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Abstract

In this paper, we show how an approach to belief revision and belief contraction can be ax-
iomatised by means of quantified Boolean formulas. Specifically, we consider the approach of
belief change scenaripa general framework that has been introduced for expressing different
forms of belief change. The essential idea is that for a belief change scéhart C), the
set of formulask, representing the knowledge base, is modified so that the sets of formulas
R andC are respectively true in, and consistent with the result. By restricting the form of a
belief change scenario, one obtains specific belief change operators including belief revision,
contraction, update, and merging. For both the general approach and for specific operators, we
give a quantified Boolean formula such that satisfying truth assignments to the free variables
correspond to belief changatensionn the original approach. Hence, we reduce the problem
of determining the results of a belief change operation to that of satisfiability. This approach
has several benefits. First, it furnishes an axiomatic specification of belief change with respect
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to belief change scenarios. This then leads to further insight into the belief change framework.
Second, this axiomatisation allows us to identify strict complexity bounds for the considered
reasoning tasks. Third, we have implemented these different forms of belief change by means
of existing solvers for quantified Boolean formulas. As well, it appears that this approach may
be straightforwardly applied to other specific approaches to belief change.

Keywords: belief change, quantified Boolean formulas

1 Introduction

In previous work, Delgrande and Schaub [12] developed a consistency-based framework for ex-
pressing belief change operators. The basic idea with respect to belief revision is that, given a
knowledge basd{ and a sentence for revision, X and « are first expressed in disjoint lan-
guages, then the languages are coerced (via a maximisation process) to agree on truth values of
atoms wherever consistently possible, and finally the result is then expressed back in the original
language. Informally, in the maximisation step, modelg<oére syntactically forced to correlate

with those ofa insofar as consistently possible. The inherent nondeterminism of the maximisation
process gives rise to two notions of revision: dimoice revision one suchbelief change exten-

sionis selected as the revised state; in genesledftica) revision the revised state consists of the
intersection of all such extensions. Belief contraction is defined similarly.

In this paper, we discuss a method to implement this approach to belief change, based on
reductions to quantified Boolean formulas. By a quantified Boolean formula (or QBF for short)
one understands a formula which is constructed like an ordinary propositional formula, except that
guantifiers ranging over propositional variables may also occur. Quantified Boolean formulas thus
belong to the language skcond-order logic As well, they allow a compact representation of a
large class of problems. This latter point is reflected by the fact that the evaluation problem of
QBFs—i.e., the problem of determining the truth of a given QBF—is PSPACE-complete, whilst
the evaluation problem of QBFs having prenex normal form with 1 alternating (groups of)
guantifiers is complete for thieth level of the polynomial hierarchy [50, 59].

The general mechanism of our approach is to translate (in polynomial time) a given reasoning
task into the evaluation problem for QBFs and then use a QBF evaluator to compute the resultant
instances. The existence of efficient QBF solvers, such as the systems developed byetCadoli
al. [4], Rintanen [46], Feldmanat al.[19], or Giunchigliaet al.[24], makes such a rapid proto-
typing approach practicably applicable. A similar approach for solving various reasoning tasks be-
longing to the area of nonmonotonic reasoning has been realised in the §SiéN15, 41, 17].

This prototype implementation currently handles the computation of the main reasoning tasks for
logic-based abduction, default logic, several types of modal nonmonotonic logics, and equilibrium
logic, a generalisation of the stable model semantics for logic programs. We have implemented the
translations for belief change problems by incorporating them into the sy3tim.

Reduction methods to QBFs naturally generalise similar approaches for probldiistimese
latter problems can in turn be solved by translating them (in polynomial timgAtpthe satisfia-
bility problem of classical propositional logic (an application of this kind in Artificial Intelligence



is described, e.g., by Kautz and Selman [26]). Besides the implementation of different nonmono-
tonic reasoning tasks as realised by the syspamiP, successful applications based on reductions
to QBFs have also been applied to conditional planning [45].

There are several reasons why we are interested in a reformulation of the belief change ap-
proach of Delgrande and Schaub [12] using QBFs. First, it provides a straightforward implemen-
tation of the general framework by appeal to extant QBF solvers. Second, in the original approach,
several steps were expressed at the metalevel. In particular, there is a metatheoretic step in which
pairs of atoms are asserted to be equivalent wherever consistent. Here in contrast, we obtain an
object-level representation of the approach. In fact, we provide an axiomatisation of the original
belief change method in terms of QBFs by constructing suitable translation schemas such that there
is a one-to-one correspondence between the satisfying assignments to the free propositional atoms
of the QBFs and the belief change extensions obtained in the original framework. This in turn leads
to further insight into the original approach. Finally, the expression of belief change problems in
terms of QBFs gives a direct way to estimate the computational complexity of the considered rea-
soning tasks. More specifically, by using the respective QBF encodings, we show that reasoning
from choice revision is complete fai?’, and, dually, reasoning from skeptical revision is complete
for I12. Additionally, we also discuss the complexity of other decision problems associated with
belief change. In this regard, we generalise and improve on earlier reported results [11].

In the next section, we briefly introduce notions of belief change as well as those aspects of
belief change scenarios that interest us. In Section 3, we similarly introduce quantified Boolean
formulas. Section 4 gives the polynomial-time constructible reductions of the relevant reason-
ing tasks into QBFs. Section 5 discusses complexity issues, while Section 6 briefly sketches our
implementation of the reductions. Section 7 supplies some concluding remarks.

2 Belief Change and Belief Change Scenarios

2.1 Basic Notation

We deal with propositional languages and use the logical symbols, —, v, A, —, and=to
construct formulas in the standard way. We wite to denote a language over an alphaBedf
propositional variable®r atoms Formulas are denoted by lower-case Greek letters (possibly with
subscripts). Disjunctions of foriy,_, ; are assumed to stand for the logical constamthenever

I = (), and likewise conjunctions of form,,_; 1; with I = () stand forT. A literal, L, is either an
atomp (apositive litera) or a negated atomp (anegative litera). The set of all atoms occurring

in a formula¢ is denoted byVar(¢). Similarly, for a setS of formulas, Var(.S) is the set of all
atoms occurring in elements 6f i.e., Var(S) = U g Var(¢).

The (propositional) derivability operato¥;, is defined in the usual way, and likewise its
semantic counterpart=. The deductive closuref a setS C Lp of formulas is given by
Cnp(S) = {¢p € Lp | S+ ¢}. We say thatS is deductively closedff S = Cnp(S). Fur-
thermore,S is consistenproviding L ¢ Cnp(S). If the language is clear from the context, we
usually drop the indexP” from Cnp(-) and simply writeCn(-). Knowledge basesr, equiva-
lently, belief setsare initially identified with deductively-closed sets of formulas; later we relax



this restriction. We us&, K, . .. to denote knowledge bases.

Given an alphabe®, we define a disjoint alphab® asP’ = {p’ | p € P}. Then, fora € Lp,
we definen/ as the result of replacing im each atonp from P by the corresponding atophin P’
(so implicitly there is an isomorphism betwe®nandP’). This is defined analogously for sets of
formulas.

2.2 General Approaches to Belief Change

A common approach in belief revision and other belief change functions is to provide a set of
rationality postulateghat constrain the results of any such function. &M approachof Al-
chourbn, Gardenfors, and Makinson [1, 21] provides the best-known set of such postulates. Belief
states are modelled by deductively-closed sets of sentences, loalledsetswhere the underly-
ing logic includes classical propositional logi&. + «, theexpansiorof K by «, is defined to be
Cn(K U{a}). K, is the inconsistent belief set (i.6€, = Lp).

A revision function-, is a mapping fron2“» x £» to 27 satisfying the following postulates:

K+« is a belief set.

a € K+a.

K+a C K + a.

If —a ¢ K, thenK + o C K+a.

)
)
)
)
K+5) K+a = K, iff £ —a.

+6)

)

)

If =a=3,thenK4a=K+0.

K+7) K+(a A B) C (K+a) + 6.

(K$8) If =3 ¢ K+a, then(K4a) + 3 C K+(aAp).

Informally, these postulates state that the result of revigingy « is a belief set in whichy is
believed; whenever the result is consistent, revision consists of the expangiohyod; the only

time that K, is obtained is whem is inconsistent; and revision is independent of the syntactic
form of K anda. The last two postulates assert that in revising by a conjunction, an expansion
with a conjunct is employed where consistent.

Contractionis the dual notion of revision, in which beliefs are retracted but no new beliefs
are added. Postulaté& —1)—(K —8) governing a contraction function, denoted are similarly
given. The intuition underlying revision and contraction is that an agent receives new information
concerning a static world or domain. Katsuno and Mendelzon [25] explore the distinct notions of
beliefupdateanderasurein which an agent changes its beliefs in response to changes in its external
environment. As well, belief s@herging in which the contents of two belief sets are combined, is
addressed for example by Liberatore and Schaerf [33] and Konieczny andé&ew[P8].

There has also been work on specific revision operators based distiiecebetween models
of a knowledge base and a sentence to be incorporated in the knowledge base [3, 53, 7, 48, 56, 20].
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For example, in the approach of Dalal [7], the revision operator measures the distance between
interpretations by the number of propositional variables on which the interpretations differ. It is
shown that this operator satisfies the AGM postulates.

Another direction in belief revision is to assume that revision is not carried out on a belief set
itself, but rather on a finite subset of the theory. Belief change operations would take place with
respect to thivelief basewhile the underlying belief set would correspond to the deductive closure
of this base. The notion of belief base revision is proposed by Makinson [36], and independently,
with respect to database systems, by Fagin, Ullman, and Vardi [18]. These approaches are fully
explored by Nebel [39]. While conceptually simple, revision in these approaches frequently relies
on arbitrary syntactic distinctions.

There has been some work with respect to implementations. For example, the afore-
cited distance-based approaches admit straightforward implementations, see [9, 5]. Otherwise,
Williams [55] provides an example of a computational model for belief base revision; see also
[52, 2] for other approaches. The belief change approach discussed in the present paper has also
been implemented as a JAVA program [10].

Finally, Liberatore and Schaerf [31, 32] discuss a method which is related to our results. Sim-
ilar to the ideas of Winslett [57], they employ propositional circumscription [37, 34] in order to
express several belief-revision operators, specifically those defined by Borgida [3], Ginsberg [23],
Dalal [7], Satoh [48], and Winslett [58]. The primary point of distinction between the present
approach and the aforecited works is that we begin with a general framework in which a suite
of diverse operators is defined (see following), whereas previous work has for the most part only
addressed belief revision.

2.3 Belief Change via Belief Change Scenarios

In previous work [12], a consistency-based framework for expressing a suite of belief change
operators is developed. The intent was to specify an approach that has good formal properties,
but that particularly lent itself to implementation. The approach is discussed formally in the next
section; here we give an informal introduction to the approach to revision. As a starting point, it
is clear that the syntactic form of a sentence does not give a firm indication as to which sentences
should be included in a revisioli +«. Alternately, one can consider interpretations, and look at
the models ofK” anda. Informally, if K U {a} is unsatisfiable, a model df +«a should contain
models ofa, but in a sense retaining aspects of model&’dhat do not conflict with those of.

We accomplish this by first expressiig and « in different languages, in essence replacing
every occurrence of an atomic sentepde K by a new atomic sentengé yielding knowledge
basek”, and leavingy unchanged. Under this relabelling, the model&éfinda are independent
and K’ U {a} is satisfiable (assuming that bathand« are satisfiable). The models af anda
are linked by asserting that the languages are (with respect to truth conditions) the same wherever
consistently possible. That is, for evepye P, we assert thap = p’ wherever consistently
possible. We obtain a set of such equivalences, caltJt such that’ U {«} U EQ is consistent.

A model of K’ U {a} U EQ then will be a model ofr where the truth values of atomic sentences
in K" anda are linked wherever possible. A candidate “choice” revisiodby « then consists



of K U {a} U EQ re-expressed in the original language. General revision corresponds to the
intersection of all candidate choice revisions.
For example, considgk” and«, where

K=0Cn({(pVaq) Ar}) and  a=(-pV-qg)A-r.

Renaming the atoms ik gives K’ = Cn({(p' vV ¢') A1'}). Clearly, K’ U {a} is consistent,
even thoughX U {«a} is not. In the step to link the interpretations Af and «, we obtain
that Cn(K' U {a} U{p' = p,q¢ = q}) is consistent, buCn(K' U {a} U{p' =p,¢d =q, 7" =1})
is not. Hence, we takEQ = {p’ = p, ¢ = q¢}. IntersectingCn (K’ U {a} U EQ) with the original
language yield€'n({(p = —q) A —r}) as the revised knowledge base.

The general framework allows the expression of contraction and integrity constraints, as well
as update, erasure, and merging operations. Significantly, the approach is independent of how the
knowledge base and formula for revision are represented. In particular, the original and revised
knowledge base can be represented by a formula whose deductive closure gives the corresponding
belief set. As well, the scope of a revision (for example) can be restricted to just those propositions
common to the knowledge base and sentence for revision. The approach (essentially) satisfies the
AGM postulates [1], with the exception of the revision postuldter-8) and the contraction pos-
tulate (K —8), and the contraction “recovery” postulat& —5). The approach to belief change is
founded on the same intuitions eansistency-base@asoning methodologies in Artificial Intelli-
gence. Examples of such systems include Theorist [43], diagnhosis from first principles [44], and
the assumption-based approach to truth maintenance [8].

2.4 Formal Elements of the Belief Change Framework

Following Delgrande and Schaub [12], we definbadief change scenarim languagel, as a
triple B = (K, R, C), whereK, R, andC are sets of formulas ii». Informally, K is a knowledge
base that will be changed such that the Bewill be implied by the result, and the sétwill be
consistent with the result. For a base approach to revision wetakd), and for a base approach
to contraction we také = (.

We extend our notatioriar(-) to belief change scenarios in the obvious way, i.e.,Bor=
(K, R,C), we defineVar(B) = Var(K U R U C). In the definition below, “maximal” is with
respect to set containment (rather than set cardinality). The following definition is central:

Definition 2.1 Let B = (K, R, C) be a belief change scenario . Define£Q) as a maximal
set of equivalenceB@ C {p =p' | p € P} such that

K'UEQURUCH L.

Then,
Cn(K'UEQUR)N Lp

For simplicity, we adopt a slightly simpler formulation 6fhere than originally given [12]. Here, we require that
members ofC' are put together in determining a belief change extension; in the original formulation [12], members
of C are taken individually in determining a belief change extension—thdt'is) EQ U R U {—¢} I/ L for every
¢ € CU{L}. We discuss in Section 4.1 how this straightforward yet more involved extension can be accomplished.
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Table 1: (Skeptical) revision examples.

K’ « EQ K+a
P Aq —q {p=7r} pA—q
'=q¢| —q {p=p,q9=4d} | pA—q
pPVvd |pVv-q| {p=p,q¢=4d} |[p=—q
PAqd | —pVoq|{p=p} {a=d} | p=—q

is a(consistent) belief change extensiains.
If there is no such sef' @, thenB isinconsistentand L, is defined to be the so{@consistent)
belief change extensiaof B.

So, a (consistent) belief change extensioni®fis a modification of K in which R is
true, and in whichC' is consistent. We say that@) determinesthe belief change extension
Cn(K'UEQUR) N Lp of B. Clearly, for a given belief change scenario, there may be more
than one belief change extension.

Definition 2.1 provides a very general framework for specifying belief change. In what follows,
we give specific definitions for the belief change operatigwsion and contraction In these
definitions, we make use of the notion ofalection functionc, that for any setl # () has as
valuec(I) some element of. These primitive functions can be regarded as inducing selection
functionsc’ on belief change scenarios, such thiaB) has as value some belief change extension
of B = (K,R,C). This is a slight generalisation of selection functions as found in the AGM
approach [21].

Definition 2.2 (Revision) Let K be a knowledge base anda formula, and let(E;);c; be the
family of all belief change extensions(df, {a},?). Then,

1. K+.a = E; is achoice revisiorof K by o with respect to some selection functiomwith
c(I)=1;and

2. K+a = (), E; is the(skeptical) revisiorof K by .

Table 1 gives examples of (skeptical) revision. The first column gives the original knowledge
base, but with atoms already renamed. The second column gives the revision formula, while the
third gives theE'Q) set(s), and the last column gives the results of the revision. For the first and last
column, we give a formula whose deductive closure gives the corresponding belief set.

In detall, for the last example, we wish to determine

{p A q}+(=p V).

We find maximal set&#Q C {p =p’,q = ¢’} such that
{PAdYUEQU{-pV -qtUD I/ L.
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Table 2: (Skeptical) contraction examples.

K’ Q EQ K-«
P Aq q {p=7r} p
AN AT | pVyg {r=1"} r

Vg |pAq| {p=p.9=d} |pVyg
A pAgl{p=rt {a=d} | pVy

We get two such sets of equivalences, if), = {p = p'} and EQ, = {q¢ = ¢'}. Accordingly,
we obtain

{PAGH(pV =9) =N, On({P A} U EQ; U {-pV ~q}) N Lp.

In addition to(—p V —q), we get(p V ¢), jointly implying (p = —q).

Contraction is defined similarly to revision.

Definition 2.3 (Contraction) Let K be a knowledge base anda formula, and let{ £;);c; be the
family of all belief change extensions(df, (), {—«a}). Then,

1. K—.a = E;is a choice contractionf K by o with respect to some selection functiowith
c(I) =1;and

2. K—a =(),.; E; is the(skeptical) contractioof K by «.

We note that the previous revision and contraction operations only partially satisfy Harper’s
Identity, given byK —a = K N (K+-a), viz. they satisfy the relatiol —a C K N (K+-a).
Hence, in the current approach, revision and contraction are distinct operators, and not, as is usually
the case, interdefinable; see [12] for a fuller discussion.

Table 2 gives examples of (skeptical) contraction, using the same format and conventions as
Table 1. In detail, for the first example we wish to determine

{pNg}—q

We compute the belief change extensiong{of A ¢}, 0, {—¢}). We rename the propositions in
{p A q} and look for maximal subsefsQ) of {p = p’, ¢ = ¢’} such that

{PANYUEQUOU {~q} ¥/ L.
We obtainEQ = {p = p'}, yielding

{pAgt—q¢ = Cn({p' AdIU{p=p}UD)NLp
= Cn({p}).



3 Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) generalise ordinary propositional formulas by the admission
of quantifications over propositional variables. As in first-order logic, quantifications are either
existentialor universal represented by thexistential quantified and theuniversal quantifietv,
respectively, and follow the intuitive meaning. For instance, the QBF

Vp3q((p — q) A (¢ — p))

evaluates to true, since for all truth assignments there exists a truth assignmentjtsuch that
the propositional formulgép — ¢) A (¢ — p) evaluates to true. On the other, hand the QBF

Ip¥q((p — @) A (¢ — p))

evaluates to false.

In general, QBFs are@nservative extensiaf classical propositional logic, in the sense that
to each QBF we can assign a logically equivalent propositional formula. However, the advantage
of QBFs is their compactness: to express a QBF as a logically equivalent propositional formula,
one has to face an exponential increase of the formula size, in general. Furthermore, QBFs extend
classical propositional logic in such a way that reasoning over truth assignmémtsthe object
languagecan be expressed. A different way to view QBFs is to regard them as a subclass of
second-order logic, restricting predicates to be of arity zero, and therefore to consider formulas
without function symbols and object variables.

Historically, among the first logical analyses of systems dealing with quantifiers over proposi-
tional variables are the investigations due to Russell (“theory of implication” [47]) and Lukasiewicz
and Tarski (“erweiterter Aussagenkalk[35]), not to mention the monument&rincipia Math-
ematica[54]. The particular idea of quantifying propositional variables was extended in
LeSniewski’s system gbrotothetic logic[29, 49] where variables whose values argh functions
are allowed and quantification is defined over these varigblashe beginning of the seventies
of the last century, propositional quantification came into the spotlight of computer science, in
particular in the new and developing field of complexity theory [22], when evaluation problems
for QBFs were recognised as the prototypical problems fopttgnomial hierarchy{50] as well
as for the prominent complexity claBSPACE [38]. Details on the relation between QBFs and
complexity theory are given in Section 5.

Formally, the set of quantified Boolean formulas (QBFs) over alpiab&inductively defined
as follows:

1. any propositional variable € P and any logical constant, T is a QBF,;
2. if ®is a QBF, ther(—®) is a QBF;
3. if ® andV¥ are QBFs, thei® A V), (¢ v V), (& — V), and(P = V) are QBFs;

2A more elaborate overview on these early historical aspects of propositional quantification can be fi@dafin
Church’sIntroduction to Mathematical Logif5].



4. if p € P is a propositional variable anblis a QBF, ther{dp ) and(Vp ®) are QBFs;
5. the only QBFs are those given by 1-4.

We tacitly assume the usual conventions concerning the omission of parentheses in formulas
where no ambiguities can arise. Furthermore, we use upper-case Greek letters as meta-variables
for QBFs, whilst lower-case Greek letters stand for propositional formulas (i.e., quantifier-free
QBFs). Our definition of quantified Boolean formulas is rather unrestricted in two ways: First, in
contrast to the formalisation of QBFs in some papers of the relevant literature, we allow quantifiers
to appeaanywheran a formula. Second, we do not stipulate any restriction on the quantification,
i.e., we do not require that a quantified variaplen Qp ® (Q € {3,V}) occurs in the scopé of
Qp. For example(3p (¢ A r)) isa QBF, and so isdp (Vp (p — q))).

The semantics of QBFs is defined as follows. First, some ancillary notation. An occurrence of a
propositional variable in a QBF & is freeiff it does not appear in the scope of a quantificatign
(Q € {V,3}), otherwise the occurrence pfis bound If ¢ contains no free variable occurrences,
then ® is closed otherwised is open Furthermore®([p,/¢1,...,p./¢,] denotes the result of
uniformly substituting each free occurrence of a variable ¢ by a formulag;, for 1 <i < n.

By aninterpretation M, we understand a set of atoms. Informally, an afoisitrue unde\/
iff p € M. In general, the truth value,,(®), of a QBF® under an interpretatiof/ is recursively
defined as follows:

1. if ® =T, thenvy (®) =1,and if® = L, thenvy, (®) = 0;
. iIf & = pis an atom, them,,(®) = 1if p € M, andv,,(P) = 0 otherwise;

L fd ==, thenl/]w(q)) =1- V]\/[(\If);

L ifd = o, A (I)Q), thenl/M((I)) = mm({VM(q) ),VM((I)Q)}),
), v (®2)});
f D = (D7 — Dy), thenuy (P) = 11if vy (P1) < vy (Py), andry, (P) = 0 otherwise;

Lifd = ((1)1 = @2), thenl/]w(q)) =1Iif I/M((I)l) = I/M(CI)Q), andl/M((I)) = 0 otherwise;

2

3

4 ( !
5. if® = (B V By), thenvy () = maz({vy (P,
6 (

7

8. if & =Vp VU, thenvy (®) = va (U[p/T] A ¥[p/L]); and
9

f® = 3p Y, thenvy (@) = vy (V[p/T] V ¥[p/L]).

We say thatb is true under)M iff v, (®) = 1, otherwised is false underM. If vy, (P) = 1,
then M is amodelof ®. The set of all models b is denoted by\/od (D). If Mod(P) # 0, thend
is said to besatisfiable If ® is true under every interpretation, théris valid. As usual, we write
= @ to express thab is valid.

It is easily seen that the truth value of a closed QBF is either true under every interpretation or
false under every interpretation, i.e., a closed QBF is either valid or unsatisfiable. In general, the
truth value of an arbitrary QBF under an interpretation depends only on its free variables. Hence,

10



without loss of generality, for determining the truth value of QBFs, we may restrict our attention
to interpretations which contain only atoms occurring free in the given QBF.

If a closed QBF® is valid, we say thatP evaluates to trueand, correspondingly, i is
unsatisfiable, we say thdt evaluates to falseTwo sets of formulas (i.e., ordinary propositional
formulas or QBFs) aréogically equivalentff they possess the same models. Thus, formdlas
andV¥ are logically equivalent iffb = U is valid.

In the sequel, we use the following abbreviations in the context of QBFs: For an indexed set
V ={p1,...,p,} Of propositional variables and a quantif@rc {V, 3}, we letQV & stand for the
formulaQp:Qp- - - - Qp, . An analogous notation appliesl¥f is a stringp; . .. p, of variables.
Moreover, letS = {¢1, ..., ¢,} andT = {1, ..., 1, } be indexed sets of formulas. Theh< T’
is an abbreviation fof¢; — ¥4, ..., ¢, — ¥, }, andS = T stands fo{ ¢, = ¢y, ..., ¢, = U, }.
Obviously,S = T is logically equivalent tdS < T') U (T < 5).

The two set operations. and = can of course also be applied in a composed manner. In
particular, forS andT" as above an® = {4, ..., ¢, }, we will make use of the expression

R<(S=1T), Q)

abbreviating the set of formulag’ ,{ ¢; — (¢ = Vi) }-

Whenever an indexed sgtof formulas is used as a consecutive part of a QBF, we implicitly
understand' as the formulq!\¢€5 ¢. In this sense, foR, S, T as in (1), the expressioR < (S =
T') appearing within a QBF is synonymous to the formt\fa, (¢, — (¢ =) ).

Generally speaking, the operatdris a fundamental tool for expressing certain tests on sets of
formulas in terms of QBFs. In particular, we usén conjunction with the following task:

Given finite setsS andT’ of formulas, determine all subse®sC S such thafl’ U R is
consistent.

This problem can be encoded by a QBF in the following way:

Proposition 3.1 ([51]) LetS = {¢1,...,¢,} andT be finite sets of formulas, 1&t be the set of

atoms occurring ifUT', and letG = {g, ..., g, } be a set of new variables not occurring$ror

T'. Furthermore, consider anig C S and anyM C G suchthaty; € Riff g; € M, for1 <i <n.
Then,T U R is consistent iff\/ is a model of the QBF

CIT, S| =3V(T A (G < 8)).

Note thaitC[T’, S| is an open QBF having' as its set of free variables. These variables facilitate
the selection of those elements $fwhich determine the set8 such thatl’ U R is consistent.
Moreover,C[T, S| is designed to expresdl potential subset® C S such thatl’ U R is consistent.

We illustrate the functioning of this encoding on a simple example. Congide{—p vV —q¢}
andS = {p, ¢}. For allpropersubsets: of S, T'U R is consistent, bul’ U S is inconsistent. For
S as given, we choose

G = {91792}
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as corresponding set of guessing variables, which occur free in the encijding, given by

3pg ((—p vV =q) A (g1 — p) A (92 — q)). (2)

It can be checked that all interpretatiohs C G are models of (2), but the interpretation = G
is not a model of (2). This coincides with the observation that exactly the proper subsetaanf
Ry =0, Ry = {p}, andR; = {q}, are consistent withl”, while R, = {p, ¢} is not.
To express, for example, attaximalsuch subsets, some additional elements are required. The
computation of maximal sets satisfying certain criteria, using QBFs, is discussed in Section 4.
Finally, we note some useful relations concerning the shifting and renaming of quantifiers,
paralleling similar results from standard first-order logic.

Proposition 3.2 Letp andq be atomsQ € {V, 3}, and let® and ¥ be QBFs such tha¥ does not
contain free occurrences of Then,

1. E (—3p®) = Vp(—9);

2. = (-Vp @) = 3p(=);

B EToQp®)=Qp(Yod)foroe {A,V,—};and
4. = (QqV) = (QpVlg/p)).

We say that QB is in prenex formf ® = Qp; ... Q.p,¢, whereQ; € {V, 3},for1 <i < n,
and¢ is some propositional formula. Proposition 3.2 implies that any @Béan be effectively
transformed into a logical equivalent QBF in prenex form.

4 Reductions

In this section, we present efficient (polynomial-time constructible) reductions of the relevant rea-
soning tasks in the context of belief change scenarios into QBFs. More specifically, these reduc-
tions are constructed in such a way that there is a one-to-one correspondence between belief change
extensions and models of the translated QBFs. Based on these reductions, in Section 5, we analyse
the computational complexity of the considered reasoning tasks.

Concerning the specific tasks, we deal with the following decision problems and their corre-
sponding search problems:

EXT: Decide whether a given belief change scendtibas some consistent belief change exten-
sion.

CHoICE Given a belief change scenar®and some formula, decide whethep is contained in
at least one consistent belief change extensiaof.of

SKEPTICAL: Given a belief change scenariband some formula, decide whethet is contained
in all belief change extensions &

12



Note thateXT and CHOICE are specified with respect to consistent belief change extensions.
Dropping the consistency condition EXT would result in a trivial decision problem because,
according to Definition 2.1, any belief change scenario always possesses at least one belief change
extension. ConcerningHOICE, although here, as well as faxT, we are primarily interested in
consistent belief change extensions, later we relax this condition and deal also with the inconsistent
case. FOBKEPTICAL, however, the consistency requirement is actually irrelevant, because it holds
that a formulag is contained in all belief change extensions of a given belief change scenario
B iff it is contained in all consistent belief change extensiongofln general EXT is arguably
less interesting tha@HOICE or SKEPTICAL, given that it depends only on the consistency of
the constituents of the given belief change scenario—however, the relevance of this task lies in
the correspondingearch problemi.e., in the actual computation of all consistent belief change
extensions.

4.1 Encodings of the Basic Tasks

From now on we assume that, for any belief change scerarie (K, R, (), its constituents

K, R, andC are finite; thus, these sets are also represented as the conjunction of their elements.
Furthermore, for our subsequent encodings it is convenient to use the following alternative char-
acterisation of belief change extensions, which is a straightforward consequence of results due to
Delgrande and Schaub [12]. Basically, this characterisation shows that sets of equivalences can be
restricted to subsets ¢p = p’ | p € Var(B)}.

Proposition 4.1 For any belief change scenari8 = (K, R,C) in Lp, there is a one-to-one
correspondence between the determining #8955 C {p = p’ | p € P} of the belief change
extensions of3 and setsfQ* C {p =7’ | p € Var(B)} satisfying the following conditions:

(a) K'UEQ*URUC I/ 1;and
(b) for eachp € Var(B) with (p = p) ¢ EQ*, we haveK' UEQ* U {p=p} URUC F L.

In particular, for belief change extensidnof B with determining set@ C {p =p' | p € P},
it holds thatE = Cn(K’U EQ*U R) N Lp, where EQ* satisfies Conditionga) and (b), and
EQ* = EQn{p=yp |pe Var(B)}.

Thus, for a belief change extensidh= Cn(K'U EQ UR) N Lp with EQ C {p=9p' |p €
P}, we also refer, with a slight abuse of notation, to a set of féi@f C {p =’ | p € Var(B)},
satisfying the above Conditioria) and(b) and corresponding t&'@), as a determining set df.

We proceed with the following basic QBF module:

Definition 4.1 Let B = (K, R, () be a belief change scenario ovép, letV = Var(B) be the
set of variables occurring i3, and letV,, = {p., | p € V'} be a set of new variables. Then,

M[B] = K'AN Vg <(V=V') AR

The computation of belief change extensions can be expressed in terms of QBFs as follows:
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Theorem 4.2 Let B = (K, R,C) be a belief change scenario ifip, let V' = Var(B) be the
atoms occurring inB, and letV,, = {p., | p € V'} be a set of variables disjoint froid and V".
Furthermore, letEQ C {p = p' | p € Var(B)} be a set of equivalences and let C V,, be
defined such that,, € M iff (p =p') € EQ.

Then,Cn(K’' U EQ U R) N Lp is a belief change extension Bfiff M is a model of the QBF

Tew[B] = 3VIV/(M[B] A C) A
A (ﬂpeq — =3VAV((p=p) A M[B] A C)).

peV

Note thatV,, constitutes the set of free variables Qf,;[B]. Intuitively, V., guesses a set
EQ of equivalences determining a belief change extensioB.ofThe first conjunct of7,,[B]
checks consistency, and the second conjunct checks whethés maximal with respect to set
containment.

We remark that in order to encode the computation of belief change extensions according to
their original formulation [12], wherein members @fare individually consistent with respect to
a belief change extensiof,..[B] is modified in the following way:

N\ @VIV(M[B] A —)) A
PpeCU{L}

/\ [_‘peq — /\ <E|VE|V'((pEp’) A M[B] A ﬁ@@))]

pevV PeCU{L}

For an illustration of the translatio®,,.|-], consider the belief change scenaBo= ({p A
q},{—p V —q},0) from Section 2.4. The free variables Bf,;[B] are given by{p.,, ¢e, }, SO we
get the following four interpretations serving as potential model&.of B):

M, = {} M; = {qe};
M, = {peq}§ M, = {pG(I?qeq}'

Since B has two belief change extensions, generated@ty = {p = p'} andEQ, = {q = ¢’}
(cf. Table 1), we expect/, and M3 to be models of7.,;[B]. Let us first look at the left conjunct,
VIV(M[B] A C), of 7.,,| B]. For B as above, we obtain

VIV (M[B] A C) =
Hpqp’q’<(p’ AG)NPeg—= P=D))A(Geg = (@=d)) N (—pV ﬂq)>- (3)
This QBF has three models, viz/;, M,, and Ms. Interpretation)M; is a model because both
conjuncts(p,, — (p = 7)) and(¢e, — (¢ = ¢)) of (3) evaluate to true (given that,, ¢., ¢
M), and since the remaining formulg A ¢') A (—p V —q) is consistent. Fol,, we similarly

getthat(q.,, — (¢ =¢))istrueandthatpy’ A ¢') A (pe;, — (p=7p")) A (mp V —q) is consistent,
since{p,p’,q'} isamodel of(p’ A ¢) A (p =) A (=p V —q). Ms is a model by analogous
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arguments. Howevef/, is not a model of (3). This is because, undéy, the propositional part
of (3) can be reduced to

AN NP=EDP)A@=4) A (=p Vv —g), (4)
which is not satisfiable.
Hence, onlyM;, M,, or M3 are possible models @f,..;[B].
Now we investigate the remaining conjunctsiof,|B], which are given by
o, = [ﬂpeq — ﬁﬂpqp’q’<(p5p’) AN@E ANG)N(peg = (P=D)) A
AMaw = (@=d) A (-0 V ~a)) |
and
Dy = [ﬂqeq — ﬂpqp’c/((q =@)NP NG N (peg — (=) A

ANGeg — (@=4) AN (—p V ﬂq)ﬂ-

First, consider interpretatiof/,. Given thatp., € M,, conjunct®, evaluates to true, and it
remains to analyse,. The latter formula evaluates to true if

@=)NP NN Deg = (P=1)) ANGeg — (@ =¢)) A (=pV —q) (5)

is not satisfiable. However, givet,, (5) reduces to (4), which is indeed unsatisfiable. Henég,
is a model of®,, and thus also a model @f.,;[B]. By a similar argument it follows that/; is
a model ofd; A ®,. It remains to see thal/; is not a model ofb; A ®,. In fact, it holds that
v (P1) = var, (P2) = 0. We show the case @, (the case ofb, follows analogously). Since
M, = {}, @, is false undeiV/, iff

Hpqp’q’<(p =P )VANPANC)N(peg = (0=0)) N geg = (=) AN (—pV ﬂq))
is true under\/;. Given that botlp., andg,, are false undet/;, the previous condition holds iff
= )ANE AN)N(=pV —q) (6)

is satisfiable. Clearly, this is the case, sifpep’, ¢'} is a satisfying truth assignment for (6). Thus,
M, is not a model ofb,. This shows thafl/; is not a model o[ B].

Concerning a QBF encoding faxT, it immediately follows from Theorem 4.2 that a belief
change scenari® = (K, R,C) with VV = Var(B) has a consistent belief change extension iff
V., 7...|B] evaluates to true. However, this encoding is in some sense not optimal because it is
possible to characterigexT in terms of a simpler QBF, corresponding to an ordinary satisfiability
problem, by observing that has a consistent belief change extensiokifty R U C'is consistent.
Consequently, we can state the following result:
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Theorem 4.3 Let B = (K, R, C) be a belief change scenario iy and letV = Var(B).
Then,B has a consistent belief change extensiodliff3V’(K’ A R A (') evaluates to true.

Next, we discuss the translations of the reasoning task®ICE and SKEPTICAL. We begin
with the encodings of the corresponding search problems.

Theorem4.4Let B = (K, R,C) be a belief change scenario ifi, and let¢ be a formula.
Furthermore, letV’ = Var(B), letW = Var(B) U Var(¢), and letV,, = {p., | p € V'} be a set
of globally new variables. Finally, consider the QBF

MB] = K'NV,<(V=V))AR

from Definition 4.1.
Then, forEQ C {p=p' | p € Var(B)} andM C V,, such thatlp = p’) € EQ iff p., € M,
the following properties hold:

1. On(K'U EQ U R) N Lp is a belief change extension Bfcontaininge iff M is a model of
the QBF

Tonoicel B, 6] = ToulB) A YW ((3V' MIB]) — ).

2. Cn(K'"U EQ U R)N Ly is a belief change extension Bfnot containingp iff M is a model
of the QBF

TenlB, 6] = TulB] A =W (BV'MIB)) — o).

Intuitively, the two encoding%..ic.[ B, ¢| andZ.,: [ B, ¢] are realised by (i) checking whether
a selected set of equivalences determines a consistent belief change exténsioR®, and
(i) checking whetherE' contains a given formula, or checking whethe# does not contain
¢. Task (i) is modeled using the basic encodihg;|B|, and Task (ii) is captured by a suitable
QBF expressing derivability (in case @f,....| B, ¢]) or non-derivability (in case o x| B, ¢))
of ¢ from the selected belief change extension. Observe that the selection process is facilitated in
terms of the members frofri,,, which represent the free variables®f, ;.. B, ¢] andZxc,+[ B, ¢].

Concerning the decision problemasioiCEandskKEPTICAL, QBF encodings for these tasks are
obtained from7 ;.| B, ¢] and Ty [ B, ¢| as follows. CHOICE is expressed by the closed QBF
AV, Tenoice| B, 6], Which states that there is some some/geiC V,, corresponding to a s€iQ)
of equivalences such that() determines a consistent belief change extengiantailing ¢, and
SKEPTICAL is realised by the closed QBf3V,, 7..+[ B, ¢|, which expresses that there is no set
M C V., corresponding to a séf() of equivalences such th#t) determines a consistent belief
change extensiof not entailingy. Thus, we obtain the following corollary:

Corollary 4.5 Let B be a belief change scenario agda formula. Then,

1. ¢ is contained in at least one consistent belief change extensighibf3V., 7.,vic[ B, ¢]
evaluates to true, and
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2. ¢ is contained in all belief change extensiondiif -3V, Tyt [ B, ¢] evaluates to true.

In contrast to taskxT, which can be expressed by a QBF containing only one sort of quantifier,
here we obtain encodingmssessing both existential quantifiers as well as universal dxewe
show in Section 5, this quantifier alternation is in some sense unavoidable and reflects the inherent
complexity of CHOICE andSKEPTICAL.

We remark that discarding the consistency conditiorcebICE can be easily incorporated
into the translatior®V,, T.n.ice|-, |- INdeed, it is a simple matter to check that there is a (possibly
inconsistent) belief change extension®f= (K, R, C') containing formulay iff the QBF

AVIVI(K' A R A C)) — (Ve Tonoice B, 8])

evaluates to true.

Finally, observe that Theorems 4.2, 4.3, and 4.4, as well as Corollary 4.5, provide encodings of
reasoning tasks faarbitrary belief change scenarios. In particular, they subsume the characteri-
sation of the corresponding reasoning tasks associated with revision and contraction, as illustrated
by the revision example discussed previously. For convenience, we list the tasks for revision:

REXT: Given a knowledge bag€ and some formula, decide whether a consistent belief change
extension ofB = (K, {a}, ) exists.

RcHoICE Given a knowledge bask and formulasy and¢, decide whether there is some con-
sistent choice revisio& 4.« containingg.

RsKEPTICAL: Given a knowledge bask and formulasy and¢, decide whethes is contained
in the skeptical revisiot +c.

The corresponding tasks for belief contraction, denoted byx1C CCHOICE, and GGKEPTICAL,
are defined accordingly.

4.2 Expressing Changed Knowledge Bases

Another interesting issue in the context of belief change is to determine the actual form of a given
knowledge base after a revision or contraction operation has been applied to it. This task has
already been analysed by Delgrande and Schaub [12], and, as we show in the following, it can
also be described in terms of QBFs. Before going into details, we briefly summarise the relevant
previous results [12], starting with some notation.

Given a belief change scenaribin languageC, along with a set of equivalencé®), C {p =
p' | p € P}, define

Prg, = {peP|p=p € EQ,}, and

Then, forg € Lp, let[¢]; be the result of replacing in eachp € P75 by —p. Furthermore, for
a set of functions ’

0 = {m |7 Ppg, — {T,1}},
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let | ¢} be the result of replacing in eachp € Pgg by 7/ (p).
Then, the result of applying revision or contraction to a given knowledge base is described by
the following formulas:

Proposition 4.6 ([12]) Let K be a finite knowledge base andsome formula. Then,
1. K+ais logically equivalent td/,_,[K]; A «, and
2. K—adis logically equivalent td/,; .rcrp, [ K7,

for (EQ,):c; being the family of sets of equivalences determining the belief change extensions of
(K,{a},0)and(K, 0, {—-a}), respectively.

We can express the models of revision and contraction by QBFs using the following construc-
tion.

Definition 4.2 Let B be a belief change scenario > with V' = Var(B), and letV,, = {p., |
p € Var(B)} be a set of new variables. Then,

TulB] = 3Ve(TewlB] A 3V MIB]).

Observe that7,,[B] is an open QBF havindg” as its set of free variables. We obtain the
following result:

Theorem 4.7 Let K be a finite knowledge base,some formula, andf = Var(K U {a}). Then,
1. M C V is a model ofK +« iff M is a model of7,, [(K, {«}, 0)], and

2. M C Vis amodel ofK —« iff M is a model of7,,[(K, 0, {—«a})].

By collecting all the models ok -+« or K —« into a single formula, we thus obtain a disjunctive
normal form of K after revision or contraction with.
To formally express this, given a belief change scen&rigith V' = Var(B), define

F[B] = \/ (M AN —|p>.
M€ Mod(Ty[B]) pe(V\M)
Then, we get the following characterisation, representing an alternative to Proposition 4.6:
Corollary 4.8 Let K anda be as in Theorem 4.7. Then,
1. K+« is logically equivalent ta”[( K, {a}, 0)], and

2. K—a s logically equivalent ta'[( K, 0, {—a})].
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For illustration of transformatior?,,[-|, consider again the belief change scenaBio=
({p A ¢}, {—p VvV —q},0). As already discussed in Section 2 ,possesses the skeptical revi-
sion Cn({p = —q}), which can be rewritten asn({(p A =q) V (-p A ¢)}). Thus, in virtue of
Theorem 4.7, we expe¢p} and{q} to be the models of

T.[B] = aveq(ygm[g] A av’M[B]).
We first compute the models of the QBF
Tewe[B] A IV M[B]. (7)

The free variables of (7) are given by, UV = {p.,, ¢¢, } U {p. ¢}. As argued previously/. .| B]
is true under interpretatiod®., } and{q.,}. In fact, since7...[B] has no free variables frof, it
holds that{p.,} U U and{¢.,} U U are also models df.,;[B], for any set/ C V. Consider now
the second conjunct of (7), which is given by

W (0 A Q) A Py = =P) A g = (€=4)) A (9 V ~0)).
This formula is obviously true under the following interpretations:

Ml = {pe(I7p}7 M2 = {qeq7Q}7

as well as under every interpretation in which beth and ¢., are false. Thus, only/; and
M, satisfy both conjuncts of (7). Taking the existential closure of QBF (7) with respect to the
variablesp., andq.,, we get tha{p} and{q} are the only models df,,[B]. Accordingly, we get

F[Bl=(p A —q) V (mp A q).

5 Complexity Results

In this section, we analyse the computational complexity of the tasks considered so far. Addition-
ally, we also deal with the complexity of checking whether a given set of equivalences determines
some consistent belief change extension of a given belief change scenario.

A particular advantage of our reduction approach is that upper complexity bounds are derived
directly from the respective QBF encodings. This is due to the fact that our QBF translations are
polynomial in the size of a given belief change scenario, and that the complexity of evaluating a
given QBF® is determined by the quantifier order®f For each of the upper bounds obtained in
this fashion, we show also that they atdct, i.e., they possess a matching lower bound. The results
presented here strengthen a previous complexity analysis given by Delgrande and Schaub [11].

In what follows, we assume that the reader is familiar with the basic concepts of complexity
theory (see, e.g., [40]). For convenience, we briefly recapitulate the definitions and some elemen-
tary properties of the complexity classes considered in the following. As usual, for any complexity
classC', by co-C' we understand the class of all problems which are complementary to the problems
inC.
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Four complexity classes are relevant here, &, D, 2, andIlf. The classNP consists
of all decision problems which can be solved with a nondeterministic Turing machine working
in polynomial time; D¥ is defined as the class of all problems which can be described as the
conjunction of two (independent) problems frafi® and coNP; X’ is the class of all problems
solvable on a nondeterministic Turing machine in polynomial time having access to an oracle for
problems inNP; finally, I1Y = co-X7.

Observe thal\P, X", andIIf are part of the polynomial hierarchy, which is given by the
following sequence of objects: the initial elements are

A=yl =118 =P,
and, fori > 0,
AP =P $P=NP™, and IIF = coNP 1.

Here,P is the class of all problems solvable on a deterministic Turing machine in polynomial time,
and, for complexity classes and A, by C4 we understand theslativised versiorf C, consisting

of all problems which can be decided by Turing machines of the same sort and time bound as in
C, only that the machines have access to an oracle for problems Ibholds that>? = NP,

»P = NPYP, andIl} = co-NP™'. A problem is said to be at thieth levelof the polynomial
hierarchy iffitis inA}, ; and eithe; -hard orlI; -hard.

The clasD?” is part of a family of complexity classés., k¥ > 1, whereD? = D? and each
D?Z consists of all problems expressible as the conjunction of a probleny iand a problem in
I17. Notice that, for allk > 1, X € Dy C X/, holds; in fact, both inclusions are widely
conjectured to be strict. Moreover, any problenbifi can be solved with tw&; oracle calls, and
is thus intuitively easier than a problem complete Agf.

In the same way as the satisfiability problem of classical propositional logic is the “proto-
typical” problem ofNP, i.e., being arNP-complete problem, the satisfiability problem of QBFs
possessing — 1 quantifier alternations is the “prototypical” problem of th¢h level of the poly-
nomial hierarchy. More specifically, the following property holds:

Proposition 5.1 ([59]) Given a propositional formula whose atoms are partitioned into> 1
setsV), ..., V;, deciding whethedV,V1,3V5...QV;¢ evaluates to true i&F-complete, where
Q = Jif i is odd andQ = V if i is even. Moreover, the problem remaii-hard even if¢ is in
conjunctive normal form andlis odd, or if¢ is in disjunctive normal form anglis even.

From this result it follows that the evaluation problem of QBFs of fariq3V,vis ... QVie is
I17-complete, wher® = V if i is odd andQ = Fif i is even. As well, the problem remains
I17-hard even ifp is in disjunctive normal form andlis odd, or if¢ is in conjunctive normal form
and: is even.

Given the above characterisations, we can estimate upper complexity bounds for the decision
problems discussed in Section 4 by simply inspecting the quantifier order of the respective QBF
encodings. This can be argued as follows. First of all, by applying the transformation rules de-
scribed in Proposition 3.2, each of the above QBF encodings can be transformed in polynomial
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time into a closed QBF in prenex form. Then, by invoking Proposition 5.1 and observing that
completeness of a decision probldmfor a complexity clas€’ implies membership ob in C,
the quantifier order of the resultant QBFs determines in which class of the polynomial hierarchy
the corresponding decision problem lies.

Applying this method to the decision problerB&T, CHOICE, and SKEPTICAL, we get the
following results. To begin with, according to Theorem 4.3, we havegkatlies in NP. Hence,
REXT and EXT are also inNP because they are just special casegxf. Furthermore, the
encoding3Ve, T.neice| B, ¢] for CHOICE can be transformed into a QBF of prenex fafii; Vi1,
and, dually, the encoding3V,, Z.,t[ B, ¢] for SKEPTICAL can be transformed into a QBF of
prenex formvZ,3Z,p, where both) andy are purely propositional. ThusHoICEis in X1, and
SKEPTICAL is in IIY. Similar to the case ofxT, ¥1 is also an upper bound ford®oice and
CcHoicE, andII} is an upper bound for &ePTICAL and CSKEPTICAL.

Concerning lower complexity bounds, it turns out that all of the above given estimations are
strict, i.e., the considered decision problems are hard for the respective complexity classes. Sum-
marising, we can state the following results:

Theorem 5.2 The decision problemsxT, CHOICE, and SKEPTICAL, as well as its variants for
revision and contraction, enjoy the following completeness properties:

1. EXT, REXT, andCEXT are NP-complete;
2. CHOICE, RcHoICE, andCcHoICE are ¥£-complete; and

3. SKEPTICAL, RSKEPTICAL, andCSKEPTICAL are IT -complete.

Thus, the completeness results fwroICEandSKEPTICAL, as well as for their specialisations
for revision and contraction, imply that, unless the polynomial hierarchy collapses, itis not possible
to efficiently represent these tasks in terms of QBFs having a prenex form with only one sort of
guantifier, i.e.these tasks cannot be polynomially reduced to standard propositional ldgitce,
under the above proviso, the encodings described in Corollary 4.5 cannot be simplified further to
avoid an inherent quantifier alternation.

Rounding off our complexity analysis, we deal with the problem of checking whether a given
set of equivalences determines some consistent belief change extension of a given belief change
scenario.

Theorem 5.3 Given a belief change scenari®and asetz@) C {p = p' | p € Var(B)}, checking
whetherE(Q determines some consistent belief change extensiBriob’-complete.
6 Implementation

Our methodology for expressing reasoning tasks associated with belief change scenarios in terms
of quantified Boolean formulas is motivated by the availability of several practicably efficient QBF-
solvers. Among the different tools, there is a propositional theorem-prbeete , based on
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Figure 1: Architecture to use different QBF-solvers.

binary decision diagram3a system using a generalised resolution principle [27], several provers
implementing an extended Davis-Putnam procedure [4, 46, 19, 24, 30], as well as a distributed
algorithm running on a PC-cluster [19].

The translations discussed in the previous section have been implemented as a special module
of the reasoning syste@QUIP [15, 14, 41, 17], a prototype tool for solving various nonmonotonic
reasoning tasks based on reductions to QBFs. Among ofQei$ handles tasks for logic-based
abduction, default logic, several types of modal nonmonotonic logics, and the stable model seman-
tics for logic programs.

The general architecture QFUIP is depicted in Figure 1QUIP consists of three parts, viz. the
filter program, a QBF-evaluator, and the interpret¢r . The input filter translates the given
problem description (in our case, a belief change scenario and a specified reasoning task) into the
corresponding quantified Boolean formula, which is then sent to the QBF-evaluator. The current
version ofQUIP provides interfaces to most of the sequential QBF-solvers mentioned above. For
the solvers requiring prenex normal form, the QBFs are translated into structure preserving nor-
mal form [13, 42]. The result of the QBF-evaluator is interpretedrity . Depending on the
capabilities of the employed QBF-evaluatim, provides an explanation in terms of the under-
lying problem instance (e.g., listing all consistent definitional extensions of a given belief change
scenario). This task relies on a protocol mapping of internal variables of the generated QBF into
concepts of the problem description which is providedilbgr

The systenQUIP has been implemented in C using standard tools like LEX and YACC (com-
prising a total of 2000 lines of code, excluding the used QBF-solver); it runs currently in a Unix
environment (Sun/Solaris and Linux), but is easily portable to other operating systems as well.

Initial tests on a series of randomly generated benchmarks, using the dystéen as un-
derlying reasoning engine, showed that the current approach can handle problems built of up to
300 variables within a couple of seconds, although these results are too preliminary to draw any
firm conclusions. As well, on the considered examples, the system outperforms a dedicated ad-hoc
implementation [10] realized in JAVA.

7 Conclusion

We have shown how belief revision and belief contraction, as defined using belief change scenarios,
can be axiomatised by means of quantified Boolean formulas. The general mechanism of our
approach is to translate (in polynomial time) a reasoning problem, expressed in terms of belief
change scenarios, into the evaluation problem for QBFs. Following this, we use a QBF-evaluator
to compute the resultant instances.

The approach has several benefits. First, the given axiomatics provides us with further insight

3The system can be downloaded from the Webttd://www.cs.cmu.edu/"modelcheck/bdd.html
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about how belief revision and contraction work within belief change scenarios. As well, this ax-
iomatisation allows us to furnish upper bounds for precise complexity results. Last but not least we
obtain a straightforward implementation technique of belief change in belief change scenarios by
appeal to the existing systeQUIP [15, 14]. Note that the availability of a parallel QBF-evaluation
solver [19] yields also in a direct way a distributed decision procedure for the encoded problems.
This convenient situation obviously avoids designing special-purposed distributed algorithms for
the problems under consideration.

The implemented operators possess good formal properties, in that most AGM postulates ob-
tain. In particular, the postulate of irrelevance of syntax is retained, and so the results of a belief
change operation is independent of the syntactic expression of its arguments. While the interest-
ing decision problems involving reasoning lie at the second level of the polynomial hierarchy, it
remains to be seen whether the implementation may nonetheless prove practical for large-scale
applications.

A Proofs

Proof 4.2 Letus write7,,,[B] as®; A ®,, where

¢, = IVIV/(M[B] A C), and
2 = A (b — ~IVIV((p=2) A MIB] A C))).

peV

Consider Conditions (a) and (b) of Proposition 4.1. We show that Condition (a) holdsigf
a model of®,, and that (b) holds iff\/ is a model ofd,.

To begin with, since, by hypothesig) and M/ satisfy the condition thay = p') € EQ iff
Deq € M, we can apply Proposition 3.1 and obtain thatu £Q U R U C' is satisfiable iffM is a
model of

avav’(K’ ARANCA (Vi < (V= v’))),

which is obviously equivalent t®,. It remains to show that Condition (b) holds i¥f is a model
of d,.

Consider some € V such thatlp = p’) ¢ FQ andK' UEQU {p = p'} URUC + L.
Invoking Proposition 3.1 again, it follows that the last condition holds exactly if the QBF

ﬂHVHV’<K’ Ap=p)ARACA (Vi < (V= v’)))

is true underM . In general, if we perform this test for eaphe V with (p = p’) ¢ EQ, we get
that Condition (b) is equivalent to the condition that the QBF

/\ —3V3Iv’ <K’ ANAp=p)ANRANCA (V< (V= V’))) (8)
peV,(p=p')¢EQ
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is true under)/. Observing that, forany € V, (p = ') € EQ iff p., € M, it follows that)M is a
model of (8) iff it is a model of

A e — ﬂHVHV’(K’ Ap=p) ARACA (Vi < (V= v’))). (9)

peV

Since (9) is logically equivalent t,, we conclude that Condition (b) holds iff is a model ofb,.
|

Proof 4.4 According to Theorem 4.2Cn(K'U EQ U R) N Lp is a consistent belief change
extension ofB iff M is a model of7Z.,,[B]. Thus, for proving Part 1 of the theorem, it suffices to
show that the following condition holds:

(x) ¢ € Cn(K'U EQ U R) iff M is a model oW ((3V'M[B]) — ¢).

Furthermore, sincé/ is a model ofvWWV ((3V'M[B]) — ¢) precisely if M is not a model of
YW ((IV'M[B]) — ¢), we get that Condition«) implies thaty ¢ Cn(K' U EQ U R) iff M is
a model of-VW ((3V'M[B]) — ¢), which in turn proves Part 2 of the theorem. It remains to
show that ¢) holds.

Sincep € Cn(K'U EQ U R) iff K'UEQU RU{—¢} is unsatisfiable, Proposition 3.1 implies
thaty € Cn(K' U EQ U R) iff M is a model of

~3W 3V (K’ ARA ¢ A (Vig<(V= v’))). (10)

Given that¢ does not contain any primed atoms, we can rewrite (10) by movingutside the
scope of the quantificatiofl’, thus obtaining

le(HW’(K’ ARNA (V< (V=V))) A wb),

which is in turn equivalent to

ﬁaw((av’M[B]) A w). (11)
But (11) is clearly equivalent to

VW((HV’M B]) — gb), (12)
and therefore we obtain thate Cn (K’ U EQ U R) iff M is a model of (12). [

Proof 4.7 Let K be a finite knowledge base,some formula, and = Var(K U {a}). Recall
that, for any setZQ of equivalencesPro = {p € P |p=p’ € EQ} andPgzz = P \ Prq.

1. ConsiderB = (K, {a},0) in Lp. Suppose thal/ C V is a model ofK +a. By Proposi-
tion 4.6, there is a consistent belief change extensignr= Cn(K’ U EQ;, U{a}) N Lp of
B (for somei, € I) such thaf K';, A ais true underM. DefineM; = M N Pgq, and
My = M\ M;. By construction of formuld KJ;,, it follows that/, U M, is a model ofK,

7;0’
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whereM, = (V N Pzg. ) \ M. Hence, a simple renaming yields that U M; is a model
0
of K. It follows that)M U M{ U M, is a model of

K' A /\ (p=p) A .

P=p'€EQ,

By setting. = {p, | p =p' € EQ,,}, we getthatM U J U Mj U M; is a model of

M[B] = K' A /\ (peq — (pEp/)> A a,

peV

which in turn implies that\/ U J is a model o8V’ M|[B]. On the other hand, sindg,, is
a consistent belief change extensionhfTheorem 4.2 entails thatis a model of7,,; [ B].
Consequently) U J is a model ofT.,;[B] A 3V'M|[B], and therefore

T.[B] = aveq(zﬂ[B] A 3V’M[B]>

is true under/.

Conversely, assume thaf C V is a model of7,,[B]. Then, there is an interpretation
J C Vi such thath/ U J is a model of

Tew[B] A IV MIB]. (13)

In particular, we have thatis a model of7..;[ B], since the free variables @f,;[B] are from
Ve, Hence, according to Theorem 4.2, we get that= Cn(K' U EQ,;, U{a}) N Lpis a
consistent belief change extensioniffor EQ,, = {p = p' | pe, € J}. SinceK+a C E;,
for showing that\/ is a model ofK +«, it suffices to show that/ is a model ofE;,. This
can be seen as follows.

Given thatM/ U J is a model of (13), we have thaf U J is a fortiori a model o8V’ M| B].
Hence, there is some interpretatiofi C V' such that\/ U J U N’ is a model ofM[B].
From this, we obtain that/ U N’ is a model of

E'n N =)Ao

(p=p")€EQ;,

which in turn implies that\/ U N’ is a model ofCn (K’ U EQ;, U {a}). In particular,M/
must be a model of all those elements fram(K’' U EQ;, U {«}) which contain no atoms
from V’. In other words M is a model ofE;,, = Cn(K'U EQ;, U {a}) N Lp.

. ConsiderB = (K,0,{—a}) in Lp, and assume that/ C V is a model of K —q.
From Proposition 4.6, we obtain that there is some consistent belief change extension
E;, = Cn(K'UEQ;,) N Lp of B and somer® € II;, such that X |/ is true under

0

M, forII;, = {=f | =F - Prg,, — {T.1}}. Analogous to Part 1, define/; = M N Ppq,
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andM, = M \ M. SinceLKJf(? is true underV/, there is some¢/ C V N PTQiO such that
K is true undeV/; U J, and thereforél/; U J' is a model ofK’. Hence M, U M| U J'is a
model of
Kn N\ @=p) (14)
p=p'€EQ;,
Since no atoms froﬁXﬂP@iO occur in (14),M U MU J" is also a model of (14). Applying
similar arguments as in Part 1, it follows thet is a model of7,, [ B].

The proof of the converse direction proceeds analogously to Part 1.

Proof 5.2 Since the membership relations are already dealt with in the main body of the paper,
it remains to show that the problerexT, CHOICE, and SKEPTICAL, as well as its variants for
revision and contraction, are hard for the respective classes.

1. RexT is NP-hard because a formulais satisfiable iff the belief change scenafy, =
({¢},{T},0) has a consistent belief change extension. SimilartyCis NP-hard because
¢ is satisfiable iff Bo = ({¢},0,{—L}) possesses a consistent belief change extension.
Either of these properties implies trex T is NP-hard as well.

2. We show that RHoICE and GcHoICE are X)'-hard; similar to the above,?-hardness of
CHOICEIs then an immediate consequence.

We first deal with @HOICE. According to Proposition 5.1, checking whether a closed QBF
® of form 3PVQ¢, whereg is a propositional formula in disjunctive normal form afdJ

Q is a partition of Var(¢), is XF'-hard. In order to show.Z-hardness of €HOICE, we
construct a polynomial-time transformation mapping each closed ®BfRhe above form
into a pair (B¢, ¢*), where B = (K, 0, {—-«a}) is a belief change scenario agd is a
formula, such tha® is valid iff there is a consistent choice contractiin-.cc containinge*.

The construction of(, «, and¢* is as follows. FotP = {py,...,p,}, 1etR = {ry,...,r,}
be a set of new atoms not occurringliar(¢). Define
K = {pl/\rl|2:1,,n}, and
a = \/(p, A 1),
=1

and let¢* be the result of replacing ip each literal-p,;, for p, € P, byr; € R (1 <
j < n). We show thatb = 3PVQ¢ is valid iff there is a consistent belief change extension
Cn(K'U EQ,;,) N Lp of Be = (K, 0, {-a}) containinge*.

To begin with, observe that, for any consistent belief change exted8ioR”’ U EQ) N Lp
of B, it holds that

() eitherp; = p} € EQ orr; =1’ € EQ, but not both, for each < j < n.
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Assume thatPV(Q¢ is valid. Then, there is an interpretatiof)y C P such that for each
U C Q, SouU is amodel ofp. By construction ofy*, it follows thatS, U T, U U is a model
of ¢*, for Ty = {r; € R | p; € P\ Sy} and eaclV C (). Now define

EQ, = {pj=p;lpj€ St U{r;=r}|p;e P\ S}

Clearly, Cn(K' U EQ;,) N Lp is a consistent belief change extension3pf. We claim that

¢* € Cn(K'U EQ;,) N Lp.

Sinceg* € Lp, it suffices to show thak"UEQ, + ¢*. Let M'UN be a model oK"UEQ, ,
whereM’ C PPUR andN C PUQ U R. DefineN; = NN (PUR)andN, = N N Q.
Hence,N = N; U N,. Now, by definition of K and £Q,, it must hold thatV, = S, U T5.

But So UTy U U is a model ofp*, for anyU C Q; in particular, sinceV, C @, So U Ty U Ny

is a model of¢*. Therefore,N = N; U N, is a model ofp*. Since¢* contains no primed
atoms, it follows thafl/’ U N is also a model of*. This proves the relatiok” U EQ, - ¢*.
Hence, we showed thatPvQ¢ is valid only if there is consistent belief change extension of
B¢ containingg*.

Conversely, assume that € Cn(K'U EQ, ) N Lp for some consistent belief change ex-
tensionCn (K’ U EQ,,) N Lp of Bc = (K, 0, {—~a}). We show thaBPVYQ¢ is valid.

Observe that, according to Conditios) (we have eithep; = p; € EQ, orr; =1’ € EQ
but not both. Define

10!

Sy = {pj epP | Dj Ep;- € EQio}7 and
Ty = {r;eR|r;=r}€ EQ,},

and letWW, = S, U T,. Clearly,p; € S, iff r; ¢ Tp, for eachl < j < n. Furthermore,
Wy U Wy is a model ofEQ; . But, sinceVar(EQ;,) = Wy U Wy, andW; C P'U R, we
have thati?, U P’ U R’ is a model of EQ, , as well. Moreover}}, U P’ U R’ is a model
of K" U EQ, . Infact, foranyU C @, W, U P"U R"U U is a model ofK" U EQ, . Since,
by hypothesisK’ U EQ;, = ¢*, it follows thatV, U P’ U R" U U is a model ofp*, for any
U C Q. But¢* does not contain any primed atoms,I$p U U = Sy U Ty, U U must also be
a model ofp*, for anyU C (). Hence, by definition of*, and sincey; € S iff r; ¢ T, we
obtain thatS, U U is a modelp, for eachU C ). We just proved that there is somg C P
such that for eactl C @, ¢ is true underS, U U. This means thal PY(Q¢ is valid.

Now we deal with the case of¢doICE. Consider, K, «, and¢* as above. We claim that
® = IPVQq¢ is valid iff there is a consistent choice revisidit-.(—«a) containingg*. From
this, ¥2’-hardness of RHOICEis an immediate consequence.

To prove the claim, we must show thaétis valid iff there is a consistent belief change
extensionCn(K' U EQ;, U {—a}) N Lp of B = (K, {-a},0) containing¢*. Recall
that we demonstrated above thitis valid iff there is a consistent belief change exten-
sion Cn(K'U EQ,,) N Lp of Bo = (K,,{—-a}) containingy*. Furthermore, for any
EQ C {v =7 |v e PUR}, it holds thatCn(K'U EQ) N Lp is a consistent belief
change extension aBr = (K, 0, {—a}) iff Cn(K'UEQ U {—-a}) N Lp is a consistent
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belief change extension d3; = (K, {—a}, () (cf. also Theorem 4.1 of [12]). Hence, it
suffices to show that the following condition holds:

(xx) ¢* € Cn(K'UEQ) N Lp iff ¢* € Cn(K'U EQ U {-a}) N Lp, for any consistent
belief change extensio@in(K' U EQ) N Ly of Be.

Consider some consistent belief change extengio(k” U EQ) N Lp of Be. If ¢* €
Cn(K'U EQ)N Lp,theng* € Cn(K' U EQ U {—-a})N Lp, by monotonicity ofCn(-). So
supposey* € Cn(K'U EQ U {—a}) N Lp. We must show thak” U EQ + ¢* holds.

Let M’ U N be some model ok’ U EQ, whereM’ C P'U R'andN C PU RU Q. Since
Cn(K' U EQ)NLyp is a consistent belief change extensioef, £() satisfies Conditions),
i.e., forP = {py,...,poyandR = {ry,...,r,}, we have thap; = p’ € EQ orr; =1} €
EQ, but not both, for each < j < n. Define

N = N\(p;|r;=7r,€ EQ}U{r; | p; =1, € EQ}).

Obviously,M’ U N is a model of
K'UEQU{-a} = {p;Ari|i= 1,...,n}UEQU/\(ﬂp¢ Vo).
=1

Hence, since* € Cn(K'U EQ U {-a}), M’ U N is a model of¢*. Moreover, since)*
is a formula in disjunctive normal form, and no atom frdfmor R occurs negated in*, it
follows that, for anyS C P and anyl’ C R, M’ U N U S U T is also a model ofy*. In
particular,M’ U N is a model ofp*. This provesk” U FQ + ¢*.

. Again, we only show?-hardness of BKEPTICAL and GSKEPTICAL. To this end, we
exploit some results by Eiter and Gottlob [16] as well as by Delgrande and Schaub [11, 12].

Let P = {p1,...,pn} and@ = {q1, ..., ¢, } be two distinct sets of variables, and consider
a closed QBFD of form VP3Q¢, whereg is a propositional formula such th&tu @ =
Var(¢). Furthermore, leR = {r,...,r,} be a set of variables distinct frovar(¢), and
let v be a further variable not occurring iur(¢) or R. For K and« as defined in the proof
of CcHoICE above, define the following knowledge basg and formulass and~:

Ks = KUQU{v},
g = —aN@w—=¢ AN(xV...Vgqn — v), and

n

o= /\(pz'\/ﬁ').

=1

As shown by Eiter and Gottlob [16§ is valid iff v € Ks+,(3 A ~), where+, is the Satoh
revision operator. Furthermore, Delgrande and Schaub [11, 12] showel ¢hat3 A 7)
is equivalent taks+(8 A 7). Hence, we get that

o is valid iff v € Ks+(3 A 7). (15)
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Consequently, BKEPTICAL is I1{'-hard.
As for CSKEPTICAL, one can show thate Kgs+(3 A 7)iff v € Ks—(=3 V —). Hence,
in view of (15),117-hardness of 6KEPTICAL is an immediate consequence.

|

Proof 5.3 D¥-membership can be seen as follows. According to Proposition 4.1, given a belief
change scenari® = (K, R,C) and some sek) C {p = p' | p € Var(B)} of equivalences,
deciding whethe® () determines a consistent belief change extensias isfequivalent to

(i) deciding whether’ U FQ U R U C is consistent, and

(i) deciding whetherk’ U EQ U (p = p’) U R U C'is inconsistent, for each € Var(B) such
that(p = p') ¢ EQ.
Clearly, Task (i) is infNP and Task (ii) is in coNP. Hence, the combined problem isii’.
For showingD?-hardness, we consider the following well-kno®#h-complete problem [40]:

SAT-UNSAT: Given two propositional formulag and+, decide whethep is satisfiable and is
unsatisfiable.

We construct a polynomial transformation mapping each (gaig) of propositional formulas
into a belief change scenari® and some sek@ C {p =p' | p € Var(B)} of equivalences such
that

() if ¢ is satisfiable and) is unsatisfiable, the’() determines a consistent belief change
scenario ofB, and vice versa.

The construction of3 and £ is as follows. Letp and« be propositional formulas. Without
loss of generality, we can assume thai-(¢) and Var(¢)) are disjoint. Furthermore, lgtandq
be distinct atoms not occurring iViar(¢) U Var(vy). Then, define

B = ({r = ¢,0 = ¢} {p,¢},0), and
EQ = {p=p}U{v=17"|ve Var(¢)U Var(y)}.

It is easy to see that this construction obeys Conditign ( |
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