
Multi-shot stream reasoning in answer set
programming: Preliminary report

Philipp Obermeier, Javier Romero, and Torsten Schaub

University of Potsdam

Abstract. In the past, we presented a first approach for stream reason-
ing using Answer Set Programming (ASP). At the time, we implemented
an exhaustive wrapper for our underlying ASP system, clingo, to enable
reasoning over continuous data streams. Nowadays, clingo natively sup-
ports multi-shot solving : a technique for processing continuously changing
logic programs. In the context of stream reasoning, this allows us to di-
rectly implement seamless sliding-window-based reasoning over emerging
data. In this paper, we hence present an exhaustive update to our stream
reasoning approach that leverages multi-shot solving. We describe the
implementation of the stream reasoner’s architecture, and illustrate its
workflow via job shop scheduling as a running example.

1 Introduction

Stream Reasoning [1, 2] has become a major subject of research in the last years.
Some approaches rely on Answer Set Programming (ASP; [3, 4]), a well established
paradigm to declarative problem solving. Rather than solving a problem by telling
a computer how to solve the problem, the idea is to simply describe what the
problem is and leave its solution to the computer.

Several years ago, we proposed one of the first stream reasoning approaches
[5–7] with ASP. At that time, we had to implement an exhaustive wrapper for
our underlying ASP system, clingo [8–10], to enable reasoning over continuous
data streams. Nowadays, clingo natively offers multi-shot solving [11]: a set of
functionalities to support operative processing of streams. With that, instead of
restarting the solver whenever an update arrives, we reuse the running clingo
process by directly updating its internal knowledgebase accordingly. Furthermore,
users can define custom stream reasoning workflows with minimal effort via
clingo’s API, available for programming languages C, Lua and Python.

In this paper, we will detail a barebones approach to leverage clingo’s multi-
shot solving capabilities for stream reasoning. Particularly, we will give a brief
introduction to multi-shot solving; devise a basic stream reasoner based on multi-
shot solving using clingo’s Python API; and showcase our stream reasoner’s
workflow via job shop scheduling as a running example.

2 Job Shop Scheduling with Answer Set Programming

For better illustration, we introduce a running example, job shop scheduling (JSP)
that we solve first with regular (single-shot) ASP. We consider a variant of JSP

2 Philipp Obermeier, Javier Romero, and Torsten Schaub

where jobs are pre-assigned to machines. The problem is the following: given m
jobs each with a specific duration and pre-assigned to one of n available machines,
what is a suitable schedule? Typically, we also assume m > n to eliminate trivial
problem instances.

The basic idea of ASP is to declaratively describe a problem by a logic
program and feed it into an ASP solver to retrieve the program’s stable models,
which correspond to the solutions of the original problem. For example, consider
a JSP instance consisting of jobs 1, 2 and 3 with respective durations of 4, 2,
and 2 minutes, assigned to machines 1, 2 and 3, respectively. In ASP, this can be
represented by the facts

job(1,1,4). job(2,2,2). job(3,2,2).

where the first argument of job/3 is the job’s ID, the second its assigned machine,
and the third its duration. The general JSP problem can represented as follows1:

1 #const horizon = 4.

3 { start(J,T) : T=1.. horizon+1-D } = 1 :- job(J,_,D).

5 occupies(J,M, D,T) :- start(J,T), job(J,M,D).

7 occupies(J,M,D -1,T) :- occupies(J,M,D,T -1), D> 1.

9 :- occupies(J1,M,_,T), occupies(J2,M,_,T), J1 <J2.

Line 1 sets the constant for the planning horizon to 4. The next rule (Line 3)
chooses for each job J a single starting time point T stated as start(J,T). Line 5
and 7 define when a machine is occupied by a job: when a job is started on a ma-
chine (Line 5), and when it is still running (Line 7). The constraint in the last line
makes sure that at no point two jobs occupy the same machine. When we evaluate
this encoding with the instance above, we retrieve two stable models: the first
model, {start(1,1),start(2,3),start(3,1)}, schedules both job 1 and 3 at time
point 1 and job 2 at 3; the second model, {start(1,1),start(2,1),start(3,3)},
schedules both job 1 and 2 at time point 1 and job 3 at 3.

3 Multi-Shot Stream Reasoning

In this section, we first give a brief conceptual overview of our stream reasoning
approach. Afterwards, we informally explain how to leverage multi-shot solving
in this context. Eventually, we give a technical description of our software
architecture and its workflow.

In essence, our approach continuously evaluates an ASP problem over a
stream, a finite sequence of sets of ASP atoms. The domain of the sequence, i.e.,
natural numbers 1, 2, 3, 4, . . . represent time steps. We employ a tuple-based sliding
window [12] of fixed size to limit the scope of data to consider. To implement this
mechanism in ASP, we leverage multi-shot solving [8, 13, 14] to seamlessly add
new and remove outdated information from the window over time. Formally, this

1 Full source code available at https://github.com/potassco/aspStream/blob/

master/aspStream/job.lp.

Multi-shot stream reasoning in answer set programming: Preliminary report 3

portrays an alternative operational characterization for solving time-decaying
logic programs[5] with fixed expiration time. We leave the proof of this claim for
the full paper.

Since our approach uses ASP multi-shot solving [8] as semantic foundation,
we subsequently give an informal introduction to the features we used, mostly
borrowed from the material in [13, 14]. In general, clingo offers several high-level
constructs to realize reasoning processes that tolerate evolving problem specifica-
tions to enable the dynamic addition and removal of rules and data over time.
This type of continuous solving interleaved with data manipulation is also known
as Multi-Shot Solving. For our implementation, we heavily rely on the #external

directive that allows to declare input atoms that may be instantiated by rules
added later on. To this end, a directive like ‘#external p(X,Y) : q(X,Z), r(Z,Y).’
is treated similar to a rule ‘p(X,Y) :- q(X,Z), r(Z,Y).’ during grounding. How-
ever, the head atoms of the resulting ground instances are merely collected as
inputs, whereas the ground rules as such are discarded. Once grounded, the truth
value of external atoms can be changed via clingo’s API. By default, the initial
truth value of external atoms is set to false. Then, for example, with clingo’s
Python API, function call assign_external(clingo.parse_term(’p(a,b)’),True)
can be used to set the truth value of the external atom p(a,b) to true.

With the #external directive, we can also declare input atoms to resemble a
sliding window, e.g. via

#external window(A,WT) : WT=1-wsize ..0, watom(A).

Intuitively, the atoms in the sliding window are represented as external atoms
over predicate window/2 where A is an atom occurring in the stream at the current
time step offset by WT. Further, wsize denotes the window size and WT=1-wsize..0

states the domain of WT ranging from 1-wsize to 0, i.e, the time steps covered by
the window relative to the current time step. To advance the window by one time
step, we can toggle the truth values of the window/2 atoms via clingo’s python
API accordingly, as detailed above.

At its core, our technical implementation2 relies on a controller module for the
overall workflow shown in Listing 1.1. Its main function in Line 30-45 expects a
streamed program as input derived from abstract class AbstractStreamedProgram

in Line 20-27. A streamed program is custom to a problem and constitutes 1) the
ASP problem encoding to apply, 2) the sliding window size, and 3) a function
next that returns and afterwards removes the first element in the stream. With
this setup, the main function is able to evaluate the problem encoding on the
stream in a sliding window fashion. More precisely, in Line 33, the clingo control
object gets initialized with the window size passed as a constant. Afterwards, in
Line 34-35, the problem encoding provided by the streamed program and the
declaration of external window/2 in line 6 are grounded. As described previously,
window/2 represents the atoms of the current window and will be used in sequel to
dynamically update those according to the current time step. Line 40-45 facilitate
a loop that iteratively solves the problem for the atoms in the current window

2 Source code available at https://github.com/potassco/aspStream

4 Philipp Obermeier, Javier Romero, and Torsten Schaub

until the end of the stream. That is, Line 41-42 update the current window’s
atoms by calling function set_externals to set newly added and expired atoms
of external window/2 to true or false, respectively. With the updated ground
program, the solve method of clingo is called in line 44 utilizing our custom
on_model method in line 9-11 to print the solve result to the standard output.
Eventually, the sliding window is advanced by one time step by calling next in
Line 45. In general, this loop can also be re-designed to advance the window
more than one time step per cycle by adding the result of multiple sp.next()

calls to the currently considered window atoms.

5 externals = """
6 #external window(A,WT) : WT=1-wsize..0, watom(A).
7 """

9 def on_model(m):
10 show = " ".join([str(i) for i in m.symbols(shown=True)])
11 print("Answer :\n{}".format(show))

13 def set_externals(ctl , window):
14 for idx , item in enumerate(window):
15 for atom , value in item:
16 watom = clingo.parse_term("window("+atom+",-"+str(idx)+")")
17 ctl.assign_external(watom , value)

20 class AbstractStreamedProgram:

22 def __init__(self):
23 self.base = ""
24 self.wsize = 1

26 def next(self):
27 return None

30 def main(sp):

32 # ground base
33 ctl = clingo.Control (["-c wsize ={}".format(sp.wsize)])
34 ctl.add("base" ,[],sp.base + externals)
35 ctl.ground ([("base" ,[])])

37 # solve until end of the stream
38 window = [[]]*sp.wsize
39 item = sp.next()
40 while item is not None:
41 window = [item] + window [:-1]
42 set_externals(ctl , window)
43 print("\nSolving ...")
44 ctl.solve(on_model=on_model)
45 item = sp.next()

Listing 1.1. Controller module of the stream reasoner written in Python3.

At this juncture, we apply our devised concepts to the job shop scheduling
problem from Section 2. Since we intend to reuse our existing JSP encoding, we
introduce a new predicate request/3 that has the same signature as jobs/3 but
captures the notion of dynamically arriving job requests from the stream. For
instance, consider a stream of length 2 where at time step 1 two job requests
arrive: request 1 for machine 1 of duration 4, and request 2 for machine 2 of
duration 2. Further, at time step 2 a single request arrives: request 1 for machine
2 of duration 3. With request/3, we can express this as a stream of ASP atoms
as follows

3 Full source code available at https://github.com/potassco/aspStream/blob/

master/aspStream/stream_controller.py

Multi-shot stream reasoning in answer set programming: Preliminary report 5

time step window atoms
1 request(1,1,4). request(2,2,2).

2 request(1,2,3).

where {request(1,1,4), request(2,2,2)} and {request(1,2,3)} are the set of
arriving ASP atoms for time steps 1 and 2, respectively. Then, processed by the
controller function set_externals (Listing 1.1, Line 13-17) at time point 1, the
following atoms of the sliding window external window would hold:

window(request (1,1,4),0), window(request (2,2,2),0)

Processed again for time point 2 and assuming that the window size is at least 2
time steps, set_externals would change the true atoms of external window to

window(request (1,1,4),-1), window(request (2,2,2),-1),

window(request (1,2,3),0)

To effectively support the scheduling of streamed requests, we still have to
supplement our encoding in Section 2, e.g. with the following rules4:

1 #const jobs =4. #const requests =2. #const machines =2.

3 { assign ((R,WT),J) : J=1.. jobs } = 1 :- window(request(R,_,_),WT).

5 :- assign ((R1,WT1),J), assign ((R2,WT2),J), (R1,WT1) < (R2,WT2).

7 job(J,M,D) :- assign ((R,WT),J), window(request(R,M,D),WT).

9 watom(request(R,M,D)) :- R=1.. requests, M=1.. machines, D=1.. horizon.

11 #show wstart(request(R,M,D),WT,T) : window(request(R,M,D),WT),
12 assign ((R,WT),J), start(J,T).

The overall idea of this addition is the mapping of arriving request/3 atoms to
job/3 atoms such that our previous encoding can be reused for solving. Specif-
ically, in Line 1 constants jobs and requests state the maximum number of
streamed requests and processing jobs per time step, respectively, and machines

states the number of available machines. The assignment of requests to jobs is
accomplished by Line 3-7: the cardinality rule in Line 3 assigns each request
R within the scope of the sliding window at relative time point WT to a job
expressed by the implied assign/2 atom. To ensure that different requests cannot
be assigned to the same job, we add the constraint in Line 5. For every assigned
request, we yield the respective job/3 atom in Line 7. Recalling our declaration of
external window/2 from above, we must also define the domain of possible atoms
occurring in the sliding window via watom/1 in Line 9. The #show statement in
Line 11-12 formats the solution as wstart/4 terms which state for each request
request(R,M,D) in the window at relative time point WT its absolute starting
time point T. By setting up a custom streamed program5 with window size of
at least 2 and our extended encoding, we can use the controller to schedule
the request in the example stream above: after the first time step we retrieved

4 Full source code available at https://github.com/potassco/aspStream/blob/

master/aspStream/stream.lp
5 Full source code available at https://github.com/potassco/aspStream/blob/

master/aspStream/streamed_program_job.py

6 Philipp Obermeier, Javier Romero, and Torsten Schaub

stable model {wstart(request(1,1,4),0,1),wstart(request(2,2,2),0,3)} which
suggest to schedule request 1 and 2 at time point 1 and 3, respectively. After
solving again at time point 2, we get stable model {wstart(request(1,1,4),-1,1),
wstart(request(2,2,2),-1,1), wstart(request(1,2,2),0,3)} which suggest to sched-
ule request 1 and 2 arrived at relative time point -1 both to absolute time point
1, and request 1 arrived at relative time point 0 to absolute time point 3. A
notable drawback of this approach is that we reschedule all previously submitted
jobs. Specifically, jobs that were started before the current timepoint may be
reassigned to another start time. As a remedy, we developed an extended variant
that considers already running jobs and occupied machines. For reasons of space,
we skip a detailed explanation here and refer to our encoding6.

4 Discussion

There have been a host of logic and ASP-based approaches in recent years. For
ontological knowledgebases, [15] proposes a stream reasoner with time-annotated
RDF data that may expire. To bridge the gap between purely event-driven
systems and rule-based reasoning, the first-order language ETALIS [16] was
developed. The ASP-based language LARS [17] adds language primitives for time
and data-based window operators as wells as temporal modalities to compare
streams and windows. An implementation of LARS based on clingo is presented
in [18]. In a broader sense, clingo by itself can be seen as a general toolkit to
facilitate dynamic workflows based on external updates. Our work in [8–10]
presented a first concept for incremental stream reasoning with ASP.

In conclusion, we laid out an pragmatic approach to leverage clingo’s multi-
shot solving capabilites for stream reasoning. To this end, we presented a basic
implementation of a stream reasoner and showcased how to realize a sliding
window using clingo’s Python API. Moreover, we demonstrated our devised
concepts by applying them to an online-version of job shop scheduling. For the
future, we aim to elaborate more advanced design patterns from a implementation
point of view. In terms of theoretical conception, we plan to particularize the
link to time-decay logic programs and potentially expand their semantics.

References

1. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world!
reasoning upon rapidly changing information. IEEE Intelligent Systems 24(6)
(2009) 83–89

2. Dell’Aglio, D., Della Valle, E., van Harmelen, F., Bernstein, A.: Stream reasoning:
a survey and outlook: A summary of ten years of research and a vision for the next
decade. Data Science Journal 1 (2017)

6 The extended encoding and an example instance can be found at https://github.

com/potassco/aspStream/blob/master/aspStream/stream_extended.lp and
https://github.com/potassco/aspStream/blob/master/aspStream/examples/

stream_instance3.lp, respectively.

Multi-shot stream reasoning in answer set programming: Preliminary report 7

3. Lifschitz, V.: Answer set planning. In de Schreye, D., ed.: Proceedings of the
International Conference on Logic Programming (ICLP’99), MIT Press (1999)
23–37

4. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press (2003)

5. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.:
Stream reasoning with answer set programming: Preliminary report. In Brewka, G.,
Eiter, T., McIlraith, S., eds.: Proceedings of the Thirteenth International Conference
on Principles of Knowledge Representation and Reasoning (KR’12), AAAI Press
(2012) 613–617

6. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.:
Stream reasoning with answer set programming: Extended version. Available at
http://www.cs.uni-potsdam.de/wv/publications/ (2012).

7. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.:
Answer set programming for stream reasoning. In Fink, M., Lierler, Y., eds.: Pro-
ceedings of the Fifth Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP’12). (2012)

8. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Extended report. Technical report, Universität Potsdam (2014)

9. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Clingo = ASP + control:
Preliminary report. In Leuschel, M., Schrijvers, T., eds.: Technical Communications
of the Thirtieth International Conference on Logic Programming (ICLP’14). Volume
14(4-5) of Theory and Practice of Logic Programming, Online Supplement. (2014)
Available at http://arxiv.org/abs/1405.3694v1.

10. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Wanko, P.:
Theory solving made easy with clingo 5. In Carro, M., King, A., eds.: Technical
Communications of the Thirty-second International Conference on Logic Program-
ming (ICLP’16). Volume 52., Open Access Series in Informatics (OASIcs) (2016)
2:1–2:15

11. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Multi-shot ASP solving with
clingo. Theory and Practice of Logic Programming (2018) To appear.

12. Golab, L., özsu, M.: Data Stream Management. Synthesis Lectures on Data
Management. Morgan and Claypool Publishers (2010)

13. Gebser, M., Kaminski, R., Obermeier, P., Schaub, T.: Ricochet robots reloaded: A
case-study in multi-shot ASP solving. In Eiter, T., Strass, H., Truszczyński, M.,
Woltran, S., eds.: Advances in Knowledge Representation, Logic Programming, and
Abstract Argumentation: Essays Dedicated to Gerhard Brewka on the Occasion
of His 60th Birthday. Volume 9060 of Lecture Notes in Artificial Intelligence.,
Springer-Verlag (2015) 17–32

14. Kaminski, R., Schaub, T., Wanko, P.: A tutorial on hybrid answer set solving
with clingo. In Ianni, G., Lembo, D., Bertossi, L., Faber, W., Glimm, B., Gottlob,
G., Staab, S., eds.: Proceedings of the Thirteenth International Summer School
of the Reasoning Web. Volume 10370 of Lecture Notes in Computer Science.,
Springer-Verlag (2017) 167–203

15. Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Grossniklaus, M.: Incremental
reasoning on streams and rich background knowledge. In Aroyo, L., Antoniou,
G., Hyvönen, E., Teije, A., Stuckenschmidt, H., Cabral, L., Tudorache, T., eds.:
Proceedings of the Seventh Extended Semantic Web Conference (ESWC’10). Volume
6088 of Lecture Notes in Computer Science., Springer-Verlag (2010) 1–15

8 Philipp Obermeier, Javier Romero, and Torsten Schaub

16. Anicic, D., Fodor, P., Rudolph, S., Stühmer, R., Stojanovic, N., Studer, R.: A
rule-based language for complex event processing and reasoning. In Hitzler, P.,
Lukasiewicz, T., eds.: Proceedings of the Fourth International Conference on Web
Reasoning and Rule Systems (RR’10). Volume 6333 of Lecture Notes in Computer
Science., Springer-Verlag (2010) 42–57

17. Beck, H., Dao-Tran, M., Eiter, T., Fink, M.: LARS: A logic-based framework for
analyzing reasoning over streams. 1431–1438

18. Beck, H., Eiter, T., Folie, C.: Ticker: A system for incremental asp-based stream
reasoning. Theory and Practice of Logic Programming 17(5-6) (2017) 744–763

