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Abstract

In this paper, we show how an approach to belief revision and belief contraction can be ax-
iomatised by means of quantified Boolean formulas. Specifically, we consider the approach of
belief change scenarios, a general framework that has been introduced for expressing different
forms of belief change. The essential idea is that for a belief change scenario(K, R,C), the
set of formulasK, representing the knowledge base, is modified so that the sets of formulas
R andC are respectively true in, and consistent with the result. By restricting the form of a
belief change scenario, one obtains specific belief change operators including belief revision,
contraction, update, and merging. For both the general approach and for specific operators, we
give a quantified Boolean formula such that satisfying truth assignments to the free variables
correspond to belief changeextensionsin the original approach. Hence, we reduce the problem
of determining the results of a belief change operation to that of satisfiability. This approach
has several benefits. First, it furnishes an axiomatic specification of belief change with respect
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the Austrian Science Fund Project under grants Z29-N04 and P15068-INF, as well as a Canadian NSERC Research
Grant.
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to belief change scenarios. This then leads to further insight into the belief change framework.
Second, this axiomatisation allows us to identify strict complexity bounds for the considered
reasoning tasks. Third, we have implemented these different forms of belief change by means
of existing solvers for quantified Boolean formulas. As well, it appears that this approach may
be straightforwardly applied to other specific approaches to belief change.

Keywords: belief change, quantified Boolean formulas

1 Introduction

In previous work, Delgrande and Schaub [12] developed a consistency-based framework for ex-
pressing belief change operators. The basic idea with respect to belief revision is that, given a
knowledge baseK and a sentenceα for revision,K andα are first expressed in disjoint lan-
guages, then the languages are coerced (via a maximisation process) to agree on truth values of
atoms wherever consistently possible, and finally the result is then expressed back in the original
language. Informally, in the maximisation step, models ofK are syntactically forced to correlate
with those ofα insofar as consistently possible. The inherent nondeterminism of the maximisation
process gives rise to two notions of revision: Inchoice revision, one suchbelief change exten-
sion is selected as the revised state; in general (skeptical) revision, the revised state consists of the
intersection of all such extensions. Belief contraction is defined similarly.

In this paper, we discuss a method to implement this approach to belief change, based on
reductions to quantified Boolean formulas. By a quantified Boolean formula (or QBF for short)
one understands a formula which is constructed like an ordinary propositional formula, except that
quantifiers ranging over propositional variables may also occur. Quantified Boolean formulas thus
belong to the language ofsecond-order logic. As well, they allow a compact representation of a
large class of problems. This latter point is reflected by the fact that the evaluation problem of
QBFs—i.e., the problem of determining the truth of a given QBF—is PSPACE-complete, whilst
the evaluation problem of QBFs having prenex normal form withi − 1 alternating (groups of)
quantifiers is complete for thei-th level of the polynomial hierarchy [50, 59].

The general mechanism of our approach is to translate (in polynomial time) a given reasoning
task into the evaluation problem for QBFs and then use a QBF evaluator to compute the resultant
instances. The existence of efficient QBF solvers, such as the systems developed by Cadoliet
al. [4], Rintanen [46], Feldmannet al. [19], or Giunchigliaet al. [24], makes such a rapid proto-
typing approach practicably applicable. A similar approach for solving various reasoning tasks be-
longing to the area of nonmonotonic reasoning has been realised in the systemQUIP [15, 41, 17].
This prototype implementation currently handles the computation of the main reasoning tasks for
logic-based abduction, default logic, several types of modal nonmonotonic logics, and equilibrium
logic, a generalisation of the stable model semantics for logic programs. We have implemented the
translations for belief change problems by incorporating them into the systemQUIP.

Reduction methods to QBFs naturally generalise similar approaches for problems inNP; these
latter problems can in turn be solved by translating them (in polynomial time) toSAT, the satisfia-
bility problem of classical propositional logic (an application of this kind in Artificial Intelligence
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is described, e.g., by Kautz and Selman [26]). Besides the implementation of different nonmono-
tonic reasoning tasks as realised by the systemQUIP, successful applications based on reductions
to QBFs have also been applied to conditional planning [45].

There are several reasons why we are interested in a reformulation of the belief change ap-
proach of Delgrande and Schaub [12] using QBFs. First, it provides a straightforward implemen-
tation of the general framework by appeal to extant QBF solvers. Second, in the original approach,
several steps were expressed at the metalevel. In particular, there is a metatheoretic step in which
pairs of atoms are asserted to be equivalent wherever consistent. Here in contrast, we obtain an
object-level representation of the approach. In fact, we provide an axiomatisation of the original
belief change method in terms of QBFs by constructing suitable translation schemas such that there
is a one-to-one correspondence between the satisfying assignments to the free propositional atoms
of the QBFs and the belief change extensions obtained in the original framework. This in turn leads
to further insight into the original approach. Finally, the expression of belief change problems in
terms of QBFs gives a direct way to estimate the computational complexity of the considered rea-
soning tasks. More specifically, by using the respective QBF encodings, we show that reasoning
from choice revision is complete forΣP

2 , and, dually, reasoning from skeptical revision is complete
for ΠP

2 . Additionally, we also discuss the complexity of other decision problems associated with
belief change. In this regard, we generalise and improve on earlier reported results [11].

In the next section, we briefly introduce notions of belief change as well as those aspects of
belief change scenarios that interest us. In Section 3, we similarly introduce quantified Boolean
formulas. Section 4 gives the polynomial-time constructible reductions of the relevant reason-
ing tasks into QBFs. Section 5 discusses complexity issues, while Section 6 briefly sketches our
implementation of the reductions. Section 7 supplies some concluding remarks.

2 Belief Change and Belief Change Scenarios

2.1 Basic Notation

We deal with propositional languages and use the logical symbols>, ⊥, ¬, ∨ , ∧ , → , and≡ to
construct formulas in the standard way. We writeLP to denote a language over an alphabetP of
propositional variablesor atoms. Formulas are denoted by lower-case Greek letters (possibly with
subscripts). Disjunctions of form

∨
i∈I ψi are assumed to stand for the logical constant⊥whenever

I = ∅, and likewise conjunctions of form
∧
i∈I ψi with I = ∅ stand for>. A literal, L, is either an

atomp (a positive literal) or a negated atom¬p (a negative literal). The set of all atoms occurring
in a formulaφ is denoted byVar(φ). Similarly, for a setS of formulas,Var(S) is the set of all
atoms occurring in elements ofS, i.e.,Var(S) =

⋃
φ∈S Var(φ).

The (propositional) derivability operator,̀, is defined in the usual way, and likewise its
semantic counterpart,|=. The deductive closureof a setS ⊆ LP of formulas is given by
CnP(S) = {φ ∈ LP | S ` φ}. We say thatS is deductively closediff S = CnP(S). Fur-
thermore,S is consistentproviding⊥ /∈ CnP(S). If the language is clear from the context, we
usually drop the index “P” from CnP(·) and simply writeCn(·). Knowledge bases, or, equiva-
lently, belief sets, are initially identified with deductively-closed sets of formulas; later we relax
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this restriction. We useK,K1, . . . to denote knowledge bases.
Given an alphabetP, we define a disjoint alphabetP ′ asP ′ = {p′ | p ∈ P}. Then, forα ∈ LP ,

we defineα′ as the result of replacing inα each atomp fromP by the corresponding atomp′ in P ′

(so implicitly there is an isomorphism betweenP andP ′). This is defined analogously for sets of
formulas.

2.2 General Approaches to Belief Change

A common approach in belief revision and other belief change functions is to provide a set of
rationality postulatesthat constrain the results of any such function. TheAGM approachof Al-
chourŕon, G̈ardenfors, and Makinson [1, 21] provides the best-known set of such postulates. Belief
states are modelled by deductively-closed sets of sentences, calledbelief sets, where the underly-
ing logic includes classical propositional logic.K + α, theexpansionof K by α, is defined to be
Cn(K ∪ {α}). K⊥ is the inconsistent belief set (i.e.,K⊥ = LP).

A revision function, +̇, is a mapping from2LP ×LP to 2LP satisfying the following postulates:

(K+̇1) K+̇α is a belief set.

(K+̇2) α ∈ K+̇α.

(K+̇3) K+̇α ⊆ K + α.

(K+̇4) If ¬α 6∈ K, thenK + α ⊆ K+̇α.

(K+̇5) K+̇α = K⊥ iff |= ¬α.

(K+̇6) If |= α ≡ β, thenK+̇α = K+̇β.

(K+̇7) K+̇(α ∧ β) ⊆ (K+̇α) + β.

(K+̇8) If ¬β 6∈ K+̇α, then(K+̇α) + β ⊆ K+̇(α ∧ β).

Informally, these postulates state that the result of revisingK by α is a belief set in whichα is
believed; whenever the result is consistent, revision consists of the expansion ofK by α; the only
time thatK⊥ is obtained is whenα is inconsistent; and revision is independent of the syntactic
form of K andα. The last two postulates assert that in revising by a conjunction, an expansion
with a conjunct is employed where consistent.

Contraction is the dual notion of revision, in which beliefs are retracted but no new beliefs
are added. Postulates(K−̇1)–(K−̇8) governing a contraction function, denoted−̇, are similarly
given. The intuition underlying revision and contraction is that an agent receives new information
concerning a static world or domain. Katsuno and Mendelzon [25] explore the distinct notions of
beliefupdateanderasurein which an agent changes its beliefs in response to changes in its external
environment. As well, belief setmerging, in which the contents of two belief sets are combined, is
addressed for example by Liberatore and Schaerf [33] and Konieczny and Pino Pérez [28].

There has also been work on specific revision operators based on thedistancebetween models
of a knowledge base and a sentence to be incorporated in the knowledge base [3, 53, 7, 48, 56, 20].
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For example, in the approach of Dalal [7], the revision operator measures the distance between
interpretations by the number of propositional variables on which the interpretations differ. It is
shown that this operator satisfies the AGM postulates.

Another direction in belief revision is to assume that revision is not carried out on a belief set
itself, but rather on a finite subset of the theory. Belief change operations would take place with
respect to thisbelief base, while the underlying belief set would correspond to the deductive closure
of this base. The notion of belief base revision is proposed by Makinson [36], and independently,
with respect to database systems, by Fagin, Ullman, and Vardi [18]. These approaches are fully
explored by Nebel [39]. While conceptually simple, revision in these approaches frequently relies
on arbitrary syntactic distinctions.

There has been some work with respect to implementations. For example, the afore-
cited distance-based approaches admit straightforward implementations, see [9, 5]. Otherwise,
Williams [55] provides an example of a computational model for belief base revision; see also
[52, 2] for other approaches. The belief change approach discussed in the present paper has also
been implemented as a JAVA program [10].

Finally, Liberatore and Schaerf [31, 32] discuss a method which is related to our results. Sim-
ilar to the ideas of Winslett [57], they employ propositional circumscription [37, 34] in order to
express several belief-revision operators, specifically those defined by Borgida [3], Ginsberg [23],
Dalal [7], Satoh [48], and Winslett [58]. The primary point of distinction between the present
approach and the aforecited works is that we begin with a general framework in which a suite
of diverse operators is defined (see following), whereas previous work has for the most part only
addressed belief revision.

2.3 Belief Change via Belief Change Scenarios

In previous work [12], a consistency-based framework for expressing a suite of belief change
operators is developed. The intent was to specify an approach that has good formal properties,
but that particularly lent itself to implementation. The approach is discussed formally in the next
section; here we give an informal introduction to the approach to revision. As a starting point, it
is clear that the syntactic form of a sentence does not give a firm indication as to which sentences
should be included in a revisionK+̇α. Alternately, one can consider interpretations, and look at
the models ofK andα. Informally, if K ∪ {α} is unsatisfiable, a model ofK+̇α should contain
models ofα, but in a sense retaining aspects of models ofK that do not conflict with those ofα.

We accomplish this by first expressingK andα in different languages, in essence replacing
every occurrence of an atomic sentencep in K by a new atomic sentencep′ yielding knowledge
baseK ′, and leavingα unchanged. Under this relabelling, the models ofK ′ andα are independent
andK ′ ∪ {α} is satisfiable (assuming that bothK andα are satisfiable). The models ofK ′ andα
are linked by asserting that the languages are (with respect to truth conditions) the same wherever
consistently possible. That is, for everyp ∈ P, we assert thatp ≡ p′ wherever consistently
possible. We obtain a set of such equivalences, call itEQ, such thatK ′ ∪ {α} ∪EQ is consistent.
A model ofK ′ ∪ {α} ∪ EQ then will be a model ofα where the truth values of atomic sentences
in K ′ andα are linked wherever possible. A candidate “choice” revision ofK by α then consists
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of K ′ ∪ {α} ∪ EQ re-expressed in the original language. General revision corresponds to the
intersection of all candidate choice revisions.

For example, considerK andα, where

K = Cn({(p ∨ q) ∧ r}) and α = (¬p ∨ ¬q) ∧ ¬r.

Renaming the atoms inK givesK ′ = Cn({(p′ ∨ q′) ∧ r′}). Clearly,K ′ ∪ {α} is consistent,
even thoughK ∪ {α} is not. In the step to link the interpretations ofK ′ and α, we obtain
thatCn(K ′ ∪ {α} ∪ {p′ ≡ p, q′ ≡ q}) is consistent, butCn(K ′ ∪ {α} ∪ {p′ ≡ p, q′ ≡ q, r′ ≡ r})
is not. Hence, we takeEQ = {p′ ≡ p, q′ ≡ q}. IntersectingCn(K ′ ∪ {α} ∪ EQ) with the original
language yieldsCn({(p ≡ ¬q) ∧ ¬r}) as the revised knowledge base.

The general framework allows the expression of contraction and integrity constraints, as well
as update, erasure, and merging operations. Significantly, the approach is independent of how the
knowledge base and formula for revision are represented. In particular, the original and revised
knowledge base can be represented by a formula whose deductive closure gives the corresponding
belief set. As well, the scope of a revision (for example) can be restricted to just those propositions
common to the knowledge base and sentence for revision. The approach (essentially) satisfies the
AGM postulates [1], with the exception of the revision postulate(K+̇8) and the contraction pos-
tulate(K−̇8), and the contraction “recovery” postulate(K−̇5). The approach to belief change is
founded on the same intuitions asconsistency-basedreasoning methodologies in Artificial Intelli-
gence. Examples of such systems include Theorist [43], diagnosis from first principles [44], and
the assumption-based approach to truth maintenance [8].

2.4 Formal Elements of the Belief Change Framework

Following Delgrande and Schaub [12], we define abelief change scenarioin languageLP as a
tripleB = (K,R,C), whereK,R, andC are sets of formulas inLP . Informally,K is a knowledge
base that will be changed such that the setR will be implied by the result, and the setC will be
consistent with the result. For a base approach to revision we takeC = ∅, and for a base approach
to contraction we takeR = ∅.

We extend our notationVar(·) to belief change scenarios in the obvious way, i.e., forB =
(K,R,C), we defineVar(B) = Var(K ∪ R ∪ C). In the definition below, “maximal” is with
respect to set containment (rather than set cardinality). The following definition is central:1

Definition 2.1 LetB = (K,R,C) be a belief change scenario inLP . DefineEQ as a maximal
set of equivalencesEQ ⊆ {p ≡ p′ | p ∈ P} such that

K ′ ∪ EQ ∪R ∪ C 6` ⊥.

Then,
Cn(K ′ ∪ EQ ∪R) ∩ LP

1For simplicity, we adopt a slightly simpler formulation ofC here than originally given [12]. Here, we require that
members ofC are put together in determining a belief change extension; in the original formulation [12], members
of C are taken individually in determining a belief change extension—that is,K ′ ∪ EQ ∪ R ∪ {¬φ} 6` ⊥ for every
φ ∈ C ∪ {⊥}. We discuss in Section 4.1 how this straightforward yet more involved extension can be accomplished.
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Table 1: (Skeptical) revision examples.

K ′ α EQ K+̇α
p′ ∧ q′ ¬q {p ≡ p′} p ∧ ¬q
¬p′ ≡ q′ ¬q { p ≡ p′, q ≡ q′ } p ∧ ¬q
p′ ∨ q′ ¬p ∨ ¬q { p ≡ p′, q ≡ q′ } p ≡ ¬q
p′ ∧ q′ ¬p ∨ ¬q {p ≡ p′}, {q ≡ q′} p ≡ ¬q

is a (consistent) belief change extensionofB.
If there is no such setEQ, thenB is inconsistent, andLP is defined to be the sole(inconsistent)

belief change extensionofB.

So, a (consistent) belief change extension ofB is a modification ofK in which R is
true, and in whichC is consistent. We say thatEQ determinesthe belief change extension
Cn(K ′ ∪ EQ ∪R) ∩ LP of B. Clearly, for a given belief change scenario, there may be more
than one belief change extension.

Definition 2.1 provides a very general framework for specifying belief change. In what follows,
we give specific definitions for the belief change operationsrevision andcontraction. In these
definitions, we make use of the notion of aselection function, c, that for any setI 6= ∅ has as
valuec(I) some element ofI. These primitive functions can be regarded as inducing selection
functionsc′ on belief change scenarios, such thatc′(B) has as value some belief change extension
of B = (K,R,C). This is a slight generalisation of selection functions as found in the AGM
approach [21].

Definition 2.2 (Revision) Let K be a knowledge base andα a formula, and let(Ei)i∈I be the
family of all belief change extensions of(K, {α}, ∅). Then,

1. K+̇cα = Ei is a choice revisionof K by α with respect to some selection functionc with
c(I) = i; and

2. K+̇α =
⋂
i∈I Ei is the(skeptical) revisionofK byα.

Table 1 gives examples of (skeptical) revision. The first column gives the original knowledge
base, but with atoms already renamed. The second column gives the revision formula, while the
third gives theEQ set(s), and the last column gives the results of the revision. For the first and last
column, we give a formula whose deductive closure gives the corresponding belief set.

In detail, for the last example, we wish to determine

{p ∧ q}+̇(¬p ∨ ¬q).

We find maximal setsEQ ⊆ {p ≡ p′, q ≡ q′} such that

{p′ ∧ q′} ∪ EQ ∪ {¬p ∨ ¬q} ∪ ∅ 6` ⊥.
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Table 2: (Skeptical) contraction examples.

K ′ α EQ K−̇α
p′ ∧ q′ q {p ≡ p′} p

p′ ∧ q′ ∧ r′ p ∨ q {r ≡ r′} r
p′ ∨ q′ p ∧ q { p ≡ p′, q ≡ q′ } p ∨ q
p′ ∧ q′ p ∧ q {p ≡ p′}, {q ≡ q′} p ∨ q

We get two such sets of equivalences, viz.EQ1 = {p ≡ p′} andEQ2 = {q ≡ q′}. Accordingly,
we obtain

{p ∧ q}+̇(¬p ∨ ¬q) =
⋂
i=1,2Cn({p′ ∧ q′} ∪ EQ i ∪ {¬p ∨ ¬q}) ∩ LP .

In addition to(¬p ∨ ¬q), we get(p ∨ q), jointly implying (p ≡ ¬q).

Contraction is defined similarly to revision.

Definition 2.3 (Contraction) LetK be a knowledge base andα a formula, and let(Ei)i∈I be the
family of all belief change extensions of(K, ∅, {¬α}). Then,

1. K−̇cα = Ei is a choice contractionofK byα with respect to some selection functionc with
c(I) = i; and

2. K−̇α =
⋂
i∈I Ei is the(skeptical) contractionofK byα.

We note that the previous revision and contraction operations only partially satisfy Harper’s
Identity, given byK−̇α = K ∩ (K+̇¬α), viz. they satisfy the relationK−̇α ⊆ K ∩ (K+̇¬α).
Hence, in the current approach, revision and contraction are distinct operators, and not, as is usually
the case, interdefinable; see [12] for a fuller discussion.

Table 2 gives examples of (skeptical) contraction, using the same format and conventions as
Table 1. In detail, for the first example we wish to determine

{p ∧ q}−̇q.

We compute the belief change extensions of({p ∧ q}, ∅, {¬q}). We rename the propositions in
{p ∧ q} and look for maximal subsetsEQ of {p ≡ p′, q ≡ q′} such that

{p′ ∧ q′} ∪ EQ ∪ ∅ ∪ {¬q} 6` ⊥.

We obtainEQ = {p ≡ p′}, yielding

{p ∧ q}−̇q = Cn({p′ ∧ q′} ∪ {p ≡ p′} ∪ ∅) ∩ LP

= Cn({p}).
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3 Quantified Boolean Formulas

Quantified Boolean formulas (QBFs) generalise ordinary propositional formulas by the admission
of quantifications over propositional variables. As in first-order logic, quantifications are either
existentialor universal, represented by theexistential quantifier∃ and theuniversal quantifier∀,
respectively, and follow the intuitive meaning. For instance, the QBF

∀p ∃q ((p → q) ∧ (q → p))

evaluates to true, since for all truth assignments top, there exists a truth assignment toq, such that
the propositional formula(p → q) ∧ (q → p) evaluates to true. On the other, hand the QBF

∃p ∀q ((p → q) ∧ (q → p))

evaluates to false.
In general, QBFs are aconservative extensionof classical propositional logic, in the sense that

to each QBF we can assign a logically equivalent propositional formula. However, the advantage
of QBFs is their compactness: to express a QBF as a logically equivalent propositional formula,
one has to face an exponential increase of the formula size, in general. Furthermore, QBFs extend
classical propositional logic in such a way that reasoning over truth assignmentswithin the object
languagecan be expressed. A different way to view QBFs is to regard them as a subclass of
second-order logic, restricting predicates to be of arity zero, and therefore to consider formulas
without function symbols and object variables.

Historically, among the first logical analyses of systems dealing with quantifiers over proposi-
tional variables are the investigations due to Russell (“theory of implication” [47]) and Łukasiewicz
and Tarski (“erweiterter Aussagenkalkül” [35]), not to mention the monumentalPrincipia Math-
ematica [54]. The particular idea of quantifying propositional variables was extended in
Leśniewski’s system ofprotothetic logic[29, 49] where variables whose values aretruth functions
are allowed and quantification is defined over these variables.2 In the beginning of the seventies
of the last century, propositional quantification came into the spotlight of computer science, in
particular in the new and developing field of complexity theory [22], when evaluation problems
for QBFs were recognised as the prototypical problems for thepolynomial hierarchy[50] as well
as for the prominent complexity classPSPACE [38]. Details on the relation between QBFs and
complexity theory are given in Section 5.

Formally, the set of quantified Boolean formulas (QBFs) over alphabetP is inductively defined
as follows:

1. any propositional variablep ∈ P and any logical constant⊥,> is a QBF;

2. if Φ is a QBF, then(¬Φ) is a QBF;

3. if Φ andΨ are QBFs, then(Φ ∧ Ψ), (Φ ∨ Ψ), (Φ → Ψ), and(Φ ≡ Ψ) are QBFs;

2A more elaborate overview on these early historical aspects of propositional quantification can be found in§28 of
Church’sIntroduction to Mathematical Logic[6].
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4. if p ∈ P is a propositional variable andΦ is a QBF, then(∃pΦ) and(∀pΦ) are QBFs;

5. the only QBFs are those given by 1–4.

We tacitly assume the usual conventions concerning the omission of parentheses in formulas
where no ambiguities can arise. Furthermore, we use upper-case Greek letters as meta-variables
for QBFs, whilst lower-case Greek letters stand for propositional formulas (i.e., quantifier-free
QBFs). Our definition of quantified Boolean formulas is rather unrestricted in two ways: First, in
contrast to the formalisation of QBFs in some papers of the relevant literature, we allow quantifiers
to appearanywherein a formula. Second, we do not stipulate any restriction on the quantification,
i.e., we do not require that a quantified variablep in QpΦ (Q ∈ {∃,∀}) occurs in the scopeΦ of
Qp. For example,(∃p (q ∧ r)) is a QBF, and so is(∃p (∀p (p → q))).

The semantics of QBFs is defined as follows. First, some ancillary notation. An occurrence of a
propositional variablep in a QBFΦ is freeiff it does not appear in the scope of a quantificationQp
(Q ∈ {∀,∃}), otherwise the occurrence ofp is bound. If Φ contains no free variable occurrences,
thenΦ is closed, otherwiseΦ is open. Furthermore,Φ[p1/φ1, . . . , pn/φn] denotes the result of
uniformly substituting each free occurrence of a variablepi in Φ by a formulaφi, for 1 ≤ i ≤ n.

By an interpretation, M , we understand a set of atoms. Informally, an atomp is true underM
iff p ∈M . In general, the truth value,νM(Φ), of a QBFΦ under an interpretationM is recursively
defined as follows:

1. if Φ = >, thenνM(Φ) = 1, and ifΦ = ⊥, thenνM(Φ) = 0;

2. if Φ = p is an atom, thenνM(Φ) = 1 if p ∈M , andνM(Φ) = 0 otherwise;

3. if Φ = ¬Ψ, thenνM(Φ) = 1− νM(Ψ);

4. if Φ = (Φ1 ∧ Φ2), thenνM(Φ) = min({νM(Φ1), νM(Φ2)});

5. if Φ = (Φ1 ∨ Φ2), thenνM(Φ) = max ({νM(Φ1), νM(Φ2)});

6. if Φ = (Φ1 → Φ2), thenνM(Φ) = 1 if νM(Φ1) ≤ νM(Φ2), andνM(Φ) = 0 otherwise;

7. if Φ = (Φ1 ≡ Φ2), thenνM(Φ) = 1 if νM(Φ1) = νM(Φ2), andνM(Φ) = 0 otherwise;

8. if Φ = ∀pΨ, thenνM(Φ) = νM(Ψ[p/>] ∧ Ψ[p/⊥]); and

9. if Φ = ∃pΨ, thenνM(Φ) = νM(Ψ[p/>] ∨ Ψ[p/⊥]).

We say thatΦ is true underM iff νM(Φ) = 1, otherwiseΦ is false underM . If νM(Φ) = 1,
thenM is amodelof Φ. The set of all models ofΦ is denoted byMod(Φ). If Mod(Φ) 6= ∅, thenΦ
is said to besatisfiable. If Φ is true under every interpretation, thenΦ is valid. As usual, we write
|= Φ to express thatΦ is valid.

It is easily seen that the truth value of a closed QBF is either true under every interpretation or
false under every interpretation, i.e., a closed QBF is either valid or unsatisfiable. In general, the
truth value of an arbitrary QBF under an interpretation depends only on its free variables. Hence,
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without loss of generality, for determining the truth value of QBFs, we may restrict our attention
to interpretations which contain only atoms occurring free in the given QBF.

If a closed QBFΦ is valid, we say thatΦ evaluates to true, and, correspondingly, ifΦ is
unsatisfiable, we say thatΦ evaluates to false. Two sets of formulas (i.e., ordinary propositional
formulas or QBFs) arelogically equivalentiff they possess the same models. Thus, formulasΦ
andΨ are logically equivalent iffΦ ≡ Ψ is valid.

In the sequel, we use the following abbreviations in the context of QBFs: For an indexed set
V = {p1, . . . , pn} of propositional variables and a quantifierQ ∈ {∀,∃}, we letQV Φ stand for the
formulaQp1Qp2 · · ·Qpn Φ. An analogous notation applies ifV is a stringp1 . . . pn of variables.
Moreover, letS = {φ1, . . . , φn} andT = {ψ1, . . . , ψn} be indexed sets of formulas. Then,S ≤ T
is an abbreviation for{φ1 → ψ1, . . . , φn → ψn}, andS ≡ T stands for{φ1 ≡ ψ1, . . . , φn ≡ ψn}.
Obviously,S ≡ T is logically equivalent to(S ≤ T ) ∪ (T ≤ S).

The two set operations≤ and≡ can of course also be applied in a composed manner. In
particular, forS andT as above andR = {ϕ1, . . . , ϕn}, we will make use of the expression

R ≤ (S ≡ T ), (1)

abbreviating the set of formulas
⋃n
i=1{ϕi → (φi ≡ ψi) }.

Whenever an indexed setS of formulas is used as a consecutive part of a QBF, we implicitly
understandS as the formula

∧
φ∈S φ. In this sense, forR,S, T as in (1), the expressionR ≤ (S ≡

T ) appearing within a QBF is synonymous to the formula
∧n
i=1(ϕi → (φi ≡ ψi) ).

Generally speaking, the operator≤ is a fundamental tool for expressing certain tests on sets of
formulas in terms of QBFs. In particular, we use≤ in conjunction with the following task:

Given finite setsS andT of formulas, determine all subsetsR ⊆ S such thatT ∪R is
consistent.

This problem can be encoded by a QBF in the following way:

Proposition 3.1 ([51]) LetS = {φ1, . . . , φn} andT be finite sets of formulas, letV be the set of
atoms occurring inS∪T , and letG = {g1, . . . , gn} be a set of new variables not occurring inS or
T . Furthermore, consider anyR ⊆ S and anyM ⊆ G such thatφi ∈ R iff gi ∈M , for 1 ≤ i ≤ n.

Then,T ∪R is consistent iffM is a model of the QBF

C[T, S] = ∃V (T ∧ (G ≤ S)).

Note thatC[T, S] is an open QBF havingG as its set of free variables. These variables facilitate
the selection of those elements ofS which determine the setsR such thatT ∪ R is consistent.
Moreover,C[T, S] is designed to expressall potential subsetsR ⊆ S such thatT ∪R is consistent.

We illustrate the functioning of this encoding on a simple example. ConsiderT = {¬p ∨ ¬q}
andS = {p, q}. For allpropersubsetsR of S, T ∪ R is consistent, butT ∪ S is inconsistent. For
S as given, we choose

G = {g1, g2}

11



as corresponding set of guessing variables, which occur free in the encodingC[T, S], given by

∃pq ((¬p ∨ ¬q) ∧ (g1 → p) ∧ (g2 → q)). (2)

It can be checked that all interpretationsM ⊂ G are models of (2), but the interpretationM = G
is not a model of (2). This coincides with the observation that exactly the proper subsets ofS, viz.
R1 = ∅,R2 = {p}, andR3 = {q}, are consistent withW , whileR4 = {p, q} is not.

To express, for example, allmaximalsuch subsets, some additional elements are required. The
computation of maximal sets satisfying certain criteria, using QBFs, is discussed in Section 4.

Finally, we note some useful relations concerning the shifting and renaming of quantifiers,
paralleling similar results from standard first-order logic.

Proposition 3.2 Letp andq be atoms,Q ∈ {∀,∃}, and letΦ andΨ be QBFs such thatΨ does not
contain free occurrences ofp. Then,

1. |= (¬∃pΦ) ≡ ∀p(¬Φ);

2. |= (¬∀pΦ) ≡ ∃p(¬Φ);

3. |= (Ψ ◦ QpΦ) ≡ Qp(Ψ ◦ Φ) for ◦ ∈ {∧ , ∨ , →}; and

4. |= (QqΨ) ≡ (QpΨ[q/p]).

We say that QBFΦ is in prenex formif Φ = Q1p1 . . .Qnpnφ, whereQi ∈ {∀,∃}, for 1 ≤ i ≤ n,
andφ is some propositional formula. Proposition 3.2 implies that any QBFΨ can be effectively
transformed into a logical equivalent QBFΨ∗ in prenex form.

4 Reductions

In this section, we present efficient (polynomial-time constructible) reductions of the relevant rea-
soning tasks in the context of belief change scenarios into QBFs. More specifically, these reduc-
tions are constructed in such a way that there is a one-to-one correspondence between belief change
extensions and models of the translated QBFs. Based on these reductions, in Section 5, we analyse
the computational complexity of the considered reasoning tasks.

Concerning the specific tasks, we deal with the following decision problems and their corre-
sponding search problems:

EXT: Decide whether a given belief change scenarioB has some consistent belief change exten-
sion.

CHOICE: Given a belief change scenarioB and some formulaφ, decide whetherφ is contained in
at least one consistent belief change extension ofB.

SKEPTICAL: Given a belief change scenarioB and some formulaφ, decide whetherφ is contained
in all belief change extensions ofB.

12



Note thatEXT andCHOICE are specified with respect to consistent belief change extensions.
Dropping the consistency condition inEXT would result in a trivial decision problem because,
according to Definition 2.1, any belief change scenario always possesses at least one belief change
extension. ConcerningCHOICE, although here, as well as forEXT, we are primarily interested in
consistent belief change extensions, later we relax this condition and deal also with the inconsistent
case. ForSKEPTICAL, however, the consistency requirement is actually irrelevant, because it holds
that a formulaφ is contained in all belief change extensions of a given belief change scenario
B iff it is contained in all consistent belief change extensions ofB. In general,EXT is arguably
less interesting thanCHOICE or SKEPTICAL, given that it depends only on the consistency of
the constituents of the given belief change scenario—however, the relevance of this task lies in
the correspondingsearch problem, i.e., in the actual computation of all consistent belief change
extensions.

4.1 Encodings of the Basic Tasks

From now on we assume that, for any belief change scenarioB = (K,R,C), its constituents
K, R, andC are finite; thus, these sets are also represented as the conjunction of their elements.
Furthermore, for our subsequent encodings it is convenient to use the following alternative char-
acterisation of belief change extensions, which is a straightforward consequence of results due to
Delgrande and Schaub [12]. Basically, this characterisation shows that sets of equivalences can be
restricted to subsets of{p ≡ p′ | p ∈ Var(B)}.

Proposition 4.1 For any belief change scenarioB = (K,R,C) in LP , there is a one-to-one
correspondence between the determining setsEQ ⊆ {p ≡ p′ | p ∈ P} of the belief change
extensions ofB and setsEQ ] ⊆ {p ≡ p′ | p ∈ Var(B)} satisfying the following conditions:

(a) K ′ ∪ EQ ] ∪R ∪ C 6` ⊥; and

(b) for eachp ∈ Var(B) with (p ≡ p′) /∈ EQ ], we haveK ′ ∪ EQ ] ∪ {p ≡ p′} ∪R ∪ C ` ⊥.

In particular, for belief change extensionE ofB with determining setEQ ⊆ {p ≡ p′ | p ∈ P},
it holds thatE = Cn(K ′ ∪ EQ ] ∪R) ∩ LP , whereEQ ] satisfies Conditions(a) and (b), and
EQ ] = EQ ∩ {p ≡ p′ | p ∈ Var(B)}.

Thus, for a belief change extensionE = Cn(K ′ ∪ EQ ∪R) ∩ LP with EQ ⊆ {p ≡ p′ | p ∈
P}, we also refer, with a slight abuse of notation, to a set of formEQ ] ⊆ {p ≡ p′ | p ∈ Var(B)},
satisfying the above Conditions(a) and(b) and corresponding toEQ , as a determining set ofE.

We proceed with the following basic QBF module:

Definition 4.1 LetB = (K,R,C) be a belief change scenario overLP , let V = Var(B) be the
set of variables occurring inB, and letVeq = {peq | p ∈ V } be a set of new variables. Then,

M[B] = K ′ ∧ (Veq ≤ (V ≡ V ′)) ∧ R.

The computation of belief change extensions can be expressed in terms of QBFs as follows:
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Theorem 4.2 Let B = (K,R,C) be a belief change scenario inLP , let V = Var(B) be the
atoms occurring inB, and letVeq = {peq | p ∈ V } be a set of variables disjoint fromV andV ′.
Furthermore, letEQ ⊆ {p ≡ p′ | p ∈ Var(B)} be a set of equivalences and letM ⊆ Veq be
defined such thatpeq ∈M iff (p ≡ p′) ∈ EQ .

Then,Cn(K ′ ∪ EQ ∪R) ∩ LP is a belief change extension ofB iff M is a model of the QBF

Text[B] = ∃V ∃V ′(M[B] ∧ C) ∧∧
p∈V

(
¬peq → ¬∃V ∃V ′((p ≡ p′) ∧ M[B] ∧ C)

)
.

Note thatVeq constitutes the set of free variables ofText[B]. Intuitively, Veq guesses a set
EQ of equivalences determining a belief change extension ofB. The first conjunct ofText[B]
checks consistency, and the second conjunct checks whetherEQ is maximal with respect to set
containment.

We remark that in order to encode the computation of belief change extensions according to
their original formulation [12], wherein members ofC are individually consistent with respect to
a belief change extension,Text[B] is modified in the following way:∧

ψ∈C∪{⊥}

(∃V ∃V ′(M[B] ∧ ¬ψ))∧

∧
p∈V

[
¬peq → ¬

∧
ψ∈C∪{⊥}

(
∃V ∃V ′((p ≡ p′) ∧ M[B] ∧ ¬ψ)

)]
.

For an illustration of the translationText[·], consider the belief change scenarioB = ({p ∧
q}, {¬p ∨ ¬q}, ∅) from Section 2.4. The free variables ofText[B] are given by{peq , qeq}, so we
get the following four interpretations serving as potential models ofText[B]:

M1 = {}; M3 = {qeq};
M2 = {peq}; M4 = {peq , qeq}.

SinceB has two belief change extensions, generated byEQ1 = {p ≡ p′} andEQ2 = {q ≡ q′}
(cf. Table 1), we expectM2 andM3 to be models ofText[B]. Let us first look at the left conjunct,
∃V ∃V ′(M[B] ∧ C), of Text[B]. ForB as above, we obtain

∃V ∃V ′(M[B] ∧ C) =

∃pqp′q′
(
(p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q)

)
. (3)

This QBF has three models, viz.M1, M2, andM3. InterpretationM1 is a model because both
conjuncts(peq → (p ≡ p′)) and(qeq → (q ≡ q′)) of (3) evaluate to true (given thatpeq , qeq /∈
M1), and since the remaining formula(p′ ∧ q′) ∧ (¬p ∨ ¬q) is consistent. ForM2, we similarly
get that(qeq → (q ≡ q′)) is true and that(p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧ (¬p ∨ ¬q) is consistent,
since{p, p′, q′} is a model of(p′ ∧ q′) ∧ (p ≡ p′) ∧ (¬p ∨ ¬q). M3 is a model by analogous
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arguments. However,M4 is not a model of (3). This is because, underM4, the propositional part
of (3) can be reduced to

(p′ ∧ q′) ∧ (p ≡ p′) ∧ (q ≡ q′) ∧ (¬p ∨ ¬q), (4)

which is not satisfiable.
Hence, onlyM1,M2, orM3 are possible models ofText[B].
Now we investigate the remaining conjuncts ofText[B], which are given by

Φ1 =
[
¬peq → ¬∃pqp′q′

(
(p ≡ p′) ∧ (p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧

∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q)
)]

and

Φ2 =
[
¬qeq → ¬∃pqp′q′

(
(q ≡ q′) ∧ (p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧

∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q)
)]
.

First, consider interpretationM2. Given thatpeq ∈ M2, conjunctΦ1 evaluates to true, and it
remains to analyseΦ2. The latter formula evaluates to true if

(q ≡ q′) ∧ (p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q) (5)

is not satisfiable. However, givenM2, (5) reduces to (4), which is indeed unsatisfiable. Hence,M2

is a model ofΦ2, and thus also a model ofText[B]. By a similar argument it follows thatM3 is
a model ofΦ1 ∧ Φ2. It remains to see thatM1 is not a model ofΦ1 ∧ Φ2. In fact, it holds that
νM1(Φ1) = νM1(Φ2) = 0. We show the case ofΦ1 (the case ofΦ2 follows analogously). Since
M1 = {}, Φ1 is false underM1 iff

∃pqp′q′
(
(p ≡ p′) ∧ (p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q)

)
is true underM1. Given that bothpeq andqeq are false underM1, the previous condition holds iff

(p ≡ p′) ∧ (p′ ∧ q′) ∧ (¬p ∨ ¬q) (6)

is satisfiable. Clearly, this is the case, since{p, p′, q′} is a satisfying truth assignment for (6). Thus,
M1 is not a model ofΦ1. This shows thatM1 is not a model ofText[B].

Concerning a QBF encoding forEXT, it immediately follows from Theorem 4.2 that a belief
change scenarioB = (K,R,C) with V = Var(B) has a consistent belief change extension iff
∃VeqText[B] evaluates to true. However, this encoding is in some sense not optimal because it is
possible to characteriseEXT in terms of a simpler QBF, corresponding to an ordinary satisfiability
problem, by observing thatB has a consistent belief change extension iffK ′∪R∪C is consistent.
Consequently, we can state the following result:
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Theorem 4.3 LetB = (K,R,C) be a belief change scenario inLP and letV = Var(B).
Then,B has a consistent belief change extension iff∃V ∃V ′(K ′ ∧ R ∧ C) evaluates to true.

Next, we discuss the translations of the reasoning tasksCHOICE andSKEPTICAL. We begin
with the encodings of the corresponding search problems.

Theorem 4.4 Let B = (K,R,C) be a belief change scenario inLP and letφ be a formula.
Furthermore, letV = Var(B), letW = Var(B) ∪ Var(φ), and letVeq = {peq | p ∈ V } be a set
of globally new variables. Finally, consider the QBF

M[B] = K ′ ∧ (Veq ≤ (V ≡ V ′)) ∧ R

from Definition 4.1.
Then, forEQ ⊆ {p ≡ p′ | p ∈ Var(B)} andM ⊆ Veq such that(p ≡ p′) ∈ EQ iff peq ∈ M ,

the following properties hold:

1. Cn(K ′ ∪ EQ ∪R) ∩ LP is a belief change extension ofB containingφ iff M is a model of
the QBF

Tchoice[B, φ] = Text[B] ∧ ∀W
(
(∃V ′M[B]) → φ

)
.

2. Cn(K ′ ∪ EQ ∪R)∩LP is a belief change extension ofB not containingφ iff M is a model
of the QBF

Tskept[B, φ] = Text[B] ∧ ¬∀W
(
(∃V ′M[B]) → φ

)
.

Intuitively, the two encodingsTchoice[B, φ] andTskept[B, φ] are realised by (i) checking whether
a selected set of equivalences determines a consistent belief change extensionE of B, and
(ii) checking whetherE contains a given formulaφ, or checking whetherE does not contain
φ. Task (i) is modeled using the basic encodingText[B], and Task (ii) is captured by a suitable
QBF expressing derivability (in case ofTchoice[B, φ]) or non-derivability (in case ofTskept[B, φ])
of φ from the selected belief change extension. Observe that the selection process is facilitated in
terms of the members fromVeq , which represent the free variables ofTchoice[B, φ] andTskept[B, φ].

Concerning the decision problemsCHOICEandSKEPTICAL, QBF encodings for these tasks are
obtained fromTchoice[B, φ] andTskept[B, φ] as follows. CHOICE is expressed by the closed QBF
∃VeqTchoice[B, φ], which states that there is some some setM ⊆ Veq corresponding to a setEQ
of equivalences such thatEQ determines a consistent belief change extensionE entailingφ, and
SKEPTICAL is realised by the closed QBF¬∃VeqTskept[B, φ], which expresses that there is no set
M ⊆ Veq corresponding to a setEQ of equivalences such thatEQ determines a consistent belief
change extensionE not entailingφ. Thus, we obtain the following corollary:

Corollary 4.5 LetB be a belief change scenario andφ a formula. Then,

1. φ is contained in at least one consistent belief change extension ofB iff ∃Veq Tchoice[B, φ]
evaluates to true, and
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2. φ is contained in all belief change extensions ofB iff ¬∃Veq Tskept[B, φ] evaluates to true.

In contrast to taskEXT, which can be expressed by a QBF containing only one sort of quantifier,
here we obtain encodingspossessing both existential quantifiers as well as universal ones. As we
show in Section 5, this quantifier alternation is in some sense unavoidable and reflects the inherent
complexity ofCHOICE andSKEPTICAL.

We remark that discarding the consistency condition ofCHOICE can be easily incorporated
into the translation∃Veq Tchoice[·, ·]. Indeed, it is a simple matter to check that there is a (possibly
inconsistent) belief change extension ofB = (K,R,C) containing formulaφ iff the QBF

(∃V ∃V ′(K ′ ∧ R ∧ C)) → (∃Veq Tchoice[B, φ])

evaluates to true.
Finally, observe that Theorems 4.2, 4.3, and 4.4, as well as Corollary 4.5, provide encodings of

reasoning tasks forarbitrary belief change scenarios. In particular, they subsume the characteri-
sation of the corresponding reasoning tasks associated with revision and contraction, as illustrated
by the revision example discussed previously. For convenience, we list the tasks for revision:

REXT: Given a knowledge baseK and some formulaα, decide whether a consistent belief change
extension ofB = (K, {α}, ∅) exists.

RCHOICE: Given a knowledge baseK and formulasα andφ, decide whether there is some con-
sistent choice revisionK+̇cα containingφ.

RSKEPTICAL: Given a knowledge baseK and formulasα andφ, decide whetherφ is contained
in the skeptical revisionK+̇α.

The corresponding tasks for belief contraction, denoted by CEXT, CCHOICE, and CSKEPTICAL,
are defined accordingly.

4.2 Expressing Changed Knowledge Bases

Another interesting issue in the context of belief change is to determine the actual form of a given
knowledge base after a revision or contraction operation has been applied to it. This task has
already been analysed by Delgrande and Schaub [12], and, as we show in the following, it can
also be described in terms of QBFs. Before going into details, we briefly summarise the relevant
previous results [12], starting with some notation.

Given a belief change scenarioB in languageLP along with a set of equivalencesEQ i ⊆ {p ≡
p′ | p ∈ P}, define

PEQi
= {p ∈ P | p ≡ p′ ∈ EQ i}, and

PEQi
= P \ PEQi

.

Then, forφ ∈ LP , let dφei be the result of replacing inφ eachp ∈ PEQi
by ¬p. Furthermore, for

a set of functions

Πi = {πki | πki : PEQi
→ {>,⊥}},
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let bφcki be the result of replacing inφ eachp ∈ PEQi
by πki (p).

Then, the result of applying revision or contraction to a given knowledge base is described by
the following formulas:

Proposition 4.6 ([12]) LetK be a finite knowledge base andα some formula. Then,

1. K+̇α is logically equivalent to
∨
i∈IdKei ∧ α, and

2. K−̇α is logically equivalent to
∨
i∈I,πk

i ∈Πi
bKcki ,

for (EQ i)i∈I being the family of sets of equivalences determining the belief change extensions of
(K, {α}, ∅) and(K, ∅, {¬α}), respectively.

We can express the models of revision and contraction by QBFs using the following construc-
tion.

Definition 4.2 LetB be a belief change scenario inLP with V = Var(B), and letVeq = {peq |
p ∈ Var(B)} be a set of new variables. Then,

Tm [B] = ∃Veq(Text[B] ∧ ∃V ′M[B]).

Observe thatTm [B] is an open QBF havingV as its set of free variables. We obtain the
following result:

Theorem 4.7 LetK be a finite knowledge base,α some formula, andV = Var(K ∪ {α}). Then,

1. M ⊆ V is a model ofK+̇α iff M is a model ofTm [(K, {α}, ∅)], and

2. M ⊆ V is a model ofK−̇α iff M is a model ofTm [(K, ∅, {¬α})].

By collecting all the models ofK+̇α orK−̇α into a single formula, we thus obtain a disjunctive
normal form ofK after revision or contraction withα.

To formally express this, given a belief change scenarioB with V = Var(B), define

F [B] =
∨

M∈Mod(Tm [B])

(
M ∧

∧
p∈(V \M)

¬p
)
.

Then, we get the following characterisation, representing an alternative to Proposition 4.6:

Corollary 4.8 LetK andα be as in Theorem 4.7. Then,

1. K+̇α is logically equivalent toF [(K, {α}, ∅)], and

2. K−̇α is logically equivalent toF [(K, ∅, {¬α})].
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For illustration of transformationTm [·], consider again the belief change scenarioB =
({p ∧ q}, {¬p ∨ ¬q}, ∅). As already discussed in Section 2.4,B possesses the skeptical revi-
sionCn({p ≡ ¬q}), which can be rewritten asCn({(p ∧ ¬q) ∨ (¬p ∧ q)}). Thus, in virtue of
Theorem 4.7, we expect{p} and{q} to be the models of

Tm [B] = ∃Veq

(
Text[B] ∧ ∃V ′M[B]

)
.

We first compute the models of the QBF

Text[B] ∧ ∃V ′M[B]. (7)

The free variables of (7) are given byVeq ∪ V = {peq , qeq} ∪ {p, q}. As argued previously,Text[B]
is true under interpretations{peq} and{qeq}. In fact, sinceText[B] has no free variables fromV , it
holds that{peq} ∪ U and{qeq} ∪ U are also models ofText[B], for any setU ⊆ V . Consider now
the second conjunct of (7), which is given by

∃p′q′
(
(p′ ∧ q′) ∧ (peq → (p ≡ p′)) ∧ (qeq → (q ≡ q′)) ∧ (¬p ∨ ¬q)

)
.

This formula is obviously true under the following interpretations:

M1 = {peq , p}, M2 = {qeq , q},

as well as under every interpretation in which bothpeq and qeq are false. Thus, onlyM1 and
M2 satisfy both conjuncts of (7). Taking the existential closure of QBF (7) with respect to the
variablespeq andqeq , we get that{p} and{q} are the only models ofTm [B]. Accordingly, we get
F [B] = (p ∧ ¬q) ∨ (¬p ∧ q).

5 Complexity Results

In this section, we analyse the computational complexity of the tasks considered so far. Addition-
ally, we also deal with the complexity of checking whether a given set of equivalences determines
some consistent belief change extension of a given belief change scenario.

A particular advantage of our reduction approach is that upper complexity bounds are derived
directly from the respective QBF encodings. This is due to the fact that our QBF translations are
polynomial in the size of a given belief change scenario, and that the complexity of evaluating a
given QBFΦ is determined by the quantifier order ofΦ. For each of the upper bounds obtained in
this fashion, we show also that they arestrict, i.e., they possess a matching lower bound. The results
presented here strengthen a previous complexity analysis given by Delgrande and Schaub [11].

In what follows, we assume that the reader is familiar with the basic concepts of complexity
theory (see, e.g., [40]). For convenience, we briefly recapitulate the definitions and some elemen-
tary properties of the complexity classes considered in the following. As usual, for any complexity
classC, by co-C we understand the class of all problems which are complementary to the problems
in C.
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Four complexity classes are relevant here, viz.NP, DP , ΣP
2 , andΠP

2 . The classNP consists
of all decision problems which can be solved with a nondeterministic Turing machine working
in polynomial time;DP is defined as the class of all problems which can be described as the
conjunction of two (independent) problems fromNP and co-NP; ΣP

2 is the class of all problems
solvable on a nondeterministic Turing machine in polynomial time having access to an oracle for
problems inNP; finally, ΠP

2 = co-ΣP
2 .

Observe thatNP, ΣP
2 , andΠP

2 are part of the polynomial hierarchy, which is given by the
following sequence of objects: the initial elements are

∆P
0 = ΣP

0 = ΠP
0 = P,

and, fori > 0,

∆P
i = PΣP

i−1 , ΣP
i = NPΣP

i−1 , and ΠP
i = co-NPΣP

i−1 .

Here,P is the class of all problems solvable on a deterministic Turing machine in polynomial time,
and, for complexity classesC andA, byCA we understand therelativised versionof C, consisting
of all problems which can be decided by Turing machines of the same sort and time bound as in
C, only that the machines have access to an oracle for problems inA. It holds thatΣP

1 = NP,
ΣP

2 = NPNP, andΠP
2 = co-NPNP. A problem is said to be at thek-th levelof the polynomial

hierarchy iff it is in∆P
k+1 and eitherΣP

k -hard orΠP
k -hard.

The classDP is part of a family of complexity classesDP
k , k ≥ 1, whereDP

1 = DP and each
DP
k consists of all problems expressible as the conjunction of a problem inΣP

k and a problem in
ΠP
k . Notice that, for allk ≥ 1, ΣP

k ⊆ DP
k ⊆ ΣP

k+1 holds; in fact, both inclusions are widely
conjectured to be strict. Moreover, any problem inDP

k can be solved with twoΣP
k oracle calls, and

is thus intuitively easier than a problem complete for∆P
k .

In the same way as the satisfiability problem of classical propositional logic is the “proto-
typical” problem ofNP, i.e., being anNP-complete problem, the satisfiability problem of QBFs
possessingk − 1 quantifier alternations is the “prototypical” problem of thek-th level of the poly-
nomial hierarchy. More specifically, the following property holds:

Proposition 5.1 ([59]) Given a propositional formulaφ whose atoms are partitioned intoi ≥ 1
setsV1, . . . , Vi, deciding whether∃V1∀V2∃V3 . . .QViφ evaluates to true isΣP

i -complete, where
Q = ∃ if i is odd andQ = ∀ if i is even. Moreover, the problem remainsΣP

i -hard even ifφ is in
conjunctive normal form andi is odd, or ifφ is in disjunctive normal form andi is even.

From this result it follows that the evaluation problem of QBFs of form∀V1∃V2∀V3 . . .QViφ is
ΠP
i -complete, whereQ = ∀ if i is odd andQ = ∃ if i is even. As well, the problem remains

ΠP
i -hard even ifφ is in disjunctive normal form andi is odd, or ifφ is in conjunctive normal form

andi is even.
Given the above characterisations, we can estimate upper complexity bounds for the decision

problems discussed in Section 4 by simply inspecting the quantifier order of the respective QBF
encodings. This can be argued as follows. First of all, by applying the transformation rules de-
scribed in Proposition 3.2, each of the above QBF encodings can be transformed in polynomial
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time into a closed QBF in prenex form. Then, by invoking Proposition 5.1 and observing that
completeness of a decision problemD for a complexity classC implies membership ofD in C,
the quantifier order of the resultant QBFs determines in which class of the polynomial hierarchy
the corresponding decision problem lies.

Applying this method to the decision problemsEXT, CHOICE, and SKEPTICAL, we get the
following results. To begin with, according to Theorem 4.3, we have thatEXT lies in NP. Hence,
REXT and CEXT are also inNP because they are just special cases ofEXT. Furthermore, the
encoding∃Veq Tchoice[B, φ] for CHOICEcan be transformed into a QBF of prenex form∃W1∀W2ψ,
and, dually, the encoding¬∃Veq Tskept[B, φ] for SKEPTICAL can be transformed into a QBF of
prenex form∀Z1∃Z2ϕ, where bothψ andϕ are purely propositional. Thus,CHOICE is in ΣP

2 , and
SKEPTICAL is in ΠP

2 . Similar to the case ofEXT, ΣP
2 is also an upper bound for RCHOICE and

CCHOICE, andΠP
2 is an upper bound for RSKEPTICAL and CSKEPTICAL.

Concerning lower complexity bounds, it turns out that all of the above given estimations are
strict, i.e., the considered decision problems are hard for the respective complexity classes. Sum-
marising, we can state the following results:

Theorem 5.2 The decision problemsEXT, CHOICE, and SKEPTICAL, as well as its variants for
revision and contraction, enjoy the following completeness properties:

1. EXT, REXT, andCEXT areNP-complete;

2. CHOICE, RCHOICE, andCCHOICE areΣP
2 -complete; and

3. SKEPTICAL, RSKEPTICAL, andCSKEPTICAL areΠP
2 -complete.

Thus, the completeness results forCHOICE andSKEPTICAL, as well as for their specialisations
for revision and contraction, imply that, unless the polynomial hierarchy collapses, it is not possible
to efficiently represent these tasks in terms of QBFs having a prenex form with only one sort of
quantifier, i.e.,these tasks cannot be polynomially reduced to standard propositional logic. Hence,
under the above proviso, the encodings described in Corollary 4.5 cannot be simplified further to
avoid an inherent quantifier alternation.

Rounding off our complexity analysis, we deal with the problem of checking whether a given
set of equivalences determines some consistent belief change extension of a given belief change
scenario.

Theorem 5.3 Given a belief change scenarioB and a setEQ ⊆ {p ≡ p′ | p ∈ Var(B)}, checking
whetherEQ determines some consistent belief change extension ofB is DP -complete.

6 Implementation

Our methodology for expressing reasoning tasks associated with belief change scenarios in terms
of quantified Boolean formulas is motivated by the availability of several practicably efficient QBF-
solvers. Among the different tools, there is a propositional theorem-prover,boole , based on
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Figure 1: Architecture to use different QBF-solvers.

binary decision diagrams,3 a system using a generalised resolution principle [27], several provers
implementing an extended Davis-Putnam procedure [4, 46, 19, 24, 30], as well as a distributed
algorithm running on a PC-cluster [19].

The translations discussed in the previous section have been implemented as a special module
of the reasoning systemQUIP [15, 14, 41, 17], a prototype tool for solving various nonmonotonic
reasoning tasks based on reductions to QBFs. Among others,QUIP handles tasks for logic-based
abduction, default logic, several types of modal nonmonotonic logics, and the stable model seman-
tics for logic programs.

The general architecture ofQUIP is depicted in Figure 1.QUIP consists of three parts, viz. the
filter program, a QBF-evaluator, and the interpreterint . The input filter translates the given
problem description (in our case, a belief change scenario and a specified reasoning task) into the
corresponding quantified Boolean formula, which is then sent to the QBF-evaluator. The current
version ofQUIP provides interfaces to most of the sequential QBF-solvers mentioned above. For
the solvers requiring prenex normal form, the QBFs are translated into structure preserving nor-
mal form [13, 42]. The result of the QBF-evaluator is interpreted byint . Depending on the
capabilities of the employed QBF-evaluator,int provides an explanation in terms of the under-
lying problem instance (e.g., listing all consistent definitional extensions of a given belief change
scenario). This task relies on a protocol mapping of internal variables of the generated QBF into
concepts of the problem description which is provided byfilter .

The systemQUIP has been implemented in C using standard tools like LEX and YACC (com-
prising a total of 2000 lines of code, excluding the used QBF-solver); it runs currently in a Unix
environment (Sun/Solaris and Linux), but is easily portable to other operating systems as well.

Initial tests on a series of randomly generated benchmarks, using the systemboole as un-
derlying reasoning engine, showed that the current approach can handle problems built of up to
300 variables within a couple of seconds, although these results are too preliminary to draw any
firm conclusions. As well, on the considered examples, the system outperforms a dedicated ad-hoc
implementation [10] realized in JAVA.

7 Conclusion

We have shown how belief revision and belief contraction, as defined using belief change scenarios,
can be axiomatised by means of quantified Boolean formulas. The general mechanism of our
approach is to translate (in polynomial time) a reasoning problem, expressed in terms of belief
change scenarios, into the evaluation problem for QBFs. Following this, we use a QBF-evaluator
to compute the resultant instances.

The approach has several benefits. First, the given axiomatics provides us with further insight

3The system can be downloaded from the Web athttp://www.cs.cmu.edu/˜modelcheck/bdd.html .
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about how belief revision and contraction work within belief change scenarios. As well, this ax-
iomatisation allows us to furnish upper bounds for precise complexity results. Last but not least we
obtain a straightforward implementation technique of belief change in belief change scenarios by
appeal to the existing systemQUIP [15, 14]. Note that the availability of a parallel QBF-evaluation
solver [19] yields also in a direct way a distributed decision procedure for the encoded problems.
This convenient situation obviously avoids designing special-purposed distributed algorithms for
the problems under consideration.

The implemented operators possess good formal properties, in that most AGM postulates ob-
tain. In particular, the postulate of irrelevance of syntax is retained, and so the results of a belief
change operation is independent of the syntactic expression of its arguments. While the interest-
ing decision problems involving reasoning lie at the second level of the polynomial hierarchy, it
remains to be seen whether the implementation may nonetheless prove practical for large-scale
applications.

A Proofs

Proof 4.2 Let us writeText[B] asΦ1 ∧ Φ2, where

Φ1 = ∃V ∃V ′(M[B] ∧ C), and

Φ2 =
∧
p∈V

(
¬peq → ¬∃V ∃V ′((p ≡ p′) ∧ M[B] ∧ C))

)
.

Consider Conditions (a) and (b) of Proposition 4.1. We show that Condition (a) holds iffM is
a model ofΦ1, and that (b) holds iffM is a model ofΦ2.

To begin with, since, by hypothesis,EQ andM satisfy the condition that(p ≡ p′) ∈ EQ iff
peq ∈ M , we can apply Proposition 3.1 and obtain thatK ′ ∪ EQ ∪ R ∪ C is satisfiable iffM is a
model of

∃V ∃V ′
(
K ′ ∧ R ∧ C ∧ (Veq ≤ (V ≡ V ′))

)
,

which is obviously equivalent toΦ1. It remains to show that Condition (b) holds iffM is a model
of Φ2.

Consider somep ∈ V such that(p ≡ p′) /∈ EQ andK ′ ∪ EQ ∪ {p ≡ p′} ∪ R ∪ C ` ⊥.
Invoking Proposition 3.1 again, it follows that the last condition holds exactly if the QBF

¬∃V ∃V ′
(
K ′ ∧ (p ≡ p′) ∧ R ∧ C ∧ (Veq ≤ (V ≡ V ′))

)
is true underM . In general, if we perform this test for eachp ∈ V with (p ≡ p′) /∈ EQ , we get
that Condition (b) is equivalent to the condition that the QBF∧

p∈V,(p≡p′)/∈EQ

¬∃V ∃V ′
(
K ′ ∧ (p ≡ p′) ∧ R ∧ C ∧ (Veq ≤ (V ≡ V ′))

)
(8)
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is true underM . Observing that, for anyp ∈ V , (p ≡ p′) ∈ EQ iff peq ∈M , it follows thatM is a
model of (8) iff it is a model of∧

p∈V

¬peq → ¬∃V ∃V ′
(
K ′ ∧ (p ≡ p′) ∧ R ∧ C ∧ (Veq ≤ (V ≡ V ′))

)
. (9)

Since (9) is logically equivalent toΦ2, we conclude that Condition (b) holds iffM is a model ofΦ2.

Proof 4.4 According to Theorem 4.2,Cn(K ′ ∪ EQ ∪R) ∩ LP is a consistent belief change
extension ofB iff M is a model ofText[B]. Thus, for proving Part 1 of the theorem, it suffices to
show that the following condition holds:

(∗) φ ∈ Cn(K ′ ∪ EQ ∪R) iff M is a model of∀W ((∃V ′M[B]) → φ).

Furthermore, sinceM is a model of∀W ((∃V ′M[B]) → φ) precisely ifM is not a model of
¬∀W ((∃V ′M[B]) → φ), we get that Condition (∗) implies thatφ /∈ Cn(K ′ ∪ EQ ∪R) iff M is
a model of¬∀W ((∃V ′M[B]) → φ), which in turn proves Part 2 of the theorem. It remains to
show that (∗) holds.

Sinceφ ∈ Cn(K ′ ∪ EQ ∪R) iff K ′∪EQ ∪R∪{¬φ} is unsatisfiable, Proposition 3.1 implies
thatφ ∈ Cn(K ′ ∪ EQ ∪R) iff M is a model of

¬∃W∃V ′
(
K ′ ∧ R ∧ ¬φ ∧ (Veq ≤ (V ≡ V ′))

)
. (10)

Given thatφ does not contain any primed atoms, we can rewrite (10) by moving¬φ outside the
scope of the quantification∃V ′, thus obtaining

¬∃W
(
∃W ′(K ′ ∧ R ∧ (Veq ≤ (V ≡ V ′))) ∧ ¬φ

)
,

which is in turn equivalent to

¬∃W
(
(∃V ′M[B]) ∧ ¬φ

)
. (11)

But (11) is clearly equivalent to

∀W
(
(∃V ′M[B]) → φ

)
, (12)

and therefore we obtain thatφ ∈ Cn(K ′ ∪ EQ ∪R) iff M is a model of (12).

Proof 4.7 LetK be a finite knowledge base,α some formula, andV = Var(K ∪ {α}). Recall
that, for any setEQ of equivalences,PEQ = {p ∈ P | p ≡ p′ ∈ EQ} andPEQ = P \ PEQ .

1. ConsiderB = (K, {α}, ∅) in LP . Suppose thatM ⊆ V is a model ofK+̇α. By Proposi-
tion 4.6, there is a consistent belief change extensionEi0 = Cn(K ′ ∪ EQi0 ∪ {α}) ∩ LP of
B (for somei0 ∈ I) such thatdKei0 ∧ α is true underM . DefineM1 = M ∩ PEQi0

and

M2 = M \M1. By construction of formuladKei0, it follows thatM1 ∪M2 is a model ofK,
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whereM2 = (V ∩ PEQi0
) \M . Hence, a simple renaming yields thatM ′

1 ∪M
′
2 is a model

of K ′. It follows thatM ∪M ′
1 ∪M

′
2 is a model of

K ′ ∧
∧

p≡p′∈EQi0

(p ≡ p′) ∧ α.

By settingJ = {peq | p ≡ p′ ∈ EQ i0}, we get thatM ∪ J ∪M ′
1 ∪M

′
2 is a model of

M[B] = K ′ ∧
∧
p∈V

(
peq → (p ≡ p′)

)
∧ α,

which in turn implies thatM ∪ J is a model of∃V ′M[B]. On the other hand, sinceEi0 is
a consistent belief change extension ofB, Theorem 4.2 entails thatJ is a model ofText[B].
Consequently,M ∪ J is a model ofText[B] ∧ ∃V ′M[B], and therefore

Tm [B] = ∃Veq

(
Text[B] ∧ ∃V ′M[B]

)
is true underM .

Conversely, assume thatM ⊆ V is a model ofTm [B]. Then, there is an interpretation
J ⊆ Veq such thatM ∪ J is a model of

Text[B] ∧ ∃V ′M[B]. (13)

In particular, we have thatJ is a model ofText[B], since the free variables ofText[B] are from
Veq . Hence, according to Theorem 4.2, we get thatEi0 = Cn(K ′ ∪ EQi0 ∪ {α}) ∩ LP is a
consistent belief change extension ofB, for EQ i0 = {p ≡ p′ | peq ∈ J}. SinceK+̇α ⊆ Ei0,
for showing thatM is a model ofK+̇α, it suffices to show thatM is a model ofEi0. This
can be seen as follows.

Given thatM ∪ J is a model of (13), we have thatM ∪ J is a fortiori a model of∃V ′M[B].
Hence, there is some interpretationN ′ ⊆ V ′ such thatM ∪ J ∪ N ′ is a model ofM[B].
From this, we obtain thatM ∪N ′ is a model of

K ′ ∧
∧

(p≡p′)∈EQi0

(p ≡ p′) ∧ α,

which in turn implies thatM ∪ N ′ is a model ofCn(K ′ ∪ EQi0 ∪ {α}). In particular,M
must be a model of all those elements fromCn(K ′ ∪ EQi0 ∪ {α}) which contain no atoms
from V ′. In other words,M is a model ofEi0 = Cn(K ′ ∪ EQi0 ∪ {α}) ∩ LP .

2. ConsiderB = (K, ∅, {¬α}) in LP , and assume thatM ⊆ V is a model ofK−̇α.
From Proposition 4.6, we obtain that there is some consistent belief change extension
Ei0 = Cn(K ′ ∪ EQi0) ∩ LP of B and someπk0i0 ∈ Πi0 such thatbKck0i0 is true under
M , for Πi0 = {πki0 | π

k
i0

: PEQi0
→ {>,⊥}}. Analogous to Part 1, defineM1 = M ∩ PEQi0
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andM2 = M \M1. SincebKck0i0 is true underM , there is someJ ⊆ V ∩ PEQi0
such that

K is true underM1 ∪ J , and thereforeM ′
1 ∪ J ′ is a model ofK ′. Hence,M1 ∪M ′

1 ∪ J ′ is a
model of

K ′ ∧
∧

p≡p′∈EQi0

(p ≡ p′). (14)

Since no atoms fromV ∩PEQi0
occur in (14),M ∪M ′

1∪J ′ is also a model of (14). Applying

similar arguments as in Part 1, it follows thatM is a model ofTm [B].

The proof of the converse direction proceeds analogously to Part 1.

Proof 5.2 Since the membership relations are already dealt with in the main body of the paper,
it remains to show that the problemsEXT, CHOICE, andSKEPTICAL, as well as its variants for
revision and contraction, are hard for the respective classes.

1. REXT is NP-hard because a formulaφ is satisfiable iff the belief change scenarioBR =
({φ}, {>}, ∅) has a consistent belief change extension. Similarly, CEXT is NP-hard because
φ is satisfiable iffBC = ({φ}, ∅, {¬⊥}) possesses a consistent belief change extension.
Either of these properties implies thatEXT is NP-hard as well.

2. We show that RCHOICE and CCHOICE areΣP
2 -hard; similar to the above,ΣP

2 -hardness of
CHOICE is then an immediate consequence.

We first deal with CCHOICE. According to Proposition 5.1, checking whether a closed QBF
Φ of form ∃P∀Qφ, whereφ is a propositional formula in disjunctive normal form andP ∪
Q is a partition ofVar(φ), is ΣP

2 -hard. In order to showΣP
2 -hardness of CCHOICE, we

construct a polynomial-time transformation mapping each closed QBFΦ of the above form
into a pair(BC , φ

∗), whereBC = (K, ∅, {¬α}) is a belief change scenario andφ∗ is a
formula, such thatΦ is valid iff there is a consistent choice contractionK−̇cα containingφ∗.

The construction ofK, α, andφ∗ is as follows. ForP = {p1, . . . , pn}, letR = {r1, . . . , rn}
be a set of new atoms not occurring inVar(φ). Define

K = {pi ∧ ri | i = 1, . . . , n}, and

α =
n∨
i=1

(pi ∧ ri),

and letφ∗ be the result of replacing inφ each literal¬pj, for pj ∈ P , by rj ∈ R (1 ≤
j ≤ n). We show thatΦ = ∃P∀Qφ is valid iff there is a consistent belief change extension
Cn(K ′ ∪ EQ i0) ∩ LP of BC = (K, ∅, {¬α}) containingφ∗.

To begin with, observe that, for any consistent belief change extensionCn(K ′ ∪ EQ) ∩ LP
of BC , it holds that

(∗) eitherpj ≡ p′j ∈ EQ or rj ≡ r′j ∈ EQ , but not both, for each1 ≤ j ≤ n.
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Assume that∃P∀Qφ is valid. Then, there is an interpretationS0 ⊆ P such that for each
U ⊆ Q, S0∪U is a model ofφ. By construction ofφ∗, it follows thatS0∪T0∪U is a model
of φ∗, for T0 = {rj ∈ R | pj ∈ P \ S0} and eachU ⊆ Q. Now define

EQ i0 = {pj ≡ p′j | pj ∈ S0} ∪ {rj ≡ r′j | pj ∈ P \ S0}.

Clearly,Cn(K ′ ∪ EQ i0) ∩ LP is a consistent belief change extension ofBC . We claim that
φ∗ ∈ Cn(K ′ ∪ EQ i0) ∩ LP .

Sinceφ∗ ∈ LP , it suffices to show thatK ′∪EQ i0 ` φ
∗. LetM ′∪N be a model ofK ′∪EQ i0,

whereM ′ ⊆ P ′ ∪ R′ andN ⊆ P ∪ Q ∪ R. DefineN1 = N ∩ (P ∪ R) andN2 = N ∩ Q.
Hence,N = N1 ∪ N2. Now, by definition ofK andEQ i0, it must hold thatN1 = S0 ∪ T0.
But S0 ∪ T0 ∪U is a model ofφ∗, for anyU ⊆ Q; in particular, sinceN2 ⊆ Q, S0 ∪ T0 ∪N2

is a model ofφ∗. Therefore,N = N1 ∪ N2 is a model ofφ∗. Sinceφ∗ contains no primed
atoms, it follows thatM ′∪N is also a model ofφ∗. This proves the relationK ′∪EQ i0 ` φ

∗.
Hence, we showed that∃P∀Qφ is valid only if there is consistent belief change extension of
BC containingφ∗.

Conversely, assume thatφ∗ ∈ Cn(K ′ ∪ EQ i0) ∩ LP for some consistent belief change ex-
tensionCn(K ′ ∪ EQ i0) ∩ LP of BC = (K, ∅, {¬α}). We show that∃P∀Qφ is valid.

Observe that, according to Condition (∗), we have eitherpj ≡ p′j ∈ EQ i0 or rj ≡ r′j ∈ EQ i0,
but not both. Define

S0 = {pj ∈ P | pj ≡ p′j ∈ EQ i0}, and

T0 = {rj ∈ R | rj ≡ r′j ∈ EQ i0},

and letW0 = S0 ∪ T0. Clearly,pj ∈ S0 iff rj /∈ T0, for each1 ≤ j ≤ n. Furthermore,
W0 ∪W ′

0 is a model ofEQ i0 . But, sinceVar(EQ i0) = W0 ∪W ′
0, andW ′

0 ⊆ P ′ ∪ R′, we
have thatW0 ∪ P ′ ∪ R′ is a model ofEQ i0, as well. Moreover,W0 ∪ P ′ ∪ R′ is a model
of K ′ ∪ EQ i0. In fact, for anyU ⊆ Q, W0 ∪ P ′ ∪ R′ ∪ U is a model ofK ′ ∪ EQ i0 . Since,
by hypothesis,K ′ ∪ EQ i0 ` φ

∗, it follows thatW0 ∪ P ′ ∪ R′ ∪ U is a model ofφ∗, for any
U ⊆ Q. Butφ∗ does not contain any primed atoms, soW0 ∪ U = S0 ∪ T0 ∪ U must also be
a model ofφ∗, for anyU ⊆ Q. Hence, by definition ofφ∗, and sincepj ∈ S0 iff rj /∈ T0, we
obtain thatS0 ∪ U is a modelφ, for eachU ⊆ Q. We just proved that there is someS0 ⊆ P
such that for eachU ⊆ Q, φ is true underS0 ∪ U . This means that∃P∀Qφ is valid.

Now we deal with the case of RCHOICE. ConsiderΦ,K, α, andφ∗ as above. We claim that
Φ = ∃P∀Qφ is valid iff there is a consistent choice revisionK+̇c(¬α) containingφ∗. From
this,ΣP

2 -hardness of RCHOICE is an immediate consequence.

To prove the claim, we must show thatΦ is valid iff there is a consistent belief change
extensionCn(K ′ ∪ EQ i0 ∪ {¬α}) ∩ LP of BR = (K, {¬α}, ∅) containingφ∗. Recall
that we demonstrated above thatΦ is valid iff there is a consistent belief change exten-
sion Cn(K ′ ∪ EQ i0) ∩ LP of BC = (K, ∅, {¬α}) containingφ∗. Furthermore, for any
EQ ⊆ {v ≡ v′ | v ∈ P ∪ R}, it holds thatCn(K ′ ∪ EQ) ∩ LP is a consistent belief
change extension ofBC = (K, ∅, {¬α}) iff Cn(K ′ ∪ EQ ∪ {¬α}) ∩ LP is a consistent
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belief change extension ofBR = (K, {¬α}, ∅) (cf. also Theorem 4.1 of [12]). Hence, it
suffices to show that the following condition holds:

(∗∗) φ∗ ∈ Cn(K ′ ∪ EQ) ∩ LP iff φ∗ ∈ Cn(K ′ ∪ EQ ∪ {¬α}) ∩ LP , for any consistent
belief change extensionCn(K ′ ∪ EQ) ∩ LP of BC .

Consider some consistent belief change extensionCn(K ′ ∪ EQ) ∩ LP of BC . If φ∗ ∈
Cn(K ′ ∪ EQ)∩LP , thenφ∗ ∈ Cn(K ′ ∪ EQ ∪ {¬α})∩LP , by monotonicity ofCn(·). So
supposeφ∗ ∈ Cn(K ′ ∪ EQ ∪ {¬α}) ∩ LP . We must show thatK ′ ∪ EQ ` φ∗ holds.

LetM ′ ∪N be some model ofK ′ ∪ EQ , whereM ′ ⊆ P ′ ∪R′ andN ⊆ P ∪R ∪Q. Since
Cn(K ′ ∪ EQ)∩LP is a consistent belief change extension ofBC , EQ satisfies Condition (∗),
i.e., forP = {p1, . . . , pn} andR = {r1, . . . , rn}, we have thatpj ≡ p′j ∈ EQ or rj ≡ r′j ∈
EQ , but not both, for each1 ≤ j ≤ n. Define

N̂ = N \ ({pj | rj ≡ r′j ∈ EQ} ∪ {rj | pj ≡ p′j ∈ EQ}).

Obviously,M ′ ∪ N̂ is a model of

K ′ ∪ EQ ∪ {¬α} = {p′i ∧ r′i | i = 1, . . . , n} ∪ EQ ∪
n∧
i=1

(¬pi ∨ ¬ri).

Hence, sinceφ∗ ∈ Cn(K ′ ∪ EQ ∪ {¬α}), M ′ ∪ N̂ is a model ofφ∗. Moreover, sinceφ∗

is a formula in disjunctive normal form, and no atom fromP or R occurs negated inφ∗, it
follows that, for anyS ⊆ P and anyT ⊆ R, M ′ ∪ N̂ ∪ S ∪ T is also a model ofφ∗. In
particular,M ′ ∪N is a model ofφ∗. This provesK ′ ∪ EQ ` φ∗.

3. Again, we only showΠP
2 -hardness of RSKEPTICAL and CSKEPTICAL. To this end, we

exploit some results by Eiter and Gottlob [16] as well as by Delgrande and Schaub [11, 12].

Let P = {p1, . . . , pn} andQ = {q1, . . . , qm} be two distinct sets of variables, and consider
a closed QBFΦ of form ∀P∃Qφ, whereφ is a propositional formula such thatP ∪ Q =
Var(φ). Furthermore, letR = {r1, . . . , rn} be a set of variables distinct fromVar(φ), and
let v be a further variable not occurring inVar(φ) orR. ForK andα as defined in the proof
of CCHOICE above, define the following knowledge baseKS and formulasβ andγ:

KS = K ∪Q ∪ {v},
β = ¬α ∧ (v → φ) ∧ ((q1 ∨ . . . ∨ qm) → v), and

γ =
n∧
i=1

(pi ∨ ri).

As shown by Eiter and Gottlob [16],Φ is valid iff v ∈ KS+̇s(β ∧ γ), where+̇s is the Satoh
revision operator. Furthermore, Delgrande and Schaub [11, 12] showed thatKS+̇s(β ∧ γ)
is equivalent toKS+̇(β ∧ γ). Hence, we get that

Φ is valid iff v ∈ KS+̇(β ∧ γ). (15)
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Consequently, RSKEPTICAL is ΠP
2 -hard.

As for CSKEPTICAL, one can show thatv ∈ KS+̇(β ∧ γ) iff v ∈ KS−̇(¬β ∨ ¬γ). Hence,
in view of (15),ΠP

2 -hardness of CSKEPTICAL is an immediate consequence.

Proof 5.3 DP -membership can be seen as follows. According to Proposition 4.1, given a belief
change scenarioB = (K,R,C) and some setEQ ⊆ {p ≡ p′ | p ∈ Var(B)} of equivalences,
deciding whetherEQ determines a consistent belief change extension ofB is equivalent to

(i) deciding whetherK ′ ∪ EQ ∪R ∪ C is consistent, and

(ii) deciding whetherK ′ ∪ EQ ∪ (p ≡ p′) ∪ R ∪ C is inconsistent, for eachp ∈ Var(B) such
that(p ≡ p′) /∈ EQ .

Clearly, Task (i) is inNP and Task (ii) is in co-NP. Hence, the combined problem is inDP .
For showingDP -hardness, we consider the following well-knownDP -complete problem [40]:

SAT-UNSAT: Given two propositional formulasφ andψ, decide whetherφ is satisfiable andψ is
unsatisfiable.

We construct a polynomial transformation mapping each pair(φ, ψ) of propositional formulas
into a belief change scenarioB and some setEQ ⊆ {p ≡ p′ | p ∈ Var(B)} of equivalences such
that

(∗) if φ is satisfiable andψ is unsatisfiable, thenEQ determines a consistent belief change
scenario ofB, and vice versa.

The construction ofB andEQ is as follows. Letφ andψ be propositional formulas. Without
loss of generality, we can assume thatVar(φ) andVar(ψ) are disjoint. Furthermore, letp andq
be distinct atoms not occurring inVar(φ) ∪ Var(ψ). Then, define

B = ({p → φ, q → ψ}, {p, q}, ∅), and

EQ = {p ≡ p′} ∪ {v ≡ v′ | v ∈ Var(φ) ∪ Var(ψ)}.

It is easy to see that this construction obeys Condition (∗).
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