
Tableau Calculi for Logic Programs
under Answer Set Semantics

Martin Gebser and Torsten Schaub1

Institut für Informatik
Universität Potsdam
August-Bebel-Str. 89, D-14482 Potsdam
{gebser,torsten}@cs.uni-potsdam.de

We introduce formal proof systems based on tableau methods for analyzing computations in An-
swer Set Programming (ASP). Our approach furnishes fine-grained instruments for characterizing

operations as well as strategies of ASP solvers. The granularity is detailed enough to capture a
variety of propagation and choice methods of algorithms used for ASP solving, also incorporating

SAT-based and conflict-driven learning approaches to some extent. This provides us with a uni-

form setting for identifying and comparing fundamental properties of ASP solving approaches. In
particular, we investigate their proof complexities and show that the run-times of best-case com-

putations can vary exponentially between different existing ASP solvers. Apart from providing a

framework for comparing ASP solving approaches, our characterizations also contribute to their
understanding by pinning down the constitutive atomic operations. Furthermore, our framework

is flexible enough to integrate new inference patterns, and so to study their relation to existing

ones. To this end, we generalize our approach and provide an extensible basis aiming at a modu-
lar incorporation of additional language constructs. This is exemplified by augmenting our basic

tableau methods with cardinality constraints and disjunctions.

Categories and Subject Descriptors: D.1.6 [Logic Programming]:

General Terms: Theory

Additional Key Words and Phrases: Answer Set Programming, Tableau calculi, Proof complexity

1. INTRODUCTION

Answer Set Programming (ASP; [Baral 2003]) is an appealing tool for knowledge representation
and reasoning. Its attractiveness is supported by the availability of efficient off-the-shelf solvers
that allow for computing answer sets of logic programs. However, in contrast to the neighbor-
ing area of Satisfiability (SAT; [Biere et al. 2009]) checking, where solving approaches can be
analyzed by means of resolution proof theory (cf. [Beame and Pitassi 1998; Beame et al. 2004;
Pipatsrisawat and Darwiche 2011]), ASP lacks formal frameworks for describing inferences con-

1Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada, and the Institute for
Integrated and Intelligent Systems at Griffith University, Brisbane, Australia.

This paper combines and extends [Gebser and Schaub 2006b; 2007]; the former received the best paper award at ICLP’06.
Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that
the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the
publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to
republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 1529-3785/20YY/0700-0001 $5.00

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY, Pages 1–62.

2 · Martin Gebser and Torsten Schaub

ducted by ASP solvers. This has led to great heterogeneity in the description of algorithms for ASP
solving, ranging over operational [Faber 2002; Simons et al. 2002; Anger et al. 2005; Calimeri
et al. 2006; Konczak et al. 2006] and procedural [Lin and Zhao 2004; Ward and Schlipf 2004;
Giunchiglia et al. 2006; Lin et al. 2006; Gebser et al. 2007; Giunchiglia et al. 2008] characteri-
zations, which complicates identifying fundamental properties of algorithms (such as soundness
and completeness) as well as formal comparisons between them.

Our work is motivated by the desire to converge the various heterogeneous characterizations of
current ASP solvers’ inferences by developing common proof-theoretic foundations. Examples
for this are the Davis-Putnam-Logemann-Loveland (DPLL; [Davis and Putnam 1960; Davis et al.
1962]) procedure and Conflict-Driven Clause Learning (CDCL; [Marques-Silva and Sakallah
1999; Moskewicz et al. 2001; Eén and Sörensson 2004]) for SAT, which are both based on reso-
lution proof theory. As in the context of SAT, the proof-theoretic perspective allows us to identify
general, rather than solver-specific, properties and to study inferences by their admissibility, rather
than from an implementation point of view. To this end, we introduce a family of tableau calculi
(cf. [D’Agostino et al. 1999]) for ASP, viewing answer set computations as derivations in an infer-
ence system: a branch in a tableau corresponds to a successful or unsuccessful attempt to compute
an answer set; an entire tableau represents a traversal of the search space.

Our approach furnishes fine-grained instruments for characterizing propagation operations as
well as search strategies of ASP solvers. In particular, relating the approaches of ASP solvers to
appropriate tableau calculi, in the sense that computations of a solver correspond to tableaux of an
associated calculus, allows us to analyze the (best-case) complexities of ASP solving strategies.
In fact, we investigate the proof complexities of different approaches, depending on choice opera-
tions. It turns out that exponentially different run-times of best-case computations can be obtained
for existing ASP solvers. Furthermore, our proof-theoretic frameworks allow us to describe and
study new inference patterns, going beyond implemented systems. As a result, we obtain a loop-
oriented approach to unfounded set handling, which is not restricted to SAT-based solvers, and we
also identify backward propagation operations for unfounded sets.

While our basic tableau framework mainly aims at characterizing inference patterns of solvers
on the common language fragment of (propositional) normal programs, in practice, ASP solvers
additionally support composite language constructs, such as dlv’s aggregates [Faber et al. 2008] or
smodels’ cardinality and weight constraints [Simons et al. 2002]. To address these extensions, too,
we generalize our basic approach towards a flexible framework amenable to additional language
constructs. For simplicity, we begin with characterizing inferences in a generic core fragment in
which rule heads and bodies consist of atomic literals. We then gradually extend this setting by
focusing on particular aggregates, understood as expressions over collections of literals. To this
end, we first view conjunctions in rule bodies as simple Boolean aggregates. Embedding them into
our generic framework, we characterize a class of logic programs that is as expressive as normal
programs (already dealt with in our basic approach). We further augment our generic framework
with cardinality constraints as well as disjunctions in rule heads. The integration of these popular
language constructs gives an idea of how to adapt our proof-theoretic approach to richer settings.

The remainder of this paper is organized as follows. After providing the necessary background
on (normal) logic programs, Section 3 introduces our basic tableau framework for them. In Sec-
tion 4, we apply our methodology to characterize well-known logic programming operators and
existing ASP solvers, investigating both traditional (DPLL-style) approaches as well as those
based on translation to SAT or natively supporting conflict-driven learning. Section 5 shifts the
focus to logic programs over extended languages, for which we first provide a generic core frame-
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 3

work that is afterwards extended to conjunctions, cardinality constraints, and disjunctions. In
Section 6, we analyze the relative power of several practically relevant tableau calculi in terms of
(best-case) proof complexity. Section 7 and 8 conclude the paper by surveying related work and
discussing the achieved results, respectively. Finally, proofs are provided in the appendix.

2. NORMAL LOGIC PROGRAMS

Given an alphabet P , a normal (logic) program Π is a finite set of rules of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn (1)

where 0 ≤ m ≤ n and each pi ∈ P is an atom for 0 ≤ i ≤ n. A literal is an atom p or
its (default) negation not p. For a rule r as in (1), let head(r) = p0 be the head of r and
body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn} be the body of r. We sometimes write a rule r
as (head(r) ← body(r)), where body(r) represents the conjunction of its contained literals.
For a set B of literals, let B+ = B ∩ P and B− = {p ∈ P | not p ∈ B}; accordingly,
for body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn}, we get body(r)

+
= {p1, . . . , pm} and

body(r)
−

= {pm+1, . . . , pn}. We denote the set of atoms occurring in a program Π by atom(Π),
and the set of bodies occurring in Π is given by body(Π) = {body(r) | r ∈ Π}. For regrouping
rule bodies with the same head p, let body(p) = {body(r) | r ∈ Π, head(r) = p}.2 Given a
program Π such that body(r)

−
= ∅ for all r ∈ Π, a set X of atoms is closed under Π if, for

every r ∈ Π, head(r) ∈ X or body(r)
+ 6⊆ X; Cn(Π) denotes the (unique) smallest set of atoms

closed under Π. The reduct of a normal program Π relative to a set X of atoms is defined by
ΠX = {head(r) ← body(r)

+ | r ∈ Π, body(r)
− ∩X = ∅}. A set X of atoms is an answer set

of a normal program Π if Cn(ΠX) = X . As an example, consider the program

Π1 = {a←; c← not b,not d; d← a,not c}

and its two answer sets {a, c} and {a, d}.
A (partial) assignment A over a domain, dom(A), is a set of entries of the form T v or F v,

indicating whether some v ∈ dom(A) is true or false, respectively. The complement of an entry `
is denoted by `, that is, T v = F v and F v = T v. Letting AT = {v ∈ dom(A) | T v ∈ A} and
AF = {v ∈ dom(A) | F v ∈ A}, we say that A is contradictory if AT ∩AF 6= ∅; otherwise, A
is non-contradictory. Furthermore, A is total if it is non-contradictory and AT ∪AF = dom(A).
For a normal program Π, we fix dom(A) to atom(Π) ∪ body(Π) in the sequel. For instance,
with Π1, the (partial) assignment {T ∅,F b} maps the body ∅ of rule (a←) to true and the atom b
to false, and the assignment {T ∅,F b,T a,T c,F {a,not c},F d,T {not b,not d}} is total.

For a normal program Π and a set U ⊆ atom(Π), we define the external bodies of U for Π
by EBΠ(U) = {body(r) | r ∈ Π, head(r) ∈ U, body(r)

+ ∩ U = ∅}. We call U an unfounded
set of Π wrt an assignment A if EBΠ(U) ⊆ AF .3 Since the union of two unfounded sets
remains unfounded, the union of all unfounded sets of Π wrt A, denoted by UΠ(A), is the greatest
unfounded set of Π wrt A. Semantically, an unfounded set identifies atoms that lack external
support (cf. [Lee 2005]) and thus ought to be false. The (positive) dependency graph of Π is
(atom(Π), {(head(r), p) | r ∈ Π, p ∈ body(r)

+}). A non-empty U ⊆ atom(Π) is a loop [Lin
and Zhao 2004] of Π if, for every pair p, q ∈ U (including p = q), there is a path of non-zero
length from p to q in the dependency graph of Π such that all vertices in the path belong to U .

2For convenience, we overload function body to refer to sets of bodies associated with a program or an atom, respectively.
3Original unfounded sets [Van Gelder et al. 1991] rely on EBΠ(U) ⊆ {B ∈ body(Π) | (B+ ∩ AF) ∪ (B− ∩
AT) 6= ∅}.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

4 · Martin Gebser and Torsten Schaub

We denote the set of all loops of Π by loop(Π). The main interest of loops is that they can be
unfounded even if each contained atom is (circularly) supported by some rule with non-false body.

3. TABLEAUX FOR NORMAL LOGIC PROGRAMS

We describe calculi consisting of tableau rules for the construction of answer sets of logic pro-
grams. A tableau for a logic program Π and an initial assignment A is a binary tree with the
rules of Π and the entries of A at its root.4 Further entries can be generated by applying tableau
rules in the following standard way [D’Agostino et al. 1999]: given a tableau rule and a branch
in a tableau such that the prerequisites of the rule hold in the branch, the tableau can be extended
by appending entries to the end of the branch as specified by the rule. Note that every branch
corresponds to a pair (Π,A); we draw on this relationship for identifying branches in the sequel.
For some v ∈ dom(A), we say that T v or F v can be deduced by a set T of tableau rules in
a branch (Π,A) if the entry can be generated by applying some rule in T other than Cut (see
below). We let DT (Π,A) denote the set of entries deducible by T in (Π,A); D∗T (Π,A) rep-
resents the set of entries in a smallest branch that extends (Π,A) and is closed under T , that is,
DT (Π, D∗T (Π,A)) ⊆ D∗T (Π,A). A branch (Π,A) is contradictory if A is contradictory, and
non-contradictory otherwise; (Π,A) is complete (wrt a tableau calculus T) if it is contradictory
or if A is total and DT (Π,A) ⊆ A. A tableau is complete if all of its branches are complete.
A complete tableau for a logic program and the empty assignment such that all branches are
contradictory is called a refutation for the program (meaning that the program has no answer set).

Our tableau rules for normal programs Π are shown in Figure 1. For convenience, they make
use of two conjugation functions, t and f . For a literal l, define:

tl =

{
T l if l ∈ dom(A)
F v if l = not v for v ∈ dom(A)

f l =

{
F l if l ∈ dom(A)
T v if l = not v for v ∈ dom(A)

In view of this, the FTB rule in (a) expresses that truth of a rule body can be deduced if the body’s
literals hold in a branch. Conversely, if the body is already assigned to false and all but one literal
hold, the remaining literal must necessarily be false; this contrapositive argument is formalized by
the BFB rule in (b). Likewise, the tableau rules FTA and FFB in (c) and (e) capture straightforward
conditions under which an atom must be assigned to true or a body to false, respectively. Their
contrapositives are given by BFA and BTB in (d) and (f). The remaining tableau rules in (g)–(k)
are subject to provisos. For an application of FFA in (g), deducing an unsupported atom p to be
false, (§) stipulates that B1, . . . , Bm comprise all bodies of rules with head p. Its contrapositive,
the BTA rule in (h), is also guided by (§). The outer structure of WFN[Ω] and WFJ[Ω] in (i)
and (j), aiming at unfounded sets, is similar to FFA and BTA, yet their proviso (†[Ω]) requires
a concerned atom p to belong to some set U ∈ Ω such that B1, . . . , Bm comprise all external
bodies of U for Π. We below investigate two alternative options for Ω: Ω = 2atom(Π) and Ω =
loop(Π). Finally, (][Γ]) guides applications of the Cut[Γ] rule in (k) by restricting cut objects v to
members of Γ. For a normal program Π, we below consider Γ = atom(Π), Γ = body(Π), and
Γ = atom(Π) ∪ body(Π).5 Note that a Cut application adds entries T v and F v as the left and
the right child to the end of a branch, thus reflecting non-determinism in assigning v. With every
other tableau rule, its consequent is appended to a branch, i.e., applications are deterministic.

The deterministic tableau rules in Figure 1 preserve answer sets; this also applies to Cut when
considering both resulting branches. Different tableau calculi, viz. particular rule sets, yield char-

4We do not mark the immanent validity of rules in Π by T , as rules are not assigned by A.
5The Cut rule may, in principle, introduce more general structures, which would necessitate further decomposition rules.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 5

p← l1, . . . , ln
tl1, . . . , tln
T {l1, . . . , ln}

F {l1, . . . , li−1, li, li+1, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

(a) Forward True Body (FTB) (b) Backward False Body (BFB)

p← l1, . . . , ln
T {l1, . . . , ln}

T p

p← l1, . . . , ln
F p

F {l1, . . . , ln}
(c) Forward True Atom (FTA) (d) Backward False Atom (BFA)

p← l1, . . . , li, . . . , ln
f li

F {l1, . . . , li, . . . , ln}
T {l1, . . . , li, . . . , ln}

tli

(e) Forward False Body (FFB) (f) Backward True Body (BTB)

FB1, . . . ,FBm
(§)

F p

T p
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(§)
TBi

(g) Forward False Atom (FFA) (h) Backward True Atom (BTA)

FB1, . . . ,FBm
(†[Ω])

F p

T p
FB1, . . . ,FBi−1,FBi+1, . . . ,FBm

(†[Ω])
TBi

(i) Well-Founded Negation (WFN[Ω]) (j) Well-Founded Justification (WFJ[Ω])

(][Γ])T v | F v

(k) Cut (Cut[Γ])

(§) : p ∈ atom(Π), body(p) ⊆ {B1, . . . , Bm} ⊆ body(Π)
(†[Ω]) : p ∈ U,U ∈ Ω,EBΠ(U) ⊆ {B1, . . . , Bm} ⊆ body(Π)
(][Γ]) : v ∈ Γ

Fig. 1. Tableau rules for normal programs.

acteristic correspondences. For instance, D∗{FTB,FTA,FFB,FFA}(Π,A) corresponds to Fitting’s oper-
ator [Fitting 2002], and D∗{FTB,FTA,FFB,WFN[2atom(Π)]}(Π,A) amounts to the well-founded operator
[Van Gelder et al. 1991]. Similarly, we show below thatD∗{(a)–(h)}(Π,A) coincides with unit prop-
agation on a program’s completion [Clark 1978; Apt et al. 1987], andD∗{(a)–(h),WFN[2atom(Π)]}(Π,A)

captures smodels’ propagation [Simons et al. 2002], that is, well-founded operator enhanced by
backward propagation. Furthermore, the following tableau calculi are of particular interest:

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

6 · Martin Gebser and Torsten Schaub

a←
c← not b,not d

d← a,not c

T ∅ (FTB)
T a (FTA)

F b (FFA)

T c F c
T {not b,not d} (BTA) F {not b,not d} (BFA)

F d (BTB) T d (BFB)

F {a,not c} (FFB) T {a,not c} (FTB)

(Cut[atom(Π1)])

Fig. 2. Complete tableau of Tsmodels for Π1 and the empty assignment.

Tcomp = {(a)–(h),Cut[atom(Π) ∪ body(Π)]}
Tsmodels = {(a)–(h),WFN[2atom(Π)],Cut[atom(Π)]}
Tnomore = {(a)–(h),WFN[2atom(Π)],Cut[body(Π)]}
Tnomore++ = {(a)–(h),WFN[2atom(Π)],Cut[atom(Π) ∪ body(Π)]}

An exemplary complete tableau of Tsmodels is given in Figure 2, where rule applications are in-
dicated by rule names, e.g., (Cut[atom(Π1)]). Both branches in Figure 2 are non-contradictory.
They comprise Π1 along with total assignments: the left branch represents answer set {a, c},
while the right one gives answer set {a, d}.

The tableau calculi that include WFN[2atom(Π)] to deal with unfounded sets are sound and
complete, which can be formalized as follows.

THEOREM 3.1. Let Π be a normal program.
Then, we have that the following holds for tableau calculi Tsmodels, Tnomore, and Tnomore++:

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Program Π has an answer set X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that AT ∩ atom(Π) = X .
(3) Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

In particular, note that each of Cut[atom(Π)], Cut[body(Π)], and Cut[atom(Π) ∪ body(Π)]
is sufficient to complete tableaux for Π and ∅. However, we show in Section 6 that different
proof complexities are obtained wrt such Cut variants. Moreover, as each of Tsmodels, Tnomore, and
Tnomore++ admits a (unique) non-contradictory complete branch (Π,A) in some tableau iff (Π,A)
belongs to every complete tableau for Π and ∅, Theorem 3.1 remains valid when replacing “every”
by “some” in the second and the third item of its statement.

4. CHARACTERIZING EXISTING ASP SOLVERS

In this section, we discuss the relationships between the tableau rules in Figure 1 and existing
ASP solving approaches. As it turns out, our tableau rules are well-suited for describing the
main principles of a variety of ASP solvers. We however start in Section 4.1 by showing corre-
spondences with familiar logic programming operators: Fitting’s operator [Fitting 2002] and the
well-founded operator [Van Gelder et al. 1991]. Section 4.2 then covers traditional approaches to
answer set computation for normal programs, including smodels [Simons et al. 2002], dlv [Leone
et al. 2006], nomore [Konczak et al. 2006], and nomore++ [Anger et al. 2005]. Finally, we sketch
in Section 4.3 how tableau rules relate to propagation principles of SAT-based solvers assat [Lin
and Zhao 2004], cmodels [Giunchiglia et al. 2006], and sag [Lin et al. 2006] as well as to the
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 7

approaches of native conflict-driven learning ASP solvers smodelscc [Ward and Schlipf 2004] and
clasp [Gebser et al. 2007].

4.1 Fitting’s Operator and Well-Founded Operator

Given a normal program Π and an assignment A, the two operators in question can be defined in
terms of the following sets of atoms:

TΠ(A) = {head(r) | r ∈ Π, body(r)
+ ⊆ AT , body(r)

− ⊆ AF }
NΠ(A) = atom(Π) \ {head(r) | r ∈ Π, (body(r)

+ ∩AF) ∪ (body(r)
− ∩AT) = ∅}

UΠ(A) =
⋃
U⊆atom(Π),EBΠ(U)⊆{body(r)|r∈Π,(body(r)+∩AF)∪(body(r)−∩AT)6=∅}U

TΠ(A) contains the head atoms of rules whose bodies hold wrt A. In contrast, if an atom of
NΠ(A) occurs in the head of any rule, then the body of the rule is falsified by A. Given that
neither TΠ(A) nor NΠ(A) make use of any entry over body(Π), they can be viewed as functions
mapping partial interpretations over atoms. In fact, for A′ = {T p | p ∈ AT ∩atom(Π)}∪{F p |
p ∈ AF ∩ atom(Π)}, we have that TΠ(A) = TΠ(A′) and NΠ(A) = NΠ(A′). Similarly,
it holds that UΠ(A) = UΠ(A′), where the idea is to reflect the greatest unfounded set, UΠ(A),
without referring to entries over body(Π). Thus, UΠ(A) collects allU ⊆ atom(Π) such that every
external body of U for Π is falsified by A, i.e., EBΠ(U) ⊆ {body(r) | r ∈ Π, (body(r)

+∩AF)∪
(body(r)

− ∩ AT) 6= ∅}. Given that, for every p ∈ NΠ(A), we have EBΠ({p}) ⊆ body(p) ⊆
{body(r) | r ∈ Π, (body(r)

+ ∩ AF) ∪ (body(r)
− ∩ AT) 6= ∅}, it is always the case that

NΠ(A) ⊆ UΠ(A), while the converse does not hold in general.
With the sets TΠ(A), NΠ(A), and UΠ(A) at hand, we can now make the partial interpretations

obtained by Fitting’s operator and the well-founded operator precise. The following assignment
amounts to the result of an application of Fitting’s operator: {T p | p ∈ TΠ(A)} ∪ {F p | p ∈
NΠ(A)}. The result of an application of the well-founded operator is the assignment {T p | p ∈
TΠ(A)} ∪ {F p | p ∈ UΠ(A)}. While both operators use TΠ(A) to infer true atoms, false atoms
are obtained via either NΠ(A) or UΠ(A). Since NΠ(A) ⊆ UΠ(A), the result of Fitting’s operator
is always subsumed by the one of the well-founded operator.

For illustration, consider the following normal program:

Π2 = {a← not b; b← not a; c← b,not a; c← d; d← b,not a; d← c; e← c; e← d}

For A = {T a,F b}, we get TΠ2
(A) = {a}, NΠ2

(A) = {b}, and UΠ2
(A) = {b, c, d, e}. That

is, {T a,F b} is the result of applying Fitting’s operator to A, while {T a,F b,F c,F d,F e} is
obtained with the well-founded operator.

For linking the operators to tableau rules, the following result characterizes the sets of inferred
atoms in terms of FTB plus FTA, and by FFB along with either FFA or WFN[2atom(Π)], respec-
tively, where FFA is subsumed by WFN[2atom(Π)].

PROPOSITION 4.1. Let Π be a normal program and A an assignment.
Then, we have that

(1) TΠ(A) =
(
D{FTA}(Π, D{FTB}(Π,A))

)T
;

(2) NΠ(A) =
(
D{FFA}(Π, D{FFB}(Π,A))

)F
;

(3) UΠ(A) =
(
D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A))

)F
.

On the right-hand sides, the application of either FTB or FFB serves as an intermediate
step to propagate the truth of all or the falsity of some body literal to the body as such.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

8 · Martin Gebser and Torsten Schaub

The valuations of bodies are then exploited by FTA, FFA, and WFN[2atom(Π)], which in turn
deduce atoms assigned to true and false, respectively, in an application of Fitting’s opera-
tor or the well-founded operator. For instance, given A = {T a,F b}, D{FTB}(Π2,A) =
{T {not b}} gives rise to D{FTA}(Π2, D{FTB}(Π2,A)) = {T a}. Furthermore, we have that
D{FFB}(Π2,A) = {F {not a},F {b,not a}}, D{FFA}(Π2, D{FFB}(Π2,A)) = {F b}, and
D{WFN[2atom(Π2)]}(Π2, D{FFB}(Π2,A)) = {F b,F c,F d,F e}. As stated in Proposition 4.1, these
outcomes correspond to TΠ2

(A) = {a}, NΠ2
(A) = {b}, and UΠ2

(A) = {b, c, d, e}.
Although we omit further details, note that the correspondences established in Proposition 4.1

carry forward to iterated applications and fixpoints of Fitting’s operator and the well-founded
operator, respectively. In particular, the entries over atom(Π) in D∗{FTB,FTA,FFB,FFA}(Π, ∅) and
D∗{FTB,FTA,FFB,WFN[2atom(Π)]}(Π, ∅) yield the least fixpoint of Fitting’s operator and the well-founded
operator, respectively; additional entries over body(Π) make valuations of bodies explicit.

4.2 Traditional ASP Solvers

We start by investigating the relationship between smodels [Simons et al. 2002] (and dlv [Leone
et al. 2006]) on the one hand and our tableau rules on the other hand. After that, we extend these
considerations to the rule-based approach of nomore [Konczak et al. 2006] as well as to the hybrid
assignments dealt with by nomore++ [Anger et al. 2005].

The atom-based approach of smodels (logically) works on assignments over atoms, and its
propagation (cf. [Simons et al. 2002; Ward and Schlipf 2004]) can be specified in terms of the
tableau rules shown in Figure 3.6 While FI expresses that the head of a rule whose body liter-
als hold must be true, its contrapositive, CFH, describes that a body literal of a rule must not
hold if the head is false and all other body literals hold already. Moreover, an unsupported
atom p must be false, and ARC reflects this by checking for the presence of some body literal
that does not hold in every rule with head p. Conversely, CTH expresses that the body literals
of a rule (p′ ← l′1, . . . , l

′
i, . . . , l

′
n) must hold if an atom p is true and any other rule with head p

contains some body literal that does not hold.7 Finally, AM formalizes that any atom p belong-
ing to some unfounded set U , in view of some false body literal in every element of EBΠ(U),
must be false. Note that Figure 3 does not show a contrapositive of AM, as smodels’ propaga-
tion does not include such reasoning; it could still be defined analogously to CTH, yet requir-
ing the conditions p ∈ U , U ⊆ atom(Π), and {r ∈ Π | head(r) ∈ U, body(r)

+ ∩ U = ∅,
body(r)∩{l1, . . . , lm} = ∅} ⊆ {p′ ← l′1, . . . , l

′
i, . . . , l

′
n} in the proviso (thus checking that every

element of EBΠ(U) \ {{l′1, . . . , l′i, . . . , l′n}} contains some body literal that does not hold), while
there is a true atom p in U . Augmenting the tableau rules in Figure 3 with Cut[atom(Π1)], we
can generate the following tableau for Π1 and the empty assignment:

a←
c← not b,not d
d← a,not c

T a (FI)
F b (ARC)

T c F c
F d (CTH) T d (CFH)

(Cut [atom(Π1)])

6The names of tableau rules in Figure 3 are aligned to the ones used for smodels’ propagation rules in [Ward and Schlipf
2004], and the tableau rules reflect smodels’ propagation rules by respective prerequisites and consequents.
7If p′ = p, then (p′ ← l′1, . . . , l

′
i, . . . , l

′
n) is the only remaining rule to support p; otherwise, the true atom p is

unsupported, and arbitrary body literals may be deduced in the face of a contradiction.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 9

p← l1, . . . , ln
tl1, . . . , tln

T p
Forward Inference (FI)

f l1, . . . ,f lm
(�)F p

All Rules Canceled (ARC)

p′ ← l′1, . . . , l
′
i, . . . , l

′
n

T p,f l1, . . . ,f lm
(�)tl′i

Contraposition for True Heads (CTH)

p← l1, . . . , li−1, li, li+1, . . . , ln
F p, tl1, . . . , tli−1, tli+1, . . . , tln

f li
Contraposition for False Heads (CFH)

f l1, . . . ,f lm
(3)

F p
At Most (AM)

(�) : p ∈ atom(Π), {r ∈ Π | head(r) = p, body(r) ∩ {l1, . . . , lm} = ∅} = ∅
(�) : p ∈ atom(Π), {r ∈ Π | head(r) = p, body(r) ∩ {l1, . . . , lm} = ∅} ⊆ {p′ ← l′1, . . . , l

′
i, . . . , l

′
n}

(3) : p ∈ U,U ⊆ atom(Π),EBΠ(U) ⊆ {body(r) | r ∈ Π, body(r) ∩ {l1, . . . , lm} 6= ∅}

Fig. 3. Deterministic tableau rules for traditional (atom-based) ASP solvers.

This tableau is similar to the one of Tsmodels shown in Figure 2, yet it omits entries for rule bodies.
Note that F d and T d can likewise be generated by applying ARC (or AM) and FI (instead of CTH
and CFH), and corresponding alternative deductions of entries (generated in different order) in
the left and the right branch of the tableau in Figure 2 rely on FFA (or WFN[2atom(Π)]) and FTA
(instead of BTB and BFB).

The next result characterizes smodels’ propagation in terms of the tableau rules in Figure 1.

PROPOSITION 4.2. Let Π be a normal program and A an assignment.
Then, we have that

(1) D{FI}(Π,A) = D{FTA}(Π, D{FTB}(Π,A));

(2) D{ARC}(Π,A) = D{FFA}(Π, D{FFB}(Π,A));

(3) D{CTH}(Π,A) = D{BTB}(Π, D{BTA}(Π, D{FFB}(Π,A) ∪ {T p | p ∈ AT ∩ atom(Π)}));

(4) D{CFH}(Π,A) = D{BFB}(Π, D{BFA}(Π,A)∪{T p | p ∈ AT ∩atom(Π)}∪{F p | p ∈ AF ∩
atom(Π)});

(5) D{AM}(Π,A) = D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A)).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

10 · Martin Gebser and Torsten Schaub

As in Proposition 4.1, FTB and FFB are used on the right-hand sides to reflect truth or falsity
of bodies wrt their contained literals by corresponding entries. Also observe that the characteriza-
tions of FI, ARC, and AM are similar to those of TΠ(A), NΠ(A), and UΠ(A) in Proposition 4.1.
In addition, backward propagation via CTH and CFH is captured by means of BTA plus BTB and
BFA plus BFB, respectively, deducing first entries for bodies that need to be either true or false
and then corresponding entries for their contained literals.

In view of the fact that all tableau rules used on the right-hand sides in Proposition 4.2 are
contained in tableau calculus Tsmodels (along with the observation that their application conditions
are monotonic wrt assignments), we immediately conclude the following.

COROLLARY 4.3. Let Π be a normal program and A an assignment.
Then, we have that D∗{FI,ARC,CTH,CFH,AM}(Π,A) ⊆ D∗Tsmodels

(Π,A).

To illustrate that the converse of Corollary 4.3 does not hold in general, even if we limit the
attention to entries over atoms, consider the following normal program:

Π3 = {a← not b; b← not a; c← b,not a; d← b,not a}

Given A = {F c}, we obtain D∗{FI,ARC,CTH,CFH,AM}(Π3,A) = {F c}, while D∗Tsmodels
(Π3,A) =

{F c,F {b,not a},F d}. Note that the falsity of atom c necessitates the falsity of body(c ←
b,not a) because c would be derived otherwise. However, since there is more than one literal in
{b,not a}, it is not immediately clear which body literal ought to be false. Hence, an “atom-only”
approach like the one of smodels gets stuck. In contrast, when we assign the body {b,not a} to
false, we see that (d← b,not a) is inapplicable as well, which enables Tsmodels to deduce F d.

We note that, given the similarities between smodels and dlv on normal programs [Giunchiglia
et al. 2008], the latter is also characterized by the tableau rules in Figure 3 (along with
Cut[atom(Π)]). Interestingly, both smodels and dlv use dedicated data structures in their im-
plementations for indicating (in)applicability of program rules: in smodels, a rule with a false
body is marked as “inactive” [Simons 2000]; similarly, dlv determines truth values of bodies from
specific counters [Faber 2002]. It is thus justified to describe the proceeding of atom-based solvers
by assignments and tableau rules that incorporate both atoms and bodies.8 Hence, for comparing
atom-based to other ASP solving approaches, we in the following refer to Tsmodels, rather than
a calculus built from the tableau rules in Figure 3. As shown above, Tsmodels slightly overesti-
mates the propagation capacities of atom-based solvers, so that lower bounds for its efficiency,
considered in Section 6, also apply to the real solvers, viz. smodels and dlv.

A similar analysis as in Proposition 4.2 is also possible for the rule-based approach of nomore,
amounting to assignments over rule bodies, and for the hybrid approach of nomore++. By assign-
ing truth values to atoms as well as bodies, the latter works on the same basis as its associated
tableau calculus Tnomore++. In fact, although we omit the details, it is not hard to verify that the
propagation operators P , B, and U (cf. [Anger et al. 2005]) implemented by nomore++ match the
deterministic tableau rules in Tnomore++. Furthermore, the choice operator C of nomore++ coincides
with Cut[atom(Π) ∪ body(Π)]. On the other hand, when we consider nomore augmented with
backward propagation [Linke et al. 2002], we obtain that its propagation is subsumed by Tnomore.
As with Tsmodels and smodels, we have that some entries deducible by Tnomore are not inferred by
nomore. The following program illustrates that assignments over rule bodies only may be less

8In [Giunchiglia and Maratea 2005], additional variables for bodies, one for each rule in a program, are explicitly intro-
duced for comparing smodels to DPLL, and the characterization of smodels’ propagation rules in terms of unit propagation
provided in [Gebser and Schaub 2006a] likewise shows that rule bodies serve as inherent structural variables.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 11

informative than assignments that also include atoms:

Π4 = {a← b; b← c; b← not c; c← a,not b}

Given A = {T {b}}, since two rules, (b ← c) and (b ← not c), have b as their head, nomore
cannot determine a unique program rule to derive b from, so that its propagation cannot infer
anything. In contrast, D∗Tnomore

(Π4,A) = {T {b},T a,T b,F {a,not b},F c,F {c},T {not c}}.
Here, the fact that the atom b must be true yields that the body {a,not b} is necessarily false,
from which Tnomore then deduces the remaining entries.

4.3 SAT-Based and Conflict-Driven Learning ASP Solvers

Lin and Zhao [Lin and Zhao 2004] showed that the answer sets of a normal program Π coin-
cide with the models of the completion of Π satisfying all loop formulas of Π. By introducing
auxiliary variables for rule bodies, as also used in [Babovich and Lifschitz 2003] to avoid an ex-
ponential blow-up due to clausification, the completion, Comp(Π), and loop formulas, LF (Π),
of a program Π can be defined as follows:

Comp(Π) = {pB ↔ (
∧
p∈B+p ∧

∧
q∈B−¬q) | B ∈ body(Π)}

∪ {p↔ (
∨
B∈body(p)pB) | p ∈ atom(Π)}

LF (Π) = {(
∨
p∈Up)→ (

∨
B∈EBΠ(U)pB) | U ∈ loop(Π)}

Given that a program Π may yield exponentially many (non-redundant) loop formulas [Lifschitz
and Razborov 2006], SAT-based ASP solvers assat [Lin and Zhao 2004], cmodels [Giunchiglia
et al. 2006], and sag [Lin et al. 2006] do not a priori construct LF (Π). Rather, they use some
SAT solver to generate a model of Comp(Π) and, afterwards, check whether the model contains
a loop U of Π whose loop formula is violated. If so, U is unfounded wrt the model at hand, and
adding the loop formula for U eliminates the model as an answer set candidate.9

Regarding the generation of answer set candidates, the following analog of Theorem 3.1 applies
to Tcomp and models of Comp(Π).

THEOREM 4.4. Let Π be a normal program.
Then, we have that the following holds for tableau calculus Tcomp:

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Comp(Π) has a model X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that (AT ∩atom(Π))∪{pB | B ∈ AT ∩body(Π)} = X .
(3) Comp(Π) has no model iff every complete tableau for Π and ∅ is a refutation.

Theorem 4.4 shows that Tcomp captures exactly the models of Comp(Π) for a normal pro-
gram Π.10 Since Tcomp admits a non-contradictory complete branch (Π,A) in some tableau iff
(Π,A) belongs to every complete tableau for Π and ∅, Theorem 4.4 (like Theorem 3.1) remains
valid when replacing “every” by “some” in the second and the third item of its statement.

By Theorem 3.1, adding WFN[2atom(Π)] to Tcomp leads to a tableau calculus characterizing
answer sets. However, SAT-based ASP solvers check for unfounded loops rather than arbitrary
unfounded sets, while atom-wise unfounded set handling is accomplished via FFA (enclosed in
Comp(Π)). Given that FFA is subsumed by WFN[2atom(Π)], but not by WFN[loop(Π)], the next

9While assat and cmodels apply sophisticated unfounded set checks only wrt total answer set candidates, sag can perform
them also wrt partial assignments generated by a SAT solver.
10The models of the completion of a logic program Π are also called the “supported models” of Π [Apt et al. 1987].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

12 · Martin Gebser and Torsten Schaub

result, which shows that WFN[2atom(Π)] and WFN[loop(Π)] plus FFA yield the same deductive
closure (in combination with FFB, deducing the falsity of bodies from body literals that do not
hold), tells us that limiting WFN to loops abolishes overlaps between tableau rules.

PROPOSITION 4.5. Let Π be a normal program and A an assignment.
Then, we have that D∗{FFB,WFN[2atom(Π)]}(Π,A) = D∗{FFB,FFA,WFN[loop(Π)]}(Π,A).

In view of Proposition 4.5, by adding the tableau rule WFN[loop(Π)] to Tcomp , we characterize
models of Comp(Π) ∪ LF (Π), which coincide with the answer sets of Π.

THEOREM 4.6. Let Π be a normal program.
Then, we have that the following holds for tableau calculus Tcomp ∪ {WFN[loop(Π)]}:

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Program Π has an answer set X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that AT ∩ atom(Π) = X .
(3) Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

As with Theorem 3.1 and 4.4, we have that Theorem 4.6 remains valid when replacing “every”
by “some” in the second and the third item of its statement.

For illustration, consider the following normal program:

Π5 = {a← not b; b← not a; c← a; c← d; d← c,not a; e← c; e← d}

We have that loop(Π5) = {{c, d}} and EBΠ5({c, d}) = EBΠ5({c, d, e}) = {{a}}.
For A = {F {a}}, we thus get D{WFN[2atom(Π5)]}(Π5,A) = {F c,F d,F e}, while
D{WFN[loop(Π5)]}(Π5,A) = {F c,F d} does not include F e. As body(e) = {{c}, {d}} ⊆(
D{FFB}(Π5, {F c,F d})

)F
, F e ∈ D∗{FFB,FFA,WFN[loop(Π5)]}(Π5,A) nonetheless holds. Hence,

the combination of FFB, FFA, and WFN[loop(Π5)] allows us to deduce the same entries as ob-
tained with FFB and WFN[2atom(Π5)].

To see the relationship between the tableau rules in Figure 1 and the clausal representation of
Comp(Π) ∪ LF (Π), given a tableau rule with prerequisites `1, . . . , `n and ` as its consequence,
we define a clause δ by

δ = {pv | T v ∈ {`1, . . . , `n, `}} ∪ {¬pv | F v ∈ {`1, . . . , `n, `}}

where we let pv = v if v is an atom in P . For Π5 as above and the tableau rules in Tcomp , the
following theory ∆ constitutes the union of (unsubsumed) clauses given by tableau rules (other
than Cut[atom(Π5) ∪ body(Π5)]):

∆ =
{
{p{not b}, b}, {p{not a}, a}, {p{a},¬a}, {p{d},¬d}, {p{c},¬c}, {p{c,not a},¬c, a}

}
(2)

∪
{
{¬p{not b},¬b}, {¬p{not a},¬a}, {¬p{a}, a}, {¬p{d}, d}, {¬p{c}, c},
{¬p{c,not a}, c}, {¬p{c,not a},¬a}

}
(3)

∪
{
{a,¬p{not b}}, {b,¬p{not a}}, {c,¬p{a}}, {c,¬p{d}}, {d,¬p{c,not a}},
{e,¬p{c}}, {e,¬p{d}}

}
(4)

∪
{
{¬a, p{not b}}, {¬b, p{not a}}, {¬c, p{a}, p{d}}, {¬d, p{c,not a}}, {¬e, p{c}, p{d}}

}
(5)

The clauses in (2) are obtained from tableau rule FTB, and likewise from its contrapositive BFB.
Similarly, the clauses in (3), (4), and (5) result from FFB or BTB, FTA or BFA, and FFA or BTA,
respectively. Note that the clauses in ∆ rephrase the equivalences contained in Comp(Π5), so
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 13

that ∆ ≡ Comp(Π5). In fact, the (deterministic) tableau rules in Tcomp express conditions for
unit propagation, as performed in SAT solvers used by assat, cmodels, and sag. When we extract
clauses from tableau rule WFN[loop(Π5)], or likewise from WFJ[loop(Π5)], we get the theory Λ:

Λ =
{
{¬c, p{a}}, {¬d, p{a}}

}
Once clauses from Λ ≡ LF (Π5) have been added to Comp(Π5) (to eliminate some invalid answer
set candidate), they can be used for unit propagation in a SAT solver, just like the clauses in ∆.

In native conflict-driven learning ASP solvers, such as smodelscc [Ward and Schlipf 2004] and
clasp [Gebser et al. 2007], the clauses obtained from tableau rules contribute reasons for conflicts.
For clasp, such clauses correspond to the sets ∆Π and ΛΠ of nogoods (cf. [Gebser et al. 2007]),
and the (implicit) constraints propagated by smodelscc , extracting reasons relative to smodels’
propagation rules, are closely related to clauses obtained from tableau rules (cf. [Giunchiglia
and Maratea 2005; Gebser and Schaub 2006a; Giunchiglia et al. 2008]). This indicates that the
tableau rules in Figure 1 are well-suited to characterize conditions for propagation as applied in
both SAT-based and native conflict-driven learning ASP solvers. Of course, our tableaux reflect
neither preprocessing techniques, such as the ones described in [Babovich and Lifschitz 2003;
Gebser et al. 2008], nor backjumping and learning schemes of conflict-driven learning SAT and
ASP solvers (see, e.g., [Marques-Silva and Sakallah 1999; Zhang et al. 2001; Eén and Sörensson
2004; Biere et al. 2009]). We note that the calculus based on state transition graphs presented in
[Lierler 2011] captures backjumping and conflict-driven learning as performed by smodelscc ; in
that work, the clauses attributed to smodelscc avoid auxiliary variables for rule bodies in favor of
(non-erasable) duplicate literals.

Finally, let us comment on some particularities of unfounded set handling. On the one hand,
Proposition 4.5 shows that tableau rule WFN[2atom(Π)] can be replaced by more restrictive rule
WFN[loop(Π)] without sacrificing deducible entries. In fact, SAT-based ASP solvers concen-
trate the consideration of positive recursion on loops, and native ASP solvers like clasp, dlv, and
smodels exploit strongly connected components of programs’ dependency graphs to achieve a
similar effect. However, no existing ASP solver incorporates a contrapositive of WFN, that is,
WFJ[2atom(Π)] or WFJ[loop(Π)], in its propagation (unless loop formulas have been recorded).
An approach to extend unfounded set handling in this direction has been presented in [Chen
et al. 2008; 2009]. Unfortunately, it amounts to failed-literal detection (cf. [Freeman 1995; Si-
mons et al. 2002]), whose high (polynomial) computational cost makes its unrestricted appli-
cation prohibitive in practice. It is still interesting that a result similar to Proposition 4.5 can-
not be obtained for WFJ[2atom(Π)] and WFJ[loop(Π)]. The fact that the latter tableau rule is
strictly weaker than the former can be observed by considering Π5 along with A = {T e}. Since
EBΠ5

({c, d, e}) = {{a}}, we obtain that T {a} ∈ D{WFJ[2atom(Π5)]}(Π5,A). On the other hand,
since loop(Π5) = {{c, d}} and body(e) = {{c}, {d}}, neither WFJ[loop(Π5)] nor any of the
tableau rules (a)–(i) in Figure 1 (in particular, BTA) is applicable in the branch (Π5,A), that is,
D{(a)–(i),WFJ[loop(Π5)]}(Π5,A) = ∅. Regarding the impact of not at all applying WFJ or restricting
the sets of atoms to which it can be applied to loops, in Section 6, we show that WFJ can be
simulated by means of Cut and WFN, using exactly the idea of failed-literal detection.

5. GENERIC TABLEAUX FOR COMPOSITE LANGUAGE CONSTRUCTS

In what follows, we generalize our approach and develop an extensible tableau framework for
logic programs incorporating composite language constructs, such as dlv’s aggregates [Faber et al.
2008] or smodels’ cardinality and weight constraints [Simons et al. 2002]. To this end, we take a
more abstract perspective than before and view, e.g., conjunctions as (simple) Boolean aggregates,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

14 · Martin Gebser and Torsten Schaub

which like atoms can be preceded by not . However, we also show below that the dedicated tableau
framework introduced in Section 3 and the generic approach developed in the sequel coincide on
the common language fragment of normal programs.

The basic idea of our generic approach is to specify core tableau rules that, for one, aim at
establishing model conditions by propagating truth and falsity of entries along program rules. For
instance, consider the rule (0{a, d}1 ← 1{b,not e}2), including two cardinality constraints.11

If 1{b,not e}2 holds wrt an assignment, we know that 0{a, d}1 must hold as well; conversely,
1{b,not e}2 must not hold if it is known that 0{a, d}1 does not hold. In our generic frame-
work, such inferences are reflected by deducing T 0{a, d}1 from T 1{b,not e}2 or, conversely,
F 1{b,not e}2 from F 0{a, d}1. Notice that we associate truth values with cardinality constraints,
and that matching them to truth values of the cardinality constraints’ literals requires specific
tableau rules. Hence, when we below augment our framework with composite language con-
structs, we also introduce such construct-specific tableau rules.

Regardless of concrete program syntax, an answer set must be a minimal model of the reduct
relative to itself, as in the case of normal programs (cf. Section 2). Our generic tableau rules reflect
this minimality requirement by investigating external supports of sets of atoms. To this end, for a
rule (α← β) and an assignment A, we make use of two predicates,←−supA(α, S) and−→supA(β, S′),
to check whether a set S of atoms can be supported via α and whether β can hold independently
of atoms in S′. Since our tableau rules consider subsets S′ of S, viz. S′ = ∅ or S′ = S, the
two predicates allow us to test whether (α ← β) provides an external support for S wrt A. Of
particular interest are the cases where there is no external support for S, as it tells us that all atoms
of S must be false, or where there is exactly one external support (α ← β) for S. In the latter
case, if S contains some true atom, we know that β must hold, and additional entries might be
required too, for which we provide two sets, minA(α, S) and maxA(β, S′). For instance, if at
least one of the entries T a and T b belongs to a given assignment A and the rule (0{a, d}1 ←
1{b,not e}2) is the single external support for the set {a, b}, we get minA(0{a, d}1, {a, b}) =
{F d} and maxA(1{b,not e}2, {a, b}) = {F e}. In fact, if d was true, the upper bound 1 of
0{a, d}1 would be reached, so that no further atom can be supported. Likewise, if the literal
not e in 1{b,not e}2 was false, the lower bound 1 of 1{b,not e}2 could only be achieved by
making b true, so that the support is not external to {a, b}. Since the definitions of ←−sup, −→sup,
min , and max are specific to a language construct at hand, we below develop them gradually
upon integrating composite language constructs into our generic framework. To be more precise,
after in Section 5.1 generalizing the definitions from Section 2, we devise generic tableau rules in
Section 5.2. These are augmented with tableau rules for conjunctions, cardinality constraints, and
disjunctions in Section 5.3, 5.4, and 5.5, respectively.

5.1 Answer Sets for Propositional Theories

Among several proposals defining answer sets for logic programs accommodating particular lan-
guage extensions (e.g., [Simons et al. 2002; Ferraris and Lifschitz 2005; Faber 2005; Ferraris
2005; Liu and Truszczyński 2006; Faber et al. 2011]), we rely on the one by Ferraris [Ferraris
2005], as it is general enough to deal with arbitrary (ground) aggregates and has a firm basis in the
logic of here-and-there [Pearce 1996; Lifschitz et al. 2001]. To achieve generality, this semantics

11A cardinality constraint like 1{b,not e}2 resembles a linear inequality, viz. 1 ≤ b + (1 − e) ≤ 2, over Boolean
variables. By assigning each of the variables b and e to either 1 (true) or 0 (false), the inequality evaluates to true or false,
respectively. For instance, 1 ≤ 1 + (1− 1) ≤ 2 holds with b = e = 1, while 1 ≤ 0 + (1− 1) ≤ 2, obtained with b = 0
and e = 1, does not hold.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 15

applies to propositional theories and identifies aggregates with propositional formulas.
Formally, a propositional theory is a finite set of propositional formulas, constructed from atoms

in an alphabet P and the connectives ⊥, ∧, ∨, and→. Any other connective is considered as an
abbreviation, in particular, ¬φ stands for (φ→ ⊥). An interpretation, represented by the set X of
its entailed atoms, is a model of a propositional theory Φ if X |= φ for all φ ∈ Φ, where |= is the
standard satisfaction relation of propositional logic. The reduct, denoted by ΦX , of Φ wrt X is a
propositional theory, (recursively) defined as follows:

ΦX =
{
φX | φ ∈ Φ

}
φX =

 ⊥ if X 6|= φ
φ if φ ∈ X
φX1 ◦ φX2 if X |= φ and φ = (φ1 ◦ φ2) for ◦ ∈ {∧,∨,→}

Intuitively, all (maximal) subformulas of Φ that are false in X are replaced by ⊥ in ΦX , while
other subformulas of Φ stay intact. Hence, any model X of Φ is a model of ΦX as well. Also
note that all occurrences of negation, i.e., subformulas of the form (φ → ⊥), are replaced by
constants in ΦX , since either φ or (φ → ⊥) is false in X . An interpretation X is an answer set
of a propositional theory Φ if X is a minimal model of ΦX . In fact, an answer set X of Φ is the
unique least model of ΦX because all atoms occurring in ΦX belong to X , but a least model of
ΦX is, in general, not guaranteed to exist.

As an example, consider the propositional theory

Φ = {a ∨ b}

along with its reducts Φ∅ = {⊥}, Φ{a} = {a∨⊥}, Φ{b} = {⊥∨b}, and Φ{a,b} = {a∨b}. While
∅ is not a model of Φ∅, the proper subsets {a} and {b} of {a, b} are models of Φ{a,b}. As {a} and
{b} are minimal models of Φ{a} and Φ{b}, respectively, they are answer sets of Φ. Furthermore,
observe that a is the only atom occurring in Φ{a}, and the same applies to b and Φ{b}.

In a general setting, we understand a (propositional) logic program Π over an alphabet P as
a finite set of rules of the form (α ← β) where α and β are literals, that is, expressions over P
possibly preceded by not . As before, atom(Π) denotes the set of atoms occurring in Π. In the
following, we refine heads α and bodies β for obtaining particular classes of logic programs. The
semantics of a logic program is given by the answer sets of an associated propositional theory,
obtained via a translation τ described below. However, the proof-theoretic characterizations we
provide apply directly to logic programs, without translating them to propositional theories.

5.2 Generic Tableau Rules

We begin with a simple class of unary programs where rules (α ← β) are restricted to atomic
literals, that is, each of α and β is equal to either p or not p for an atom p ∈ P .12 The semantics
of a unary program Π is given by the answer sets of a propositional theory, τ [Π], (recursively)
defined as follows:

τ [Π] = {τ [β]→ τ [α] | (α← β) ∈ Π} (6)

τ [π] =

{
¬τ [v] if π = not v
π if π ∈ P (7)

12Our notion of a unary program is different from the one considered in [Janhunen 2006]. The latter allows for one
positive and arbitrarily many negative body literals, but not for negative head literals.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

16 · Martin Gebser and Torsten Schaub

For illustration, consider the following unary program:

Π6 = {a← not b; not a← c; b← c; c← b}

The associated propositional theory is as follows:

τ [Π6] = {¬b→ a; c→ ¬a; c→ b; b→ c}

The sets {a} and {b, c} are models of τ [Π6], and their respective reducts are:

(τ [Π6]){a} = {¬⊥ → a; ⊥ → ⊥}
(τ [Π6]){b,c} = {⊥ → ⊥; c→ ¬⊥; c→ b; b→ c}

Clearly, {a} is the least model of (τ [Π6]){a}, so that {a} is an answer set of Π6. The (unique)
minimal model of (τ [Π6]){b,c} is ∅. Hence, {b, c} is not the least model of (τ [Π6]){b,c} and thus
not an answer set of Π6.

While the semantics is based on translation to propositional theories, our tableau framework
deals with logic programs as such. The global design, however, follows the two semantic require-
ments for answer sets: modelhood wrt a program and (non-circular) support wrt the reduct. In
order to establish the latter, for a program Π, two sets S ⊆ atom(Π), S′ ⊆ atom(Π), and an
assignment A, we define:

supA(Π, S, S′) = {(α← β) ∈ Π | fβ /∈ A, ←−supA(α, S), −→supA(β, S′)} (8)

The purpose of supA(Π, S, S′) is to determine all rules of Π that can, wrt A, provide a support
for the atoms in S that is external to S′. Of particular interest are the cases where supA(Π, S, S′)
is empty or a singleton {α ← β}. In the first case, the atoms in S cannot be supported and
are prone to be false, while the second case tells us that (α ← β) is the unique support for S
external to S′. Since we below consider only situations where S′ ⊆ S, viz. S′ = ∅ and S′ = S,
supA(Π, S, S′) = {α← β} indicates that β must hold to (non-circularly) support S.

Further investigating the definition of supA(Π, S, S′) in (8), we note that a rule (α ← β) such
that fβ ∈ A cannot provide any support wrt A. Otherwise, we check via←−supA(α, S) that α can
support S, and via −→supA(β, S′) that β does not (positively) rely on S′. For the simple class of
unary programs, these concepts are defined as follows:

←−supA(p, S) if p ∈ S (9)
−→supA(p, S′) if p ∈ P \ S′ (10)

−→supA(not v, S′) for every expression v (11)

The universal validity of (11) is because only positive dependencies are taken into account. Also
note that a rule (α ← β) such that α = not v cannot support any set S of atoms. (We further
illustrate the above concepts below Theorem 5.1.)

The tableau rules constituting our primal generic calculus are shown in Figure 4. Among them,
I ↑ and I ↓ provide rule-based inferences, such as modus ponens and modus tollens. The tableau
rules N ↑ and N ↓ amount to negation and support for atoms, building on similar principles as
completion (of normal programs). Note that the derivability of an atom p and thus the applicability
of tableau rules N ↑ and N ↓, respectively, is determined by supA(Π, {p}, ∅). In the general case,
rule N ↓ makes use of two further concepts, minA(α, S) and maxA(β, S′), used to determine
entries that must necessarily be added to A in order to support some atom in S via (α ← β)
without positively relying on S′. However, as these concepts play no role in the setting of unary
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 17

α← β
tβ
tα

α← β
fα
fβ

(a) Implication (I ↑) (b) Contraposition (I ↓)

Π,A
(p ∈ atom(Π), supA(Π, {p}, ∅) = ∅)F p

(c) Negation (N ↑)

Π,A
(p ∈ AT ∩ atom(Π), supA(Π, {p}, ∅) = {α← β})tβ,minA(α, {p}),maxA(β, ∅)

(d) Support (N ↓)

Π,A
(S ⊆ atom(Π), p ∈ S, supA(Π, S, S) = ∅)

F p

(e) Unfounded Set (U ↑)

Π,A
(S ⊆ atom(Π),AT ∩ S 6= ∅, supA(Π, S, S) = {α← β})

tβ,minA(α, S),maxA(β, S)

(f) Well-Founded Set (U ↓)

(v ∈ Γ)T v | F v

(g) Cut (Cut[Γ])

Fig. 4. Tableau rules for rules (a),(b); atoms (c),(d); sets of atoms (e),(f); and cutting (g).

programs, they are defined to be empty for atomic literals:

minA(p, S) = ∅ for p ∈ P (12)
maxA(p, S′) = ∅ for p ∈ P (13)

maxA(not v, S′) = ∅ for every expression v (14)

Furthermore, the tableau rules U ↑ and U ↓ take care of (non-empty) “unfounded sets,” either by
identifying atoms that cannot be non-circularly supported (U ↑) or by preventing true atoms from
becoming unfounded (U ↓). The applicability of U ↑ and U ↓ is determined by supA(Π, S, S)
for a set S of atoms. Since supA(Π, S, S) ⊆ supA(Π, S, S′) for every S′ ⊆ S (cf. (10)) and,
in particular, for S′ = ∅, U ↑ and U ↓ subsume N ↑ and N ↓, which rely on the weaker concept
supA(Π, {p}, ∅). We nonetheless include N ↑ and N ↓ because their applicability is easy to de-
termine, and thus they have counterparts in virtually all ASP solvers. Also note that we do not
parameterize U ↑ and U ↓ by Ω, which has been included in corresponding tableau rules WFN[Ω]
and WFJ[Ω] in Figure 1 to reflect a possible restriction to loops. Albeit loops can also be iden-
tified in propositional theories [Ferraris et al. 2006], the generalization is not straightforward and

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

18 · Martin Gebser and Torsten Schaub

omitted here for brevity. Finally, the Cut[Γ] rule, allowing for case analyses on the expressions
in Γ, is identical to its counterpart in Figure 1.

For a unary program Π, we fix the domain of assignments A as well as the cut objects used by
Cut[Γ] to dom(A) = Γ = atom(Π). Similar to Theorem 3.1 applying to normal programs, we
can now characterize the answer sets of unary programs in terms of generic tableaux.

THEOREM 5.1. Let Π be a unary program.
Then, we have that the following holds for the tableau calculus consisting of the tableau rules

(a)–(g):

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Program Π has an answer set X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that AT ∩ atom(Π) = X .

(3) Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

As with the tableau rules in Figure 1, we have that the generic calculus including the tableau
rules (a)–(g) admits a (unique) non-contradictory complete branch (Π,A) in some tableau iff
(Π,A) belongs to every complete tableau for Π and ∅. Hence, Theorem 5.1 as well as its general-
izations to further language constructs provided in the sequel remain valid when replacing “every”
by “some” in their second and their third item.13 Yet before turning to extensions, let us illustrate
the generic tableau rules in Figure 4 on a couple of examples.

For instance, consider a tableau with {a ← not a} at its root. A cut on a yields two branches,
one with T a and another one with F a. The first branch can be closed by deducing F a via N ↑. To
see this, observe that sup{Ta}({a← not a}, {a}, ∅) = ∅ because fnot a = T a ∈ {T a}. That is,
a must be false since all rules from which it could be derived are inapplicable. The second branch
can be closed by deducing T a via I ↑, given that tnot a = F a ∈ {F a}. Hence, all branches of
the tableau are contradictory, indicating that the unary program {a← not a} has no answer set.

For another example, consider the following unary program:

Π7 = {a← not b; b← not a; c← not a}

Cutting on c results in branches with T c and F c, respectively. The first one can be extended by
tnot a = F a via N ↓. Indeed, sup{T c}(Π7, {c}, ∅) = {c ← not a} tells us that (c ← not a) is
the only rule that allows for deriving c, which necessitates a to be false. To be more precise, we
have that fnot a = T a /∈ {T c}, and both ←−sup{T c}(c, {c}) and −→sup{T c}(not a, ∅) are satisfied.
This shows that the proviso of N ↓ is established, so that we can deduce tnot a = F a. Given
F a, we can further apply I ↑ or I ↓ to deduce T b and to so obtain a non-contradictory complete
branch. The second branch with F c can be extended by fnot a = T a via I ↓. Given T a,
we deduce F b, by N ↑ or N ↓, to obtain a second non-contradictory complete branch. The two
complete branches, consisting of Π7 along with {T c,F a,T b} and {F c,T a,F b}, respectively,
tell us that {b, c} and {a} are the two answer sets of Π7.

Finally, consider the following unary program:

Π8 = {a← b; b← a; b← c; c← not d; d← not c}

Let us further investigate two non-contradictory complete branches generated as follows:

13The uniqueness of branches stated in the second item of Theorem 5.1 is trivial for unary programs. It becomes more
interesting below when composite language constructs are assigned in addition to atoms.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 19

Π8

T d (Cut[atom(Π8)])
F c (N ↑,N ↓,U ↑,U ↓)
F a (U ↑)
F b (I ↓,N ↑,U ↑)

Π8

T a (Cut[atom(Π8)])
T b (I ↑,N ↓,U ↓)
T c (U ↓)
F d (N ↑,N ↓,U ↑,U ↓)

We have chosen these branches for illustrating the application of the unfounded set rule (U ↑)
and the well-founded set rule (U ↓), respectively. (Along branches, we indicate in parenthe-
ses all possible rule applications leading to the same result.) We first inspect the deduction
of F a by U ↑ in the left branch. Taking the set {a, b} (and its element a) makes us check
whether sup{Td,F c}(Π8, {a, b}, {a, b}) is empty. To this end, we have to investigate all rules
that allow for deriving an atom in {a, b} (as stipulated via ←−sup{Td,F c}(α, {a, b})). In view of
fc = F c ∈ {T d,F c}, we have (b ← c) /∈ sup{Td,F c}(Π8, {a, b}, {a, b}), so that only (a ← b)
and (b ← a) require further consideration. Because of b ∈ {a, b} and a ∈ {a, b}, respec-
tively, neither of these rules (α ← β) satisfies −→sup{Td,F c}(β, {a, b}), which leaves us with
sup{Td,F c}(Π8, {a, b}, {a, b}) = ∅. After F a has been deduced, it follows that (b ← a) /∈
sup{Td,F c,Fa}(Π8, {b}, S′) and (b ← c) /∈ sup{Td,F c,Fa}(Π8, {b}, S′) for S′ ⊆ {b}. Hence,
we can deduce F b by N ↑ or U ↑, or alternatively by means of I ↓ in view of rule (a ← b)
and F a. On the other hand, the well-founded set inference of T c in the right branch requires a
set of atoms, some of whose elements is true, such that only one rule can non-circularly support
the set. Taking again {a, b}, since −→sup{Ta,T b}(b, {a, b}) and −→sup{Ta,T b}(a, {a, b}) do not hold,
we get sup{Ta,T b}(Π8, {a, b}, {a, b}) = {b ← c}. The membership of (b ← c) is justified by
fc = F c /∈ {T a,T b} along with the fact that ←−sup{Ta,T b}(b, {a, b}) and −→sup{Ta,T b}(c, {a, b})
hold. Since (b ← c) is the only rule that can non-circularly support {a, b}, the presence of T a
(or T b) in the assignment necessitates tc = T c, as it is deduced by means of U ↓. Finally, T c
allows us to further deduce F d by N ↓ or U ↓ in view of (c ← not d), or alternatively by N ↑ or
U ↑ in view of (d← not c).

5.3 Conjunctive Bodies

Having settled our constitutive generic framework, we now allow rule bodies to contain conjunc-
tions. While rule bodies are often considered to be conjunctions (as in Section 3), we here take
a slightly different perspective in viewing conjunctions as (simple) Boolean aggregates, which
like atoms can be preceded by not . This gives us some first insights into the treatment of more
sophisticated aggregates, such as cardinality constraints to be dealt with afterwards.

A conjunction over an alphabet P is an expression of the form {l1, . . . , ln}, where li is an
atomic literal for 1 ≤ i ≤ n. We denote by conj (P) the set of all conjunctions that can be
constructed from atoms in P . A rule (α ← β) such that α is an atomic literal and β is an atomic
literal or a possibly negated conjunction of atomic literals is a conjunctive rule. A logic program is
a conjunctive program if it consists of conjunctive rules. For defining the semantics of conjunctive
programs, we add the following case to translation τ [π] in (7):

τ [π] =
∧
l∈πτ [l] if π ∈ conj (P)

For accommodating conjunctions within the generic tableau rules in Figure 4, we further extend
the previous concepts in (9)–(14) in a straightforward way:

−→supA({l1, . . . , ln}, S′) if −→supA(l, S′) holds for every l ∈ {l1, . . . , ln}
maxA({l1, . . . , ln}, S′) =

⋃
l∈{l1,...,ln}maxA(l, S′)

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

20 · Martin Gebser and Torsten Schaub

tl1, . . . , tln
T {l1, . . . , ln}

F {l1, . . . , li−1, li, li+1, . . . , ln}
tl1, . . . , tli−1, tli+1, . . . , tln

f li

(h) True Conjunction (TC↑) (i) Falsify Conjunction (TC↓)

f li
F {l1, . . . , li, . . . , ln}

T {l1, . . . , ln}
tl1, . . . , tln

(j) False Conjunction (FC↑) (k) Justify Conjunction (FC↓)

Fig. 5. Tableau rules for conjunctions.

Note that maxA({l1, . . . , ln}, S′) is still empty since maxA(l, S′) = ∅ for every atomic literal
l ∈ {l1, . . . , ln}. Thus, it has no effect yet, but this changes when adding cardinality constraints.

For a conjunctive program Π, we fix the domain of assignments A as well as the cut objects
used by Cut[Γ] to dom(A) = Γ = atom(Π)∪conj (Π), where conj (Π) is the set of conjunctions
occurring in Π. The additional tableau rules for handling conjunctions are shown in Figure 5.
Their purpose is to ensure that T {l1, . . . , ln} ∈ A iff AT ∩ P |= (τ [l1] ∧ · · · ∧ τ [ln]) holds
for total assignments A. By augmenting our generic calculus with the tableau rules in Figure 5,
Theorem 5.1 extends to conjunctive programs.

THEOREM 5.2. Let Π be a conjunctive program.
Then, we have that Statement 1, 2, and 3 given in Theorem 5.1 hold for the tableau calculus

consisting of the tableau rules (a)–(k).

It is interesting to note that conjunctive programs extend normal programs by admitting negative
literals in heads of rules and rule bodies to be (default) negated conjunctions. This implies that
normal programs are conjunctive and can thus be treated using the tableau rules (a)–(k).14 The
naturally arising question is how generic tableau rules relate to the ones in Figure 1, which were
specialized to normal programs. To answer it, Table I shows the inherent correspondences between
both kinds of tableau rules. For instance, the tableau rule FTA, allowing for making derivable
atoms true, achieves the same effect as the generic implication rule I ↑. In fact, we obtain the
following correspondence result for normal programs.

PROPOSITION 5.3. Let Π be a normal program, A an assignment, and F,G any pair of a
basic tableau rule F and a generic tableau rule G belonging to the same line in Table I.

Then, we have that

(1) D{F}(Π,A) = D{G}(Π,A) if F /∈ {BTA,WFJ[2atom(Π)]};
(2) D{BTA}(Π,A) ⊇ D{N↓}(Π,A) and, if D{BTA}(Π,A) 6= D{N↓}(Π,A), then A ∪

D{N↑}(Π,A) is contradictory;
(3) D{WFJ[2atom(Π)]}(Π,A) ⊇ D{U↓}(Π,A) and, if TB ∈ D{WFJ[2atom(Π)]}(Π,A) \

D{U↓}(Π,A), then A ∪D{U↑}(Π,A ∪ {FB}) is contradictory.

This shows that similar entries are deducible by either kind of tableau rules. A technical dif-
ference, though, is that, if BTA is applicable because of some p ∈ AT ∩ atom(Π) such that

14Answer sets of τ [Π] match answer sets (as introduced in Section 2) of a normal program Π (cf. [Lifschitz 2008]).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 21

Basic Tableau Rule Generic Tableau Rule

(c) Forward True Atom FTA (a) Implication I↑
(d) Backward False Atom BFA (b) Contraposition I↓
(g) Forward False Atom FFA (c) Negation N↑
(h) Backward True Atom BTA (d) Support N↓
(i) Well-Founded Negation WFN[2atom(Π)] (e) Unfounded Set U↑
(j) Well-Founded Justification WFJ[2atom(Π)] (f) Well-Founded Set U↓
(a) Forward True Body FTB (h) True Conjunction TC↑
(b) Backward False Body BFB (i) Falsify Conjunction TC↓
(e) Forward False Body FFB (j) False Conjunction FC↑
(f) Backward True Body BTB (k) Justify Conjunction FC↓

Table I. Correspondences between basic and generic tableau rules (for normal programs).

body(p) ⊆ AF , then N ↓ is not applicable to p since supA(Π, {p}, ∅) = ∅. In such a case,
a contradictory assignment is obtained by applying N ↑. Furthermore, if TB is deduced by
WFJ[2atom(Π)] in view of some S ⊆ atom(Π) such that AT ∩S 6= ∅ and EBΠ(S)\AF ⊆ {B},
there may be none or multiple rules (p ← B) in Π for which p ∈ S, so that |supA(Π, S, S)| = 1
is not guaranteed. In such a case, applying U ↑ wrt A ∪ {FB} yields a contradiction. That is, an
entry TB deducible by WFJ[2atom(Π)] can also be obtained with the generic calculus by means
of cutting (on B or its body literals) and closing branches with FB via U ↑, which yields TB in
the single remaining branch. Hence, differences between BTA and N ↓ as well as WFJ[2atom(Π)]
and U ↓ are merely technical, but not fundamental, discrepancies.

We further define the generic image of a basic calculus T as the generic calculus T ′ containing
the Cut rules of T and the generic tableau rules associated with basic tableau rules in T according
to Table I. Then, we obtain the following from Proposition 5.3.

PROPOSITION 5.4. Let Π be a normal program, A an assignment, T a tableau calculus con-
taining any subset of the tableau rules in Figure 1 for Ω = 2atom(Π), and T ′ the generic image
of T .

If FFA ∈ T or BTA /∈ T and if WFJ[Ω] ∈ T implies that {FTB,FFB,WFN[Ω],Cut[Γ]} ⊆ T
for Γ ⊆ atom(Π) ∪ body(Π) such that atom(Π) ⊆ Γ or body(Π) ⊆ Γ, then we have that the
following holds:

(1) For every complete tableau of T for Π and A with n branches, there is a complete
tableau of T ′ for Π and A with the same non-contradictory branches and at most
(max{|atom(Π)|, |body(Π)|}+ 1) ∗ n branches overall.

(2) Every (complete) tableau of T ′ for Π and A is a (complete) tableau of T for Π and A.

While every tableau of the generic image T ′ is likewise a tableau of T , in view of Proposi-
tion 5.3, deductions by BTA or WFJ[Ω] may not be obtainable with N ↓ or U ↓, respectively. Such
deductions can still be simulated by means of other generic tableau rules, possibly introducing a
polynomial number of additional branches, for which the approximation given in the first item of
Proposition 5.4 provides an upper limit.

To illustrate the correspondence between basic and generic tableau rules, reconsider the normal
program Π1 from Section 2. The tableau of Tsmodels for Π1 and the empty assignment shown in
Figure 2 can also be generated by the generic image of Tsmodels, consisting of the generic tableau
rules (a)–(e), (h)–(k), and Cut[atom(Π)]. (Note that, like Tsmodels, its generic image restricts cut
objects to atoms, and it does not include U ↓ because Tsmodels does not contain its associated basic
tableau rule WFJ[2atom(Π)].) The generic tableau resembling the one in Figure 2 is shown in

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

22 · Martin Gebser and Torsten Schaub

a←
c← not b,not d

d← a,not c

T ∅ (TC↑)
T a (I↑)
F b (N↑)

T c F c
T {not b,not d} (N↓) F {not b,not d} (I↓)

F d (FC↓) T d (TC↓)
F {a,not c} (FC↑) T {a,not c} (TC↑)

(Cut[atom(Π1)])

Fig. 6. Complete tableau of the generic image of Tsmodels for Π1 and the empty assignment.

Figure 6.15 It is obtained by replacing the references to applied tableau rules adequately based on
the mapping in Table I. Converse replacements of generic by basic tableau rules are also possible,
provided that a logic program at hand is normal.

5.4 Cardinality Constraints

We further extend our generic tableau framework to logic programs including cardinality con-
straints [Simons et al. 2002]. The expressiveness of such programs, in terms of compact mod-
eling, goes well beyond the one of normal (and conjunctive) programs. Hence, the integration
of cardinality constraints sheds light on how to extend our generic framework to accommodate
(sophisticated) aggregates.

A cardinality constraint over an alphabet P is an expression of the form j{l1, . . . , ln}k, where
li is an atomic literal for 1 ≤ i ≤ n and j, k are integers such that 0 ≤ j ≤ k ≤ n. We denote
by card(P) the set of all cardinality constraints that can be constructed from atoms in P . For
v ∈ P ∪ card(P), we say that v and not v are cardinality literals. A rule (α ← β) such that α
is a cardinality literal and β is a cardinality literal or a possibly negated conjunction of cardinality
literals is a cardinality rule. A logic program is a cardinality program if it consists of cardinality
rules.

For cardinality constraints in heads of rules, we adopt the approach of [Simons et al. 2002;
Ferraris and Lifschitz 2005; Liu and Truszczyński 2006] and interpret them as “choice con-
structs,” meaning that atoms are not minimized within such cardinality constraints. To reflect
the “lack of minimization,” cardinality constraints in heads of rules necessitate an extended trans-
lation of cardinality programs to propositional theories.16 Hence, we let atom(j{l1, . . . , ln}k) =
{l1, . . . , ln} ∩ P and replace the definition of τ [Π] in (6) by the following translation:

τ [Π] = {τ [β]→ τ [α] | (α← β) ∈ Π, α /∈ card(P)} (15)
∪ {τ [β]→

(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)
| (α← β) ∈ Π, α ∈ card(P)}

Note that conjuncts (p ∨ ¬p) are tautological and thus neutral as regards the (classical) models
of τ [Π]. Given an interpretation X , they however justify the truth of all p ∈ atom(α) ∩ X
in (τ [Π])X , in which ¬p is replaced by ⊥. We further add another case to translation τ [π] in (7),
which arises from the general aggregate semantics in [Ferraris 2005]:

15In Figure 6 and in the sequel, we skip set notation for conjunctions within bodies of rules, like ∅, {not b,not d}, and
{a,not c} in the bodies of rules in Π1.
16Interpreting aggregates in heads of rules as “choice constructs” avoids an increase of computational complexity by one
level in the polynomial time hierarchy. If derivable atoms were to be minimized, it would be straightforward to embed
disjunctive programs (considered in Section 5.5) into cardinality programs.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 23

τ [π] =
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
if π = j{l1, . . . , ln}k ∈ card(P)

Since τ [j{l1, . . . , ln}k] inspects individual subsets of {l1, . . . , ln}, its size is, in general, expo-
nential in n. Albeit the use of auxiliary atoms admits a polynomial translation of cardinality con-
straints to normal rules as, e.g., described in [Simons et al. 2002], compilation approaches incur a
significant blow-up in space. Our proof-theoretic characterizations given below apply directly to
cardinality constraints and thus avoid any such blow-up.

For a cardinality program Π, we fix the domain of assignments A as well as the cut objects
used by Cut[Γ] to dom(A) = Γ = atom(Π) ∪ conj (Π) ∪ card(Π), where card(Π) is the set
of cardinality constraints occurring in Π. Figure 7 shows the tableau rules augmenting those
in Figure 4 and 5 to additionally handle cardinality constraints. These rules match truth values
of atoms occurring in a cardinality constraint to the one assigned to the constraint as a whole,
in order to ensure that T j{l1, . . . , ln}k ∈ A iff AT ∩ P |= τ [j{l1, . . . , ln}k] holds for total
assignments A.

As an example, consider the cardinality constraint γ = 2{a, b, c,not d,not e}3 including
n = 5 literals, lower bound j = 2, and upper bound k = 3. For an assignment A, tableau
rule TLU ↑ allows for deducing T γ if at least j = 2 literals l of γ hold (i.e., tl ∈ A) and
at least n − k = 2 literals l of γ are false (i.e., f l ∈ A). This applies, for instance, to the
assignment A1 = {T a,F b,T d,F e}; hence, T γ can be deduced by TLU ↑. Indeed, the lower
and the upper bound of γ are respected in every non-contradictory assignment that extends A1,
no matter whether T c or F c is additionally included. Tableau rules TLU↓ and TLU ↓ are the
contrapositives of TLU ↑, ensuring that either the lower or the upper bound of γ is violated if F γ
belongs to an assignment. For instance, F c and T e can be deduced by TLU↓ wrt the assignment
A2 = {F γ,T a,F b,T d}. Observe that the upper bound k = 3 cannot be violated in non-
contradictory extensions of A2, since n− k = 2 literals of γ are already false wrt A2 containing
F b and T d. On the other hand, TLU ↓ allows for deducing T c and F e wrt {F γ,T a,F b,F d}
in order to violate the upper bound k = 3; the lower bound j = 2 cannot be violated because
of T a and F d. The remaining four tableau rules in Figure 7 allow for deducing F γ if its lower
(FL↑) or upper (FU ↑) bound is violated, or for making sure that the lower (FL↓) and the upper
(FU ↓) bound are respected if T γ belongs to an assignment. For instance, F γ can be deduced
by FL↑ wrt the assignment {F b,F c,T d,T e}, and by FU ↑ wrt {T b,T c,F d,F e}. Conversely,
FL↓ allows for deducing T a and F e wrt {T γ,F b,F c,T d}, and FU ↓ allows for deducing F a
and T e wrt {T γ,T b,T c,F d}.

To integrate cardinality constraints into the generic setting of the tableau rules in Figure 4, we
also need to extend the concepts in (9)–(14):

←−supA(j{l1, . . . , ln}k, S) if {l1, . . . , ln} ∩ S 6= ∅ and
|{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| < k

−→supA(j{l1, . . . , ln}k, S′) if |{l ∈ {l1, . . . , ln} \ S′ | f l /∈ A}| ≥ j

minA(j{l1, . . . , ln}k, S) =

 {f l | l ∈ {l1, . . . , ln} \ S, tl /∈ A}
if |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| = k − 1
∅ if |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| 6= k − 1

maxA(j{l1, . . . , ln}k, S′) =

 {tl | l ∈ {l1, . . . , ln} \ S
′, f l /∈ A}

if |{l ∈ {l1, . . . , ln} \ S′ | f l /∈ A}| = j
∅ if |{l ∈ {l1, . . . , ln} \ S′ | f l /∈ A}| 6= j

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

24 · Martin Gebser and Torsten Schaub

tl1, . . . , tlj ,f lk+1, . . . ,f ln
T j{l1, . . . , lj , . . . , lk+1, . . . , ln}k

(l) True Bounds (TLU ↑)

F j{l1, . . . , lj−1, lj , . . . , lk, lk+1, . . . , ln}k
tl1, . . . , tlj−1,f lk+1, . . . ,f ln

f lj , . . . ,f lk

F j{l1, . . . , lj , lj+1, . . . , lk+1, lk+2, . . . , ln}k
tl1, . . . , tlj ,f lk+2, . . . ,f ln

tlj+1, . . . , tlk+1

(m) Falsify Lower Bound (TLU↓) (n) Falsify Upper Bound (TLU ↓)

f lj , . . . ,f ln
F j{l1, . . . , lj , . . . , ln}k

T j{l1, . . . , lj , lj+1, . . . , ln}k
f lj+1, . . . ,f ln
tl1, . . . , tlj

(o) False Lower Bound (FL↑) (p) Justify Lower Bound (FL↓)

tl1, . . . , tlk+1

F j{l1, . . . , lk+1, . . . , ln}k

T j{l1, . . . , lk, lk+1, . . . , ln}k
tl1, . . . , tlk

f lk+1, . . . ,f ln

(q) False Upper Bound (FU ↑) (r) Justify Upper Bound (FU ↓)

Fig. 7. Tableau rules for cardinality constraints.

Recall that←−supA(α, S) is used to determine whether a rule with head α can provide support for the
atoms in S. If α = j{l1, . . . , ln}k, then some atom of S must belong to {l1, . . . , ln}. Furthermore,
if {l1, . . . , ln} \ S already contains k (or more) literals that hold wrt A, then the addition of T p
to A for p ∈ {l1, . . . , ln} ∩ S would violate the upper bound k, so that the corresponding rule
(α ← β) cannot support S. This also explains the false literals in minA(j{l1, . . . , ln}k, S) that
can be deduced if k−1 literals of {l1, . . . , ln}\S hold already. In addition,−→supA(β, S′) is used to
verify whether a support via β is external to S′. If, for a rule (α← β), either β = j{l1, . . . , ln}k
or β is a conjunction such that j{l1, . . . , ln}k ∈ β, then there must be enough non-false literals
wrt A in {l1, . . . , ln} \S′ to achieve the lower bound j. If the number of such literals is exactly j,
then all of them must hold for providing a support that is external to S′. This is expressed by
maxA(j{l1, . . . , ln}k, S′).

For illustration, consider the following cardinality program:

Π9 =

 r1 : 0{c, d, e}3 ←
r2 : 1{a, b}2 ← c, d r4 : 1{b, d}2 ← 1{a, c}2
r3 : 0{a, d}1 ← 1{b,not e}2 r5 : 1{a, d}2 ← b

Let A = {T a,F c,F {c, d}}, and note that tableau rule U ↓ (or N ↓) does not apply to the
set {a} since supA(Π9, {a}, {a}) = {r3, r5}. We further consider the set {a, b}. Given
that {c, d, e} ∩ {a, b} = ∅ and F {c, d} ∈ A, we have that r1 /∈ supA(Π9, {a, b}, {a, b})
and r2 /∈ supA(Π9, {a, b}, {a, b}). Regarding the body of r5, b ∈ {a, b} is the reason for
−→supA(b, {a, b}) not to hold. For the body of r4, we have that {a, c} \ {a, b} = {c} and
fc = F c ∈ A, so that there are no non-false literals in {a, c} \ {a, b}. That is, the lower bound 1
of 1{a, c}2 cannot be achieved independently of {a, b}, and thus −→supA(1{a, c}2, {a, b}) does not
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 25

hold. We have now established that only r3 is potentially contained in supA(Π9, {a, b}, {a, b}).
As not e in 1{b,not e}2 is a non-false literal not belonging to {a, b}, −→supA(1{b,not e}2, {a, b})
holds. In addition, ←−supA(0{a, d}1, {a, b}) holds because {a, d} ∩ {a, b} 6= ∅ and td =
T d /∈ A. This shows that supA(Π9, {a, b}, {a, b}) = {r3}. As entries deducible by U ↓,
we obtain t1{b,not e}2 = T 1{b,not e}2, minA(0{a, d}1, {a, b}) = {fd} = {F d}, and
maxA(1{b,not e}2, {a, b}) = {tnot e} = {F e}. In fact, if T d or T e had been contained
in A, we would have obtained supA(Π9, {a, b}, {a, b}) = ∅, so that deducing F a by U ↑ would
have led to a contradiction. Also note that the only answer set of Π9 compatible with both T a and
F c, {a, b}, does not include d and e.

In view of the generalizations of←−sup,−→sup, min , and max provided above, Theorem 5.1 extends
to cardinality programs.

THEOREM 5.5. Let Π be a cardinality program.
Then, we have that Statement 1, 2, and 3 given in Theorem 5.1 hold for the tableau calculus

consisting of the tableau rules (a)–(r).

On the example of cardinality constraints, we have demonstrated the full granularity of our
generic tableau rules in Figure 4, making use of the generalized definitions of ←−sup, −→sup, min ,
and max . Importantly, we have extended the domain of assignments (and cut objects) to include
cardinality constraints. As a matter of fact, this admits the addition of the tableau rules in Fig-
ure 7, matching the truth value of a cardinality constraint to those of its constituents, without any
modification of tableau rules dealing with other language constructs, like the ones for conjunc-
tions in Figure 5. The same methodology could be applied to logic programs further including
smodels’ weight constraints [Simons et al. 2002] or dlv’s aggregates [Faber et al. 2008]. Notably,
the approach of clasp to incorporate extended language constructs into its algorithmic framework
[Gebser et al. 2009] is closely related: clasp extends assignments as well as unit propagation to
composite language constructs and keeps track of reasons for inferences, which can be extracted
from tableau rules by using the scheme described in Section 4.3.

5.5 Disjunctive Heads

The extension of normal programs’ syntax and semantics by allowing heads of rules to be (proper)
disjunctions of atoms is one of the earliest generalizations of answer set semantics [Gelfond and
Lifschitz 1991]. Due to admitting the (unrestricted) use of disjunction, the inherent computational
complexity of important reasoning tasks increases from the first to the second level of the polyno-
mial time hierarchy [Eiter and Gottlob 1995; Leone et al. 2006]. As we show in the following, it
is nonetheless possible to extend our generic tableau framework by allowing (proper) disjunctions
in heads of rules, without imposing any restrictions on computational complexity.

A disjunction over an alphabetP is an expression of the form {l1; . . . ; ln}, where li is an atomic
literal for 1 ≤ i ≤ n. We denote by disj (P) the set of all disjunctions that can be constructed
from atoms in P . For v ∈ P ∪ card(P) ∪ disj (P), v and not v are disjunctive literals. A rule
(α ← β) such that α is a disjunctive literal and β is a cardinality literal or a possibly negated
conjunction of cardinality literals is a disjunctive rule. A logic program is a disjunctive program
if it consists of disjunctive rules.

In contrast to cardinality constraints serving as “choice constructs,” the common semantics for
disjunctions relies on the minimization of derivable atoms. Hence, we adhere to the definition of
τ [Π] in (15) and just add another case to τ [π] in (7):

τ [π] =
∨
l∈{l1,...,ln}τ [l] if π = {l1; . . . ; ln} ∈ disj (P)

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

26 · Martin Gebser and Torsten Schaub

tli
T {l1; . . . ; li; . . . ; ln}

F {l1; . . . ; ln}
f l1, . . . ,f ln

(s) True Disjunction (TD↑) (t) Falsify Disjunction (TD↓)

f l1, . . . ,f ln
F {l1; . . . ; ln}

T {l1; . . . ; li−1; li; li+1; . . . ; ln}
f l1, . . . ,f li−1,f li+1, . . . ,f ln

tli

(u) False Disjunction (FD↑) (v) Justify Disjunction (FD↓)

Fig. 8. Tableau rules for disjunctions.

We further extend the concepts in (9)–(14) to disjunctive heads:
←−supA({l1; . . . ; ln}, S) if {l1, . . . , ln} ∩ S 6= ∅ and

{l ∈ {l1, . . . , ln} \ S | tl ∈ A} = ∅
minA({l1; . . . ; ln}, S) = {f l | l ∈ {l1, . . . , ln} \ S}

Observe that the notion of support,←−supA({l1; . . . ; ln}, S), is closely related to, yet simpler than,
the corresponding concept for cardinality constraints, given that disjunctions do not possess an
upper bound k. Rather, support requires all literals of {l1, . . . , ln} \ S to be false; this condition
can be established by means of minA({l1; . . . ; ln}, S), used by generic tableau rules N ↓ and U ↓.

For a disjunctive program Π, we fix the domain of assignments A as well as the cut objects used
by Cut[Γ] to dom(A) = Γ = atom(Π)∪ conj (Π)∪ card(Π)∪ disj (Π), where disj (Π) is the set
of disjunctions occurring in Π. The additional tableau rules for handling disjunctions are shown
in Figure 8. Their purpose is to ensure that T {l1; . . . ; ln} ∈ A iff AT ∩P |= (τ [l1]∨ · · · ∨ τ [ln])
holds for total assignments A. The tableau calculus for disjunctive programs is obtained by adding
the rules in Figure 8 to the ones in Figure 4, 5, and 7. Then, Theorem 5.1 extends to disjunctive
programs.

THEOREM 5.6. Let Π be a disjunctive program.
Then, we have that Statement 1, 2, and 3 given in Theorem 5.1 hold for the tableau calculus

consisting of the tableau rules (a)–(v).

As with conjunctive programs that are slightly more general than normal ones, we have a par-
allel relationship between our and the traditional concept of a disjunctive program [Gelfond and
Lifschitz 1991], given that we admit (default) negation in front of and within a disjunction.17

However, as the equivalences discussed in [Lifschitz et al. 1999] show, rules with negative formu-
las in the head can be rewritten such that occurrences of negation are limited to rule bodies. In our
setting, the generic tableau rules in Figure 4 tolerate negative literals in heads of rules, so that they
can be admitted without difficulties. In view of this, the class of disjunctive programs we consider
here is expressive enough to represent any nested program [Lifschitz et al. 1999] (in which heads
and bodies of rules are allowed to be formulas).

As regards computational complexity of reasoning tasks, e.g., answer set existence, which can
increase due to disjunctions in heads of rules, it does not impose any extra difficulties in specifying

17Unlike [Gelfond and Lifschitz 1991], we do not consider classical negation, but it could be handled easily by compila-
tion.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 27

tableau rules. Rather, elevated complexity manifests itself in the hardness of verifying the appli-
cation conditions of tableau rules, namely, the ones of U ↑ and U ↓ dealing with unfounded sets.
While such conditions can be checked in polynomial time for cardinality programs (cf. [Simons
et al. 2002]), determining a (non-empty) unfounded set is NP-complete for disjunctive programs
(cf. [Leone et al. 1997]). However, it is interesting to note that the condition supA(Π, S, S) = ∅,
checked in the proviso of U ↑, along with Theorem 5.6 contribute a definition of unfounded sets
for disjunctive programs including cardinality constraints. Restricting A to entries over atoms
only also yields a counterpart of interpretation-based unfounded sets [Van Gelder et al. 1991;
Leone et al. 1997] for such disjunctive programs. (It merely requires replacing the support con-
dition fβ /∈ A in (8) by an evaluation of β wrt assigned atoms.) To our knowledge, there is
no direct unfounded set definition (not relying on compilation to basic language constructs) for
the class of disjunctive programs considered here,18 yet soundness and completeness results (like
Theorem 5.6) in the presence of U ↑ inherently contribute unfounded set definitions for extended
classes of logic programs.

6. PROOF COMPLEXITY

In Section 4, we have seen that native ASP solvers largely coincide on their propagation rules
and differ primarily in the usage of Cut. In this section, we analyze the relative efficiency of
tableau calculi wrt different Cut rules. We start by taking Tsmodels, Tnomore, and Tnomore++ (defined
in Section 3) into account, all using the deterministic tableau rules (a)–(i) in Figure 1 but applying
Cut to either atom(Π), body(Π), or both of them. These three calculi are of particular interest as
they closely characterize strategies of existing ASP solvers, viz. smodels (and dlv), nomore, and
nomore++. After in Section 6.1 dealing with calculi aiming at normal programs, in Section 6.2,
we extend our analysis to generic calculi and the impact of Cut wrt extended language constructs.

For comparing tableau calculi, we use the concept of proof complexity [Cook and Reckhow
1979] and evaluate the relative efficiency of calculi on unsatisfiable logic programs (having no
answer set) in terms of minimal refutations. The size of a tableau is determined in the standard way
by the number of its nodes (program rules and entries).19 A tableau calculus T is not polynomially
simulated [Beame and Pitassi 1998; Järvisalo et al. 2005] by another calculus T ′ if there is an
infinite (witnessing) family {Πn} of unsatisfiable logic programs such that the asymptotic size
of minimal refutations of T ′ for its members is exponentially greater than with T . A tableau
calculus T is exponentially stronger than a tableau calculus T ′ if T ′ is polynomially simulated
by T (for refutations of T ′, there are refutations of T of up to a polynomial same asymptotic size),
but not vice versa. Two tableau calculi are efficiency-incomparable if neither one is polynomially
simulated by the other.

6.1 Tableaux for Normal Logic Programs

In what follows, we provide infinite families of unsatisfiable normal programs witnessing that
neither Tnomore is polynomially simulated by Tsmodels, nor vice versa. This means that, on certain

18In [Faber 2005; Faber et al. 2011], occurrences of aggregates are limited to rule bodies. Furthermore, the semantics
proposed there is not based on the logic of here-and-there, since (default) negated aggregates like not 0{a}0 are treated
differently. Hence, important properties that can be verified in the logic of here-and-there (e.g., strong equivalence [Lif-
schitz et al. 2001]) do not carry forward to the semantics proposed in [Faber 2005; Faber et al. 2011].
19The determining factor for the asymptotic size of minimal refutations is the number of required Cut applications, that
is, the number of branches that need to be investigated, because the depth of each branch is bounded by the input size.
Also note that proof complexity says nothing about the difficulty of finding minimal refutations; rather, it provides a lower
bound on the efficiency of proof-finding procedures, independent of heuristic influences.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

28 · Martin Gebser and Torsten Schaub

Πna =

x← not x

x← a1, b1
...

x← an, bn

 Πnb =

y ← c1, . . . , cn,not y

c1 ← not a1 c1 ← not b1
...

...
cn ← not an cn ← not bn

 Πnc =

a1 ← not b1
b1 ← not a1

...
an ← not bn
bn ← not an

Fig. 9. Families {Πna}, {Πnb }, and {Πnc } of normal programs.

normal programs, restricting Cut to only either atoms or bodies leads to exponentially greater
(optimal) search space traversals of atom- or rule-based ASP solvers in comparison to their coun-
terparts. The following results state the existence of witnessing families.

PROPOSITION 6.1. There is an infinite family {Πn} of normal programs such that

(1) the size of minimal refutations of Tnomore for Πn is asymptotically linear in n;
(2) the size of minimal refutations of Tsmodels for Πn is asymptotically exponential in n.

PROPOSITION 6.2. There is an infinite family {Πn} of normal programs such that

(1) the size of minimal refutations of Tsmodels for Πn is asymptotically linear in n;
(2) the size of minimal refutations of Tnomore for Πn is asymptotically exponential in n.

Family {Πn
a ∪ Πn

c } witnesses Proposition 6.1, and {Πn
b ∪ Πn

c } witnesses Proposition 6.2 (see
Figure 9). The reason why Tsmodels does not admit compact refutations for Πn

a ∪ Πn
c is that its

proofs must exhaustively investigate symmetric alternatives obtained by cutting on atoms ai or bi.
In fact, minimal refutations of Tsmodels for Πn

a ∪Πn
c are of the shape sketched in Figure 10. While

an initial cut on x yields an immediate contradiction in the branch with Fx, branches with Tx
can only be completed after adding n− 1 entries of the form F {ai, bi} for 1 ≤ i ≤ n. However,
Cut[atom(Πn

a ∪ Πn
c)] does not allow for introducing such entries, so that they must be generated

indirectly, extending branches obtained by cutting on atoms ai or bi. But cascaded applications of
Cut[atom(Πn

a ∪ Πn
c)] yield a subtableau with 2n−1 branches below Tx (and F {not x}), whose

leaves are indicated at the bottom of Figure 10. Given that exponentially many branches are
required, the size of minimal refutations of Tsmodels for Πn

a ∪ Πn
c is asymptotically exponential

in n. Unlike this, the use of Cut[body(Πn
a ∪ Πn

c)] admits linear refutations for Πn
a ∪ Πn

c with
Tnomore, like the one sketched in Figure 11. In such a refutation, cuts on {not x} or {ai, bi} for
1 ≤ i ≤ n yield immediate contradictions in branches with T {not x} or T {ai, bi}, respectively.
In fact, only n applications of Cut[body(Πn

a ∪ Πn
c)] are required in total, so that there are linear

refutations with n+ 1 branches overall.
The situation that Tnomore dominates Tsmodels is reversed with programs of the family {Πn

b ∪
Πn
c }, where Figure 12 sketches a minimal refutation of Tnomore for Πn

b ∪ Πn
c . In this refutation,

only the initial cut on {c1, . . . , cn,not y} yields an immediate contradiction in the branch with
T {c1, . . . , cn,not y}. Then, cuts on rule bodies {not ai} (or {not bi}) must be cascaded to
deduce T ci in each of the resulting branches. Only after n − 1 entries of the form T ci for
1 ≤ i ≤ n have been generated, the leaves indicated at the bottom of Figure 12 are obtained.
In view of symmetry, the subtableau below F {c1, . . . , cn,not y} (and F y) necessarily includes
2n−1 branches, so that the size of minimal refutations of Tnomore for Πn

b ∪ Πn
c is asymptotically

exponential in n. Unlike this, cuts on ci, admitted with Tsmodels, yield immediate contradictions in
branches with F ci, and the same applies to a branch with T y. Thus, the refutation of Tsmodels for
Πn
b ∪ Πn

c sketched in Figure 13 involves only n applications of Cut[atom(Πn
b ∪ Πn

c)] in total, so
that there are linear refutations with n+ 1 branches overall.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 29

x← not x
x← a1, b1 a1 ← not b1 b1 ← not a1

x← a2, b2 a2 ← not b2 b2 ← not a2

...
...

...
x← an−1, bn−1 an−1 ← not bn−1 bn−1 ← not an−1

x← an, bn an ← not bn bn ← not an

Tx
F {not x} (FFB)

T a1

T {not b1} (BTA)
F b1 (BTB)

F {a1, b1} (FFB)

F a1

|
|

F {a1, b1} (FFB)

T a2

T {not b2} (BTA)

F b2 (BTB)

F {a2, b2} (FFB)︷︸︸︷. . .

F a2

|
|

F {a2, b2} (FFB)︷︸︸︷. . .

T a2

T {not b2} (BTA)

F b2 (BTB)

F {a2, b2} (FFB)︷︸︸︷. . .

F a2

|
|

F {a2, b2} (FFB)︷︸︸︷. . .
. . .︸︷︷︸

T an−1

T {not bn−1} (BTA)
F bn−1 (BTB)

F {an−1, bn−1} (FFB)
T {an, bn} (BTA)

T an (BTB)

T {not bn} (BTA)
T bn (BTB)

F bn (BTB)

F an−1

|
|

F {an−1, bn−1} (FFB)
T {an, bn} (BTA)

T an (BTB)

T {not bn} (BTA)
T bn (BTB)

F bn (BTB)

Fx
T {not x} (FTB)

F {not x} (BFA)

Fig. 10. A minimal refutation of Tsmodels for Πna ∪Πnc , using Cut[atom(Πna ∪Πnc)].

Notably, empirical evidence for divergent proof complexities of Tsmodels and Tnomore has been
given in [Anger et al. 2006], and [Gebser and Schaub 2006a] shows that conflict resolution as
performed by smodels-based ASP solver smodelscc is unable to compensate for the exponential
proof complexity of Tsmodels on family {Πn

a ∪Πn
c }. In view of mutual exponential separations, the

next result is immediately obtained from Proposition 6.1 and 6.2.

COROLLARY 6.3. Tableau calculi Tsmodels and Tnomore are efficiency-incomparable.

Given that refutations of Tsmodels and Tnomore are refutations of Tnomore++ as well, we have that
Tsmodels and Tnomore are both polynomially simulated by Tnomore++. Hence, the following is an
immediate consequence of Corollary 6.3.

COROLLARY 6.4. Tableau calculus Tnomore++ is exponentially stronger than both Tsmodels and
Tnomore.

The major implication of Corollary 6.4 is that, on certain normal programs, a priori restricting
Cut to only either atoms or bodies necessitates exponentially greater search space traversals than
unrestricted Cut. Note that the phenomenon of exponentially greater proof complexity in com-
parison to Tnomore++ does not, depending on the program family, apply to one of Tsmodels or Tnomore

alone. Rather, the infinite family{
(Πn

a \ {x← not x}) ∪ (Πn
b \ {y ← c1, . . . , cn,not y}) ∪

{y ← c1, . . . , cn,not x,not y} ∪Πn
c

}
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

30 · Martin Gebser and Torsten Schaub

x← not x
x← a1, b1 a1 ← not b1 b1 ← not a1

x← a2, b2 a2 ← not b2 b2 ← not a2

...
...

...
x← an−1, bn−1 an−1 ← not bn−1 bn−1 ← not an−1

x← an, bn an ← not bn bn ← not an

T {not x}
Fx (BTB)

Tx (FTA)

F {not x}
Tx (BFB)

T {a1, b1}
T a1 (BTB)

T {not b1} (BTA)

T b1 (BTB)

F b1 (BTB)

F {a1, b1}
T {a2, b2}

T a2 (BTB)

T {not b2} (BTA)

T b2 (BTB)
F b2 (BTB)

F {a2, b2}
. . .
F {an−1, bn−1}

T {an, bn} (BTA)
T an (BTB)

T {not bn} (BTA)

T bn (BTB)
F bn (BTB)

Fig. 11. A minimal refutation of Tnomore for Πna ∪Πnc , using Cut[body(Πna ∪Πnc)].

is such that the asymptotic size of minimal refutations of both Tsmodels and Tnomore is exponential
in n, while Tnomore++ still admits refutations of linear size. Here, with Tsmodels, it is easy to prove
that x needs to be true, while checking that this cannot be the case requires investigating symmetric
alternatives by cutting on atoms ai or bi. On the other hand, with Tnomore, it is easy to verify
that x and y need to be false, but recognizing that c1, . . . , cn must be true, so that the rule (y ←
c1, . . . , cn,not x,not y) is unsatisfied, requires exhaustive cutting on rule bodies {not ai} or
{not bi}. Unlike this, with Tnomore++, it is easy to refute c1, . . . , cn to be false as well as x and y
to be true, and the only remaining alternative yields (y ← c1, . . . , cn,not x,not y) as unsatisfied
rule. Hence, Tnomore++, but neither Tsmodels nor Tnomore, admits linear refutations for members of
the above family.

Note that our proof complexity results are unimpaired by failed-literal detection [Freeman
1995] as, e.g., applied by smodels. In fact, failed-literal detection can be mimicked by means
of Cut, so that proof complexity, already assuming an optimal heuristic, stays unaffected. In view
of Corollary 4.3 and similarities between smodels and dlv on normal programs [Giunchiglia et al.
2008], the proof complexity of tableau calculus Tsmodels indeed provides a lower bound on the
efficiency of smodels and dlv (when applied to normal programs).

6.2 Generic Tableaux for Composite Language Constructs

After considering normal programs and tableau calculi for them, we now turn to the generic
calculus (cf. Figure 4) and extensions thereof. In view of Proposition 5.4, the results in Sec-
tion 6.1 (and the fact that minimal refutations of Tsmodels and Tnomore for members of {Πn

a ∪ Πn
c }

or {Πn
b ∪ Πn

c }, respectively, are not significantly reduced when adding WFJ[2atom(Π)]) allow
us to immediately conclude that, for conjunctive programs, the generic calculi {(a)–(f), (h)–(k),
Cut[atom(Π)]} and {(a)–(f), (h)–(k),Cut[conj (Π)]} are efficiency-incomparable, while {(a)–(f),
(h)–(k),Cut[atom(Π) ∪ conj (Π)]} is exponentially stronger than both of them. We below extend
the analysis of relative efficiency wrt different Cut rules to more general logic programs, address-
ing the question whether cutting on further language constructs, namely, cardinality constraints
and disjunctions, leads to more powerful tableau calculi. Beforehand, note that cutting on atoms
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 31

y ← c1, . . . , cn,not y
c1 ← not a1 c1 ← not b1 a1 ← not b1 b1 ← not a1

c2 ← not a2 c2 ← not b2 a2 ← not b2 b2 ← not a2

...
...

...
...

cn−1 ← not an−1 cn−1 ← not bn−1 an−1 ← not bn−1 bn−1 ← not an−1

cn ← not an cn ← not bn an ← not bn bn ← not an

T {c1, . . . , cn,not y}
T y (FTA)

F y (BTB)

F {c1, . . . , cn,not y}
F y (FFA)

T {not a1}
|
|

T c1 (FTA)

F {not a1}
T a1 (BFB)

T {not b1} (BTA)

T c1 (FTA)

T {not a2}
|
|

T c2 (FTA)︷︸︸︷. . .

F {not a2}
T a2 (BFB)

T {not b2} (BTA)

T c2 (FTA)︷︸︸︷. . .

T {not a2}
|
|

T c2 (FTA)︷︸︸︷. . .

F {not a2}
T a2 (BFB)

T {not b2} (BTA)

T c2 (FTA)︷︸︸︷. . .
. . .︸︷︷︸

T {not an−1}
|
|

T cn−1 (FTA)
F cn (BFB)

F {not an} (BFA)

F {not bn} (BFA)
T an (BFB)

F an (FFA)

F {not an−1}
T an−1 (BFB)

T {not bn−1} (BTA)

T cn−1 (FTA)
F cn (BFB)

F {not an} (BFA)

F {not bn} (BFA)
T an (BFB)

F an (FFA)

Fig. 12. A minimal refutation of Tnomore for Πnb ∪Πnc , using Cut[body(Πnb ∪Πnc)].

is sufficient for obtaining complete calculi even in the presence of language extensions, given that
the truth values of composite constructs can be deduced from atomic literals by (deterministic)
tableau rules. For cardinality constraints and disjunctions, this is possible using the tableau rules
in Figure 7 and 8, respectively.

For cardinality programs Π, we consider Tcard = {(a)–(f), (h)–(r),Cut[atom(Π) ∪ conj (Π) ∪
card(Π)]} and Tconj = {(a)–(f), (h)–(r),Cut[atom(Π) ∪ conj (Π)]}. Both calculi contain all deter-
ministic tableau rules dealing with cardinality programs; the difference is that cutting on cardi-
nality constraints is allowed with Tcard , but not with Tconj . As every tableau of Tconj is a tableau
of Tcard as well, it is clear that Tconj is polynomially simulated by Tcard . The following result
states that the converse does not hold.

PROPOSITION 6.5. Tableau calculus Tcard is exponentially stronger than Tconj .

Proposition 6.5 is witnessed by the infinite family {Πn
c ∪ Πn

d} of unsatisfiable cardinality pro-
grams, where Πn

c is shown in Figure 9 and Πn
d is as follows:

Πn
d = {z ← 1{a1, b1}2, . . . , 1{an, bn}2,not z}

For Πn
c ∪ Πn

d , a branch containing F 1{ai, bi}2 is easy to refute because F ai and F bi can be
deduced by tableau rule TLU↓ (cf. Figure 7), yielding an immediate contradiction since ai and bi
cannot jointly be false (cf. Πn

c in Figure 9). The unrestricted Cut rule of Tcard can be used to
exploit this by cutting on 1{ai, bi}2 for 1 ≤ i ≤ n, so that the resulting minimal refutations are of

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

32 · Martin Gebser and Torsten Schaub

y ← c1, . . . , cn,not y
c1 ← not a1 c1 ← not b1 a1 ← not b1 b1 ← not a1

c2 ← not a2 c2 ← not b2 a2 ← not b2 b2 ← not a2

...
...

...
...

cn−1 ← not an−1 cn−1 ← not bn−1 an−1 ← not bn−1 bn−1 ← not an−1

cn ← not an cn ← not bn an ← not bn bn ← not an

T y
T {c1, . . . , cn,not y} (BTA)

F {c1, . . . , cn,not y} (FFB)

F y
F {c1, . . . , cn,not y} (BFA)

T c1
T c2

. .
.

T cn−1

F cn (BFB)

F {not an} (BFA)
F {not bn} (BFA)

T an (BFB)
F an (FFA)

F c2
F {not a2} (BFA)

F {not b2} (BFA)

T a2 (BFB)
F a2 (FFA)

F c1
F {not a1} (BFA)
F {not b1} (BFA)

T a1 (BFB)

F a1 (FFA)

Fig. 13. A minimal refutation of Tsmodels for Πnb ∪Πnc , using Cut[atom(Πnb ∪Πnc)].

asymptotically linear size in n. In fact, when replacing cuts on y and ci by cuts on z and 1{ai, bi}2,
respectively, minimal refutations of Tcard for Πn

c ∪Πn
d are of the shape sketched in Figure 13 (also

assuming that applications of BFA to deduce F {not ai} and F {not bi} are replaced by TLU↓,
deducing F ai as well as F bi, and that T ai is deduced by I ↓ instead of BFB). In contrast, with
Tconj , Cut must be applied to atoms ai or bi (or to bodies {not ai} or {not bi}), while deducing
T 1{ai, bi}2 in each of the resulting branches. Such refutations are of the same shape as the
one sketched in Figure 12: an initial cut on {1{a1, b1}2, . . . , 1{an, bn}2,not z} (or z) yields
an immediate contradiction in the branch with T {1{a1, b1}2, . . . , 1{an, bn}2,not z} (or T z) as
well as a subtableau with 2n−1 branches below F {1{a1, b1}2, . . . , 1{an, bn}2,not z} (and F z).

The practical consequence of Proposition 6.5 is that ASP solvers dealing with cardinality con-
straints can gain significant speed-ups by branching on them. Notably, the compilation of rules
with cardinality constraints to so-called “basic constraint rules” [Simons et al. 2002], as done
by grounders like lparse [Syrjänen] and gringo [Gebser et al. 2011], introduces auxiliary atoms
abbreviating cardinality constraints. This allows ASP solvers to (implicitly) branch on cardinal-
ity constraints, even if case analyses are restricted to atoms as, e.g., in smodels. Unlike this,
our tableau framework does not rely on any compilation and considers cardinality constraints as
structural entities that can be used deliberately for branching.

Regarding disjunctive programs, we have that occurrences of disjunctions are limited to heads
of rules (to avoid involved definitions of −→sup and max). If this restriction were dropped, program
Πn
d could be rewritten using disjunctions {ai; bi} rather than 1{ai, bi}2 for 1 ≤ i ≤ n. This would

yield the same exponential separation wrt Cut rules with and without disjunctions, respectively,
as observed on cardinality constraints. However, with disjunctions {l1; . . . ; ln} limited to heads
of rules, the difficulty is that the information gained in the case of T {l1; . . . ; ln} is weak: it is
exploited by tableau rule FD↓ (cf. Figure 8) only if all but one of the literals l1, . . . , ln have
already been assigned to false. In view of this, it is complicated (if at all possible) to come up
with an infinite family of unsatisfiable disjunctive programs such that cutting on disjunctions is
the source of an exponential separation. Hence, we leave the question open whether cutting on
disjunctive heads admits exponentially smaller refutations than obtainable without it.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 33

As noted in Section 4, existing ASP solvers, such as smodels, nomore, and nomore++, lack
backward propagation for unfounded sets. Their associated tableau calculi reflect this by not
including any variant of tableau rule WFJ[Ω] (cf. Figure 1) or U ↓ (cf. Figure 4), respectively. On
the other hand, SAT-based and native conflict-driven learning ASP solvers, such as assat, clasp,
cmodels, sag, and smodelscc , are able to perform this kind of propagation relative to recorded loop
formulas. This brings our attention to the question whether omitting some inferences deteriorates
proof complexity. In what follows, we denote by R↑ and R↓ the forward and backward variant,
respectively, of any of the (deterministic) tableau rules in Figure 4, 5, 7, and 8. For a tableau
calculus T , we say that T ′ ⊆ T is an approximation of T if T \ T ′ ⊆ {R↓ | R↑ ∈ T ′}. (We
assume that TLU ↑ ∈ T ′ if {TLU↓,TLU ↓}∩ (T \T ′) 6= ∅, given that TLU ↑ has two backward
counterparts.) That is, if T contains both R↑ and R↓, an approximation T ′ of T is allowed to
drop R↓. It is clear that every approximation T ′ of T is polynomially simulated by T . Assuming
Cut to be sufficiently powerful, the next result shows that the converse holds as well.

PROPOSITION 6.6. Let Π be a disjunctive program, T a tableau calculus containing any sub-
set of the tableau rules (a)–(v), and T ′ an approximation of T .

If Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪ card(Π) ⊆ Γ, then we have that T is polyno-
mially simulated by T ′.

In fact, an inference due to R↓ can be mimicked by cutting on the consequent of R↓. Then,
one of the two resulting branches becomes contradictory when applying R↑. But recall that proof
complexity assumes an optimal heuristic, determining the “right” objects to cut on. As an optimal
heuristic is inaccessible in practice, it is certainly advantageous to implement R↓ within an ASP
solver whenever it can be done efficiently.

7. RELATED WORK

Our work is inspired by the one of Järvisalo, Junttila, and Niemelä [Järvisalo et al. 2005], who use
tableau methods for investigating Boolean circuit satisfiability checking. Although their target
is different from ours, both approaches have aspects in common. First, both use tableau meth-
ods for characterizing DPLL-style search. Second, they analyze proof complexity wrt cut rules
characterizing different concepts of case analyses.

As pointed out in [Hähnle 2001], DPLL is very similar to the propositional version of the
KE tableau calculus; both are closely related to weak connection tableaux with atomic cut.
Tableau-based characterizations of logic programming are elaborated upon in [Fitting 1994].
Pearce, de Guzmán, and Valverde [Pearce et al. 2000] provide a tableau calculus for automated
theorem proving in equilibrium logic; its inference rules admit the decomposition of input formu-
las, while our calculi aim at the formation of (Boolean) assignments. Further tableau approaches
to non-monotonic reasoning are summarized in [Olivetti 1999] and [Dix et al. 2001].

General investigations into propositional proof complexity [Cook and Reckhow 1979], in par-
ticular, the one of (UN)SAT, can be found in [Beame and Pitassi 1998]. Notably, recent results
on CDCL [Beame et al. 2004; Pipatsrisawat and Darwiche 2011], the state-of-the-art complete
algorithm for SAT solving, indicate its strong correlation to general resolution. Although DPLL
amounts to a weaker form of resolution, called tree-like (cf. [Beame and Pitassi 1998]), Järvisalo
and Oikarinen [Järvisalo and Oikarinen 2008] show that an extension of our basic tableau frame-
work, admitting the addition of “redundant” rules to a logic program, is as powerful as extended
resolution (under standard translations between ASP and SAT, viz. completion and the reduction
in [Niemelä 1999]). The complexity considerations in [Giunchiglia et al. 2008] also build on the
proximity of traditional ASP solving methods to DPLL.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

34 · Martin Gebser and Torsten Schaub

Regarding inference systems for ASP, Bonatti [Bonatti 2001] describes a resolution method for
skeptical reasoning. Unlike our approach, it is based on query-oriented top-down evaluation, as
also performed in SLDNF resolution (cf. [Lloyd 1987]). Similarly, the proof schemes investigated
by Marek and Remmel in [Marek and Remmel 2008] are closely related to SLDNF resolution.
Operator-based characterizations of propagation and choice techniques of ASP solvers can be
found in [Faber 2002; Simons et al. 2002; Anger et al. 2005; Calimeri et al. 2006; Konczak et al.
2006]. They are more coarse-grained than our tableau rules, which aim at characterizing funda-
mental inference steps. Although SAT-based and native conflict-driven learning ASP solvers are
usually described in terms of algorithms [Lin and Zhao 2004; Ward and Schlipf 2004; Giunchiglia
et al. 2006; Lin et al. 2006; Gebser et al. 2007], the fact that they identify reasons for conflicts
yields a close relationship to our tableau-based approach. In principle, (immediate) reasons can
easily be extracted from tableau rules, albeit our tableau frameworks do not incorporate conflict-
driven learning. The state-based calculus by Lierler [Lierler 2011], inspired by a similar approach
[Nieuwenhuis et al. 2006] to Satisfiability Modulo Theories (SMT; [Barrett et al. 2009]), allows
for characterizing several atom-based ASP solvers that incorporate conflict-driven learning.

A major issue in ASP solving is the treatment of unfounded sets [Van Gelder et al. 1991; Leone
et al. 1997], which can be captured by loop formulas [Lin and Zhao 2004; Lee 2005]. As the num-
ber of (non-redundant) loop formulas may be exponential [Lifschitz and Razborov 2006],20 ASP
solvers use dedicated procedures to check [Simons et al. 2002; Calimeri et al. 2006] and possibly
also extract [Lin and Zhao 2004; Giunchiglia et al. 2006; Lin et al. 2006; Anger et al. 2006; Gebser
et al. 2007; Drescher et al. 2008] (violated) loop formulas relative to assignments. To our knowl-
edge, no existing ASP solver implements backward inference via tableau rule WFJ, unless loop
formulas have been recorded. Unfortunately, the approach in this direction suggested in [Chen
et al. 2008; 2009] is computationally too complex (quadratic) to be beneficial in practice.21 Our
generic tableau framework does not distinguish loops (in tableau rules U ↑ and U ↓), which could
however be done based on loops for propositional theories [Ferraris et al. 2006]. Loops and loop
formulas for first-order normal programs have been defined in [Chen et al. 2006; Lee and Meng
2008]. There are also direct characterizations (not referring to grounding) of answer sets or sta-
ble models, respectively, for first-order theories [Pearce and Valverde 2005; Ferraris et al. 2007].
To our knowledge, they have not yet been used as a basis for proof-theoretic frameworks for the
construction of answer sets, albeit Pearce and Valverde [Pearce and Valverde 2006] axiomatize
entailment, (strong) equivalence, and validity in quantified here-and-there logics.

8. DISCUSSION

In contrast to the area of SAT, where the proof-theoretic foundations of SAT solvers are well-
understood (cf. [Beame and Pitassi 1998; Beame et al. 2004; Pipatsrisawat and Darwiche 2011]),
the literature on ASP solvers is generally too specific in terms of procedures or particular solving
strategies. We addressed this deficiency by introducing tableau frameworks that provide us with

20Lifschitz and Razborov [Lifschitz and Razborov 2006] show that, under widely accepted assumptions in complexity
theory, any semantics-preserving polynomial translation of normal programs to propositional theories must extend the
input vocabulary. For instance, lp2sat [Janhunen and Niemelä 2011] implements a sub-quadratic translation based on a
binary representation of level mappings [Janhunen 2006; Niemelä 2008] (which are considered wrt “non-tight” programs);
the SMT-based approach of lp2diff [Janhunen et al. 2009] harnesses difference logic [Nieuwenhuis and Oliveras 2005] to
encode level mappings in linear space.
21While known implementations of the well-founded operator take quadratic (worst case) time in the size of a program
(cf. [Berman et al. 1995]), the atoms deducible by WFN (in a fixed branch) can be computed in linear time, e.g., by means
of the Dowling-Gallier algorithm [Dowling and Gallier 1984].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 35

formal means for characterizing and analyzing computations of ASP solvers. This is accomplished
by associating specific tableau calculi with the approaches of ASP solvers, rather than their solving
procedures. In fact, tableau calculi abstract from implementation details and admit identifying
fundamental inference patterns. The latter can, in principle, be exploited to precisely render the
constraints propagated by a solver in order to use them, e.g., for conflict-driven learning.

The explicit representation of rule bodies and further composite language constructs, such as
cardinality constraints and disjunctions, in assignments has several benefits. For one, it allows
us to characterize SAT-based and also native atom- or rule-based ASP solving approaches in a
closer fashion. In fact, even in atom-based solvers, such as dlv, smodels, and smodelscc , which
(logically) work on assignments over atoms only, inferences rely on the valuations of rule bodies
(cf. Section 4). Hence, the decision of whether or not to include composite language constructs in
assignments mainly affects the available cut objects. In this respect, the consideration of atoms as
well as rule bodies may lead to exponentially smaller (best-case) complexity than obtained with
restricted approaches. This also applies to cardinality constraints in logic programs, while it is
open whether branching on disjunctive heads can be the source of an exponential separation. The
potential of exponential proof complexity decreases due to extending the range of cut objects is
also confirmed by related investigations (cf. [Järvisalo et al. 2005; Järvisalo and Oikarinen 2008;
Järvisalo and Junttila 2009]). However, it is well-known that uncontrolled cut applications are
prone to inefficiency, and restricting them to (sub)formulas occurring in the input showed to be
an effective way to “tame” the cut [D’Agostino et al. 1999]. Our tableau calculi adopt such input
restrictions, which is in line with the fact that current ASP solvers do not “invent” new cut objects.

The simple class of normal programs is, in principle, sufficient to represent all NP-problems
in ASP [Marek and Truszczyński 1991], and it can be regarded as the core language shared by
virtually all ASP solvers. On the other hand, practical experience shows that language extensions,
such as dlv’s aggregates [Faber et al. 2008] or smodels’ cardinality and weight constraints [Simons
et al. 2002], are important for effective modeling (cf. [Truszczyński 2007]). Hence, we presented
a generic tableau framework and illustrated its extension to composite language constructs on
two (sophisticated) examples: cardinality constraints and disjunctive heads. The corresponding
inference rules follow two major objectives: first, characterizing models of logic programs and,
second, verifying that true atoms are non-circularly supported. Different notions of support are
possible, given that atoms derived via composite language constructs in heads of rules may be
subject to minimization, as with disjunctions, or not, as with cardinality constraints allowing for
“choices.” Such issues must be settled first in order to then devise appropriate inference patterns.22

For conflict-driven learning ASP solvers, it is not only important to know valid inferences, but
also how the propagated constraints look like. Our generic tableau framework provides means
to study such aspects of composite language constructs in the course of specifying tableau rules
for them, and it also provides a ready-to-use basis for checking the soundness and complete-
ness of sophisticated inference patterns. Interestingly, conditions allowing for the falsification of
atoms that cannot be non-circularly supported inherently characterize unfounded sets for extended
classes of logic programs. In particular, we are unaware of any pre-existing direct unfounded set
definition (not relying on compilation to basic language constructs) for disjunctive programs ad-
mitting cardinality constraints in heads as well as bodies of rules, while the proviso of generic
tableau rule U ↑ provides such a definition in view of Theorem 5.6. Based on our methodology,
the consideration of unfounded sets could be extended to further composite language constructs.

22The available language constructs also affect computational complexity; for instance, it increases by one level in the
polynomial time hierarchy with disjunctive heads or negative weights within weight constraints (cf. [Ferraris 2005]).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

36 · Martin Gebser and Torsten Schaub

Acknowledgments. We are grateful to Christian Anger, Philippe Besnard, Martin Brain, Yuliya
Lierler, Robert Mercer, Richard Tichy, and the anonymous referees for many helpful suggestions.
The first author especially acknowledges the members of his thesis committee, Gerhard Brewka,
Tomi Janhunen, and Torsten Schaub, for their invaluable support.

This work was partially funded by the German Science Foundation (DFG) under grants SCHA
550/8-1/2.

A. PROOFS

We present proofs of results by sections. Proofs of Theorem 3.1 from Section 3 and Theorem 4.6
from Section 4 are postponed to Appendix A.2, where they can be derived as consequences of
more general results.

A.1 Proofs of Results from Section 4

To begin with, we show Proposition 4.1 and 4.2 on correspondences between tableau rules and
logic programming operators as well as smodels’ propagation.

PROPOSITION 4.1. Let Π be a normal program and A an assignment.
Then, we have that

(1) TΠ(A) =
(
D{FTA}(Π, D{FTB}(Π,A))

)T
;

(2) NΠ(A) =
(
D{FFA}(Π, D{FFB}(Π,A))

)F
;

(3) UΠ(A) =
(
D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A))

)F
.

PROOF. We separately consider the items of the statement:

(1) We have that p ∈ TΠ(A) iff p = head(r) for some r ∈ Π such that body(r)
+ ⊆ AT and

body(r)
− ⊆ AF iff p = head(r) for some r ∈ Π such that T body(r) ∈ D{FTB}(Π,A), so

that p ∈
(
D{FTA}(Π, D{FTB}(Π,A))

)T
.

(2) We have that p ∈ NΠ(A) iff p ∈ atom(Π) such that head(r) 6= p or (body(r)
+ ∩ AF) ∪

(body(r)
− ∩AT) 6= ∅ for every r ∈ Π iff p ∈ atom(Π) such that FB ∈ D{FFB}(Π,A) for

every B ∈ body(p), so that p ∈
(
D{FFA}(Π, D{FFB}(Π,A))

)F
.

(3) We have that p ∈ UΠ(A) iff p ∈ U for some U ⊆ atom(Π) such that (B+ ∩ AF) ∪
(B− ∩AT) 6= ∅ for every B ∈ EBΠ(U) iff p ∈ U for some U ⊆ atom(Π) such that FB ∈
D{FFB}(Π,A) for every B ∈ EBΠ(U), so that p ∈

(
D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A))

)F
.

We have thus shown that all items of the statement hold.

PROPOSITION 4.2. Let Π be a normal program and A an assignment.
Then, we have that

(1) D{FI}(Π,A) = D{FTA}(Π, D{FTB}(Π,A));
(2) D{ARC}(Π,A) = D{FFA}(Π, D{FFB}(Π,A));
(3) D{CTH}(Π,A) = D{BTB}(Π, D{BTA}(Π, D{FFB}(Π,A) ∪ {T p | p ∈ AT ∩ atom(Π)}));
(4) D{CFH}(Π,A) = D{BFB}(Π, D{BFA}(Π,A)∪{T p | p ∈ AT ∩atom(Π)}∪{F p | p ∈ AF ∩

atom(Π)});
(5) D{AM}(Π,A) = D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A)).

PROOF. We separately consider the items of the statement:
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 37

(1) We have that T p ∈ D{FI}(Π,A) iff p = head(r) for some r ∈ Π such that body(r)
+ ⊆ AT

and body(r)
− ⊆ AF iff p = head(r) for some r ∈ Π such that T body(r) ∈ D{FTB}(Π,A),

so that T p ∈ D{FTA}(Π, D{FTB}(Π,A)).

(2) We have that F p ∈ D{ARC}(Π,A) iff p ∈ atom(Π) such that (B+ ∩AF)∪ (B− ∩AT) 6= ∅
for every B ∈ body(p) iff p ∈ atom(Π) such that FB ∈ D{FFB}(Π,A) for every B ∈
body(p), so that F p ∈ D{FFA}(Π, D{FFB}(Π,A)).

(3) We have that tl ∈ D{CTH}(Π,A) iff p ∈ AT∩atom(Π) and l ∈ body(r) for some r ∈ Π such
that (B+∩AF)∪(B−∩AT) 6= ∅ for everyB ∈ body(p)\{body(r)} iff p ∈ AT ∩atom(Π)
and l ∈ body(r) for some r ∈ Π such that {FB | B ∈ body(p) \ {body(r)}} ⊆
D{FFB}(Π,A), so that T body(r) ∈ D{BTA}(Π, D{FFB}(Π,A)∪{T p | p ∈ AT ∩atom(Π)})
and {tl | l ∈ body(r)} ⊆ D{BTB}(Π, D{BTA}(Π, D{FFB}(Π,A) ∪ {T p | p ∈ AT ∩
atom(Π)})).

(4) We have that f l ∈ D{CFH}(Π,A) iff l ∈ body(r) for some r ∈ Π such that F head(r) ∈ A
and tl′ ∈ A for every l′ ∈ body(r) \ {l} iff F body(r) ∈ D{BFA}(Π,A) and {tl′ | l′ ∈
body(r) \ {l}} ⊆ {T p | p ∈ AT ∩ atom(Π)}∪ {F p | p ∈ AF ∩ atom(Π)} for some r ∈ Π
and l ∈ body(r), so that f l ∈ D{BFB}(Π, D{BFA}(Π,A)∪{T p | p ∈ AT ∩atom(Π)}∪{F p |
p ∈ AF ∩ atom(Π)}).

(5) We have that F p ∈ D{AM}(Π,A) iff p ∈ U for some U ⊆ atom(Π) such that (B+ ∩AF)∪
(B− ∩AT) 6= ∅ for every B ∈ EBΠ(U) iff p ∈ U for some U ⊆ atom(Π) such that FB ∈
D{FFB}(Π,A) for every B ∈ EBΠ(U), so that F p ∈ D{WFN[2atom(Π)]}(Π, D{FFB}(Π,A)).

We have thus shown that all items of the statement hold.

In view of Proposition 4.2, we derive the following relationship between tableau calculi using
the deterministic tableau rules in Figure 1 or 3, respectively.

COROLLARY 4.3. Let Π be a normal program and A an assignment.
Then, we have that D∗{FI,ARC,CTH,CFH,AM}(Π,A) ⊆ D∗Tsmodels

(Π,A).

PROOF. This result follows immediately from Proposition 4.2, since any entry deducible by
some of the tableau rules in {FI,ARC,CTH,CFH,AM} can likewise be deduced by iterated ap-
plications of the tableau rules (a)–(h) and WFN[2atom(Π)] in Figure 1, which are the deterministic
tableau rules contained in Tsmodels.

Next, we show the one-to-one correspondence between models of Comp(Π) and non-
contradictory complete branches in tableaux of Tcomp , stated in Theorem 4.4. To this end, we
first provide Lemma A.1, linking models of Comp(Π) to non-contradictory complete branches.

LEMMA A.1. Let Π be a normal program and X ⊆ atom(Π) ∪ body(Π).
Then, we have that (X ∩ atom(Π)) ∪ {pB | B ∈ X ∩ body(Π)} is a model of Comp(Π) iff

D{(a)–(h)}(Π,A) ⊆ {T v | v ∈ X}∪{F v | v ∈ (atom(Π)∪ body(Π)) \X} for every assignment
A ⊆ {T v | v ∈ X} ∪ {F v | v ∈ (atom(Π) ∪ body(Π)) \X}.

PROOF. Let M = (X ∩ atom(Π)) ∪ {pB | B ∈ X ∩ body(Π)} and A′ = {T v | v ∈ X} ∪
{F v | v ∈ (atom(Π) ∪ body(Π)) \X} in the following consideration of the implications of the
statement.

(⇒) Assume that A ⊆ A′ but D{(a)–(h)}(Π,A) 6⊆ A′. Then, some of the following cases
applies:

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

38 · Martin Gebser and Torsten Schaub

(1) If D{FTB,BFB}(Π,A) 6⊆ A′, for some B = {p1, . . . , pm,not pm+1, . . . ,not pn} ∈ body(Π),
we have that {FB,T p1, . . . ,T pm,F pm+1, . . . ,F pn} ⊆ A′, so that pB /∈ M and
{p1, . . . , pm, pm+1, . . . , pn} ∩ M = {p1, . . . , pm}. Since Comp(Π) includes

(
pB ↔

(p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn)
)
, this shows that M is not a model of Comp(Π).

(2) IfD{FFB,BTB}(Π,A) 6⊆ A′, for someB ∈ body(Π) and l ∈ B, we have that {TB,f l} ⊆ A′,
so that pB ∈M andB+ 6⊆M orB−∩M 6= ∅. Since Comp(Π) includes

(
pB ↔ (

∧
p∈B+p∧∧

q∈B−¬q)
)
, this shows that M is not a model of Comp(Π).

(3) If D{FTA,BFA}(Π,A) 6⊆ A′, for some p ∈ atom(Π) and B ∈ body(p), we have that
{F p,TB} ⊆ A′, so that p /∈ M and pB ∈ M . Since Comp(Π) includes

(
p ↔

(
∨
B∈body(p)pB)

)
, this shows that M is not a model of Comp(Π).

(4) If D{FFA,BTA}(Π,A) 6⊆ A′, for some p ∈ atom(Π) and body(p) = {B1, . . . , Bm}, we have
that {T p,FB1, . . . ,FBm} ⊆ A′, so that p ∈ M and {pB1

, . . . , pBm
} ∩M = ∅. Since

Comp(Π) includes
(
p↔ (pB1 ∨· · ·∨pBm)

)
, this shows thatM is not a model of Comp(Π).

In each of the above cases, M is not a model of Comp(Π), which in turn shows that, if M is a
model of Comp(Π), then D{(a)–(h)}(Π,A) ⊆ A′ for every assignment A ⊆ A′.

(⇐) Assume that M is not a model of Comp(Π). Then, some of the following cases applies:

(1) If pB /∈ M and {p1, . . . , pm, pm+1, . . . , pn} ∩ M = {p1, . . . , pm} for some
B = {p1, . . . , pm,not pm+1, . . . ,not pn} ∈ body(Π), we have that {T p1, . . . ,T pm,
F pm+1, . . . ,F pn} ⊆ A′, so that TB ∈ D{FTB}(Π,A

′). Since TB /∈ A′, this shows
that D{(a)–(h)}(Π,A

′) 6⊆ A′.
(2) If pB ∈ M and {p1, . . . , pm, pm+1, . . . , pn} ∩ M 6= {p1, . . . , pm} for some

B = {p1, . . . , pm,not pm+1, . . . ,not pn} ∈ body(Π), we have that {F p1, . . . ,F pm,
T pm+1, . . . ,T pn} ∩ A′ 6= ∅, so that FB ∈ D{FFB}(Π,A

′). Since FB /∈ A′, this shows
that D{(a)–(h)}(Π,A

′) 6⊆ A′.
(3) If p /∈M and pB ∈M for some p ∈ atom(Π) and B ∈ body(p), we have that TB ∈ A′, so

that T p ∈ D{FTA}(Π,A
′). Since T p /∈ A′, this shows that D{(a)–(h)}(Π,A

′) 6⊆ A′.
(4) If p ∈ M and {pB1

, . . . , pBm
} ∩ M = ∅ for some p ∈ atom(Π) and body(p) =

{B1, . . . , Bm}, we have that {FB1, . . . ,FBm} ⊆ A′, so that F p ∈ D{FFA}(Π,A
′). Since

F p /∈ A′, this shows that D{(a)–(h)}(Π,A
′) 6⊆ A′.

In each of the above cases,D{(a)–(h)}(Π,A
′) 6⊆ A′, which in turn shows that, ifD{(a)–(h)}(Π,A) ⊆

A′ for every assignment A ⊆ A′, then M is a model of Comp(Π).

THEOREM 4.4. Let Π be a normal program.
Then, we have that the following holds for tableau calculus Tcomp:

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Comp(Π) has a model X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that (AT ∩atom(Π))∪{pB | B ∈ AT ∩body(Π)} = X .
(3) Comp(Π) has no model iff every complete tableau for Π and ∅ is a refutation.

PROOF. We separately consider the items of the statement:

(1) By applying Cut[atom(Π)∪ body(Π)], an incomplete branch in a tableau for Π and ∅ can be
extended to a subtableau such that, for every branch (Π,A) in it, we have that atom(Π) ∪
body(Π) ⊆ AT ∪AF . Furthermore, if (Π,A) is not complete, then D{(a)–(h)}(Π,A) 6⊆ A,

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 39

so that the application of some of the tableau rules (a)–(h) in Tcomp yields a contradictory
and thus complete branch.

(2) (⇒) Assume that X ⊆ atom(Π) ∪ {pB | B ∈ body(Π)} is a model of Comp(Π), and
consider the following assignment:

A = {T p | p ∈ X ∩ atom(Π)} ∪ {F p | p ∈ atom(Π) \X}
∪ {TB | B ∈ body(Π), pB ∈ X} ∪ {FB | B ∈ body(Π), pB /∈ X}

Then, by Lemma A.1, D{(a)–(h)}(Π,A
′) ⊆ A for every assignment A′ ⊆ A. Since either

A′ ∪ {T v} ⊆ A or A′ ∪ {F v} ⊆ A for any application of Cut[atom(Π) ∪ body(Π)] on a
branch (Π,A′) such that A′ ⊆ A, we have that the assignment in exactly one of the resulting
branches is contained in A. Along with ∅ ⊆ A, it follows that every complete tableau for Π
and ∅ has a unique non-contradictory branch (Π,A) such that (AT ∩atom(Π))∪{pB | B ∈
AT ∩ body(Π)} = X .
(⇐) Assume that (Π,A) is a non-contradictory complete branch, that is, AT ∪ AF =
atom(Π) ∪ body(Π) and D{(a)–(h)}(Π,A) ⊆ A. Then, by Lemma A.1 (along with the
fact that D{(a)–(h)}(Π,A

′) ⊆ D{(a)–(h)}(Π,A) for every A′ ⊆ A), we have that X =
(AT ∩ atom(Π)) ∪ {pB | B ∈ AT ∩ body(Π)} is a model of Comp(Π).

(3) From the second item, if Comp(Π) has a model, then every complete tableau for Π and ∅
has a non-contradictory branch; by the first item, there is some complete tableau for Π and ∅,
so that some complete tableau for Π and ∅ is not a refutation. Conversely, if some complete
tableau for Π and ∅ is not a refutation, it has a non-contradictory branch (Π,A), and (AT ∩
atom(Π)) ∪ {pB | B ∈ AT ∩ body(Π)} is a model of Comp(Π), as shown in the proof of
the second item.

We have thus shown that all items of the statement hold.

For proving Proposition 4.5, stating that tableau rule WFN[2atom(Π)] is as powerful as the
iterated application of more restrictive tableau rules FFA and WFN[loop(Π)] (along with FFB),
we first show as an auxiliary result that WFN[loop(Π)] is applicable wrt a fixpoint of FFB and
FFA if WFN[2atom(Π)] is.

LEMMA A.2. Let Π be a normal program and A an assignment.
Then, we have that D{FFB,WFN[2atom(Π)]}(Π,A) ⊆ A iff D{FFB,FFA,WFN[loop(Π)]}(Π,A) ⊆ A.

PROOF. (⇒) Assume that D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆ A. Then, D{FFB}(Π,A) 6⊆ A
or D{FFA,WFN[loop(Π)]}(Π,A) 6⊆ A. If D{FFB}(Π,A) 6⊆ A, it is clear that
D{FFB,WFN[2atom(Π)]}(Π,A) 6⊆ A. Otherwise, if D{FFA,WFN[loop(Π)]}(Π,A) 6⊆ A, there is some
p ∈ atom(Π) \ AF such that EBΠ({p}) ⊆ body(p) ⊆ AF or p ∈ U for an U ∈ loop(Π)
satisfying EBΠ(U) ⊆ AF . Given that {{p} | p ∈ atom(Π)} ∪ loop(Π) ⊆ 2atom(Π), we con-
clude that there is some p ∈ atom(Π) \ AF such that F p ∈ D{WFN[2atom(Π)]}(Π,A), so that
D{FFB,WFN[2atom(Π)]}(Π,A) 6⊆ A.

(⇐) Assume that D{FFB,WFN[2atom(Π)]}(Π,A) 6⊆ A. Then, D{FFB}(Π,A) 6⊆ A
or D{WFN[2atom(Π)]}(Π,A) 6⊆ A. If D{FFB}(Π,A) 6⊆ A, it is clear that
D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆ A. Otherwise, if D{WFN[2atom(Π)]}(Π,A) 6⊆ A, there is some
U ⊆ atom(Π) such that U 6⊆ AF and EBΠ(U) ⊆ AF . Since D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆
A if D{FFB,FFA}(Π,A) 6⊆ A, assume that D{FFB,FFA}(Π,A) ⊆ A. Then, for every
B ∈ EBΠ(U \ AF) \ EBΠ(U), the fact that B+ ∩ (U ∩ AF) 6= ∅ implies B ∈ AF .
Along with EBΠ(U) ⊆ AF , we conclude that EBΠ(U \AF) ⊆ AF . Moreover, since U \AF

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

40 · Martin Gebser and Torsten Schaub

is finite, there is some strongly connected component of the subgraph of the dependency graph
of Π induced by U \ AF , given by (U \ AF , {(head(r), p) | r ∈ Π, head(r) ∈ U \ AF ,
p ∈ body(r)

+ ∩ (U \AF)}), such that its vertices L do not reach atoms in (U \AF) \ L.23 The
latter means that B+ ∩ ((U \ AF) \ L) = ∅ holds for every p ∈ L and B ∈ body(p), so that
EBΠ(L) ⊆ EBΠ(U \AF) ⊆ AF . Since L ∩AF = ∅, for every p ∈ L, D{FFA}(Π,A) ⊆ A
implies body(p) 6⊆ AF , while EBΠ(L) ⊆ AF yields body(p) ∩ EBΠ(L) ⊆ AF ; that is, there is
someB ∈ body(p)\AF , andB+∩L 6= ∅ holds for eachB ∈ body(p)\AF . Along with the fact
that U \AF is non-empty, we conclude that the strongly connected component of L (contained
in the subgraph of the dependency graph of Π induced by U \AF) includes some edge, so that
L ∈ loop(Π). We have thus shown that EBΠ(L) ⊆ AF holds for some L ∈ loop(Π) such that
L 6⊆ AF , so that D{WFN[loop(Π)]}(Π,A) ⊆ D{FFB,FFA,WFN[loop(Π)]}(Π,A) 6⊆ A.

PROPOSITION 4.5. Let Π be a normal program and A an assignment.
Then, we have that D∗{FFB,WFN[2atom(Π)]}(Π,A) = D∗{FFB,FFA,WFN[loop(Π)]}(Π,A).

PROOF. By Lemma A.2, we have that D∗{FFB,WFN[2atom(Π)]}(Π,A) is closed un-
der {FFB,FFA,WFN[loop(Π)]} and that D∗{FFB,FFA,WFN[loop(Π)]}(Π,A) is closed un-
der {FFB,WFN[2atom(Π)]}. Along with the fact that D∗{FFB,WFN[2atom(Π)]}(Π,A) and
D∗{FFB,FFA,WFN[loop(Π)]}(Π,A) are the unique smallest branches that extend (Π,A) and
are closed under {FFB,WFN[2atom(Π)]} or {FFB,FFA,WFN[loop(Π)]}, respectively,
we conclude that D∗{FFB,FFA,WFN[loop(Π)]}(Π,A) ⊆ D∗{FFB,WFN[2atom(Π)]}(Π,A) and that
D∗{FFB,WFN[2atom(Π)]}(Π,A) ⊆ D∗{FFB,FFA,WFN[loop(Π)]}(Π,A).

We have thus proven the formal results presented in Section 4, except for Theorem 4.6, whose
proof is provided at the end of Appendix A.2.

A.2 Proofs of Results from Section 5

For proving the soundness and completeness of our generic tableau method relative to the lan-
guage constructs considered in Section 5, we first provide some lemmas in Appendix A.2.1
and A.2.2. After demonstrating the main soundness and completeness result in Appendix A.2.3,
the correspondences shown in Appendix A.2.4 between generic tableau rules and the basic ones
for normal programs, as introduced in Section 3, allow us to derive Theorem 3.1 and 4.6 as con-
sequences of more general results.

A.2.1 Lemmas on Soundness. The first two lemmas provide properties of non-contradictory
complete branches that hold in view of the generic tableau rules in Figure 4.

LEMMA A.3. Let Π be a disjunctive program and T a tableau calculus such that {I ↑, I ↓} ∩
T 6= ∅.

Then, for every non-contradictory complete branch (Π,A) and every (α ← β) ∈ Π, we have
that tβ /∈ A or fα /∈ A.

PROOF. Consider any (α ← β) ∈ Π and any branch (Π,A) such that tβ ∈ A and fα ∈ A.
Then, we have that tα ∈ D{I↑}(Π,A) and fβ ∈ D{I↓}(Π,A). Since {I ↑, I ↓} ∩ T 6= ∅, this
shows that (Π,A) cannot be (extended to) a non-contradictory complete branch.

23Note that the “condensation” of (U \AF , {(head(r), p) | r ∈ Π, head(r) ∈ U \AF , p ∈ body(r)+∩(U \AF)}),
obtained by contracting each strongly connected component to a single vertex, is a directed acyclic graph (cf. [Purdom
1970]).

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 41

LEMMA A.4. Let Π be a disjunctive program and T a tableau calculus such that U ↑ ∈ T .
Then, for every non-contradictory complete branch (Π,A) and every S ⊆ atom(Π), we have

that supA(Π, S, S) 6= ∅ or AT ∩ S = ∅.

PROOF. Consider any S ⊆ atom(Π) and any branch (Π,A) such that supA(Π, S, S) = ∅ and
AT ∩ S 6= ∅. Then, there is some p ∈ AT ∩ S such that F p ∈ D{U↑}(Π,A). Since U ↑ ∈ T ,
this shows that (Π,A) cannot be (extended to) a non-contradictory complete branch.

For non-contradictory complete branches (Π,A), the next lemmas show that the truth value
of a variable v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π) matches the valuation of τ [v] wrt
AT ∩ atom(Π), provided the inclusion of appropriate tableau rules, presented in Figure 5, 7,
and 8, respectively, in a calculus.

LEMMA A.5. Let Π be a disjunctive program and A a total assignment.
Then, for every p ∈ atom(Π), we have that

(1) tp ∈ A iff AT ∩ atom(Π) |= τ [p];
(2) tnot p ∈ A iff AT ∩ atom(Π) |= τ [not p];
(3) fp ∈ A iff AT ∩ atom(Π) 6|= τ [p];
(4) fnot p ∈ A iff AT ∩ atom(Π) 6|= τ [not p].

PROOF. We have that τ [p] = p and τ [not p] = ¬τ [p] = ¬p, and the following holds:

(1) tp ∈ A iff T p ∈ A iff p ∈ AT ∩ atom(Π) iff AT ∩ atom(Π) |= p;
(2) tnot p ∈ A iff F p ∈ A iff p /∈ AT ∩ atom(Π) iff AT ∩ atom(Π) |= ¬p;
(3) fp ∈ A iff F p ∈ A iff p /∈ AT ∩ atom(Π) iff AT ∩ atom(Π) 6|= p;
(4) fnot p ∈ A iff T p ∈ A iff p ∈ AT ∩ atom(Π) iff AT ∩ atom(Π) 6|= ¬p.

We have thus shown that all items of the statement hold.

LEMMA A.6. Let Π be a disjunctive program and T a tableau calculus such that
{TLU ↑,FL↑,FU ↑} ⊆ T .

Then, for every non-contradictory complete branch (Π,A) and every v ∈ card(Π), we have
that T v ∈ A iff AT ∩ atom(Π) |= τ [v].

PROOF. Consider any v = j{l1, . . . , ln}k ∈ card(Π) and any non-contradictory complete
branch (Π,A). For every l ∈ {l1, . . . , ln}, we have that l ∈ atom(Π) or l = not p for some
p ∈ atom(Π). By Lemma A.5, tl ∈ A iff AT ∩ atom(Π) |= τ [l], and f l ∈ A iff AT ∩
atom(Π) 6|= τ [l]. We further consider the cases that T v ∈ A and F v ∈ A, respectively:

(1) If T v ∈ A, then F v /∈ D{FL↑,FU↑}(Π,A). That is, |{l ∈ {l1, . . . , ln} | f l ∈ A}| ≤ n − j
and |{l ∈ {l1, . . . , ln} | tl ∈ A}| ≤ k. In view of |{l ∈ {l1, . . . , ln} | tl ∈ A}| + |{l ∈
{l1, . . . , ln} | f l ∈ A}| = n, |{l ∈ {l1, . . . , ln} | f l ∈ A}| ≤ n − j yields j ≤ |{l ∈
{l1, . . . , ln} | tl ∈ A}|. We have thus shown that j ≤ |{l ∈ {l1, . . . , ln} | tl ∈ A}| ≤ k.
Hence, for any L ⊆ {l1, . . . , ln} such that |L| < j, it holds that {l ∈ {l1, . . . , ln} \ L | tl ∈
A} 6= ∅, so that AT ∩atom(Π) |= (

∨
l∈{l1,...,ln}\Lτ [l]). Moreover, for any L ⊆ {l1, . . . , ln}

such that k < |L|, it holds that {l ∈ L | f l ∈ A} 6= ∅, so that AT ∩ atom(Π) 6|= (
∧
l∈Lτ [l]).

Combining the cases for |L| < j and k < |L| yields that

AT ∩ atom(Π) |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

42 · Martin Gebser and Torsten Schaub

(2) If F v ∈ A, then T v /∈ D{TLU↑}(Π,A). That is, |{l ∈ {l1, . . . , ln} | tl ∈ A}| < j or
|{l ∈ {l1, . . . , ln} | f l ∈ A}| < n − k. In view of |{l ∈ {l1, . . . , ln} | tl ∈ A}| + |{l ∈
{l1, . . . , ln} | f l ∈ A}| = n, |{l ∈ {l1, . . . , ln} | f l ∈ A}| < n − k yields k < |{l ∈
{l1, . . . , ln} | tl ∈ A}|. For L′ = {l ∈ {l1, . . . , ln} | tl ∈ A}, we have thus shown that
|L′| < j or k < |L′|. Since AT ∩ atom(Π) 6|=

(
(
∧
l∈L′τ [l]) → (

∨
l∈{l1,...,ln}\L′τ [l])

)
, we

conclude that

AT ∩ atom(Π) 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

We have thus shown that T v ∈ A and F v ∈ A imply AT ∩ atom(Π) |= τ [v] and AT ∩
atom(Π) 6|= τ [v], respectively. That is, T v ∈ A iff AT ∩ atom(Π) |= τ [v].

LEMMA A.7. Let Π be a disjunctive program and T a tableau calculus such that
{TC↑,FC↑} ⊆ T .

If card(Π) = ∅ or {TLU ↑,FL↑,FU ↑} ⊆ T , then for every non-contradictory complete
branch (Π,A) and every v ∈ conj (Π), we have that T v ∈ A iff AT ∩ atom(Π) |= τ [v].

PROOF. Consider any v = {l1, . . . , ln} ∈ conj (Π) and any non-contradictory complete branch
(Π,A), and assume that card(Π) = ∅ or {TLU ↑,FL↑,FU ↑} ⊆ T . For every l ∈ {l1, . . . , ln},
we have that l ∈ atom(Π) ∪ card(Π) or l = not π and τ [l] = ¬τ [π] for some π ∈ atom(Π) ∪
card(Π). By Lemma A.5 and A.6, tl ∈ A iff AT ∩ atom(Π) |= τ [l], and f l ∈ A iff AT ∩
atom(Π) 6|= τ [l]. We further consider the cases that T v ∈ A and F v ∈ A, respectively:

(1) If T v ∈ A, then F v /∈ D{FC↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | f l ∈ A} = ∅ and
{l ∈ {l1, . . . , ln} | tl ∈ A} = {l1, . . . , ln}, so that AT ∩ atom(Π) |= (τ [l1] ∧ · · · ∧ τ [ln]).

(2) If F v ∈ A, then T v /∈ D{TC↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | tl ∈ A} 6= {l1, . . . , ln}
and {l ∈ {l1, . . . , ln} | f l ∈ A} 6= ∅, so that AT ∩ atom(Π) 6|= (τ [l1] ∧ · · · ∧ τ [ln]).

We have thus shown that T v ∈ A and F v ∈ A imply AT ∩ atom(Π) |= τ [v] and AT ∩
atom(Π) 6|= τ [v], respectively. That is, T v ∈ A iff AT ∩ atom(Π) |= τ [v].

LEMMA A.8. Let Π be a disjunctive program and T a tableau calculus such that
{TD↑,FD↑} ⊆ T .

Then, for every non-contradictory complete branch (Π,A) and every v ∈ disj (Π), we have
that T v ∈ A iff AT ∩ atom(Π) |= τ [v].

PROOF. Consider any v = {l1; . . . ; ln} ∈ disj (Π) and any non-contradictory complete branch
(Π,A). For every l ∈ {l1, . . . , ln}, we have that l ∈ atom(Π) or l = not p for some p ∈
atom(Π). By Lemma A.5, tl ∈ A iff AT ∩ atom(Π) |= τ [l], and f l ∈ A iff AT ∩ atom(Π) 6|=
τ [l]. We further consider the cases that T v ∈ A and F v ∈ A, respectively:

(1) If T v ∈ A, then F v /∈ D{FD↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | f l ∈ A} 6= {l1, . . . , ln}
and {l ∈ {l1, . . . , ln} | tl ∈ A} 6= ∅, so that AT ∩ atom(Π) |= (τ [l1] ∨ · · · ∨ τ [ln]).

(2) If F v ∈ A, then T v /∈ D{TD↑}(Π,A). That is, {l ∈ {l1, . . . , ln} | tl ∈ A} = ∅ and
{l ∈ {l1, . . . , ln} | f l ∈ A} = {l1, . . . , ln}, so that AT ∩ atom(Π) 6|= (τ [l1] ∨ · · · ∨ τ [ln]).

We have thus shown that T v ∈ A and F v ∈ A imply AT ∩ atom(Π) |= τ [v] and AT ∩
atom(Π) 6|= τ [v], respectively. That is, T v ∈ A iff AT ∩ atom(Π) |= τ [v].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 43

A.2.2 Lemmas on Completeness. In order to abstract from the language constructs admitted
in a program, the following definition formulates conditions under which we call←−sup, −→sup, min ,
and max , respectively, well-behaved. We then proceed by showing that these four concepts are
well-behaved for disjunctive programs.

DEFINITION A.9. Let α be a literal.
Then, we define ←−sup, −→sup, min , and max , respectively, as well-behaved for α if, for every

S ⊆ P and every assignment A, we have that

(1) if←−supA(α, S) holds, then←−supA′(α, S) holds for every A′ ⊆ A;
(2) if −→supA(α, S) holds, then −→supA′(α, S′) holds for every A′ ⊆ A and every S′ ⊆ S;
(3) if ` ∈ minA(α, S), then←−supA∪{`}(α, S) does not hold;

(4) if ` ∈ maxA(α, S), then −→supA∪{`}(α, S) does not hold.

LEMMA A.10. Let α be a disjunctive literal and β a cardinality literal or a possibly negated
conjunction of cardinality literals.

Then, we have that ←−sup and min are well-behaved for α and that −→sup and max are well-
behaved for β.

PROOF. Let S ⊆ P and A an arbitrary assignment.
We first consider the possible cases such that←−supA(α, S) holds:

(1) If α ∈ S, we have that←−supA′(α, S) holds for all assignments A′.
(2) If α = j{l1, . . . , ln}k ∈ card(P), then {l1, . . . , ln} ∩ S 6= ∅ and |{l ∈ {l1, . . . , ln} \ S |

tl ∈ A}| < k. Since for all A′ ⊆ A, we have that |{l ∈ {l1, . . . , ln} \ S | tl ∈ A′}| ≤ |{l ∈
{l1, . . . , ln} \ S | tl ∈ A}| < k, we conclude that←−supA′(α, S) holds.

(3) If α = {l1; . . . ; ln} ∈ disj (P), then {l1, . . . , ln} ∩ S 6= ∅ and {l ∈ {l1, . . . , ln} \ S | tl ∈
A} = ∅. Since for all A′ ⊆ A, we have that {l ∈ {l1, . . . , ln} \ S | tl ∈ A′} ⊆ {l ∈
{l1, . . . , ln} \ S | tl ∈ A} = ∅, we conclude that←−supA′(α, S) holds.

We next consider the possible cases such that ` ∈ minA(α, S):

(1) If α = j{l1, . . . , ln}k ∈ card(P) and ` ∈ minA(α, S) = {f l | l ∈ {l1, . . . , ln} \ S,
tl /∈ A}, then |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| = k − 1. That is, ` = tl /∈ A for some
l ∈ {l1, . . . , ln}\S, so that |{l ∈ {l1, . . . , ln}\S | tl ∈ A∪{`}}| = |{l ∈ {l1, . . . , ln}\S |
tl ∈ A}|+ 1 = k, which means that←−supA∪{`}(α, S) does not hold.

(2) If α = {l1; . . . ; ln} ∈ disj (P) and ` ∈ minA(α, S) = {f l | l ∈ {l1, . . . , ln}\S}, then ` = tl
for some l ∈ {l1, . . . , ln} \ S. We conclude that {l ∈ {l1, . . . , ln} \ S | tl ∈ A ∪ {`}} 6= ∅,
which means that←−supA∪{`}(α, S) does not hold.

We now come to the possible cases such that −→supA(β, S) holds:

(1) If β = not v, where v ∈ P ∪ card(P)∪ conj (P), we have that −→supA′(β, S′) holds for every
assignment A′ and every S′ ⊆ P .

(2) If β ∈ P \ S, then β ∈ P \ S′ for every S′ ⊆ S, so that −→supA′(β, S′) holds for every
assignment A′ and every S′ ⊆ S.

(3) If β = j{l1, . . . , ln}k ∈ card(P), then |{l ∈ {l1, . . . , ln} \ S | f l /∈ A}| ≥ j. Since for
every A′ ⊆ A and every S′ ⊆ S, we have that |{l ∈ {l1, . . . , ln} \ S′ | f l /∈ A′}| ≥ |{l ∈
{l1, . . . , ln} \ S | f l /∈ A}| ≥ j, we conclude that −→supA′(β, S′) holds.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

44 · Martin Gebser and Torsten Schaub

(4) If β = {l1, . . . , ln} ∈ conj (P), then −→supA(l, S) holds for every l ∈ {l1, . . . , ln}. Fur-
thermore, since one of the first three cases applies to each l ∈ {l1, . . . , ln}, we have that
−→supA′(l, S′) holds for every A′ ⊆ A and every S′ ⊆ S, so that −→supA′(β, S′) holds as well.

Finally, we consider the possible cases such that ` ∈ maxA(β, S):

(1) If β = j{l1, . . . , ln}k ∈ card(P) and ` ∈ maxA(β, S) = {tl | l ∈ {l1, . . . , ln}\S,f l /∈ A},
then |{l ∈ {l1, . . . , ln}\S | f l /∈ A}| = j. That is, ` = f l /∈ A for some l ∈ {l1, . . . , ln}\S,
so that |{l ∈ {l1, . . . , ln}\S | f l /∈ A∪{`}}| = |{l ∈ {l1, . . . , ln}\S | f l /∈ A}|−1 = j−1,
which means that −→supA∪{`}(β, S) does not hold.

(2) If β = {l1, . . . , ln} ∈ conj (P) and ` ∈ maxA(β, S) =
⋃
l∈{l1,...,ln}maxA(l, S), then

` ∈ maxA(l, S) for some l ∈ {l1, . . . , ln} ∩ card(P). That is, the previous case applies to l,
so that −→supA∪{`}(l, S) and −→supA∪{`}(β, S) do not hold.

We have thus, for S ⊆ P and an arbitrary assignment A, considered all possible cases and shown
that←−sup and min are well-behaved for α and that −→sup and max are well-behaved for β.

The concept of well-behavedness allows us to identify the property that supA(Π, S, T) is anti-
monotone wrt both A and T .

LEMMA A.11. Let Π be a disjunctive program, S ⊆ P , T ⊆ P , and A an assignment.
If←−sup and−→sup are well-behaved for all literals in {α | (α← β) ∈ Π} and {β | (α← β) ∈ Π},

respectively, then we have that supA(Π, S, T) ⊆ supA′(Π, S, T
′) for every A′ ⊆ A and every

T ′ ⊆ T .

PROOF. Assume that ←−sup and −→sup are well-behaved for all literals in {α | (α ← β) ∈ Π}
and {β | (α ← β) ∈ Π}, respectively, and consider any (α ← β) ∈ supA(Π, S, T) =
{(α ← β) ∈ Π | fβ /∈ A,←−supA(α, S),−→supA(β, T)}. In view of Definition A.9, for ev-
ery A′ ⊆ A and every T ′ ⊆ T , we have that ←−supA(α, S) and −→supA(β, T) imply ←−supA′(α, S)
and −→supA′(β, T ′), respectively, and fβ /∈ A′ follows immediately from fβ /∈ A. From this,
we conclude that (α ← β) ∈ supA′(Π, S, T

′) = {(α ← β) ∈ Π | fβ /∈ A′,←−supA′(α, S),
−→supA′(β, T ′)}.

We are now ready to prove that, for a total assignment A such that the deterministic tableau
rules in Figure 4 do not yield a contradiction, the entries of A are preserved when applying these
tableau rules wrt any assignment contained in A.

LEMMA A.12. Let Π be a disjunctive program and A a total assignment such that tβ /∈ A or
fα /∈ A for every (α← β) ∈ Π and supA(Π, S, S) 6= ∅ or AT ∩S = ∅ for every S ⊆ atom(Π).

If←−sup and min are well-behaved for all literals in {α | (α ← β) ∈ Π} and if −→sup and max
are well-behaved for all literals in {β | (α ← β) ∈ Π}, then for every A′ ⊆ A, we have that
D{(a)–(f)}(Π,A

′) ⊆ A.

PROOF. Assume that ←−sup and min are well-behaved for all literals in {α | (α ← β) ∈ Π}
and that −→sup and max are well-behaved for all literals in {β | (α ← β) ∈ Π}, and consider any
A′ ⊆ A. We show that any entry deducible by I ↑, I ↓, N ↑, N ↓, U ↑, or U ↓ in (Π,A′) belongs
to A:

(I ↑) If tα ∈ D{I↑}(Π,A′), we have that tβ ∈ A′ for some (α ← β) ∈ Π. Since tβ ∈ A, it
holds that fα /∈ A, which yields tα ∈ A because A is total.

(I ↓) If fβ ∈ D{I↓}(Π,A′), we have that fα ∈ A′ for some (α ← β) ∈ Π. Since fα ∈ A, it
holds that tβ /∈ A, which yields fβ ∈ A because A is total.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 45

(N ↑) If F p ∈ D{N↑}(Π,A
′), we have that p ∈ atom(Π) and supA′(Π, {p}, ∅) = ∅. By

Lemma A.11, we conclude that supA(Π, {p}, {p}) = ∅. Thus, it holds that T p /∈ A, which
yields F p ∈ A because A is total.

(N ↓) If ` ∈ D{N↓}(Π,A
′), we have that ` ∈ {tβ} ∪ minA′(α, {p}) ∪ maxA′(β, ∅) for some

p ∈ (A′)
T ∩ atom(Π) such that supA′(Π, {p}, ∅) = {α ← β}. Since p ∈ AT ∩ atom(Π),

it holds that supA(Π, {p}, {p}) 6= ∅. However, given that min and max are well-behaved for
α and β, respectively, we also have that (α ← β) /∈ supA′∪{`}(Π, {p}, ∅). By Lemma A.11,
we conclude that supA∪{`}(Π, {p}, {p}) ⊆ supA′∪{`}(Π, {p}, ∅) ⊆ supA′(Π, {p}, ∅) \ {α ←
β} = ∅. That is, supA∪{`}(Π, {p}, {p}) = ∅ 6= supA(Π, {p}, {p}), which yields ` /∈ A.
Finally, since A is total, ` /∈ A implies ` ∈ A.

(U ↑) If F p ∈ D{U↑}(Π,A
′), we have that p ∈ S for some S ⊆ atom(Π) such that

supA′(Π, S, S) = ∅. By Lemma A.11, we conclude that supA(Π, S, S) = ∅. Thus, it holds
that T p /∈ A, which yields F p ∈ A because A is total.

(U ↓) If ` ∈ D{U↓}(Π,A
′), we have that ` ∈ {tβ} ∪ minA′(α, S) ∪ maxA′(β, S) for some

S ⊆ atom(Π) such that (A′)
T ∩ S 6= ∅ and supA′(Π, S, S) = {α← β}. Since AT ∩ S 6= ∅,

it holds that supA(Π, S, S) 6= ∅. However, given that min and max are well-behaved for α
and β, respectively, we also have that (α ← β) /∈ supA′∪{`}(Π, S, S). By Lemma A.11, we
conclude that supA∪{`}(Π, S, S) ⊆ supA′∪{`}(Π, S, S) ⊆ supA′(Π, S, S) \ {α ← β} = ∅.
That is, supA∪{`}(Π, S, S) = ∅ 6= supA(Π, S, S), which yields ` /∈ A. Finally, since A is
total, ` /∈ A implies ` ∈ A.

We have thus shown that, in every branch (Π,A′) such that A′ ⊆ A, any entry deducible by I ↑,
I ↓, N ↑, N ↓, U ↑, or U ↓ belongs to A, so that D{(a)–(f)}(Π,A

′) ⊆ A.

Finally, the next two lemmas show that, for a total assignment A such that the truth values
of variables v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π) match the valuation of τ [v] wrt
AT ∩ atom(Π), the language-specific tableau rules in Figure 5, 7, and 8, respectively, preserve
the entries of A when applied wrt any assignment contained in A.

LEMMA A.13. Let Π be a disjunctive program, X ⊆ atom(Π), and

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}.

Then, for every v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), we have that

(1) tv ∈ A iff X |= τ [v];
(2) tnot v ∈ A iff X |= τ [not v];
(3) fv ∈ A iff X 6|= τ [v];
(4) fnot v ∈ A iff X 6|= τ [not v].

PROOF. By the definition of A, for every v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π):

(1) tv ∈ A iff T v ∈ A iff X |= τ [v];
(2) tnot v ∈ A iff F v ∈ A iff X 6|= τ [v] iff X |= ¬τ [v] iff X |= τ [not v];
(3) fv ∈ A iff F v ∈ A iff X 6|= τ [v];
(4) fnot v ∈ A iff T v ∈ A iff X |= τ [v] iff X 6|= ¬τ [v] iff X 6|= τ [not v].

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

46 · Martin Gebser and Torsten Schaub

We have thus shown that all items of the statement hold.

LEMMA A.14. Let Π be a disjunctive program, X ⊆ atom(Π), and

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}.

Then, for every A′ ⊆ A, we have that D{(h)–(v)}(Π,A
′) ⊆ A.

PROOF. By Lemma A.13, for every literal l = v or l = not v, where v ∈ atom(Π)∪conj (Π)∪
card(Π) ∪ disj (Π), we have that tl ∈ A iff X |= τ [l], and that f l ∈ A iff X 6|= τ [l]. Hence, we
can treat such conditions as synonyms in the following consideration of some A′ ⊆ A and the
tableau rules (h)–(v):

(TC↑) If {l1, . . . , ln} ∈ conj (Π) such that {tl1, . . . , tln} ⊆ A′, we have that X |= τ [l1], . . . ,
X |= τ [ln]. That is, X |= (τ [l1] ∧ · · · ∧ τ [ln]), so that T {l1, . . . , ln} ∈ A.

(TC↓) If {l1, . . . , li−1, li, li+1, . . . , ln} ∈ conj (Π) such that {F {l1, . . . , li−1, li, li+1, . . . , ln},
tl1, . . . , tli−1, tli+1, . . . , tln} ⊆ A′, we have that X |= τ [l1], . . . , X |= τ [li−1], X |= τ [li+1],
. . . , X |= τ [ln] butX 6|= (τ [l1]∧· · ·∧τ [li−1]∧τ [li]∧τ [li+1]∧· · ·∧τ [ln]). That is, X 6|= τ [li],
so that f li ∈ A.

(FC↑) If {l1, . . . , li, . . . , ln} ∈ conj (Π) such that f li ∈ A′, we have that X 6|= τ [li]. That is,
X 6|= (τ [l1] ∧ · · · ∧ τ [li] ∧ · · · ∧ τ [ln]), so that F {l1, . . . , li, . . . , ln} ∈ A.

(FC↓) If {l1, . . . , ln} ∈ conj (Π) such that T {l1, . . . , ln} ∈ A′, we have that X |= (τ [l1]∧ · · · ∧
τ [ln]). That is, X |= τ [l1], . . . , X |= τ [ln], so that {tl1, . . . , tln} ⊆ A.

(TLU ↑) If j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ card(Π) such that {tl1, . . . , tlj ,
f lk+1, . . . ,f ln} ⊆ A′, for any L ⊆ {l1, . . . , ln} such that |L| < j, we have that
{l1, . . . , lj} 6⊆ L, that is, X |= (

∨
l∈{l1,...,ln}\Lτ [l]). Furthermore, for any L ⊆ {l1, . . . , ln}

such that k < |L|, we have that L ∩ {lk+1, . . . , ln} 6= ∅, that is, X 6|= (
∧
l∈Lτ [l]). We obtain

that

X |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
,

so that T j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ A.
(TLU↓) If j{l1, . . . , lj−1, lj , . . . , lk, lk+1, . . . , ln}k ∈ card(Π) such that
{F j{l1, . . . , lj−1, lj , . . . , lk, lk+1, . . . , ln}k, tl1, . . . , tlj−1,f lk+1, . . . ,f ln} ⊆ A′, we
have that

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

However, for any L ⊆ {l1, . . . , ln} such that k < |L|, we have that L ∩ {lk+1, . . . , ln} 6= ∅,
that is, X 6|= (

∧
l∈Lτ [l]). Furthermore, for any L ⊆ {l1, . . . , ln} such that |L| < j and

L 6= {l1, . . . , lj−1}, we have that {l1, . . . , lj−1} 6⊆ L, that is, X |= (
∨
l∈{l1,...,ln}\Lτ [l]). We

obtain that

X |=
∧
L⊆{l1,...,ln},(|L|<j and L6={l1,...,lj−1}) or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

That is, X 6|=
(
(τ [l1] ∧ · · · ∧ τ [lj−1]) → (τ [lj] ∨ · · · ∨ τ [lk] ∨ τ [lk+1] ∨ · · · ∨ τ [ln])

)
, so that

X 6|= τ [lj], . . . , X 6|= τ [lk] and {f lj , . . . ,f lk} ⊆ A.
(TLU ↓) If j{l1, . . . , lj , lj+1, . . . , lk+1, lk+2, . . . , ln}k ∈ card(Π) such that
{F j{l1, . . . , lj , lj+1, . . . , lk+1, lk+2, . . . , ln}k, tl1, . . . , tlj ,f lk+2, . . . ,f ln} ⊆ A′, we

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 47

have that

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

However, for any L ⊆ {l1, . . . , ln} such that |L| < j, we have that {l1, . . . , lj} 6⊆ L, that
is, X |= (

∨
l∈{l1,...,ln}\Lτ [l]). Furthermore, for any L ⊆ {l1, . . . , ln} such that k < |L| and

L 6= {l1, . . . , lk+1}, we have that L ∩ {lk+2, . . . , ln} 6= ∅, that is, X 6|= (
∧
l∈Lτ [l]). We obtain

that

X |=
∧
L⊆{l1,...,ln},|L|<j or (k<|L| and L 6={l1,...,lk+1})

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

That is, X 6|=
(
(τ [l1]∧ · · · ∧ τ [lj]∧ τ [lj+1]∧ · · · ∧ τ [lk+1])→ (τ [lk+2]∨ · · · ∨ τ [ln])

)
, so that

X |= τ [lj+1], . . . , X |= τ [lk+1] and {tlj+1, . . . , tlk+1} ⊆ A.
(FL↑) If j{l1, . . . , lj , . . . , ln}k ∈ card(Π) such that {f lj , . . . ,f ln} ⊆ A′, for L′ = {l ∈
{l1, . . . , ln} | X |= τ [l]}, we have that L′ ⊆ {l1, . . . , lj−1} and |L′| < j, while X 6|= τ [l] for
all l ∈ {l1, . . . , ln} \ L′. Hence, X 6|=

(
(
∧
l∈L′τ [l])→ (

∨
l∈{l1,...,ln}\L′τ [l])

)
and

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
,

so that F j{l1, . . . , lj , . . . , ln}k ∈ A.
(FL↓) If j{l1, . . . , lj , lj+1, . . . , ln}k ∈ card(Π) such that {T j{l1, . . . , lj , lj+1, . . . , ln}k,
f lj+1, . . . ,f ln} ⊆ A′, we have that

X |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

In particular, for every 1 ≤ i ≤ j and Li = {l ∈ {l1, . . . , ln} \ {li} | X |= τ [l]},
we have that Li ⊆ {l1, . . . , lj} \ {li} and |Li| < j, while X 6|= τ [l] for every l ∈
{l1, . . . , ln} \ (Li ∪ {li}). Hence, X |=

(
(
∧
l∈Li

τ [l]) → (
∨
l∈{l1,...,ln}\Li

τ [l])
)

but X 6|=(
(
∧
l∈Li

τ [l]) → (
∨
l∈{l1,...,ln}\(Li∪{li})τ [l])

)
. That is, X |= τ [li] for every 1 ≤ i ≤ j, so that

{tl1, . . . , tlj} ⊆ A.
(FU ↑) If j{l1, . . . , lk+1, . . . , ln}k ∈ card(Π) such that {tl1, . . . , tlk+1} ⊆ A′, for L′ = {l ∈
{l1, . . . , ln} | X |= τ [l]}, we have that {l1, . . . , lk+1} ⊆ L′ and k < |L′|, while X 6|= τ [l] for
all l ∈ {l1, . . . , ln} \ L′. Hence, X 6|=

(
(
∧
l∈L′τ [l])→ (

∨
l∈{l1,...,ln}\L′τ [l])

)
and

X 6|=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
,

so that F j{l1, . . . , lk+1, . . . , ln}k ∈ A.
(FU ↓) If j{l1, . . . , lk, lk+1, . . . , ln}k ∈ card(Π) such that {T j{l1, . . . , lk, lk+1, . . . , ln}k,
tl1, . . . , tlk} ⊆ A′, we have that

X |=
∧
L⊆{l1,...,ln},|L|<j or k<|L|

(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

)
.

In particular, for every k < i ≤ n and Li = {l ∈ {l1, . . . , ln} | X |= τ [l]} ∪ {li}, we have
that {l1, . . . , lk} ∪ {li} ⊆ Li and k < |Li|, while X 6|= τ [l] for every l ∈ {l1, . . . , ln} \
Li. Hence, X |=

(
(
∧
l∈Li

τ [l]) → (
∨
l∈{l1,...,ln}\Li

τ [l])
)

but X 6|=
(
(
∧
l∈Li\{li}τ [l]) →

(
∨
l∈{l1,...,ln}\Li

τ [l])
)
. That is,X 6|= τ [li] for every k < i ≤ n, so that {f lk+1, . . . ,f ln} ⊆ A.

(TD↑) If {l1; . . . ; li; . . . ; ln} ∈ disj (Π) such that tli ∈ A′, we have that X |= τ [li]. That is,
X |= (τ [l1] ∨ · · · ∨ τ [li] ∨ · · · ∨ τ [ln]), so that T {l1; . . . ; li; . . . ; ln} ∈ A.

(TD↓) If {l1; . . . ; ln} ∈ disj (Π) such that F {l1; . . . ; ln} ∈ A′, we have that X 6|= (τ [l1]∨ · · · ∨
τ [ln]). That is, X 6|= τ [l1], . . . , X 6|= τ [ln], so that {f l1, . . . ,f ln} ⊆ A.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

48 · Martin Gebser and Torsten Schaub

(FD↑) If {l1; . . . ; ln} ∈ disj (Π) such that {f l1, . . . ,f ln} ⊆ A′, we have that X 6|= τ [l1], . . . ,
X 6|= τ [ln]. That is, X 6|= (τ [l1] ∨ · · · ∨ τ [ln]), so that F {l1; . . . ; ln} ∈ A.

(FD↓) If {l1; . . . ; li−1; li; li+1; . . . ; ln} ∈ disj (Π) such that {T {l1; . . . ; li−1; li; li+1; . . . ; ln},
f l1, . . . ,f li−1,f li+1, . . . ,f ln} ⊆ A′, we have that X 6|= τ [l1], . . . , X 6|= τ [li−1], X 6|=
τ [li+1], . . . , X 6|= τ [ln] but X |= (τ [l1] ∨ · · · ∨ τ [li−1] ∨ τ [li] ∨ τ [li+1] ∨ · · · ∨ τ [ln]). That is,
X |= τ [li], so that tli ∈ A.

We have thus shown that, in every branch (Π,A′) such that A′ ⊆ A, any entry deducible by some
of the tableau rules (h)–(v) belongs to A, so that D{(h)–(v)}(Π,A

′) ⊆ A.

A.2.3 Proofs of Soundness and Completeness. The following theorem characterizes the an-
swer sets of a disjunctive program in terms of total assignments A such that the generic tableau
rules in Figure 4 do not yield a contradiction and the entries in A match the valuations of propo-
sitional formulas associated with their variables.

THEOREM A.15. Let Π be a disjunctive program and X ⊆ atom(Π).
Then, we have that X is an answer set of Π iff

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}

is such that tβ /∈ A or fα /∈ A for every (α← β) ∈ Π and supA(Π, S, S) 6= ∅ or AT ∩ S = ∅
for every S ⊆ atom(Π).

PROOF. By Lemma A.13, for every literal l = v or l = not v, where v ∈ atom(Π)∪conj (Π)∪
card(Π) ∪ disj (Π), we have that tl ∈ A iff X |= τ [l], and that f l ∈ A iff X 6|= τ [l]. Hence, we
can treat such conditions as synonyms in the following consideration of the implications of the
statement.

(⇒) Assume that X is an answer set of Π. Then, for every (α ← β) ∈ Π, we have that
X |=

(
τ [β] → τ [α]

)
if α /∈ card(Π), and that X |=

(
τ [β] →

(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

))
if

α ∈ card(Π). This implies that X 6|= τ [β] or X |= τ [α], from which we conclude that tβ /∈ A
or fα /∈ A. Furthermore, for any S ⊆ atom(Π) such that AT ∩ S = X ∩ S 6= ∅, we have
that Y = X \ S ⊂ X is not a model of (τ [Π])X . That is, Y 6|= φX for some φ ∈ τ [Π],
where φ =

(
τ [β] → τ [α]

)
if α /∈ card(Π) or φ =

(
τ [β] →

(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

))
if

α ∈ card(Π) for some (α← β) ∈ Π. In view ofX |= φ but Y 6|= φX , we conclude that φX 6= ⊥,
Y |= (τ [β])X , X |= τ [β], and X |= τ [α]. Furthermore, from X |= τ [β], we immediately obtain
fβ /∈ A.

Given Y |= (τ [β])X , we first show that −→supA(β, S) holds. The following cases are possible:

(1) β = not v for some v ∈ atom(Π) ∪ conj (Π) ∪ card(Π), so that −→supA(β, S) holds.
(2) β ∈ Y = X \ S, so that β ∈ atom(Π) \ S and −→supA(β, S) hold.
(3) β = j{l1, . . . , ln}k ∈ card(Π) and

(τ [β])X =
(∧

L⊆{l1,...,ln},|L|<j or k<|L|
(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

))X
.

Since Y |= (τ [β])X , for any L ⊆ {l1, . . . , ln} such that |L| < j, we have that {l ∈ L |
f l ∈ A} 6= ∅, L ∩ S 6= ∅, or {l ∈ {l1, . . . , ln} \ L | f l /∈ A} 6⊆ S. However, regarding
L′ = {l ∈ {l1, . . . , ln} \ S | f l /∈ A}, it holds that {l ∈ L′ | f l ∈ A} = ∅, L′ ∩ S = ∅, and
{l ∈ {l1, . . . , ln} \ L′ | f l /∈ A} ⊆ S. It follows that |L′| ≥ j, so that −→supA(β, S) holds.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 49

(4) β = {l1, . . . , ln} ∈ conj (Π) and (τ [β])X = (
∧
l∈{l1,...,ln}τ [l])X =

∧
l∈{l1,...,ln}(τ [l])X .

Since Y |= (τ [β])X , we conclude that Y |= (τ [l])X for every l ∈ {l1, . . . , ln}. Given this,
one of the first three cases applies to each l ∈ {l1, . . . , ln}, from which we conclude that
−→supA(l, S) holds, so that −→supA(β, S) holds as well.

We have thus shown that −→supA(β, S) holds.
We now turn to proving that←−supA(α, S) holds. For this, note that, if α /∈ card(Π), X |= τ [α]

but Y 6|= (τ [α])X yield α ∈ atom(Π) ∪ disj (Π). Hence, the following cases are possible:

(1) α ∈ S, so that←−supA(α, S) holds.
(2) α = {l1; . . . ; ln} ∈ disj (Π) and ∅ 6= {l ∈ {l1, . . . , ln} | tl ∈ A} ⊆ S. That is, {l1, . . . , ln}∩

S 6= ∅ and {l ∈ {l1, . . . , ln} \ S | tl ∈ A} = ∅, so that←−supA(α, S) holds.
(3) α = j{l1, . . . , ln}k ∈ card(Π) and ({l1, . . . , ln} ∩ X) ∩ S 6= ∅ because X |= τ [α] but

Y 6|=
(
τ [α]∧

∧
p∈atom(α)(p∨¬p)

)X
.24 Furthermore, X |= τ [α] implies |{l ∈ {l1, . . . , ln} |

tl ∈ A}| ≤ k. Along with ({l1, . . . , ln} ∩X) ∩ S 6= ∅, that is, {l ∈ {l1, . . . , ln} ∩ S | tl ∈
A} 6= ∅, we conclude that |{l ∈ {l1, . . . , ln} \ S | tl ∈ A}| < k, so that←−supA(α, S) holds.

We have thus shown that ←−supA(α, S) holds. Along with the previous observations that
fβ /∈ A and that −→supA(β, S) holds, we conclude that (α ← β) ∈ supA(Π, S, S), so that
supA(Π, S, S) 6= ∅. Since the choice of S ⊆ atom(Π) such that AT ∩ S 6= ∅ was arbitrary,
this establishes that supA(Π, S, S) 6= ∅ or AT ∩ S = ∅ for every S ⊆ atom(Π).

(⇐) Assume that X is not an answer set of Π. Then, there is either some (α ← β) ∈ Π such
that X |= τ [β] and X 6|= τ [α] or some Y ⊂ X such that Y |= (τ [Π])X . In the former case, we
have that tβ ∈ A and fα ∈ A for some (α← β) ∈ Π. In the latter case, let S = X \Y . Then, it
holds that ∅ 6= AT ∩ S = S. For the sake of contradiction, assume that supA(Π, S, S) 6= ∅, that
is, (α← β) ∈ Π such that fβ /∈ A,←−supA(α, S), and −→supA(β, S) hold.

In view of←−supA(α, S), the following cases are possible:

(1) α ∈ S, (τ [α])X = α, and so

Y 6|= (τ [α])X .

(2) α = {l1; . . . ; ln} ∈ disj (Π), {l ∈ {l1, . . . , ln} \ S | tl ∈ A} = ∅, (τ [α])X ≡∨
l∈{l1,...,ln}∩Sτ [l] =

∨
p∈{l1,...,ln}∩Sp, and so

Y 6|= (τ [α])X .

(3) α = j{l1, . . . , ln}k ∈ card(Π), {l1, . . . , ln} ∩ S = atom(α) ∩ S 6= ∅, and so

Y 6|=
(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)X
.

We have thus shown that Y 6|= (τ [α])X if α /∈ card(Π), and that Y 6|=
(
τ [α] ∧∧

p∈atom(α)(p ∨ ¬p)
)X

if α ∈ card(Π).
We now turn to β, for which fβ /∈ A implies tβ ∈ A, that is, X |= τ [β]. Furthermore, we

have that −→supA(β, S) holds, and the following cases are possible:

(1) β = not v for some v ∈ atom(Π) ∪ conj (Π) ∪ card(Π), (τ [β])X = ¬⊥, and so

Y |= (τ [β])X .

24Note that all atoms occurring in
(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

)X belong to {l1, . . . , ln} ∩X .

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

50 · Martin Gebser and Torsten Schaub

(2) β ∈ atom(Π) \ S, (τ [β])X = β ∈ Y , and so

Y |= (τ [β])X .

(3) β = j{l1, . . . , ln}k ∈ card(Π) and

(τ [β])X =
(∧

L⊆{l1,...,ln},|L|<j or k<|L|
(
(
∧
l∈Lτ [l])→ (

∨
l∈{l1,...,ln}\Lτ [l])

))X
.

For any L ⊆ {l1, . . . , ln} such that k < |L|, X |= τ [β] implies (
∧
l∈Lτ [l])X = ⊥, so that

Y 6|= (
∧
l∈Lτ [l])X . Furthermore, since−→supA(β, S) holds, we have that |{l ∈ {l1, . . . , ln}\S |

f l /∈ A}| ≥ j. Hence, for any L ⊆ {l1, . . . , ln} such that |L| < j, it holds that {l ∈
{l1, . . . , ln}\S | f l /∈ A} = {l ∈ {l1, . . . , ln}\S | tl ∈ A} 6⊆ L and {l ∈ {l1, . . . , ln}\L |
tl ∈ A} 6⊆ S, so that Y |= (

∨
l∈{l1,...,ln}\Lτ [l])X . Combining the cases for |L| < j and

k < |L| yields that

Y |= (τ [β])X .

(4) β = {l1, . . . , ln} ∈ conj (Π) and (τ [β])X = (
∧
l∈{l1,...,ln}τ [l])X =

∧
l∈{l1,...,ln}(τ [l])X .

For every l ∈ {l1, . . . , ln},X |= τ [β] and−→supA(β, S) implyX |= τ [l] and−→supA(l, S). Given
this, one of the first three cases applies to each l ∈ {l1, . . . , ln}, from which we conclude that
Y |= (τ [l])X , and so

Y |= (τ [β])X .

We have thus shown that Y |= (τ [β])X . Along with Y 6|= (τ [α])X if α /∈ card(Π) and Y 6|=(
τ [α]∧

∧
p∈atom(α)(p∨¬p)

)X
if α ∈ card(Π), we further conclude that Y 6|=

(
τ [β]→ τ [α]

)X
if

α /∈ card(Π) and Y 6|=
(
τ [β]→

(
τ [α] ∧

∧
p∈atom(α)(p ∨ ¬p)

))X
if α ∈ card(Π). That is, Y 6|=

(τ [Π])X , which is a contradiction to our initial assumption. This shows that supA(Π, S, S) 6= ∅
cannot be the case, so that supA(Π, S, S) = ∅ must hold. In addition, ∅ 6= AT ∩ S = S holds by
the choice of S = X \ Y .

We are now ready to show Theorem 5.1, 5.2, 5.5, and 5.6, stating the soundness and complete-
ness of tableau calculi for unary, conjunctive, cardinality, and disjunctive programs, respectively.
Since disjunctive programs include unary, conjunctive, and cardinality programs, it is sufficient to
prove Theorem 5.6.

THEOREM 5.6. Let Π be a disjunctive program.
Then, we have that the following holds for the tableau calculus consisting of the tableau rules

(a)–(v):

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Program Π has an answer set X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that AT ∩ atom(Π) = X .
(3) Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

PROOF. We separately consider the items of the statement:

(1) By applying Cut[atom(Π)∪conj (Π)∪card(Π)∪disj (Π)], an incomplete branch in a tableau
for Π and ∅ can be extended to a subtableau such that, for every branch (Π,A) in it, we have
that atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π) ⊆ AT ∪AF . Furthermore, if (Π,A) is not
complete, then D{(a)–(f),(h)–(v)}(Π,A) 6⊆ A, so that the application of some of the tableau rules

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 51

(a)–(f) in Figure 4 or (h)–(v) in Figure 5, 7, and 8 yields a contradictory and thus complete
branch.

(2) By Theorem A.15, for every X ⊆ atom(Π), we have that X is an answer set of Π iff the
total assignment

A = {T v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X |= τ [v]}
∪ {F v | v ∈ atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π), X 6|= τ [v]}

is such that tβ /∈ A or fα /∈ A for every (α ← β) ∈ Π and supA(Π, S, S) 6= ∅ or
AT ∩ S = ∅ for every S ⊆ atom(Π). Given this, we separately show the implications of the
second item.
(⇒) Assume that X is an answer set of Π. Then, Lemma A.10, A.12, and A.14 establish
that D{(a)–(f),(h)–(v)}(Π,A

′) ⊆ A for every A′ ⊆ A. Furthermore, for any application of
Cut[atom(Π) ∪ conj (Π) ∪ card(Π) ∪ disj (Π)] on a branch (Π,A′) such that A′ ⊆ A, we
have that the assignment in exactly one of the resulting branches is contained in A. Along
with ∅ ⊆ A, it follows that every complete tableau for Π and ∅ has a non-contradictory
branch (Π,A) such that AT ∩ atom(Π) = X . By Lemma A.6, A.7, and A.8, we also have
that (Π,A) is the unique non-contradictory complete branch such that AT ∩ atom(Π) = X .
(⇐) Assume that (Π,A) is a non-contradictory complete branch. Then, for every v ∈
atom(Π)∪ conj (Π)∪ card(Π)∪ disj (Π), Lemma A.6, A.7, and A.8 establish that T v ∈ A
iff AT ∩ atom(Π) |= τ [v]. Furthermore, Lemma A.3 and A.4 show that tβ /∈ A or fα /∈ A
for every (α← β) ∈ Π and that supA(Π, S, S) 6= ∅ or AT ∩S = ∅ for every S ⊆ atom(Π).
By Theorem A.15, we conclude that X = AT ∩ atom(Π) is an answer set of Π.

(3) From the second item, if Π has an answer set, then every complete tableau for Π and ∅ has a
non-contradictory branch; by the first item, there is some complete tableau for Π and ∅, so that
some complete tableau for Π and ∅ is not a refutation. Conversely, if some complete tableau
for Π and ∅ is not a refutation, it has a non-contradictory branch (Π,A), and AT ∩ atom(Π)
is an answer set of Π, as shown in the proof of the second item.

We have thus shown that all items of the statement hold.

A.2.4 Proofs of Correspondences on Normal Programs. We now show the correspondences
stated in Proposition 5.3 and 5.4 between the basic tableau rules in Figure 1 and the (generic)
tableau rules in Figure 4 and 5, respectively, on the common class of normal programs.

PROPOSITION 5.3. Let Π be a normal program, A an assignment, and F,G any pair of a
basic tableau rule F and a generic tableau rule G belonging to the same line in Table I.

Then, we have that

(1) D{F}(Π,A) = D{G}(Π,A) if F /∈ {BTA,WFJ[2atom(Π)]};
(2) D{BTA}(Π,A) ⊇ D{N↓}(Π,A) and, if D{BTA}(Π,A) 6= D{N↓}(Π,A), then A ∪

D{N↑}(Π,A) is contradictory;

(3) D{WFJ[2atom(Π)]}(Π,A) ⊇ D{U↓}(Π,A) and, if TB ∈ D{WFJ[2atom(Π)]}(Π,A) \
D{U↓}(Π,A), then A ∪D{U↑}(Π,A ∪ {FB}) is contradictory.

PROOF. The correspondences are obvious for the pairs (c), (a), (d), (b), (a), (h), (b), (i), (e), (j),
and (f), (k). It remains to show the statement for the pairs FFA,N ↑, BTA,N ↓, WFN[2atom(Π)],U ↑,
and WFJ[2atom(Π)],U ↓:

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

52 · Martin Gebser and Torsten Schaub

(FFA,N ↑) We have that F p ∈ D{FFA}(Π,A) iff p ∈ atom(Π) such that body(p) ⊆ AF iff
p ∈ atom(Π) such that supA(Π, {p}, ∅) = ∅ iff F p ∈ D{N↑}(Π,A).

(BTA,N ↓) If TB ∈ D{N↓}(Π,A), then supA(Π, {p}, ∅) = {p ← B} for some p ∈ AT ∩
atom(Π), so that α 6= p or Fβ ∈ A for every (α ← β) ∈ Π \ {p ← B}. From this,
we conclude that body(p) \ AF = {B}, so that TB ∈ D{BTA}(Π,A). Furthermore, if
TB′ ∈ D{BTA}(Π,A) \D{N↓}(Π,A), then body(p′) \AF ⊆ {B′} for some B′ ∈ body(Π)
and p′ ∈ AT ∩ atom(Π), which implies that supA(Π, {p′}, ∅) ⊆ {p′ ← B′}. However,
TB′ /∈ D{N↓}(Π,A) yields that (p′ ← B′) /∈ supA(Π, {p′}, ∅). Hence, we have that
supA(Π, {p′}, ∅) = ∅, and A ∪D{N↑}(Π,A) is contradictory because p′ ∈ AT ∩ atom(Π).

(WFN[2atom(Π)],U ↑) We have that F p ∈ D{WFN[2atom(Π)]}(Π,A) iff p ∈ S for some S ⊆
atom(Π) such that EBΠ(S) ⊆ AF iff p ∈ S for some S ⊆ atom(Π) such that
supA(Π, S, S) = ∅ iff F p ∈ D{U↑}(Π,A).

(WFJ[2atom(Π)],U ↓) If TB ∈ D{U↓}(Π,A), then supA(Π, S, S) = {p ← B}, where p ∈ S
for some S ⊆ atom(Π) such that AT ∩ S 6= ∅. From this, we conclude that EBΠ(S) \AF =
{B}, so that TB ∈ D{WFJ[2atom(Π)]}(Π,A). Furthermore, if TB′ ∈ D{WFJ[2atom(Π)]}(Π,A) \
D{U↓}(Π,A), then EBΠ(S′) \AF ⊆ {B′} for some B′ ∈ body(Π) and S′ ⊆ atom(Π) such
that AT ∩ S′ 6= ∅, which implies that supA(Π, S′, S′) ⊆ {p′ ← B′ | p′ ∈ S′}. In view of
Lemma A.10 and A.11, we have that supA∪{FB′}(Π, S

′, S′) = ∅, and A ∪ D{U↑}(Π,A ∪
{FB′}) is contradictory because AT ∩ S′ 6= ∅.

We have thus shown that the stated correspondences according to Table I hold.

PROPOSITION 5.4. Let Π be a normal program, A an assignment, T a tableau calculus con-
taining any subset of the tableau rules in Figure 1 for Ω = 2atom(Π), and T ′ the generic image
of T .

If FFA ∈ T or BTA /∈ T and if WFJ[Ω] ∈ T implies that {FTB,FFB,WFN[Ω],Cut[Γ]} ⊆ T
for Γ ⊆ atom(Π) ∪ body(Π) such that atom(Π) ⊆ Γ or body(Π) ⊆ Γ, then we have that the
following holds:

(1) For every complete tableau of T for Π and A with n branches, there is a complete
tableau of T ′ for Π and A with the same non-contradictory branches and at most
(max{|atom(Π)|, |body(Π)|}+ 1) ∗ n branches overall.

(2) Every (complete) tableau of T ′ for Π and A is a (complete) tableau of T for Π and A.

PROOF. Assume that FFA ∈ T or BTA /∈ T and that WFJ[Ω] ∈ T implies that {FTB,FFB,
WFN[Ω],Cut[Γ]} ⊆ T for Γ ⊆ atom(Π) ∪ body(Π) such that atom(Π) ⊆ Γ or body(Π) ⊆ Γ.
By Proposition 5.3, we immediately conclude that every (complete) tableau of T ′ for Π and A is
a (complete) tableau of T for Π and A as well. Furthermore, in view of the first two items in the
statement of Proposition 5.3, we have that any application of a tableau rule in T other than WFJ[Ω]
on a branch (Π,A′) extending (Π,A) leads to the same result, in terms of deduced entries or a
contradiction, respectively, by applying a corresponding tableau rule in T ′. Hence, it is sufficient
to show that, if there is some TB ∈ D{WFJ[Ω]}(Π,A

′)\ (A′∪D{TC↑,U↓}(Π,A
′)), there is a cor-

responding subtableau of T ′ that introduces at most |(B+∪B−)\((A′)T ∪(A′)
F

)| contradictory
branches, while a single remaining branch includes TB (and possibly further entries belonging
to any non-contradictory branch extending (Π,A′ ∪ {TB}) in a complete tableau of T for Π
and A). To this end, assume that TB ∈ D{WFJ[Ω]}(Π,A

′) \ (A′ ∪ D{TC↑,U↓}(Π,A
′)). Then,

EBΠ(S) \ (A′)
F ⊆ {B} for some S ⊆ atom(Π) such that (A′)

T ∩ S 6= ∅, supA′(Π, S, S) ⊆
{p← B | p ∈ S}, and |supA′(Π, S, S)| 6= 1. Furthermore, one of the following cases applies:
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 53

(1) If supA′(Π, S, S) = ∅, we have that F p ∈ D{U↑}(Π,A
′) for every p ∈ S. Given that

(A′)
T ∩ S 6= ∅, we conclude that (Π,A′) can be extended to a contradictory branch by an

application of U ↑.
(2) If supA′(Π, S, S) 6= ∅, in view of Lemma A.10 and A.11, we have that

supA′∪{FB}(Π, S, S) = ∅, so that an application of U ↑ is sufficient to contradict any ex-
tension of (Π,A′) including FB. In particular, if FB ∈ D{FC↑}(Π,A

′), we can ex-
tend (Π,A′) to a contradictory branch without cutting. Otherwise, if Cut[Γ] ∈ T such
that body(Π) ⊆ Γ, we can cut on B, contradict the branch for FB by applying U ↑,
and proceed with the branch (Π,A′ ∪ {TB}), also obtained by applying WFJ[Ω]. Alter-
natively, if Cut[Γ] ∈ T such that atom(Π) ⊆ Γ, we can successively cut on atoms in
(B+ ∪ B−) \ ((A′)

T ∪ (A′)
F

) and contradict a branch for f l, where l ∈ B, by apply-
ing FC↑ and U ↑. Provided that B+ ∩ B− = ∅,25 this strategy yields a single branch
(Π,A′ ∪ {tl | l ∈ B}), which can be further extended to (Π,A′ ∪ {tl | l ∈ B} ∪ {TB}) by
an application of TC↑. Given that FFB ∈ T , we also have that any non-contradictory branch
extending (Π,A′ ∪ {TB}) in a complete tableau of T for Π and A contains tl for all l ∈ B.

We have thus shown that an entry TB ∈ D{WFJ[Ω]}(Π,A
′) \ (A′ ∪ D{TC↑,U↓}(Π,A

′)) can
also be generated in the single (if any) non-contradictory branch in a subtableau of T ′ extending
(Π,A′) and admitting the same non-contradictory extensions as (Π,A′ ∪ {TB}) in a complete
tableau of T for Π and A, while introducing at most max{|atom(Π)|, |body(Π)|} contradictory
branches overall along each branch in a complete tableau of T for Π and A.

The previous results allow us to derive Theorem 3.1 as a consequence of Theorem 5.2 (i.e.,
Theorem 5.6 restricted to the class of conjunctive programs).

THEOREM 3.1. Let Π be a normal program.
Then, we have that the following holds for tableau calculi Tsmodels, Tnomore, and Tnomore++:

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Program Π has an answer set X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that AT ∩ atom(Π) = X .
(3) Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

PROOF. By Proposition 5.3, Tsmodels, Tnomore, and Tnomore++ admit the same non-contradictory
complete branches as the tableau calculus consisting of the tableau rules (a)–(k) in Figure 4
and 5; in particular, if TB ∈ D{U↓}(Π,A) for a branch (Π,A), we have that TB ∈
D{WFJ[2atom(Π)]}(Π,A), so that A ∪ D{WFN[2atom(Π)]}(Π,A ∪ {FB}) is contradictory (cf. Fig-
ure 1).26 Hence, from Theorem 5.2 and the fact that answer sets of τ [Π] match answer sets
(as introduced in Section 2) of Π (cf. [Lifschitz 2008]), the result follows immediately for
Tnomore++. Moreover, for Tsmodels and Tnomore, using Cut[atom(Π)] and Cut[body(Π)], respectively,

25If B+ ∩ B− 6= ∅, all branches in a subtableau of T ′ obtained by successively cutting on atoms in (B+ ∪ B−) \
((A′)T ∪ (A′)F) and contradicting branches for f l, where l ∈ B, are contradictory. Given that FFB ∈ T , any branch
extending (Π,A′ ∪ {TB}) in a complete tableau of T for Π and A is contradictory too.
26Every non-contradictory complete branch has exactly one occurrence in any complete tableau of the tableau calcu-
lus containing (a)–(k), Tsmodels, Tnomore, or Tnomore++ for Π and ∅. For the former, this is established by Lemma A.3,
A.4, A.7, A.10, A.12, and A.14 (along with the fact that Cut applications preserve non-contradictory complete
branches). For Tsmodels, Tnomore, and Tnomore++, it follows from the observation that D{(a)–(h),WFN[2atom(Π)]}(Π,A

′) ⊆
D{(a)–(h),WFN[2atom(Π)]}(Π,A) for every assignment A and every A′ ⊆ A.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

54 · Martin Gebser and Torsten Schaub

in place of Cut[atom(Π) ∪ body(Π)], it is sufficient to show that the first item of the statement
holds. Regarding Tsmodels, note that, for every B ∈ body(Π), either TB ∈ D{FTB}(Π,A) or
FB ∈ D{FFB}(Π,A) for any non-contradictory assignment A such that atom(Π) ⊆ AT ∪AF ,
so that the first item of the statement holds for Tsmodels. Regarding Tnomore, for every p ∈ atom(Π),
either T p ∈ D{FTA}(Π,A) or F p ∈ D{FFA}(Π,A) for any non-contradictory assignment A such
that body(Π) ⊆ AT ∪AF , so that the first item of the statement holds for Tnomore as well.

Along with Lemma A.2 on different variants of tableau rule WFN, Theorem 3.1 yields Theo-
rem 4.6.

THEOREM 4.6. Let Π be a normal program.
Then, we have that the following holds for tableau calculus Tcomp ∪ {WFN[loop(Π)]}:

(1) Every incomplete tableau for Π and ∅ can be extended to a complete tableau for Π and ∅.
(2) Program Π has an answer set X iff every complete tableau for Π and ∅ has a unique non-

contradictory branch (Π,A) such that AT ∩ atom(Π) = X .

(3) Program Π has no answer set iff every complete tableau for Π and ∅ is a refutation.

PROOF. By Lemma A.2, Tnomore++ and Tcomp ∪ {WFN[loop(Π)]} admit the same non-
contradictory complete branches. Hence, the result follows immediately from Theorem 3.1.

We have thus proven the formal results presented in Section 5, and also demonstrated Theo-
rem 3.1 and 4.6.

A.3 Proofs of Results from Section 6

We below consider minimal refutations of tableau calculi Tnomore, Tsmodels, Tcard , and Tconj for
particular families of logic programs, thus showing exponential separations between Tnomore and
Tsmodels as well as between Tcard and Tconj .

PROPOSITION 6.1. There is an infinite family {Πn} of normal programs such that

(1) the size of minimal refutations of Tnomore for Πn is asymptotically linear in n;

(2) the size of minimal refutations of Tsmodels for Πn is asymptotically exponential in n.

PROOF. Consider the following family {Πn
a ∪Πn

c } of normal programs for n ≥ 1:

Πn
a ∪Πn

c = {x← not x} ∪
⋃

1≤i≤n {x← ai, bi; ai ← not bi; bi ← not ai}

The domain of assignments A is dom(A) = {x, {not x}} ∪
⋃

1≤i≤n{ai, bi, {not ai}, {not bi},
{ai, bi}}, and we investigate minimal refutations of Tnomore and Tsmodels for members of {Πn

a∪Πn
c }.

An optimal strategy to construct a refutation of Tnomore for Πn
a ∪Πn

c (cf. Figure 11) is as follows:

(1) Cut on {not x}, complete the branch for T {not x}, using the deterministic tableau rules
BTB and FTA, and deduce Tx in the branch for F {not x}, using the deterministic tableau
rule BFB.

(2) Complete the branch containing Tx (and F {not x}), but none of T {ai, bi} for 1 ≤ i ≤ n, if
it contains n− 1 entries of the form F {ai, bi}, using the deterministic tableau rules BTA and
BTB. Otherwise, if there are less than n − 1 entries of the form F {ai, bi} in the branch, cut
on some unassigned {ai, bi} for 1 ≤ i ≤ n and complete the branch for T {ai, bi}, using the
deterministic tableau rules BTA and BTB.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 55

In a nutshell, a refutation constructed in this way makes use of immediate contradictions obtained
when assigning any of the bodies {ai, bi} to true, so that each application of Cut[body(Πn

a ∪Πn
c)]

yields one branch that is completed without cutting any further. Hence, such a refutation of Tnomore

for Πn
a ∪Πn

c is of size linear in n.
An optimal strategy to construct a refutation of Tsmodels for Πn

a∪Πn
c (cf. Figure 10) is as follows:

(1) Cut on x, complete the branch for Fx, using the deterministic tableau rules FTB and BFA,
and deduce F {not x} in the branch for Tx, using the deterministic tableau rule FFB.

(2) Complete any of the branches containing Tx (and F {not x}) if the branch contains n − 1
entries of the form F {ai, bi} for 1 ≤ i ≤ n, using the deterministic tableau rules BTA and
BTB. Otherwise, if there are less than n− 1 entries of the form F {ai, bi} in a branch, cut on
some unassigned ai for 1 ≤ i ≤ n and deduce F {ai, bi} in the branch for T ai as well as in
the branch for F ai, using the deterministic tableau rules BTA, BTB, and FFB.

As the second step shows, cuts on atoms ai (or bi) for 1 ≤ i ≤ n yield symmetric alternatives,
since F {ai, bi} is deduced in each of the resulting branches. That is, except for the initial cut
on x, applications of Cut[atom(Πn

a ∪ Πn
c)] do not admit immediate contradictions and must thus

be cascaded to form a perfect binary tree. Hence, a minimal refutation of Tsmodels for Πn
a ∪ Πn

c is
of size exponential in n.

We have thus shown that the asymptotic sizes of minimal refutations of Tnomore and Tsmodels

for Πn
a ∪ Πn

c are O(n) and O(2n), respectively. Hence, Tnomore is not polynomially simulated by
Tsmodels.

PROPOSITION 6.2. There is an infinite family {Πn} of normal programs such that

(1) the size of minimal refutations of Tsmodels for Πn is asymptotically linear in n;
(2) the size of minimal refutations of Tnomore for Πn is asymptotically exponential in n.

PROOF. Consider the following family {Πn
b ∪Πn

c } of normal programs for n ≥ 1:

Πn
b ∪Πn

c = {y ← c1, . . . , cn,not y}
∪
⋃

1≤i≤n {ci ← not ai; ci ← not bi; ai ← not bi; bi ← not ai}

The domain of assignments A is dom(A) = {y, {c1, . . . , cn,not y}} ∪
⋃

1≤i≤n{ai, bi, ci,
{not ai}, {not bi}}, and we investigate minimal refutations of Tsmodels and Tnomore for members
of {Πn

b ∪Πn
c }.

An optimal strategy to construct a refutation of Tsmodels for Πn
b ∪Πn

c (cf. Figure 13) is as follows:

(1) Cut on y, complete the branch for T y, using the deterministic tableau rules BTA and FFB,
and deduce F {c1, . . . , cn,not y} in the branch for F y, using the deterministic tableau rule
BFA.

(2) Complete the branch containing F {c1, . . . , cn,not y} (and F y), but none of F ci for 1 ≤ i ≤
n, if it contains n−1 entries of the form T ci, using the deterministic tableau rules BFB, BFA,
and FFA. Otherwise, if there are less than n− 1 entries of the form T ci in the branch, cut on
some unassigned ci for 1 ≤ i ≤ n and complete the branch for F ci, using the deterministic
tableau rules BFB, BFA, and FFA.

In a nutshell, a refutation constructed in this way makes use of immediate contradictions obtained
when assigning any of the atoms ci to false, so that each application of Cut[atom(Πn

b ∪Πn
c)] yields

one branch that is completed without cutting any further. Hence, such a refutation of Tsmodels for
Πn
b ∪Πn

c is of size linear in n.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

56 · Martin Gebser and Torsten Schaub

An optimal strategy to construct a refutation of Tnomore for Πn
b ∪Πn

c (cf. Figure 12) is as follows:

(1) Cut on {c1, . . . , cn,not y}, complete the branch for T {c1, . . . , cn,not y}, using the deter-
ministic tableau rules FTA and BTB, and deduce F y in the branch for F {c1, . . . , cn,not y},
using the deterministic tableau rule FFA.

(2) Complete any of the branches containing F {c1, . . . , cn,not y} (and F y) if the branch con-
tains n− 1 entries of the form T ci for 1 ≤ i ≤ n, using the deterministic tableau rules BFB,
BFA, and FFA. Otherwise, if there are less than n− 1 entries of the form T ci in a branch, cut
on some unassigned {not ai} for 1 ≤ i ≤ n and deduce T ci in the branch for T {not ai}
as well as in the branch for F {not ai}, using the deterministic tableau rules FTA, BFB, and
BTA.

As the second step shows, cuts on bodies {not ai} (or {not bi}) for 1 ≤ i ≤ n yield symmetric
alternatives, since T ci is deduced in each of the resulting branches. That is, except for the initial
cut on {c1, . . . , cn,not y}, applications of Cut[body(Πn

b ∪ Πn
c)] do not admit immediate contra-

dictions and must thus be cascaded to form a perfect binary tree. Hence, a minimal refutation
of Tnomore for Πn

b ∪Πn
c is of size exponential in n.

We have thus shown that the asymptotic sizes of minimal refutations of Tsmodels and Tnomore

for Πn
b ∪ Πn

c are O(n) and O(2n), respectively. Hence, Tsmodels is not polynomially simulated by
Tnomore.

COROLLARY 6.3. Tableau calculi Tsmodels and Tnomore are efficiency-incomparable.

PROOF. This result follows immediately from Proposition 6.1 and 6.2, since they show that
neither Tnomore is polynomially simulated by Tsmodels, nor vice versa.

COROLLARY 6.4. Tableau calculus Tnomore++ is exponentially stronger than both Tsmodels and
Tnomore.

PROOF. This result follows immediately from Corollary 6.3, since Tnomore and Tsmodels are both
polynomially simulated by Tnomore++ (any tableau of Tnomore or Tsmodels is a tableau of Tnomore++ as
well), while Tnomore and Tsmodels are not polynomially simulated by one another.

PROPOSITION 6.5. Tableau calculus Tcard is exponentially stronger than Tconj .

PROOF. Consider the following family {Πn
c ∪Πn

d} of cardinality programs for n ≥ 1:

Πn
c ∪Πn

d = {z ← 1{a1, b1}2, . . . , 1{an, bn}2,not z} ∪
⋃

1≤i≤n {ai ← not bi; bi ← not ai}

The domain of assignments A is dom(A) = {z, {1{a1, b1}2, . . . , 1{an, bn}2,not z}} ∪⋃
1≤i≤n{ai, bi, 1{ai, bi}2},27 and we investigate minimal refutations of Tcard and Tconj for mem-

bers of {Πn
c ∪Πn

d}.
An optimal strategy to construct a refutation of Tcard for Πn

c ∪Πn
d is as follows:

(1) Cut on z, complete the branch for T z, using the deterministic tableau rules N ↓ and FC↑, and
deduce F {1{a1, b1}2, . . . , 1{an, bn}2,not z} in the branch for F z, using the deterministic
tableau rule I ↓.

(2) Complete the branch containing F {1{a1, b1}2, . . . , 1{an, bn}2,not z} (and F z), but none
of F 1{ai, bi}2 for 1 ≤ i ≤ n, if it contains n− 1 entries of the form T 1{ai, bi}2, using the

27For convenience, we take not ai and not bi to be atomic literals, rather than elements of a (singleton) conjunction. The
latter would also be possible and, in view of the deterministic tableau rules in Figure 5, not affect proof complexity.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 57

deterministic tableau rules TC↓, TLU↓, and I ↓. Otherwise, if there are less than n−1 entries
of the form T 1{ai, bi}2 in the branch, cut on some unassigned 1{ai, bi}2 for 1 ≤ i ≤ n and
complete the branch for F 1{ai, bi}2, using the deterministic tableau rules TLU↓ and I ↓.

In a nutshell, a refutation constructed in this way makes use of immediate contradictions obtained
when assigning any of the cardinality constraints 1{ai, bi}2 to false, so that each application of
Cut[atom(Πn

c ∪ Πn
d) ∪ conj (Πn

c ∪ Πn
d) ∪ card(Πn

c ∪ Πn
d)] yields one branch that is completed

without cutting any further. Hence, such a refutation of Tcard for Πn
c ∪Πn

d is of size linear in n.
An optimal strategy to construct a refutation of Tconj for Πn

c ∪Πn
d is as follows:

(1) Cut on z, complete the branch for T z, using the deterministic tableau rules N ↓ and FC↑, and
deduce F {1{a1, b1}2, . . . , 1{an, bn}2,not z} in the branch for F z, using the deterministic
tableau rule I ↓.

(2) Complete any of the branches containing F {1{a1, b1}2, . . . , 1{an, bn}2,not z} (and F z) if
the branch contains n−1 entries of the form T 1{ai, bi}2, using the deterministic tableau rules
TC↓, TLU↓, and I ↓. Otherwise, if there are less than n− 1 entries of the form T 1{ai, bi}2
in a branch, cut on some unassigned ai for 1 ≤ i ≤ n and deduce T 1{ai, bi}2 in the branch
for T ai as well as in the branch for F ai, using the deterministic tableau rules TLU ↑ and I ↓.

As the second step shows, cuts on atoms ai (or bi) for 1 ≤ i ≤ n yield symmetric alternatives,
since T 1{ai, bi}2 is deduced in each of the resulting branches. That is, except for the initial cut
on z, applications of Cut[atom(Πn

c ∪Πn
d)∪conj (Πn

c ∪Πn
d)] do not admit immediate contradictions

and must thus be cascaded to form a perfect binary tree. Hence, a minimal refutation of Tconj for
Πn
c ∪Πn

d is of size exponential in n.
We have thus shown that the asymptotic sizes of minimal refutations of Tcard and Tconj for

Πn
c ∪Πn

d are O(n) and O(2n), respectively. Since Tconj is polynomially simulated by Tcard , this
yields that Tcard is exponentially stronger than Tconj .

Finally, we case by case show that the application of a tableau rule R↓ can be simulated by
means of Cut and R↑, so that the inclusion or exclusion of R↓ cannot (alone) be responsible for
an exponential separation between tableau calculi.

PROPOSITION 6.6. Let Π be a disjunctive program, T a tableau calculus containing any sub-
set of the tableau rules (a)–(v), and T ′ an approximation of T .

If Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪ card(Π) ⊆ Γ, then we have that T is polyno-
mially simulated by T ′.

PROOF. Assume that Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪ card(Π) ⊆ Γ. Then, we
show that deducing an entry ` by a tableau rule R↓ can be simulated by cutting on the variable
of ` and completing the branch for ` by an application of R↑. To demonstrate this, we consider
all tableau rules R↓ and show that A∪D{R↑}(Π,A∪ {`}) is contradictory if ` ∈ D{R↓}(Π,A):

(I ↓) If fβ ∈ D{I↓}(Π,A), we have that fα ∈ A. Since tα ∈ D{I↑}(Π,A ∪ {tβ}), it holds
that A ∪D{I↑}(Π,A ∪ {tβ}) is contradictory.

(N ↓) If ` ∈ D{N↓}(Π,A), we have that ` ∈ {tβ} ∪ minA(α, {p}) ∪ maxA(β, ∅) for some
p ∈ AT ∩ atom(Π) such that supA(Π, {p}, ∅) = {α ← β}. For ` = tβ, we get that (α ←
β) /∈ supA∪{fβ}(Π, {p}, ∅) = {(α′ ← β′) ∈ Π | fβ′ /∈ A ∪ {fβ},←−supA∪{fβ}(α′, {p}),
−→supA∪{fβ}(β′, ∅)}. For ` ∈ minA(α, {p}) or ` ∈ maxA(β, ∅), Lemma A.10 yields that
←−supA∪{`}(α, {p}) or −→supA∪{`}(β, ∅), respectively, does not hold, which as with ` = tβ im-
plies that (α ← β) /∈ supA∪{`}(Π, {p}, ∅). By Lemma A.11, we further conclude that

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

58 · Martin Gebser and Torsten Schaub

supA∪{`}(Π, {p}, ∅) ⊆ supA(Π, {p}, ∅) \ {α ← β} = ∅. That is, F p ∈ D{N↑}(Π,A ∪ {`})
for some p ∈ AT ∩ atom(Π), so that A ∪D{N↑}(Π,A ∪ {`}) is contradictory.

(U ↓) If ` ∈ D{U↓}(Π,A), we have that ` ∈ {tβ} ∪ minA(α, S) ∪ maxA(β, S) for some
S ⊆ atom(Π) such that AT ∩ S 6= ∅ and supA(Π, S, S) = {α ← β}. For ` = tβ,
we get that (α ← β) /∈ supA∪{fβ}(Π, S, S) = {(α′ ← β′) ∈ Π | fβ′ /∈ A ∪ {fβ},
←−supA∪{fβ}(α′, S),−→supA∪{fβ}(β′, S)}. For ` ∈ minA(α, S) or ` ∈ maxA(β, S), Lemma A.10
yields that ←−supA∪{`}(α, S) or −→supA∪{`}(β, S), respectively, does not hold, which as with
` = tβ implies that (α ← β) /∈ supA∪{`}(Π, S, S). By Lemma A.11, we further conclude
that supA∪{`}(Π, S, S) ⊆ supA(Π, S, S) \ {α ← β} = ∅. That is, F p ∈ D{U↑}(Π,A ∪ {`})
for some p ∈ AT ∩ atom(Π), so that A ∪D{U↑}(Π,A ∪ {`}) is contradictory.

(TC↓) If f li ∈ D{TC↓}(Π,A), we have that {FC, tl1, . . . , tli−1, tli+1, . . . , tln} ⊆ A for C =
{l1, . . . , li−1, li, li+1, . . . , ln} ∈ conj (Π). Since TC ∈ D{TC↑}(Π,A ∪ {tli}), it holds that
A ∪D{TC↑}(Π,A ∪ {tli}) is contradictory.

(FC↓) If tli ∈ D{FC↓}(Π,A), we have that TC ∈ A for C = {l1, . . . , li, . . . , ln} ∈ conj (Π).
Since FC ∈ D{FC↑}(Π,A∪{f li}), it holds that A∪D{FC↑}(Π,A∪{f li}) is contradictory.

(TLU↓) If f lj ∈ D{TLU↓}(Π,A), we have that {FB, tl1, . . . , tlj−1,f lk+1, . . . ,f ln} ⊆ A for
B = j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ card(Π). Since TB ∈ D{TLU↑}(Π,A ∪ {tlj}), it
holds that A ∪D{TLU↑}(Π,A ∪ {tlj}) is contradictory.

(TLU ↓) If tlk+1 ∈ D{TLU↓}(Π,A), we have that {FB, tl1, . . . , tlj ,f lk+2, . . . ,f ln} ⊆ A for
B = j{l1, . . . , lj , . . . , lk+1, . . . , ln}k ∈ card(Π). Since TB ∈ D{TLU↑}(Π,A ∪ {f lk+1}), it
holds that A ∪D{TLU↑}(Π,A ∪ {f lk+1}) is contradictory.

(FL↓) If tlj ∈ D{FL↓}(Π,A), we have that {TB,f lj+1, . . . ,f ln} ⊆ A for B =
j{l1, . . . , lj , . . . , ln}k ∈ card(Π). Since FB ∈ D{FL↑}(Π,A ∪ {f lj}), it holds that
A ∪D{FL↑}(Π,A ∪ {f lj}) is contradictory.

(FU ↓) If f lk+1 ∈ D{FU↓}(Π,A), we have that {TB, tl1, . . . , tlk} ⊆ A for B =
j{l1, . . . , lk+1, . . . , ln}k ∈ card(Π). Since FB ∈ D{FU↑}(Π,A ∪ {tlk+1}), it holds that
A ∪D{FU↑}(Π,A ∪ {tlk+1}) is contradictory.

(TD↓) If f li ∈ D{TD↓}(Π,A), we have that FD ∈ A for D = {l1; . . . ; li; . . . ; ln} ∈ disj (Π).
Since TD ∈ D{TD↑}(Π,A∪{tli}), it holds that A∪D{TD↑}(Π,A∪{tli}) is contradictory.

(FD↓) If tli ∈ D{FD↓}(Π,A), we have that {TD,f l1, . . . ,f li−1,f li+1, . . . ,f ln} ⊆ A for
D = {l1; . . . ; li−1; li; li+1; . . . ; ln} ∈ disj (Π). Since FD ∈ D{FD↑}(Π,A ∪ {f li}), it holds
that A ∪D{FD↑}(Π,A ∪ {f li}) is contradictory.

We have thus shown that deducing ` by a tableau rule R↓ can be simulated by means of applying
Cut and R↑. As each such simulation introduces only two additional entries, ` and the complement
of some entry belonging to the branch at hand, every tableau of T can be transformed into a tableau
of T ′ having approximately similar size, provided that the Cut applications needed for simulations
are admitted by T ′. In fact, the variable of an entry deducible by a tableau rule R↓ cannot be a
disjunction, so that all simulations are possible if Cut[Γ] ∈ T ′ such that atom(Π) ∪ conj (Π) ∪
card(Π) ⊆ Γ.

We have thus proven the formal results presented in Section 6.
ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 59

REFERENCES

ANGER, C., GEBSER, M., JANHUNEN, T., AND SCHAUB, T. 2006. What’s a head without a body? In Proceedings of
the Seventeenth European Conference on Artificial Intelligence (ECAI’06), G. Brewka, S. Coradeschi, A. Perini, and
P. Traverso, Eds. IOS Press, 769–770.

ANGER, C., GEBSER, M., LINKE, T., NEUMANN, A., AND SCHAUB, T. 2005. The nomore++ approach to answer set
solving. In Proceedings of the Twelfth International Conference on Logic for Programming, Artificial Intelligence, and
Reasoning (LPAR’05), G. Sutcliffe and A. Voronkov, Eds. Lecture Notes in Artificial Intelligence, vol. 3835. Springer-
Verlag, 95–109.

ANGER, C., GEBSER, M., AND SCHAUB, T. 2006. Approaching the core of unfounded sets. In Proceedings of the
Eleventh International Workshop on Nonmonotonic Reasoning (NMR’06), J. Dix and A. Hunter, Eds. Number IFI-06-
04 in Technical Report Series. Clausthal University of Technology, Institute for Informatics, 58–66.

APT, K., BLAIR, H., AND WALKER, A. 1987. Towards a theory of declarative knowledge. In Foundations of Deductive
Databases and Logic Programming, J. Minker, Ed. Morgan Kaufmann Publishers, Chapter 2, 89–148.

BABOVICH, Y. AND LIFSCHITZ, V. 2003. Computing answer sets using program completion. Unpublished draft;
available at http://www.cs.utexas.edu/users/tag/cmodels.html.

BARAL, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge University Press.
BARAL, C., GRECO, G., LEONE, N., AND TERRACINA, G., Eds. 2005. Proceedings of the Eighth International Confer-

ence on Logic Programming and Nonmonotonic Reasoning (LPNMR’05). Lecture Notes in Artificial Intelligence, vol.
3662. Springer-Verlag.

BARRETT, C., SEBASTIANI, R., SESHIA, S., AND TINELLI, C. 2009. Satisfiability modulo theories. See Biere et al.
[2009], Chapter 26, 825–885.

BEAME, P., KAUTZ, H., AND SABHARWAL, A. 2004. Towards understanding and harnessing the potential of clause
learning. Journal of Artificial Intelligence Research 22, 319–351.

BEAME, P. AND PITASSI, T. 1998. Propositional proof complexity: Past, present, and future. Bulletin of the European
Association for Theoretical Computer Science 65, 66–89.

BERMAN, K., SCHLIPF, J., AND FRANCO, J. 1995. Computing the well-founded semantics faster. In Proceedings of
the Third International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’95), V. Marek and
A. Nerode, Eds. Lecture Notes in Artificial Intelligence, vol. 928. Springer-Verlag, 113–126.

BIERE, A., HEULE, M., VAN MAAREN, H., AND WALSH, T., Eds. 2009. Handbook of Satisfiability. Frontiers in
Artificial Intelligence and Applications, vol. 185. IOS Press.

BONATTI, P. 2001. Resolution for skeptical stable model semantics. Journal of Automated Reasoning 27, 4, 391–421.
BREWKA, G. AND LANG, J., Eds. 2008. Proceedings of the Eleventh International Conference on Principles of Knowl-

edge Representation and Reasoning (KR’08). AAAI Press.
CALIMERI, F., FABER, W., PFEIFER, G., AND LEONE, N. 2006. Pruning operators for disjunctive logic programming

systems. Fundamenta Informaticae 71, 2-3, 183–214.
CHEN, X., JI, J., AND LIN, F. 2008. Computing loops with at most one external support rule. See Brewka and Lang

[2008], 401–410.
CHEN, X., JI, J., AND LIN, F. 2009. Computing loops with at most one external support rule for disjunctive logic

programs. See Erdem et al. [2009], 130–144.
CHEN, Y., LIN, F., WANG, Y., AND ZHANG, M. 2006. First-order loop formulas for normal logic programs. In Pro-

ceedings of the Tenth International Conference on Principles of Knowledge Representation and Reasoning (KR’06),
P. Doherty, J. Mylopoulos, and C. Welty, Eds. AAAI Press, 298–307.

CLARK, K. 1978. Negation as failure. In Logic and Data Bases, H. Gallaire and J. Minker, Eds. Plenum Press, 293–322.
COOK, S. AND RECKHOW, R. 1979. The relative efficiency of propositional proof systems. Journal of Symbolic

Logic 44, 1, 36–50.
D’AGOSTINO, M., GABBAY, D., HÄHNLE, R., AND POSEGGA, J., Eds. 1999. Handbook of Tableau Methods. Kluwer

Academic Publishers.
DAVIS, M., LOGEMANN, G., AND LOVELAND, D. 1962. A machine program for theorem-proving. Communications of

the ACM 5, 394–397.
DAVIS, M. AND PUTNAM, H. 1960. A computing procedure for quantification theory. Journal of the ACM 7, 201–215.
DIX, J., FURBACH, U., AND NIEMELÄ, I. 2001. Nonmonotonic reasoning: Towards efficient calculi and implementa-

tions. See Robinson and Voronkov [2001], 1241–1354.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

60 · Martin Gebser and Torsten Schaub

DOWLING, W. AND GALLIER, J. 1984. Linear-time algorithms for testing the satisfiability of propositional Horn formu-
lae. Journal of Logic Programming 1, 267–284.

DRESCHER, C., GEBSER, M., GROTE, T., KAUFMANN, B., KÖNIG, A., OSTROWSKI, M., AND SCHAUB, T. 2008.
Conflict-driven disjunctive answer set solving. See Brewka and Lang [2008], 422–432.

EÉN, N. AND SÖRENSSON, N. 2004. An extensible SAT-solver. In Proceedings of the Sixth International Conference
on Theory and Applications of Satisfiability Testing (SAT’03), E. Giunchiglia and A. Tacchella, Eds. Lecture Notes in
Computer Science, vol. 2919. Springer-Verlag, 502–518.

EITER, T. AND GOTTLOB, G. 1995. On the computational cost of disjunctive logic programming: Propositional case.
Annals of Mathematics and Artificial Intelligence 15, 3-4, 289–323.

ERDEM, E., LIN, F., AND SCHAUB, T., Eds. 2009. Proceedings of the Tenth International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’09). Lecture Notes in Artificial Intelligence, vol. 5753. Springer-Verlag.

FABER, W. 2002. Enhancing Efficiency and Expressiveness in Answer Set Programming Systems. Ph.D. thesis, Vienna
University of Technology.

FABER, W. 2005. Unfounded sets for disjunctive logic programs with arbitrary aggregates. See Baral et al. [2005], 40–52.
FABER, W., PFEIFER, G., AND LEONE, N. 2011. Semantics and complexity of recursive aggregates in answer set

programming. Artificial Intelligence 175, 1, 278–298.
FABER, W., PFEIFER, G., LEONE, N., DELL’ARMI, T., AND IELPA, G. 2008. Design and implementation of aggregate

functions in the DLV system. Theory and Practice of Logic Programming 8, 5-6, 545–580.
FERRARIS, P. 2005. Answer sets for propositional theories. See Baral et al. [2005], 119–131.
FERRARIS, P., LEE, J., AND LIFSCHITZ, V. 2006. A generalization of the Lin-Zhao theorem. Annals of Mathematics

and Artificial Intelligence 47, 1-2, 79–101.
FERRARIS, P., LEE, J., AND LIFSCHITZ, V. 2007. A new perspective on stable models. See Veloso [2007], 372–379.
FERRARIS, P. AND LIFSCHITZ, V. 2005. Weight constraints as nested expressions. Theory and Practice of Logic

Programming 5, 1-2, 45–74.
FITTING, M. 1994. Tableaux for logic programming. Journal of Automated Reasoning 13, 2, 175–188.
FITTING, M. 2002. Fixpoint semantics for logic programming: A survey. Theoretical Computer Science 278, 1-2, 25–51.
FREEMAN, J. 1995. Improvements to Propositional Satisfiability Search Algorithms. Ph.D. thesis, University of Penn-

sylvania.
GARCIA DE LA BANDA, M. AND PONTELLI, E., Eds. 2008. Proceedings of the Twenty-fourth International Conference

on Logic Programming (ICLP’08). Lecture Notes in Computer Science, vol. 5366. Springer-Verlag.
GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2009. On the implementation of weight constraint rules

in conflict-driven ASP solvers. In Proceedings of the Twenty-fifth International Conference on Logic Programming
(ICLP’09), P. Hill and D. Warren, Eds. Lecture Notes in Computer Science, vol. 5649. Springer-Verlag, 250–264.

GEBSER, M., KAMINSKI, R., KÖNIG, A., AND SCHAUB, T. 2011. Advances in gringo series 3. In Proceedings of the
Eleventh International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11), J. Delgrande
and W. Faber, Eds. Lecture Notes in Artificial Intelligence, vol. 6645. Springer-Verlag, 345–351.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2007. Conflict-driven answer set solving. See Veloso
[2007], 386–392.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2008. Advanced preprocessing for answer set solving.
In Proceedings of the Eighteenth European Conference on Artificial Intelligence (ECAI’08), M. Ghallab, C. Spyropou-
los, N. Fakotakis, and N. Avouris, Eds. IOS Press, 15–19.

GEBSER, M., LEE, J., AND LIERLER, Y. 2007. Head-elementary-set-free logic programs. In Proceedings of the Ninth
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’07), C. Baral, G. Brewka,
and J. Schlipf, Eds. Lecture Notes in Artificial Intelligence, vol. 4483. Springer-Verlag, 149–161.

GEBSER, M. AND SCHAUB, T. 2006a. Characterizing ASP inferences by unit propagation. In Proceedings of the First
International Workshop on Search and Logic: Answer Set Programming and SAT (LaSh’06), E. Giunchiglia, V. Marek,
D. Mitchell, and E. Ternovska, Eds. 41–56.

GEBSER, M. AND SCHAUB, T. 2006b. Tableau calculi for answer set programming. In Proceedings of the Twenty-second
International Conference on Logic Programming (ICLP’06), S. Etalle and M. Truszczyński, Eds. Lecture Notes in
Computer Science, vol. 4079. Springer-Verlag, 11–25.

GEBSER, M. AND SCHAUB, T. 2007. Generic tableaux for answer set programming. In Proceedings of the Twenty-third
International Conference on Logic Programming (ICLP’07), V. Dahl and I. Niemelä, Eds. Lecture Notes in Computer
Science, vol. 4670. Springer-Verlag, 119–133.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

Tableau Calculi for Logic Programs under Answer Set Semantics · 61

GELFOND, M. AND LIFSCHITZ, V. 1991. Classical negation in logic programs and disjunctive databases. New Genera-
tion Computing 9, 365–385.

GIUNCHIGLIA, E., LEONE, N., AND MARATEA, M. 2008. On the relation among answer set solvers. Annals of Mathe-
matics and Artificial Intelligence 53, 1-4, 169–204.

GIUNCHIGLIA, E., LIERLER, Y., AND MARATEA, M. 2006. Answer set programming based on propositional satisfia-
bility. Journal of Automated Reasoning 36, 4, 345–377.

GIUNCHIGLIA, E. AND MARATEA, M. 2005. On the relation between answer set and SAT procedures (or, between
cmodels and smodels). In Proceedings of the Twenty-first International Conference on Logic Programming (ICLP’05),
M. Gabbrielli and G. Gupta, Eds. Lecture Notes in Computer Science, vol. 3668. Springer-Verlag, 37–51.

HÄHNLE, R. 2001. Tableaux and related methods. See Robinson and Voronkov [2001], 100–178.
JANHUNEN, T. 2006. Some (in)translatability results for normal logic programs and propositional theories. Journal of

Applied Non-Classical Logics 16, 1-2, 35–86.
JANHUNEN, T. AND NIEMELÄ, I. 2011. Compact translations of non-disjunctive answer set programs to propositional

clauses. In Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning: Essays Dedicated to
Michael Gelfond on the Occasion of His 65th Birthday, M. Balduccini and T. Son, Eds. Lecture Notes in Computer
Science, vol. 6565. Springer-Verlag, 111–130.

JANHUNEN, T., NIEMELÄ, I., AND SEVALNEV, M. 2009. Computing stable models via reductions to difference logic.
See Erdem et al. [2009], 142–154.

JÄRVISALO, M. AND JUNTTILA, T. 2009. Limitations of restricted branching in clause learning. Constraints 14, 3,
325–356.

JÄRVISALO, M., JUNTTILA, T., AND NIEMELÄ, I. 2005. Unrestricted vs restricted cut in a tableau method for Boolean
circuits. Annals of Mathematics and Artificial Intelligence 44, 4, 373–399.

JÄRVISALO, M. AND OIKARINEN, E. 2008. Extended ASP tableaux and rule redundancy in normal logic programs.
Theory and Practice of Logic Programming 8, 5-6, 691–716.

KONCZAK, K., LINKE, T., AND SCHAUB, T. 2006. Graphs and colorings for answer set programming. Theory and
Practice of Logic Programming 6, 1-2, 61–106.

LEE, J. 2005. A model-theoretic counterpart of loop formulas. In Proceedings of the Nineteenth International Joint
Conference on Artificial Intelligence (IJCAI’05), L. Kaelbling and A. Saffiotti, Eds. Professional Book Center, 503–
508.

LEE, J. AND MENG, Y. 2008. On loop formulas with variables. See Brewka and Lang [2008], 444–453.
LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO, F. 2006. The DLV

system for knowledge representation and reasoning. ACM Transactions on Computational Logic 7, 3, 499–562.
LEONE, N., RULLO, P., AND SCARCELLO, F. 1997. Disjunctive stable models: Unfounded sets, fixpoint semantics, and

computation. Information and Computation 135, 2, 69–112.
LIERLER, Y. 2011. Abstract answer set solvers with learning. Theory and Practice of Logic Programming 11, 2-3,

135–169.
LIFSCHITZ, V. 2008. Twelve definitions of a stable model. See Garcia de la Banda and Pontelli [2008], 37–51.
LIFSCHITZ, V., PEARCE, D., AND VALVERDE, A. 2001. Strongly equivalent logic programs. ACM Transactions on

Computational Logic 2, 4, 526–541.
LIFSCHITZ, V. AND RAZBOROV, A. 2006. Why are there so many loop formulas? ACM Transactions on Computational

Logic 7, 2, 261–268.
LIFSCHITZ, V., TANG, L., AND TURNER, H. 1999. Nested expressions in logic programs. Annals of Mathematics and

Artificial Intelligence 25, 3-4, 369–389.
LIN, F. AND ZHAO, Y. 2004. ASSAT: Computing answer sets of a logic program by SAT solvers. Artificial Intelli-

gence 157, 1-2, 115–137.
LIN, Z., ZHANG, Y., AND HERNANDEZ, H. 2006. Fast SAT-based answer set solver. In Proceedings of the Twenty-first

National Conference on Artificial Intelligence (AAAI’06), Y. Gil and R. Mooney, Eds. AAAI Press, 92–97.
LINKE, T., ANGER, C., AND KONCZAK, K. 2002. More on nomore. In Proceedings of the Eighth European Conference

on Logics in Artificial Intelligence (JELIA’02), S. Flesca, S. Greco, N. Leone, and G. Ianni, Eds. Lecture Notes in
Computer Science, vol. 2424. Springer-Verlag, 468–480.

LIU, L. AND TRUSZCZYŃSKI, M. 2006. Properties and applications of programs with monotone and convex constraints.
Journal of Artificial Intelligence Research 27, 299–334.

LLOYD, J. 1987. Foundations of Logic Programming. Springer-Verlag.

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

62 · Martin Gebser and Torsten Schaub

MAREK, V. AND REMMEL, J. 2008. On the continuity of Gelfond-Lifschitz operator and other applications of proof-
theory in ASP. See Garcia de la Banda and Pontelli [2008], 223–237.

MAREK, V. AND TRUSZCZYŃSKI, M. 1991. Autoepistemic logic. Journal of the ACM 38, 3, 588–619.
MARQUES-SILVA, J. AND SAKALLAH, K. 1999. GRASP: A search algorithm for propositional satisfiability. IEEE

Transactions on Computers 48, 5, 506–521.
MOSKEWICZ, M., MADIGAN, C., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff: Engineering an efficient SAT

solver. In Proceedings of the Thirty-eighth Conference on Design Automation (DAC’01). ACM Press, 530–535.
NIEMELÄ, I. 1999. Logic programs with stable model semantics as a constraint programming paradigm. Annals of

Mathematics and Artificial Intelligence 25, 3-4, 241–273.
NIEMELÄ, I. 2008. Stable models and difference logic. Annals of Mathematics and Artificial Intelligence 53, 1-4,

313–329.
NIEUWENHUIS, R. AND OLIVERAS, A. 2005. DPLL(T) with exhaustive theory propagation and its application to

difference logic. In Proceedings of the Seventeenth International Conference on Computer Aided Verification (CAV’05),
K. Etessami and S. Rajamani, Eds. Lecture Notes in Computer Science, vol. 3576. Springer-Verlag, 321–334.

NIEUWENHUIS, R., OLIVERAS, A., AND TINELLI, C. 2006. Solving SAT and SAT modulo theories: From an abstract
Davis-Putnam-Logemann-Loveland procedure to DPLL(T). Journal of the ACM 53, 6, 937–977.

OLIVETTI, N. 1999. Tableaux for nonmonotonic logics. See D’Agostino et al. [1999], 469–528.
PEARCE, D. 1996. A new logical characterisation of stable models and answer sets. In Proceedings of the Sixth Workshop

on Non-Monotonic Extensions of Logic Programming (NMELP’96), J. Dix, L. Pereira, and T. Przymusinski, Eds.
Lecture Notes in Computer Science, vol. 1216. Springer-Verlag, 57–70.

PEARCE, D., DE GUZMÁN, I., AND VALVERDE, A. 2000. A tableau calculus for equilibrium entailment. In Pro-
ceedings of the Ninth International Conference on Automated Reasoning with Analytic Tableaux and Related Methods
(TABLEAUX’00), R. Dyckhoff, Ed. Lecture Notes in Computer Science, vol. 1847. Springer-Verlag, 352–367.

PEARCE, D. AND VALVERDE, A. 2005. A first order nonmonotonic extension of constructive logic. Studia Logica 30, 2-
3, 321–346.

PEARCE, D. AND VALVERDE, A. 2006. Quantified equilibrium logic and the first order logic of here-and-there. Technical
Report MA-06-02, University of Málaga.

PIPATSRISAWAT, K. AND DARWICHE, A. 2011. On the power of clause-learning SAT solvers as resolution engines.
Artificial Intelligence 175, 2, 512–525.

PURDOM, P. 1970. A transitive closure algorithm. BIT Numerical Mathematics 10, 76–94.
ROBINSON, A. AND VORONKOV, A., Eds. 2001. Handbook of Automated Reasoning. Elsevier and MIT Press.
SIMONS, P. 2000. Extending and Implementing the Stable Model Semantics. Ph.D. thesis, Helsinki University of

Technology.
SIMONS, P., NIEMELÄ, I., AND SOININEN, T. 2002. Extending and implementing the stable model semantics. Artificial

Intelligence 138, 1-2, 181–234.
SYRJÄNEN, T. Lparse 1.0 user’s manual. http://www.tcs.hut.fi/Software/smodels/lparse.ps.gz.
TRUSZCZYŃSKI, M. 2007. Comments on modeling languages for answer-set programming. In Proceedings of the First

Workshop on Software Engineering for Answer Set Programming (SEA’07), M. De Vos and T. Schaub, Eds. Number
CSBU-2007-05 in Technical Report Series. University of Bath, Department of Computer Science, 3–11.

VAN GELDER, A., ROSS, K., AND SCHLIPF, J. 1991. The well-founded semantics for general logic programs. Journal
of the ACM 38, 3, 620–650.

VELOSO, M., Ed. 2007. Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI’07).
AAAI Press/MIT Press.

WARD, J. AND SCHLIPF, J. 2004. Answer set programming with clause learning. In Proceedings of the Seventh Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’04), V. Lifschitz and I. Niemelä,
Eds. Lecture Notes in Artificial Intelligence, vol. 2923. Springer-Verlag, 302–313.

ZHANG, L., MADIGAN, C., MOSKEWICZ, M., AND MALIK, S. 2001. Efficient conflict driven learning in a Boolean
satisfiability solver. In Proceedings of the International Conference on Computer-Aided Design (ICCAD’01). 279–285.

Received July 2010; accepted August 2011

ACM Transactions on Computational Logic, Vol. V, No. N, Month 20YY.

