye-height with today’s SAT solvers, ASP

systems are much more versatile in order to support com-

plex KRR tasks [29]. On the one hand, this is induced by

the need to support ASP’s rich modeling language, in-

cluding aggregates and optimization. On the other hand,

other forms of reasoning need to be supported beyond

satisfiability checking, namely, enumeration, projection,

intersection, union, etc. of solutions. The versatility of
its solvers constitutes yet another distinguishing feature

of ASP.

Foundations

Unlike other modeling languages, ASP comes with solid

logical foundations. As first observed by Pearce [39], ASP

rests upon the (monotonic) logic of here-and-there [27],

a constructive logic featuring a genuine implication con-
nective. This connective captures the semantic essence of

ASP rules. Interestingly, negation is defined in terms of

this implication, which contrasts the historic misconcep-

tion that ASP is built upon the concept of negation-as-

failure. Answer sets are defined as distinguished models

1 Davis–Putnam–Logemann–Loveland [16,15]

in the logic of here-and-there (characterized by a mini-

mality criterion) as detailed in [10].

This simple logical characterization is in a certain

contrast to the origin of ASP. In fact, early definitions

of its semantics relied on fixpoint characterizations [6,

26] reflecting intuitions from neighboring areas like Non-

monotonic Logics, Logic Programming, and Datalog.

Research on ASP at that time mainly focused on its

relationship to other formalisms. For instance, ASP can,

on the one hand, be regarded as a restricted fragment

of default logic [41] (cf. [26]), or, on the other hand, as

an alternative approach to Prolog for treating negation-

as-failure. Furthermore, answer sets can also be charac-

terized by means of second-order logic very similar to

the characterization of minimal models in Circumscrip-

tion [35] (cf. [40]). Many other characterizations can be

found in the literature and their different intuitions rely

on the respective context or purpose. In particular, in

recent years, computational aspects gained importance
and steered research towards further characterizations,

most notably in terms of completion, loop formulas and

variants thereof, see [13,33].

Cosmos

Prolog [14] has been the most influential approach to

employing logic as a programming language. The origi-

nal semantics of ASP was conceived for characterizing

Prolog programs. At that time, logic programs were

expected to have at most one answer set. However, the

different treatment of loops over negation resulted in a

deviation from this principle. This led to the aforemen-

tioned paradigm of ASP in which different solutions are
represented by a multitude of answer sets. In fact, Prolog

should be seen as a programming language whose exe-

cution amounts to proof search via SLD resolution [30].

This execution model is fully transparent to the user.

This is in stark contrast to ASP, whose problem reso-

lution is completely opaque and bestows ASP a much

more declarative flavor than Prolog.

Evidently, ASP is not the only approach for solving

combinatorial (optimization) problems. Related paradigms

are SAT, Constraint Processing (CP; [17]), and (Mixed)
Integer/Linear Programming (MILP; [42]). Closest to

ASP is SAT and its various extensions for MAXSAT, PB,

and QBF solving [7]. All of them offer highly performant

solving technology but fall short in supporting KRR in

its full spectrum. Foremost, the unavailability of mod-
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eling languages forces users of SAT-based technology

to embed their problem encodings in compilers. This

makes them non-transparent, and hard to modify and to

maintain. In John McCarthy’s words, such approaches

lack elaboration-tolerance [36]. A further consequence of

the propositional input format of SAT-based technology

is that problem encodings and problem instances are

inseparable.

Another major difference lies in the distinct semantic

foundations. While ASP relies on a non-monotonic se-

mantics in the spirit of closed-world reasoning, all afore-
mentioned SAT-based approaches build upon monotonic

logics and thus on open-world reasoning. These foun-

dations allow ASP to model many concepts frequently

encountered in KRR problems in a fairly easy way. This

includes (un)reachability (and transitive closures), in-

ertia (for solving frame problems), defaults, etc. Such

concepts are quite tricky to handle in a monotonic set-

ting. This representational edge can be pinned down by

two formal results. First, SAT can be compiled into ASP

in a modular way but not vice versa [37]. Second, com-

piling ASP to SAT may lead to an exponential blow-up,

unless the language is extended [32]. From a technologi-

cal point of view, ASP can however be regarded as an

instance of Satisfiability Modulo Theories (SMT; [7])

whose theory reasoning accounts for the additional in-

ferences of ASP.

CP and MILP rely also upon monotonic foundations.

Unlike ASP and SAT, however, their focus lies on con-

straints over integer or even real-valued variables.2 To

accommodate such non-Boolean constraints, ASP and

SAT offer hybrid reasoning techniques that integrate

the best of both worlds [5,28].
A prominent representative of closed-world reasoning

are database systems. As mentioned, database queries

can be represented as ASP rules. The latter extend

the database machinery by unbounded recursion. More

precisely, ASP constitutes a proper extension of Data-
log [12].

Challenges

Despite the success of ASP, nontrivial challenges remain.

True declarativity remains the holy grail. ASP is

declarative in strictly separating logic from control. How-

ever, two equivalent encodings may still exhibit signifi-

2 Note that problems over real-valued variables only are not
combinatorial and solvable in polynomial time.

cant performance differences. This calls for sophisticated

methods for source code optimization.

ASP needs more software engineering methodologies

and tools. For instance, the strict separation of logic

and control makes traditional debugging techniques in-

applicable. Also, only few development environments

exist.3

Finally, ASP has to be fit for laymen. ASP attracts

more and more users outside of computer science due

to its declarative- and effectiveness. To consolidate its

applicability by laymen, a simplified user language could
enter ASP standardization efforts.

Conclusion

ASP has come a long way. Having its roots in Non-

monotonic Logics, Logic Programming and Databases,

as well as Satisfiability Testing, the ASP community

can be proud of having taught Tweety how to fly: It

has produced robust declarative systems for KRR by

building upon solid formal foundations.

Resources

– Textbooks and tutorials: [4,18,22,25]

– ASP language standard: [11]
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