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Abstract

Reiter’s default logic is one of the best known and most studied of the approaches to
nonmonotonic reasoning. Several variants of default logic have subsequently been proposed
to give systems with properties differing from the original. In this paper, we examine the
relationship between default logic and its major variants. We accomplish this by translat-
ing a default theory under a variant interpretation into a second default theory, under the
original Reiter semantics, wherein the variant interpretation is respected. That is, in each
case we show that, given an extension of a translated theory, one may extract an extension
of the original variant default logic theory. We show how constrained, rational, justified,
and cumulative default logic can be expressed in Reiter’s default logic. As well, we show
how Reiter’s default logic can be expressed in rational default logic. From this, we suggest
that any such variant can be similarly treated. Consequently, we provide a unification of de-
fault logics, showing how the original formulation of default logic may express its variants.
Moreover, the translations clearly express the relationships between alternative approaches
to default logic. The translations themselves are shown to generally have good properties.
Thus, in at least a theoretical sense, we show that these variants are in a sense superfluous,
in that for any of these variants of default logic, we can exactly mimic the behaviour of a
variant in standard default logic. As well, the translations lend insight into means of classi-
fying the expressive power of default logic variants; specifically we suggest that the property
of semi-monotonicity represents a division with respect to expressibility, whereas regularity
and cumulativity do not.

∗ Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada.
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1 Introduction
Default logic [Reiter,1980] is one of the best known approaches to nonmonotonic reasoning. In
default logic, classical logic is augmented by default rules of the form α :β1,...,βn

γ
. Such a rule

is informally interpreted as “if α is true, and β1, . . . , βn are consistent with what is known,
then conclude γ by default”. An example of a default, representing the assertion “birds fly”,
is Bird(x) :Fly(x)

Fly(x)
. Thus: “if something can be inferred to be a bird, and if that thing can be

consistently assumed to fly, then infer that it does fly”. The meaning of a rule then rests on
notions of provability and consistency with respect to a given set of beliefs. A set of beliefs
sanctioned by a set of default rules, with respect to an initial set of facts, is called an extension of
this set of facts.

The formal definition of an extension is quite subtle (see Section 2). However, this definition
has proven to be remarkably general and enduring. Consequently, much of subsequent work has
concentrated on applying the formalism (see [Perrault,1987; Baader and Hollunder,1992; Cadoli
et al.,1994] for representative examples) rather than further developing it. For an exception see
[Etherington,1987b], which gives a model-theoretic characterization of extensions. The gener-
ality of the approach has also led to its being used as a means of formalising other approaches,
such as inheritance networks [Etherington and Reiter,1983] and diagnosis [Reiter,1987]. In [Del-
grande and Schaub,2000] we suggested that default logic is an appropriate elaboration of clas-
sical logic for modelling a wide range of “commonsense” representation and reasoning prob-
lems. Full-scale implementations of default logic [Cholewiński et al.,1996] have had to con-
tend with the high complexity of reasoning in the system. However, more recently a restriction
of default logic, extended logic programs1 [Gelfond and Lifschitz,1990], has received a great
deal of attention, due to the availability of efficient implementations [Niemelä and Simons,1997;
Eiter et al.,1997]. Finally, default logic remains a “base” general formalism in which other for-
malisms (such as [Poole,1988; Giunchiglia et al.,2003]) have been expressed and consequently
can be compared.

The very generality of default logic means that it lacks several important properties, in-
cluding existence of extensions [Reiter,1980] and cumulativity [Makinson,1989]. In addition,
differing intuitions concerning the role of default rules have led to differing opinions concern-
ing other properties, including semi-monotonicity [Reiter,1980] and commitment to assumptions
[Poole,1989]. As a result, a number of modifications to the definition of a default extension have
been proposed, resulting in a number of variants of default logic. Most notably these variants
include constrained default logic [Schaub,1992; Delgrande et al.,1995], cumulative default logic
[Brewka,1991], justified default logic [Łukaszewicz,1988], and rational default logic [Mikitiuk
and Truszczyński,1995].2 In each of these variants, the definition of an extension is modified,
and a system with properties differing from the original is obtained.

In this paper we examine the relationships between default logic and its variants. To accom-

1Extended logic programs essentially correspond to default theories in which formulas are restricted to conjunc-
tions of literals.

2To be sure, there are other variants of default logic, as we later discuss. The variants covered here are ar-
guably the best-known and studied [Antoniou,1999]. As well, we suggest that the techniques developed here extend
straightforwardly to other variants.
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plish this, we make use of translations mapping a default theory under a “‘variant” interpretation
onto a second theory under the interpretation of the original (Reiter) approach, such that the re-
spectively resulting extensions are in a one-to-one correspondence. We show how constrained,
rational, justified, and cumulative default logic can be expressed in Reiter’s default logic. In the
case of the first three variant default logics, which use the language of classical logic, we add
labelled formulas to the language. In the case of an assertional default logic, such as cumulative
default logic, the situation is more complex since cumulative default logic makes use of “asser-
tions,” which extend the language of classical logic. Here we reify formulas; this allows us to
encode the properties of assertions in classical logic. In each case we discuss properties of the
underlying translation.

There has been much previous work relating default logic to other approaches to nonmono-
tonic reasoning, for example [Etherington,1987a; Imielinski,1987; Konolige,1988; Gottlob,1995;
Janhunen,1998; Denecker et al.,2003]. Approaches such as default logic, circumscription, and
autoepistemic logic were founded on varying intuitions; the aforecited references show that de-
spite these apparently disparate intuitions, there are deep links between the approaches. The
present paper does the same within the family of default logics: variant default logics are
founded on divergent intuitions from the original; here we show that these seemingly divergent
formalisms are nonetheless expressible by the original.

Hence we provide a unification of default logics, in that we show that the original formu-
lation of default logic is expressive enough to subsume its variants. Thus we show that these
variants are in a sense superfluous, in at least a theoretical sense, since we can exactly mimic the
behaviour of any of these variants in standard default logic. Thus, for example, once one has an
implementation of default logic (e.g. [Cholewiński et al.,1996]), it is straightforward to obtain an
implementation of a variant by implementing the translation. The reverse relation does not hold
for constrained, justified, or cumulative default logic, in that one cannot express default logic in
terms of these variants. However, rational default logic can be embedded in Reiter default logic,
and vice versa. The translations that we provide show, in a precise sense, how each variant relates
to standard default logic.

As well, our approach lends some insight into characteristics of standard default theories. For
example, our translations implicitly provide specific characterisations of default theories that are
guaranteed to have extensions or are guaranteed to be semi-monotonic. That is, since we map
variant default logics into default logic, the theories in the image of the mapping are guaranteed to
retain properties of the original variant. Further, it has been previously suggested that properties
such as semi-monotonicity, regularity, and cumulativity may be used to classify default logics
with respect to their expressiveness. Our results indicate however that only semi-monotonicity
provides a true indication of a logic’s overall expressiveness.

In the next section we introduce default logic and its variants. Since our aim is to show
correspondence results, we do not discuss the properties of these default logics nor do we moti-
vate their formulations; rather, the interested reader is referred to the cited literature. Section 3
discusses desirable properties of translations. In Section 4, we show in detail how constrained,
rational, and justified default logic can be expressed in Reiter’s default logic, and in Section 5 we
show how cumulative default logic may be so expressed. Sections 6 and 7 provide a discussion
and conclusion, respectively. Proofs of theorems are contained in an appendix.
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2 Default Logic and its Variants

2.1 Default Logic
Default logic [Reiter,1980] augments classical logic by default rules of the form α :β1,...,βn

γ
,where

the constituent elements are formulas of classical propositional or first-order logic. Defaults with
unbound variables are taken to stand for all corresponding instances. For simplicity, we deal just
with singular defaults for which n = 1.3 A singular rule is normal if β is equivalent to γ; it is
semi-normal if β implies γ. As regards standard default logic, [Janhunen,1999] shows that any
default rule can be transformed into a set of semi-normal defaults. Moreover the great majority of
applications use only semi-normal defaults, so the above assumption is a reasonable restriction.
We denote the prerequisite α of a default δ = α :β

γ
by Prereq(δ), its justification β by Justif (δ)

and its consequent γ by Conseq(δ). Conversely, to ease notation, in Section 4 we rely on a func-
tion δ to obtain the default rule in which a given prerequisite, justification, or consequent occurs,
respectively. That is, for instance, δ(Prereq(δ)) = δ. Moreover, for simplifying the technical
results, we presuppose without loss of generality that default rules have unique components. We
use the (unqualified) term default logic to refer to Reiter’s original formulation; sometimes for
emphasis we will redundantly refer to standard, or Reiter default logic. Variants will be referred
to as constrained (cumulative, justified, etc.) default logic. Similar considerations apply to the
notions of default extension.

As regards classical logic, the derivability operator, `, is defined in the usual way. Accord-
ingly, the deductive closure of a set S of formulas is given by Th(S) = {φ | S ` φ}.

A set of default rules D and a set of formulas W form a default theory (D,W ) that may
induce zero, one, or multiple extensions in the following way.

Definition 2.1 ([Reiter,1980]) Let (D,W ) be a default theory. For any set S of formulas, let
Γ(S) be the smallest set of formulas such that

1. W ⊆ Γ(S),

2. Γ(S) = Th(Γ(S)),

3. for any α :β
γ
∈ D, if α ∈ Γ(S) and S ∪ {β} 6` ⊥ then γ ∈ Γ(S).

A set of formulas E is an extension of (D,W ) iff Γ(E) = E.

That is, viewing Γ as an operator, E is a fixed point of Γ. Any such extension represents a
possible set of beliefs about the world at hand. For illustration, consider the default theories

(D1,W1) =
({

:B
C
, :¬B

D

}
, ∅
)

; (1)
(D2,W2) =

({
:B
C
, :¬C

D

}
, ∅
)
. (2)

In the literature (D1,W1) is often used to illustrate what is sometimes referred to as commit-
ment to assumption [Poole,1989] or regularity [Froidevaux and Mengin,1994]. A default logic is

3Note that, with the exception of [Łukaszewicz,1988], the variants that we deal with also employ only singular
defaults.
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weakly regular if each justification of an applied rule must be individually consistent with an ex-
tension; it is strongly regular if the justifications of applied rules must be jointly consistent with
an extension. In (Reiter) default logic, (D1,W1) admits one extension, Th({C,D}). Roughly
speaking, B is consistent with this (purported) extension, and so the rule :B

C
is applicable, yield-

ing C. Similarly, ¬B is also consistent with this (purported) extension, and so the rule :¬B
D

is
applicable, yielding D. The application of these two rules yields the extension Th({C,D}).

The default theory (D2,W2) is used to illustrate semi-monotonicity [Reiter,1980]. A de-
fault logic, or class of default theories, is semi-monotonic just if the addition of default rules
never eliminates, but rather extends or adds, new extensions. Consider first the default theory
(D′

2,W2) =
({

:¬C
D

}
, ∅
)
. This theory has one extension E ′

2 = Th(D). However, the only exten-
sion of (D2,W2) is E2 = Th({C}). E ′

2 fails to be an extension of (D2,W2) since B is consistent
with E ′

2; hence :B
C

is applicable, eliminating E ′
2 as a possible extension. Since we haveD′

2 ⊆ D2

but E ′
2 6⊆ E2, default logic fails to be semi-monotonic. Thus default logic is weakly regular and

is not semi-monotonic; normal default theories on the other hand are semi-monotonic.
In the rest of this section we introduce variants of default logic, some of which will be

strongly regular and some of which will be semi-monotonic.

2.2 Constrained Default Logic
In [Delgrande et al.,1995] constrained default logic is defined. The central idea is that the justi-
fications and consequents of a default rule jointly provide a context or assumption set for default
rule application. A primary motivation for constrained default logic was to obtain a default logic
that committed to its assumptions [Poole,1989]. The definition of a constrained extension is as
follows.

Definition 2.2 ([Delgrande et al.,1995]) Let (D,W ) be a default theory. For any set of formulas
T , let Γ(T ) be the pair of smallest sets of formulas (S ′, T ′) such that

1. W ⊆ S ′ ⊆ T ′,

2. S ′ = Th(S ′) and T ′ = Th(T ′),

3. for any α :β
γ
∈ D, if α ∈ S ′ and T ∪ {β} ∪ {γ} 6` ⊥ then γ ∈ S ′ and β ∧ γ ∈ T ′.

A pair of sets of formulas (E,C) is a constrained extension of (D,W ) iff Γ(C) = (E,C).

The formulas in C provide a global “context”, comprising a deductively closed superset of the
actual extension. Defaults must be consistent with this global context in order to be applied. In
our example, (D1,W1) has two constrained extensions, one containing C and another includ-
ing D, namely, (Th({C}) , Th({B,C})) and (Th({D}) , Th({¬B,D})). Roughly speaking, in
constructing an extension, one could consider the first default, :B

C
. On the assumption that this

default is applicable, for any other default to be applicable, this default must have its justification
not only consistent with the consequent C, but also with the justification of the first default B.
Intuitively, B can be regarded as an “assumption” that must remain consistent with respect to
other applicable defaults. If we consider the other possibly-applicable default, :¬B

D
, we see that
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this default is in fact not applicable, given the presence of ¬B in the justification. Hence we
obtain the extension (Th({C}) , Th({B,C})). Similar reasoning beginning with the second de-
fault yields the second extension. Accordingly, theory (D2,W2) has two constrained extensions,
(Th({C}) , Th({B,C})) and (Th({D}) , Th({¬C,D})).

In constrained default logic, for a default to be applicable, it must be consistent with the
justifications of applied default taken together. If instead, for a default to be applicable, it must be
consistent with the justifications of applied default taken individually, one obtains Łukaszewicz’s
approach, discussed below.

2.3 Rational Default Logic
The definition of rational default is quite close to that of constrained default logic. The following
is an alternative characterisation of rational extensions, originally proposed in [Mikitiuk and
Truszczyński,1993], given in [Linke and Schaub,1997]:

Definition 2.3 ([Mikitiuk and Truszczyński,1993]) Let (D,W ) be a default theory. For any
set of formulas T let Γ(T ) be the pair of smallest sets of formulas (S ′, T ′) such that

1. W ⊆ S ′ ⊆ T ′,

2. S ′ = Th(S ′) and T ′ = Th(T ′),

3. for any α :β
γ
∈ D, if α ∈ S ′ and T ∪ {β} 6` ⊥ then γ ∈ S ′ and β ∧ γ ∈ T ′.

A pair of sets of formulas (E,C) is a rational extension of (D,W ) iff Γ(C) = (E,C).

This definition is the same as that of constrained default logic, except for the consistency check.
As with constrained default logic, (D1,W1) has two rational extensions, one containing C and
one including D, namely, (Th({C}) , Th({B,C})) and (Th({D}) , Th({¬B,D})). However,
theory (D2,W2) has only one rational extension (Th({C}) , Th({B,C})).

2.4 Justified Default Logic
Historically, justified default logic was the earliest of the variants of default logic to be proposed.
A central motivation behind justified default logic was to obtain a default logic that is semi-
monotonic and thus guarantees the existence of extensions. Łukaszewicz [1988] modifies default
logic by attaching constraints to extensions in order to strengthen the applicability condition of
default rules. A justified extension (called a modified extension in [Łukaszewicz,1988]) is defined
as follows.

Definition 2.4 ([Łukaszewicz,1988]) Let (D,W ) be a default theory. For any pair of sets of
formulas (S, T ) let Γ(S, T ) be the pair of smallest sets of formulas S ′, T ′ such that

1. W ⊆ S ′,

2. Th(S ′) = S ′,

6



3. for any α :β
γ

∈ D, if α ∈ S ′ and S ∪ {γ} ∪ {η} 6` ⊥ for every η ∈ T ∪ {β} then γ ∈ S ′

and β ∈ T ′.

A set of formulasE is a justified extension of (D,W ) for a set of formulas J iff Γ(E, J) = (E, J).

So a default rule α :β
γ

applies if all justifications of other applying default rules are consistent with
the considered extension E and the consequent γ, and if additionally γ and β are consistent with
E. Unlike the contextual information in constrained default logic and rational default logic, the
set of justifications J need not be deductively closed nor consistent.

In our examples, (D1,W1) has one justified extension, (Th({C,D}) , {B,¬B}). However,
theory (D2,W2) has two justified extensions, one with C and one containing D, or more pre-
cisely, (Th({C}) , {B}) and (Th({D}) , {¬C}).

We summarise our running examples in Table 1. For simplicity, we describe each extension
by the consequents of its generating default rules.

default logic (D1,W1) (D2,W2)

standard C,D C
constrained C D C D

rational C D C
justified C,D C D

Table 1: Summary of results obtained from default theories (D1,W1) and (D2,W2).

2.5 Cumulative Default Logic
Brewka [1991] describes a variant of default logic where the applicability condition for default
rules is strengthened, and the justification for adopting a default conclusion is made explicit. The
intent behind cumulative default logic was to obtain a default logic that satisfied the principle
of cumulativity and strong regularity, where cumulativity is the property wherein the addition of
a derived conclusion to a set of facts does not change the set of conclusions. In order to keep
track of implicit assumptions, Brewka introduces assertions, or formulas labeled with the set of
justifications and consequents of the default rules which were used for deriving them. Intuitively,
assertions represent formulas along with the reasons for believing them.

Definition 2.5 ([Brewka,1991]) Let α, γ1, . . . , γm be formulas. An assertion ξ is any expression
of the form 〈α, {γ1, . . . , γm}〉, where α = Form(ξ) is called the asserted formula and the set
{γ1, . . . , γm} = Supp(ξ) is called the support of α.4

We let A denote the set of assertions over a given language.
To correctly propagate the supports, the classical inference relation is extended as follows.

4The two projections extend to sets of assertions in the obvious way. We sometimes misuse Supp for denoting
the support of an asserted formula, e.g. 〈α,Supp(α)〉.
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Definition 2.6 ([Brewka,1991]) Let S be a set of assertions. Then T̂h(S), the set of assertional
consequences of S, is the smallest set of assertions such that

1. S ⊆ T̂h(S),

2. if ξ1, . . . , ξn ∈ T̂h(S) and Form(ξ1) , . . . ,Form(ξn) ` γ then
〈γ, Supp(ξ1) ∪ · · · ∪ Supp(ξn)〉 ∈ T̂h(S).

An assertional default theory is a pair (D,W), where D is a set of default rules and W is a set
of assertions. An assertional extension is defined as follows.

Definition 2.7 ([Brewka,1991]) Let (D,W) be an assertional default theory. For any set of
assertions S let Γ(S) be the smallest set of assertions S ′ such that

1. W ⊆ S ′,

2. T̂h(S ′) = S ′,

3. for any α :β
γ

∈ D, if 〈α, Supp(α)〉 ∈ S ′ and Form(S) ∪ Supp(S) ∪ {β} ∪ {γ} 6` ⊥ then
〈γ, Supp(α) ∪ {β} ∪ {γ}〉 ∈ S ′.

A set of assertions E is an assertional extension of (D,W) iff Γ(E) = E .

For illustration, consider the assertional default theory (often used for illustrating the failure
of cumulativity [Makinson,1989] in default logic)

(D3,W3) =
({

:A
A
, A∨B :¬A

¬A

}
, ∅
)
. (3)

This theory has one assertional extension, including 〈A, {A}〉 as well as 〈A ∨B, {A}〉. Adding
the latter assertion to the set of assertional facts yields the assertional default theory

(D4,W4) =
({

:A
A
, A∨B :¬A

¬A

}
, {〈A ∨B, {A}〉}

)
(4)

which has the same assertional extension. Note that without the support {A} for A ∨B, one
obtains a second assertional extension with 〈¬A, {¬A}〉. This is what happens in the previously-
described default logics.

It is well-known that cumulative and constrained extensions are equivalent (with respect to
asserted consequences of default rules), whenever the underlying facts contain no support. Sim-
ilar relationships are given among original and Q-default logic [Giordano and Martinelli,1994],
justified and affirmative [Linke and Schaub,1997], rational and CA-default logic [Giordano and
Martinelli,1994], respectively (cf. [Linke and Schaub,1997]).
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3 A Note on Translations between Default Theories
Translation functions provide a means of comparing formalisms. Previously such functions have
been used to compare the expressive power of different approaches, in that it may be possible to
show that a translation involving one approach suitably captures a second. Here we translate a
default theory under one interpretation into a second default theory under another interpretation.
Since many variant approaches to default logic share the same syntax as regular default logic,
when we refer to a default theory below, we will implicitly mean a (syntactic) default theory
along with an understood semantics. Thus stating that (D,W ) is a default theory will come
with the understanding that (D,W ) is a default theory under a specific interpretation, whether
constrained, justified, or whatever.

The success of our endeavour will be measured in part by properties of our translation func-
tions. To this end, there are various desiderata that can be specified for a translation func-
tion. In this paper, we adopt (with modifications) three criteria proposed by Tomi Janhunen
[Janhunen,1999], who has investigated translations among specific subclasses of Reiter’s de-
fault logic; as well we use a version of monotonicity that is adapted for default theories. These
desiderata are given as follows. We understand (D1,W1) ⊆ (D2,W2) to mean D1 ⊆ D2 and
W1 ⊆ W2.

Definition 3.1 Let (D,W ) be a default theory where W is a set of formulas (or, in Section 5,
assertions) in some language L, and D is a set of default rules. A function T : DL1 → DL2,
where DL1 and DL2 are classes of default theories, is:

1. faithful iff for all (D,W ) ∈ DL1, the consistent extensions of (D,W ) and T ((D,W )) are
in a one-to-one correspondence and coincide up to the propositional language of W ;

2. polynomial iff for (D,W ) ∈ DL1 the time required to compute T ((D,W )) is polynomial
in the size of D and W ;

3. modular iff for all (D,W ) ∈ DL1, we have T ((D,W )) = (D′,W ′ ∪ T (∅,W )) where
T ((D, ∅)) = (D′,W ′);

4. monotonic iff: if D1 ⊆ D2 and W1 ⊆ W2 then T ((D1,W1)) ⊆ T ((D2,W2)).

In a faithful translation, (D,W ) is a theory under one particular interpretation and T ((D,W ))
is a theory under another; faithfulness specifies that there is a one-to-one correspondence between
extensions of these theories, each under its own interpretation. This criterion extends the notion
of faithfulness in [Janhunen,1999] to different systems of default logic. Polynomiality reflects a
certain, coarse notion of efficiency in the translation; it is the same as in [Janhunen,1999]. The
intent of modularity is to specify that the rules in D can be translated independently of W ; thus
the translation of D does not need to be recomputed when W is modified. We draw the reader’s
attention to the fact that we generalise the notion of modularity in [Janhunen,1999], which would
require that T ((∅,W )) = W . If a translation is monotonic, then a default theory can be translated
incrementally.
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Of these criteria, faithfulness is essential (otherwise we have not captured one default logic
in another), while polynomiality (and low-order polynomiality at that) would be required for any
practical implementation. Modularity and monotonicity of the translation would be similarly
desirable in a practical application; as well they reflect a certain “tightness” in the relationship
between two systems.

Other translation schemes can be found in [Marek and Truszczyński,1993], where among
others the notion of semi-representability is introduced. This concept deals with the representa-
tion of default theories within restricted subclasses of default theories over an extended language.
Although semi-representability adheres to a fixed interpretation of default logic, one can view our
results as semi-representation results among different interpretations of default theories.

4 Correspondence with Constrained, Rational, and Justified
Default Logic

This section presents encodings for representing major variant default logics in Reiter’s default
logic. For a default theory ∆, we produce a translated theory Tx∆, such that there is a one-to-
one correspondence between the extensions of ∆ in x-default logic and (standard) extensions
of Tx∆. We begin with constrained and rational default logic, whose encoding is less involved,
then consider that of justified default logic. Section 5 addresses cumulative default logic, which
requires a translation of a differing form.

4.1 Correspondence with Constrained Default Logic
For a language L over alphabet P , let L′ be the language over P ′ = {p′ | p ∈ P} (so implicitly
there is an isomorphism between L and L′). For a formula α, let α′ be the formula obtained by
replacing any symbol p ∈ P by p′; in addition define for a set W of formulas, W ′ = {α′ | α ∈
W}.

Definition 4.1 For default theory (D,W ), define Tc((D,W )) = (Dc,Wc) where

Wc = W ∪W ′ and Dc =
{

α :β′∧γ′
γ∧(β′∧γ′)

∣∣∣ α :β
γ
∈ D

}
.

Informally, we retain the justification of an applied default rule in an extension, but as a primed
formula; this set of primed formulas then corresponds to the set C in Definition 2.2. Thus we
essentially encode Definition 2.2 in a standard default theory. Other variants of default logic are
similarly encoded, although sometimes in a somewhat more complex formulation.

For our examples in (1) and (2), we obtain:

Tc((D1,W1)) =
({

:B′∧C′
C∧B′∧C′ ,

:¬B′∧D′
D∧¬B′∧D′

}
, ∅
)

Tc((D2,W2)) =
({

:B′∧C′
C∧B′∧C′ ,

:¬C′∧D′
D∧¬C′∧D′

}
, ∅
)
.
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Tc((D1,W1)) yields two extensions in standard default logic, Th({C ∧B′ ∧ C ′}) as well as
Th({D ∧ ¬B′ ∧D′}). Analogously, we obtain two extensions from Tc((D2,W2)), viz. Th({C ∧B′ ∧ C ′})
and Th({D ∧ ¬C ′ ∧D′}).

We have the following results relating constrained entensions and the translation Tc.

Theorem 4.1 For a default theory (D,W ), we have that

1. if (E,C) is a constrained extension of (D,W ) then Th(E ∪ C ′) is an extension of Tc((D,W ));

2. if F is an extension of Tc((D,W )) then (F ∩ L, {ϕ | ϕ′ ∈ F ∩ L′}) is a constrained
extension of (D,W ).

Theorem 4.2 The constrained extensions of a default theory (D,W ) and the extensions of the
translation Tc((D,W )) are in a one-to-one correspondence.

The theorem asserts that the translation Tc is faithful. As well, it can be observed that Tc is
polynomial (in fact linear), modular, and monotonic.

4.2 Correspondence with Rational Default Logic
As expected, the mapping of rational default logic into standard default logic is close to that of
constrained default logic:

Definition 4.2 For default theory (D,W ), define Tr((D,W )) = (Dr,Wr) where

Wr = W ∪W ′ and Dr =
{

α :β′

γ∧(β′∧γ′)

∣∣∣ α :β
γ
∈ D

}
.

As before, the consequent of rules in Dr encodes the formulas in a rational extension (Defini-
tion 2.3). For our examples in (1) and (2), we obtain:

Tr((D1,W1)) =
({

:B′

C∧B′∧C′ ,
:¬B′

D∧¬B′∧D′
}
, ∅
)

Tr((D2,W2)) =
({

:B′

C∧B′∧C′ ,
:¬C′

D∧¬C′∧D′
}
, ∅
)
.

As with Tc((D1,W1)), theory Tr((D1,W1)) yields two extensions, one containing C ∧B′ ∧ C ′

and the other containingD ∧ ¬B′ ∧D′. In contrast to Tc((D2,W2)), however, we obtain a single
extension from Tr((D2,W2)), containing C ∧B′ ∧ C ′.

We have the following result.

Theorem 4.3 For a default theory (D,W ), we have that

1. if (E,C) is a rational extension of (D,W ) then Th(E ∪ C ′) is an extension of Tr((D,W ));

2. if F is an extension of Tr((D,W )) then (F ∩L, {ϕ | ϕ′ ∈ F ∩L′}) is a rational extension
of (D,W ).

As with Theorem 4.2, one can show that the extensions of a default theory (D,W ) and the
translation Tr((D,W )) are in a one-to-one correspondence. Similar to Tc, we have that Tr is
faithful, polynomial, modular, and monotonic.
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4.3 Correspondence with Justified Default Logic
Define for a language L over alphabet P and some set S, the family (Ls)s∈S of languages over
Ps = {ps | p ∈ P} for s ∈ S. For α ∈ L and s ∈ S, let αs be the formula obtained by replacing
every symbol p ∈ P in α by ps; in addition define for a setW of formulas, W s = {αs | α ∈ W}.

In what follows, we let the set of default rules D induce copies of the original language.

Definition 4.3 For default theory (D,W ), define Tj((D,W )) = (Dj,Wj) where

Wj = W ∪
⋃
ζ∈DW

ζ and Dj =
{
α : (βδ∧γδ)∧(

V
ζ∈D γζ)

γ∧(βδ∧γδ)∧(
V

ζ∈D γζ)

∣∣∣ δ = α :β
γ
∈ D

}
.

For simplicity, we write β = Justif ◦(δ) whenever Justif (δ) = (βδ ∧ γδ) ∧ (
∧
ζ∈D γ

ζ).
Abbreviating the two default rules in both examples, (1) and (2), by δ1, δ2 and δ1, δ4, respec-

tively, we get (after removing duplicates):

Tj((D1,W1)) =
({

:Bδ1∧Cδ1∧Cδ2

C∧Bδ1∧Cδ1∧Cδ2 ,
:¬Bδ2∧Dδ2∧Dδ1

D∧¬Bδ2∧Dδ2∧Dδ1

}
, ∅
)

Tj((D2,W2)) =
({

:Bδ1∧Cδ1∧Cδ4

C∧Bδ1∧Cδ1∧Cδ4 ,
:¬Cδ4∧Dδ4∧Dδ1

D∧¬Cδ4∧Dδ4∧Dδ1

}
, ∅
)

In standard default logic, Tj((D1,W1)) results in one extension containing C,D, Bδ1, Cδ1, Dδ1,
along with ¬Bδ2, Cδ2, Dδ2. Unlike this, Tj((D2,W2)) gives two extensions, one with C, Bδ1,
Cδ1, Cδ4 and another including D, ¬Cδ4, Dδ4, Dδ1.

We have the following general result.

Theorem 4.4 For a default theory (D,W ), we have that

1. if (E, J) is a justified extension of (D,W ) then

F = Th

(
E ∪

⋃
ζ∈D

Eζ ∪
⋃
β∈J

{βδ(β)}

)

is an extension of Tj((D,W ));

2. if F is an extension of Tj((D,W )) then (F ∩L, J) is a justified extension of (D,W ), where
J = {β | β = Justif ◦(δ) and δ ∈ GD(Tj((D,W )), F )}.

GD(Tj((D,W )), F ) gives the set of default rules generating F ; see Definition A.1 for a formal
definition.

In analogy to Theorem 4.2, one can show that the extensions of a default theory (D,W )
and the translation Tj((D,W )) are in a one-to-one correspondence. The translation Tj is faith-
ful, polynomial, and modular. However, we note that while polynomial, the translation results
in a quadratic increase in the size of a theory; this would add a not insignificant overhead in
the computation of a translated (standard) theory as compared to the original (justified default
logic) theory. As well the translation is not monotonic; specifically, in general we obtain that
Tj((D,W )) 6⊆ Tj((D ∪D′,W )).
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4.4 Correspondence with (Standard) Default Logic
We can show that there is a self-embedding for standard default logic to standard default logic,
using the encoding of the previous subsection:

Definition 4.4 For default theory (D,W ), define Td((D,W )) = (Dd,Wd) where

Wd = W ∪
⋃
ζ∈DW

ζ and Dd =
{

α :βδ

γ∧(βδ∧γδ)∧(
V

ζ∈D γζ)

∣∣∣ δ = α :β
γ
∈ D

}
.

One can show that this mapping results in extensions that are in a one-to-one correspondence to
those of the original theory. That is, one obtains a result similar to that in Theorem 4.4. The
translation Td then is faithful and well as being polynomial and modular. However it is not
monotonic, since elements of Wd depend in part on D.

Contrasting this embedding with the one in Definition 4.3 also illustrates in a different fashion
how default logic and justified default logic relate. As well, this translation allows for embedding
standard default logic into rational default logic, as made precise next.

Theorem 4.5 For a default theory (D,W ), we have that

1. if E is an extension of (D,W ) then (F, F ) is a rational extension of Td((D,W )),

where F = Th
(
E ∪

⋃
ζ∈D E

ζ ∪
⋃
δ∈GD((D,W ),E){Justif (δ)δ}

)
;

2. if (F, F ) is a rational extension of Td((D,W )) then F ∩ L is an extension of (D,W ).

As before, one can show that the extensions of a default theory (D,W ) and the translation
Td((D,W )) are in a one-to-one correspondence.

For our examples in (1) and (2), we get:

Td((D1,W1)) =
({

:Bδ1

C∧Bδ1∧Cδ1∧Cδ2 ,
:¬Bδ2

D∧¬Bδ2∧Dδ2∧Dδ1

}
, ∅
)

Td((D2,W2)) =
({

:Bδ1

C∧Bδ1∧Cδ1∧Cδ4 ,
:¬Cδ4

D∧¬Cδ4∧Dδ4∧Dδ1

}
, ∅
)
.

In contrast to the two rational extensions obtained from (D1,W1), theory Td((D1,W1)) re-
sults in one rational extension containing C,D, Bδ1, Cδ1, Dδ1, and ¬Bδ2, Cδ2, Dδ2. As well,
Td((D2,W2)) gives one rational extension containing C, Bδ1, Cδ1, Cδ4.

Note that a corresponding mapping into justified or constrained default logic is impossible;
this is not a matter of the specific translation but rather a principal impossibility.

Theorem 4.6 There is no mapping T such that for any default theory (D,W ), we have that the
extensions of (D,W ) are in a one-to-one correspondence with the constrained/justified exten-
sions of T ((D,W )).

To see this, consider theory
({

:B
¬B

}
, ∅
)
, having no extension. On the other hand, it is well known

that every default theory has at least one justified and constrained extension [Łukaszewicz,1988;
Delgrande et al.,1995].
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5 Correspondence with Cumulative Default Logic
This section presents encodings for representing cumulative default logic and cumulative ex-
tensions in default logic. The approach here is significantly different from that of the previous
section, in large part because cumulative default logic deals with assertions, which encode those
formulas that an asserted consequent depends upon. We first provide a translation that directly
encodes assertions and assertional default theories in standard default logic, using reified formu-
las. Second we provide another translation that makes use of known correspondences between
constrained default logic and cumulative default logic.

In order to be able to talk about an assertion 〈α, {β1, . . . , βn}〉 ∈ A within a (classical, log-
ical) theory, an assertion is reified5 [McCarthy,1979] as an atomic formula 〈·, ·〉re , where each
argument is a reified formula that does not contain an instance of 〈·, ·〉re . Thus the assertion
〈α, {β1, . . . , βn}〉 is represented in the object language as the reified formula 〈α, β1 ∧ · · · ∧ βn〉re .6

Let Lre be the set of reified assertions. So that translated assertions have appropriate properties,
we employ a set of formulas Axre axiomatising the reified formulas:

Definition 5.1 Axre is the least set containing instances of the following schemata:

1. If ` α then 〈α, ∅〉re ∈ Axre.

2. (β1 ≡ β2) ⊃ (〈α, β1〉re ≡ 〈α, β2〉re).

3. 〈α, γ〉re ∧ 〈α ⊃ β, ψ〉re ⊃ 〈β, ψ ∧ γ〉re .

We have the following analogue of Definition 2.6:

Theorem 5.1 If 〈α1, β1〉re , 〈α2, β2〉re ∈ R and {α1, α2} ` γ then R ∪ Axre ` 〈γ, β1 ∧ β2〉re .

From this we establish a correspondence between extensions of cumulative default logic and
default logic. We first define correspondences between assertions and formulas of classical logic.

Definition 5.2
For R ⊆ A, define

Re (R) = {〈α, β〉re | 〈α, β〉 ∈ R}.
Re+(R) = Re (R) ∪ Form(R) ∪ Supp(R) ∪ Axre.

Definition 5.3
For R a set of formulas, define

Re−1(R) = {〈α, β〉 | 〈α, β〉re ∈ R}.
5In Artificial Intelligence, a common use of reification is to assert that a particular fact or formula α is true

at some state s, given perhaps by Holds(α, s). α is then a term in the (classical, first-order) theory, maybe best
thought of as a string denoting the underlying formula. Thus for a formula Holds(p ∧ q, s), ∧ here would be an
infix function. Appropriate “behaviour” of this function then needs to be given as an axiom for the theory; for
example Holds(p ∧ q, s) ⊃ Holds(p, s). Consequently we require Definition 5.1 so that reified assertions have the
right properties.

6We understand empty components, such as the support in 〈α, ∅〉re , to be interpreted as >.
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Definition 5.4 For assertional default theory (D,W), define Ta((D,W)) = (Da,Wa) where

Wa = Re+(W) and Da =
{

〈α,ψ〉re :β∧γ
〈γ,ψ∧β∧γ〉re∧β∧γ

∣∣∣ α :β
γ
∈ D, ψ ∈ L

}
.

In an assertional default theory, the set of defaults is syntactically no different than defaults in a
Reiter default theory; however, the world knowledgeW and resulting extensions are composed of
sets of assertions. In a translated theory, reified assertions appear as components of (translated)
defaults, in the prerequisites and consequents. Note though that the consistency check, in the
justification, remains unaffected. In fact, the treatment of β ∧ γ in Definition 5.4 is identical
to that of β′ ∧ γ′ in Definition 4.1. This translation then nicely shows that only the support
of (reified) assertions is needed for keeping track of underlying assumptions when applying a
default rule.

Consider our examples in (3) and (4):

Ta((D3,W3)) =
({

〈>,ψ〉re :A
〈A,ψ∧A〉re∧A ,

〈A∨B,ψ〉re :¬A
〈¬A,ψ∧¬A〉re∧¬A

∣∣∣ ψ ∈ L} , ∅)
Ta((D4,W4)) =

({
〈>,ψ〉re :A

〈A,ψ∧A〉re∧A ,
〈A∨B,ψ〉re :¬A

〈¬A,ψ∧¬A〉re∧¬A

∣∣∣ ψ ∈ L} ,
{〈A ∨B, {A}〉re} ∪ {A ∨B} ∪ {A})

Both theories Ta((D3,W3)) and Ta((D4,W4)) yield one extension in standard default logic, con-
taining 〈A, {A}〉re .

We have the following general result.

Theorem 5.2 For an assertional default theory (D,W), we have that

1. if E is an assertional extension of (D,W), then Th
(
Re+(E)

)
is an extension of Ta((D,W));

2. if E is an extension of Ta((D,W)), then Re−1(E) is an assertional extension of (D,W).

Similar to the previous results, we also have a one-to-one correspondence between the extensions
of a default theory and the extensions of the translation. Strictly speaking the translation is not
faithful, since the original theory is expressed in terms of assertions, whereas the image under the
translation is expressed in terms of reified formulas. However this technical difficulty is easily
skirted if we agree that assertions in cumulative default logic are in fact represented as reified
formulas, in which case an extension of the translated theory can be projected onto the language
of the original theory.

However the translation Ta is clearly not polynomial. As given, Definition 5.4 yields an infi-
nite number of defaults (due to the presence of ψ in the formula schemata). We can nonetheless
work with a finite theory in the propositional case, by the expedient of noting that over the lan-
guage of a (finite) assertional default theory there will be a finite alphabet of mentioned symbols,
and a finite set of sets of formulas that are equivalent. (That is, the set of formulas on a finite
alphabet can be partitioned into sets of equivalent formulas, and there will be a finite number of
these sets.) We then replace a formula in a set of logically equivalent formulas by some canonical
representative. Consequently the translated theory will be exponentially larger in size than the
original.
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The translation is modular and monotonic, desirable properties that nonetheless are over-
shadowed by the non-polynomiality of the translation. As well, it is not at all clear how a direct
translation from cumulative default logic to default logic can avoid this exponential blowup.
However, there are known correspondences between constrained default logic and cumulative
default logic, and so we describe next a second translation that makes use of this correspondence
and avoids the exponential blowup in the translation.

In [Delgrande et al.,1995] it was shown that there is a one-to-one correspondence between
extensions of a constrained default theory (D,W ) and the cumulative default theory (D, {〈α, ∅〉 |
α ∈ W}). [Schaub,1993] extends this to a one-to-one correspondence between preconstrained
default theories7 and arbitrary assertional default theories; as well it is shown that preconstrained
theories can be expressed by standard constrained theories. Based on these results we define the
following.

Definition 5.5 Let (D,W) be an assertional default theory. Define Tcc((D,W)) = (Dcc,Wcc)
where n is a new propositional symbol8 not occurring in D, W , and

Wcc = Form(W)∪{n ≡ (∧Supp(W))} and Dcc =
{
α :β∧n
γ

∣∣∣ α :β
γ
∈ D

}
∪
{

:n
>

}
.

The following is a corollary to Theorems 2.1 and 3.2 of [Schaub,1993].

Theorem 5.3 Let (D,W) be an assertional default theory and (Dcc,Wcc) = Tcc((D,W)).

1. If (E,C) is a constrained extension of (Dcc,Wcc), then there is an assertional extension E
of (D,W) such that E = Form(E) and C = Th(Form(E) ∪ Supp(E)) .

2. If E is an assertional extension of (D,W) then

(Th(Form(E) ∪ {n ≡ (∧Supp(W))}) , Th(Form(E) ∪ Supp(E) ∪ {n}))

is a constrained extension of (D,W ).

We thus get a one-to-one correspondence between assertional extensions and constrained exten-
sions (modulo the introduced propositional symbol n) for corresponding theories. The composed
translation Tac = Tcc ◦ Tc then gives us a second translation from cumulative default logic into
default logic, mediated by a translation to constrained default logic. We observe that Tcc is not
faithful, since we lose the association of supports of a formula in an extension under the trans-
lation; consequently neither is Tac faithful. However, the asserted formulas (i.e. disregarding
supports) are the same in the corresponding extensions of (D,W) and Tcc((D,W)). Hence we
obtain a limited faithfulness result here, with respect to the asserted formulas. Both Tcc and Tc
are polynomial (again, linear), modular, and monotonic; hence Tac is also linear, modular, and
monotonic.

7A preconstrained default theory is a constrained default theory, but where a set of constraints is given in the
specification of a theory. A preconstrained theory is of the form (D,W,CP ) where D, W are as before, and
Definition 2.2 is modified so that C contains CP .

8The use of n is to simply restrict the increase in theory size to a constant factor.
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6 Discussion
We have obtained, for the most part, satisfactory translations of variants of default logic into de-
fault logic, as well as a translation of default logic into rational default logic. Results concerning
properties of our translations are summarised in Table 2.

Embedding Translation Property
From To Faithful Polynomial Modular Monotonic

constrained standard Tc
√

linear
√ √

rational standard Tr
√

linear
√ √

justified standard Tj
√

quadratic
√

standard rational Td
√

quadratic
√

cumulative standard Ta
√

exponential
√ √

cumulative standard Tac
√

(wrt formulas) linear
√ √

Table 2: Summary of translations.

Translating cumulative default logic into standard default logic is clearly the most problem-
atic of the translations we consider. This is primarily due to the use of assertions, which record
the support of an asserted formula. Hence a direct encoding (implemented by our Ta) appears to
require an exponential increase in size of a translated theory, to allow for all possible supports.
We also obtain an indirect translation Tac, making use of a known correspondence with con-
strained default logic to obtain a translation with good properties, except that faithfulness with
respect to the supports of a formula is lost. Thus each translation has its pros and cons. Of the
other non-linear translations, it may be possible to improve on the provided quadratic bound, but
it is not clear to us how such an improvement could be obtained.

It should be noted that the various translations are not arbitrary, but rather deal with two
issues. The first concerns how consistency is handled in a default logic, while the second deals
with the nature of what is asserted (whether a formula or an assertion). The general form of the
translation schemes dealing with these aspects can be illustrated as follows:

1.
α : β

γ
7→ α : c(β)

γ ∧ c(β)

2.
α : β

γ
7→ a(α) : β

a(γ)

The first form, which encodes an alternative consistency condition, underlies all the translations
in Section 4. The translation Ta in Section 5 uses the second general translation in addition to
the first in order to manage assertions.

The mapping Ta of Section 5 extends straightforwardly to the variants given in [Giordano
and Martinelli,1994; Linke and Schaub,1997], which present cumulative variants of standard,
rational, and justified default logic. Thus the mappings of Section 4 can be combined with that
of Section 5 in order to obtain cumulative counterparts of the variants given in Section 2. In
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all, this allows us to map a whole spectrum of these variants of default logic onto the original
approach. In view of the results of Section 4.2, we also obtain analogous results for mapping all
variants into rational default logic (including self-mappings). In this way, both Reiter’s original
default logic as well as rational default logic may serve as a general host system, or target system,
for mappings. Note however, that based on our experience, the translations into default logic (as
opposed to rational default logic) would be more straightforward. As well, while we can simulate
rational default logic in default logic via a linear translation, we have been unable to do better
than a quadratic translation for simulating default logic in rational default logic.

The general approach of mapping one default logic into another also raises the question of
how default logics should be classified. To date, this has mainly been done by appeal to formal
properties, primarily:

• semi-monotonicity

• regularity and

• cumulativity.

Recall that a default logic, or class of default theories, is semi-monotonic just if the addition of
default rules never eliminates, but rather extends or adds, new extensions. In particular, semi-
monotonicity guarantees the existence of extensions. As well, a semi-monotonic logic has com-
putational advantages over a non-semi-monotonic logic, in that semi-monotonicity allows for
the incremental construction of an extension. Regularity, or commitment to assumptions, is con-
cerned with how the consistency of justifications is determined with respect to an extension. A
default logic is weakly regular if each justification of an applied rule must be individually con-
sistent with an extension; it is strongly regular if the justifications must be jointly consistent with
an extension. Cumulativity is the property wherein the addition of a derived conclusion to a set
of facts does not change the set of conclusions.

Intuitively, it would seem that each of these properties might be used to classify default log-
ics with respect to their expressiveness. However our results indicate that only the first property,
semi-monotonicity, provides a truly distinguishing feature marking a borderline of expressive-
ness. Recall [Delgrande et al.,1995; Mikitiuk and Truszczyński,1995] that justified, constrained,
and cumulative default logic enjoy semi-monotonicity, whereas Reiter default logic and rational
default logic do not. In parallel, our results show that the former logics can be translated into
(or: simulated by) the latter two logics, but the converse is not possible.9 On the other hand,
justified and Reiter’s default logic enjoy weak regularity, while constrained, cumulative, and ra-
tional default logic are strongly regular (which is to say, commit to assumptions). Our results
show that one can mutually simulate the formation of extensions in weakly and strongly regular
default logics. Nonetheless, we have seen that our encodings of weakly regular default logics
are quadratic, while strongly regular systems can be encoded linearly. As a matter of fact, this is
due to the multiplicity of “consistency contexts” underlying extensions in weakly regular default
logics. For mimicing this in a strongly regular logic, our translations provide as many language

9At least, it is impossible as regards a bijection among the sets of extensions.
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copies as there are possible “consistency contexts”, spanned by mutually inconsistent justifica-
tions. Hence, although regularity represents no real demarcation with respect to expressiveness,
it nonetheless indicates a possible representational advantage. Also, this can be seen as a rep-
resentational advantage of Reiter’s default logic over rational default logic. The same applies
analogously for cumulative default logics. Cumulative default logic is cumulative, while the
other considered default logics are not. Thus only semi-monotonicity provides a clear division
between more and less expressive variants of default logics.

7 Concluding remarks
We have shown how variants of default logic can be expressed in Reiter’s original approach.
Similarly, we have shown that rational default logic and default logic may be encoded, one into
the other. However the encoding from rational default logic to default logic seems more straight-
forward than vice versa, since the latter translation is neither linear nor monotonic. For the most
part the provided transformations have good properties, being (with exceptions discussed in the
previous section) faithful, polynomial, modular, and monotonic. This work then complements
previous work in nonmonotonic reasoning which has shown links between (seeming) disparate
approaches. Here we show links between (seemingly) disparate variants of default logic. As
well, the translations clearly illustrate the relationships between alternative approaches to default
logic.

As argued in Section 6, there is a division between default logic and rational default logic
on the one hand, and the remaining variants on the other, manifesting itself through the prop-
erty of semi-monotonicity. Although it has often been informally argued that the computational
advantages of semi-monotonicity are offset by a loss of representational power, this claim has
up to now not been formally sustained. The results reported in [Janhunen,1999] provide another
indication of the relation between semi-monotonicity and expressiveness: normal default logic
is a semi-monotonic fragment of Reiter’s default logic and is strictly less expressive than default
logic.

Our approach can also be seen as a refinement of the investigations of complexity and/or
expressiveness conducted in [Gottlob,1992; Stillman,1991; Marek and Truszczyński,1993; Got-
tlob and Mingyi,1994; Gogic et al.,1995; Janhunen,1999]. From the perspective of complexity,
there were of course hints that mappings such as ours are possible. First, it is well-known that
the reasoning problems of all considered variants are at the second level of the polynomial hier-
archy [Gottlob,1992; Stillman,1991].10 The same level of complexity applies to the “existence
of extensions” problem in default logic and rational default logic, while it is trivial in justified
and constrained default logic (and analogously for the respective assertional counterparts). In
view of the same complexity of reasoning tasks, observe that our impossibility claim expressed
in Theorem 4.6 is about the non-existence of corresponding sets of extensions. This does not
exclude the possibility of an encoding of incoherent Reiter or rational default theories in a semi-
monotonic variant that, for instance, indicates incoherence through a special-purpose symbol.

10To be more precise, the problem of deciding whether a propositional formula is in some or all extensions,
respectively, is Σ2

p– and Π2
p–complete.
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However, there would be no one-to-one mapping here, since for any justified or constrained ex-
tension containing this special-purpose symbol, there would be no corresponding standard or
rational extension.

The most closely related work to our own is that of Tomi Janhunen [Janhunen,1999], who
has investigated translations among specific subclasses of Reiter’s default logic. For instance,
he gives a translation mapping arbitrary default theories into semi-normal theories, showing that
semi-normal default theories are as expressive as general ones. Other translation schemes can be
found in [Marek and Truszczyński,1993], where among others the notion of semi-representability
is introduced. This concept deals with the representation of default theories within restricted sub-
classes of default theories over an extended language. Although semi-representability adheres
to a fixed interpretation of default logic, one can view our results as semi-representation results
among different interpretations of default theories. As regards future research, it would be in-
teresting to see whether the results presented here lead to new relationships in the hierarchy of
non-monotonic logics established in [Janhunen,1999]. Also, a more detailed analysis of time and
space complexity is an issue for future research.

The present work may also lend insight into computational characteristics of default logic.
For example, our mappings provide specific syntactic characterisations of default theories that are
guaranteed to have extensions. That is, for example, constrained default theories are guaranteed
to have extensions; hence default theories appearing in the image of our mapping (Definition 4.1)
are guaranteed to have extensions.

Apart from the theoretical insights, an advantage of mappings such as we have given, is that
it suffices to have one general implementation of default logic for capturing a whole variety of
different approaches. In this respect, our results allow us to handle all sorts of default logics by
standard default logic implementations, such as DeReS [Cholewiński et al.,1996].

A Auxiliary definitions and results
First, we define the set of generating default rules:

Definition A.1 Let (D,W ) be a default theory and let E be a set of formulas. Define

GD((D,W ), E) =
{
α :β
γ
∈ D

∣∣∣α ∈ E,¬β 6∈ E} .

For the proofs, we need the following (“pseudo-iterative”) alternative characterisation for an
extension. Alternative characterisations of extensions for the various default logic variants are
found preceding the respective proofs.

Theorem A.1 Let (D,W ) be a default theory and let E be a set of formulas.
Define E0 = Th(W ) and for i ≥ 0

GDi =
{
α :β
γ
∈ D

∣∣∣α ∈ Ei,¬β 6∈ E}
Ei+1 = Th(Ei ∪ {Conseq(δ) | δ ∈ GDi})

Then E is an extension for (D,W ) iff E =
⋃∞
i=0Ei.
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This characterisation is easily derived from the one in given by Reiter [1980]:

Theorem A.2 ([Reiter,1980]) Let (D,W ) be a default theory and let E be a set of formulas.
Define E0 = W and for i ≥ 0

Ei+1 = Th(Ei) ∪ Conseq(GDi)

Then E is an extension for (D,W ) iff E =
⋃∞
i=0Ei.

B Proofs

B.1 Correspondence with Constrained Default Logic
We have the following alternative characterisation of a constrained default logic extension.

Theorem B.1 ([Delgrande et al.,1995]) Let (D,W ) be a default theory and let E,C be sets of
formulas.

Define E0 = C0 = Th(W ) and for i ≥ 0

GDc
i =

{
α :β
γ
∈ D

∣∣∣α ∈ Ei,¬(β ∧ γ) 6∈ C
}

Ei+1 = Th(Ei ∪ {Conseq(δ) | δ ∈ GDc
i})

Ci+1 = Th(Ci ∪ {Conseq(δ) ∧ Justif (δ) | δ ∈ GDc
i})

Then (E,C) is a constrained extension of (D,W ) iff (E,C) = (
⋃∞
i=0Ei,

⋃∞
i=0Ci).

Theorem B.2 Let (D,W ) be a default theory over L.
Let E and C be (deductively closed) sets of formulas over L and let F be the set of formulas

over L ∪ L′ such that F = Th(E ∪ C ′).
For i ≥ 0, define Ei and Ci as in Theorem B.1 relative to (D,W ), E, and C.
For i ≥ 0, define Fi as Ei in Theorem A.1 relative to Tc((D,W )) and F .
Then, we have for i ≥ 0 that Ei = Fi ∩ L and C ′

i = Fi ∩ L′ and Fi = Th(Ei ∪ C ′
i).

Proof B.2 Observe that E = F ∩ L and C ′ = F ∩ L′. We prove our claim by induction.

Base. We have E0 = Th(W ) = Th(W ∪W ′) ∩ L = F0 ∩ L.
Analogously, we get C ′

0 = Th(W ′) = Th(W ∪W ′) ∩ L′ = F0 ∩ L′.
Lastly, F0 = Th(W ∪W ′) = Th(Th(W ) ∪ Th(W ′)) = Th(E0 ∪ C ′

0).
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Step. Suppose we have that Ei = Fi ∩ L, C ′
i = Fi ∩ L′ along with Fi = Th(Ei ∪ C ′

i).
We interpolate the following lemma.

Lemma B.3 Given the induction hypothesis, we have

α :β′∧γ′
γ∧(β′∧γ′) ∈

{
α :β′∧γ′
γ∧(β′∧γ′)

∣∣∣ α :β
γ
∈ D,α ∈ Fi,¬(β′ ∧ γ′) 6∈ F

}
iff α :β

γ
∈
{
α :β
γ
∈ D

∣∣∣α ∈ Ei,¬(β ∧ γ) 6∈ C
}

Proof B.3 Given that α ∈ L, we have α ∈ Fi iff α ∈ Ei because Ei = Fi ∩ L.
It remains to be shown that ¬(β′ ∧ γ′) 6∈ F iff ¬(β ∧ γ) 6∈ C is true. To see this, we proceed

as follows. We have ¬(β ∧γ) 6∈ C iff ¬(β′∧γ′) 6∈ C ′ iff ¬(β′∧γ′) 6∈ F ∩L′ iff ¬(β′∧γ′) 6∈ F .

Lemma B.3 implies that α :β′∧γ′
γ∧(β′∧γ′) ∈ GDi (as in Theorem A.1) iff α :β

γ
∈ GDc

i (as in Theorem B.1).
Hence, γ ∧ (β′ ∧ γ′) ∈ {Conseq(δ) | δ ∈ GDi} iff γ ∈ {Conseq(δ) | δ ∈ GDc

i} and β ∧ γ ∈
{Conseq(δ) ∧ Justif (δ) | δ ∈ GDc

i}.
Given the induction hypothesis, this implies that Ei+1 = Fi+1 ∩ L and C ′

i+1 = Fi+1 ∩ L′
along with Fi+1 = Th

(
Ei+1 ∪ C ′

i+1

)
.

Proof 4.1

1. Let (E,C) be a constrained extension of (D,W ). According to Theorem B.1, we then
have that (E,C) = (

⋃∞
i=0Ei,

⋃∞
i=0Ci), where Ei and Ci are defined as in Theorem B.1.

Define F = Th(E ∪ C ′) and Fi as Ei in Theorem A.1 but relative to Tc((D,W )) and F .

F = Th(E ∪ C ′)
= Th(

⋃∞
i=0Ei ∪

⋃∞
i=0C

′
i)

= Th(
⋃∞
i=0(Ei ∪ C ′

i))
= Th(

⋃∞
i=0 Th(Ei ∪ C ′

i))
= Th(

⋃∞
i=0 Fi) (according to Theorem B.2)

=
⋃∞
i=0 Fi (since Fk ⊆ Fk+1 and Fk = Th(Fk) for k ≥ 0)

Hence F is an extension of Tc((D,W )).

2. Let F be an extension of Tc((D,W )). According to Theorem A.1, we then have that
F =

⋃∞
i=0 Fi, where Fi is defined as Ei in Theorem A.1 but relative to Tc((D,W )) and F .

Define E = F ∩ L and C = {ϕ | ϕ′ ∈ F ∩ L′} and Ei and Ci as in Theorem B.1.

E = F ∩ L C ′ = F ∩ L′
= (

⋃∞
i=0 Fi) ∩ L = (

⋃∞
i=0 Fi) ∩ L′

=
⋃∞
i=0(Fi ∩ L) =

⋃∞
i=0(Fi ∩ L′)

=
⋃∞
i=0Ei =

⋃∞
i=0C

′
i (according to Theorem B.2)

Hence (E,C) = (
⋃∞
i=0Ei,

⋃∞
i=0Ci), that is, (E,C) is a constrained extension of (D,W ).
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Proof 4.2 To see that we have a one-to-one correspondence, consider the two cases of Theo-
rem 4.1:

1. If (E1, C1) 6= (E2, C2) then clearly Th(E1 ∪ C ′
1) 6= Th(E2 ∪ C ′

2).

2. Conversely, if F1 6= F2, then there is some δ ∈ Dc such that δ ∈ GD(Tc((D,W )), F1) \
GD(Tc((D,W )), F2). Suppose that (F1 ∩ L, {ϕ | ϕ′ ∈ F1 ∩ L′}) = (F2 ∩ L, {ϕ | ϕ′ ∈
F2 ∩ L′}). This implies Prereq(δ) ∈ F2 ∩ L and Justif (δ) ∈ {ϕ | ϕ′ ∈ F2 ∩ L′}.
Consequently, δ ∈ GD(Tc((D,W )), F1), a contradiction.

B.2 Correspondence with Rational Default Logic
We have the following alternative characterisation of a rational default logic extension.

Theorem B.4 ([Mikitiuk and Truszczyński,1993]) Let (D,W ) be a default theory and letE,C
be sets of formulas.

Define E0 = C0 = Th(W ) and for i ≥ 0

GDr
i =

{
α :β
γ
∈ D

∣∣∣α ∈ Ei,¬β 6∈ C}
Ei+1 = Th(Ei ∪ {Conseq(δ) | δ ∈ GDr

i})
Ci+1 = Th(Ci ∪ {Conseq(δ) ∧ Justif (δ) | δ ∈ GDr

i})

Then (E,C) is a rational extension of (D,W ) iff (E,C) = (
⋃∞
i=0Ei,

⋃∞
i=0Ci).

Given the proximity of Definition 2.3 to Definition 2.2, the proof of Theorem 4.3 is basically
the same as that given in Section B.1. We thus concentrate below on the part specific to rational
default logic, playing the role of Theorem B.2:

Theorem B.5 Let (D,W ) be a default theory over L.
Let E and C be (deductively closed) sets of formulas over L and let F be a set of formulas

over L ∪ L′ such that F = Th(E ∪ C ′).
For i ≥ 0, define Ei and Ci as in Theorem B.4 relative to (D,W ), E, and C.
For i ≥ 0, define Fi as Ei in Theorem A.1 relative to Tr((D,W )) and F .
Then, we have for i ≥ 0 that Ei = Fi ∩ L and C ′

i = Fi ∩ L′ and Fi = Th(Ei ∪ C ′
i).

Proof B.5 Observe that since F = Th(E ∪ C ′) , we have E = F ∩ L and C ′ = F ∩ L′.
We prove our claim by induction.

Base. We have E0 = Th(W ) = Th(W ∪W ′) ∩ L = F0 ∩ L, C ′
0 = Th(W ′) = Th(W ∪W ′) ∩

L′ = F0 ∩ L′, and F0 = Th(W ∪W ′) = Th(Th(W ) ∪ Th(W ′)) = Th(E0 ∪ C ′
0).
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Step. Suppose Fi = Th(Ei ∪ C ′
i) and so Ei = Fi ∩ L and C ′

i = Fi ∩ L′.
First of all, this implies that Th(Ei) = Th(Fi) ∩ L and Th(C ′

i) = Th(Fi) ∩ L′.
Next, we have the following lemma.

Lemma B.6 Given the induction hypothesis, we have

α :β′

γ∧(β′∧γ′) ∈
{

α :β′

γ∧(β′∧γ′)

∣∣∣ α :β
γ
∈ D,α ∈ Fi,¬β′ 6∈ F

}
iff α :β

γ
∈
{
α :β
γ
∈ D

∣∣∣α ∈ Ei,¬β 6∈ C}
Proof B.6 Our claim holds if: ¬β′ 6∈ F iff ¬β 6∈ C is true. To see this, we proceed as follows.
We have ¬β 6∈ C iff ¬β′ 6∈ C ′ iff ¬β′ 6∈ F ∩ L′ iff ¬β′ 6∈ F .

Continuing the proof of the theorem, Lemma B.6 implies that α :β′∧γ′
γ∧(β′∧γ′) ∈ GDi (as in Theo-

rem A.1) iff α :β
γ

∈ GDr
i (as in Theorem B.4). Hence, γ ∧ (β′ ∧ γ′) ∈ {Conseq(δ) | δ ∈ GDi}

iff γ ∈ {Conseq(δ) | δ ∈ GDr
i} and β ∧ γ ∈ {Conseq(δ) ∧ Justif (δ) | δ ∈ GDr

i}.
In all, this implies that Ei+1 = Fi+1 ∩L, C ′

i+1 = Fi+1 ∩L′, and Fi+1 = Th
(
Ei+1 ∪ C ′

i+1

)
.

B.3 Correspondence with Justified Default Logic
We have the following alternative characterisation of a justified default logic extension.

Theorem B.7 ([Łukaszewicz,1988]) Let (D,W ) be a default theory and let E, J be sets of
formulas.

Define E0 = Th(W ), J0 = ∅ and for i ≥ 0

GDj
i =

{
α :β
γ
∈ D

∣∣∣α ∈ Ei,∀η ∈ J ∪ {β}.¬(η ∧ γ) 6∈ E
}

Ei+1 = Th
(
Ei ∪ {Conseq(δ) | δ ∈ GDj

i}
)

Ji+1 = Ji ∪ {Justif (δ) | δ ∈ GDj
i}

Then (E, J) is a justified extension of (D,W ) iff (E, J) = (
⋃∞
i=0Ei,

⋃∞
i=0 Ji).

Recall from Section 4 that without loss of generality we deal with default rules have unique
components. This greatly facilitates this proof since a justification uniquely determines the de-
fault rule in which it occurs. Thus, we have for istance δ(Justif (δ)) = δ for every δ ∈ D.

Theorem B.8 Let (D,W ) be a default theory over L and let J ⊆ Justif (D).
Let E be a deductively closed set of formulas over L and let F be a set of formulas over

L ∪
⋃
ζ∈D Lζ such that F = Th

(
E ∪

⋃
ζ∈D E

ζ ∪
⋃
β∈J{βδ(β)}

)
and E = F ∩ L and J = {β |

β = Justif ◦(δ) and δ ∈ GD(Tj((D,W )), F )}.
For i ≥ 0, define Ei and Ji as in Theorem B.7 relative to (D,W ), E, and J .
For i ≥ 0, define Fi as Ei in Theorem A.1 relative to Tj((D,W )) and F .

Then, we have for i ≥ 0 that Fi = Th
(
Ei ∪

⋃
ζ∈D E

ζ
i ∪
⋃
β∈Ji

{βδ(β)}
)

and Ei = Fi∩L and
Ji = {β | β = Justif ◦(δ) and δ ∈ GDi−1}.

Proof B.8 We prove our claim by induction.
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Base. We have E0 = Th(W ) = Th
(
W ∪

⋃
ζ∈DW

ζ
)
∩ L = F0 ∩ L and

F0 = Th
(
W ∪

⋃
ζ∈DW

ζ
)

= Th
(
Th(W ) ∪

⋃
ζ∈DTh

(
W ζ
))

= Th
(
E0 ∪

⋃
ζ∈DE

ζ
0

)
By definition, we have J0 = ∅ = {β | β = Justif ◦(δ) and δ ∈ ∅}.

Step. Suppose we have that Fi = Th
(
Ei ∪

⋃
ζ∈D E

ζ
i ∪
⋃
η∈Ji

{ηδ(η)}
)

and Ei = Fi ∩ L and
Ji = {η | η = Justif ◦(δ) and δ ∈ GDi−1}.

We introduce the following lemma in order to complete the proof.

Lemma B.9 Given the induction hypothesis, we have for δ = α :β
γ

that

α : (βδ∧γδ)∧(
V

ζ∈D γζ)

γ∧(βδ∧γδ)∧(
V

ζ∈D γζ)
∈
{
α : (βλ∧γλ)∧(

V
ζ∈D γζ)

γ∧(βλ∧γλ)∧(
V

ζ∈D γζ)

∣∣∣λ = α :β
γ
∈ D,α ∈ Fi,¬(βλ ∧ γλ ∧

∧
ζ∈D γ

ζ) 6∈ F
}

iff δ ∈
{
α :β
γ
∈ D

∣∣∣α ∈ Ei,∀η ∈ J ∪ {β}.¬(η ∧ γ) 6∈ E
}

Proof B.9 Given that α ∈ L, we have α ∈ Fi iff α ∈ Ei because Ei = Fi ∩ L.
It remains to be shown that ¬(βδ ∧ γδ ∧

∧
ζ∈D γ

ζ) 6∈ F iff ∀η ∈ J∪{β}.¬(η∧γ) 6∈ E is true.
To see this, we proceed as follows. We have ∀η ∈ J ∪ {β}.¬(η ∧ γ) 6∈ E iff ¬(β ∧ γ) 6∈ E and
¬(η ∧ γ) 6∈ E for every η ∈ J . Since E is deductively closed ¬(β ∧ γ) 6∈ E is equivalent to the
(redundant) condition ¬(β∧γ) 6∈ E and ¬γ 6∈ E. We thus have that ∀η ∈ J ∪{β}.¬(η∧γ) 6∈ E
holds iff

1. ¬(β ∧ γ) 6∈ E,

2. ¬γ 6∈ E, and

3. ¬(η ∧ γ) 6∈ E for every η ∈ J .

Due to the isomorphism between L and Lζ for every ζ ∈ D, this is equivalent to

1. ¬(βδ ∧ γδ) 6∈ Eδ,

2. ¬γδ(η) 6∈ Eδ(η) for every η ∈ Justif (D) \ J , and

3. ¬(ηδ(η) ∧ γδ(η)) 6∈ Eδ(η) for every η ∈ J .

We now proceed itemwise:

1. ¬(βδ ∧ γδ) 6∈ Eδ

(a) Suppose β 6∈ J .
Then, by definition of F , ¬(βδ ∧ γδ) 6∈ Eδ is equivalent to ¬(βδ ∧ γδ) 6∈ F ∩ Lδ.
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(b) Suppose β ∈ J .
Given thatEδ is deductively closed (by virtue ofE being deductively closed), ¬(βδ∧
γδ) 6∈ Eδ is equivalent to Eδ 6|= ¬βδ ∨ ¬γδ, which is equivalent to Eδ ∪ {βδ} 6|=
¬βδ ∨ ¬γδ. That is, ¬(βδ ∧ γδ) 6∈ Th

(
Eδ ∪ {βδ}

)
. By definition of F , this is

equivalent to ¬(βδ ∧ γδ) 6∈ F ∩ Lδ.

In both cases, we obtain that ¬(βδ ∧ γδ) 6∈ Eδ is equivalent to ¬(βδ ∧ γδ) 6∈ F ∩ Lδ.

2. ¬γδ(η) 6∈ Eδ(η) for every η ∈ Justif (D) \ J .

By definition of F , this is equivalent to ¬γδ(η) 6∈ F ∩ Lδ(η).

3. ¬(ηδ(η) ∧ γδ(η)) 6∈ Eδ(η) for every η ∈ J . Consider η ∈ J .

Given that Eδ(η) is deductively closed (by virtue of E being deductively closed), ¬(ηδ(η) ∧
γδ(η)) 6∈ Eδ(η) is equivalent to ¬γδ(η) 6∈ Th

(
Eδ(η) ∪ {ηδ(η)}

)
. By definition of F , this is

equivalent to ¬γδ(η) 6∈ F ∩ Lδ(η).

This case analysis shows that ∀η ∈ J ∪ {β}.¬(η ∧ γ) 6∈ E holds iff ¬(βδ ∧ γδ) 6∈ F ∩ Lδ
and ¬γδ(η) 6∈ F ∩ Lδ(η) is true for every η ∈ Justif (D) (joining the result of 2. and 3.). By
definition of F , the latter is furthermore equivalent to ¬(βδ ∧ γδ) 6∈ F and ¬γδ(η) 6∈ F for
every η ∈ Justif (D). Given the strict separation of F via the sublanguages and the fact that F is
deductively closed the latter is equivalent to ¬(βδ ∧ γδ ∧

∧
ζ∈D γ

ζ) 6∈ F .

Lemma B.9 implies for δ = α :β
γ

that
α : (βδ∧γδ)∧(

V
ζ∈D γζ)

γ∧(βδ∧γδ)∧(
V

ζ∈D γζ)
∈ GDi (as in Theorem A.1) iff δ ∈ GDj

i

(as in Theorem B.7). Hence, γ ∧ (βδ ∧ γδ) ∧ (
∧
ζ∈D γ

ζ) ∈ {Conseq(δ) | δ ∈ GDi} iff γ ∈
{Conseq(δ) | δ ∈ GDj

i} and β ∈ {Justif (δ) | δ ∈ GDj
i}.

Given the induction hypothesis, this implies that Ei+1 = Fi+1 ∩ L and Ji+1 = {β | β =

Justif ◦(δ) and δ ∈ GDi} and Fi+1 = Th
(
Ei+1 ∪

⋃
ζ∈D E

ζ
i+1 ∪

⋃
η∈Ji+1

{ηδ(η)}
)

.

Proof 4.4

1. Let (E, J) be a justified extension of (D,W ). According to Theorem B.7, we then have
that (E, J) = (

⋃∞
i=0Ei,

⋃∞
i=0 Ji), where Ei and Ji are defined as in Theorem B.7. De-

fine F = Th
(
E ∪

⋃
ζ∈D E

ζ ∪
⋃
β∈J{βδ(β)}

)
and Fi as Ei in Theorem A.1 but relative to

Tj((D,W )) and F .

F = Th
(
E ∪

⋃
ζ∈D E

ζ ∪
⋃
β∈J{βδ(β)}

)
= Th

(⋃∞
i=0Ei ∪

⋃
ζ∈D

⋃∞
i=0E

ζ
i ∪
⋃
β∈

S∞
i=0 Ji

{βδ(β)}
)

= Th
(⋃∞

i=0Ei ∪
⋃∞
i=0

⋃
ζ∈D E

ζ
i ∪
⋃∞
i=0

⋃
β∈Ji

{βδ(β)}
)

= Th
(⋃∞

i=0(Ei ∪
⋃
ζ∈D E

ζ
i ∪
⋃
β∈Ji

{βδ(β)})
)

= Th(
⋃∞
i=0 Fi) (according to Theorem B.8)

=
⋃∞
i=0 Fi (since Fk ⊆ Fk+1 and Fk = Th(Fk) for k ≥ 0)

Hence F is an extension of Tj((D,W )).
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2. Let F be an extension of Tj((D,W )). According to Theorem A.1, we then have that
F =

⋃∞
i=0 Fi, where Fi is defined as Ei in Theorem A.1 but relative to Tj((D,W )) and F .

Define E = F ∩L and J = {β | β = Justif ◦(δ) and δ ∈ GD(Tj((D,W )), F )} and Ei and
Ji as in Theorem B.7.

E = F ∩ L J = {β | β = Justif ◦(δ), δ ∈ GD(Tj((D,W )), F )}
= (

⋃∞
i=0 Fi) ∩ L = {β | β = Justif ◦(δ), δ ∈

⋃∞
i=0GDi}

=
⋃∞
i=0(Fi ∩ L) =

⋃∞
i=0{β | β = Justif ◦(δ), δ ∈ GDi}

=
⋃∞
i=0Ei =

⋃∞
i=1 Ji (according to Theorem B.8)

=
⋃∞
i=0 Ji

Hence (E, J) = (
⋃∞
i=0Ei,

⋃∞
i=0 Ji), that is, (E, J) is a justified extension of (D,W ).

B.4 Correspondence with (Standard) Default Logic
Given the proximity of Definition 4.4 to Definition 4.3, the proof of Theorem 4.5 is basically the
same as that given in Section B.3. We thus concentrate below on the part specific to the encoding
of Reiter’s and rational default logic:

First of all, observe that for default theories of the form Td((D,W )), we have Ei = Ci in
Theorem B.4.

Theorem B.10 Let (D,W ) be a default theory over L.
Let E be a deductively closed set of formulas over L and let F be a set of formulas over

L ∪
⋃
ζ∈D Lζ such that F = Th

(
E ∪

⋃
ζ∈D E

ζ ∪
⋃
δ∈GD((D,W ),E){Justif (δ)δ}

)
and E = F ∩ L.

For i ≥ 0, define Ei as in Theorem A.1 relative to (D,W ) and E.
For i ≥ 0, define Fi as Ei(= Ci) in Theorem B.4 relative to Td((D,W )) and F .
Then, we have for i ≥ 0 that Fi = Th

(
Ei ∪

⋃
ζ∈D E

ζ
i ∪
⋃
δ∈GDi−1

{Justif (δ)δ}
)

and Ei =

Fi ∩ L, where GDi is defined as in Theorem A.1.

Proof B.10 We prove our claim by induction.

Base. Identical to the Base step in Proof B.8.

Step. The induction step is analogous to the one in Proof B.8, except that it relies on the
following following lemma.

Lemma B.11 Given the induction hypothesis, we have for δ = α :β
γ

that

α :βδ

γ∧(βδ∧γδ)∧(
V

ζ∈D γζ)
∈
{

α :βλ

γ∧(βλ∧γλ)∧(
V

ζ∈D γζ)

∣∣∣λ = α :β
γ
∈ D,α ∈ Fi,¬βλ 6∈ F

}
iff δ ∈

{
α :β
γ
∈ D

∣∣∣α ∈ Ei,¬β 6∈ E}
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Proof B.11 Given that α ∈ L, we have α ∈ Fi iff α ∈ Ei because Ei = Fi ∩ L.
It remains to be shown that ¬βδ 6∈ F iff ¬β 6∈ E. The latter is equivalent to ¬βδ 6∈ Eδ. We

distinguish the following two cases.

1. δ 6∈ GD((D,W ), E). Then, by definition of F , ¬βδ 6∈ Eδ is equivalent to ¬βδ 6∈ F ∩ Lδ.

2. δ ∈ GD((D,W ), E).

Given that Eδ is deductively closed (by virtue of E being deductively closed), ¬βδ 6∈ Eδ

is equivalent to ¬βδ 6∈ Th
(
Eδ ∪ {βδ}

)
. By definition of F , this is equivalent to ¬βδ 6∈

F ∩ Lδ.

This case analysis shows that ¬β 6∈ E holds iff ¬βδ 6∈ F ∩ Lδ. By definition of F , this is
equivalent to ¬βδ 6∈ F .

B.5 Correspondence with Cumulative Default Logic
We have the following alternative characterisation of a cumulative default logic extension.

Theorem B.12 ([Brewka,1991]) Let (D,W) be an assertional default theory and let E be a set
of assertions.

Define E0 = W and for i ≥ 0

GDa
i =

{
α :β
γ
∈ D | 〈α, Supp(α)〉 ∈ Ei,Form(E) ∪ Supp(E) ∪ {β} ∪ {γ} 6` ⊥

}
Ei+1 = T̂h(Ei) ∪ { CumConseq(δ) | δ ∈ GDa

i }
= T̂h(Ei) ∪ { 〈γ, Supp(α) ∪ {β} ∪ {γ}〉 | δ = α :β

γ
∈ D, δ ∈ GDa

i }.

Then E is an assertional extension of (D,W) iff E =
⋃∞
i=0 Ei.

We define the closure operator restricted to reified assertions as follows:

Definition B.1 Let R be a set of reified assertions.
Define Thre(R) = {β | R ∪ Axre ` β and β ∈ Lre.}

Proof 5.1 {α1, α2} ` γ by assumption, so ` α1 ⊃ (α2 ⊃ γ), and thus 〈α1 ⊃ (α2 ⊃ γ), ∅〉re ∈
Axre by Definition 5.1.1.

As well, since 〈α1, β1〉re ∈ R we have 〈α1, β1〉re ∧ 〈α1 ⊃ (α2 ⊃ γ), ∅〉re ⊃ 〈α2 ⊃ γ, β1〉re ∈
Axre by Definition 5.1.3. Thus R ∪ Axre ` 〈α2 ⊃ γ, β1〉re by modus ponens.

Since 〈α2, β2〉re ∈ R by assumption, and 〈α2, β2〉re∧〈α2 ⊃ γ, β1〉re ⊃ 〈γ, β1 ∧ β2〉re ∈ Axre,
we obtain R ∪ Axre ` 〈γ, β1 ∧ β2〉re by modus ponens.

Lemma B.13 Let R be a set of assertions. Then
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1. Re
(
T̂h(R)

)
= Thre(Re (R))

2. Re+
(
T̂h(R)

)
= Th

(
Re+(R)

)
3. R = Re−1(Re (R)) .

Proof B.13 Immediate from Definition 2.6 and Theorem 5.1.

Lemma B.14 Let R be a set of reified assertions.
Then Re−1(Thre(R)) = T̂h

(
Re−1(R)

)
.

Proof B.14 Immediate from Definition 2.6 and Theorem 5.1.

Lemma B.15 Let E be an extension of Ta((D,W)). Then

E ` α iff Supp
(
Re−1(E)

)
∪ Form

(
Re−1(E)

)
` α

where α mentions no reified formula.

Proof B.15

1. Assume that E ` α.

Then from the compactness of classical logic, there are φi, 1 ≤ i ≤ n for some n, such that
{φ1, . . . , φn} ⊆ E and {φ1, . . . , φn} ` α As well, every φi mentions no reified formula.
Moreover, without loss of generality, we can assume that every such φi is either a member
of Wa or is the consequent of a generating default from Da.

But by the specification of Wa and Da, we have that for every such φi there is a reified
formula 〈ψ1, ψ2〉re such that ψ1 ` φi or ψ2 ` φi.
Thus by classical monotonicity we obtain that Supp

(
Re−1(E)

)
∪ Form

(
Re−1(E)

)
` α.

2. Conversely, assume that Supp
(
Re−1(E)

)
∪ Form

(
Re−1(E)

)
` α

We show that

Supp
(
Re−1(E)

)
∪ Form

(
Re−1(E)

)
⊆ E, (5)

from which our result follows from the monotonicity of classical logic.

Equation (5) follows if we can show that, if E ` 〈φ1, φ2〉re then E ` φ1 and E ` φ2.

So assume that E ` 〈φ1, φ2〉re ; then there is a minimum i, according to Theorem A.2, such
that 〈φ1, φ2〉re ∈ Ei.

Base. If i = 0 then 〈φ1, φ2〉re ∈ Wa.

This implies that 〈φ1, φ2〉 ∈ W . Hence φ1, φ2 ∈ Form(W)∪Supp(W), and so Form(W)∪
Supp(W) ` φ1 ∧ φ2, from which we obtain Wa ` φ1 ∧ φ2, and so Wa ` φ1 and Wa ` φ2.
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Step. For the induction hypothesis, assume that the result holds for i = k.

For i = k + 1 we have by assumption that 〈φ1, φ2〉re ∈ Ek+1.

Using Theorem A.2, there are two cases to consider.

(a) 〈φ1, φ2〉re ∈ Th(Ek).
Thus Ek ` 〈φ1, φ2〉re , and by the induction hypothesis we have that Ek ` φ1 and
Ek ` φ2.

(b) In accordance with Definition 5.4, there is a default rule δ with consequent 〈γ, ψ ∧ β ∧ γ〉re∧
β ∧ γ applied at step k + 1, and where 〈φ1, φ2〉re = 〈γ, ψ ∧ β ∧ γ〉re .
Trivially, since φ1 = γ we have φ1 ∈ Ek+1. As well, we have β ∈ Ek+1.
Last, from the applicability conditions for δ, we obtain that Ek ` 〈α, ψ〉re . By the
induction hypothesis we get that Ek ` ψ, from which, together with the preceding
we obtain that Ek+1 ` ψ ∧ β ∧ γ, that is Ek+1 ` φ2. This completes the induction
and the proof of the lemma.

Proof 5.2

1. Let E be an assertional extension of default theory (D,W). If E is inconsistent then
Form(E)∪Supp(E) ` ⊥. Hence, from [Brewka,1991, Lemma 2.7], we have Form(W)∪
Supp(W) ` ⊥. Since Form(W) ∪ Supp(W) ⊆ Wa, we have Wa ` ⊥, from which we
obtain that (Da,Wa) has a single (inconsistent) extension.

So let E be a consistent assertional extension of default theory (D,W). We show that
Re+(E) and Re+(Ei), i ≥ 0, are equivalent to conditions satisfying an extension of
(Da,Wa) as given in Theorem A.2.

We use induction for the sets Ei, i ≥ 0.

Base:

Re+(E0) = Re (E0) ∪ Form(E0) ∪ Supp(E0)

= Re (W) ∪ Form(W) ∪ Supp(W)

= Wa.
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Step:

Re+(Ei+1) = Re (Ei+1) ∪ Form(Ei+1) ∪ Supp(Ei+1) by defn of Re+(·)

= Re
(
T̂h(Ei) ∪ { CumConseq(δ) | δ ∈ GDa

i }
)
∪

Form
(
T̂h(Ei) ∪ { CumConseq(δ) | δ ∈ GDa

i }
)
∪

Supp
(
T̂h(Ei) ∪ { CumConseq(δ) | δ ∈ GDa

i }
)

by Theorem B.12

=
[
Re
(
T̂h(Ei)

)
∪ Form

(
T̂h(Ei)

)
∪ Supp

(
T̂h(Ei)

)]
∪

[Re ({ CumConseq(δ) | δ ∈ GDa
i }) ∪

Form({ CumConseq(δ) | δ ∈ GDa
i }) ∪

Supp({ CumConseq(δ) | δ ∈ GDa
i })]

rearranging terms

= Re+
(
T̂h(Ei)

)
∪ Re+({ CumConseq(δ) | δ ∈ GDa

i })

= Thre
(
Re+(Ei)

)
∪ Re+({ CumConseq(δ) | δ ∈ GDa

i }) by Lemma B.13

Expanding the rightmost term above we get:

Re+({ CumConseq(δ) | δ ∈ GDa
i })

= Re+({ 〈γ, Supp(α) ∪ {β} ∪ {γ}〉 | α :β
γ
∈ D,

〈α, Supp(α)〉 ∈ Ei,Form(E) ∪ Supp(E) ∪ {β} ∪ {γ} 6` ⊥}).
= ({〈γ, Supp(α) ∧ β ∧ γ〉re , γ, Supp(α) ∧ β ∧ γ |

α :β
γ
∈ D, 〈α, Supp(α)〉 ∈ Ei,Form(E) ∪ Supp(E) ∪ {β} ∪ {γ} 6` ⊥})

We thus have:

{〈γ, Supp(α) ∧ β ∧ γ〉re , γ, Supp(α)∧β∧γ} ⊆ Re+({ CumConseq(δ) | δ ∈ GDa
i })

iff

(a) There exists α :β
γ
∈ D where

(b) 〈α, Supp(α)〉 ∈ Ei, and

(c) Form(E) ∪ Supp(E) ∪ {β} ∪ {γ} 6` ⊥.

Proceeding itemwise we have:

(a) α :β
γ
∈ D iff 〈α,Supp(α)〉re :β∧γ

〈γ,Supp(α)∧β∧γ〉re∧β∧γ ∈ Da from Definition 5.4.

(b) 〈α, Supp(α)〉 ∈ Ei iff 〈α, Supp(α)〉re ∈ Re+(Ei) by the induction hypothesis.
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(c) We obtain that

Form(E) ∪ Supp(E) ∪ {β} ∪ {γ} 6` ⊥ iff Re+(E) ∪ {β} ∪ {γ} 6` ⊥

as follows:

E ` ⊥ iff Form(E) ∪ Supp(E) ` ⊥ from [Brewka,1991].
E ` ⊥ iff Re (E) ` ⊥ from Lemma B.13.
Thus, Re (E) ` ⊥ iff Form(E) ∪ Supp(E) ` ⊥.
Clearly Re (E) ∪ Form(E) ∪ Supp(E) ` ⊥ iff Form(E) ∪ Supp(E) ` ⊥.
Thus Re+(E) ` ⊥ iff Form(E) ∪ Supp(E) ` ⊥,
and so Re+(E)∪{β}∪{γ} ` ⊥ iff Form(E)∪Supp(E)∪{β}∪{γ} ` ⊥
which was to be shown.

Substituting this in, and continuing with the proof of the inductive step, we have:

Re+(Ei+1) = Thre
(
Re+(Ei)

) ⋃
{〈γ, Supp(α) ∧ β ∧ γ〉re , γ, Supp(α) ∧ β ∧ γ |

〈α,Supp(α)〉re :β∧γ
〈γ,Supp(α)∧β∧γ〉re∧β∧γ ∈ Da,

〈α, Supp(α)〉re ∈ Re+(Ei) ,Re+(E) ∪ {β} ∪ {γ} 6` ⊥}
= Thre

(
Re+(Ei)

) ⋃
{〈γ, Supp(α) ∧ β ∧ γ〉re , β ∧ γ |

〈α,Supp(α)〉re :β∧γ
〈γ,Supp(α)∧β∧γ〉re∧β∧γ ∈ Da,

〈α, Supp(α)〉re ∈ Re+(Ei) ,Re+(E) ∪ {β} ∪ {γ} 6` ⊥}
since Supp(α) ∈ Th

(
Re+(Ei)

)
by the induction hypothesis

= Thre
(
Re+(Ei)

)
∪ { Conseq(δ) | δ ∈ GD(Ta((D,W)),Re+(E))}.

Finally,

∞⋃
i=0

Re+(Ei) =
∞⋃
i=0

(Re (Ei) ∪ Form(Ei) ∪ Supp(Ei)) by Definition 5.2

= Thre

(
∞⋃
i=0

(Re (Ei) ∪ Form(Ei) ∪ Supp(Ei))

)

= Thre

(
∞⋃
i=0

Re (Ei) ∪
∞⋃
i=0

Form(Ei) ∪
∞⋃
i=0

Supp(Ei)

)

= Thre

(
Re

(
∞⋃
i=0

Ei

)
∪ Form

(
∞⋃
i=0

Ei

)
∪ Supp

(
∞⋃
i=0

Ei

))
= Thre(Re (E) ∪ Form(E) ∪ Supp(E))

= Thre
(
Re+(E)

)
≡ Re+(E) .
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So Re+(E), Re+(Ei), 0 ≤ i satisfies the conditions of an extension, given in Theorem A.2.

2. Define E = Re−1(E) and Ei = Re−1(Ei) for every i ≥ 0. We need to show that E and Ei,
i ≥ 0, so defined satisfy the conditions for an assertional extension given in Theorem B.12.

If E ` ⊥ then Re−1(E) = E = A, and E is the sole (inconsistent) assertional extension of
(D,W). Consequently, assume that E is consistent.

We use induction for the sets Ei, i ≥ 0.

Base:

E0 = Re−1(E0) = Re−1(Wa) = Re−1(Re (W)) ≡ W.

(The final step follows from Lemma B.13.)

Step:

Ei+1 = Re−1(Ei+1) by the definition of Ei+1

= Re−1
(
Th(Ei)

⋃
{〈γ, ψ ∧ β ∧ γ〉re ∧ β ∧ γ |

〈α,ψ〉re :β∧γ
〈γ,ψ∧β∧γ〉re∧β∧γ ∈ Da, 〈α, ψ〉re ∈ Ei, E ∪ {β ∧ γ} 6` ⊥

})
by Theorem A.2.

Let RS be the expression following the main ∪ in the preceding. So:

Ei+1 = Re−1
(
Thre(Ei)

⋃
RS
)

= Re−1(Thre(Ei))
⋃

Re−1(RS)

= T̂h
(
Re−1(Ei)

) ⋃
Re−1(RS) by Lemma B.14

= T̂h(Ei)
⋃

Re−1(RS) by the induction hypothesis

Further:

Re−1(RS) = Re−1 ({〈γ, ψ ∧ β ∧ γ〉re ∧ β ∧ γ |
〈α,ψ〉re :β∧γ

〈γ,ψ∧β∧γ〉re∧β∧γ ∈ Da, 〈α, ψ〉re ∈ Ei, E ∪ {β ∧ γ} 6` ⊥
})

= Re−1 ({〈γ, ψ ∧ β ∧ γ〉re ∧ β ∧ γ |
α :β
γ
∈ D, 〈α, ψ〉re ∈ Ei, E ∪ {β ∧ γ} 6` ⊥

})
We have that Re−1({〈γ, ψ ∧ β ∧ γ〉re ∧ β ∧ γ}) = {〈γ, ψ ∧ β ∧ γ〉}.
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As well, by the induction hypothesis we have that 〈α, ψ〉re ∈ Ei iff 〈α, ψ〉 ∈ Ei.
Substituting in the preceding, we continue:

Re−1(RS) =
{
〈γ, ψ ∧ β ∧ γ〉 | α :β

γ
∈ D, 〈α, ψ〉 ∈ Ei, E ∪ {β ∧ γ} 6` ⊥

}
=

{
〈γ, ψ ∧ β ∧ γ〉

∣∣∣ α :β
γ
∈ D, 〈α, ψ〉 ∈ Ei,

Supp
(
Re−1(E)

)
∪ Form

(
Re−1(E)

)
∪ {β ∧ γ} 6` ⊥

}
by Lemma B.15

=
{
〈γ, ψ ∧ β ∧ γ〉 | α :β

γ
∈ D, 〈α, ψ〉 ∈ Ei, Supp(E) ∪ Form(E) ∪ {β ∧ γ} 6` ⊥

}
Thus

Ei+1 = T̂h(Ei)
⋃

{
〈γ, ψ ∧ β ∧ γ〉 | α :β

γ
∈ D, 〈α, ψ〉 ∈ Ei, Supp(E) ∪ Form(E) ∪ {β ∧ γ} 6` ⊥

}
= T̂h(Ei) ∪

{
〈γ, Supp(α) ∧ β ∧ γ〉

∣∣∣ α :β
γ
∈ GDa

i

}
This completes the induction.

Lastly,

E = Re−1(E) = Re−1

(
∞⋃
i=0

Ei

)
=

∞⋃
i=0

Re−1(Ei) =
∞⋃
i=0

Ei.

Thus E satisfies the conditions of an assertional extension as given in Theorem B.12.
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