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Abstract Statistical model learning problems are tradition-
ally solved using either heuristic greedy optimization or
stochastic simulation, such as Markov chain Monte Carlo or
simulated annealing. Recently, there has been an increasing
interest in the use of combinatorial search methods, includ-
ing those based on computational logic. Some of these meth-
ods are particularly attractive since they can also be suc-
cessful in proving the global optimality of solutions, in con-
trast to stochastic algorithms that only guarantee optimal-
ity at the limit. Here we improve and generalize a recently
introduced constraint-based method for learning undirected
graphical models. The new method combines perfect elimi-
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nation orderings with various strategies for solution pruning
and offers a dramatic improvement both in terms of time and
memory complexity. We also show that the method is capa-
ble of efficiently handling a more general class of models,
called stratified/labeled graphical models, which have an as-
tronomically larger model space.

Keywords Graphical models · Structure Learning ·
Constraint programming · Satisfiability · MAXSAT ·
Answer set programming

1 Introduction

Score-based optimization or structural learning of statistical
models is typically performed over finite classes of models,
where the topology of the search space poses a challenge
for building an algorithm that can efficiently traverse across
hills and valleys shaping a multimodal target function to be
optimized. In particular in Bayesian model learning it is fre-
quently possible to score individual models based on data
using analytical formulas for the log unnormalized posterior,
either exactly or approximately. Algorithms for stochastic
simulation, such as Markov chain Monte Carlo (MCMC)
and simulated annealing, represent popular ways to identify
posterior optimal models. Learning of undirected graphical
models, also known as Markov networks, is a widely con-
sidered application of such tools [8,12,20,21,34]. One at-
tractive property of these algorithms is their consistency at
the limit, i.e., they are known to identify an optimal model
with certainty as the number of iterations goes towards in-
finity. On the other hand, this does not guarantee anything
concerning their performance for a finite number of itera-
tions.

Statistical model learning has traditionally not been con-
sidered from the perspective of Boolean propositional logic,
given the apparent separation of the two research traditions.
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However, learning of Bayesian networks and Markov net-
works has recently attained considerable interest in the com-
putational logic and machine learning communities, and sub-
sequently the use of various constraint-based methods, such
as integer programming, maximum satisfiability, and answer
set programming, has been proposed [1,2,9,10,40].

Graphical models are an essential tool when consider-
ing modular representations of multivariate systems. Despite
of the versatility of Markov networks to encode the depen-
dence structure over a set of discrete variables, certain more
subtle types of independencies cannot be expressed in such
models. The dependence structure induced by Markov net-
works may be unnecessarily stringent in that it can only con-
vey conditional independencies that hold in the entire out-
come space of the variables involved. This has motivated the
development of new classes of models. Using the theory of
log-linear models for contingency tables, Markov networks
have been generalized in a number of ways [7,14,15,24,25].
The common basis of these models is that conditional inde-
pendence is augmented by an independence that holds only
in a subset of the joint state space of the variables included in
a particular condition. A similar construction has been pro-
posed for Bayesian networks in context-dependent Bayesian
networks [3,16,30,41].

Recently, a class of Markov networks that belong to the
general family of context-specific graphical models was in-
troduced [39]. Termed as stratified graphical models (alter-
natively called as labeled Markov networks), this is the first
class of undirected graphical models that allows for the graph-
ical representation of both conditional and context-specific
independencies, while simultaneously enabling fully Bayes-
ian learning under an explicit factorization of the joint prob-
ability distribution. A non-reversible Markov chain Monte
Carlo (MCMC) algorithm has been utilized for learning the
maximum a posteriori (MAP) model from data by Nyman et
al. [39].

In this paper, we develop further a constraint-based learn-
ing method introduced for ordinary Markov networks [9] by
significantly extending applicability with respect to network
size and by also allowing context-specific independence re-
strictions. The earlier method is not directly applicable to
larger Markov networks or labeled networks due to the im-
practically large number of possible model elements that
need to be explicitly considered. This prompted us to de-
velop several formal pruning criteria. They allow for reduc-
ing the number of relevant elements dramatically, so that
constraint-based methods become applicable. Our pruning
criteria are based on statistical arguments, such that they
act consistently in model rejection as the number of sam-
ples available for model learning tends towards infinity. In
addition we replace the balancing condition and maximum
spanning tree considerations in [9] by a perfect elimina-
tion ordering, which is much better suited for obtaining a

compact representation in terms of model constraints. We
demonstrate the feasibility of this approach with examples
that have model cardinalities ranging from very large to an
astronomic size.

The structure of the paper is as follows. We start by in-
troducing Markov networks and labeled Markov networks
in Section 2. Section 3 presents the principles we use for
pruning the set of candidate cliques to improve efficiency. A
characterization of chordal graphs in terms of perfect elim-
ination orderings is given in Section 4. Section 5 provides
a constraint-based representation of ordinary Markov net-
works and a respective extension to labeled networks. An
experimental evaluation of the proposed method is given in
Section 6, and Section 7 concludes the paper.

2 Markov Networks and Their Generalization

In the following we provide a brief introduction to graph-
ical models and summarize results derived for context-de-
pendent (labeled) Markov networks [39]. For a more com-
prehensive presentation of the theory of probabilistic graph-
ical models see the standard references [30,31,48]. An undi-
rected graph G = 〈N,E〉 consists of a set N of nodes stand-
ing for random variables and a set E ⊆ N×N of undirected
edges. Two nodes δ and γ are adjacent in G if {δ ,γ} ∈ E.
A path is a sequence of nodes such that every two consec-
utive nodes in the sequence are adjacent. Two sets A and B
of nodes are separated by a third set D of nodes if every
path between a node in A and a node in B contains at least
one node in D. An undirected graph is chordal if, for every
path X1, . . . ,Xn,X1 with n≥ 4, there are two non-consecutive
nodes on the path connected by an edge. A clique c is a set of
nodes such that every pair of nodes in c is adjacent. Given
the set C of maximal cliques in a chordal graph, the mul-
tiset of separators can be obtained as intersections of the
cliques ordered by a spanning tree of the respective clique
graph [22]. Some details of this construction are given in
Section 5.

A Markov network consists of a graph G = 〈N,E〉 and a
joint distribution PN over the variables XN . The graph speci-
fies the dependence structure of the variables and PN factor-
izes according to G (see below for chordal graphs). Given G
it is possible to ascertain whether two sets XA and XB of vari-
ables are conditionally independent given another set XD of
variables, due to the global Markov property

XA ⊥ XB | XD, if D separates A from B in G.

For a chordal graph G the probability of a joint outcome
xN ∈XN , where XN denotes the state space of the variables
XN , factorizes as

PN(xN) =
∏c∈C Pc(xc)

∏s∈S Ps(xs)
.
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We assume that all outcomes have strictly positive proba-
bilities and that the prior distribution for the model parame-
ters factorizes with respect to the graph. Then, the marginal
likelihood of a dataset X given a chordal graph [11] can be
written as

P(X | G) =
∏c∈C Pc(Xc)

∏s∈S Ps(Xs)
. (1)

By employing a Dirichlet distribution to assign prior prob-
abilities to outcomes xc ∈Xc, the terms Pc(Xc) and Ps(Xs)

can be calculated analytically. These properties are inher-
ited by the class of decomposable labeled Markov networks,
which allow a full factorization of the probability for all joint
outcomes including context-specific independencies within
maximal cliques. In addition context-specific independen-
cies can be expressed in such Markov networks through la-
bels. The assumption of decomposability of labeled networks
permits an analytical scoring function, which has been cus-
tomarily used also for ordinary Markov networks in the Bay-
esian approaches to model learning.

Definition 1 (Label) Let (G,PN) be a Markov network. For
all {δ ,γ} ∈ E, let L{δ ,γ} denote the set of nodes adjacent
to both δ and γ . For a non-empty L{δ ,γ}, define the label of
the edge {δ ,γ} as the subset L{δ ,γ} of outcomes xL{δ ,γ} ∈
XL{δ ,γ} for which Xδ and Xγ are independent given XL{δ ,γ} =

xL{δ ,γ} , i.e.,

L{δ ,γ} = {xL{δ ,γ} ∈XL{δ ,γ} : Xδ ⊥ Xγ | XL{δ ,γ} = xL{δ ,γ}}.

A label establishes a context in which a specific con-
ditional independence holds. An edge {δ ,γ} is said to be
labeled if L{δ ,γ} is well-defined and non-empty. Restricting
a Markov network with the collection L of all labels induces
a labeled Markov network.

Definition 2 (Labeled Markov network) A labeled Markov
network is defined by the triple (G,L,PN), where G is the
underlying graph, L equals the joint collection of all labels
L{δ ,γ} for the edges of G, and PN is a joint distribution
over XN that factorizes according to the restrictions imposed
by G and L.

The pair (G,L) constitutes a labeled graph GL. Figure 1
shows the graphical representation of a labeled Markov net-
work containing three conditionally dependent variables with
the context-specific independence X2 ⊥ X3|X1 = 1.

Imposing certain restrictions to the labeled graph will
enable the factorization of P(X |GL) according to (1) as well
as an analytic expression of Pc(Xc) and Ps(Xs).

Definition 3 (Decomposable labeled graph) Let (G,L) be
a labeled graph such that G is chordal. Further, let EL denote
the set of labeled edges, Ec the set of all edges in a maximal
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Fig. 1 Labeled graph encompassing the context-specific independence
X2 ⊥ X3|X1 = 1.

clique c, and ES the set of all edges in the separators of G.
The labeled graph is decomposable if

EL∩ES = /0

and, for all c ∈C,

EL∩Ec = /0 or
⋂

{δ ,γ}∈EL∩Ec

{δ ,γ} 6= /0.

A labeled graph is decomposable if G is chordal, there
are no labels for edges in separators, and in each maximal
clique all labeled edges have at least one node in common. A
labeled Markov network with a decomposable labeled graph
is a decomposable labeled Markov network. The first two re-
strictions will allow for PN to be factorized according to (1).
The third restriction will enable an ordering (X1, . . . ,X|c|) of
the variables in Xc, such that the variables in {X1, . . . ,X|c|−1}
can be considered dependent on each other regardless of the
context, and the variable X|c| may or may not be independent
of a subset of {X1, . . . ,X|c|−1} depending on the context.

If X|c| is the variable corresponding to the node in com-
mon to all labeled edges in a maximal clique, the variables
{X1, . . . ,X|c|−1} can be considered parents of X|c|, denoted
by Π|c|. In a Markov network each outcome of the variables
in Π|c| would induce a specific conditional distribution for
X|c|. However, for labeled Markov networks some outcomes
of Π|c| may be grouped together, with all outcomes in a
group inducing the same conditional distribution for X|c| [3].
This creates a partition of the outcome space of Π|c|, where
each cell in the partition forms a distinguishable parent com-
bination for X|c|.

For decomposable labeled graphs, Pc(Xc) can be calcu-
lated [39] using the formula

|c|

∏
j=1

q j

∏
l=1

Γ (∑
k j
i=1 α jil)

Γ (n(π l
j)+∑

k j
i=1 α jil)

k j

∏
i=1

Γ (n(xi
j | π l

j)+α jil)

Γ (α jil)
, (2)

where q j is the number of distinguishable parent combina-
tions for variable X j (i.e., there are q j distinct conditional
distributions for variable X j), k j is the number of possible
outcomes for variable X j, α jil is the hyperparameter in the
Dirichlet distribution corresponding to the outcome i of vari-
able X j given that the parental combination of X j equals l,
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n(π l
j) is the number of observations of the combination l

for the parents of variable X j, and finally, n(xi
j | π l

j) is the
number of observations, where the outcome of variable X j
is i given that the observed outcome of the parents of X j
equals l. Note that for X|c| a parent configuration l is not nec-
essarily comprised of a single outcome of Π|c|, but rather the
set of outcomes inducing the same conditional distribution
for X|c|.

The following choice of hyperparameters for the Dirich-
let distribution is motivated by the desideratum that the or-
dering of the variables in Π|c| should be irrelevant for statis-
tical learning of the model structure:

α jil = α jl =
|Xc| ·λ jl

π j · k j
,

where π j is the total number of possible outcomes for the
parents of variable X j and k j is the number of possible out-
comes for variable X j. Further, λ jl equals the number of out-
comes for the parents of variable X j in group l with an equiv-
alent effect on X j, if X j is the last variable in the ordering.
Otherwise, λ jl equals one. The distribution Ps(Xs) can also
be calculated using (2). Note that our choice of hyperparam-
eters need not lead to a hyper-consistent prior distribution,
as defined in [11]. However, research in the machine learn-
ing field has clearly demonstrated that Dirichlet priors which
are not necessarily hyper-consistent do in fact allow for the
correct underlying dependence structure to be better learned
than priors which ensure consistency. Marginal likelihood
under a Dirichlet prior with constant hyperparameters has
been shown to be very robust against scoring models with
consistent priors, such as the BDe score [44,45,46].

Given a labeled Markov network, the marginal likeli-
hood of a dataset can be calculated by combining (1) and
(2), and for practical purposes we consider only the logarith-
mic value logP(X|GL). Introducing the notation v(c,L) =
logPc(Xc), which for non-empty label sets is dependent on
the value of L, the log marginal likelihood can be written as

logP(X|GL) = ∑
c∈C

v(c,L)−∑
s∈S

v(s,L). (3)

The learning problem we consider consists of finding the
labeled graph GL that maximizes the posterior distribution

P(GL|X) =
P(X|GL)P(GL)

∑GL∈G P(X|GL)P(GL)
,

which can be reduced to identifying the model that opti-
mizes P(X|GL)P(GL). Here G denotes the set of all graphs
under consideration and P(GL) is the prior probability as-
signed to GL. Here we use a prior penalizing dense graphs

P(GL) ∝ 2|N|− f ,

where |N| is the number of nodes in G and f is the number of
free parameters in a distribution PN obeying G. This choice

Nodes Markov networks Labeled Markov networks
3 8 > 37
4 64 > 16291
5 1024 > 2.15 ·1010

6 32768 > 7.25 ·1024

7 2.10 ·106 > 4.39 ·1058

8 2.68 ·108 > 5.81 ·10135

Table 1 Size of model space given the number of nodes in the system.

of prior is motivated by the fact that adding a label to a
sparse graph often induces a context-specific independence
in a larger context than adding a label to a dense graph. The
value 2 f−|N| is a numerically convenient approximation of
the number of unique dependence structures that can be de-
rived by adding labels to G.

Different types of MCMC methods are often applied to
model optimization problems. While offering statistical con-
sistency for the resulting estimates, a drawback of such an
approach is that when the model space grows the number of
iterations required to sample an optimal model even once
may become prohibitively high. In addition, there are no
general guarantees that a finite sample estimate corresponds
to a true posterior optimal model. These aspects are partic-
ularly relevant when considering labeled Markov networks
as the size of the model space is astronomical even for a
moderate number of nodes. For Markov networks the model
space grows according to the formula 2d(d−1)/2, where d is
the number of nodes in the graph. For decomposable labeled
Markov networks over a set of binary nodes a lower bound
for the cardinality of the model space is given by

d ·22d−2·(d−1)−d +1− d(d−1)
2

· (22d−2 −1),

which is the number of different label combinations for a
maximal clique with d nodes while satisfying the restric-
tions of a decomposable labeled graph. Using this result, Ta-
ble 1 shows the size of the model space relative to different
numbers of nodes in Markov networks and labeled Markov
networks.

3 Filtering Clique Candidates

To apply a constraint-based learning method of the type in-
troduced in [9] it is necessary to construct a database con-
taining the scores (log unnormalized posteriors) v(c,L) for
all possible clique candidates c (for Markov networks) and
the respective labelings L of edges (for labeled Markov net-
works). Due to the rapidly increasing number of alternatives,
it would be infeasible to obtain a reasonably sized input for
constraint solvers without pruning clique candidates. There-
fore, we present a number of principles that can be used in



Learning Discrete Decomposable Graphical Models via Constraint Optimization 5

practice to cut down the size of the clique database. A la-
beling L of a chordal graph is proper iff L satisfies the con-
ditions of Definition 3. Thus, given a decomposable labeled
graph GL, the labeling L is proper by definition.

Lemma 1 Consider a chordal graph G and two different
sets L and L∗ of proper labelings. Let Ec

L and Ec
L∗ denote

the set of edges of a maximal clique c labeled by L and L∗,
respectively. If Ec

L ⊆ Ec
L∗ and v(c,L)> v(c,L∗), then v(c,L∗)

is irrelevant for model optimality.

Proof Since L and L∗ are both proper and Ec
L ⊆ Ec

L∗ , any
restrictions to the set of labeled edges in c satisfied by L∗ will
automatically be satisfied by L. Further, as v(c,L)> v(c,L∗),
c cannot be labeled by L∗ in an optimal labeled graph and
thus the labeling L∗ and its score v(c,L∗) can be omitted. ut

A consequence of Lemma 1 is that for any maximal
clique c ∈C and any proper labeling L∗ such that v(c, /0) >
v(c,L∗), the clique c cannot be labeled by L∗ in an optimal
labeled graph and L∗ need not be considered. Thus the main
purpose of Lemma 1 is to prune the collection of cliques and
the related information, i.e., scores and labels, before apply-
ing constraint-based search methods. In the following, we
sometimes use the abbreviation v(c) = v(c, /0).

There are, however, further criteria that can be used to
filter clique candidates more aggressively. The downside of
applying such filtering methods is that too aggressive prun-
ing may sacrifice optimal models. It is worth noting that
Bayesian score-based pruning of models as part of the search
was proposed in [34] already. Our first pruning principle
is based on Bayes factors [29] and can be used to identify
edges that are weakly supported (or unsupported) by the
data. Applying the scoring functions defined in the context
of the log marginal likelihood (3), we provide the following
definition. For later reference, we introduce the abbreviation
bforig standing for the original Bayes factor.

Definition 4 (bforig) Let {X ,Y} be a clique of two random
variables. The mutual dependence of X and Y is weakly sup-
ported by the data X if the log Bayes factor

bf(X ,Y ) = v({X ,Y})− v({X})− v({Y})< log(10−k), (4)

where k = 0,1,2, . . . is a parameter.

It is worth pointing out that (4) does not mention the la-
beling L since two-element cliques cannot have labels, mak-
ing the scores independent of L. The condition can be used to
remove any clique candidate c such that {X ,Y} ⊆ c. More-
over, the parameter k = 0,1,2, . . . controls the depth of fil-
tering: the higher the value k takes, the fewer cliques will be
pruned. However, as far as any larger clique candidates c are
considered, condition (4) does not properly take the context
created by c into account. This suggests a generalization of
the log Bayes factor bf(X ,Y ) in the context of c.

Definition 5 (Bayes factor) Given a clique c and variables
X ,Y ∈ c, define

bf(X ,Y | c) =
v(c)− v(c\{X})− v(c\{Y})+ v(c\{X ,Y}). (5)

Definition 5 allows us to generalize condition (4) for
larger cliques while omitting labelings, which effectively
amounts to assuming an empty labeling /0. Depending on the
point of interest, we introduce the abbreviations node, part,
and edge for the following three generalizations.

Definition 6 (node, part, edge) A clique c is weakly sup-
ported by the data X if one of the following conditions holds:

1. node: There is a variable X ∈ c such that

∑
Y∈c\{X}

bf(X ,Y | c)
|c|−1

< log(10−k). (6)

2. part: There is a partitioning of c into c1t c2 such that

∑
X∈c1,Y∈c2

bf(X ,Y | c)
|c1||c2|

< log(10−k). (7)

3. edge: There are two variables X ,Y ∈ c such that

bf(X ,Y | c)< log(10−k). (8)

By setting c = {X ,Y}, c1 = {X}, and c2 = {Y}, the con-
ditions (6)–(8) coincide with (4) but their intended use is
different. The principle of Definition 4 applies to any clique
containing a suspicious edge, whereas the ones of Defini-
tion 6 are clearly clique-specific criteria. Since these criteria
aim at checking the consistency of scores at edge level, fac-
tors (6) and (7) are averaged by the respective numbers of
edges |c| − 1 and |c1||c2| involved. These nominators have
no effect when k = 0 and log(10−k) = 0, but they regulate
the effect of pruning when k > 0 grows: the higher the value
of k, the fewer cliques will be pruned.

Proposition 1 Given a clique candidate c, condition (6) im-
plies condition (7) that implies condition (8).

Proof The first implication is clear by setting c1 = {X} and
c2 = c \ {X}. For the second implication, suppose that (7)
holds for c = c1 t c2 but for each X ,Y ∈ c, bf(X ,Y | c) ≥
log(10−k). This contradicts (7), since the sum of log Bayes
factors ∑X∈c1,Y∈c2

bf(X ,Y | c) ≥ |c1||c2| log(10−k). ut

Under the assumption that the data generating distribu-
tion is faithful [30] to a chordal graph, the conditions defined
in (4) and (6)–(8) will not prune essential cliques when the
size of the data goes to infinity. Here, a distribution is said to
be faithful to a graph if any marginal or conditional indepen-
dence present in the distribution can be determined from the
graph. In such a scenario, as the size of the data goes to infin-
ity, we can assume that an optimal graph, which maximizes
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Dataset |N| k all bforig node part edge
heart 6 0 63 20 18 18 17

1 39 32 32 24
2 63 44 44 41

heart-lab 6 0 156 41 34 34 31
1 95 69 73 47
2 156 108 108 96

econ 8 0 255 57 115 88 41
1 191 139 115 64
2 255 160 141 97

econ-lab 8 0 512 140 331 234 86
1 432 416 329 152
2 512 460 424 253

hs 25 0 1,807,780 5,818 11,792 7,968 1,235
1 188,689 17,727 12,896 2,399
2 1,807,780 26,101 20,202 4,713

Table 2 The effects of different filtering schemes based on the number
of remaining clique candidates for given sets of conditions.

the marginal likelihood, will correctly convey all conditional
and marginal independencies in the generating distribution.
We can further assume that implementations (4) and (5) of
the Bayes factor will perform consistently. Consider a clique
c in an optimal graph and any pair {X ,Y} ⊆ c. As there is
an edge between X and Y , we know that they are condition-
ally dependent in the generating distribution given any other
set of variables, including the empty set and c\{X ,Y}. This
means that the functions bf(. . .), defined in (4) and (5), will
tend to infinity as the size of data tends to infinity. Subse-
quently, the essential clique c will not be pruned.

In this paper, the experiments are performed on three
datasets concerning heart disease (6 binary variables), eco-
nomical behavior (8 binary variables), or election behavior
(25 binary variables), respectively. See, e.g., [39,41] for fur-
ther details on these datasets abbreviated by heart, econ, and
hs in the sequel. The sets heart and econ are based on com-
plete clique databases, whereas that of hs contains all candi-
dates up to size 8. To illustrate the effect of filtering, the col-
umn all of Table 2 gives the numbers of cliques involved in
the datasets. In the labeled case, potential labelings have al-
ready been pruned using Lemma 1. The original numbers of
candidates for heart-lab and econ-lab were 506 and 2,038,
respectively. The mnemonics of the last four columns re-
fer back to Definitions 4 and 6. The filtering scheme bforig
is based on the deletion of cliques c containing an edge
{X ,Y} such that condition (4) holds. The filtering schemes
node, part, and edge amount to the three conditions (6)–
(8) for clique removal, respectively. Each scheme is imple-
mented so that the resulting clique database remains down-
ward closed, i.e., if a particular clique c is present in the
database so are its all proper subcliques. This is essential for
scoring based on perfect elimination orderings to be intro-
duced in the next section. Summarizing Table 2, the edge
scheme provides the greatest pruning effect, having the neg-
ative effect of an increased risk of sacrificing optimal models

(cf. Table 7). In the labeled case, the relationships between
the pruning criteria are somewhat blurred by the nonuni-
form distribution of different labelings over clique candi-
dates, which are nevertheless filtered in the same way as
without labels.

We consider filtering as off-line computation that is per-
formed only once. In fact, the implementation was not de-
signed to be particularly efficient. For econ and heart, filter-
ing takes only fractions of a second and is thus negligible. In
case of hs, the number of cliques subject to filtering is essen-
tially higher. When k = 0, the filtering times are 211, 501,
8833, and 299 seconds for the schemes bforig, node, part,
and edge, respectively. The times do not vary substantially
when k = 1 and k = 2. The considerably longer filtering time
for the part scheme is due to the high number of cliques as
well as the variety in which each clique can be partitioned.

4 Perfect Elimination Orderings

Undirected trees have the following recursive property: if a
leaf node and the respective edge are eliminated, the result is
still a tree and the entire tree can be eliminated in this way.
This gives rise to an elimination ordering for the nodes of
the tree. Since chordal graphs generalize undirected trees,
the same idea can be applied to chordal graphs [5,17].

Definition 7 (Perfect elimination ordering)
Let G = 〈N,E〉 be an undirected graph. Further, let X1 <

· · ·< Xn be a strict total ordering of N. Define N>(X) as the
set of neighbors of X that follow X in the ordering. Then, <
is a perfect elimination ordering (PEO) for G if N>(X) is a
clique of G for every X ∈ N.

Perfect elimination orderings enable a chordality test.

Theorem 1 ([13,42]) A graph is chordal iff it has a perfect
elimination ordering.

This connection of chordality and PEOs leads to a pro-
cedure in which nodes of a graph are eliminated one by one.
Any node in the remaining graph that is part of a clique (con-
sisting of one or more nodes) and is not adjacent to nodes
outside the clique is eligible for elimination. If all nodes can
be eliminated, then the original graph is chordal. Note that
the above definition of PEO is equivalent with the standard
definition of perfect ordering [31], however, below we uti-
lize PEOs also for labeled graphs which are not considered
in [31].

Example 1 Figure 2 illustrates the application of the above
procedure to an 8-node Markov network (a chordal graph
having random variables as its nodes) according to the PEO
A <C < H < F < B < E < G < D. Since all nodes are elim-
inated in the end, the graph is chordal by Theorem 1. Many
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Fig. 2 Applying a perfect elimination ordering to a chordal graph.

other orderings are applicable as well. It is also possible to
eliminate nodes in parallel. For example A, C, H, and F
could all be eliminated first, and then the clique {B,D,E,G}
can be eliminated node by node in four steps. �

To enable the scoring of Markov networks, the expres-
sion (3) of log marginal likelihood can be reformulated to
better fit the purposes of constraint-based optimization.

Proposition 2 Let X1 < .. . < Xn be a PEO for a labeled
decomposable graph GL. If si = N>(Xi) and ci = si ∪{Xi}
are the cliques of GL induced by X1 < .. . < Xn for 1≤ i≤ n,
and v(ci,L) is defined as v(ci, /0) for non-maximal cliques ci,
then the log marginal likelihood of a dataset X given GL is

logP(X | GL) =
n

∑
i=1

v(ci,L)−
n

∑
i=1

v(si,L).

The score differences d(ci,Xi,L) = v(ci,L)− v(si,L) for
1≤ i≤ n thus enable a differential calculation

logP(X | GL) =
n

∑
i=1

d(ci,Xi,L). (9)

The preceding scheme can be further adjusted by isolating
the effects of labelings L on scores. In the following, we
let d(c,Xi) = v(c)− v(c \ {Xi}), where c is a clique and
Xi ∈ c a variable. In the special case that c = {Xi}, we have
d({Xi},Xi) = v({Xi})− v( /0) = v({Xi}). The effect of a la-
beling L on the score of c can be formalized as a reward

r(c,L) = v(c,L)− v(c, /0) (10)

that is independent on the nodes of c and guaranteed to be
positive by Lemma 1. Thus (9) can be rewritten as

logP(X | GL) =
n

∑
i=1

d(ci,Xi)+
n

∑
i=1

r(ci,L). (11)

5 Learning Markov Networks by Constraint
Optimization

Representing the structure learning problem of decompos-
able Markov networks is feasible in constraint satisfaction
frameworks such as Boolean satisfiability (SAT) [6] and its
extension by optimization capabilities, i.e., maximum sat-
isfiability (MAXSAT) [27]. Also other extensions such as
SAT modulo theories (SMT) [43]) and integer programming
(IP) [23] could be used. Answer set programming (ASP)
[4,33,36,38] offers similar primitives in the form of rules
rather than propositional formulas or linear equations. We
begin by reviewing the proof-of-concept representation of
the learning problem for Markov networks [9]. These ideas
form the starting point for developing an improved encod-
ing for Markov networks and generalizing the encoding to
the labeled case.

Definition 8 (Solutions [9]) Given a set N of nodes repre-
senting random variables and a scoring function v : 2N → R
based on log marginal likelihoods (3), a set C = {c1, . . . ,cn}
of cliques is a solution to the network learning problem iff

1. every node is covered by a clique, i.e.,
⋃n

i=1 ci = N,
2. cliques in C are set-inclusion maximal,
3. the graph 〈N,E〉 with E =

⋃
c∈C Ec is chordal,

4. the set C has a maximum weight spanning tree labeled
by a set S = {s1, . . . ,sm} of separators, and

5. C and S maximize v(C,S) = ∑c∈C v(c)−∑s∈S v(s).

The constraints on solutions given in Definition 8 can
be encoded in any of the mentioned formalisms for con-
straint optimization. For instance, if a Boolean (0-1) vari-
able inc represents that a clique c is a part of a candidate
solution, the first constraint can be formalized by a disjunc-
tion inc1 ∨ . . .∨ inck , where c1, . . . ,ck are all cliques that con-
tain a particular node. Using dedicated variables ei, j to rep-
resent the edges of the resulting graph, expressing the maxi-
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mality of cliques is straightforward. In contrast, obtaining a
compact representation for chordality and the existence of a
maximum weight spanning tree gets far more involved. For
small graphs, however, chordality could be enforced by ex-
plicitly denying chordless cycles of length four or more. For
the spanning tree condition, a key idea of [9] is that the max-
imum weight of separators can be replaced by a balancing
condition: every node occurs in the chosen cliques exactly
once more than in the respective separators. This enables
the recognition of separators in terms of standard cardinality
constraints [47] and hence allows for determining the over-
all score (3) of the resulting network.

5.1 Encoding Based on PEOs

In what follows, we present an encoding of the Markov net-
work learning problem that improves the one summarized
above in a number of ways. In particular, the idea is to ex-
ploit PEOs in the encoding of the chordality check and the
results of Section 4 for scoring Markov networks. The goal
is to avoid the determination of separators as far as possible.
This is because the connection of a separator to the cliques
it separates from each other gives rise to a cubic relation in
the number of candidate cliques, i.e., substantial space com-
plexity. We thus restate the requirements from Definition 8.

Definition 9 (Solutions reformulated) Given a function d :
2N ×N→ R, a graph 〈N,E〉 based on N = {X1, . . . ,Xn} is a
solution to the Markov network learning problem iff

1. every node Xi has a clique ci as its context of elimination,
where Xi ∈ ci and E =

⋃n
i=1 ci,

2. there is a perfect elimination ordering for 〈N,E〉, and
3. ∑

n
i=1 d(ci,Xi) corresponding to the log marginal likeli-

hood (9) is maximized.

The elimination of Xi in the context of ci means that Xi
and all edges of ci incident with Xi are removed. For in-
stance, the node A is removed in the context of {A,B,D,G}
in Figure 2. To select a candidate graph, we introduce a
Boolean variable inc

i for each node Xi and clique candidate c
with Xi ∈ c. If c1, . . . ,cm are the clique candidates contain-
ing Xi, the choice of the elimination context for Xi can be ex-
pressed by inc1

i ∨ . . .∨ incm
i . This disjunction should be made

exclusive by adding ¬in
c j
i ∨¬inck

i for all 1 ≤ j < k ≤ m,
or by adding an equivalent cardinality constraint allowing
only one of the variables inc1

i , . . . , incm
i to be true for Xi. The

Boolean variables utilized by the encoding are collected in
Table 3 for the reader’s convenience.

Our next objective is to enforce the chordality of the se-
lected graph. This will be achieved by checking the exis-
tence of a PEO for the graph as formalized by Theorem 1.
However, rather than insisting on a total ordering of the nodes,
we allow for parallel eliminations to limit the number of

����
X3

�
�
�
�
�

����
X1 ����

X2

����
X4

Fig. 3 Illustration of the encoding of the chordality test.

steps and to achieve a more compact encoding. If parallel
eliminations are considered, the worst case can be illustrated
by an n-element clique {X1,X2, . . . ,Xn} whose elimination
requires n elimination steps using some arbitrary ordering
as PEO (cf. the clique {B,D,E,G} in Figure 2). The rea-
son is that the potential removals of B, D, E, and G compete
over the same resources (edges) and cannot be done at once
in view of the differential score calculation (9).

To formalize the chordality test for a variable Xi, we in-
troduce Boolean variables eli, j and elci, j for each elimination
step 1 ≤ j ≤ n and clique candidate c such that Xi ∈ c. The
role of elci, j is to signal the elimination of Xi in context c at
step j− 1 to the elements of c \ {Xi}, which may then be
eliminated from step j on. In turn, let c1, . . . ,cm be all possi-
ble elimination contexts for variables Xi1 ∈ c1, . . . ,Xim ∈ cm
such that Xi ∈ c1 \ {Xi1}, . . . ,Xi ∈ cm \ {Xim}. Then, Xi can
be eliminated once all Xik for 1 ≤ k ≤ m whose elimination
context is ck, as indicated by inck

ik
, are. This condition is cap-

tured by

eli, j↔ elc1
i1, j
∧ . . .∧ elcm

im, j, (12)

where the idea that elck
ik, j

is true if Xik is eliminated at some
earlier step than j or in another context than ck is recursively
formalized by

elck
ik, j
↔ elik, j−1∨¬inck

ik
(13)

for j > 1 as well as elck
ik,1
↔ ¬inck

ik
for the base case j = 1.

The definitions above aim at expressing chordality as

el1,n∧ . . .∧ eln,n,

requiring the elimination of all nodes in the end. Due to re-
cursion over elimination steps, the overall space complexity
is quadratic in n. However, depending on the target formal-
ism, a linear representation can be feasible. This holds, e.g.,
for encodings in ASP that natively support recursion.

Example 2 To illustrate the encoding of the chordality con-
dition, let us consider the Markov network in Figure 3 and
the following candidates:
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c1 = {X1}, c2 = {X2},
c3 = {X3}, c4 = {X4},
c5 = {X1,X2}, c7 = {X2,X3},
c6 = {X1,X3}, c8 = {X2,X4},

c9 = {X3,X4},
c10 = {X1,X2,X3}, c11 = {X2,X3,X4}.

Since X1 is mentioned by cliques c1, c5, c6, and c10, the
choice of an elimination context is expressed by

inc1
1 ∨ inc5

1 ∨ inc6
1 ∨ inc10

1 ,

¬inc1
1 ∨¬inc5

1 , ¬inc1
1 ∨¬inc6

1 , ¬inc1
1 ∨¬inc10

1 ,

¬inc5
1 ∨¬inc6

1 , ¬inc5
1 ∨¬inc10

1 , ¬inc6
1 ∨¬inc10

1 .

Analogous formulas are needed for the nodes X2, X3, and X4.
Let us then consider a concrete elimination scenario, where
X1 and X4 are first removed in parallel, then X2 is removed,
and finally X3. This scenario can be realized by setting the
variables inc10

1 , inc7
2 , inc3

3 , and inc11
4 true. The resulting order

of elimination is depicted in Figure 4 (a). Since inc10
1 is true,

the other variables inc1
1 , inc5

1 , and inc6
1 concerning X1 are fal-

sified by mutual exclusion. Respective in
c j
i -variables related

with X2, X3, and X4 get similarly falsified. Let us then con-
sider the satisfaction of formulas of forms (12) and (13). For
X1 and the elimination step j = 1, the relevant instances are

el1,1↔ elc5
2,1∧ elc6

3,1∧ elc10
2,1 ∧ elc10

3,1 ,

elc5
2,1↔¬inc5

2 , elc6
3,1↔¬inc6

3 ,

elc10
2,1 ↔¬inc10

2 , elc10
3,1 ↔¬inc10

3 .

Due to mutual exclusions explained above, the variables elc5
2,1,

elc6
3,1, elc10

2,1 , and elc10
3,1 must be set to true. This, in turn, makes

el1,1 true, indicating that X1 is removed at step j = 1. Since
X4 is symmetric to X1, we may conclude that el4,1 is also
made true by analogous equivalences introduced for X4. On
the other hand, the respective formulas for X2 and X3 fal-
sify both el2,1 and el3,1 since both inc10

1 and inc11
4 are true.

Thus X2 and X3 are not eliminated at step j = 1. As regards
the subsequent elimination of X2 at step j = 2, the following
instances of formulas (12) and (13) become relevant:

el2,2↔ elc5
1,2∧ elc7

3,2∧ elc8
4,2∧ elc10

1,2 ∧ elc10
3,2 ∧ elc11

3,2 ∧ elc11
4,2 ,

elc5
1,2↔ el1,1∨¬inc5

1 , elc7
3,2↔ el3,1∨¬inc7

3 ,

elc8
4,2↔ el4,1∨¬inc8

4 ,

elc10
1,2 ↔ el1,1∨¬inc10

1 , elc10
3,2 ↔ el3,1∨¬inc10

3 ,

elc11
3,2 ↔ el3,1∨¬inc11

3 , elc11
4,2 ↔ el4,1∨¬inc11

4 .

To check the satisfaction of the conjunction in the equiva-
lence for el2,2, it is sufficient to note that el1,1 and el4,1 have
been set to true before, and the truth of inc7

3 , inc10
3 , and inc11

3
is excluded by the truth of inc3

3 . Thus el2,2 must be true. The
analogous formulas for X1 and X4 force el1,2 and el4,2 to be
true. To the contrary, el3,2 is falsified since inc7

2 is true and
el2,1 is false. Our last observations concern the elimination
step j = 3, where X3 becomes eligible for elimination in the

Variable Intuitive reading
inc

i Variable Xi is eliminated in context c
eli, j Variable Xi is eliminated at step j
elci, j Variable Xi is eliminated before step j or off context c
crc

i Variable Xi creates edges for context c
sfi, j The j first score fragments of Xi count

Table 3 Boolean variables used in the PEO-based encoding.
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Fig. 4 Illustration of elimination contexts and the resulting orderings
of nodes.

context of c3. Since the equivalence for el3,3 depends posi-
tively on el1,2, el2,2, and el4,2 only, it is clear that el3,3 is set
to true. The same can be stated about the other nodes, i.e.,
el1,3, el2,3, and el4,3 are made true by the respective equiva-
lences. This illustrates the persistence of elimination: if Xi is
eliminated at step j, it will remain eliminated at step j+ 1.
In particular, the formula el1,3∧ el2,3∧ el3,3∧ el4,3 is true as
an indication of chordality in the scenario discussed so far.

In order to demonstrate further aspects of the chordal-
ity encoding, two other scenarios deserve attention. First, let
us assume that inc5

1 , inc8
2 , inc6

3 , and inc9
4 have been chosen

to be true. This creates an interdependency for the selected
elimination contexts, so that no node can be eliminated as
illustrated in Figure 4 (b). On the logical side this implies
that eli, j will be falsified for each Xi and j = 1, . . . ,4. In-
deed, a graph in which the diagonal edge from Figure 3 has
been removed is not chordal, also witnessed by the falsity of
el1,4∧ el2,4∧ el3,4∧ el4,4.

Second, let us pick inc10
1 , inc8

2 , inc9
3 , and inc4

4 to be true.
This represents a scenario in which X1 is removed at step
j = 1 with c10 = {X1,X2,X3} as its elimination context. This
suggests that the edge {X2,X3} is present in the graph but,
unfortunately, the elimination contexts of X2 and X3 do not
include this edge, colored gray in Figure 4 (c). The formulas
of the chordality encoding will still set the variables el1,1,
el2,2, el3,2, and el4,3 to true. Therefore, we observe that fur-
ther constraints are necessary to ensure that the structure
claimed to exist by the chosen elimination contexts of the
nodes is indeed present in the graph. �

A new Boolean variable crc
i captures the idea that node

Xi is responsible for the creation of the structure present in
the clique c when elimination contexts are initially chosen.
The constraint we want to impose on the elimination con-
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text c of a node Xi is essentially

inc
i → crc′

i1 ∨ . . .∨ crc′
ik , (14)

where c′ = c \ {Xi} = {Xi1 , . . . ,Xik} gives the remainder of
c if Xi is eliminated in this context. It remains to provide a
formula defining the truth value of crc

i :

crc
i ↔ inc

i ∨ crc1
i ∨ . . .∨ crck

i , (15)

where c1 = c∪{X1}, . . . ,ck = c∪{Xk} are all clique candi-
dates extending c by one node. The effect of these formulas
is illustrated next.

Example 3 Let us continue from the last scenario in Ex-
ample 2, i.e., Figure 4 (c). The relevant instance of (14)
is inc10

1 → crc7
2 ∨ crc7

3 , implying the consequent crc7
2 ∨ crc7

3 .
Thus either X2 or X3 is responsible for creating the structure
present in c7. To check this, we need to evaluate the respec-
tive instances of (15):

crc7
2 ↔ inc7

2 ∨ crc10
2 ∨ crc11

2 ,

crc7
3 ↔ inc7

3 ∨ crc10
3 ∨ crc11

3 ,

crc10
2 ↔ inc10

2 , crc11
2 ↔ inc11

2 ,

crc10
3 ↔ inc10

3 , crc11
3 ↔ inc11

3 .

But since inc7
2 , inc7

3 , inc10
2 , inc10

3 , inc11
2 , and inc11

3 have been set
to false, the variables crc7

2 , crc7
3 , crc10

2 , crc10
3 , crc11

2 , and crc11
3

must be falsified in turn. This rules out the possibility of
satisfying crc7

2 ∨ crc7
3 inferred above, i.e., the scenario under

consideration is no longer possible. �

Our last requirement for solutions to the Markov net-
work learning problem concerns the score of a chordal graph
for which a PEO can be identified. The idea is to use a differ-
ential score d(c,Xi) based on (9) that is compatible with Xi
being eliminated in the context of c. If c1, . . . ,cm is the col-
lection of candidate cliques, the resulting objective function
can be written as ∑

m
j=1 ∑Xi∈c j d(c j,Xi)in

c j
i .

The representation of the objective function can be mod-
ularized by taking the variable view. So, let Xi be one of the
variables with 1≤ i≤ n and c1, . . . ,ck the cliques containing
Xi. Since clique candidates are known in advance, we may
assume that d(c1,Xi) ≥ . . . ≥ d(ck,Xi) without loss of gen-
erality. Because Xi must have an elimination context, it is
clear that Xi will be assigned at least the first score d(c1,Xi)

and potentially some smaller score fractions expressible as
d(c j,Xi)−d(c j−1,Xi) for 1 < j ≤ k. To control which frac-
tions are needed, we introduce Boolean variables sfi, j for
each clique c j with 1 < j < k. The activation of score frac-
tions is determined by the formula

sfi, j↔ in
c j
i ∨ sfi,j+1, (16)

where 1 < j < k refers to an elimination context c j of Xi.
The base case j = k, is covered by the formula

sfi,k↔ inck
i . (17)

The idea is that, if sfi, j is set to true, then all other variables
sfi, j′ with j′ < j are set to true as well. In this way, the con-
tribution of Xi to the objective function is

o(i) = d(c1,Xi)+
k

∑
j=2

(d(c j,Xi)−d(c j−1,Xi))sfi, j. (18)

The sum o(i) equals to d(c j,Xi) for the chosen elimination
context c j of Xi. The goal of this encoding is to allow smooth
changes of scores when the elimination contexts of Xi are
switched in accordance with the order c1, . . . ,ck.

Theorem 2 Let N = {X1, . . . ,Xn} be a set of random vari-
ables and d : 2N×N→R a scoring function. An undirected
graph 〈N,E〉 is a solution to the Markov network learning
problem iff

1. the elimination formulas (12) are satisfied for each Xi
and step 1≤ j ≤ n together with all instances of (13),

2. the formula el1,n∧ . . .∧ eln,n is satisfied,
3. the context creation formulas (14) and (15) are satisfied

for each Xi and each clique c such that Xi ∈ c, and
4. the graph 〈N,E〉 maximizes the sum ∑

n
i=1 o(i) of objec-

tives (18), while satisfying all formulas (16) and (17)
defining score fractions.

Proof sketch. We argue that a graph 〈N,E〉 based on N
is chordal iff the requirements 1–3 are met.

( =⇒ ) Let 〈N,E〉 be a chordal graph. By Theorem 1, the
underlying graph 〈N,E〉 has a PEO based on a strict total
ordering of N. This ordering can be relaxed by recursively
taking at step j as many as possible variables Xi from the
ordering not competing for edges. In this way, the context
elimination formulas get satisfied. The context creation for-
mulas are satisfied because every variable Xi subject to elim-
ination in its context ci is connected to a clique ci \{Xi}.

(⇐= ) Suppose that requirements 1–3 are met by 〈N,E〉
and let I be the satisfying assignment. A variable Xi is elim-
inated at step j ≥ 1 if eli, j is true in I and each eli, j′ with
1≤ j′ < j is false in I. A PEO can be constructed by taking
variables eliminated at the same step j in any order. Since I
satisfies the context creation formulas, it is guaranteed that,
when Xi is eliminated, it is connected to a clique c such that
a context ci = c∪{Xi} of elimination is determined for Xi.
Thus 〈N,E〉 is chordal by Theorem 1.

Finally, we note that objective functions used for scor-
ing, i.e., ∑

n
i=1 d(ci,Xi) and ∑

n
i=1 o(i), coincide. ut

Theorem 2 is applicable to any downward closed collec-
tion of cliques, where d may be a partial scoring function.

5.2 Encoding Labels for Markov Networks

The labels representing context-dependent conditional prob-
abilities can be incorporated by an orthogonal extension to
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Variable Intuitive reading
ei, j The edge between Xi and X j is present

mi, j,k Variable Xk connects to both Xi and X j
si, j The edge between Xi and X j belongs to a separator
xlc Clique c is labeled by some superclique
xlci Labeling Li is excluded for c

Table 4 Boolean variables used in the encoding of labels.

the basic encoding. It is essential to ensure that edges subject
to a labeling L are not contained in the separators of the un-
derlying chordal graph. Because the encoding developed in
Section 5.1 avoids the formalization of separators altogether,
we have to detect them somehow. For the sake of space effi-
ciency, we concentrate on identifying edges involved in sep-
arators rather than identifying separators themselves. Thus
a Boolean variable ei, j is introduced for each pair Xi,X j of
nodes with 1 ≤ i < j ≤ n, to be set to true if and only if
the edge between Xi and X j is present. If c1, . . . ,ck are the
cliques containing both Xi and X j, we obtain the formula

ei, j↔ inc1
i ∨ inc1

j ∨ . . .∨ inck
i ∨ inck

j . (19)

When the edge between Xi and X j is present in a graph,
we are interested in other nodes Xk that are connected by
an edge to both Xi and X j. To detect such nodes, we use a
Boolean variable mi, j,k and a formula

mi, j,k↔ e′i,k ∧ e′j,k, (20)

where e′i,k = ei,k (or e′j,k = e j,k) if i < k (or j < k), while
e′i,k = ek,i (or e′j,k = ek, j) otherwise. The edge between Xi
and X j belongs to a separator if and only if it is connected—
in the sense specified above—to two distinct nodes Xk and Xl
that are not connected by an edge. A Boolean variable si, j is
introduced to capture this condition and its truth value is set
in terms of

si, j↔
∨

1≤k<l≤n

mi, j,k ∧mi, j,l ∧¬ek,l . (21)

Example 4 Recall the first scenario of Example 2 in which
inc10

1 , inc7
2 , inc3

3 , and inc11
4 were set to true. The formulas of

the form (19) force the variables e1,2, e1,3, e2,3, e2,4, and e3,4
to be true, whereas other edge variables remain false. Thus
formulas (20) make variables m2,3,1 and m2,3,4 true. Other
such variables are not relevant for our analysis. The truth as-
signments reported above ensure that m2,3,1∧m2,3,4∧¬e1,4
evaluates to true. This sets s2,3 to true by the respective in-
stance of formula (21), indicating that the edge between X2
and X3 is involved in a separator, i.e., s = c10∩ c11. �

It remains to decide the labeling for cliques. As worked
out in the end of Section 4, labelings L1, . . . ,Lk modify the
score of a clique c by rewards r(c,L1), . . . ,r(c,Lk) accord-
ing to (10), where r(c,L1) ≥ . . . ≥ r(c,Lk) can be assumed

without loss of generality and Lemma 1 implies that Lk is
the empty labeling /0. Since we aim at maximizing the score
for c, we should pick the first labeling from the sequence
L1, . . . ,Lk that satisfies the labeling condition. It is worth
noting that Lk = /0 satisfies the condition trivially, so that
eventually some labeling can be found.

To formalize this idea, we introduce a Boolean variable
xlc denoting that c is labeled by some of its supercliques,
and Boolean variables xlci denoting that a particular labeling
Li is excluded for c. The truth value of the variable xlc can
be determined by the formula

xlc↔
∨

Xk 6∈c,X j∈c∪{Xk}
inc∪{Xk}

j . (22)

As regards variables xlci , the following formula is used to set
its truth value in the base case i = 1, but only if k > 1, i.e.,
L1 is different from the empty labeling /0:

xlc1↔ (
∨

X j∈c

inc
j)∧ (xlc∨

∨
{s j,k | L1 labels {X j,Xk}}). (23)

When 1 < i < k, a recursive formula is used:

xlci ↔ xlci−1∧ (xlc∨
∨
{s j,k | Li labels {X j,Xk}}). (24)

To implement the objective function (11) in the labeled
case, we observe that rewarding an admissible label Li for
1 ≤ i < k is equivalent to penalizing the exclusion of Li
(and all L j such that 1 ≤ j < i) by a negative reward frac-
tion r(c,Li+1)− r(c,Li). Thus the required extension to the
objective function is

r(c,L1)+
k−1

∑
i=1

(r(c,Li+1)− r(c,Li))xlci . (25)

In the special case k = 1, the sum above reduces to r(c, /0) =
v(c, /0)− v(c, /0) = 0. This means that the given extension is
not needed for cliques that only have one possible labeling,
i.e., the empty labeling /0 acting as the default labeling.

Theorem 2 can be generalized for labeled Markov net-
works by extending the set of requirements for a graph can-
didate 〈N,E〉. First, the edges involved in separators are de-
tected by satisfying all instances of formulas (19)–(21). Once
these have been identified, the best possible labelings for
the cliques of 〈N,E〉 can be orthogonally determined by
satisfying the formulas (22)–(24). Finally, the resulting re-
wards (25) are taken into account in the objective function.

6 Experimental Evaluation

We have evaluated our constraint-based approach to Markov
network structure learning using a number of fully auto-
mated off-the-shelf constraint solvers. To this end, we en-
coded1 the conditions and optimization measures described

1 research.ics.aalto.fi/software/asp/encodings/

research.ics.aalto.fi/software/asp/encodings/
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heart econ
k = 0 k = 1 k = 2 k = 0 k = 1 k = 2

b n p e b n p e b n p e bforig node part edge bforig node part edge bforig node part edge
CLASP 0 0 0 0 0 0 0 0 0 0 0 0 1 24 4 0 305 61 19 1 900 131 74 5
CLASP 0 0 0 0 1 1 1 0 7 1 1 1 326 7,008 2,300 3 50,903 13,920 9,014 127 TO 26,056 15,783 1,672
PWBO 0 0 0 0 3 2 2 0 45 5 5 2 11,828 TO TO 14 TO TO TO 3,416 TO TO TO 59,414
SAT4J 1 1 1 1 4 6 6 1 36 9 8 4 740 10,218 20,430 14 TO 50,318 9,809 233 TO TO 53,838 6,101
CPLEX 0 0 0 0 3 1 1 0 146 6 5 3 282 13,264 1,250 5 TO 54,860 14,210 86 TO TO 51,561 1,543
CLASP 0 0 0 0 0 0 0 0 1 0 0 0 2 136 14 0 452 286 84 1 1,014 480 331 22

lab

CLASP 0 0 0 0 2 1 1 0 43 4 5 1 500 14,692 3,066 3 44,111 36,138 13,051 135 73,661 50,430 38,638 1,976
PWBO 0 0 0 0 9 5 5 0 257 11 12 3 12,259 TO TO 17 TO TO TO 2,111 TO TO TO 67,131
SAT4J 1 1 1 1 13 11 11 1 168 19 17 7 771 41,525 20,183 18 TO TO 35,454 255 TO TO TO 7,587
CPLEX 0 0 0 0 58 19 19 0 1,777 71 71 27 2,735 TO 55,804 57 TO TO TO 2,579 TO TO TO 60,594

Table 5 Solver runtimes in seconds for learning context-dependent Markov networks from heart and econ datasets with different filtering schemes.

in Section 5 in the input language of ASP and used the tool
LP2ACYC [18] for automatic translation to MAXSAT as
well as IP format. Our comparison includes the solvers

– CLASP (version 3.1.1) [19],
– PWBO (version 2.2) [37],
– SAT4J (version 2.3.5) [32], and
– CPLEX (version 12.6.0) [26].

As CLASP has been originally devised for ASP solving,
we also compare it on input in ASP format, without trans-
lation to MAXSAT, and below denote this system variant
by CLASP. Note that all solvers apply branch-and-bound
techniques that successively refine an upper bound on so-
lution quality, while unsatisfiability-based optimization ap-
proaches (cf. [35]) turned out ineffective for the Markov
network learning problem and are omitted here. The exper-
iments were run sequentially on a Linux machine having
2.70 GHz Intel Xeon E5-4650 CPUs and 256 GB RAM, by
imposing a time limit of 86,400 seconds (one day) per run.
Timeouts are indicated by entries “TO” in tables that follow.

Table 5 provides runtimes in seconds on heart and econ
datasets, relative to the filtering schemes b(forig), n(ode),
p(art), and e(dge) from Section 3, parametrized by k= 0,1,2.
For both benchmarks, the upper five rows refer to the unla-
beled problem variants, and the lower five rows to the case of
labeled Markov networks. Despite of performance gaps be-
tween solvers, the runtimes tightly correlate with the number
of clique candidates in the input. As shown in Table 2, this
number is regulated by the parameter k as well as the fil-
tering scheme, where bforig and edge tend to prune cliques
least or most aggressively, respectively. Notably, the bforig
scheme along with k = 2 yields no pruning at all and thus re-
flects the performance on unfiltered datasets. Recalling the
account of filtering times from Section 3, the filtering of
clique candidates leads to effective savings in runtime.

Moreover, we note that the performance differences be-
tween unlabeled and labeled inputs obtained with the same
filtering scheme are rather moderate, given that best label-
ings can be read off PEOs (cf. Section 5.2) to avoid an (ad-

Dataset ASP MAXSAT IP
heart 41 kB 1,375 kB 483 kB
[9] 197 kB 3,120 kB TO
econ 300 kB 13,345 kB 3,212 kB
[9] 4,300 kB 133,120 kB TO

Table 6 File sizes of solver inputs in different formats.

ditional) model space explosion as reported in Table 1. Com-
paring the solvers to each other exhibits that CLASP, run as
an ASP solver, performs best on all inputs, leading to the
shortest runtimes highlighted in boldface in each column.
This advantage is due to the native support of recursion in
ASP, which permits a more compact internal problem rep-
resentation and resulting improvements in search efficiency
(in terms of conflicts) by one to two orders of magnitude
in comparison to CLASP applied to instances in MAXSAT
format. However, the performance of the MAXSAT solvers
CLASP, PWBO, and SAT4J as well as the IP solver CPLEX
follows a similar pattern, witnessing a consistent impact of
the number of clique candidates. As a reference, note that
the MCMC algorithm in [39] has been reported to take tens
of minutes for converging to an optimum on heart-lab and
econ-lab datasets, still without proving optimality in view of
incompleteness of the method.

Regarding the compactness of encodings, the file sizes in
Table 6 give an account of the progress relative to [9], where
the unlabeled heart and econ datasets have also been inves-
tigated. Hence, comparing the rows for either benchmark
shows a considerable size reduction due to exploiting PEOs
rather than maximal cliques and the balancing condition for
scoring. In particular, the space requirements are decreased
by one order of magnitude on the econ dataset, for both ASP
and MAXSAT format, and the IP column further quantifies
space savings in comparison to the translation from ASP to
MAXSAT. Moreover, [9] reported a shortest solver runtime
of three days for the econ dataset, while CLASP is now able
to find and verify an optimal model within 15 minutes (cf.
upper rows for bforig with k = 2 in Table 5). Finally, we note



Learning Discrete Decomposable Graphical Models via Constraint Optimization 13

Dataset k bforig node part edge
heart 0,1,2 -6,714.637 -6,714.637 -6,714.637 -6,714.637
heart-lab 0,1,2 -6,716.879 -6,716.879 -6,716.879 -6,716.879
econ 0 -2,685.724 -2,682.597 -2,682.597 -2,688.747

1 -2,682.597 -2,682.597 -2,682.597 -2,685.724
2 -2,682.597 -2,682.597 -2,682.597 -2,682.597

econ-lab 0 -2,691.971 -2,690.404 -2,690.404 -2,695.188
1 -2,689.989 -2,690.404 -2,690.404 -2,691.971
2 -2,689.989 -2,689.989 -2,689.989 -2,690.404

Table 7 Quality of optimal Markov networks relative to different filtering schemes.

k = 0 k = 1 k = 2
6 7 8 9 10 11 12 13 6 7 8 9 10 6 7 8 9

CLASP 0 2 55 204 1,909 4,856 15,420 65,670 1 17 144 1,684 13,199 1 21 383 10,042

m
ax

CLASP 49 1,604 38,441 85,279 TO TO TO TO 1,043 13,774 TO TO TO 476 26,493 TO TO
PWBO 421 TO TO TO TO TO TO TO 34,298 TO TO TO TO 16,765 TO TO TO
SAT4J 102 5,293 TO 84,097 TO TO TO TO 2,387 TO TO TO TO 2,625 TO TO TO
CPLEX 38 642 21,400 TO TO TO TO TO 264 6,662 TO TO TO 109 6,049 TO TO
CLASP 0 3 11 42 151 485 5,879 42,044 1 19 69 382 31,025 7 27 209 19,525

m
in

CLASP 8 137 981 2,218 6,855 67,245 TO TO 78 812 6,789 27,334 TO 273 2,370 17,253 TO
PWBO 66 1,763 32,719 71,380 TO TO TO TO 1,478 17,123 TO TO TO 4,712 TO TO TO
SAT4J 55 340 2,144 13,550 60,848 TO TO TO 173 1,841 17,139 TO TO 714 6,025 TO TO
CPLEX 31 234 1,781 3,427 7,147 TO TO TO 42 1,136 5,481 48,095 TO 689 9,673 70,689 TO

13 14 15 16 17 18 19 20 11 13 14 15 18 11 12 13 15

Table 8 Solver runtimes in seconds on samples of the hs dataset with varying numbers of nodes and parameter values for the edge filtering scheme.

that the size of inputs is primarily governed by conditions on
PEOs and not significantly increased by adding labels.

To estimate the trade-off between filtering schemes and
solution quality, Table 7 provides a summary of optimal net-
work scores for the unlabeled and labeled heart and econ
datasets, where global optima [39] are highlighted in bold-
face. For both heart variants, it turns out that optimal models
are preserved regardless which scheme and parameter value
are used for pruning clique candidates. This does not apply
to the more complex econ dataset. In the unlabeled case, too
small k-values decrease the solution quality with the bforig
scheme, which does not take the contexts given by cliques
into account, as well as the aggressive edge scheme. Given
that the investigated filtering schemes assume empty label-
ings and do not consider potential alternatives, the usage
of small k-values is particularly risky for the labeled econ
variant. In fact, although the schemes node and part with
k ≤ 1 as well as the edge scheme with k = 2 come close to
the global optimum, they still deteriorate the log marginal
likelihood by 0.015%. This suggests that labels should be
taken into account in order to perform more aggressive yet
informed pruning in the case of labeled Markov networks.

We further assessed the scalability of our approach on
samples of the hs dataset of increasing size, using the edge
scheme along with k = 0,1,2 for filtering clique candidates.
The samples in the upper five rows of Table 8, with numbers
of nodes given at the top, have been obtained by maximizing
the density of the subgraph induced by a selection of the 25
nodes available in total, while the density is minimized in the

lower five rows, with numbers of nodes given at the bottom.
For both kinds of samples, the reported runtimes include
the greatest numbers of nodes for which CLASP, again per-
forming best when run as an ASP solver, was able to find and
verify an optimal model within the time of one day. Similar
to the econ dataset, the depth of filtering regulated by the pa-
rameter k has a significant impact on the resulting difficulty
of Markov network structure learning. Moreover, samples
of size 8 turn out to be much harder to solve than inputs ob-
tained by applying the edge scheme with same k-value to the
econ dataset, where the number of nodes is also 8. As the
difficulty rapidly increases with sample size, optimization
succeeds on dense subgraphs with up the 13, 10, or 9 nodes,
respectively, depending on the k-value used for pruning. Al-
though this value remains relevant, samples such that the
density is minimized exhibit a considerably smoother scal-
ing behavior and can be successfully handled up to 20, 18,
or 15 nodes, respectively. This observation emphasizes the
impact of problem structure as well as the importance of fil-
tering in view of an input size (number of clique candidates)
that, in the worst case, grows exponentially with the number
of nodes.

7 Conclusion

Our experiments and the recent interest in graphical model
learning using integer programming, maximum satisfiabil-
ity, and answer set programming demonstrate that computa-
tional logic holds a largely untapped valuable resource for
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statistical inference. The main challenge lies in finding ef-
fective translations from the statistical learning problem into
logical constraints, to make optimization scalable to large
problem instances. As the diversity of approaches adopted
here and in [1,2,9,10,40] shows, there is a lot of room for
creativity in this translation task, and the choices made can
strongly impact the performance of solvers. In addition,
adopting strong pruning methods can be critical for reducing
the space of candidate solutions. For instance, the approach
based on dynamic programming [28] suffers from exponen-
tial growth of memory consumption when the number of
variables is increased.

We have first theoretically studied which models can be
automatically recognized as inferior to others, such that the
model space can be reduced without eliminating globally
optimal models. Then, we introduced statistical pruning cri-
teria for more extensive filtering of candidates, guaranteeing
that best solutions are preserved asymptotically when the
number of input data vectors increases. In future research
it will be useful to study the effect of pruning strategies fur-
ther and to develop translations of learning problems beyond
graphical models.
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MAP Bayesian network structure to the equivalent sample size
parameter. In: Proceedings of the The 23rd Conference on Uncer-
tainty in Artificial Intelligence (UAI-2007), pp. 360–367. AUAI
Press (2007)

45. Silander, T., Roos, T., Kontkanen, P., Myllymäki, P.: Factorized
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