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Abstract

We consider the problem of representing arbitrary preferences in causal reasoning and
planning systems. In planning, a preference may be seen as a goal or constraint that is de-
sirable, but not necessary, to satisfy. To begin, we define a very general query language for
histories, or interleaved sequences of world states and actions. Based on this, we specify a
second language in which preferences are defined. A single preference defines a binary re-
lation on histories, indicating that one history is preferred to the other. ¿From this, one can
define global preference orderings on the set of histories, the maximal elements of which are
the preferred histories. The approach is very general and flexible; thus it constitutes a “base”
language in terms of which higher-level preferences may be defined. To this end, we investi-
gate two fundamental types of preferences that we call choice and temporal preferences. We
consider concrete strategies for these types of preferences and encode them in terms of our
framework. We suggest how to express aggregates in the approach, allowing, for example, the
expression of a preference for histories with lowest total action costs. Last, our approach can
be used to express other approaches, and so serves as a common framework in which such
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approaches can be expressed and compared. We illustrate this by indicating how an approach
due to Son and Pontelli can be encoded in our approach, as well as the language PDDL3.

1 Introduction
Planning, as traditionally formulated, involves attaining a particular goal, given an initial state of
the world and a description of actions. A plan succeeds just when it is executable and attains the
goal; otherwise it fails. However, in realistic situations, things are not quite so simple. Thus,
there may be requirements specifying that a plan should be as short as possible or that total cost,
where costs are associated with actions, be minimised. Besides such indicators of plan quality,
there may be domain specific conditions that are desirable yet not necessary to attain. Consider for
example an extension of the well-known monkey-and-bananas problem. In addition to the usual
information where the monkey can push a box and climb on the box to grasp some bananas, assume
that the monkey has a range of choices for food. Perhaps the monkey prefers to have an appetizer
before the main course, although this preference need not be satisfied in attaining the overall goal
of eating a full meal. Perhaps too the monkey prefers soup to grubs as an appetizer, although either
will serve as an appetizer. If the monkey has soup, then it prefers to have a spoon before it has
the soup; and if it does not have a spoon before having soup then it prefers to have a spoon as
soon as possible after getting the soup. Clearly, such preferences can be arbitrarily complex, and
range over temporal constraints as well as relations among fluents and actions. In this setting, the
goal of a planning problem now shifts to determining a preferred plan, in which a maximal set of
preferences is satisfied along with the goal. Such preferences also make sense outside of planning
domains, and in fact apply to arbitrary sequences of temporal events. Hence it is perfectly rational
to prefer that it rains during the next several work days (since the plants need the water) but that it
be sunny for the weekend. While one has no influence over the weather, it is perfectly sensible to
prefer one outcome over another.

In this paper, we consider the problem of using general preferences over (fluent and action)
formulas to determine preferences among temporal histories, or plans. While we focus on histo-
ries as they are used in action description languages [18], our approach is readily applicable to
any planning formalism. We begin by specifying a general query language, QΣ,n, for histories of a
given maximum length n built from a signature Σ, in which one can determine whether an arbitrary
expression is true in a given history. Given this language, we subsequently define a preference-
specification language, PΣ,n, over QΣ,n that enables the definition of preference relations between
histories. Specifically, a preference between two histories Hh and Hl is expressed in terms of a
formula φ of PΣ,n such that Hh is not less preferred than Hl under φ, written Hl �φ Hh, just
if 〈Hl, Hh〉 |=PΣ,n

φ, where the satisfaction relation of PΣ,n, |=PΣ,n
, is defined between pairs of

histories and formulas of PΣ,n. This gives us a means of expressing arbitrary preferences between
histories. Given such (binary) preferences, one can determine the most preferred history by ap-
pealing to extant work on preferences in general (like, e.g., the approach proposed by Brewka [6]).

The resulting languages are highly expressive. Indeed, the problem of satisfiability of a query
in either language is PSPACE-complete, while the corresponding model-checking problem is poly-
nomial. Arguably, the languages are adequate for expressing qualitative preferences in temporal,
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causal, and planning frameworks. As well, the approach provides a very general language in which
other “higher-level” constructs can be encoded, and in which other approaches can be expressed,
and so compared. To illustrate this capability, we identify two basic, but widely applicable types
of preferences, called choice and temporal preferences. In the former case some condition (fluent,
action) is preferred over another (for example, having soup to grubs as an appetizer); in the latter
case some condition is preferred to take place before another (for example, having an appetizer
before a main meal). Given the fundamental importance of these types of preferences, we provide
an extended development of how preferred histories can be determined with respect to a set of
choice preferences or a set of temporal preferences. We also briefly discuss how aggregates can be
defined in our query language. This allows, for example, the specification of the total value of a
fluent, such as one corresponding to action costs. ¿From this, using our preference language, we
can express, for example, that a history with lowest total action costs is preferred. Last, we claim
that one can encode other approaches in our framework. We illustrate this with an encoding of the
planning approach by Son and Pontelli [32], as well as a portion of the planning domain definition
language PDDL3. Hence, our approach provides a means for both expressing arbitrary preferences
and for comparing different approaches.

The next section informally describes basic kinds of preferences in planning, while Section 3
covers related work. Subsequently, Section 4 introduces our preference framework, in which pref-
erences induce a binary (relative) preference relation on histories, followed by a discussion of
determining a maximally-preferred history. Section 5 deals with modelling choice and temporal
preferences. Section 6 continues with extending our language with aggregate features, and Sec-
tion 7 discusses how other approaches can be captured within our framework. Section 8 concludes
with a brief discussion. This paper subsumes and extends preliminary work reported previously
in [7, 8].

2 Preferences in Planning
As mentioned, preferences are a general phenomenon, and are pervasive in realistic domains. Very
generally and informally, a preference may in some sense be absolute (for example, that one likes
sushi) or relative (for example, that one prefers sushi to tempura). In either case, a preference
may be regarded as providing a criterion for distinguishing states of affairs. In the first case, states
of affairs (or possible worlds) in which one has sushi are preferred to those where this does not
obtain; in the second case, states of affairs in which one has sushi are preferred to those where one
has tempura (with other worlds being incomparable). Given a set of preferences, the goal usually
is to determine the most preferred world (or, the state of affairs in which the greatest number
of preferences are satisfied).1 In so doing, one typically relies on determining transitive closure,
both with respect to the original set of preferences and with respect to the ordering on possible
worlds. However, transitive closure is not expressible in first-order logic. Hence, determining
which preferences are applicable in a given situation is typically addressed via meta-level means.

1To be sure, this is a simplistic characterisation. However, it serves to set the stage for our approach. For a full
introduction to preferences, the reader may consult one of the cited works in Section 3.
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Before reviewing relevant background material and introducing our approach, we briefly con-
sider characteristics of preferences with respect to a set of histories, where a history is a sequence
of alternating possible worlds and actions. To this end, we suggest two dimensions whereby pref-
erences may be classified. The first of these, whether preferences are on actions or fluents, we
argue is in fact not a meaningful distinction. The second, choice vs. temporal preferences, though,
we argue does indeed isolate two useful preference types for reasoning in temporal domains.

Fluent vs. Action Preference. Informally, a preference can be expressed between fluents or be-
tween actions. In the first case, one might prefer to have white wine to red; in the latter,
one might prefer to travel via transit to driving. This distinction is by no means clear-cut
however, and a natural-language assertion representing a preference can often be interpreted
as being either between actions or between fluents. For example, preferring to have white
wine to red seems to be a preference between fluents, whereas preferring to drink white wine
over red seems to be a preference on actions. As well, preferences on actions can easily be
specified as preferences on fluents: for each action, simply introduce a new fluent, with the
same arguments as the action, indicating that the action has been carried out. Thus, for action
drop(x, y, t) indicating that agent x drops object y leading to time point t, one can introduce
a new fluent was dropped(x, y), that becomes true if and only if the drop action was exe-
cuted on the same arguments. Hence, one can restrict preferences to being on fluents only
with no loss of generality.

Choice vs. Temporal Preference. For choice preference, one has preferences concerning how a
subgoal is to be attained. For example, a dinner subgoal may be preferentially satisfied
by having Japanese food over Chinese food. For temporal preference, one has preferences
concerning the order in which subgoals are to be achieved. Thus, the subgoal of having had
dinner may preferentially be satisfied before that of movie. Similarly, choice and temporal
preferences involving actions are easily constructed.

As in the preceding distinction between fluent and action preferences, temporal preferences
can also be reduced to choice preferences by introducing suitable fluents associated with spe-
cific time points. For instance, the preference of having dinner before going to the movies
may be represented by using new fluents dinner i and movie i , stating that dinner and
movie happens at time point i, respectively, and asserting that dinner i is preferred over
movie j for i < j. However, such a rewriting schema yields in general a significant increase
in the states of world, which is not desirable for planning. Hence, although strictly speaking
temporal preferences can be reduced to choice preferences, nonetheless keeping the distinc-
tion between choice and temporal preferences is useful from a representational point of view.
Thus, in Section 5, we classify basic preferences as to whether they are a choice preference
or a temporal preference between formulas. These are specified via two partial preorders,
≤c and ≤t, respectively.

There are two other factors concerning preferences that we briefly mention. First, it might seem
that there is a distinction between whether a preference is relative to others or absolute. Thus, in
the first case, one might prefer red wine to white, while in the second, one simply has a preference
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for red wine. One can employ choice preferences to express this latter type of preference, though:
that α is (simply) desirable can be expressed by ¬α ≤c α. Consequently, we do not consider
absolute preferences to be an independent classification.

Second, we can easily express conditional preferences, or preferences applicable in a given
context (for example, in travelling, if the distance is great, transit is preferred over driving). The
choice preference that α is preferred to β in the context γ is given by γ ∧ β <c γ ∧ α.

3 Background
Reasoning with preferences is an active area that is receiving increasing attention in AI. The liter-
ature is extensive; we mention only Oztürk et al. [29] as an introduction to preference modelling
in general, and a recent special issue of Computational Intelligence [24] for a selection of papers
addressing preferences in AI and constraint solving.

There has been some work in expressing procedural control knowledge in planning. For ex-
ample, Bacchus and Kabanza [2] show how the performance of a forward-chaining planner can
be improved by incorporating domain-specific control knowledge; cf. also Doherty and Kvarn-
strom [10] and Nau et al. [28]. Son et al. [31] address domain and procedural control knowledge,
as well as ordering constraints, in an action language expressed via an extended logic program.
Since these are “hard” constraints, requiring (rather than suggesting) that, e.g., some action pre-
cedes another, the goal of such work differs from ours.

Our interests lie with preferences in planning and, more generally, temporal formalisms. Well-
man and Doyle [33] suggest that the notion of goal is a relatively crude measure for planners to
achieve, and instead that a relative preference over possible plan outcomes constitutes (or should
constitute) a fundamental objective for planning. They show how to define goals in terms of pref-
erences and, conversely, how to define (incompletely) preferences in terms of sets of goals.

Myers and Lee [27] assume that there is a set of desiderata, such as affordability or time,
whereby successful plans can be ranked. A small number of plans is generated, where the intent is
to generate divergent plans. The best plan is then chosen, based on a notion of Euclidean distance
between these select attributes. In related work, Haddawy and Hanks [22] use a utility function to
guide a planner.

Eiter et al. [11] describe planning in an answer-set programming framework where action costs
are taken into account. The approach allows the specification of desiderata such as computing the
shortest plan, or the cheapest plan, or some combination of these criteria. This is achieved by
employing weak constraints, which filter answer sets, and thus of plans, based on quantitative
criteria.

One approach to preferences in planning has been developed by Son and Pontelli [32], where a
language for specifying preferences between histories is presented. This language is an extension
of action language B [18] and is subsequently compiled into logic programs under the answer-set
semantics [17]. The notion of preference explored is based on so-called desires (what we call
absolute preferences), expressed via formulas built by means of propositional as well as temporal
connectives such as always, until, etc. ¿From desires, preferences among histories are induced as
follows: Given a desire φ, a history H is preferred to H ′ if H |= φ but H ′ 6|= φ. We discuss this
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language in more detail in Section 7.1.
Similarly, Bienvenu, Fritz, and McIlraith [3] address planning with preferences in the situa-

tion calculus. Preferences are founded on the notion of basic desire formulas, whose members are
somewhat analogous to formulas in our languageQΣ,n. These formulas in turn are used in the com-
position of atomic preference formulas (essentially chains of preferences) and general preference
formulas. As the authors note, this approach extends and modifies that of Son and Pontelli [32]
although expressed in terms of the situation calculus rather than an action language. Based on a
concrete means of explicitly combining preferences, a best-first planner, PPLAN, is given. As well,
Fritz and McIlraith [14] employ a subset of this language in an approach to compile preferences
into DT-Golog.

Brafman and Chernyavsky [5] propose a constraint-based approach to planning with goal pref-
erences. This approach is restricted to preferences on the final state of a history. These prefer-
ences are expressed by means of so-called TCP-nets, which makes them easily integratable into
CSP-based planning approaches. Feldmann, Brewka, and Wenzel [12] also address planning with
prioritized goals, using ranked knowledge bases to express qualitative preferences among goals.
The accompanying algorithm attempts to determine a sequence of improved plans which converges
toward an optimal plan, by repeated calls to an (arbitrary) underlying classical planner.

We note that strong and soft constraints on plan trajectories and problem goals have recently
been included into the Planning Domain Definition Language (PDDL) [19]. We discuss this lan-
guage in more detail in Section 7.2.

Last, the goal of our research is an approach for addressing preferences in temporal and plan-
ning settings. A prerequisite to the success of this endeavour is the development of languages for
combining preference relations; for work in AI to this end, see, for example, Boutilier et al. [4]
and Brewka [6].

4 Expressing Preferences on Histories

4.1 The Approach
Our central notion is that of a preference frame, consisting of a pair 〈H ,P 〉, where

• H is a set of histories and

• P is a set of preferences on histories.

A history is a sequence of states and named transitions between states, for example representing a
plan that accomplishes a given goal, or, more generally, some evolution of the world. A preference
specifies a criterion for distinguishing between histories. We use the syntax that a history H ∈
H is a sequence (s0, a1, s1, a2, s2, . . . , sn−1, an, sn), where s0 is the initial state of H , and the
subsequence si, ai+1, si+1 indicates that action ai+1 takes the world from state si to si+1. This
notation is for convenience only; we could as well have based our approach on, for example,
situations [25] or any other notation that carries the same information. H can be equated with a
complete description of a planning problem, with members of H corresponding to complete plans.
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We define a preference between two histories directly in terms of a formula φ and a satisfaction
relation |=. That is, we define that Hh is not less preferred than Hl under φ, written Hl �φ Hh,
just if 〈Hl, Hh〉 |= φ. In other words, the formula φ expresses a preference condition between two
histories, and Hl �φ Hh holds if φ is true by evaluating it with respect to Hl and Hh. The formulas
used for expressing preferences are composed of

• Boolean combinations of fluents and actions indexed by time points in a history, and with
respect to a history, and

• quantifications over time points.

Indexing with respect to time points and histories is achieved via labelled atoms of form ` : b(i).
Here, ` is a label, either l or h, referring to a history which is considered to be lower or higher
ranked, respectively, b is an action or fluent name, and i is a time point. The relation 〈Hl, Hh〉 |=
l : b(i) is true if b holds at time point i in history Hl; and analogously for 〈Hl, Hh〉 |= h : b(i).
This is extended to labelled formulas in the expected fashion.2 For example, we can express that
history Hh is preferred to history Hl if fluent f is true at some point in Hh but never true in Hl by
the formula

φ = (h : ∃i f(i)) ∧ (l : ∀i¬f(i)) , (1)

providing 〈Hl, Hh〉 |= φ holds.
The binary relation �φ induced by a formula φ ∈ P has no particular properties (such as tran-

sitivity) of course, since any such property will depend on the formula φ. Depending on the type of
preference encoded in P , one would supply a strategy from which a maximally preferred history
is selected. Thus, for preferences only of the form (1), indicating which fluents are desirable, the
maximally preferred histories might be the ones which were ranked as “preferred” by the greatest
number of preferences in P .

4.2 Histories and Queries on Histories
In specifying histories, we begin with notation adapted from Gelfond and Lifschitz [18] in their
discussion of transition systems.

Definition 1 An action signature, Σ, is a triple 〈V, F,A〉, where V is a set of value names, F is a
set of fluent names, and A is a set of action names.

If V = {1, 0}, then Σ is called propositional. If V , F , and A are finite, then Σ is called finite.

Definition 2 Let Σ = 〈V, F,A〉 be an action signature.
A history, H , over Σ is a sequence

(s0, a1, s1, a2, s2, . . . , sn−1, an, sn),

where
2We remark that labels, as employed here, serve a similar purpose as labels used in tableau systems [13] or in

labelled deduction [15].
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• n ≥ 0,

• each si, 0 ≤ i ≤ n, is a mapping assigning each fluent f ∈ F a value v ∈ V , and

• a1, . . . , an ∈ A.

The functions s0, . . . , sn are called states, and n is the length of history H , symbolically |H|.

The states of a history may be thought of as possible worlds, and the actions take one possible
world into another. For a propositional action signature Σ = 〈V, F,A〉, fluent f ∈ F is said to be
true at state s iff s(f) = 1, otherwise f is false at s.

In order to express complex conditions that refer to properties of fluents and actions within a
history, we first define a query language on histories of maximum length n over an action signature
Σ, named QΣ,n. In the next subsection, we extend this language to deal with formulas that refer to
more than one history.

Definition 3 Let Σ = 〈V, F,A〉 be an action signature and n ≥ 0 a natural number.
We define the query language QΣ,n as follows:

1. The alphabet of QΣ,n consists of

(a) a set V of time-stamp variables, or simply variables,

(b) the set {0, . . . , n} of natural numbers,

(c) the arithmetic function symbols ‘+’ and ‘·’,
(d) the arithmetic relation symbol ‘<’,

(e) the equality symbol ‘=’,

(f) the set A ∪ F of action and fluent names,

(g) the sentential connectives ‘¬’ and ‘⊃’,

(h) the quantifier symbol ‘∃’, and

(i) the parentheses ‘(’ and ‘)’.

2. A time term is an arithmetic term recursively built from variables and numbers in V ∪
{0, . . . , n}, employing + and · (as well as parentheses) in the usual manner.

A time atom is an arithmetic expression of form (t1 < t2) or (t1 = t2), where t1, t2 are time
terms.

We use TT n to refer to the set of time terms.

3. A fluent atom is an expression of form (f(t) = v), where f ∈ F , t ∈ TT n, and v ∈ V .

An action atom is an expression of form a(t), where a ∈ A and t ∈ TT n.

The set of atoms is made up of the set of time atoms, fluent atoms, and action atoms. An
atom containing no variables is ground.
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4. A literal is an atom, or an atom preceded by the sign ¬.

5. A formula is a Boolean combination of atoms, along with quantifier expressions of form ∃i,
for i ∈ V , formed in the usual recursive fashion.

A formula containing no free (time-stamp) variables is closed.

6. A query is a closed formula.

Besides the primitive symbols of QΣ,n, we define the operators ∧, ∨, and ≤, and the universal
quantifier ∀, in the usual way. We sometimes drop parentheses in formulas if no ambiguity arises,
and we may write quantified formulas like Qi1Qi2 α as Qi1, i2 α, for Q ∈ {∀,∃}. As usual, a
literal of form ¬(f(t) = v) may also be written as (f(t) 6= v). For formula α, variables i1, . . . , ik,
and numbers m1, . . . ,mk, by α[i1/m1, . . . , ik/mk] we denote the result of uniformly substitut-
ing ij by mj in α, for each j ∈ {1, . . . , k}. Thus, if i1, . . . , ik are the free variables in α, then
α[i1/m1, . . . , ik/mk] is a closed formula. For ground time term t, val(t) is the value of t according
to standard integer arithmetic.

Variables range over time points, and so quantification applies to time points only. Atoms con-
sist of action or fluent names indexed by a time point, or of a predicate on arithmetic (time point)
expressions. Atoms are used to compose formulas in the standard fashion, and queries consist of
closed formulas. This means that we remain within the realm of propositional logic, since quanti-
fied expressions ∀i and ∃i can be replaced by the conjunction or disjunction (respectively) of their
instances.

As an example, let red ∈ V , colour ∈ F , pickup ∈ A, and i, j ∈ V . Then,

pickup(4), colour(i+ j) = red , i < j + 2

are atoms. As well,

(colour(j) = red) ∧
(
∀k (k < j) ⊃ ¬(colour(k) = red)

)
is a formula, and

∃i, j
(
(i+ 2 < j) ∧ pickup(i) ∧ ¬(colour(j) = red)

)
is a closed formula and so a query. This last formula is true in a history in which pickup is true at
some time point and three or more time points later colour does not have value red .

The definition of truth of a query is as follows.

Definition 4 Let H = (s0, a1, s1, . . . , ak, sk) be a history over Σ of length k ≤ n, and let Q be a
query of QΣ,n.

We define H |=QΣ,n
Q recursively as follows:

1. If Q is a ground time atom, then H |=QΣ,n
Q iff Q is true according to the rules of integer

arithmetic.

2. If Q = (f(t) = v) is a ground fluent atom, then H |=QΣ,n
Q iff sm(f) = v, where m =

min(val(t), n).
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3. IfQ = a(t) is a ground action atom, thenH |=QΣ,n
Q iff a = am, wherem = min(val(t), n).

4. If Q = ¬α, then H |=QΣ,n
Q iff H 6|=QΣ,n

α.

5. If Q = (α ⊃ β), then H |=QΣ,n
Q iff H 6|=QΣ,n

α or H |=QΣ,n
β.

6. If Q = ∃i α, then H |=QΣ,n
Q iff, for some 0 ≤ m ≤ n, H |=QΣ,n

α[i/m].

If H |=QΣ,n
Q holds, then H satisfies Q. For simplicity, if QΣ,n is unambiguously fixed, we also

write |= instead of |=QΣ,n
.

The rationale for taking m = min(val(t), n) in Items 2 and 3 of Definition 4 is to take into
account that a time term may refer to a time point which lies beyond the interval determined by
the length n of a given history. Intuitively, if val(t) is greater than the length n of history H , then
a ground atomic query b(t), where b is either an action name or a fluent name, is satisfied by H if
it is satisfied at the last state of H .

For propositional action signatures, it is convenient to define the following abbreviations. To
begin with, fluent atoms of form f(t) = 1 may be written simply as f(t). Hence, since for any
history H we have that H |= (f(t) = 0) iff H |= ¬(f(t) = 1), we may write an atom of form
f(t) = 0 as a literal ¬f(t). Furthermore, the following operators, which basically correspond to
similar well-known operators from linear temporal logic (LTL), can be defined:

• �b = ∀i b(i);

• ♦b = ∃i b(i); and

• (bU g) = ∃i
(
g(i) ∧ ∀j((j < i) ⊃ b(j))

)
.

Here, b and g are fluent or action names. Informally, �b expresses that b always holds, ♦b that
b holds eventually, and bU g that b holds continually until g holds. Other temporal operators are
likewise expressible.

We have the following results concerning complexity in QΣ,n.

Theorem 1 Let Σ be an action signature and n ≥ 1 a natural number.

1. Deciding whether H |=QΣ,n
Q holds, given a history H = (s0, a1, s1, . . . , an, sn) over Σ

of length n and a query Q = (Q1i1)(Q2i2) . . . (Qmim)C of QΣ,n, where Qj ∈ {∀,∃},
1 ≤ j ≤ m, and C is a formula containing no quantifiers, can be determined in O(|C|m)
time.

2. Deciding whether there is a history H over Σ of length n such that H |=QΣ,n
Q holds, given

a query Q of QΣ,n, is PSPACE-complete.

The proof of the first part is straightforward, since for each quantifier expression (Qi)α, one
needs to test the n substitution instances of α conjunctively (for universal quantification) or dis-
junctively (for existential quantification). For the second part, for showing that the problem is at
least in PSPACE, the reduction is from satisfiability of quantified Boolean formulas to formulas
of QΣ,1; for showing that it is no worse than PSPACE, the reduction is from formulas of QΣ,n to
formulas of linear time temporal logic (LTL).
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4.3 Expressing Preferences between Histories
We define a preference between two histories, Hl and Hh, directly in terms of a formula φ and a
satisfaction relation |=:

Hl �φ Hh iff 〈Hl, Hh〉 |= φ . (2)

The intent is that φ expresses a condition in which Hh is at least as preferred as Hl. This requires
that we be able to talk about the truth values of fluents and actions in Hl and Hh. In the previous
subsection, we defined a query language on histories, QΣ,n, and a notion of truth in a history for
a query. Given these definitions, we are now in a position to introduce a definition of preference
between histories, as in (2). To do this, we introduce a preference-specification language PΣ,n

based on QΣ,n.

Definition 5 Let Σ = 〈V, F,A〉 be an action signature and n ≥ 0 a natural number.
We define the preference-specification language PΣ,n over QΣ,n as follows:

1. The alphabet of PΣ,n consists of the alphabet of the query language QΣ,n, together with the
symbols l and h, called history labels, or simply labels.

2. Atoms of PΣ,n are either time atoms of QΣ,n or expressions of form ` : p, where ` ∈ {l,h}
is a label and p is an action or fluent atom of QΣ,n.

Atoms of form ` : p are called labelled atoms, with ` being the label of ` : p. A labelled atom
` : p is ground iff p is ground.

3. Formulas ofPΣ,n are built from atoms in a similar fashion to formulas ofQΣ,n and are called
preference formulas.

4. A preference formula containing no free (time-stamp) variables is closed.

A preference axiom, or simply axiom, is a closed preference formula.

For a formula α of QΣ,n and a history label ` ∈ {l,h}, by ` : α we understand the formula
resulting from α by replacing each action and fluent atom p of α by the labelled atom ` : p.
Informally, a labelled atom ` : p expresses that p holds in a history associated with label `. The
idea is that histories associated with label h are at least as preferred as histories associated with
label l. This is made precise as follows.

Definition 6 Let Σ be an action signature and n ≥ 0. Furthermore, let φ be a preference axiom
of PΣ,n and let Hl, Hh histories over Σ with |Hi| ≤ n, for i = l, h.

We define 〈Hl, Hh〉 |=PΣ,n
φ recursively as follows:

1. If φ is a time atom, then 〈Hl, Hh〉 |=PΣ,n
φ iff φ is true according to the rules of integer

arithmetic.

2. If φ = ` : p is a ground labelled atom, for ` ∈ {l,h}, then 〈Hl, Hh〉 |=PΣ,n
φ iff

(a) Hl |=QΣ,n
p, for ` = l, and

11



(b) Hh |=QΣ,n
p, for ` = h.

3. If φ = ¬ψ, then 〈Hl, Hh〉 |=PΣ,n
φ iff 〈Hl, Hh〉 6|=PΣ,n

ψ.

4. If φ = ψ ⊃ δ, then 〈Hl, Hh〉 |=PΣ,n
φ iff 〈Hl, Hh〉 6|=PΣ,n

ψ or 〈Hl, Hh〉 |=PΣ,n
δ.

5. If φ = ∃i ψ, then 〈Hl, Hh〉 |=PΣ,n
φ iff, for some 0 ≤ m ≤ n, 〈Hl, Hh〉 |=PΣ,n

ψ[i/m].

If 〈Hl, Hh〉 |=PΣ,n
φ holds, then 〈Hl, Hh〉 is said to satisfy φ. If Σ and n are clear from the

context, we may simply write |= instead of |=PΣ,n
.

Definition 7 Let φ be a preference axiom of PΣ,n. For histories Hl, Hh over Σ of maximum length
n, we define

Hl �φ Hh iff 〈Hl, Hh〉 |=PΣ,n
φ.

The use of the symbol ‘�φ’ is purely suggestive at this point, since �φ may have none of the
properties of an ordering.

We give some illustrations next.

Example 1 The formula

φ =
(
h : (∃if1(i) ∧ ∀i¬f2(i))

)
∧

(
l : (∃if2(i) ∧ ∀i¬f1(i))

)
expresses a preference of f1 over f2 in the sense that, for all histories Hl, Hh, we prefer Hh over
Hl whenever it holds that Hh satisfies f1 but not f2, while Hl satisfies f2 but not f1.

This example can be more perspicuously given using our previous abbreviations (perhaps as
part of a higher-level preference language) by:

φ =
(
h : (♦f1 ∧ ¬♦f2)

)
∧

(
l : (♦f2 ∧ ¬♦f1)

)
Example 2 For fluent or action name b over a propositional action signature, and a variable i, let
min[b, i] abbreviate the formula (

b(i) ∧ ∀k((k < i) ⊃ ¬b(k))
)
.

For fluent or action name f , define

φ = ∃i, j
(
l :min[f, i] ∧ h :min[f, j] ∧ (j < i)

)
. (3)

Then, Hl �φ Hh holds iff f is true in both Hl and Hh, but f is established earlier in Hh than
in Hl.

Analogously, for fluent or action names f1, f2, define

φ′ =
(
l : ∃i, j((i ≥ j) ∧min[f1, i] ∧min[f2, j])

)
∧

(
h :∃i, j((i < j) ∧min[f1, i] ∧min[f2, j])

)
.

(4)

Then, Hl �φ′ Hh holds iff both f1, f2 are true in Hl and Hh, but f1 is established before f2 in Hh

while this is not the case in Hl.
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In an easy extension of the preceding example, we can express that we prefer first that f1 and
f2 occur together, and then that f1 occurs before f2. As well, conditional preferences are trivially
expressible in our approach. Indeed, a preference of β over α whenever γ holds can be realized in
terms of the formula

(l :γ ∧ α) ∧ (h :γ ∧ β).

So, for instance, (
l :∃i, j((i < j) ∧min[a, i] ∧min[b, j])) ∧ f1

)
∧

(
h :∃i, j((i < j) ∧min[a, i] ∧min[b, j])) ∧ f2

)
.

expresses a preference of f2 over f1 given that a occurs before b.
Having the preference-specification language at hand, we formally define a preference frame

as follows:

Definition 8 Let Σ be an action signature and n ≥ 0.
A preference frame over Σ with horizon n is a pair 〈H ,P 〉, where

• H is a set of histories over Σ having maximum length n, and

• P is a set of preference axioms over PΣ,n.

The question then is how to select maximally preferred histories, given a preference frame
〈H ,P 〉. If P contains more than one axiom, this question involves the general problem of com-
bining different relations and is actually independent from the concrete form of our preference
language. We say more on this next.

4.4 From Preferences to Ordering on Histories
We consider here how, given a preference frame, one may determine those histories that are max-
imally preferred. In a preference frame, each preference formula defines a binary relation whose
instances are pairs of relatively less- and more-preferred histories. Thus, one can express various
independent preference relations that must in some sense be combined in order to come up with
maximally preferred histories. However this problem, of combining differing preference orderings,
is a general and difficult problem in and of itself, and is the object of ongoing research involving
areas such as multiple criteria decision making and social choice theory [26, 30]. Nonetheless,
it is instructive to consider ways in which one may determine an overall preference ordering on
histories, given a preference frame.

To begin, we can identify two base or generic approaches for determining (maximally) pre-
ferred histories. Recall that each φ ∈ P induces a binary relation over H by setting Hl �φ Hh iff
〈Hl, Hh〉 |=PΣ,n

φ. In what follows, for any binary relationR we denote the reflexive and transitive
closure of R by R+.

As a base approach we can define:

13



Definition 9 Let 〈H ,P 〉 be a preference frame over action signature Σ with horizon n ≥ 0.
Then, H ∈ H is a (general) maximally preferred history iff H is a maximal element of(⋃

φ∈P �φ

)+

.

Similarly, we can define a base approach founded on cardinality:

Definition 10 Let (H ,P ) be a preference frame over action signature Σ with horizon n ≥ 0.
Furthermore, for H ∈ H , let

c(H) = |{H ′ ∈ H | φ ∈ P and H ′ �φ H}|.

Then, H ∈ H is a (general) cardinality-based maximally preferred history iff there is no H ′ ∈ H
such that c(H) < c(H ′).

We do not give a full discussion of the above approaches here—rather, for illustrative purposes,
we elaborate on the cardinality-based approach for propositional action signatures.

Consider where one is given a set of desirable outcomes, and the goal is to determine the history
which satisfies the maximum number. Examples include fluents which are simply preferred to be
true somewhere in a history, and temporal preferences in which one prefers that (pairs of) fluents
become true in a specific order. In such cases, one wants to maximise the set of these desiderata.
Assume then that we are given a set of (for simplicity) fluents D = {f, g, h, . . . }, where we wish
to prefer a history in which as many of these fluents are true as possible.

Given a set of histories H and preferences D, we define a suitable preference framework
〈H ,P 〉, where

P = {(l : �¬d) ∧ (h : ♦d) | d ∈ D}. (5)

Definition 10 yields a total preorder on histories, the maximal elements of which constitute the
set of preferred histories. A refinement of this approach is to use set containment on satisfied
preferences, rather than cardinality:

Definition 11 Let 〈H ,P 〉 be a preference frame over action signature Σ with horizon n ≥ 0, and
assume that P is given by (5). For H ∈ H , let

s(H) = {H ′ ∈ H | φ ∈ P and H ′ �φ H}.

Then, H ∈ H is a (general) set containment-based maximally preferred history iff there is no
H ′ ∈ H such that s(H) ⊂ s(H ′).

Example 3 Consider a preference frame as in (5), where we have simple preferences given by the
setD = {f, g, h}. Assume that we have historiesH1, H2, andH3, such that the following relations
hold:

H1 |= ♦f ∧ ♦h, H2 |= ♦g, and H3 |= ♦h.

According to Definition 10, H1 is preferred; according to Definition 11, H1 and H2 are preferred.

Besides the base approaches for determining maximally preferred histories, as discussed above,
another possibility for generating a global ordering on histories would be to employ methods based
on the approach by Brewka [6] for building complex combinations of different preference strate-
gies. An elaboration of such techniques is an issue for future work.
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5 Modelling Choice and Temporal Preferences
Having introduced our general framework for specifying preference relations between histories, we
now turn to the issue of modelling concrete types of preference relations in the context of reasoning
about actions, thereby illustrating the usability and generality of our approach. Specifically, in this
section, we discuss strategies for dealing with choice and temporal preferences and show how these
can be captured in terms of preference frames.

As argued in Section 2, choice and temporal preferences deal with different ways in which
subgoals may be attained. For a choice preference, the idea is that some condition is preferred
over another (like preferring soup to grubs as an appetizer); whereas for a temporal preference the
idea is that some condition should hold before another (like preferring having an appetizer before
a main course).

Choice and temporal preferences were introduced in [7], in terms of prioritised transition sys-
tems. Intuitively, a prioritised transition system is a triple of form 〈T,≤c,≤t〉, where

• T is a transition system [18], i.e., a specification consisting of states, assignments of values
at states, and a transition relation between states, and

• ≤c and ≤t are partial preorders, defined between Boolean combinations of action and fluent
names, representing choice and temporal preferences, respectively.3

A transition system induces a set of possible histories, and the task of the choice and temporal
preferences is to select preferred histories respecting these preferences. Here, our focus is on ways
in which to discriminate among histories, rather than on ways that a transition system, together
with choice and temporal preferences, induce preferred histories. As a consequence, we will base
our discussion not on prioritised transition systems but rather on prioritised history sets, which are
triples of the form 〈H ,≤c,≤t〉, where H is a set of histories and ≤c and ≤t are as above.

Intuitively, given a prioritised history set, a choice or temporal preference ≤ induces a relation
� on histories such that the maximal elements of the latter are viewed as the preferred histories.
Depending on whether ≤ models a choice or temporal preference, the way in which � is obtained
from ≤ differs. In fact, there is not a unique method in which a choice or temporal preference
≤ determines a preference relation � on histories; rather, different desiderata require different
strategies. The goal of this section is to consider specific strategies and to express them in terms
of preference frames. In particular, we use strategies introduced in earlier work [7] as well a novel
strategy for choice preferences.

We start with the general setting in which choice and temporal preferences are formulated.

5.1 Prioritised History Sets
In what follows, we assume a propositional action signature Σ = 〈V, F,A〉. We define the language
BΣ consisting of formulas formed from elements from F ∪ A as atomic formulas, and using the
standard Boolean connectives in the usual recursive fashion. Note that formulas of BΣ do not
employ explicit time points, but just fluent and action names.

3Recall that a partial preorder is a binary relation which is both reflexive and transitive.
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Definition 12 Let Σ be a propositional action signature and n ≥ 0.
A prioritised history set (over Σ with horizon n) is a triple

H = 〈H ,≤c,≤t〉,

where H is set of histories over Σ having maximum length n and ≤c,≤t ⊆ BΣ × BΣ are partial
preorders.

The relation ≤c is called choice preference and ≤t is called temporal preference.
If H , ≤c , and ≤t are finite, then H = 〈H ,≤c,≤t〉 is called finite.

We assume finite prioritised history sets only in what follows. As usual, for a partial preorder≤
over some set S, its strict part, <, is defined by the condition that, for all a, b ∈ S, a < b iff a ≤ b
but b 6≤ a. Using preorders for preference relations has the advantage that one may distinguish
between indifference (where both a ≤ b and b ≤ a hold) and incomparability (where neither a ≤ b
nor b ≤ a holds). Intuitively, if α1 ≤c α2, then we prefer histories in which α2 is true no less than
histories in which α1 is true. A temporal preference α1 ≤t α2, on the other hand, specifies that, if
possible, α1 should become true not later than α2 becoming true in a history.

Our first task is to translate formulas of BΣ into formulas ofQΣ,n. This is done in the following
way: given a formula α ∈ BΣ and a variable or natural number i, we associate with α the formula
α[i] ∈ QΣ,n which results from α by replacing each action name a by the atom a(i) and each fluent
name f by the atom f(i) = 1.4 Furthermore, in analogy to the operators � and ♦, as introduced in
Section 4.2, we can associate to α, β ∈ BΣ the following formulas from QΣ,n:

• �α = ∀i α[i]; and

• ♦α = ∃i α[i].

Definition 13 Let Σ be a propositional action signature and n ≥ 0.
Then, for any history H over Σ with |H| ≤ n and any α ∈ BΣ , we define

H |=BΣ
α iff H |=QΣ,n

♦α.

If H |=BΣ
α, we say that α is true in history H , or that H satisfies α. We sometimes write |=

for |=BΣ
if Σ is clear from the context. The definition of |=BΣ

allows, for example, having both
H |=BΣ

α and H |=BΣ
¬α for some α, while H |=BΣ

α ∧ ¬α will not hold.
Given a choice or temporal preference ≤, the main issue is to determine those histories which

are maximally preferred under ≤. This is realised in terms of the following concept:

Definition 14 Let Σ be a propositional action signature and H a set of histories over Σ.
A preference strategy, σ, (over Σ and H) is a mapping assigning to each partial preorder ≤

over BΣ a partial preorder σ(≤) over H .

We now are in a position to define maximal histories:
4Since we assume propositional action signatures here, following our convention from Section 4.2, the atom f(i) =

1 may be identified with f(i).
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Definition 15 Let Σ be a propositional action signature, 〈H ,≤c,≤t〉 a prioritised history set over
Σ, σ a preference strategy over Σ, and ≤∈ {≤c,≤t}.

A history H ∈ H is preferred under ≤ (relative to σ) iff H is a maximal element of σ(≤).

Our main goal can now be restated more formally as follows: given a set H of histories over
some action signature Σ and a choice or temporal preference ≤ over BΣ, along with a preference
strategy σ, we seek a preference frame 〈H ,P≤,σ〉 such that the histories preferred under≤ relative
to σ are given by the histories maximally preferred under 〈H ,P≤,σ〉.

5.2 Expressing Choice Preferences
We first introduce the preference strategy σc, following the method proposed in [7]; afterwards we
discuss how choice preferences under this strategy can be expressed in our framework.

To begin with, for any binary relation R, define

dom(R) = {x, y | 〈x, y〉 ∈ R}.

Furthermore, for any prioritised history set H = 〈H ,≤c,≤t〉 and histories H,H ′ ∈ H , define

∆H(H,H ′) = {α ∈ dom(≤c) | H |= α and H ′ 6|= α}.

That is, ∆H(H,H ′) consists of all formulas related by ≤c which are satisfied at some point in H
but never in H ′.

Next, we define an intermediate relation between histories, on which the construction of σc
rests.

Definition 16 Let H = 〈H ,≤c,≤t〉 be a prioritised history set.
Then, for any two historiesH,H ′ ∈ H , we defineHEH

c H
′ iff, for any formula α ∈ ∆H(H,H ′),

there is some α′ ∈ ∆H(H ′, H) such that α ≤c α
′.

If H is unambiguously fixed, we write H Ec H
′ instead of H EH

c H ′. The reason for using
∆H(H,H ′) in the above definition is that we are only interested in formulas which are not jointly
satisfied by the two histories H and H ′. A similar construction using “difference sets”, though
defined on different objects of discourse, was used by Geffner and Pearl [16].

Clearly, Ec is reflexive, that is, we have H Ec H for any history H . However, Ec is generally
not transitive. To see this, consider an action signature Σ involving fluents, f , g, and h, and a
prioritised history set H = 〈H ,≤c,≤t〉 over Σ such that

• f ≤c g ≤c h and h ≤c g, and

• H consists of three histories, H , H ′, and H ′′, satisfying the following relations:

H |= f, H 6|= g, H |= h;

H ′ 6|= f, H ′ |= g, H ′ 6|= h;

H ′′ 6|= f, H ′′ 6|= g, H ′′ |= h.
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¿From this, we get the following sets of differing fluents:

∆H(H,H ′) = {f, h}; ∆H(H ′, H) = {g};
∆H(H ′, H ′′) = {g}; ∆H(H ′′, H ′) = {h};
∆H(H,H ′′) = {f}; ∆H(H ′′, H) = ∅ .

Then, it is easy to check that both H Ec H
′ and H ′ Ec H

′′ hold, but not H Ec H
′′.

In view of the non-transitivity of Ec, the relation σc(≤c), for a given choice preference ≤c, is
then defined as the transitive closure of Ec. To this end, let R∗ to denote the transitive closure of
R, for any binary relation R.

Definition 17 The strategy σc assigns to each choice preference ≤c of a prioritised history set
H = 〈H ,≤c,≤t〉 the relation �c, given as follows:

H �c H
′ iff H E∗

c H
′, for every H,H ′ ∈ H .

Given the properties of E∗
c , the relation �c is clearly a partial preorder. Note that �c may posses

non-trivial cycles, i.e., there may exist pairwise distinct histories H1, . . . , Hk, for k > 1, such that,
for all i ∈ {1, . . . , k − 1}, Hi Ec Hi+1 and Hk Ec H1. However, the strict part ≺c of �c is always
cycle free.5 If one wants that�c does not have any non-trivial cycles, one can replace Definition 17
by setting H �c H

′ iff H C∗
c H

′ or H = H ′, where C∗
c is the strict part of the transitive closure of

Ec.
Any history H satisfying Definition 17 would seem to be undeniably “preferred”. However,

other definitions are certainly possible. For example, one could rank histories by the number
of choice preferences violated. This alternative would make sense where the preferences were
absolute, i.e., of the form ¬α <c α. Other alternatives can be obtained by using variations of
the relation Ec. One way to realise such variants is to change the basic “∀-∃” quantification in
Definition 16 for relating the elements in ∆P (H,H ′) and ∆P (H ′, H) by other quantification forms.
For example, the following relations may be defined:

• H Ec,∀∀ H
′ iff, for all α ∈ ∆P (H,H ′) and all β ∈ ∆P (H ′, H), α ≤c β holds.

• H Ec,∃∀ H
′ iff there is some β ∈ ∆P (H ′, H) such that, for all α ∈ ∆P (H,H ′), α ≤c β

holds.

• H Ec,∃∃ H
′ iff there is some α ∈ ∆P (H,H ′) and some β ∈ ∆P (H ′, H) such that α ≤c β

holds.

These relations are in general incompatible with Ec, except for Ec,∃∀ (which satisfies Ec,∃∀ ⊆ Ec),
and are mostly too weak to yield satisfactory properties. In any case, the basic patterns Ec and
its variants described above mirror the general problem concerning how one can move from an
order relation defined between elements of a set S to an order relation defined between elements
of the power set of S (i.e., between subsets of S), for which there is no unique solution. Such a

5Indeed, it is a straightforward matter to verify that, for any preorder ≤, its strict part < possesses no cycles.
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problem is encountered in various applications and solutions corresponding to the above patterns
have been studied in the literature (see, e.g., Halpern [23] for a discussion about this issue and
related approaches). Many other alternatives for �c are obtainable within our framework; later on,
we detail further such an alternative.

Before describing the encoding of σc in terms of preference frames, let us consider some basic
examples illustrating the choice preference order�c. The first example describes the most obvious
case in which two histories are distinguished.

Example 4 Consider a prioritised history set, H4, over fluents f and g such that f ≤c g, and
assume histories H and H ′ satisfying H |= f , H 6|= g, H ′ 6|= f , and H ′ |= g.

Then, we have that

∆H4(H,H
′) = {f} and ∆H4(H

′, H) = {g}.

It follows that H Ec H
′, and thus H �c H

′. In fact, it holds that H ≺c H
′.

The next example illustrates the particular interpretation of choice preference under σc.

Example 5 Let H5 be a prioritised history set, comprised again of fluents f and g, and ordered
by f ≤c g, and consider histories H and H ′, where H |= f and H 6|= g as before, but H ′ now
satisfies H ′ 6|= f and H ′ 6|= g.

We obtain
∆H5(H,H

′) = {f} and ∆H5(H
′, H) = ∅.

Therefore, we get that H 6EcH
′ and H ′ Ec H .

Informally, this example illustrates the type of choice preference that σc implements: A preferred
history with respect to H is one that satisfies the choice preferences as much as possible, but
disfavours histories like H ′ with an empty set ∆H(H ′, H) of distinguishing preference formulas.
Observe that no relation among H and H ′ is obtained in the aforementioned Ec,∃∃ variant of Ec.

Example 6 Let H6 be a prioritised history set defined similarly to those in Examples 4 and 5, and
consider H and H ′ such that H |= f , H |= g, H ′ 6|= f , and H ′ |= g.

Then,
∆H6(H,H

′) = {f} and ∆H6(H
′, H) = ∅.

Both histories agree on (in fact, satisfy) the ≤c-higher fluent, but differ on the ≤c-lesser fluent.
The result here is the same as in the previous example.

Just as ¬α ≤c α expresses an “absolute” preference for α, the reverse condition α ≤c ¬α
expresses a “negative” preference for α in the sense that those histories are preferred in which α is
avoided.

Let us consider a more involved example now, based on the well-known monkey-and-bananas
scenario.
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Example 7 A monkey wants a bunch of bananas, hanging from the ceiling, or a coconut, found on
the floor; as well, the monkey wants a chocolate bar, found in a drawer.

In order to get the bananas, the monkey must push a box to the empty place under the bananas
and then climb on top of the box. In order to get the chocolate, the drawer must be opened. Each
object is initially at a different location.

We assume that the monkey wants the chocolates, and either the coconuts or the bananas, and
he prefers bananas over coconuts.

Formally, we use a prioritised history set 〈H ,≤c, ∅〉 over a propositional action signature
Σ = 〈{0, 1}, F, A〉, specified as follows:

F =
{
loc(I, li) | I ∈ {Monkey ,Box ,Ban,Drawer ,Coco}, 1 ≤ i ≤ 5

}
∪ {onBox , hasBan, hasChoc, hasCoco};

A = {walk(li), pushBox (li) | 1 ≤ i ≤ 5}
∪ {climbOn, climbOff , graspBan, graspChoc, graspCoco, openDrawer};

≤c = {hasCoco ≤c hasBan}.

The set H is assumed to be given as the collection of all histories determined by a concrete
transition system T [18] based on the action language C [21] satisfying the query

Q = hasChoc ∧ (hasBan ∨ hasCoco)[7].

For the sake of brevity, we omit the full (and straightforward) details about the specification of H .
Initially, the monkey does not have the chocolates, bananas, or coconuts, and each object is at

a different location. There are, among others, two histories, H and H ′, satisfying Q:6

History H Action
STATE 0: go to the drawer
STATE 1: open the drawer
STATE 2: grasp the chocolates
STATE 3: walk to the box
STATE 4: push the box to the bananas
STATE 5: climb on the box
STATE 6: grasp the bananas

History H ′ Action
STATE 0: go to the drawer
STATE 1: open the drawer
STATE 2: grasp the chocolates
STATE 3: walk to the coconuts
STATE 4: grasp the coconuts

Given the monkey’s preference of bananas over coconuts, we expect that H is preferred over
H ′. This is indeed the case, as it can be shown that H is �c-preferred, but H ′ is not. For this,
observe that hasCoco ∈ ∆P (H,H ′) as well as hasBan ∈ ∆P (H,H ′).

We note that there are of course more histories satisfying the intended goal if we consider
histories of length greater than 7. In particular, there are histories satisfying

Q′ = hasChoc ∧ (hasBan ∨ hasCoco)[8]

6Observe that, strictly speaking, we have to further assume the tick-of-the-clock action do nothing and apply it
twice after State 4 in H ′ in order that evaluating Q at H ′ is defined.
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in which the subgoals are achieved in the reverse order as given by H and H ′ (cf. Example 9
below).

We now reconstruct σc by means of preference frames. The following definition is central:

Definition 18 Let Σ be a propositional action signature and n ≥ 0.
For every prioritised history set H = 〈H ,≤c,≤t〉, let ΦH

c be the following formula of PΣ,n:

ΦH
c =

∧
α∈dom(≤c)

(
(h : ¬♦α ∧ l : ♦α) ⊃

∨
β∈{γ|α≤cγ}

(h : ♦β ∧ l : ¬♦β)
)
.

Note that ΦH
c is well defined, since both dom(≤c) and {γ | α ≤c γ}, for any formula α, are finite

given our assumption of prioritised history sets being finite. This formula captures the condition
expressed in Definition 16: the subformulas (h : ¬♦α ∧ l : ♦α) and (h : ♦β ∧ l : ¬♦β)
refer to formulas α and β belonging to ∆H(H,H ′) and ∆H(H ′, H), respectively, while the con-
sequents of the implications, present for each formula α in the domain of ≤c, select at least one
β ∈ ∆H(H ′, H) with α ≤c β. This is made precise by the following result:

Lemma 1 Let H = 〈H ,≤c,≤t〉 be a prioritised history set over a propositional action signature
Σ with horizon n.

Then, for any H,H ′ ∈ H , we have that

H EH
c H

′ iff 〈H,H ′〉 |=PΣ,n
ΦH
c .

Proof. Suppose that H EH
c H

′. We show that 〈H,H ′〉 |=PΣ,n
ΦH
c . Consider some α ∈ dom(≤c)

and assume that 〈H,H ′〉 |=PΣ,n
(h : ¬♦α ∧ l : ♦α). Then, H |=QΣ,n

♦α and H ′ |=QΣ,n
¬♦α,

which implies that H |=BΣ
α and H ′ |=BΣ

¬α, and thus α ∈ ∆H(H,H ′). Since H EH
c H ′, it

follows that there is some α′ ∈ ∆H(H ′, H) such that α ≤c α
′. By the former condition, we have

that H ′ |=BΣ
α′ and H |=BΣ

¬α′, from which we obtain that 〈H,H ′〉 |=PΣ,n
(h : ♦α′ ∧ l : ¬♦α′).

But α ≤c α
′ means that α′ ∈ {γ | α <c γ} and so 〈H,H ′〉 |=PΣ,n

∨
β∈{γ|α≤cγ}(h : ♦β ∧ l : ¬♦β)

holds as well. Consequently,

〈H,H ′〉 |=PΣ,n
(h : ¬♦α ∧ l : ♦α) ⊃

∨
β∈{γ|α≤cγ}

(h : ♦β ∧ l : ¬♦β).

Since α was chosen as an arbitrary element of dom(≤c), 〈H,H ′〉 |=PΣ,n
ΦH
c follows. This proves

that H EH
c H

′ only if 〈H,H ′〉 |=PΣ,n
ΦH
c .

For the converse direction, assume that 〈H,H ′〉 |=PΣ,n
ΦH
c . We show that for any α ∈

∆H(H,H ′) there is some α′ ∈ ∆H(H ′, H) such that α ≤c α
′. So, fix an α ∈ ∆H(H,H ′).

Then, we have that α ∈ dom(≤c), as well as H |=BΣ
α and H ′ |=BΣ

¬α. The latter two conditions
imply that H |=QΣ,n

♦α and H ′ |=QΣ,n
¬♦α, from which 〈H,H ′〉 |=PΣ,n

(h : ¬♦α ∧ l : ♦α)
follows. Given the hypothesis that 〈H,H ′〉 |=PΣ,n

ΦH
c , we in turn obtain that

〈H,H ′〉 |=PΣ,n

∨
β∈{γ|α≤cγ}

(h : ♦β ∧ l : ¬♦β)
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must hold. Hence, by the semantics of disjunction, there is some α′ ∈ BΣ such that α ≤c α
′ and

〈H,H ′〉 |=PΣ,n
(h : ♦α′ ∧ l : ¬♦α′). The latter yields that H ′ |=BΣ

α′ and H |=BΣ
¬α′, which

means that α′ ∈ ∆H(H ′, H). Consequently, from our assumption that 〈H,H ′〉 |=PΣ,n
ΦH
c , we

derived that for any α ∈ ∆H(H,H ′) there is some α′ ∈ ∆H(H ′, H) such that α ≤c α
′. In other

words, 〈H,H ′〉 |=PΣ,n
ΦH
c entails H EH

c H
′.

Now, according to Definition 15, given H = 〈H ,≤c,≤t〉, a history H ∈ H is preferred under
≤c relative to σc iff H is a maximal element of σc(≤c). The latter relation, in turn, is defined
as the transitive closure of EH

c . By Definition 7 and Lemma 1, and since EH
c is reflexive, we

therefore obtain that the transitive closure of EH
c and the reflexive and transitive closure of �ΦH

c

coincide. Hence, in view of Definition 9, it follows that H is a maximal element of σc(≤c) iff H
is a maximally preferred history of the preference frame 〈H , {ΦH

c }〉. This proves the following
result:

Theorem 2 Let H = 〈H ,≤c,≤t〉 be a prioritised history set over a propositional action signa-
ture Σ.

Then, for any H ∈ H , H is preferred under ≤c relative to σc iff H is a maximally preferred
history of the preference frame 〈H , {ΦH

c }〉.

5.3 Expressing Temporal Preferences
With choice preference, the order ≤c specifies the relative desirability that a formula be true in a
history; thus, α2 ≤c α1 implicitly expresses a preference that holds between histories. For temporal
preferences, the order≤t specifies the desired order in which formulas become true within a history.
Thus, α2 ≤t α1 implicitly expresses a preference that the establishment of α2 is not later than that
of α1. Hence, a history in which α2 becomes true before α1 is preferred to one where this is not
the case. To this end, for ≤t, it is convenient to be able to refer to the ordering on formulas given
by a history. The following definition is taken from [7]; clearly other definitions may serve equally
well, depending on the intended application.

Definition 19 For a propositional action signature Σ and a history H over Σ of length n, define
≤H ⊆ BΣ × BΣ by α1 ≤H α2 iff there are i, j, where i < j and

1. H |=QΣ,n
α1[i] and H |=QΣ,n

α2[j], and

2. for any i′ < i and any j′ < j, we have H |=QΣ,n
¬α1[i

′] and H |=QΣ,n
¬α2[j

′].

We want to compare histories, say H and H ′, based on “how well” ≤H and ≤H′ agree with ≤t.
Below we introduce the strategy σt implementing a way to achieve this.

First, a history H will be temporally preferred if ≤H does not disagree with ≤t; that is, if
<t ∩ ≤−1

H = ∅.7 We extend this to relative preference among histories as follows:

7For binary relation R, R−1 is the relation satisfying 〈x, y〉 ∈ R−1 iff 〈y, x〉 ∈ R.
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Definition 20 The strategy σt is defined as the mapping assigning each temporal preference ≤t of
a prioritised history set H = 〈H ,≤c,≤t〉 the relation �t, given as follows:

H �t H
′ iff

(
<t ∩ ≤−1

H′

)
⊆

(
<t ∩ ≤−1

H

)
, for every H,H ′ ∈ H .

That is, H ′ violates fewer preferences in <t than H does. Obviously, �t is a partial preorder on H.

Example 8 Consider a prioritised history set in which we are given α1 ≤t α2 only, where α1 and
α2 are two distinct formulas, and in which histories H1, H2, and H3 are such that:

• H1 satisfies the given preference, in that α1 becomes true prior to α2;

• in H2, α2 becomes true prior to α1; and

• α1 does not become true in H3.

According to Definition 19, we have

<t ∩ ≤−1
H1

= ∅,
<t ∩ ≤−1

H2
= {〈α1, α2〉}, and

<t ∩ ≤−1
H3

= ∅.

H1 and H3 are temporally preferred histories, since neither violates the preference in <t.

Example 9 Consider again the monkey-and-bananas scenario from Example 7. Assume now a
prioritised history set 〈H , ∅,≤t〉, where ≤t consists of just the pair

hasBan ≤t hasChoc,

and H is the collection of all histories induced by the transition system T as in Example 7 satisfy-
ing the query

Q′ = hasChoc ∧ (hasBan ∨ hasCoco)[8].

The temporally preferred histories are those in which the bananas are obtained and then choco-
late, and those in which coconuts and bananas are obtained. Another way of saying this is that the
histories that are not temporally preferred are those violating hasBan ≤t hasChoc.

If we add the preference hasCoco ≤t hasChoc, then the preferred histories are those where one
of bananas or coconuts are obtained, and then chocolate. If we combine this preference with the
choice preference in Example 7, we obtain a history in which both preferences can be satisfied. If
the preferences were to conflict, then obviously only one can be satisfied; nonetheless, clearly such
a conflict does not prevent us from finding a successful plan. As before, there are four histories
satisfying Q′. Of these three are temporally preferred:

• one in which bananas are obtained and then chocolate, and

• two others in which coconuts and bananas are obtained.
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Another way of saying this is that there is one history that is not temporally preferred, and that is
the history that violates hasBan ≤t hasChoc. If we add preference hasCoco ≤t hasChoc, then
there are two preferred histories, where first bananas or coconuts are obtained, and then chocolate.

We capture temporal preferences under σt in our framework as follows. In analogy to the
formula min[b, i] from Example 2, defined for an action or fluent name b and a variable i, we
introduce, for every α ∈ BΣ, min[α, i] as an abbreviation for(

α[i] ∧ ∀k((k < i) ⊃ ¬α[k])
)
.

Definition 21 Let Σ be a propositional action signature and n ≥ 0.

1. For every α, β ∈ BΣ, let T [α, β] be the following formula of QΣ,n:

T [α, β] = ∃i, j
(
(i < j) ∧ min[α, i] ∧ min[β, j]

)
.

2. For every prioritised history set H = 〈H ,≤c,≤t〉, let ΦH
t ∈ PΣ,n be given as follows:

ΦH
t =

∧
α∈dom(<t)

( ∧
β∈{γ|α≤tγ}

(
h : T [β, α] ⊃ l : T [β, α]

))
.

The central properties of these two formulas are as follows:

Lemma 2 Let Σ be a propositional action signature and n ≥ 0.

1. For every history H over Σ with |H| ≤ n and every α, β ∈ BΣ, we have that

α ≤H β iff H |=QΣ,n
T [α, β] .

2. For every prioritised history set H = 〈H ,≤c,≤t〉 over Σ with horizon n and every H,H ′ ∈
H , we have that

H �t H
′ iff 〈H,H ′〉 |=PΣ,n

ΦH
t ,

for σt(≤t) = �t.

Proof. Part 1 follows straightforwardly from the definition of ≤H and the properties of the module
min[·, ·].

As regards Part 2, by Definition 20, we have that H �t H
′ iff <t ∩ ≤−1

H′⊆<t ∩ ≤−1
H′ , for every

H,H ′ ∈ H . But Part 1 implies that α ≤−1
H β iff H |=QΣ,n

T [β, α], for every α, β ∈ BΣ. So, for
every H,H ′ ∈ H , it holds that ≤−1

H′⊆≤−1
H is equivalent to the condition that H |=QΣ,n

T [β, α]
whenever H ′ |=QΣ,n

T [β, α], for every α, β ∈ BΣ, which in turn is equivalent to

〈H,H ′〉 |=PΣ,n
h : T [β, α] ⊃ l : T [β, α],

for every α, β ∈ BΣ. Now, observing further that the condition α <t β holds precisely in case
α ∈ dom(<t) and β ∈ {γ | α ≤t γ}, it follows that H �t H

′ iff 〈H,H ′〉 |=PΣ,n
ΦH
t .

¿From this, we obtain the characterisation of σt in terms of preference frames as follows:

24



Theorem 3 Let H = 〈H ,≤c,≤t〉 be a prioritised history set over a propositional action signa-
ture Σ.

Then, for every H ∈ H , H is preferred under ≤t relative to σt iff H is a maximally preferred
history of the preference frame 〈H , {ΦH

t }〉.

Proof. For every H ∈ H , we have, on the one hand, that H is preferred under ≤t relative to σt iff
H is a maximal element of σt(≤t), and, on the other hand, that H is a maximally preferred history
of 〈H , {ΦH

t }〉 iff H is a maximal element of the reflexive and transitive closure �+
ΦH

t
of �ΦH

t
(cf.

Definitions 15 and 9, respectively). Now, since, by definition, H �ΦH
t
H ′ iff 〈H,H ′〉 |=PΣ,n

ΦH
t ,

for every H,H ′ ∈ H , Part 2 of Lemma 2 tells us that σt(≤t) = �ΦH
t

. In view of the fact that
σt(≤t) is already reflexive and transitive, we therefore actually have that σt(≤t) = �+

ΦH
t

, and so
the maximal elements of σt(≤t) coincide with the maximal elements of �+

ΦH
t

. ¿From this, the
statement of the theorem follows.

Clearly, various alternatives for temporal preference are obtainable by varying the underlying
order ≤H in Definition 19. For instance, instead of using the minimal time point for selecting the
earliest state of satisfaction, one may choose the maximal time point for focusing on the latest such
states. As well, one may simply require there to be two (arbitrary) time points, so that one formula
becomes true before the other. More elaborated orderings could even take into account the number
of times a formula is satisfied before another, etc. All this is possible within our framework.

5.4 A Variant Choice Preference Strategy
The strategy σc discussed in Section 5.2 can be viewed as implementing a certain “absolute” notion
of choice preference in the following sense: Suppose we only have a choice preference f ≤c g
and two histories, H and H ′, such that H 6|= f , H 6|= g, H ′ |= f , and H ′ 6|= g. Then, H �c H

′

holds. That is, even though the preferred fluent or action g is false in both H and H ′, the strategy
σc assigns a preference to H ′, in effect implicitly assuming an “absolute” preference ¬f ≤c f . In
what follows, we describe a strategy, σ′c, realising a more agnostic kind of preference.

Let 〈H ,≤c,≤t〉 be a prioritised history set over Σ = 〈V, F,A〉, and let H and H ′ be two
histories of H . We say that α ≤c β prefers H ′ to H just if

H |= α and H 6|= β, but H ′ |= β.

Thus, if the above condition holds, then α ≤c β provides a reason for preferring one history over
another. For example, if we have that f ≤c g and g ≤c h, along with H 6|= f , H |= g, H 6|= h,
H ′ |= f , H ′ 6|= g, and H ′ |= h, then f ≤c g prefers H to H ′ and g ≤c h prefers H ′ to H . Clearly
though, if this is all the information that we have, then we would want to say that H ′ is preferred
to H (and not vice versa) since H ′ alone satisfies the most preferred fluent h. The definition below
generalises this in the obvious fashion:

Definition 22 Let H = 〈H ,≤c,≤t〉 be a prioritised history set.
Then, for any histories H,H ′ ∈ H , we define H �H

c H ′ iff
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1. there are formulas α, β ∈ BΣ such that α ≤c β prefers H ′ to H , and

2. for each φ, ψ ∈ BΣ such that φ ≤c ψ prefers H to H ′, there is some µ ∈ BΣ such that
ψ ≤c µ prefers H ′ to H .

If H is unambiguously fixed, we write H �c H
′ instead of H �H

c H ′.
In contrast to Ec, �c is clearly irreflexive; that is, we have not H �c H , for any history H .

However, like Ec, �c is not transitive and may possess non-trivial cycles. This is witnessed by the
following example: consider 〈H ,≤c,≤t〉, where H = {H,H ′} and ≤c consists of the two items
f ≤c g and g ≤c f . Furthermore, the following relations are assumed:

• H |= f and H 6|= g,

• H ′ 6|= f and H ′ |= g.

Then, it holds that

• f ≤c g prefers H ′ to H , and

• g ≤c f prefers H to H ′.

It follows that H �c H
′ and H ′ �c H . Indeed, the former is the case since f ≤c g prefers H ′ to

H , and for the only pair g ≤c f which prefers H to H ′, there is the pair f ≤c g preferring H ′ to H .
Likewise, H ′ �c H holds by symmetry. So, there is a non-trivial cycle H �c H

′ and H ′ �c H ,
and since �c is irreflexive, H �c H does not hold and hence �c is not transitive. In view of
the non-reflexivity and non-transitivity of �c, we consider its reflexive and transitive closure, �+

c ,
towards defining σ′c, as follows.

Definition 23 The strategy σ′c assigns to each choice preference ≤c of a prioritised history set
H = 〈H ,≤c,≤t〉 the relation �′

c, given as follows:

H �′
c H

′ iff H �+
c H ′, for every H,H ′ ∈ H .

Let us consider some basic example illustrating this form of choice preference.

Example 10 Consider a prioritised history set 〈H ,≤c,≤t〉 over fluents f and g such that H =
{H1, H2, H3, H4} and ≤c consists of the single pair f ≤c g. Assume that the following conditions
hold:

H1 |= f,H1 |= g; H2 |= f,H2 6|= g;
H3 6|= f,H3 |= g; H4 6|= f,H4 6|= g.

Then, we have that �′
c consists precisely of the two pairs H2 �′

c H1 and H2 �′
c H3. Thus,

H1, H3, and H4 are the preferred histories under σ′c. Note that for σc, besides H2 �c H1 and
H2 �c H3, we would also have H4 �c H2.
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This example illustrates that it is only the highest-ranked formula(s) that determine whether
a history is preferred or not. Thus, since H1 and H3 both satisfy g, they are equally preferred,
despite the fact that they differ on f . If one wishes to have a lexicographic notion of preference
where preference is determined by the highest-ranked formula on which they differ, then this can
be captured by a suitable modification to Definition 22. Alternately, this can be captured in a quite
ad-hoc fashion in our preceding example by adding the preference g ≤c f ∧ g. This would yield
the additional preference H3 �′

c H1.
Last, assume that a choice preference represents some absolute notion of desirability, where

f ≤c g indicates that f is desirable, just not more so than g. We can capture this by adding the
preference ¬f ≤c f ; adding this preference in Example 10 gives the additional preference on
histories that H4 �′

c H2.
We now turn to the issue of expressing σ′c in terms of preference frames.

Definition 24 Let Σ be a propositional action signature and n ≥ 0.

1. For every α, β ∈ BΣ, let C[α, β] and D[α, β] be the following formulas of PΣ,n:

C[α, β] = (l : ♦α) ∧ (l : ¬♦β) ∧ (h : ♦β);

D[α, β] = (h : ♦α) ∧ (h : ¬♦β) ∧ (l : ♦β).

2. For every prioritised history set H = 〈H ,≤c,≤t〉, the following formulas of PΣ,n are intro-
duced:

EH =
∧

φ∈dom(≤c)

( ∧
ψ∈{γ|φ≤cγ}

(
D[φ, ψ] ⊃

∨
µ∈{γ|ψ≤cγ}

C[ψ, µ]
))

and

ΨH,α,β
c = C[α, β] ∧ EH,

for every α, β ∈ BΣ.

The following properties are straightforward to establish:

Lemma 3 Let H = 〈H ,≤c,≤t〉 be a prioritised history set over a propositional action signature
Σ with horizon n.

1. For any H,H ′ ∈ H and any α, β ∈ BΣ, the following three conditions are equivalent:

(a) α ≤c β prefers H ′ to H;

(b) 〈H,H ′〉 |=PΣ,n
C[α, β];

(c) 〈H ′, H〉 |=PΣ,n
D[α, β].

2. For any H,H ′ ∈ H , the following two conditions are equivalent:

(a) for each φ, ψ ∈ BΣ, if φ ≤c ψ prefers H to H ′, then there is some µ ∈ BΣ such that
ψ ≤c µ prefers H ′ to H;
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(b) 〈H,H ′〉 |=PΣ,n
EH.

Let us now define
PH
σ′c

= {ΨH,α,β
c | α, β ∈ BΣ and α ≤c β}, (6)

for every prioritised history set H = 〈H ,≤c,≤t〉. Then, �H
c coincides with ∪{�φ| φ ∈ PH

σ′c
},

which in turn implies that �′
c coincides with the reflexive and transitive closure of ∪{�φ| φ ∈

PH
c′ }. We therefore have the following characterisation:

Theorem 4 Let H = 〈H ,≤c,≤t〉 be a prioritised history set over a propositional action signa-
ture Σ.

Then, for any H ∈ H , H is preferred under ≤c relative to σ′c iff H is a maximally preferred
history of the preference frame 〈H ,PH

σ′c
〉, where PH

σ′c
is as in (6).

6 Multi-valued Fluents and Aggregates
So far, we have mostly been dealing with propositional fluents, whose values are restricted to
{0, 1}. In realistic applications, however, we are also faced with non-binary quantities specify-
ing things like temperature, amount of rain, etc. Moreover, actions often have associated costs
and other measures, such as duration or distance. These types of quantities permit preference
statements expressing certain optimisations or desiderata. In this section, we show how, with the
addition of a simple but very powerful construct, we can express aggregates of fluent values. Such
aggregates could express, for example, the total amount of rainfall received in a history, or the total
cost of a plan. One can then use the preference language PΣ,n as before to express that one prefers
histories with least rainfall or, more pertinently, those histories with lowest overall cost or duration.
We present an abbreviated account here; more details can be found in [9].

For simplicity, we restrict ourselves to multi-valued fluents taking non-negative integer values
from a finite set {0, . . . , n}. In analogy to time terms, we introduce value terms as follows.

We extent the alphabet of QΣ,n by

1. a set U of value variables, and

2. the symbols ‘?’ and ‘:’.

Syntactically, a value term is one of:

1. a variable in U ,

2. a (multi-valued) fluent in F in an action signature 〈V, F,A〉,

3. a number in {0, . . . , n},

4. an arithmetic term recursively built from value terms, employing + and · (as well as paren-
theses) in the usual manner, and
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5. a fluent conditional, which is an expression of form (φ ? a : b), where φ is a query and a, b
are value terms.

Semantically, the value, val(t), of a ground value term t is defined as follows; let Σ = 〈V, F,A〉
be an action signature and H = (s0, a1, s1, , . . . , sn) a history over Σ.

1. If t is a fluent of form f(t′), then val(t) = sj(f), where j = min(val(t′), n).

2. If t is term of form (φ ? a : b), then val(t) = val(a) if H |=QΣ,n
φ, and val(t) = val(b)

otherwise.

3. Otherwise, t is evaluated according to the rules of integer arithmetic.

A major advantage of fluent conditionals is that they allow us to express aggregating expres-
sions over histories—notably without any further extension of the language. We illustrate this
by showing how aggregates can be defined in terms of the previous extension to language QΣ,n.
Moreover, we show below how this approach can also be used for a direct semantic account of
aggregates.

For example, we may define an aggregate max[f ] corresponding to the maximum value of
fluent f in a history of length n by means of the following macros representing value terms:

max[f ] = max[f, n];

max[f, 0] = f(0);

max[f, i] =
(
(f(i) > max[f, i− 1]) ? f(i) : max[f, i− 1]

)
.

An analogous definition can be given for the minimum value of f by taking min instead of max.
So, for example, in a history of length 2 the macro max[f ] simply stands for the following

expression (highlighting the structure by underlining):

(f(2) > (f(1) > f(0) ? f(1) : f(0)) ? f(2) : (f(1) > f(0) ? f(1) : f(0))). (7)

That is, neither max[f ] nor max[f, n] appear in the actual expression. Thus, given the associated
mappings s0 : f 7→ 2, s1 : f 7→ 3, and s2 : f 7→ 1, the expression in (7) evaluates to 3.

It is important to note that aggregates like max[f, i] are merely macros representing nested
value terms. Thus, in particular, they are not fluents.

As a second example, for summing the values of f in a history, we define:

sum[f ] = sum[f, n];

sum[f, 0] = f(0);

sum[f, i] = (f(i) + sum[f, i− 1]).

A similar definition can be given for counting all occurrences of f being true:

count[f ] = count[f, n];

count[f, 0] = (f(0) ? 1 : 0);

count[f, i] = count[f, i− 1] + (f(i) ? 1 : 0).

29



When expressing preferences among histories Hl and Hh, the language PΣ,n is augmented by
labelled value terms of form ` : t, where ` ∈ {l,h} is a label and t is a value term. As done in
Section 4, we then understand by a formula (value term) ` : α the formula (value term) resulting
from α by replacing each atom (value term) β in α by its labelled counterpart ` : β. The value
of a labelled value term ` : t, then, is defined with respect to history H`. Given this, we can, for
example, state a preference for histories with the globally least amount of rain (r) as follows:

h : sum[r] ≤ l : sum[r].

Further refinements are easily specified. For example, preferring histories with the globally
fewest days (states) on which it rained more than t litres can be modelled by an extension of the
count macro:

count[r, t] = count[r, n, t];

count[r, 0, t] = ((r(0) ≤ t) ? 0 : 1);

count[r, i, t] = count[r, i− 1, t] + ((r(i) ≤ t) ? 0 : 1).

For modelling action costs, we associate with each action a fluent yielding the cost of the
corresponding action. This is simple, and moreover allows us to associate with an action further
measures, such as duration.

Consider the action drive and the fluent driven, whose value represents the corresponding dis-
tance. Summing up the driving costs within the first five states can then be expressed as follows:
Let

Φ(i) = (1 ≤ i) ∧ (i ≤ 5) ∧ drive(i)

and

sum5[drive] = sum5[drive, n],

sum5[drive, 0] = 0,

sum5[drive, i] =
(
Φ(i) ? sum5[drive, i− 1] + driven(i+ 1) : sum5[drive, i− 1]

)
.

Now, let us suppose we prefer histories in which “at least half of the driving is done in the first
five hops”. This could be expressed by the preference formula

l : sum[drive] ≤ h : (2 · sum5[drive]),

where sum is the appropriate global sum value macro.
A similar straightforward semantical description of aggregates can be obtained by appeal to the

language extension of QΣ,n by (φ ? a : b). To this end, let us combine the interpretation of terms
in the following way.

Definition 25 Let H = (s0, a1, s1, . . . , an, sn) be a history over Σ = 〈V, F,A〉 of length n.
We define I as follows:

1. If t is a ground time term, then I(t) = min(val(t), n).
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2. If t is a ground value term, then I(t) is given as follows:

(a) If t = f(t′), for f ∈ F , then I(t) = si(f), where i = min(val(t′), n).

(b) If t = (φ ? e1 : e2), then I(t) = I(e1) if H |=QΣ,n
φ, and I(t) = I(e2) otherwise.

(c) Otherwise, I(t) = val(t).

The semantics of aggregates can now be defined by specific extensions of the definition of I.
To begin with, consider where we wish to define a fluent that will correspond to the maximum

value of some other fluent obtained so far in a history. Specifically, for fluent f we want to define
a fluent maxf , where

maxf (i) = max
0≤j≤i

f(j).

We do this by extending Definition 25 as follows:

I(maxf (i)) =

{
I(f(0)), if i = 0;
I(f(i) > maxf (i− 1) ? f(i) : maxf (i− 1)), otherwise.

Similarly we can define a fluent sumf that will correspond to the sum of the values of fluent f
obtained so far in a history; i.e., we wish to define

sumf (i) =
∑

0≤j≤i

f(j).

We do this by extending Definition 25 as follows:

I(sumf (i)) =

{
I(f(0)), if i = 0;
I(f(i) + sumf (i− 1)), otherwise.

In both cases we recursively define an aggregate function in terms of a fluent along with that
(aggregate) function at an earlier time point. In each case, the value of a defined fluent (such as
maxf ) can be determined from the underlying fluent (viz., f ) by a process akin to macro expansion.

The overall scheme can be obviously extended to more than one fluent, and more than a single
time point for each step. For example, we can define a fluent ex that counts the number of times
the value of fluent f exceeds that of g two time points ago, as follows:

I(ex (i)) =

{
0, if i = 0 or i = 1;
I(f(i) > g(i− 2) ? ex (1− i) + 1 : ex (1− i)), otherwise.

Practically then, it is a simple matter to determine, for example,

• the number of days (states) with more than 1 cm of rain,

• the number of hikes that one took of distance over 20 km, or

• the maximum rainfall that occurred on a hike of over 20 km.

¿From this, it is an easy matter to extend the language so that we can assert that we prefer seasons
(histories) in which the maximum rainfall that occurred on a hike of over 20 km is as low as
possible, or, more prosaically, that we prefer a history in which total action costs are as low as
possible.
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7 Expressing Other Approaches
We conclude our technical exposition by showing how other approaches to preference handling
and temporal reasoning can be captured within our framework. We start our treatment with a well-
known preference method due to Son and Pontelli [32]. Afterwards, we deal with PDDL3 [19], the
extension of the Planning Domain Definition Language that includes constraints and preferences.
Lastly, we briefly consider Allen’s interval algebra [1].

7.1 Son and Pontelli’s Language PP
Son and Pontelli [32] present a languagePP for specifying preferences between possible solutions
of planning problems. We show below how this language can be encoded in QΣ,n and PΣ,n.
Interestingly, PΣ,n comes mainly into play for formalising meta-language definitions of PP . For
brevity, we proceed by directly giving the encoding of PP rather than first giving its semantics. To
this end, we provide a translation τ(·) mapping elements of PP into QΣ,n and PΣ,n, respectively,
such that the corresponding reasoning task is equivalent. We begin with the most basic language
constructs.

For histories of length n over a propositional action signature Σ = 〈V, F,A〉, we map so-called
basic desire formulas in PP onto formulas in QΣ,n in the following way:

1. τ(goal(ψ)) = ψ(n);

2. τ(f) = ψ(0), for f ∈ F ;

3. τ(occ(a)) = a(1), for a ∈ A;

4. τ(f(t)) = f(t), for a fluent atom f(t) ∈ QΣ,n;

5. τ(a(t)) = a(t), for an action atom a(t) ∈ QΣ,n;

6. τ(ψ1 ∧ ψ2) = τ(ψ1) ∧ τ(ψ2);

7. τ(ψ1 ∨ ψ2) = τ(ψ1) ∨ τ(ψ2);

8. τ(¬ψ) = ¬τ(ψ);

9. τ(next(ψ)) = τ(ψ)[i1/i1+1, . . . , ij/ij+1,m1/m1+1, . . . ,mk/mk+1], where {i1, . . . , ij} is
the set of all time-stamp variables in τ(ψ) and {m1, . . . ,mk} is the set of all natural numbers
in τ(ψ);

10. τ(always(ψ)) = ∀i τ(ψ[i]), where i is a newly-introduced variable.

11. τ(eventually(ψ)) = ∃i τ(ψ[i]), where i is a newly-introduced variable.

12. τ(until(ψ1, ψ2)) = ∃i τ(ψ2[i]) ∧ ∀j (j < i ⊃ τ(ψ1[j])), where i, j are newly-introduced
variables.
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Here, similar to the notation introduced in Section 5.1, ψ[i] stands for the formula inQΣ,n obtained
from ψ ∈ PP by replacing in ψ each fluent f ∈ F by fluent atom f(i) and by replacing in ψ each
expression occ(a) ∈ PP for a ∈ A by action atom a(i). The language PP itself is given by the
constructs mapped in 1-3 and 6-12 above. Items 4 and 5 are necessary to map time-stamp variables
introduced by ψ[·] in 9-12. The proviso in Items 10-12 is due to the fact that modalities may be
iterated; the proviso prevents variable clashes.

As an example, consider the basic desire formula

rain ∧ occ(take umbrella) ∧ always(occ(take umbrella) ⊃ next(¬rain)).

This is turned by τ(·) into the following formula:

rain(0) ∧ take umbrella(1) ∧ ∀i(take umbrella(i) ⊃ ¬rain(i+ 1)).

The following characterisation can be shown via an inductive argument, which is omitted here.

Theorem 5 Let |=PP be the satisfaction relation of PP between a history and a basic desire
formula.

Then, for any history H of length n and any basic desire formula ϕ,

H |=PP ϕ iff H |=QΣ,n
τ(ϕ).

Given a basic desire formula ϕ ∈ PP , Son and Pontelli [32] define a preference relation among
histories Hh and Hl as follows:

Hl ≺ϕ Hh iff Hh satisfies ϕ but Hl does not satisfy ϕ.

This meta-level definition can now be easily encoded in PΣ,n in terms of the formula

Θ≺ϕ = h : τ(ϕ) ∧ l : ¬τ(ϕ),

satisfying
Hl ≺ϕ Hh iff 〈Hl, Hh〉 |=PΣ,n

Θ≺ϕ .

Further, the condition that two histories Hh and Hl are indistinguishable with respect to ϕ, written
Hl ≈ϕ Hh, is expressed in PΣ,n by the formula

Θ≈ϕ = (h : τ(ϕ) ∧ l : τ(ϕ)) ∨ (h : ¬τ(ϕ) ∧ l : ¬τ(ϕ)),

likewise obeying
Hl ≈ϕ Hh iff 〈Hl, Hh〉 |=PΣ,n

Θ≈ϕ .

Next, so-called atomic preferences, ϕ1Cϕ2C· · ·Cϕm, were added toPP for lexically ordering
different basic desires ϕi (1 ≤ i ≤ m). Although they were again characterised at the meta level,
we can encode them thus:

Θ≈ϕ1Cϕ2C···Cϕm
=

∧
i∈{0,...,m}

Θ≈ϕi
;

Θ≺ϕ1Cϕ2C···Cϕm
=

∨
i∈{0,...,m}

∧
j∈{0,...,i−1}

Θ≈ϕ1Cϕ2C···Cϕj
∧Θ≺ϕi

.

In PP , atomic preferences are then further extended to so-called general preferences, which
are mixed Boolean and lexicographic combinations of atomic and general preferences. This type
of preferences can be encoded in a similar way.
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7.2 PDDL3
PDDL [20], the Planning Domain Definition Language, is intended as a common problem spec-
ification language for (among other things) planning competitions. PDDL3 [19] extends PDDL
by allowing the expression of state trajectory and preference constraints. Such constraints may be
strong or soft. In our approach, we expect strong constraints to be satisfied by all histories under
consideration, while soft constraints are handled via our preference framework.

The constraint specification part of PDDL3 can be expressed in our basic language QΣ,n once
the objects of discourse are “harmonized”. In fact, the semantics of PDDL3 relies on sequences of
states, which may occur in non-uniform time steps. More formally, it uses sequences of the form

((s0, 0), (s1, t1), (s2, t2), . . . , (sn−1, tn−1), (sn, tn)), (8)

where each si is a state and ti is a point in time, for 0 ≤ i ≤ n and 0 ≤ t1 ≤ · · · ≤ tn.
Such a sequence corresponds to a history of length n that proceeds in non-uniform time steps t1,
t2− t1,. . . ,tn− tn−1. Given that in the context of PDDL plans are to be constructed, no actions are
taken into account.

For comparing our approach with PDDL3 on an equal basis, we associate with a sequence as
in (8) a history (s′0, a1, s

′
1, a2, s

′
2, . . . , s

′
n−1, an, s

′
n), where

1. s′i = si ∪ {t = ti}, for 0 ≤ i ≤ n, and

2. ai = ∅, for 1 ≤ i ≤ n.

Here, t is a new fluent indicating the time point associated with state si. Following this recipe, the
PDDL3 sequence ((s0, 0), (s1, 3), (s2, 5)), for example, is associated with the history (s0 ∪ {t =
0}, ∅, s1 ∪ {t = 3}, ∅, s2 ∪ {t = 5}).8

Given this, we are able to provide a translation, ρ(·), whose image is defined on histories,
as given in Definition 2: For histories of length n over an action signature Σ, some (duration)
d such 0 ≤ d ≤ n, and atomic formulas ψ, ψ1, ψ2,9 we map an expression in PDDL3 (cf. [19,
Definition 3]) onto a formula in QΣ,n in the following way:

1. ρ((at end ψ)) = ψ(n);

2. ρ(ψ) = ψ(n);

3. ρ((always ψ)) = ∀i ψ(i);

4. ρ((sometime ψ)) = ∃i ψ(i);

5. ρ((within d ψ)) = ∃i (ψ(i) ∧ (t(i) ≤ d));

8If time points were integer-valued, then a more natural mapping is to introduce null actions for time points 1, 2,
and 4. However, time points may be real-valued, so we adopt the convention of having a new “time point” fluent t.

9Note that this precludes nesting.
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6. ρ((at-most-once ψ)) =

∀i
(
ψ(i) ⊃ ∃j (j ≥ i) ∧

(
[∀k (i ≤ k) ∧ (k ≤ j) ⊃ ψ(k)] ∧ [∀l (l > j) ⊃ ¬ψ(l)]

))
;

7. ρ((sometime-after ψ1 ψ2)) = ∀i
(
ψ1(i) ⊃

(
∃j (i ≥ j) ∧ (j ≤ n) ∧ ψ2(j))

))
;

8. ρ((sometime-before ψ1 ψ2)) = ∀i
(
ψ1(i) ⊃

(
∃j (0 ≥ j) ∧ (j ≤ i) ∧ ψ2(j))

))
;

9. ρ((always-within d ψ1 ψ2)) =

∀i
(
ψ1(i) ⊃

(
∃j (i ≥ j) ∧ (j ≤ n) ∧ ψ2(j) ∧ (t(j)− t(i) ≤ d)

))
;

10. ρ((and ψ1 ψ2)) = ρ(ψ1) ∧ ρ(ψ2).

In addition, the language of PDDL has a predicate language, encompassing logical connectives,
like implies, as well as object variables along with quantifiers, like forall.

The above translation is of great importance from an applications point of view, since it demon-
strates that our basic language is powerful enough to express practical examples. For illustration,
let us just consider two examples from the long list given in [19].

Example 11 The statement

“a fragile block should never have something above it”

is expressed in PDDL3 thus:

(always (forall (?b - block)
(implies (fragile ?b)

(clear ?b)))).

The translation of this expression into QΣ,n is as follows:

∀i ∀b
(
block(b) ∧ fragile(b) ⊃ clear(b, i)

)
.

This assumes that there are only finitely many blocks as well as that clear is the only fluent.

Example 12 The statement

“whenever the energy of a rover is below 5, it should be at the recharging location
within 10 time units”
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is formalised in PDDL3 in the following way:

(forall (?r - rover)
(always-within 10

(< (energy ?r) 5)
(at ?r recharging-point))).

Translating this expression into QΣ,n yields

∀r rover(r) ⊃
∀i

(
[energy(r, i) < 5] ⊃

(
∃j (i ≥ j) ∧ (j ≤ n)

∧ at(r, recharging-point , j) ∧ (t(j)− t(i) ≤ 10)
))
.

Similar to the preceding example, this assumes a finite number of rovers as well as that energy
and at are fluents, while rover is not.

Gerevini and Long [19, Section 4] provide a substantial list of other real-world preferences, all
of which would be expressible in our framework, analogously to the above.

7.3 Allen’s Interval Algebra
A major approach in temporal reasoning is the well-known interval algebra [1], in which time in-
tervals are the primitive objects. There are 13 basic relations between intervals, including relations
such as before, meets, overlaps, etc. It may be that a temporal preference language based on the in-
terval algebra would provide a useful high-level language for expressing general preferences. Thus
for example one could assert that the interval during which coffee is drunk preferentially overlaps
with or starts before the interval in which a seminar takes place. To this end, one might define that
a fluent f constitutes an interval just if it is true only for a contiguous set of time points:

interval(f) = ∃i, j
(
(i ≤ j) ∧ ∀k(f(k) ≡ (i ≤ k) ∧ (k ≤ j))

)
.

Then, the relation that an interval meets another can be defined by:

meets(f, g) = interval(f) ∧ interval(g) ∧ ∃i(f(i) ∧ ¬f(i+ 1) ∧ ¬g(i) ∧ g(i+ 1)).

Other relations follow analogously. The preference language PΣ,n can then be used to encode pref-
erences among interval expressions. Hence, one could in this fashion define a high-level preference
language based on the interval algebra which could in turn be translated into our framework.

8 Conclusion
We have addressed the problem of expressing general preferences over histories, inter alia ad-
dressing preferences in planning systems. Preferences are “soft” constraints, or desirable (but not
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required) outcomes that one would like to achieve. We first defined a query language QΣ,n for
specifying arbitrary conditions that may be satisfied by a history. Given this, we defined a second
language PΣ,n for specifying preferences. The framework allows the expression of conditional
preferences, or preferences holding in a given context, as well as absolute preferences, expressing
a general desirability that a formula hold in a history. An interesting extension to our approach
would be to consider the question of weights on preferences, thereby addressing the case in which
some preferences are considered more important than others.

A preference induces a binary relation on histories, so that in an ordered pair of histories the
second history is preferred to the first. ¿From this, one can define a global ordering on the set of
histories, the maximal elements of which are the preferred histories. The overall approach is very
general and flexible; specifically we argue that previous approaches to preferences in planning are
expressible in our formalism. Thus, too, our approach constitutes a “base” language, in terms of
which higher-level operators may be defined.

We gave fundamental classifications of domain-specific preference types, constituting action
vs. fluent preferences and choice vs. temporal preferences. We encoded choice and temporal pref-
erences in our framework, and showed how preferred histories can be determined for each prefer-
ence type. Further, we showed how aggregates can be defined and used in preferences, hence for
example allowing a preference for histories with lowest action costs.

In a planning context, our approach would amount to generating plans and selecting the most
preferred plan based on the preferences. As such, the approach is readily adaptable to an anytime
algorithm, in which one may select the currently-best plan(s), but with the hope of a more-preferred
plan being generated. An obvious topic for future work is to directly generate a preferred plan
(rather than selecting from candidate plans); however, this appears to be a difficult problem in
general. Last, while the approach is formulated within the framework of action languages, our
results are applicable to general planning formalisms.
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