
Under consideration for publication in Theory and Practice of Logic Programming 1

Clingcon: The Next Generation

Mutsunori Banbara
Kobe University, Japan

Benjamin Kaufmann and Max Ostrowski
University of Potsdam, Germany

Torsten Schaub∗
University of Potsdam, Germany and INRIA Rennes, France

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

We present the third generation of the constraint answer set system clingcon, combining Answer Set
Programming (ASP) with finite domain constraint processing (CP). While its predecessors rely on a black-
box approach to hybrid solving by integrating the CP solver gecode, the new clingcon system pursues a
lazy approach using dedicated constraint propagators to extend propagation in the underlying ASP solver
clasp. No extension is needed for parsing and grounding clingcon’s hybrid modeling language since both
can be accommodated by the new generic theory handling capabilities of the ASP grounder gringo. As
a whole, clingcon 3 is thus an extension of the ASP system clingo 5, which itself relies on the grounder
gringo and the solver clasp. The new approach of clingcon offers a seamless integration of CP propagation
into ASP solving that benefits from the whole spectrum of clasp’s reasoning modes, including for instance
multi-shot solving and advanced optimization techniques. This is accomplished by a lazy approach that
unfolds the representation of constraints and adds it to that of the logic program only when needed. Although
the unfolding is usually dictated by the constraint propagators during solving, it can already be partially (or
even totally) done during preprocessing. Moreover, clingcon’s constraint preprocessing and propagation
incorporate several well established CP techniques that greatly improve its performance. We demonstrate
this via an extensive empirical evaluation contrasting, first, the various techniques in the context of CSP
solving and, second, the new clingcon system with other hybrid ASP systems.

1 Introduction

The shortcoming of Answer Set Programming (ASP; (Lifschitz 2008)) to succinctly represent
variables over large numeric domains has led to the development of several systems enhancing
ASP with capabilities for finite domain Constraint Processing (CP; (Rossi et al. 2006)). Starting
from the seminal work in (Baselice et al. 2005) and the consecutive development of traditional
DPLL1-style hybrid ASP solvers like adsolver (Mellarkod et al. 2008), modern hybrid ASP
solvers take advantage of CDCL2-based solving technology (Marques-Silva and Sakallah 1999;
Zhang et al. 2001; Gebser et al. 2007) in different ways. Let us illustrate this by describing the
approach of three representative Constraint Answer Set Programming (CASP; (Balduccini and
Lierler 2013)) systems.

∗ Affiliated with the Simon Fraser University, Canada, and Griffith University, Australia.
1 Tracing back to the Davis-Putman-Logemann-Loveland procedure (Davis and Putnam 1960; Davis et al. 1962)
2 Standing for: Conflict-Driven Constraint Learning

2 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

A black-box approach is pursued in the two previous clingcon series where the ASP solver
clasp is combined with the CP solver gecode (Gecode Team 2006) by following the lazy approach
to SMT3solving (Barrett et al. 2009). In the clingcon setting, this means that clasp only generates
truth assignments for abstracted constraint expressions, while gecode checks whether the actual
constraints can be made true or false accordingly. On the one hand, this black-box approach
benefits from the vast spectrum of constraints available in gecode and seamlessly keeps up with
advanced CP technology, among others regarding preprocessing and propagation. Moreover, this
approach avoids an explicit representation of integer variables in ASP and thus can deal with
very large domains. On the other hand, the usage of an external CP solver restricts information
exchange which impedes the CDCL approach of clasp. First, neither conflict nor propagation
information is provided by gecode and thus must be approximated within the interface to sustain
conflict analysis in CDCL. Second, the granularity induced by constraint abstraction leads to
weaker propagation than what is obtainable when encoding integer variables.

A translation-based approach is pursued by the aspartame system (Banbara et al. 2015) where
a CSP4 is fully translated into ASP and then solved by an ASP solver. This approach follows the
one of the CP solver sugar (Tamura et al. 2009) translating CSPs to SAT5 (Biere et al. 2009).
This is done by representing each integer variable along with its domain according to the order
encoding scheme (Crawford and Baker 1994). Such an approach is called eager in SMT solving.
On the one hand, this approach benefits from the full power of CDCL-based search. Also, the
granularity induced by an explicit representation of integer variables provides more accurate
conflict and propagation information, and approximations for reasons and conflicts as used in the
former clingcon system (Ostrowski and Schaub 2012) are made obsolete. On the other hand, such
an explicit representation limits scalability: aspartame (just as sugar) can only deal with medium
sized domains up to a few thousand integers. Also, when dealing with larger domains, CDCL
search may suffer from congestion due to too much conflict information. Finally, aspartame
cannot make use of readily available CP techniques for preprocessing and propagation; all this
must be captured in the underlying ASP encoding.

A lazy approach is pursued by the inca system (Drescher and Walsh 2012) where the ASP
solver clasp is augmented with dedicated propagators for linear and selected global constraints by
following the approach of lazy clause generation (Ohrimenko et al. 2009). The idea is to make parts
of the encoding explicit whenever they reflect a conflict or propagation signaled by a propagator.
In this way, the explicit representation of constraints is only unfolded when needed and its extent
is controlled by the deletion scheme of the ASP solver. This approach also benefits from the full
power of CDCL-based search but outsources constraint oriented inferences. In this way, the overall
size of the hybrid problem is under control of the ASP solver. As a consequence, inca can deal
with large domains. But it has its limits because the vocabulary and basic inference schemes of the
order encoding must be provided at the outset by introducing auxiliary variables and nogoods. The
propagators rely on this for making parts of the constraint encoding explicit. Moreover, this lazy
approach cannot harness implemented CP techniques for preprocessing and propagation; inca
provides advanced means for propagation but uses no sophisticated preprocessing techniques.

The third generation of clingcon also follows a lazy approach to hybrid ASP solving but largely
extends the lazy one of inca while drawing on experience with aspartame and the previous

3 Standing for: Satisfiability Modulo Theories
4 Standing for: Constraint Satisfaction Problem
5 Standing for: Satisfiability Testing

Clingcon: The Next Generation 3

clingcon series. The current version of clingcon 3 features propagators for linear constraints
and can translate distinct constraints. The ultimate design goal was to conceive a hybrid solver
architecture that integrates seamlessly with the infrastructure of the ASP system clingo in order
to take advantage of its full spectrum of grounding and solving capabilities. For the latter, it is
essential to give the solver access to the representation of constraint variables and their domains,
otherwise hybrid forms of multi-objective optimization or operations on models like intersection or
union cannot reuse existing capacities. The lazy approach lets us accomplish this while controlling
space demands. However, we take the approach of inca one step further by permitting lazy variable
generation (Thibaut and Stuckey 2009) to unfold the vocabulary and the basic inference schemes
of the order encoding only when needed. This enables clingcon 3 to represent very large (and
possibly non-contiguous) domains of integer variables. Furthermore, clingcon 3 features a variety
of established CP preprocessing techniques to enhance its lazy approach. This also includes an
initial eager translation that allows for unfolding up front parts or even the entire CSP.

What is more, clingcon is not restricted to single-shot solving but fully blends in with clingo’s
multi-shot solving capabilities (Gebser et al. 2015). This does not only allow for incremental
hybrid solving but moreover equips clingcon with powerful APIs. For instance, the latter allow
for conceiving reactive procedures to loop on solving while acquiring changes in the problem
specification. In fact, due to our design, most of clingo’s elaborate features carry over to clingcon.
Among others, this includes multi-threaded solving as well as unsatisfiable core and model-
driven multi-criteria optimization. Exceptions to this are signature-based forms of reasoning, like
projective enumeration or heuristic modifications that must be dealt with indirectly by associating
constraint atoms with auxiliary regular atoms with which such operations can be performed.

Our paper is structured as follows. The next section provides the formal foundations of Con-
straint Answer Set Programming (CASP) and presents the basics of CDCL-based ASP solving
along with their extension to CASP solving. Section 3 details relevant features of clingcon 3. We
start with an architectural overview in Section 3.1 and introduce the input language of clingcon 3
in Section 3.2. We then explain clingcon’s extended solving algorithms in Section 3.3 and detail
distinguished features in Section 3.4. The final subsection of Section 3 is dedicated to multi-shot
CASP solving. Section 4 provides a detailed empirical analysis of clingcon’s features and perfor-
mance in contrast to competing CP and CASP systems. We summarize the salient features of the
new clingcon series in Section 5 and discuss related work.

2 Formal Preliminaries

We begin in Section 2.1 with a gentle introduction to CASP along with some auxiliary concepts.
We then provide the basics of CDCL-based ASP solving and show how they extend to CASP
solving in Section 2.2.

2.1 Constraint Answer Set Programming

Constraint logic programs consist of a logic program P over disjoint sets A, C of propositional
variables, and an associated constraint satisfaction problem (CSP) (V, D,C). Elements of A and
C are referred to as regular and constraint atoms, respectively. We consider linear CSPs, where V
is a set of integer variables, D is a set of corresponding variable domains, and C is a set of linear
constraints.

4 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

Logic programs. A logic program P consists of rules of the form6

a0 ← a1, . . . , am,∼am+1, . . . ,∼an (1)

where 0 ≤ m ≤ n and a0 ∈ A and each ai ∈ A ∪ C is an atom for 1 ≤ i ≤ n.
As an example, consider the logic program P1:

a← ∼b (2)

b← ∼a (3)

c← a, x < 7 (4)

This program contains regular atoms a, b, and c from A along with the constraint atom x < 7

from C. Accordingly, x is an integer variable in V .
We need the following auxiliary definitions. We define head(r) = a0 as the head of

rule r in (1), body(r) = {a1, . . . , am,∼am+1, . . . ,∼an} as its body, and atom(r) =

{a0, a1, . . . , am, am+1, . . . , an}. Moreover, we let head(P) = {head(r) | r ∈ P}, body(P) =

{body(r) | r ∈ P}, bodyP (a) = {body(r) | r ∈ P, head(r) = a}, and atom(P) = {atom(r) |
r ∈ P}. If body(r) = ∅, r is called a fact. If head(r) is missing, r is called an integrity constraint
and r stands for x← body(r),∼x where x is a new atom.7

In ASP, the semantics of a logic program is given by its (constraint) stable models (Gelfond and
Lifschitz 1988; Gebser et al. 2009). However, in view of our focus on computational aspects, we
rather deal with Boolean assignments and constraints and give a corresponding characterization
of a program’s stable models below.

Constraint Satisfaction Problems. A linear CSP (V, D,C) deals with linear constraints in C of
the form

a1v1 + · · ·+ anvn ≤ b (5)

where ai and b are integers and vi ∈ V for 1 ≤ i ≤ n. The domain of a variable v ∈ V is given by
D(v). The complement of a constraint c ∈ C is denoted as c. We require that C is closed under
complements. Constraint atoms in C are identified with constraints in C via a function γ : C → C.

In our example, we have x ∈ V and let D(x) = {1, . . . , 10}. Moreover, we associate the
constraint atom x < 7 with the linear constraint x ≤ 6, or formally, γ(x < 7) = x ≤ 6. Since we
require C to be closed under complements, it contains both x ≤ 6 and its complement −x ≤ −7.

An assignment C : v ∈ V 7→ d ∈ D(v) satisfies a linear constraint, if (5) holds after
replacing each vi by C(vi). We let satC(C) denote the set of all constraints in C satisfied by C.
Following (Drescher 2015), we call (C, satC(C)) a configuration of (V, D,C). For instance, the
assignment C = {x 7→ 5} satisfies the linear constraint x ≤ 6. Accordingly, ({x 7→ 5}, {x ≤ 6})
is a configuration of ({x}, {D(x)}, {x ≤ 6,−x ≤ −7}}).

Moreover, we rely on the CP concept of a view. Following (Schulte and Tack 2005), a view
on a variable x is an expression ax+ b for integers a, b; its image is defined as img(ax+ b) =

{ax+ b | x ∈ D(x)}.8 Since a view ax+ b can always be replaced with a fresh variable y along
with a constraint y = ax+ b, we may use them nearly everywhere where we would otherwise

6 We present our approach in the context of normal logic programs, though it readily applies to disjunctive logic programs
— as does clingcon 3.

7 As syntactic sugar, a rule c← a1, . . . , am,∼am+1, . . . ,∼an with a constraint atom c ∈ C in the head stands for
← a1, . . . , am,∼am+1, . . . ,∼an,∼c.

8 Any linear expression with only one variable can be converted to an expression of the form ax+ b.

Clingcon: The Next Generation 5

use variables. For a view v, we define lb(v) and ub(v) as the smallest/largest value in img(v).9

Then, prev(d, v) (next(d, v)) is a function mapping a value d to the largest (smallest) element
d′ in img(v) which is smaller (larger) than d if d > lb(v) (d < ub(v)), otherwise it is −∞ (∞).
In our example, we have lb(x) = 1 and ub(x) = 10, and for instance prev(17, 2x + 3) = 15,
prev(5, x) = 4, and prev(0, x) = −∞, respectively.

2.2 Basics of ASP and CASP Solving

The basic idea of CDCL-based ASP solving is to map inferences from rules as in (1) to unit
propagation on Boolean constraints. Our description of this approach follows the one given
in (Gebser et al. 2012).

Accordingly, we represent Boolean assignments, B, over a set of atoms A ∪ C by sets of
signed literals Ta or Fa standing for a 7→ T and a 7→ F, respectively, where a ∈ A ∪ C. The
complement of a signed literal σ is denoted by σ. We define BT = {a ∈ A ∪ C | Ta ∈ B}
and BF = {a ∈ A ∪ C | Fa ∈ B}. Then, an assignment B is complete, if BT ∩BF = ∅ and
BT ∪BF = A ∪ C. For instance, the assignment {Ta,Fb,Fc,F(x < 7)} is complete wrt the
atoms in our example.

Boolean constraints are represented as nogoods. A nogood is a set of signed literals representing
an invalid partial assignment. A nogood δ is violated by a Boolean assignment B whenever δ ⊆ B.
A complete Boolean assignment is a solution of a set of nogoods, if it violates none of them.
Given a Boolean assignment B and a nogood δ such that δ \B = {σ} and σ /∈ B, we say that δ
is unit wrt B and asserts the unit-resulting literal σ. For a set ∆ of nogoods and an assignment B,
unit propagation is the iterated process of extending B with unit-resulting literals until no further
literal is unit-resulting for any nogood in ∆.

With these concepts in hand, the Boolean constraints induced by a logic program P can be
captured as follows:

∆P =
⋃

B∈body(P),
B={a1,...,am,∼am+1,...,∼an}

{FB,Ta1, . . . ,Tam,Fam+1, . . . ,Fan},
{TB,Fa1}, . . . , {TB,Fam},
{TB,Tam+1}, . . . , {TB,Tan}

∪

⋃
a∈atom(P),

bodyP (a)={B1,...,Bk}

{
{Ta,FB1, . . . ,FBk},
{Fa,TB1}, . . . , {Fa,TBk}

}
(6)

ΛP =
⋃

U⊆atom(P),
EBP (U)={B1,...,Bk}

{{Ta,FB1, . . . ,FBk} | a ∈ U} (7)

where EBP (U) = {body(r) ∈ P | head(r) ∈ U, body(r) ∩ U = ∅}.

Then, according to (Gebser et al. 2012), a set of atoms X is a stable model of a regular logic
program P iff X = BT ∩ atom(P) for a (unique) solution B of ∆P ∪ ΛP .

For example, the nogoods obtained in (6) for the atom a in our example are {Ta,F{∼b}} and
{Fa,T{∼b}}. Similarly, the body {∼b} of Rule (2) gives rise to nogoods {F{∼b},Fb} and
{T{∼b},Tb}. Hence, once an assignment contains Ta, we may derive Fb via unit propagation
(using both the first and last nogood).

To extend this characterization to programs with constraint atoms, it is important to realize that
the truth value of such atoms is determined external to the program. In CASP, this is reflected

9 Note that for a view of the form 1x+ 0 we have D(x) = img(x).

6 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

by the requirement that constraint atoms must not occur in the head of rules.10 Hence, treating
constraint atoms as regular ones leaves them unfounded. For instance, in our example, we would
get from both (6) and (7) the nogood {T(x < 7)}, which would set (x < 7) permanently to false.
To address this issue, (Drescher and Walsh 2012) exempt constraint atoms from the respective
sets of nogoods and define the variants ∆CP and ΛCP by replacing atom(P) in the qualification of
(6) and (7) with atom(P) \ C.

Then, in (Ostrowski 2017) it is shown that (X,C) is a constraint stable model of a program
P wrt (V, D,C) as defined in (Gebser et al. 2009) iff and X = BT ∩ atom(P) for a (unique)
solution B of ∆CP ∪ ΛCP ∪ {{Fc} | γ(c) ∈ satC(C)} ∪ {{Tc} | γ(c) ∈ satC(C)}.

Accordingly, our example yields the following constraint stable models

X C

{a} x ∈ {7, . . . , 10}
{b} x ∈ {7, . . . , 10}
{b, x < 7} x ∈ {1, . . . , 6}
{a, c, x < 7} x ∈ {1, . . . , 6}

(8)

where x ∈ {m, . . . , n} means that either x 7→ m, or x 7→ m+ 1, . . . or x 7→ n. For instance, the
very first constraint stable model corresponds to the Boolean assignment {Ta,Fb,Fc,F(x < 7)}
paired with the constraint variable assignment {x 7→ 7}.

Similar to logic programs, linear constraints can be represented as sets of nogoods by means
of an order encoding (Tamura et al. 2009). This amounts to representing the above unit nogoods
{{Fc} | γ(c) ∈ satC(C)} ∪ {{Tc} | γ(c) ∈ satC(C)} by more elaborate nogoods capturing
the semantics provided by satC(C).

To this end, we let OV stand for the set of order atoms associated with variables in V and
require it to be disjoint from A ∪ C. Whenever the set V is clear from the context, we drop it and
simply write O. More precisely, we introduce an order atom (v ≤ d) ∈ O for each constraint
variable v ∈ V and value d ∈ D(v), d 6= ub(v). We refer to signed literals over O as signed order
literals.

Now, we are ready to map a linear CSP (V, D,C) into a set of nogoods.
First, we need to make sure that each variable in V has exactly one value from its domain in D.

To this end, we define the following set of nogoods.

Φ(V, D) = {{T(v ≤ d),F(v ≤ next(d, v))} | v ∈ V, d ∈ D(v),

next(d, v) < ub(v)}
(9)

Intuitively, each such nogood stands for an implication “(v ≤ d)⇒ (v ≤ d+ 1)”. In our example,
we get the following nogoods.

Φ({x}, {D(x)}) = {{T(x ≤ 1),F(x ≤ 2)}, . . . , {T(x ≤ 8),F(x ≤ 9)}}. (10)

Second, we need to establish the relation between constraint atoms C and their associated linear
constraints in C. Following (Feydy et al. 2011), a reified constraint is an equivalence “Tc⇔ γ(c)”
where c ∈ C; it is decomposable into two half-reified constraints “Tc⇒ γ(c)” and “Fc⇒ γ(c)”.

10 In alternative semantic settings, theory atoms may also occur as rule heads (cf. (Gebser et al. 2016a)).

Clingcon: The Next Generation 7

To proceed analogously, we extend γ to signed literals over C as follows:

γ(σ) =

{
γ(a) if σ = Fa, a ∈ C
γ(a) if σ = Ta, a ∈ C

For instance, we have γ(F(x < 7)) = (−x ≤ −7).
To translate constraints into nogoods, we need to translate expressions of the form av + b ≤ 0

for v ∈ V and integers a, b into signed ordered literals.11 Following (Tamura et al. 2009), we then
define (av + b ≤ 0)‡ as

(av + b ≤ 0)‡ =

 (v ≤ b−ba c)
† if a > 0

(v ≤ d−ba e − 1)† if a < 0

where (v ≤ d)† is defined for lb(v) ≤ d < ub(v) as

(v ≤ d)† =

{
T(v ≤ d) if d ∈ D(v)

T(v ≤ prev(d, v)) if d /∈ D(v)

If d ≥ ub(v) then (v ≤ d)† = T∅; if d < lb(v) then (v ≤ d)† = F∅, where ∅ stands for
the empty body.12 Expressing our example constraint x ≤ 6 in terms of signed order literals
results in (1 · x+ (−6) ≤ 0)‡ = T(x ≤ 6). The signed literal T(x ≤ 6) indicates that 6 is
the largest integer satisfying the constraint. Also, we get the signed literals (x ≤ 0)† = F∅ and
(x ≤ 10)† = T∅.

We sometimes use <,>, or ≥ as operators in these expressions and implicitly convert them
to the normal form av + b ≤ 0 to be used in this translation. Accordingly, the complementary
constraint yields (x > 6)‡ = ((−1) · x+ 7 ≤ 0)‡ = (x ≤ d−7

−1e − 1)† = F(x ≤ 6).
The actual relation between the constraint atoms in C and their associated linear constraints in

C is established via the following nogoods.

Ψ(C) =
⋃
c∈C ψ(Tc, γ(c)) ∪ ψ(Fc, γ(c)) . (11)

For all constraint atoms c ∈ C associated with the linear constraint γ(c) =
∑n
i=1 aivi ≤ b in C,

we define for both of its half-reified constraints the set of nogoods

ψ(Tc,
∑n
i=1 aivi ≤ b) = {{Tc} ∪ δ \ {T∅} | δ ∈ φ(

∑n
i=1 aivi ≤ b),F∅ /∈ δ} (12)

ψ(Fc,
∑n
i=1 aivi ≤ b) = {{Fc} ∪ δ \ {T∅} | δ ∈ φ(

∑n
i=1 aivi ≤ b),F∅ /∈ δ} (13)

where

φ(
∑n
i=1 aivi ≤ b) =

{(a1v1 > b)‡} if n = 1

{(a1v1 ≥ d)‡} ∪ δ if n > 1

δ ∈ φ(
∑n
i=2 aivi ≤ b− d), d ∈ img(a1v1)

Note that nogoods with T∅ and F∅ are simplified in (12) and (13). Also, observe that the definition
of φ is recursive although this does not show with our simple examples.

11 Any linear inequality using <,>,≤,≥ and one variable can be converted into this form.
12 We use T∅ and F∅ as representatives for tautological and unsatisfiable signed literals; they are removed in (12) and

(13) below.

8 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

In our example, we obtain

ψ(T(x < 7), x ≤ 6) = {{T(x < 7),F(x ≤ 6)}} (14)

ψ(F(x < 7),−x ≤ −7) = {{F(x < 7),T(x ≤ 6)}} (15)

Taken together, both nogoods realize the aforementioned equivalence between the constraint atom
(x < 7) and its associated constraint. Note that (x < 7) is a constraint atom in C, while (x ≤ 6)

is an order atom in O and thus belongs to the encoding of the constraint associated with (x < 7).
For further illustration, reconsider the Boolean assignment {Ta,Fb,Fc,F(x < 7)} inducing the
first constraint stable models in (8). Applying unit propagation, we get F(x ≤ 6) via (15) and
in turn F(x ≤ 5) to F(x ≤ 1) via the nogoods in Φ({x}, {D(x)}) in (10). Similarly, making
T(x ≤ 7) true yields T(x ≤ 8) and T(x ≤ 9) also via the nogoods in (10).

All in all, a CSP (V, D,C) is characterized by the nogoods in Φ(V, D) and Ψ(C).
While in (8) the corresponding constraint variable assignment C is determined externally, it

can be directly extracted from a solution B for Φ(V, D) by means of the following functions: The
upper bound for a view v relative to a Boolean assignment B is given by ubB(v) = min({ub(v)}∪
{d | d ∈ img(v), (v ≤ d)‡ ∈ B}) and its lower bound by lbB(v) = max({lb(v)} ∪ {d | d ∈
img(v), (v ≥ d)‡ ∈ B}). Then, C(v) = lbB(v) = ubB(v) for all v ∈ V . Accordingly, the above
Boolean assignment corresponds to C = {x 7→ 7}.

Combining the nogoods stemming from the logic program and its associated CSP, we obtain
the following characterization of constraint logic programs.

Theorem 2.1
Let P be a constraint logic program over A ∪ C associated with the CSP (V, D,C) and let
X ⊆ A ∪ C and C a total assignment over V .

Then, (X,C) is a constraint stable model of P wrt (V, D,C) as defined in (Gebser et al. 2009)
iff (C, satC(C)) is a configuration for (V, D,C), X = BT ∩ atom(P) for a (unique) solution
B of ∆CP ∪ ΛCP ∪Ψ(C) ∪ Φ(V, D), and C = {v 7→ lbB(v) | v ∈ V}.

The proof of this theorem is obtained by combining existing characterizations of logic programs
in terms of nogoods and similar ones for CSPs in terms of clauses in CNF (Ostrowski 2017).

Nogood propagators. The basic idea of lazy constraint propagation is to make the nogoods in
Ψ(C) and Φ(V, D) only explicit when needed. This is done by propagators corresponding to
the respective set of nogoods. A popular example of this is the unfounded-set algorithm in ASP
solvers that only makes the nogoods in ΛP in (7) explicit when needed.

Following (Drescher and Walsh 2012), a propagator for a set Θ of nogoods is a function ΠΘ

mapping a Boolean assignment B to a subset of Θ such that for each total assignment B: if δ ⊆ B

for some δ ∈ Θ, then δ′ ⊆ B for some δ′ ∈ ΠΘ(B). That is, whenever there is a nogood in Θ

violated by an assignment B, then ΠΘ(B) yields a violated nogood, too. A propagator ΠΘ is
conflict optimal, if for all partial assignments B, the violation of a nogood in Θ by B implies that
some nogood in ΠΘ(B) is violated by B. ΠΘ is inference optimal, if it is conflict optimal and
ΠΘ(B) contains all unit nogoods of Θ wrt B.

We obtain the following extension of Theorem 2.1.

Theorem 2.2
Let P be a constraint logic program over A∪ C associated with the CSP (V, D,C) and let ΠΘ be
a propagator for Θ = ΛCP , Ψ(C), and Φ(V, D), respectively.

Clingcon: The Next Generation 9

Then, B is a solution of ∆CP ∪ ΛCP ∪Ψ(C) ∪ Φ(V, D) iff B is a solution of

∆CP ∪ΠΛC
P

(B) ∪ΠΨ(C)(B) ∪ΠΦ(V,D)(B) .

This theorem tells us that the nogoods in Ψ(C), Φ(V, D), and ΛCP must not be explicitly rep-
resented but can be computed by corresponding propagators ΠΘ that add them lazily when
needed.

To relax the restrictions imposed by this theorem, the idea is to compile out a subset of
constraints and variables of the CSP while leaving the others subject to lazy constraint propagation.
This is captured by the following corollary to Theorem 2.2.

Corollary 2.1
Let P be a constraint logic program over A ∪ C associated with the CSP (V, D,C) and let ΠΘ

be a propagator for Θ = ΛCP , Ψ(C \ C′), and Φ(V \ V ′, D \D′), respectively, for subsets C′ ⊆ C,
V ′ ⊆ V , and D′ ⊆ D.

Then, B is a solution of ∆CP ∪ ΛCP ∪Ψ(C) ∪ Φ(V, D) iff B is a solution of

∆CP ∪Ψ(C′) ∪ Φ(V ′, D′) ∪ΠΛC
P

(B) ∪ΠΨ(C\C′)(B) ∪ΠΦ(V\V′,D\D′)(B) .

This correspondence nicely reflects upon the basic idea of our approach. While the entire set
of loop nogoods ΛCP is handled by the unfounded set propagator ΠΛC

P
(B) as usual, the ones

capturing the CSP is divided among the explicated nogoods in Ψ(C′)∪Φ(V ′, D′) and the implicit
ones handled by the propagators ΠΨ(C\C′)(B) and ΠΦ(V\V′,D\D′)(B). Note that variables and
domain elements are often only dealt with implicitly through their induced order atoms in O.

3 The clingcon system

We now detail various aspects of the new clingcon 3 system. We begin with an overview of its
architecture along with its salient components. The next sections detail its input language and
major algorithms. The subsequent section is dedicated to distinguished clingcon features, which
are experimentally evaluated in Section 4. Finally, we illustrate in the last section clingcon’s
multi-shot solving capabilities by discussing several incremental solutions to the n-queens puzzle.

3.1 Architecture

clingcon 3 is an extension of the ASP system clingo 5, which itself relies on the grounder gringo
and the solver clasp. The architecture of clingcon 3 is given in Figure 1. More precisely, clingcon

CASP
Program

clingcon

gringo clasp
CSP

CASP
Solution

-- -

CSP
Grammar

Fig. 1: Architecture of clingcon 3
.

10 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

uses gringo’s capabilities to specify and process customized theory languages. For this, it is
sufficient to supply a grammar fixing the syntax of constraint-related expressions. As detailed in
Section 3.2, this allows us to express linear constraints similar to standard ASP aggregates by
using first-order variables. Unlike this, clingcon extends clasp in several ways to accommodate
its lazy approach to constraint solving. First, clasp’s preprocessing capabilities are extended to
integrate linear constraints. Second, dedicated propagators are added to account for lazy constraint
propagation. Both extensions are detailed in Section 3.3 and 3.4. And finally, a special output
module was created to integrate CSP solutions. Notably, clingcon pursues a lazy yet two-fold
approach to constraint solving that allows for making a part of the nogoods in Ψ(C) explicit during
preprocessing, while leaving the remaining constraints implicit and the creation of corresponding
nogoods subject to the constraint propagator. In this way, a part of the CSP can be put right up front
under the influence of CDCL-based search. All other constraints are only turned into nogoods
when needed. Accordingly, only a limited subset of order atoms from O must be introduced at
the beginning; further ones are only created if they are needed upon the addition of new nogoods.
This is also called lazy variable generation.

It is worth mentioning that both the grounding and the solving component of clingcon can also be
used separately via clingo’s option ‘--mode’. That is, the same result as with clingcon is obtained
by passing the output of ‘clingcon --mode=gringo’ to ‘clingcon --mode=clasp’.
The intermediate result of grounding a CASP program is expressed in the aspif format (Gebser
et al. 2016b) that accommodates both the regular ASP part of the program as well as its constraint-
based extension. This modular design allows others to take advantage of clingcon’s infrastructure
for their own CASP solvers. Also, other front ends can be used for generating ground CASP
programs; eg. the flatzinc translator used in Section 4.

Finally, extra effort was taken to transfer clasp specific features to clingcon’s solving component.
This includes multi-threading (Gebser et al. 2012), unsatisfiable core techniques (Andres et al.
2012), multi-criteria optimization (Gebser et al. 2011), domain-specific heuristics (Gebser et al.
2013), multi-shot solving (Gebser et al. 2015), and clasp’s reasoning modes like enumeration, in-
tersection and union of models. Vocabulary-sensitive reasoning modes like projective enumeration
and domain-specific heuristics can be used via auxiliary atoms.

3.2 Language

As mentioned, the treatment of the extended input language of CASP programs can be mapped
onto gringo’s theory language capabilities (Gebser et al. 2016a). For this, it is sufficient to
supply a corresponding grammar fixing the syntax of the language extension. The one used for
clingcon is given in Listing 1. The grammar is named csp and consists of two parts, one defining
theory terms in lines 2-27 and another defining theory atoms in lines 29-33. All regular terms
are implicitly included in the respective theory terms. Theory terms are then used to represent
constraint-related expressions that are turned by grounding into linear constraint atoms using
predicate &sum, domain restrictions using predicate &dom, directives &show and &minimize,
and the predefined global constraint &distinct.

Before delving into further details, let us illustrate the resulting syntax by the CASP program
for two dimensional strip packing given in Listing 2, originally due to (Soh et al. 2010). Given a
set of rectangles, each represented by a fact r(I,W,H) where I identifies a rectangle with width
W and height H, the task is to fit all into a container of width w and height ub while minimizing
the needed height of the container. The first two lines of Listing 2 restrict the domain of the

Clingcon: The Next Generation 11

1 #theory csp {
2 dom_term {
3 + : 5, unary;
4 - : 5, unary;
5 .. : 1, binary, left;
6 * : 4, binary, left;
7 + : 3, binary, left;
8 - : 3, binary, left
9 };

10 linear_term {
11 + : 5, unary;
12 - : 5, unary;
13 * : 4, binary, left;
14 + : 3, binary, left;
15 - : 3, binary, left
16 };
17 show_term {
18 / : 1, binary, left
19 };
20 minimize_term {
21 + : 5, unary;
22 - : 5, unary;
23 * : 4, binary, left;
24 + : 3, binary, left;
25 - : 3, binary, left;
26 @ : 0, binary, left
27 };

29 &dom/0 : dom_term, {=}, linear_term, any;
30 &sum/0 : linear_term, {<=,=,>=,<,>,!=}, linear_term, any;
31 &distinct/0 : linear_term, any;
32 &show/0 : show_term, directive;
33 &minimize/0 : minimize_term, directive
34 }.

Listing 1: Language Syntax

left lower corner of each rectangle I. The respective instantiations of x(I) and y(I) yield
constraint variables denoting the x and y coordinate of I, respectively. Note that in both lines
the consecutive dots ‘..’ construct a theory term ‘0..w-W’ and ‘0..ub-H’ once w and ub are
replaced, respectively. The choice rule in Line 4-7 lets us choose among all combinations of two
rectangles, that is, which one is left, right, below or above. At least one of these relations must
hold so that no two rectangles overlap. Atoms of form le(VI,C,VJ) indicate that coordinate
VI+C must be less than or equal to VJ. This property is enforced by the linear constraint in Line 9.
Finally, to minimize the overall height of (stacked) rectangles, we introduce the variable height.
This variable’s value has to be greater than or equal to the y coordinate of any rectangle I plus
the rectangle’s height H. This ensures that height is greater or equal to the height of the highest
rectangle. Finally, height is minimized in Line 13.

Now, if we take the three rectangles r(a,5,2), r(b,2,3), r(c,2,2) along with ub=10
and w=6, we obtain the ground program in Listing 3. The domains of the constraint variables giving

12 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

1 &dom{0..w-W} = x(I) :- r(I,W,H).
2 &dom{0..ub-H} = y(I) :- r(I,W,H).

4 1 { le(x(I),WI,x(J));
5 le(x(J),WJ,x(I));
6 le(y(I),HI,y(J));
7 le(y(J),HJ,y(I)) } :- r(I,WI,HI), r(J,WJ,HJ), I < J.

9 &sum{VI; C} <= VJ :- le(VI,C,VJ).

11 &dom{0..ub} = height.
12 &sum{y(I); H} <= height :- r(I,W,H).
13 &minimize {height}.
14 &show {height}.

Listing 2: Two Dimensional Strip Packing

the x- and y-coordinates are delineated in Line 3 and 4. Note that in contrast to regular ASP the
grounder leaves terms with the theory symbol .. intact. The orientation of each pair of rectangles
is chosen in Lines 6-11. If for example le(x(c),2,x(b)) becomes true, that is, rectangle c is
left of b, then the constraint x(c) + 2 ≤ x(b) is enforced in Line 22. After setting the domain for
the height variable in Line 26, we restrict it to be greater or equal to the top y-coordinate of
all rectangles in Lines 28-30. Line 32 enforces the minimization of this variable. A solution with
minimal height consists of the regular atoms le(y(b),3,y(a)), le(y(c),2,y(a)),
and le(x(c),2,x(b)) and the constraint variable assignment {height 7→ 5,y(c) 7→
1,x(c) 7→ 2,x(a) 7→ 1,x(b) 7→ 4,y(a) 7→ 3,y(b) 7→ 0}. Of course other minimal
configurations exist.

We have seen above how seamlessly theory atoms capturing constraint-related expressions can
be used in logic programs. We detail below the five distinct atoms featured by clingcon and refer
the interested reader for a general introduction to theory terms and atoms to (Gebser et al. 2016a).

Actual constraints are represented by the theory atoms &dom, &sum, and &distinct. All
three can occur in the head and body of rules, as indicated by any in Line 29-31 in Listing 1. We
discuss below their admissible format after grounding. In the following, a linear expression is a
sum of integers, products of integers, or products of an integer and a constraint variable.

Domain constraints are of form &dom{d1; . . . ; dn} = t where

• each di is a domain term of form

— u or

— v..w

where u, v, w are constraint variable free linear expressions and
• t is a linear expression containing exactly one constraint variable.

Then, the previous expression represents the constraint t ∈
⋃n
i=1JdiK, where JdK = {u} if

d = u, JdK = {v, . . . , w} if d = v..w, and undefined otherwise.
This constraint can be used to set the domain of variables where even non-contiguous domains
can be used by having n > 1. For example &dom{1..3; 5} = x represents the constraint
x ∈ {1, . . . , 3} ∪ {5}.

Linear constraints are of form &sum{t1; . . . ; tn} ◦ tn+1 where

Clingcon: The Next Generation 13

1 r(a,5,2). r(b,2,3). r(c,2,2).

3 &dom{0..(6-5)} = x(a). &dom{0..(6-2)} = x(b). &dom{0..(6-2)} = x(c).
4 &dom{0..(10-2)} = y(a). &dom{0..(10-3)} = y(b). &dom{0..(10-2)} = y(c).

6 1 <= { le(x(a),5,x(b)); le(x(b),2,x(a));
7 le(y(a),2,y(b)); le(y(b),3,y(a)) }.
8 1 <= { le(x(a),5,x(c)); le(x(c),2,x(a));
9 le(y(a),2,y(c)); le(y(c),2,y(a)) }.

10 1 <= { le(x(b),2,x(c)); le(x(c),2,x(b));
11 le(y(b),3,y(c)); le(y(c),2,y(b)) }.

13 &sum{ x(a); 5 } <= x(b) :- le(x(a),5,x(b)).
14 &sum{ x(b); 2 } <= x(a) :- le(x(b),2,x(a)).
15 &sum{ y(a); 2 } <= y(b) :- le(y(a),2,y(b)).
16 &sum{ y(b); 3 } <= y(a) :- le(y(b),3,y(a)).
17 &sum{ x(a); 5 } <= x(c) :- le(x(a),5,x(c)).
18 &sum{ x(c); 2 } <= x(a) :- le(x(c),2,x(a)).
19 &sum{ y(a); 2 } <= y(c) :- le(y(a),2,y(c)).
20 &sum{ y(c); 2 } <= y(a) :- le(y(c),2,y(a)).
21 &sum{ x(b); 2 } <= x(c) :- le(x(b),2,x(c)).
22 &sum{ x(c); 2 } <= x(b) :- le(x(c),2,x(b)).
23 &sum{ y(b); 3 } <= y(c) :- le(y(b),3,y(c)).
24 &sum{ y(c); 2 } <= y(b) :- le(y(c),2,y(b)).

26 &dom{ 0..10 } = height.

28 &sum{ y(a); 2 } <= height.
29 &sum{ y(b); 3 } <= height.
30 &sum{ y(c); 2 } <= height.

32 &minimize{ height }.
33 &show{ height }.

Listing 3: Two Dimensional Strip Packing Example

• each ti is a linear expression containing at most one constraint variable, and
• ◦ is one of the operators <=,=,>=,<,>,!=

This expression represents the linear constraint (t1 + · · ·+ tn) ◦ tn+1, which can be translated
into one or two linear constraints as in (5).

Distinct constraints are of form &distinct{t1; . . . ; tn} where each ti is a linear expression
containing at most one constraint variable. Such an expression stands for the constraints ti 6= tj
for 0 ≤ i < j ≤ n.
The distinct constraint is one of the most common global constraints in CP. We use it to show
how global constraints can be incorporated into the language.

The two remaining theory atoms provide directives, similar to their regular counterparts.

Output directives are of form &show{s1; . . . ; sn} where each si is a show term of form

• f/m where f is a function symbol and m a positive integer
• t, where t is a constraint variable.

14 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

While the latter adds variable t to the list of output variables, the first one adds all variables of
the form f(t1, . . . , tm) (where ti is a term) as output variables. For all constraint stable models,
the value of the output variables is shown in a solution.

Minimize directives are of form &minimize{m1; . . . ;mn} where each mi is a minimize term
of form ti@li and ti being a linear expression with at most one constraint variable. Since we
support multi-objective optimization, li is an integer stating the priority level. Whenever @li is
omitted, it is assumed to be zero. Priorities allow for representing lexicographically ordered
minimization objectives. As in regular ASP, higher levels are more significant than lower ones.
Let us make precise how minimize statements induce optimal constraint stable models. Let
P be a constraint logic program associated with (V, D,C). For a variable assignment C and
an integer l, define

∑C
l as the sum of all values a ·C(v) + c for all occurrences of minimize

terms av + c@l in all minimize statements in P . A constraint stable model (X,C) of P wrt
(V, D,C) is dominated if there is a constraint stable model (X ′,C′) such that

∑C′

l <
∑C
l

and
∑C′

l′ =
∑C
l′ for all l′ > l, and optimal otherwise. Maximization can be achieved by

multiplying each minimize term by −1.

Note that the set of constraints supported by clingcon is only a subset of the constraints
expressible with the syntax fixed in Listing 1. While for example expressions with more than one
constraint variable are well-formed according to the syntax, they are not supported by clingcon.

3.3 Algorithms

As mentioned, clingcon pursues a lazy approach to constraint solving that distinguishes two
phases. During preprocessing, any part of the nogoods representing a CSP can be made explicit
and thus put right away under the influence of CDCL-based solving. Unlike this, the remaining
constraints are at first kept implicit and their corresponding nogoods are only added via constraint
propagators to CDCL solving when needed. This partitioning of constraints constitutes a trade-off.
On the one hand, constraint propagators are usually slower than unit propagation, in particular,
when dealing with sets of nogoods of moderate size because of modern SAT techniques such as the
two-watched-literals scheme (Zhang et al. 2001). On the other hand, translating all constraints is
often impracticable, in particular, when dealing with very large domains. Hence, a good trade-off
is to restrict the translation to “small constraints” in order to benefit from the high performance of
CDCL solving and to unfold “larger constraints” only by need.

In what follows, we make clingcon’s two-fold approach precise by presenting algorithms for
translation and propagation of constraints before discussing implementation details in Section 3.4.

Partial Translation. Following Corollary 2.1, a subset C′ ⊆ C of the constraint atoms is used to
create the set of nogoods Ψ(C′). Therefore, Algorithm 1 creates a set of nogoods that is equivalent
to ψ(σ, a1v1 + · · ·+ anvn ≤ b), as defined in (12) and (13); in turn, they are used to create Ψ(C′)
as shown in (11). To this end, it is initially engaged by TRANSLATE({σ}, a1v1 + · · ·+anvn ≤ b).
We start the algorithm by having σ in our set of literals δ, and setting d to the smallest value
greater than b−

∑n
j=2 ub(ajvj) in the image of a1v1. This is the smallest value needed to violate

the constraint. If d and the least sum
∑n
j=2 lb(ajvj) added by all other views is still less than b in

Line 4, we have to recursively translate the rest of the constraint, while subtracting d from the right-
hand side in Line 5. Otherwise the constraint is already violated and we return all nogoods created
so far in Line 7. We iteratively increase d in Line 8 and repeat this process (Line 3) for all values

Clingcon: The Next Generation 15

Algorithm 1: TRANSLATE

Input :A set of signed literals δ and a linear constraint a1v1 + · · ·+ anvn ≤ b
Output :A set of nogoods

1 Σ← ∅
2 d← next(b−

∑n
j=2 ub(ajvj), a1v1)

3 while d ≤ ub(a1v1)

4 if d+
∑n
j=2 lb(ajvj) ≤ b then

5 Σ← Σ ∪ TRANSLATE(δ ∪ {(a1v1 ≥ d)‡}, a2v2 + · · ·+ anvn ≤ b− d)
6 else
7 return Σ ∪ {δ ∪ {(a1v1 ≥ d)‡}}
8 d← next(d, a1v1)

9 return Σ

in img(a1v1). Note that this also involves adding all order atoms OΨ(C′) =
⋃
δ∈Ψ(C′) δ

T ∪ δF
included in the created nogoods Ψ(C′) to the solver.

Which constraints to translate is subject to heuristics and command line options, as explained
in Section 3.4.

Extended Conflict Driven Constraint Learning. After translating a part of the problem into a set
of nogoods Ψ(C′), using the order atoms OΨ(C′) ⊆ O, we explain how to solve the remaining
constraint logic program P overA, C associated with (V, D,C). Our algorithmic approach follows
the one in (Drescher and Walsh 2012), where a modified CDCL algorithm supporting external
propagators is presented. We extend this algorithm with lazy nogood and variable generation in
Algorithm 2. The algorithm relies upon a growing set of Boolean variables B, which is initiated

Algorithm 2: EXTENDED CDCL

Input :A constraint logic program P over A, C associated with (V, D,C), a set of
constraints atoms C′ ⊆ C, and a set of order atoms OΨ(C′) ⊆ O

Output :A constraint stable model or unsatisfiable
1 B ← A∪ C ∪ OΨ(C′) // set of atoms
2 B← ∅ // assignment over A ∪ C ∪ O
3 ∇ ← ∅ // set of (dynamic) nogoods
4 loop
5 (B,B,∇)← PROPAGATION(B,B, C′,∇)

6 if CONFLICT(B) then
7 if ROOTCONFLICT(B) then return unsatisfiable
8 (B,∇)← BACKTRACKP (B,∇)

9 else if COMPLETE(B) then
10 if lbB(v) = ubB(v) for all v ∈ V then
11 return (BT ∩ atom(P), {v 7→ lbB(v) | v ∈ V})
12 else B ← B ∪ {SPLITV,D(B,B)}
13 else B← B ∪ {SELECT(B)}

16 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

with all atoms (regular, constraint, and a subset of the order atoms in OΨ(C′)), and subsequently
expanded by further order atoms. Accordingly, the Boolean assignment B is restricted to atoms
in B, and recorded nogoods are accumulated in ∇. Starting with an empty assignment, the
PROPAGATION method (Line 5), extends the assignment B with propagated literals, adds new
nogoods to∇ and extends the set of atoms B. This method is detailed below in Algorithm 3. When
encountering a conflicting assignment (Line 6), we either backtrack (Line 8) or, if we cannot
recover from the conflict, return unsatisfiable. Whenever all atoms in B are assigned (Line 9), we
check whether a complete assignment for the variables in V is obtained from B in Line 10. If
this is the case, we return the constraint stable model (BT ∩ atom(P), {v 7→ lbB(v) | v ∈ V}).
Otherwise, SPLITV,D(B,B) creates a new order atom for the constraint variable with the currently
largest domain that splits the domain in half. If we face an incomplete assignment, we extend it
using the SELECT function.

Algorithm 3: PROPAGATION

Global :A constraint logic program P over A, C associated with (V, D,C)

Input :A set of atoms B, a Boolean assignment B, a set of constraint atoms C′, and a set of
learned nogoods ∇

Output :A set of atoms, a Boolean assignment, and a set of learned nogoods
1 loop
2 B← UNITPROPAGATIONP (B,Ψ(C′) ∪∇)

3 if CONFLICT(B) then return (B,B,∇)

4 ∇′ ← UFSPROPAGATIONP (B)

5 if ∇′ 6= ∅ then
6 ∇ ← ∇∪∇′
7 else
8 ∇′ ← CSPPROPAGATION(B, C′,B)

9 if ∇′ 6= ∅ then
10 for δ ∈ ∇′ do B ← B ∪ δT ∪ δF
11 ∇ ← ∇∪∇′

12 else return (B,B,∇)

13 end

Algorithm 3 reflects the proceeding of our propagators. At first, UNITPROPAGATION is run
on the completion nogoods ∆CP , the nogoods from the partial translation Ψ(C′), and finally the
already learned nogoods ∇. Then, propagator ΠΛC

P
is engaged via UFSPROPAGATION. If it does

not add any new nogoods to∇, CSPPROPAGATION is called. This method acts as a propagator,
returning a set of nogoods ∇′. Since some of these nogoods may use new order atoms not
introduced so far, we dynamically extend the set of atoms B by the atoms in δT ∪ δF stemming
from the added nogoods δ ∈ ∇′.

New nogoods produced by any propagator are added to the set ∇ of recorded nogoods and
propagation resumes afterwards (lines 6 and 11). Notably, CSPPROPAGATION is not run until a
fixpoint is obtained. However, its set of returned nogoods remains non empty until a fixpoint is
reached. In this way, unit propagation interleaves with constraint propagation while delaying more
complex propagation. In all, since unit propagation is much faster, it always precedes unfounded

Clingcon: The Next Generation 17

set propagation, which again precedes constraint propagation. This order reflects the complexity
of the respective propagators, so that the faster the propagation, the sooner it is engaged.

Lazy Variable Generation. Realizing CSPPROPAGATION as a propagator for ΠΨ(C) and
ΠΦ(V,D) allows for lazy nogood generation and for capturing inferences of the order en-
coding. However, to be effective, lazy variable generation requires a different set of con-
straints to be propagated. For illustration, suppose CSPPROPAGATION is a propagator for
Ψ(C) ∪ Φ(V, D). Considering our example program P1 along with T(x < 7) ∈ B results
in CSPPROPAGATION(∅, ∅, {T(x < 7)}) = {{T(x < 7),F(x ≤ 6)}}, which is a subset of
Ψ(C) according to (14). This nogood comprises the order atom (x ≤ 6) which is added to B
in Line 10 of Algorithm 3. Having this nogood, unit propagation adds in turn T(x ≤ 6) to the
assignment in Line 2. Then, CSPPROPAGATION({(x ≤ 6)}, ∅, {T(x ≤ 6)}) yields the nogoods
{{T(x ≤ 6),F(x ≤ 7)}, . . . , {T(x ≤ 8),F(x ≤ 9)}} belonging to Φ(V, D) and produces the
corresponding order atoms (x ≤ 7), . . . , (x ≤ 9). We see that once a certain upper bound
T(v ≤ x) ∈ B is found, all order atoms in {(v ≤ x′) | x′ > x, x′ ∈ D(v), x′ < ub(v)}
are added to B. Similarly, if a lower bound F(v ≤ x) ∈ B is fixed, all order atoms
{(v ≤ x′) | x′ ≤ x, x′ ∈ D(v)} are added to B. To avoid adding superfluous order atoms,
we let CSPPROPAGATION be a propagator for Ψ(C) ∪ Φ′(V, D) where

Φ′(V, D) = {{T(v ≤ d),F(v ≤ e)} | v ∈ V, d ∈ D(v), e ∈ D(v), d < e < ub(v)}.

Although Φ′(V, D) is a superset of Φ(V, D), CSPPROPAGATION only adds nogoods from
Φ′(V, D) whose order atoms have already been introduced, that is, {(v ≤ d), (v ≤ e)} ⊆ B.
While Φ(V, D) contains for each variable v a linear number of nogoods of form {T(v ≤
d),F(v ≤ next(d, v))}, Φ′(V, D) contains a quadratic number of nogoods for each variable.
The nogoods in Φ(V, D) allow for propagating the truth value of one order literal to its adjacent
one. Unlike this, Φ′(V, D) contains redundant nogoods that allow for propagating the truth value
of one order literal to all greater ones by means of nogoods of form {T(v ≤ d),F(v ≤ e)}
for all values e ∈ D(v) such that d < e < ub(v). Instead of “chaining” all values together,
the latter nogoods allow us to directly jump to any value. As we restrict our propagator for
Φ′(V, D) to only return nogoods where all order atoms are included in B, no new order atoms
are created. In our example, this optimized CSPPROPAGATION function does not return any
nogoods, viz. CSPPROPAGATION({(x ≤ 6)}, ∅, {T(x ≤ 6)}) = ∅, as none of the order atoms
(x ≤ 7), . . . , (x ≤ 9) are included in B and no propagation needs to be done.

CSPPROPAGATION is depicted in Algorithm 4 and consists of two parts (lines 1-10 and 11-21).
The first part starts with selecting the unit nogoods from Φ′(V, D). For every variable v ∈ V , we
check if it already has an upper bound ub (lines 3-4) given by T(v ≤ ub) ∈ B. If this is the case,
we add the nogoods

{{T(v ≤ ub),F(v ≤ x)} | x > ub, (v ≤ x) ∈ B,T(v ≤ x) /∈ B}

to Σ to ensure consistency of all order atoms (v ≤ x) ∈ B where x > ub that are not already true.
Lines 6-8 do the same for current lower bound of the variable. If any nogoods are found, they are
immediately returned in Line 10. The PROPAGATION function continues with unit propagation
on the new nogoods. The second part of the constraint propagation (lines 11-21), generating the
nogoods in Ψ(C \ C′) lazily, is only done if all order atoms are properly propagated, i.e. no new
nogoods have been generated in the first part (lines 1-10). This is detailed in the next paragraph.

18 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

Algorithm 4: CSPPROPAGATION

Global :A constraint logic program P over A, C associated with (V, D,C)

Input :A set of atoms B, a set of constraint atoms C′, and a Boolean assignment B
Output :A set of nogoods

1 Σ← ∅ // an empty set of nogoods
2 for v ∈ V do
3 if T(v ≤ d) ∈ B for some d ∈ D(v) then
4 ub← min {d | d ∈ D(v),T(v ≤ d) ∈ B}
5 Σ← Σ ∪ {{T(v ≤ ub),F(v ≤ x)} | x > ub, (v ≤ x) ∈ B,T(v ≤ x) /∈ B}
6 if F(v ≤ d) ∈ B for some d ∈ D(v) then
7 lb← max {d | d ∈ D(v),F(v ≤ d) ∈ B}
8 Σ← Σ ∪ {{T(v ≤ x),F(v ≤ lb)} | x < lb, (v ≤ x) ∈ B,F(v ≤ x) /∈ B}
9 end

10 if Σ 6= ∅ then return Σ

11 for c ∈ C \ C′ do
12 if Tc ∈ B then
13 Σ← Σ ∪ PROPAGATEBOUNDS(B,Tc⇒ γ(c))

14 else if Fc ∈ B then
15 Σ← Σ ∪ PROPAGATEBOUNDS(B,Fc⇒ γ(c))

16 else
17 Σ← Σ ∪ PROPAGATEREIFICATION(B,Tc⇒ γ(c))

18 Σ← Σ ∪ PROPAGATEREIFICATION(B,Fc⇒ γ(c))

19 if Σ 6= ∅ then return Σ

20 end
21 return ∅

Constraint Propagation. To generate the nogoods in Ψ(C \ C′) lazily, Algorithm 4 uses functions
PROPAGATEBOUNDS and PROPAGATEREIFICATION for half-reified constraint Tc⇒ γ(c) and
Fc⇒ γ(c), respectively, for each c ∈ C\C′. In the respective algorithms 5 and 6, we consider four
different strengths of propagation, denoted by ps . A strength of 1 means that our propagator only
produces conflicting nogoods. A strength of 2 means that it additionally checks if yet undecided
constraints became true. Strength 3 furthermore adds unit nogoods that also propagate the bounds
of the variables in a constraint if it is already decided to be true, whereas strength 4 also computes
optimized nogoods for yet undecided constraints. The propagators are conflict optimal and for
strength 4 even inference optimal. We divided our propagator into two algorithms, handling reified
constraints of form σ ⇒ a1v1 + · · ·+ anvn ≤ b. Algorithm 5 is only called if σ ∈ B. Whenever
σ is true, we check whether the constraint a1v1 + · · ·+ anvn ≤ b can be falsified. If it can never
be falsified, e.g. the sum of the current upper bounds already satisfies the constraint in Line 1, we
are done. If we only have propagation strength 1 or 2, we check in Line 3 whether the sum of
the current lower bounds is already above the bound b. In this case, we simply return the current
lower bounds of the views as a nogood, since the constraint is already violated. For example,
take the constraint σ ⇒ x+ y ≤ 9 with D(x) = D(y) = {1, . . . , 15} and the current lower and
upper bounds lbB(x) = 7, ubB(x) = 10, lbB(y) = 5, and ubB(y) = 12. The sum of the lower
bounds 7 + 5 is greater than 9, and so the constraint is violated. Therefore, we add the nogood

Clingcon: The Next Generation 19

Algorithm 5: PROPAGATEBOUNDS

Global :An integer ps
Input :A Boolean assignment B and a half-reified constraint σ ⇒ a1v1 + · · ·+ anvn ≤ b
Output :A set of nogoods

1 Σ← ∅ // An empty set of nogoods
2 if

∑n
j=1 ubB(ajvj) ≤ b then return ∅

3 if ps ≤ 2 then
4 if

∑n
j=1 lbB(ajvj) > b then

5 Σ← {{σ} ∪ {(ajvj ≥ lbB(ajvj))
‡ | 1 ≤ j ≤ n}}

6 return Σ

7 for i = 1..n do
8 cur ← b−

∑n
j=1,j 6=i lbB(ajvj)

9 if cur < ubB(aivi) then
10 Σ← Σ ∪ {{σ, (aivi > cur)‡} ∪ {(ajvj ≥ lbB(ajvj))

‡ | 1 ≤ j ≤ n, j 6= i}}
11 if cur < lbB(aivi) then return Σ

12 end
13 return Σ

{σ, (x ≥ 7)‡, (y ≥ 5)‡}. If the propagation strength is greater than 2 (Lines 6-10), we try to find
new upper bounds for the views of the constraint. For this purpose, cur represents the maximal
value that aivi can take without violating the constraint. All other views ajvj (j 6= i) contribute
at least their current lower bound to the sum. In our example, this means that cur = 9− 5 = 4. If
this value is less than the current upper bound of aivi (Line 8), we create a nogood that allows us
to propagate the new upper bound. In the example, this is {σ, (x > 4)‡, (y ≥ 5)‡}. Compared to
the nogood that was created in Line 4, this nogood is stronger as the required minimum for x is
lower. If cur is even below the current lower bound of aivi, we have a conflict and stop eagerly
(Line 11). Since cur = 4 and lbB(x) = 7, this is the case in our example. This algorithm has
linear complexity O(n), but since we consider domains/images with holes, finding the literal
(aivi > cur)‡ is actually O(log(|D(vi)|)) which raises the overall complexity for propagation
strength greater than 2.

Algorithm 6 is only called if neither σ ∈ B nor σ ∈ B, e.g. whenever σ is unknown, and
propagation strength is at least 2 (Line 1). If the sum of all current lower bounds of the left hand
side is greater than b (Lines 2 and 3), the constraint can never become satisfied. Given a propagation
strength below 4, we simply create a nogood based on the current lower bounds. In our example,
this is the same nogood {σ, (x ≥ 7)‡, (y ≥ 5)‡} generated in Algorithm 5. If the propagation
strength is 4 (Lines 8-13), we try to find a sum of the views that is minimally greater than b. In our
example, we start with a lower bound low = 12. By subtracting lbB(x), we get low′ = 5. This
leaves us with cur = next(9− 5, x) = 5 adding (x ≥ 5)‡ to our nogood. In the second iteration,
we now have to find a sufficient lower bound for y that violates the constraint. We see that this
value is 5, adding (y ≥ 5)‡ to δ in Line 11 resulting in the nogood {σ, (x ≥ 5)‡, (y ≥ 5)‡}.
Again, the complexity of the refined search is higher but also the produced nogoods are stronger.
Note that as an optimization, PROPAGATEBOUND and PROPAGATEREIFICATION are only called
if the bounds of the variables of the constraints have changed. The propagation strength is set
using the option --prop-strength.

20 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

Algorithm 6: PROPAGATEREIFICATION

Global :An integer ps
Input :A Boolean assignment B and a half-reified constraint σ ⇒ a1v1 + · · ·+ anvn ≤ b
Output :A set of nogoods

1 if ps = 1 then return ∅
2 low ←

∑n
j=1 lbB(ajvj)

3 if low > b then
4 δ ← {σ}
5 if ps < 4 then
6 δ ← δ ∪ {(ajvj ≥ lbB(ajvj))

‡ | 1 ≤ j ≤ n}
7 else
8 for j ∈ 1..n do
9 low′ ← low − lbB(ajvj)

10 cur ← next(b− low′, ajvj)
11 δ ← δ ∪ {(ajvj ≥ cur)‡}
12 low ← low′ + cur

13 end
14 return {δ}

3.4 Distinguished Features

After presenting the algorithmic framework of clingcon 3, we now describe some of its specific
features. Many of them aim at reducing the size of domains and the number of variables, while
others address special functionalities, like global constraints or multi-objective optimization over
integer variables, respectively.

When we refer in the following to the truth value of atoms, we consider a partial assignment
obtained by propagation and/or preprocessing.

Views. A view av+b can be represented with the same set of order atoms as its variable v (Thibaut
and Stuckey 2009). Consider the view −5v + 7 together with the domain D(v) = {1, 2, 3, 4, 5}.
We show how the order atoms of v are used to encode constraints over the view in clingcon. The
view−5v+7 has the following values in its image: img(−5v+7) = {−18,−13,−8,−3, 2}. The
order literals for {(v ≤ x)‡ | x ∈ D(v)} and {(−5v+7 ≤ x)‡ | x ∈ img(−5v+7)} are given in
Table 1. We see that the set of order atoms used for these literals is the same. By allowing views in-

Expression Image Order Literals
v {1, 2, 3, 4, 5} Tv ≤ 1 Tv ≤ 2 Tv ≤ 3 Tv ≤ 4 T∅

−5v + 7 {−18,−13,−8,−3, 2} Fv ≤ 4 Fv ≤ 3 Fv ≤ 2 Fv ≤ 1 T∅
Table 1: Order literals of different views of one variable.

stead of variables, we avoid introducing new variables (for views). In fact, neither the XCSP (Rous-
sel and Lecoutre 2009) nor the flatzinc13 format allow for using views in global constraints. For
instance, a distinct constraint over the set of views {1000v1, 1000v2, 1000v3, 1000v4, 1000v5}

13 http://www.minizinc.org/downloads/doc-1.3/flatzinc-spec.pdf

Clingcon: The Next Generation 21

translates into the same nogoods as a distinct constraint over {v1, v2, v3, v4, v5}. Due to the
restriction to use variables, according solvers like sugar (Tamura et al. 2009) introduce auxiliary
variables v′i = 1000vi for 1 ≤ i ≤ 5. If D(vi) = {1, . . . , 10}, bound propagation yields the
domains D(v′i) = {1000·1, . . . , 1000·10} = {1000, . . . , 10000}.14 Furthermore, around 220000
nogoods for the equality constraints are created. By handling views directly, we avoid introducing
these auxiliary variables and constraints in clingcon.

The same holds for minimize statements. Views on variables such as 3 ∗ v2 or −v3 allow for
weighting variables during minimization as well as maximization, without the need of introducing
auxiliary variables and additional constraints.

Non-Contiguous Integer Domains. We represent domains of variables (and images of views) as
sorted lists of ranges like [1..3, 7..12, 39..42] instead of single ranges like [1..42]. This has the
advantage that we can represent domains with holes directly, without any additional constraints.
Introducing order atoms for such a non-contiguous domain produces fewer atoms (12 in this exam-
ple) than for a domain only represented with two bounds (41). A drawback of this representation
is that the lookup for a certain value d in the domain becomes logarithmic, as we rely upon binary
search in the list of ranges. This is frequently done in Algorithms 1, 5 and 6 whenever a calculated
value d leads to searching for a literal (v ≤ d)‡.

Equality Processing. To minimize the number of atoms and nogoods that have to be created
during a translation or solving process, we need to reduce the number of integer variables. To
accomplish this, we consider the equalities in a CSP that include only two integer variables,
and replace all occurrences of the first variable with a view on the second variable in all other
constraints. Consider a constraint logic program P over A, C associated with (V, D,C). For
each element γ(σ) ∈ C of the form ax + c1 = by + c2 (or ax + c1 6= by + c2) where σ is
true (false), a, b, c1, c2 are integers, and x, y ∈ V , we successively replace constraints in C. For
this, we normalize the constraint γ(σ) to ax = by + c where x is lexicographically smaller than
y and multiply all constraints in C containing variable y with b and replace by + c by ax in
them. The domain of x is made domain consistent such that ad ∈ img(by + c) holds for all
d ∈ D(x). Afterwards, we remove γ(σ) from C and y from V . Note that by replacing variables,
new equalities may arise, which we process until a fixpoint is reached.

For illustration, consider the following set C of constraints.

a = 2b (16)

b = 2c (17)

c = 2d (18)

d = 2e (19)

e = 2f (20)

a+ 14d− 3f + b ≤ −g (21)

And assume that the constraint literals associated with the first 5 constraints are true. Furthermore,
let D = {D(x) = {−212, . . . , 212 | x ∈ {a, b, c, d, e, f, g}}. Without any simplification, we have
7 variables, all with a domain size of roughly 8000. By simply translating these constraints, we

14 As done in the sugar system.

22 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

would create around 120000 order atoms and 118 million nogoods. Let us show how equality
processing allows us to significantly reduce these numbers in our example. To begin with, we
multiply the constraint in (21), viz. a+ 14d− 3f + b ≤ −g, with 2 and replace −6f with −3e

using the constraint in (20). This yields 2a + 28d − 3e + 2b ≤ −2g. Also, (20) allows us to
restrict the domain of e to D(e) = {−211, . . . , 211}. We then remove e = 2f from the set of
constraints and f from the set of variables. We repeat this procedure for all other equalities. To
replace e, we again multiply the obtained constraint by 2, yielding 4a+ 56d− 6e+ 4b ≤ −4g,
and replace 6e with 3d using (19). This results in 4a + 53d + 4b ≤ −4g. Again, we remove
d = 2e and variable e, and obtain D(d) = {−210, . . . , 210}. Using (18), we multiply by 2 and
replace 106d with 53c which leads to the constraint 8a + 53c + 8b ≤ −8g. To remove c, the
constraint in (17) is used to replace 106c with 53b resulting in 16a + 69b ≤ −16g. In the last
step, we apply (16) to get 32a+ 69a ≤ −32g which simplifies to 101a ≤ −32g. As a result, the
overall set of constraints is thus reduced to a single constraint 101a ≤ −32g. This constraint uses
only two variables with domains D(a) = {−27, . . . , 27} and D(g) = {−212, . . . , 212}. All other
constraints and variables have been removed. To translate this constraint, we need 9265 order
atoms and 268 nogoods.

Our approach to equivalence processing is inspired by Boolean Equi-propagation (Metodi et al.
2013), which directly replaces the order atoms of one variable with the other. Directly using integer
variables, without considering the order literal representation, allows us to use this technique also
in the context of lazy variable generation. Here, it reduces the number of variables, which leads to
shorter constraints, which ultimately reduces the number of nogoods in the translation process.

Equality preprocessing is done once in clingcon, before the actual solving starts and can be
controlled using the command line option --equality-processing.

Distinct Translation. clingcon features two alternatives for translating global distinct constraints.
Assume that constraint atom c represents a distinct constraint over a set {v1, . . . , vn}. Since we
represent distinct constraints in terms of rules and other linear constraints, this constraint atom
becomes a regular atom and is used in the head of rules.

The first method to handle this constraint uses a quadratic number of new, regular atoms
neq(vi, vj) for all 1 ≤ i < j ≤ n together with the rules

neq(vi, vj)← (vi − vj ≤ 1)

neq(vi, vj)← (vj − vi ≤ 1)

to represent that two variables are unequal. By adding the following rule to the program

c ← neq(v1, v2), neq(v1, v3), . . . , neq(v1, vn),

neq(v2, v3), . . . , neq(v2, vn),

. . .
...

neq(vn−1, vn)

clingcon ensures that c is only true if all variables are distinct from each other.
The second alternative uses a so-called direct encoding (Walsh 2000). For each value

d ∈
⋃n
i=1 img(vi), we ensure that at most one variable from {v1, . . . , vn} takes this value. There-

fore, we introduce regular atoms of form eq(vi, d) for all these variables together with the rule

eq(vi, d)← (vi ≤ d), (−vi ≤ −d) (22)

Clingcon: The Next Generation 23

representing that vi = d. Furthermore, we add a cardinality constraint (Simons et al. 2002) for
each value d to the effect that no two or more variables may have the same value, viz.

c′ ← 2 {eq(v1, d), . . . , eq(vn, d)}

The new regular atom c′ is true if two or more variables have the same value d. If this is not the
case, the distinct constraint atom holds via the rule:

c ← ∼c′

We reuse the direct encoding atoms eq(vi, d) for other distinct constraints. Note that introducing
all direct encoding atoms also involves the creation of corresponding order atoms before the
solving process. So no variable from a distinct constraint can be created lazily. This is also the
reason why this option is not enabled in clingcon by default and distinct constraints are translated
using inequalities. The use of the direct encoding along with cardinality constraints is enabled
with the option --distinct-to-card.

Pigeon Hole Constraints. To enhance the propagation strength when translating distinct con-
straints in clingcon, we add rules for the lower and upper bounds. Consider the constraint atom
c for a distinct constraint over {v1, . . . , vn} and let U =

⋃n
i=0 img(vi), l be the nth smallest

element in U , and u be the nth greatest element in U . We add the rules:

← c, (v1 > u), . . . , (vn > u)

← c, (v1 < l), . . . , (vn < l)

where as before, c is treated as regular atom.
So given a distinct constraint over {v1, v2, v3} with D(vi) = {1, . . . , 10} for 1 ≤ i ≤ 3 we

add the rules

← c, (v1 > 8), (v2 > 8), (v3 > 8)

← c, (v1 < 3), (v2 < 3), (v3 < 3)

This forbids all variables to have a value greater than eight or to have a value less than three. This
feature only causes a constant overhead in the number of rules. It can be controlled using the
option --distinct-pigeon.

Permutation Constraints. A distinct constraint over {v1, . . . , vn} where U =
⋃n
i=1 img(vi) and

|U | = n induces a permutation on the variables. Let c be the constraint atom representing this
global constraint. In this special case, we can add the rules

← c,∼eq(v1, d), . . . ,∼eq(vn, d) for all d ∈ U.

These rules enforce that each value is taken at least once.
For example, given a distinct constraint over {v1, v2, v3} with D(vi) = {1, . . . , 3} for 1 ≤ i ≤

3 we add the rules

← c,∼eq(v1, 1),∼eq(v2, 1),∼eq(v3, 1)

← c,∼eq(v1, 2),∼eq(v2, 2),∼eq(v3, 2)

← c,∼eq(v1, 3),∼eq(v2, 3),∼eq(v3, 3)

24 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

This feature introduces direct encoding atoms along with the respective rules and order atoms
in (22). Since these atoms cannot be treated lazily, this feature is disabled by default but can be
controlled using the option --distinct-permutation.

Sorting. Sorting constraints by descending coefficients is known to avoid redundant nogoods in
the translation process (Tamura et al. 2013). Also, systems like sugar sort constraints by smallest
domain first, and when tied, with largest coefficient. clingcon can either sort by coefficient
or domain size first, in decreasing or increasing order. The option --sort-coefficient
controls the sorting of the constraints.

Splitting Constraints. Considering that directly translating a linear constraint a1v1 + · · ·+anvn ≤
b with the order encoding leads to an exponential number of nogoods, we split long constraints
into shorter ones by introducing new variables. Thereby we adapt the heuristics of sugar. We
only split a constraint if the number of variables is greater than α and if its translation produces
more than β nogoods. If both conditions hold, we recursively split a constraint into α parts. The
new constraints have the form akvk + · · ·+ alvl = vkl where 1 ≤ k ≤ l ≤ n. α and β are freely
configurable. By default, splitting is disabled in clingcon, but α and β can be changed with options
--split-size and --max-nogoods-size.

Symmetry Breaking. When splitting a constraint like a1v1 + a2v2 + a3v3 ≤ b, we get the
constraints a1v1 + a1v2 = v1

2 and v1
2 + a3v3 ≤ b. Equations like a1v1 + a1v2 = v1

2 are
represented as conjunctions of a1v1 + a1v2 ≤ v1

2 and a1v1 + a1v2 ≥ v1
2 . By dropping the latter

inequality, we obtain an equi-satisfiable set of constraints being smaller than before but admitting
more (symmetric) solutions, as v1

2 freely varies. Symmetry breaking should therefore be enabled if
one wants to enumerate all solutions without duplicates. This form of symmetry breaking is usually
skipped in SAT-based CSP solvers like sugar. This option is set via --break-symmetries.

Domain Propagation. To create the domain of variables like v1
n in the aforementioned constraints

of form a1v1 + · · ·+ anvn = v1
n, we may use bound propagation. For example, the constraint

42x + 1337z = y where D(x) = D(z) = {0, 1} results in the domain D(y) = {42 · lb(x) +

1137 · lb(z), . . . , 42 · ub(x) + 1137 · ub(z)} = {0, . . . , 1379}. Using domain propagation instead
leads to the much smaller domain D(y) = {42dx + 1137dz | dx ∈ D(x), dz ∈ D(z)} =

{0, 42, 1337, 1379}. However, we restrict domain propagation to preprocessing by default, as
it has an exponential runtime. clingcon allows for controlling domain propagation by setting a
threshold on the domain size; this is set by option --domain-size.

Translate Constraints. Following a two-fold approach, clingcon is able to translate some con-
straints while leaving others to constraint propagators as shown in Section 3.3. clingcon provides
the option --translate-constraints=m to decide which constraints to translate or not.
The translation depends on the estimated number of nogoods

∏n−1
i=1 |D(vi)| that Algorithm 1

produces for a constraint a1v1 + · · ·+anvn ≤ b. If this number is below the threshold m, clingcon
translates the constraint. Also all order atoms used in these nogoods are created.

Redundant Nogood Check. A nogood δ is said to be stronger than a nogood δ′, iff for all literals
(v > d)‡ ∈ δ, there exists a literal (v > d′)‡ ∈ δ′ such that d ≤ d′ and v is a view. Whenever
a nogood is created in Line 7 in Algorithm 1, we compare it to the previously created one. If

Clingcon: The Next Generation 25

logic program P constraint stable models of P

{a} {({a, (x > 7)}, {x 7→ d}) | d ∈ {8, . . . , 10}}∪
← a,∼(x > 7) {({(x > 7)}, {x 7→ d}) | d ∈ {8, . . . , 10}}∪

{(∅, {x 7→ d}) | d ∈ {1, . . . , 7}}

{a} {({a, (x > 7)′}, {x 7→ d}) | d ∈ {8, . . . , 10}}∪
← a,∼(x > 7)′ {(∅, {x 7→ d}) | d ∈ {1, . . . , 10}}
← ∼a, (x > 7)′

Table 2: Constraint logic programs using reified T(x > 7) ⇔ x > 7 and half-reified
T(x > 7)′ ⇒ x > 7 constraints.

one of them is stronger, we only keep the stronger one, otherwise, we keep both. This feature
allows clingcon to remove some redundant nogoods during the translation process. It is especially
useful if the constraints are not sorted by descending coefficients. The check just adds constant
overhead to the translation process but avoids creating a significant amount of nogoods. For
instance, translating the famous send more money problem results in 628 nogoods among which
327 are redundant, when using --split-size=3. This feature can be triggered using option
--redundant-nogood-check.

Don’t Care Propagation. Suppose we want to express that (x > 7) should hold whenever a
holds; otherwise we do not care whether (x > 7) holds or not. A corresponding constraint logic
program is given in the first row of Table 2 together with its constraint stable models. In the
standard case for CASP, the constraint atom is reified with its constraint via T(x > 7)⇔ x > 7.
In the case that a is true, the constraint atom (x > 7) has to be true. The reification ensures
that x is greater than 7, leading to three different assignments {{x 7→ d} | d ∈ {8, . . . , 10}}
for variable x. In the case that a is false, the constraint atom (x > 7) can either be true or false.
The first case results in the same three assignments, while the latter corresponds to seven others,
viz. {{x 7→ d} | d ∈ {1, . . . , 7}}, as the reification imposes that the constraint x > 7 does not
hold, basically enforcing x ≤ 7. We note that in case a is false, the constraint imposed on x
is either x > 7 or x ≤ 7. This means that there is actually no restriction on the assignment of
x. We exploit this observation by replacing (x > 7) with a new constraint atom (x > 7)′ and
adding the rule← ∼a, (x > 7)′. The idea is that atom (x > 7)′ imposes (x > 7) as a half-reified
constraint, meaning that x is enforced to be greater than 7 only if the constraint atom (x > 7)′ is
true, i.e. T(x > 7)′ ⇒ x > 7. We obtain exactly the same stable models in terms of the regular
atoms and integer variable assignments, as depicted in the second row of Table 2. The difference
between these two programs lies in the assignment of the constraint atoms. The additional rule
← ∼a, (x > 7)′ ensures that the constraint atom (x > 7)′ is false, whenever a is false. Since we
connect the constraint atom with its constraint using a half-reified constraint, this constraint has no
effect on the assignment of x, resulting in {{x 7→ d} | d ∈ {1, . . . , 10}}. Although the number of
constraint stable models stays the same, the number of different Boolean assignments is reduced.

This technique is called Don’t Care Propagation (Thiffault et al. 2004). All constraint atoms
that only occur in integrity constraints and only positively (negatively) in the whole program are
don’t care atoms. clingcon fixes the truth value of don’t care atoms to false (true), if all integrity
constraints containing the atom have at least one literal being false under the current assignment.
Don’t care propagation can be useful in SAT, but it has even more potential to be helpful in
CASP/SMT, since we not only reduce the search space but also the theory propagator has to handle

26 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

only one half-reified constraint per don’t care atom. This means only half of the inferences have
to be checked. This technique is not specifically designed for CSP but it can also be used for other
theories. Don’t care propagation is controlled using the option --dont-care-propagation.

Order Atom Generation. When translating a constraint, all order atoms for all its integer variables
must be available. By not translating all constraints, we also do not need to create all order atoms.
Some of them can be created on the fly during propagation. With this in mind, it might still be
useful to create a certain number of order atoms per variable in a preprocessing step. clingcon can
create n atoms evenly spread among the domain values of a variable v. So if we have a domain
D(v) = {1, . . . , 10, 90, . . . , 100} and create four order atoms we use (v ≤ 3), (v ≤ 8), (v ≤ 92)

and (v ≤ 97). These order atoms allow the solver to split the domain during the search. Option
--min-lits-per-var=n adds at least min(n, |D(v)| − 1) order atoms for each variable v.

Explicit Binary Order Nogoods. Some order atoms are created before solving. Therefore, it can
also be beneficial to create a subset of the order nogoods Φ′(V, D) in advance, as shown in
Corollary 2.1. Given that we created the set of order atoms {(v ≤ x1), . . . , (v ≤ xn)} for a
variable v ∈ V where xi < xi+1 for 1 ≤ i ≤ n, the explicit order nogoods

{{Tv ≤ x1,Fv ≤ x2}, . . . , {Tv ≤ xn−1,Fv ≤ xn}}

can also be created. To introduce these binary order nogoods for all order atoms that have been
created before the solving process, the option --explicit-binary-order can be used.

Objective Functions. We support multi-objective optimization on sets of views. For all views
av + c subject to minimization, we use the signed order literals (av + c ≥ d)‡ with weight{

d− prev(d, av + c) if d > lb(av + c)

d if d = lb(av + c)

for all values d ∈ img(av+ c) in an ASP minimize statement. This minimizes the total sum of the
set of views. By using native ASP minimize statements, clingcon reuses clasp’s branch and bound
and unsatisfiable core based techniques (Andres et al. 2012). For instance, for minimizing 3x

where D(x) = {1, 3, 7}, we have the following weighted literals in the (internal) ASP minimize
statement (3x ≥ 3)‡ = 3, (3x ≥ 9)‡ = 6, and (3x ≥ 21)‡ = 12. In terms of ASP-pseudo-code
this amounts to a minimize statement of form #minimize{6 : ∼x ≤ 1; 12 : ∼x ≤ 3} although
order literals are not part of the input language. (3x ≥ 3)‡ evaluates to true, while (3x ≥ 9)‡ and
(3x ≥ 21)‡ can be expressed via order literals as ∼(x ≤ 1) and ∼(x ≤ 3), respectively.

Flattening Objective Functions. Minimizing the value of an integer variable y that is included
in a constraint γ(σ) = a1v1 + · · · + anvn = y where σ is true, is equivalent to minimizing
the value of a1v1 + · · ·+ anvn. Directly using the views aivi strengthens the nogoods used to
represent the minimize statement. The constraint a1v1 + · · ·+ anvn = y can be removed if y is
not used anywhere else.15 In fact, this pattern occurs quite often in our minizinc benchmark set.
Replacing variable y with its constituents a1v1 + · · ·+ anvn can be controlled with the option
--flatten-optimization.

15 We keep the constraint to be able to correctly print y in a solution.

Clingcon: The Next Generation 27

Reduced Nogood Learning. Whenever CSPPROPAGATION in Algorithm 3 and 4 derives a nogood,
it is possible to not add it to the store of learned nogoods ∇ but rather keep it implicit and
only add it if it is really needed for conflict analysis. The internal interface of clasp supports
such a behavior. While the learned nogoods ∇ improve the strength of unit propagation, too
many nogoods decrease its performance. Therefore, lazily adding these nogoods when they are
actually needed can improve unit propagation. To disable the storage of nogoods and handle them
implicitly, clingcon provides option --learn-nogoods.

3.5 Multi-Shot CASP Solving

As mentioned, a major design objective of clingcon 3 is to transfer clingo’s functionalities to
CASP solving. A central role in this is played by multi-shot solving (Gebser et al. 2014; Gebser
et al. 2015) because it allows for casting manifold reasoning modes. More precisely, multi-shot
solving is about solving continuously changing logic programs in an operative way. This can be
controlled via reactive procedures that loop on solving while reacting, for instance, to outside
changes or previous solving results. These reactions may entail the addition or retraction of rules
that the operative approach can accommodate by leaving the unaffected program parts intact
within the solver. This avoids re-grounding and benefits from heuristic scores and nogoods learned
over time.

To extend multi-shot solving to CASP, our propagators allow for adding and deleting constraints
in order to capture evolving CSPs. Evolving constraint logic programs can be extremely useful in
dynamic applications, for example, to:

• add new resources in a planning domain,
• set the value of an observed variable measured using sensors,
• add restrictions to reduce the capacity of containers, or
• increase their capacity depending on other systems like weather forecast etc.

The presented propagators provide means for all these issues. New resources can be added using
additional constraint variables and domains. Values can be limited by adding constraints and rules
to the constraint logic program. Due to our monotone treatment of CSPs in CASP, it is always
possible to add new constraint atoms. Since they are not allowed to occur in rule heads they to
not interfere with the completion of the logic program. Hence, we can combine (and therefore
extend) two constraint logic programs under exactly the same restrictions that apply to normal
logic programs (cf. (Gebser et al. 2014)).

While confining variables is easy, accomplished by adding constraints on those variables,
increasing their capacity is addressed via lazy variable generation. That is, we start with a virtually
maximum domain that is restrained by retractable constraints. The domain is then increased
by relaxing these constraints. Importantly, the order atoms representing the active domain are
only generated when needed. This avoids introducing a large amount of atoms, especially in
the non-active area of the domain. As an example, consider the variable x and its domain
D(x) = {1, . . . , 109} having one billion elements. By adding the constraint x ≤ 10, only the first
10 values are valid assignments. After retracting x ≤ 10 and adding x ≤ 20, only the first 20
values constitute the search space. Since order atoms are only introduced in the actual search space,
no atoms are introduced for the huge amount (109 − 20) of other values. Using this technique,
CASP can deal with increasing domains within reasonable space.

For illustration, let us consider the well-known n-queens puzzle for demonstrating how to

28 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

incrementally add new constraints and constraint variables to a constraint logic program and
how to remove constraints from it. To illustrate how seamlessly clingcon integrates CASP and
multi-shot solving, we apply clingo’s exemplary Python script for incremental solving to model
different incremental versions of the n-queens puzzle in CASP. Multi-shot solving in clingo relies
on two directives (Gebser et al. 2014), the #program directive for regrouping rules and the
#external directive for declaring atoms as being external to the program at hand. The truth
value of such external atoms is set via clingo’s API. Clingo’s incremental solving procedure is
provided in Python and loops over increasing integers until a stop criterion is met. It presupposes
three groups of rules declared via #program directives. At step 0 the programs named base
and check(n) are ground and solved for n = 0. Then, in turn programs check(n) and
step(n) are added for n > 0 and the obtained program is grounded and solved. Other names
and components are definable by appropriate changes to the Python program. Stop criteria can
be the satisfiability or unsatisfiability of the respective program at each iteration. In addition, at
each step n an external atom query(n) is introduced; it is set to true for the current iteration
n and false for all previous instances with smaller integers than n. Although we reproduce the
exemplary Python program from clingo’s example pool in Listing 4, we must refer the reader
to (Gebser et al. 2014) for further details.

1 #script (python)

3 import clingo

5 def get(val, default):
6 return val if val != None else default

8 def main(prg):
9 imin = get(prg.get_const("imin"), clingo.Number(0))

10 imax = prg.get_const("imax")
11 istop = get(prg.get_const("istop"), clingo.String("SAT"))

13 step, ret = 0, None
14 while ((imax is None or step < imax.number) and
15 (step == 0 or step < imin.number or (
16 (istop.string == "SAT" and not ret.satisfiable) or
17 (istop.string == "UNSAT" and not ret.unsatisfiable) or
18 (istop.string == "UNKNOWN" and not ret.unknown)))):
19 parts = []
20 parts.append(("check", [step]))
21 if step > 0:
22 prg.release_external(clingo.Function("query", [step-1]))
23 parts.append(("step", [step]))
24 prg.cleanup()
25 else:
26 parts.append(("base", []))
27 prg.ground(parts)
28 prg.assign_external(clingo.Function("query", [step]), True)
29 ret, step = prg.solve(), step+1
30 #end.

32 #program check(t).
33 #external query(t).

Listing 4: Incremental mode of Clingo

The CASP encoding of the incremental n-queens puzzle in Listing 5 demonstrates the addition
and removal of constraints and also shows how variable domains are dynamically increased. As
usual, the goal is to put n queens on an n× n board such that no two queens threaten each other.
Here, however, this is done for an increasing sequence of integers n such that the queens puzzle for

Clingcon: The Next Generation 29

1 #include "incmode.lp".
2 #include "csp.lp".
3 #show.

5 #program step(n).

7 pos(n).

9 &sum{ q(n) } > 0.
10 &sum{ q(X) } <= n :- pos(X), query(n).

12 &distinct{ q(X) : pos(X) }.

14 &distinct{ q(X)+X-1 : pos(X) }.
15 &distinct{ q(X)-X+1 : pos(X) }.

17 &show{ q(n) }.

Listing 5: Incremental n-queens encoding Q1 (incqueens.lp)

n is obtained by extending the one for n− 1. While the first line of Listing 5 includes the Python
program in Listing 4, the next one includes the grammar from Listing 1. Line 3 suppresses the
output of regular atoms. The remaining encoding makes use of two features of clingo’s exemplary
incremental solving procedure, viz. subsequently grounding and solving rules regrouped under
program step(n) and the external atom query(n).16 In Listing 5, all rules in lines 7-17 are
regrouped under subprogram step(n). The Python program in Listing 4 makes clingcon in
turn solve the empty program, then program step(1), then program step(1) and step(2)
together, then both former programs and step(3), etc. This is done by keeping the previous
programs in the solver and by replacing parameter n in lines 7-17 with the respective integer when
grounding the added subprogram. Thus, at each step n a fact ‘pos(n).’ is added to the solver
(cf. Line 7). The heads of Line 9 and 10 represent the linear constraints

q(n) > 0 and q(x) ≤ n for x ∈ {1, . . . , n} .

At each step n, the integer variable q(n) is introduced and required to be a positive integer.
Moreover, all integer variables q(1) to q(n) are required to take values less or equal than n.
However, while the former constraint is unconditional, the latter are subject to the external atom
query(n). The functioning of Listing 4 ensures that only query(n) is true while query(s)
is false for all s < n. In this way, the domain of all constraint variables q(1) to q(n) is increased
by one at each step. Lines 12-15 in Listing 4 add distinct constraints to the effect that no two
queens can be placed on the same row or diagonal of the board. Line 17 simply instructs clingcon
to add q(n) to the output constraint variables.

In the following, we detail the grounding process for this example. The base program simply
consists of the first 3 lines of the original encoding. Afterwards, program step(1) is grounded,
adding the first constraints of the problem. The result is shown in Listing 6. The first variable
q(1) is introduced and its lower bound is fixed to 1 in Line 3. Its upper bound is also restricted

16 Strictly speaking, Line 1-3 belong to the program base that is treated once at the beginning (cf. Listing 4 and (Gebser
et al. 2014) for details).

30 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

1 pos(1).

3 &sum{ q(1) } > 0.
4 &sum{ q(1) } <= 1 :- query(1).

6 &distinct{ q(1) }.

8 &distinct{ q(1) }.
9 &distinct{ q(1) }.

11 &show{ q(1) }.

Listing 6: Grounded incremental n-queens program step(1).

1 pos(2).

3 &sum{ q(2) } > 0.
4 &sum{ q(1) } <= 2 :- query(2).
5 &sum{ q(2) } <= 2 :- query(2).

7 &distinct{ q(1), q(2) }.

9 &distinct{ q(1), q(2)+1 }.
10 &distinct{ q(1), q(2)-1 }.

12 &show{ q(2) }.

Listing 7: Grounded incremental n-queens program step(2).

to 1 but here only if query(1) holds. This is only the case of n=1 when solving program
step(1) (Line 4). In all subsequent cases, query(1) is false, and hence q(1) ≤ 1 is not
imposed anymore. Accordingly, the atom &sum{q(1)} <= 1 can vary freely (since it is an
external constraint atom). Don’t care propagation, described in Section 3.4, addresses such atoms
and removes them from the system.

As solving the 1-queen problem is uninteresting, the second solving step adds program
step(2) shown in Listing 7. We are now solving the second step and query(1) is no longer
true, which amounts to removing the rule from Line 4 in Listing 6. The new step adds two rules
for this instead (lines 4-5) and restricts all variables to be less than or equal 2. Also, additional
distinct constraints are added involving q(2). The next step again removes the rules in lines 4-5
by making query(2) false and adds a new restriction (lines 4-6 in Listing 8). In this way, we
not only add new variables at each step, but also increase the upper bounds of existing ones. For
solving the third step, the grounded rules of all three steps are taken together, only query(3) is
set to true, and all previously added instances of query/1 are false.

Listing 9 shows a run of Listing 5 up to 10 steps. Setting the stop criterion to UNKNOWN makes
sure that the process neither terminates upon satisfiable nor unsatisfiable result.

A closer look at the distinct constraints in lines 12 to 15 of Listing 5 reveals quite
some redundancy. This is because the constraints added at each step supersede the ones
added previously, and they all coexist in the system. For example, at Step 3 the system

Clingcon: The Next Generation 31

1 pos(3).

3 &sum{ q(3) } > 0.
4 &sum{ q(1) } <= 3 :- query(3).
5 &sum{ q(2) } <= 3 :- query(3).
6 &sum{ q(3) } <= 3 :- query(3).

8 &distinct{ q(1),q(2),q(3) }.

10 &distinct{ q(1), q(2)+1, q(3)+2 }.
11 &distinct{ q(1), q(2)-1, q(3)-2 }.

13 &show{ q(3) }.

Listing 8: Grounded incremental n-queens program step(3).

1 $ clingcon incqueens.lp -c imax=10 -c istop=\"UNKNOWN\"
2 clingcon version 3.2.0
3 Reading from incqueens.lp
4 Solving...
5 Answer: 1
6
7 Solving...
8 Answer: 1
9 q(1)=1

10 Solving...
11 Solving...
12 Solving...
13 Answer: 1
14 q(4)=2 q(3)=4 q(2)=1 q(1)=3
15 Solving...
16 Answer: 1
17 q(5)=3 q(1)=1 q(2)=4 q(3)=2 q(4)=5
18 Solving...
19 Answer: 1
20 q(6)=5 q(5)=3 q(1)=2 q(2)=4 q(3)=6 q(4)=1
21 Solving...
22 Answer: 1
23 q(7)=6 q(6)=3 q(5)=5 q(1)=2 q(2)=4 q(3)=1 q(4)=7
24 Solving...
25 Answer: 1
26 q(8)=7 q(7)=3 q(6)=1 q(5)=6 q(1)=4 q(2)=2 q(3)=5 q(4)=8
27 Solving...
28 Answer: 1
29 q(9)=3 q(8)=6 q(7)=8 q(6)=5 q(5)=2 q(1)=1 q(2)=4 q(3)=7 q(4)=9
30 SATISFIABLE
31
32 Models : 8+
33 Calls : 10
34 Time : 0.075s (Solving: 0.02s 1st Model: 0.02s Unsat: 0.00s)
35 CPU Time : 0.070s

Listing 9: Running Listing 5 (Q1; incqueens.lp)

contains 3 instances of Line 12, namely &distinct{q(1)}, &distinct{q(1),q(2)},
and &distinct{q(1),q(2),q(3)}. Clearly, the first two constraints are redundant
in view of the third but remain in the system. To avoid this redundancy, we can
make use of the external atom query(n) to remove the redundant distinct constraints
at each step in the same way we tighten the upper bound of variable domains. This

32 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

Measure Q1 Q2 Q3

Time 138s 10s 16s
Variables 55k 55k 32k
Static Nogoods 24k 5k 2k
Dynamic Nogoods 1181k 320k 301k

Table 3: Comparison of different incremental n-queens programs.

amounts to replacing lines 12-15 in Listing 5 with the ones given in Listing 10 below.

12 &distinct{ q(X) : pos(X)} :- query(n).

14 &distinct{ q(X)+X-1 : pos(X)} :- query(n).
15 &distinct{ q(X)-X+1 : pos(X)} :- query(n).

Listing 10: Retracting Constraints, encoding Q2

Although the last modification guarantees that the system bears no redundant distinct con-
straints,17 it leads to adding and removing the same restrictions over and over again. For
example, the constraint that q(1) and q(2) must have different values is included in ev-
ery distinct constraint after step 1. And this information is retracted and re-added at each
step. This is avoided by the constraints in Listing 11. This formulation only adds constraints
for the new variable q(n) at each step n and stays clear from retracting any constraints.

12 &sum{ q(X) } != q(n) :- X=1..n-1.

14 &sum{ q(X)+X-1 } != q(n)+n-1 :- X=1..n-1.
15 &sum{ q(X)-X+1 } != q(n)-n+1 :- X=1..n-1.

Listing 11: Partial Constraints, encoding Q3

Table 3 gives a comparison of the three different encodings for the incremental n-queens
problem for 30 steps. The first row gives the respective total running time. The second one reports
the total number of introduced atoms. The third one gives the sum of static nogoods generated at
each step, and the last one the sum of dynamic nogoods generated by lazy constraint propagation.
We observe that the initial encoding Q1 performs worst in all aspects. The inherent redundancy of
Q1 is reflected by the high number of dynamic nogoods generated by the constraint propagator.
This is the source of its inferior overall performance. Unlike this, the two alternative approaches
bear less redundancy, as reflected by their much lower number of dynamic nogoods. In Q2, this
is achieved by eliminating duplicate inferences from redundant constraints. Although Q3 even
further reduces the number of atoms as well as static and dynamic nogoods, its runtime is slightly
inferior. This is arguably due to the usage of elementary linear constraints rather then global
distinct constraints (and the pigeon hole constraints which are enabled by default).

4 Experiments

In this section, we evaluate the afore-presented features and compare clingcon with other systems.
We performed all our benchmarks on an Intel Xeon E5520 2.27GHz processor with Debian
GNU/Linux 7.9 (wheezy). We used a timeout of 1800 seconds and restricted main memory to

17 Given that don’t care propagation is enabled by default.

Clingcon: The Next Generation 33

6GB. In all tests, we count a memory out as a timeout. The experiments are split into three sections.
First, we evaluate the presented features and discuss corresponding configurations of clingcon.
Second, we compare clingcon with state of the art CP solvers using the benchmark classes of the
minizinc competition 2015. And finally, we contrast clingcon with other CASP systems using
different CASP problems.

Option Value Explanation
--equality-processing true Enable equality processing
--distinct-to-card false Translate distinct constraints using inequalities
--distinct-pigeon true Use pigeon hole constraints
--distinct-permutation false Not using permutation constraints
--sort-coefficient false Sort by domain size first
--sort-descend-coefficient true Sort using decreasing coefficients
--sort-descend-domain false Sort using increasing domain sizes
--split-size -1 Not splitting constraints
--max-nogoods-size 1024 Not splitting constraints with less than 1024 nogoods
--translate-constraints 10000 Translate constraints with less than 10000 nogoods
--break-symmetries true Break symmetries when splitting
--domain-size 10000 Use 10000 as a threshold for domain propagation
--redundant-nogood-check true Enable redundant nogood check when translating
--dont-care-propagation true Enable don’t care propagation
--min-lits-per-var 1000 Introduce at least 1000 order atoms per variable
--flatten-optimization true Flatten the objective function
--prop-strength 4 Use highest propagation strength 4
--explicit-binary-order false Not explicitly creating nogoods from Φ′(V, D)
--learn-nogoods true Add all learned nogoods to∇ immediately

Table 4: Default configuration D of clingcon 3.2.0.

To evaluate the presented techniques, we give a comprehensive comparison in Table 5. To
concentrate on the CP techniques of clingcon 3.2.0, we use the CP benchmarks of the minizinc
competition 2015.18 We removed the benchmark classes large scheduling and project planning
as they cannot be translated into the flatzinc format without the use of special global constraints.
For all other classes, we used the mzn2fzn19 toolchain to convert all instances to flatzinc while
removing all non-linear and global constraints except for distinct. This functionality is provided
by mzn2fzn, which translates non-supported constraints away. We use the standard translation
provided by mzn2fzn to be able to handle all benchmark classes. In this way, even problems using
constraints on sets, non-linear equations, or complex global constraints can be handled by solvers
restricted to basic linear constraints. For making this benchmark suite available to the CASP
community, we build a converter from flatzinc to the aspif format (Gebser et al. 2016b) used
by clingcon; it is called fz2aspif.20 To evaluate the different features, we modified the scoring
system of the minizinc competition, which is based on the Borda count evaluation technique. On a
per instance basis, a configuration gets one point for every other configuration being worse. A
configuration is considered worse, if either the found optimization value is at least 1% lower, or if
it has the same optimization value but is slower. A configuration is considered slower if it is at
least 5 seconds slower. Classes marked with * are decision problems (all others are optimization

18 http://www.minizinc.org/challenge2015/challenge.html
19 http://www.minizinc.org/software.html
20 https://potassco.org/labs/2016/12/02/fz2aspif.html

34 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

problems); classes containing the global distinct constraint are marked with †. We have exactly
five instances per class.

The following discussion refers to the results shown in Table 5. The columns used for compari-
son are named in the paragraph heading. Column D presents the default configuration of clingcon
given in Table 4. All other listed configurations differ only in one or two options from this default
in order to test specific techniques. For instance, for evaluating equality processing, we compare
default configuration D , using equality processing, with configuration NE , disabling equality
processing. Thus, except for --equality-processing, all other options remain unaltered.

Equality Processing (D , NE) To evaluate the influence of equality processing, we compare
default configuration D (with equality processing) with configuration NE (without equality
processing). This feature improves performance on nearly all benchmark classes significantly.
By simply removing constraints and variables the underlying CSP gets easier to solve (no
matter if it is solved by translation or propagators).

Distinct Translation (D , DT) Translating global distinct constraints into cardinality rules pre-
vents order atoms from being created lazily. The default configuration D translates them into a
set of inequalities. The translation using cardinality constraints in column DT performs better
on cvrp, open-stacks, and p1f, while it performs worse on the benchmark class costas. As long
as the domain size is small, this feature can be useful for problems using distinct constraints.
The configuration DT performs best of all tested configurations.

Pigeon Hole Constraints (D , NP) Since pigeon hole constraints add only constant overhead in
the number of nogoods, they are enabled in configuration D . Disabling their addition, slightly
increases performance on benchmark classes containing distinct constraints (marked with †), as
witnessed in column NP . Although these constraints have no positive effect on the benchmarks
at hand, we keep this feature enabled by default since it increases propagation strength.

Permutation Constraints (D , PO) Unlike pigeon hole constraints, permutation constraints
introduce direct encoding atoms which prevents lazy variable generation for some constraint
variables. This is the reason why this feature is disabled by default in configuration D . We
enabled it in column PO . Again, this feature only influences benchmark classes containing
distinct constraints. It improves performance for the cvrp class but decreases it on the other
classes. The impact of this feature depends upon the respective problem.

Sorting (D , SC) As we cannot account for all combinations of sorting mechanisms, we eval-
uate this feature only on the cases discussed in (Tamura et al. 2013). Default configuration
D implements the one in sugar; it sorts by smallest domain first and prefers on ties larger
coefficient. The alternative sorting recommended in (Tamura et al. 2013) first sorts on larger
coefficients and afterwards uses the smaller domain. This behavior is enforced by setting
--sort-coefficient=true and reflected in column SC . We see that both sorting meth-
ods yield a similar performance when applied to our lazy nogood generating approach.

Splitting Constraints (D , SP , T4 , ST) Splitting constraints into smaller ones is mandatory for
any translation-based approach using the order encoding to avoid an exponential number of no-
goods. We restricted our evaluation to a splitting size of 3, as done in sugar. The default configu-
ration D of clingcon does not split any constraints. The effect of splitting constraints into ternary
ones (--split-size=3) is reflected by column SP ; it performs poorly in our lazy nogood
generating setting because it introduces many new constraints and variables. On the other hand,
when translating all constraints (--translate-constraints=-1) as shown in column
T4 , the split into constraints of up to three variables (--translate-constraints=-1

instances D NE DT NP PO SC SP ST NS D1 D2 D3 T1 T2 T3 T4 NR ND M1 M2 M3 NF P1 P2 P3 EO RL
costas*† 38 47 15 39 41 38 27 27 24 27 27 26 12 33 0 0 16 38 36 38 40 38 12 12 38 32 60
cvrp† 49 38 90 61 65 49 51 44 52 51 51 51 31 67 41 0 34 55 93 95 97 49 9 9 49 100 66
freepizza 121 111 121 121 121 121 47 26 49 51 47 47 79 121 121 26 26 100 99 107 102 115 109 113 120 120 109
gfd-schedule 105 69 103 102 102 103 52 11 47 54 54 54 58 102 102 0 36 50 84 114 112 103 81 81 105 102 93
grid-colour 130
is† 118 111 116 119 111 118 45 0 45 44 45 44 96 118 118 0 0 93 128 53 56 118 0 0 117 90 80
mapping 106 87 106 106 106 106 33 0 18 30 33 33 104 112 110 0 0 124 84 109 111 106 0 0 106 97 112
knapsack 66 55 64 66 66 64 7 2 7 3 7 7 65 65 66 0 2 66 44 73 76 57 99 99 64 40 34
nmseq* 100 100 100 100 98 99 16 27 25 25 28 28 100 67 100 0 28 100 88 79 100 96 0 0 92 39 130
opd 89 82 88 89 89 89 125 125 121 125 125 125 52 89 88 0 125 63 44 89 90 88 79 79 88 78 83
open-stacks† 96 73 116 107 77 95 57 54 71 65 58 59 33 96 77 21 55 95 79 95 103 92 61 61 94 117 54
p1f † 66 66 100 70 71 66 35 65 35 36 35 35 84 66 66 0 65 75 57 74 76 71 64 64 66 78 68
radiation 125 118 125 125 124 115 62 43 40 52 62 62 108 107 103 0 50 125 112 119 110 101 68 68 125 128 40
roster 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 0 130 130 130 130 130 130 130 130 130 130 130
spot5 86 86 86 86 86 86 105 75 105 100 105 105 86 86 86 0 78 86 68 111 68 86 102 102 86 120 106
tdtsp 77 69 77 77 77 77 94 0 35 94 94 94 47 76 30 0 0 3 70 59 119 77 44 12 84 46 75
triangular 15 15 15 15 15 15 38 11 38 38 38 15 56 15 15 0 11 15 15 15 15 8 77 77 15 33 27
zephyrus 72 47 72 72 72 72 62 0 62 62 62 62 64 72 72 0 0 72 71 103 0 72 0 0 46 72 7
total 1589 1434 1654 1615 1581 1573 1116 770 1034 1117 1131 1107 1335 1552 1455 177 786 1420 1432 1593 1535 1537 1065 1037 1555 1552 1404

Table 5: Comparison of different features of clingcon 3.2.0 on the benchmark set of the minizinc competition 2015. Shown are scores of how often a
configuration is better than another one. Bold numbers indicate the best configuration for the benchmark class.

36 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

and --split-size=3) increases performance significantly, as witnessed by column ST .
We conclude that splitting constraints is not necessary for lazy nogood generating solvers but
essential for translational approaches that use the order encoding.

Symmetry Breaking (SP , NS) Splitting constraints introduces auxiliary variables that may
lead to redundant solutions. Symmetry breaking eliminates such redundancies and has
only an effect when splitting constraints. This is why it is interesting to compare col-
umn SP (--split-size=3) where symmetry breaking is enabled with column NS

(--split-size=3 and --break-symmetries=false) where it is disabled. In both
cases, all constraints are split into ternary ones. The additional constraints remove symmetric
solutions from the search space and therefore seem to be beneficial, especially on classes tdtsp,
radiation, and mapping.

Domain Propagation (D1 , D2 , SP , D3) To investigate the impact of domain propaga-
tion during preprocessing, we tested four different configurations that all split con-
straints into ternary ones (--split-size=3). They only differ in using the options
--domain-size=0 (no domain propagation) in column D1 , --domain-size=1000 in
column D2 , --domain-size=10000 in column SP , and --domain-size=-1 (unlim-
ited domain propagation) in column D3 . We observe that unlimited domain propagation reduces
performance in benchmark class triangular but has no significant influence otherwise. The
other tested configurations have no influence on the runtime of the benchmarks. We assume
that domain propagation prunes the domains not enough to make a considerable difference. For
the default configuration of clingcon, we decided to restrict it to a reasonable number (10000)
which leaves it enabled for mid-sized domains.

Translate Constraints (T1 , T2 , D , T3 , T4) We have already seen that translating all con-
straints as shown in column T4 is not very beneficial. Now, we evaluate whether the translation
of “small” constraints improves performance through a mixture of “translating small con-
straints” and “handling larger ones lazily”. Therefore, we compare the results obtained with
option --translate-constraints=0 (no constraints are translated) in column T1 , with
T2 where --translate-constraints=1000 (translate constraints that produce up to
1000 nogoods) is used, with D using --translate-constraints=10000 (up to 10000
nogoods), with T3 using --translate-constraints=50000 (up to 50000 nogoods),
and T4 using --translate-constraints=-1 (all constraints are translated). There is a
trade-off on the size of constraints to translate. While translating small constraints (constraints
that produce up to 1000 nogoods) improves performance, the translation of larger constraints
decreases it again. On some benchmarks, like triangular and p1f, translating no constraints is
beneficial. Also, translating all constraints in T4 performs worst of all tested configurations.

Redundant Nogood Check (ST , NR) To evaluate this feature, we decided to translate all con-
straints (--translate-constraints=-1). Since this configuration is not producing
good results for a comparison (most of the time the translation is simply too large to be fin-
ished), we additionally split the constraints into ternary ones with option --split-size=3.
With this, we compare the configuration with redundancy check in column ST with NR where
redundancy checking is disabled (--redundant-nogood-check=false). The redun-
dant nogood check is fast and simply removes redundant nogoods from the order encoding.
Benchmark classes like costas and cvrp perform better with the reduced set of nogoods, while
redundant nogoods are beneficial for gfd-schedule and radiation.

Don’t Care Propagation (D , ND) is enabled by default and removes unnecessary implica-

Clingcon: The Next Generation 37

tions from the problem. Disabling this feature (--dont-care-propagation=false) in
column ND decreases performance.

Order Atom Generation (M1 , D , M2 , M3) Adding order atoms lazily is mandatory to
handle large domains. We now evaluate the effect of adding a small amount of or-
der atoms eagerly for every constraint variable, evenly spread among its domain val-
ues. Therefore, we compare column M1 using --min-lits-per-var=0 (adding no
atoms), with D using --min-lits-per-var=1000 (adding 1000 order atoms per vari-
able), with M2 using --min-lits-per-var=10000 (adding 10000), and M3 using
--min-lits-per-var=-1 (adding all order atoms). Adding no order atoms in advance
drastically reduces performance of the system while adding 1000 to 10000 order atoms achieves
best performance. When adding too many or even all order atoms before solving, performance
is again decreased, especially on classes with large domains like zephyrus. Also, note that the
tested benchmark classes are very sensitive to this option as adding atoms beforehand may
influence the heuristic of the search.

Flattening Objective Functions (D , NF) is a feature well received by this benchmark set. All
flatzinc encodings contain only one variable subject to minimization. On most benchmark
classes this variable simply represents the sum of a set of variables. Adding this set directly
to the objective function avoids adding an unnecessary and probably large constraint and
also improves propagation strength of the learned nogoods. Unlike D , configuration NF

disables this feature via --flatten-optimization=false. We observe that flattening
the optimization statement increases the performance on many benchmark classes.

Lazy Nogood Generation (P1 , P2 , P3 , D) We now evaluate the four afore-described prop-
agation strengths where --prop-strength=1 is reflected by the results in column P1 ,
--prop-strength=2 by the ones in column P2 , --prop-strength=3 in column P3 ,
and --prop-strength=4 in the default configuration D . We see that a high propagation
strength is important. Especially propagating changed bounds with --prop-strength=3
is necessary for many benchmark classes. Interestingly, less propagation performs best for the
classes knapsack and triangular where constraint propagation is not dominating the search but
still takes time. On these classes, configurations with propagation strength 1 or 2 spend less
time on CSPPROPAGATION() and more on pure CDCL search, as attested by a much higher
number of choices.

Explicit Binary Order Nogoods (D , EO) Default configuration D does not introduce explicit
binary order nogoods Φ(V, D) but uses a propagator for capturing the corresponding inferences
lazily. The option --explicit-binary-order=true (reflected by column EO) creates
these nogoods explicitly for all order atoms created during preprocessing, leaving the others
subject to lazy nogood propagation. Although, overall performance of the implicit binary order
nogoods is better, for some benchmark classes like cvrp and spot5 using binary order nogoods
explicitly is the best choice. This is one of the options for which it is hard to find a clear cut
default setting and that needs consideration for each benchmark class.

Reduced Nogood Learning (D , RL) clingcon’s default configuration D adds all nogoods re-
turned by CSPPROPAGATION to the set of learned nogoods (viz. ∇ in Algorithm 3). Lazily
adding these nogoods when they are actually needed for conflict analysis is achieved with
--learn-nogoods; the results are shown in column RL. The average performance of adding
nogoods lazily is inferior to the one obtained by learning all nogoods. Nevertheless, the latter
setting performs best on costas and nmseq, the two decision problems in our benchmark set.

38 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

instances clingcon g12fd gecode minisatid chuffed chuffed′ picatsat picatsat′

costas*† 6 0 19 9 8 8 11 11
cvrp† 24 3 6 5 30 22 4 6
freepizza 35 15 0 31 26 26 3 3
gfd-schedule 10 9 12 27 28 28 20 14
grid-colour 35 1 8 34 23 23 31 31
is† 17 15 2 17 35 32 19 11
mapping 17 14 0 17 29 29 23 16
knapsack 19 11 14 8 5 5 26 26
nmseq* 24 15 25 3 21 21 5 5
opd 25 6 4 15 21 17 31 32
open-stacks† 20 0 9 8 35 35 21 16
p1f† 21 0 22 3 34 21 5 8
radiation 28 7 7 12 33 33 18 14
roster 35 35 0 35 35 35 29 28
spot5 20 10 0 19 16 16 35 31
tdtsp 8 35 10 1 31 24 10 9
triangular 15 29 5 26 23 24 12 12
zephyrus 3 20 7 10 26 26 30 30
total 362 225 150 280 459 425 333 303

Table 6: Comparing clingcon 3.2.0 DT with different state of the art CP solvers on the minizinc
competition 2015 benchmark set.

Future work has to investigate which of the nogoods have to be learned and which of them can
be added lazily.

Configuration DT is the configuration with the highest overall score. Nevertheless, clingcon’s
default configuration is more conservative since it allows for using lazy variable generation in
all cases. For instance, with configuration DT it is impossible to run the multi-shot n-queens
example presented in Section 3.5, because 230 order atoms had to be created per queen in order to
use cardinality constraints for the distinct constraint.

Next, we compare clingcon to state of the art CP solvers on the same set of benchmarks with the
same scoring system. The second column of Table 6 shows configuration DT of clingcon 3. This is
the best configuration of the internal comparison in Table 5, which is obtained using the command
line option --distinct-to-cardinality=true. We compare it to g12fd (Mercury FD
Solver), which is the G12 FlatZinc interpreter’s default solver, taken from the minizinc 2.0.11
package.21 Furthermore, we have taken gecode 4.4.0,22 a well-known classical CP solver. Also,
the lazy clause generating solvers minisatid 3.11.0 (De Cat et al. 2013)23 as well as chuffed,24

the best solver of the minizinc competition 2015.25 Finally, we compare to picatsat 2.0,26 a CP
solver that won the second place at the minizinc competition 2016 by translating constraints into
SAT using a logarithmic encoding. We ran g12fd and gecode with --ignore-user-search
to disable any special heuristic given in the problem encodings for all solvers. In the competition,

21 http://www.minizinc.org/software.html
22 http://www.gecode.org
23 With some bugfixes. Special thanks to Bart Bogaerts for his great support on this work.
24 https://github.com/geoffchu/chuffed — SHA 5b379ed9942ee59e8684149eae3fec1af426f6ee
25 It did not participate in the ranking as it is was entered by the organizers. It ran outside of competition and was faster

than the winning system.
26 http://picat-lang.org

Clingcon: The Next Generation 39

this is called “free search”. To measure the core performance of the systems, it is most instructive
to consider chuffed′ and picatsat′ which use the two solvers on exactly the same set of constraints
as clingcon. Hence, all non-linear and global constraints (except distinct) are translated using
mzn2fzn in the same way for all systems. 27

The results in Table 6 show that clingcon28 outperforms established systems such as g12fd,
gecode, minisatid, and even picatsat. There are also different benchmark classes where solvers
dominate each other and vice versa. We point out that gecode has special propagators for many
non-linear and global constraints that have been used in the benchmarks. Also chuffed, as a lazy
clause generating solver, has propagators for many other constraints and can therefore handle
some of the benchmark classes much better. As we are building a CASP system, we refrain from
supporting a broad variety of global constraints, as some of them can be modeled in ASP. So for a
better comparison on the features of clingcon, we translated all non-linear and global constraints
except for distinct in the columns chuffed′ and picatsat′ into linear ones. Here, we see that these
systems profit from the dedicated treatment of global constraints but that the base performance
of clingcon is comparable. In general, clingcon does not match the performance of the best
solver of the minizinc competition 2015 but on benchmark classes like freepizza, grid-colour, opd,
knapsack, and spot5, it even outperformed chuffed. We conclude that clingcon, despite being a
CASP system, is at eye level with state of the art CP solvers but cannot top the best lazy clause
generating systems.

Finally, we compare clingcon against six other CASP systems.

• inca (Drescher and Walsh 2010) with the option --linear-bc,29 a lazy nogood generat-
ing system not supporting lazy variable generation.

• clingcon 2 (Ostrowski and Schaub 2012), using gecode 3.7.3 as a black-box CP solver.
• ezcsp 1.6.24 (Balduccini and Lierler 2013), also pursuing a black-box approach but using

CP solver B-Prolog 7.4 with ASP solver clasp.
• aspartame (Banbara et al. 2015), a system using an eager translation of the constraint part

by means of an ASP encoding.
• ezsmt 1.0.0 (Lierler and Susman 2016), translating CASP programs to SMT, solved by SMT

solver z3 4.2.2.
• clingo 5.1.0, a pure ASP solver to measure the influence of the CP part on solving.

The first benchmark class is the two dimensional strip packing problem (Soh et al. 2010); its
encoding is shown in Listing 2. In Table 7, column clingo 5 reflects the results obtained with a
highly optimized ASP encoding, using a handcrafted order encoding. Time is given in seconds,
letting - denote a timeout of 1800 seconds. The best objective value computed so far is given in
the columns headed with opt. For aspartame, we have taken an encoding provided in (Banbara
et al. 2015). For the other systems such as clingcon 2, clingcon 3, and inca, we adjusted the syntax
for the linear constraints. We refrained from comparing with ezcsp or ezsmt as both systems are
not supporting optimization of integer variables. The bottom row counts the number of times a
system performed best. We clearly see that clingcon 2 is outperformed even by the manual ASP

27 Unfortunately, we were unable to compare to the lazy clause generating system g12lazy, as it produced wrong results
on some of the benchmarks and is no longer maintained. We were also unable to convert the competition benchmarks to
a format readable by sugar, as existing converters are outdated and not compatible anymore.

28 Note that the Borda Count scores are relative to the compared systems, and therefore are different for the same
configuration of clingcon in Table 5 and 6.

29 This option was recommended by the authors of the system for these kind of benchmarks.

40 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

clingo 5 aspartame clingcon 2 inca clingcon 3
instances time opt time opt time opt time opt time opt
BENG01 9 30 20 30 - 916 30 2 30
BENG02 - 58 1336 57 - - 58 - 58
BENG03 - 87 - 85 - - 85 775 84
BENG04 - 111 - 108 - - 108 - 108
BENG05 - 141 - 136 - - 136 - 136
BENG06 1226 36 32 36 - 5 36 23 36
BENG07 - 69 - 68 - - 69 - 68
BENG08 - - - - 104 - 103
BENG09 - - - - - 128
BENG10 - - - - - 158
CGCUT01 1 23 1 23 - 26 - 25 0 23
CGCUT02 - 66 - 65 - - 67 - 65
CGCUT03 - - - - -
GCUT01 - 1016 5 1016 0 1016 0 1016 0 1016
GCUT02 - 1242 - 1195 - - 1190 - 1190
GCUT03 - 134 1803 - 1 1803 12 1803
GCUT04 - - - - -
HT01 1 20 1 20 - 22 346 20 0 20
HT02 8 20 5 20 - 25 77 20 1 20
HT03 1 20 1 20 - 10 20 0 20
HT04 840 15 33 15 - - 16 8 15
HT05 12 15 9 15 - 8 15 13 15
HT06 14 15 8 15 - 359 15 1 15
HT07 - 31 175 30 - - 31 - 31
HT08 1284 30 - 31 - - 31 - 31
HT09 - 31 272 37 - - 31 41 30
NGCUT01 0 23 0 23 1 23 0 23 0 23
NGCUT02 2 30 1 30 - 33 80 30 0 30
NGCUT03 2 28 2 28 - 1 28 0 28
NGCUT04 0 20 0 20 0 20 0 20 0 20
NGCUT05 0 36 0 36 - 0 36 0 36
NGCUT06 8 31 1 31 - 0 31 0 31
NGCUT07 0 20 0 20 0 20 0 20 0 20
NGCUT08 1 33 1 33 - 36 38 33 0 33
NGCUT09 87 50 - 50 - 57 - 50 1549 50
NGCUT10 6 80 1 80 - 81 0 80 0 80
NGCUT11 4 52 1 52 - 55 0 52 0 52
NGCUT12 - 87 3 87 - 0 87 0 87
#best 13 21 4 16 28

Table 7: Comparison of different CASP systems on the two dimensional strip packing problem.

encoding. The new clingcon 3 system performs best. The translational approach of aspartame
is close to the inca system, and both perform better than the manual ASP approach. According
to (Soh et al. 2010), these results are in accord with dedicated, state of the art systems.

The next benchmark classes are incremental scheduling, weighted sequence, and reverse folding,
all stemming from the ASP competition.30 Encodings for clingo, ezcsp,31 ezsmt and clingcon 2

30 http://aspcomp2015.dibris.unige.it/LPNMR-comp-report.pdf
31 To be comparable, we used the encoding without cumulative constraint.

Clingcon: The Next Generation 41

have been taken from (Lierler and Susman 2016) in combination with instances from the ASP
competition.32 We changed the pure ASP encoding for clingo slightly for a better grounding
performance. For these classes, we could not provide an encoding for aspartame, as its prototypical
CASP support does not allow for modeling parametrized n-ary constraints.

For incremental scheduling, inca produces wrong results due to its usage of an intermediate
version of gringo, viz. 3.0.92. The runtime in seconds for incremental scheduling is shown in

instances clingo 5 clingcon 2 clingcon 3 ezcsp ezsmt
020-inc 302 1 0 0 0
028-inc - 16 4 - 5
044-inc - 518 149 - 116
063-inc 335 0 1 - 0
083-inc 268 - 1 - 0
096-inc 719 298 1 - 0
106-inc 470 - 2 - 1
158-inc 355 4 1 0 1
175-inc - 83 6 - 4
181-inc - 5 1 - 2
184-inc 425 - 1 - 1
211-inc - - 194 - 799
214-inc - - 7 - 76
230-inc - 77 9 - 24
256-inc - - - - -
257-inc - - - - -
266-inc - - 767 - -
334-inc - - - - -
338-inc - - - - -
362-inc - - - - -
#best 0 4 14 2 11

Table 8: Comparison of different CASP systems on the incremental scheduling problem.

Table 8. We see that clingcon 2 improves on the dedicated ASP encoding. In fact, incremental
scheduling is a true CASP problem where the pure ASP encoding can be improved by using CP.
While the black-box approach of ezcsp performs worst, ezsmt and clingcon 3 clearly dominate
this comparison.33 The enhanced preprocessing techniques and the lazy variable generation of
clingcon even outperforms the industrial SMT solver z3 (as used in ezsmt).

For the weighted sequence problem, we see in Table 9 that inca, clingo, ezsmt, and clingcon 3
perform well on this benchmark set, while clingcon 2 could not compete with the timings of the
other systems and ezcsp did not solve any of them. Again, time is shown in seconds and - denotes
a timeout of 1800 seconds. We also see that the performance of the pure ASP encoding is in the
same range as that of the winning CASP systems. Hence, the ASP solving part clearly dominates
the CSP part. This also explains the slightly worse performance of clingcon 3 due to its heavy
preprocessing of the CSP part.

For the reverse folding problem, we compare the same systems as before. Table 10 gives
the running time in seconds. While all CASP systems improve upon the pure ASP encoding,

32 We refrained from using the other three benchmark classes from this source as the available instances were too easy to
solve to produce informative results.

33 The time to run the completion and translation processes for ezcsp and ezsmt is not included in the tables.

42 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

instances clingo 5 inca clingcon 2 clingcon 3 ezcsp ezsmt
01-tree 6 5 6 1 - 1
02-tree 8 1 8 3 - 5
05-tree 5 1 4 1 - 3
06-tree 3 2 19 1 - 3
07-tree 3 4 1 1 - 4
11-tree 2 0 6 1 - 0
15-tree 2 3 1 1 - 1
16-tree 2 4 15 5 - 1
22-tree 4 0 4 1 - 0
23-tree 3 0 4 0 - 3
26-tree 2 3 51 4 - 1
29-tree 7 1 26 2 - 5
33-tree 9 7 95 15 - 9
35-tree 24 10 231 30 - 26
38-tree 7 17 30 10 - 11
39-tree 6 7 330 46 - 23
40-tree 3 9 398 47 - 14
41-tree 36 14 18 13 - 34
49-tree 7 3 220 22 - 14
53-tree 5 8 297 33 - 2
#best 17 17 8 14 0 15

Table 9: Comparison of different CASP systems on the weighted sequence problem.

clingcon 2 and clingcon 3 perform best on this benchmark class. The preprocessing overhead
of clingcon 3 does not pay off in terms of runtime on this benchmark class, making it perform
slightly worse than clingcon 2. Of the two lazy nogood generating solvers inca and clingcon 3, the
latter performs better due to lazy variable generation, as not all order atoms have to be generated
before solving. While the black-box approach of ezcsp can solve the problem, the translation to
SMT by ezsmt performs even better. We conclude that this is also due to the fact that no auxiliary
atoms for an encoding of the constraints are used in ezsmt. A closer inspection revealed that the
number of choices for inca and clingcon 2 is below 100 on average. For this problem, the ASP
part is dominated by the CSP part. This is also the reason why the pure ASP encoding produces a
memory out on all instances (it was not able to ground all constraints).

We conclude that clingcon 3 improves significantly upon its predecessor clingcon 2, is compara-
ble to state of the art CP systems, and the currently fastest CASP system available. All benchmarks,
encodings, instances and results are available online.34

5 Discussion

CASP combines ASP with CP, and thus brings together various techniques from both areas.
Groundbreaking work has been done with the systems ac- and adsolver (Mellarkod et al. 2008;
Mellarkod and Gelfond 2008) by using an off-the-shelf CP solver. This is called a black-box
approach. It features a very high abstraction level and allows for great flexibility, for instance,
for changing solvers or theories. Unfortunately, this high abstraction hinders tight integration
techniques that are necessary to achieve a performance suitable for real world problems. Still using

34 https://potassco.org/clingcon

Clingcon: The Next Generation 43

instances clingo 5 inca clingcon 2 clingcon 3 ezcsp ezsmt
07-reverse - 1 0 1 11 1
11-reverse - 1 0 1 9 1
15-reverse - 1 1 1 6 1
18-reverse - 2 1 2 27 1
20-reverse - 6 3 4 60 10
24-reverse - 12 5 8 272 49
28-reverse - 11 5 7 107 8
31-reverse - 20 8 36 128 73
34-reverse - 25 11 20 625 112
35-reverse - 35 15 23 353 96
39-reverse - 40 18 23 682 212
44-reverse - - 33 38 - 339
47-reverse - 6 4 4 86 4
49-reverse - 7 4 4 67 4
50-reverse - 2 1 2 12 4
#best 0 8 15 12 1 8

Table 10: Comparison of different CASP systems on the reverse folding problem.

a black-box CP solver but having a tighter integration into modern CDCL algorithms is common to
systems like ezcsp and its extensions (Balduccini 2009; Balduccini and Lierler 2013), dlvhex (Eiter
et al. 2012), and clingcon 2 (Gebser et al. 2009). These systems use a CP solver for propagation
and consistency checking. No auxiliary variables are used to represent non-Boolean variables. This
prevents these systems from producing strong reasons and conflicts, needed for effective CDCL-
based search. The system clingcon 2 tries to circumvent this problem. It strengthens propagation
and integration (Ostrowski and Schaub 2012) by using filtering techniques and special knowledge
about the theory. A different way to tackle the problem is the eager approach. The theory part
of the problem is translated to ASP, SAT, or SMT in a preprocessing step. dingo (Janhunen et al.
2011) translates ASP enriched with difference constraints to SMT, ezsmt translates CASP to SMT,
and aspartame (Banbara et al. 2015) provides an ASP encoding to translate CP (and CASP) into
ASP. The eager approach has the strongest integration because only one solver without dedicated
propagators is used to solve the problem. The features of modern CDCL algorithms such as
conflict driven heuristics and learning are supported natively without any change to the ASP solver.
Nevertheless, translational methods into ASP or SAT have the drawback of being very memory
intensive since the whole theory has to be represented using propositional variables. Encodings that
use for instance binary representations of integer variables lack propagation strength. To overcome
these problems, inca (Drescher and Walsh 2012) translates constraints on the fly, that is, it relies
upon lazy nogood generation, which is strongly inspired by lazy clause generation (Ohrimenko
et al. 2009). It features a tight integration, profits from the learning capabilities of CDCL, and
avoids the grounding bottleneck of eager techniques since only the currently interesting part of
the theory is generated. inca concentrates on the support of various encodings and implements
a propagator for linear and distinct constraints. Unfortunately, the basic vocabulary of these
encodings has to be provided beforehand, not removing the grounding bottleneck for variables
with large domains. Lazy variable generation (Thibaut and Stuckey 2009) overcomes this problem
and is a state of the art technique in CP. Close work in the neighboring area of model expansion
was done in the idp system (De Cat et al. 2014) using minisatid (De Cat et al. 2013) for combining
lazy clause generation and lazy variable generation for handling linear constraints. Also, the

44 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

constraint solver chuffed, the leading CP solver in the minizinc competition 2015, supports lazy
clause and variable generation and has propagators for a set of global constraints.

We take this up to extend ASP with CP for tackling CASP problems with modern CP techniques.
By extending the input language of gringo in a modular way, we enhance the modeling capabilities
of ASP with linear constraints over integers and handle them with advanced hybrid search and
propagation techniques. Our design goal is to have a tight integration, overcoming grounding
and memory bottlenecks of translation-based approaches, while using the learning capabilities
of CDCL algorithms. We integrated these techniques in clasp and clingo while preserving fea-
tures like multi-threading, unsatisfiable core optimization, multi-objective optimization etc. We
developed a propagator for linear constraints and are able to translate parts of the constraints
beforehand. Furthermore, variables with huge domains are managed by introducing order atoms on
the fly. Several dedicated preprocessing techniques improve our lazy nogood generation approach.
Our empirical evaluation leads to the result that some techniques that are known to be crucial
for translational approaches using the order encoding cannot be adopted easily. This concerns
especially sorting and splitting of constraints, which has either no or even a negative effect on the
performance of lazy nogood propagation. Other, more general techniques like equality processing,
don’t care propagation, and flattening of the objective function improve the performance in gen-
eral. Another interesting result is that translating a subset of small constraints is beneficial over
translating none or all. These techniques have allowed us to develop the modern CASP solver
clingcon. It combines the first-order modeling language of ASP with the performance of state
of the art CP solvers for handling constraints over integers. Also, making clingcon incremental,
such that multi-shot solving can be used with clingo’s API, enables us to use CASP in reactive
environments and thus opens up new application areas. Our software is open source and freely
available as part of the potassco project.35

Future work. CASP is a useful paradigm to solve problems with resources, capacities, and fine-
grained timing information. Its semantics has been extended in various ways, as for instance in
bound founded ASP (Aziz et al. 2013) or default reasoning with constraints (Cabalar et al. 2016).
The latter approach already presents a translator relying upon clingcon 3. This indicates that
related approaches can take advantage of the development of CASP and its systems.

We plan to develop a translation option for converting a CASP problem into an (C)ASP
problem by (partially) translating the constraints. The output can then be handled by other solvers
than clasp. We also preserved special functionalities of the ASP solver clasp in order to use
unsatisfiable core techniques (Andres et al. 2012) and multi-criteria optimization (Gebser et al.
2011) for integer variables. Also, domain-specific heuristics (Gebser et al. 2013) can be used in
the encodings of CASP problems. However, all these features still need to be evaluated in the
context of CASP. Furthermore, we want to use the ability to handle constraints over large domains
to tackle complex planning problems (Balduccini et al. 2016). These often involve a fine grained
handling of resources and timings and are a perfect area of application for CASP.

Acknowledgments. This work was partially funded by JSPS (KAKENHI 15K00099) and DFG
(SCHA 550/9). We are grateful to Bart Bogaerts for his help with minisatid. A special thanks goes
to Philipp Wanko for his comments, and of course, to Roland Kaminski for all his support!

35 https://potassco.org

Clingcon: The Next Generation 45

References

ANDRES, B., KAUFMANN, B., MATHEIS, O., AND SCHAUB, T. 2012. Unsatisfiability-based optimization
in clasp. See Dovier and Santos Costa (2012), 212–221.

AZIZ, R., CHU, G., AND STUCKEY, P. 2013. Stable model semantics for founded bounds. Theory and
Practice of Logic Programming 13, 4-5, 517–532.

BALDUCCINI, M. 2009. Representing constraint satisfaction problems in answer set programming. In
Proceedings of the Second Workshop on Answer Set Programming and Other Computing Paradigms
(ASPOCP’09), W. Faber and J. Lee, Eds. 16–30.

BALDUCCINI, M. AND LIERLER, Y. 2013. Integration schemas for constraint answer set programming: a
case study. Theory and Practice of Logic Programming 13.

BALDUCCINI, M., MAGAZZENI, D., AND MARATEA, M. 2016. PDDL+ planning via constraint answer set
programming. CoRR abs/1609.00030.

BANBARA, M., GEBSER, M., INOUE, K., OSTROWSKI, M., PEANO, A., SCHAUB, T., SOH, T., TAMURA,
N., AND WEISE, M. 2015. aspartame: Solving constraint satisfaction problems with answer set pro-
gramming. In Proceedings of the Thirteenth International Conference on Logic Programming and
Nonmonotonic Reasoning (LPNMR’15), F. Calimeri, G. Ianni, and M. Truszczyński, Eds. Lecture Notes
in Artificial Intelligence, vol. 9345. Springer-Verlag, 112–126.

BARRETT, C., SEBASTIANI, R., SESHIA, S., AND TINELLI, C. 2009. Satisfiability modulo theories. See
Biere et al. (2009), Chapter 26, 825–885.

BASELICE, S., BONATTI, P., AND GELFOND, M. 2005. Towards an integration of answer set and constraint
solving. In Proceedings of the Twenty-first International Conference on Logic Programming (ICLP’05),
M. Gabbrielli and G. Gupta, Eds. Lecture Notes in Computer Science, vol. 3668. Springer-Verlag, 52–66.

BIERE, A., HEULE, M., VAN MAAREN, H., AND WALSH, T., Eds. 2009. Handbook of Satisfiability.
Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press.

BRODSKY, A., Ed. 2013. Proceedings of the Twenty-fifth IEEE International Conference on Tools with
Artificial Intelligence (ICTAI’13). IEEE Computer Society.

CABALAR, P., KAMINSKI, R., OSTROWSKI, M., AND SCHAUB, T. 2016. An ASP semantics for default
reasoning with constraints. In Proceedings of the Twenty-fifth International Joint Conference on Artificial
Intelligence (IJCAI’16), R. Kambhampati, Ed. IJCAI/AAAI Press, 1015–1021.

CARRO, M. AND KING, A., Eds. 2016. Technical Communications of the Thirty-second International
Conference on Logic Programming (ICLP’16). Vol. 52. Open Access Series in Informatics (OASIcs).

CRAWFORD, J. AND BAKER, A. 1994. Experimental results on the application of satisfiability algorithms
to scheduling problems. In Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI’94), B. Hayes-Roth and R. Korf, Eds. AAAI Press, 1092–1097.

DAVIS, M., LOGEMANN, G., AND LOVELAND, D. 1962. A machine program for theorem-proving.
Communications of the ACM 5, 394–397.

DAVIS, M. AND PUTNAM, H. 1960. A computing procedure for quantification theory. Journal of the ACM 7,
201–215.

DE CAT, B., BOGAERTS, B., BRUYNOOGHE, M., AND DENECKER, M. 2014. Predicate logic as a
modelling language: The IDP system. CoRR abs/1401.6312.

DE CAT, B., BOGAERTS, B., DEVRIENDT, J., AND DENECKER, M. 2013. Model expansion in the presence
of function symbols using constraint programming. See Brodsky (2013), 1068–1075.

DOVIER, A. AND SANTOS COSTA, V., Eds. 2012. Technical Communications of the Twenty-eighth
International Conference on Logic Programming (ICLP’12). Vol. 17. Leibniz International Proceedings in
Informatics (LIPIcs).

DRESCHER, C. 2015. Conflict-driven constraint answer set solving. Ph.D. thesis, Computer Science and
Engineering, Faculty of Engineering, UNSW.

DRESCHER, C. AND WALSH, T. 2010. A translational approach to constraint answer set solving. Theory
and Practice of Logic Programming 10, 4-6, 465–480.

46 Mutsunori Banbara, Benjamin Kaufmann, Max Ostrowski and Torsten Schaub

DRESCHER, C. AND WALSH, T. 2012. Answer set solving with lazy nogood generation. See Dovier and
Santos Costa (2012), 188–200.

EITER, T., FINK, M., KRENNWALLNER, T., AND REDL, C. 2012. Conflict-driven ASP solving with
external sources. Theory and Practice of Logic Programming 12, 4-5, 659–679.

FEYDY, T., SOMOGYI, Z., AND STUCKEY, P. 2011. Half reification and flattening. In Proceedings of the
Seventeenth International Conference on Principles and Practice of Constraint Programming (CP’11),
J. Lee, Ed. Lecture Notes in Computer Science, vol. 6876. Springer-Verlag, 286–301.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB, T., AND WANKO, P. 2016a.
Theory solving made easy with clingo 5. See Carro and King (2016), 2:1–2:15.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB, T., AND WANKO, P.
2016b. Theory solving made easy with clingo 5 (extended version). Available at http://www.cs.
uni-potsdam.de/wv/publications/. Extended version of (Gebser et al. 2016a).

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2011. Multi-criteria optimization in
answer set programming. In Technical Communications of the Twenty-seventh International Conference
on Logic Programming (ICLP’11), J. Gallagher and M. Gelfond, Eds. Vol. 11. Leibniz International
Proceedings in Informatics (LIPIcs), 1–10.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2012. Answer Set Solving in Practice.
Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2014. Clingo = ASP + control: Preliminary
report. In Technical Communications of the Thirtieth International Conference on Logic Programming
(ICLP’14), M. Leuschel and T. Schrijvers, Eds. Theory and Practice of Logic Programming, Online
Supplement, vol. arXiv:1405.3694v1. Available at http://arxiv.org/abs/1405.3694v1.

GEBSER, M., KAMINSKI, R., OBERMEIER, P., AND SCHAUB, T. 2015. Ricochet robots reloaded: A
case-study in multi-shot ASP solving. In Advances in Knowledge Representation, Logic Programming,
and Abstract Argumentation: Essays Dedicated to Gerhard Brewka on the Occasion of His 60th Birthday,
T. Eiter, H. Strass, M. Truszczyński, and S. Woltran, Eds. Lecture Notes in Artificial Intelligence, vol.
9060. Springer-Verlag, 17–32.

GEBSER, M., KAUFMANN, B., NEUMANN, A., AND SCHAUB, T. 2007. Conflict-driven answer set solving.
In Proceedings of the Twentieth International Joint Conference on Artificial Intelligence (IJCAI’07),
M. Veloso, Ed. AAAI/MIT Press, 386–392.

GEBSER, M., KAUFMANN, B., OTERO, R., ROMERO, J., SCHAUB, T., AND WANKO, P. 2013. Domain-
specific heuristics in answer set programming. In Proceedings of the Twenty-Seventh National Conference
on Artificial Intelligence (AAAI’13), M. desJardins and M. Littman, Eds. AAAI Press, 350–356.

GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2012. Multi-threaded ASP solving with clasp. Theory
and Practice of Logic Programming 12, 4-5, 525–545.

GEBSER, M., OSTROWSKI, M., AND SCHAUB, T. 2009. Constraint answer set solving. In Proceedings of
the Twenty-fifth International Conference on Logic Programming (ICLP’09), P. Hill and D. Warren, Eds.
Lecture Notes in Computer Science, vol. 5649. Springer-Verlag, 235–249.

GECODE TEAM. 2006. Gecode: Generic constraint development environment. Available from http:
//www.gecode.org.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Proceedings
of the Fifth International Conference and Symposium of Logic Programming (ICLP’88), R. Kowalski and
K. Bowen, Eds. MIT Press, 1070–1080.

JANHUNEN, T., LIU, G., AND NIEMELÄ, I. 2011. Tight integration of non-ground answer set programming
and satisfiability modulo theories. In Proceedings of the First Workshop on Grounding and Transformation
for Theories with Variables (GTTV’11), P. Cabalar, D. Mitchell, D. Pearce, and E. Ternovska, Eds. 1–13.

LIERLER, Y. AND SUSMAN, B. 2016. SMT-based constraint answer set solver EZSMT (system description).
See Carro and King (2016), 1:1–1:15.

LIFSCHITZ, V. 2008. What is answer set programming? In Proceedings of the Twenty-third National
Conference on Artificial Intelligence (AAAI’08), D. Fox and C. Gomes, Eds. AAAI Press, 1594–1597.

Clingcon: The Next Generation 47

MARQUES-SILVA, J. AND SAKALLAH, K. 1999. GRASP: A search algorithm for propositional satisfiability.
IEEE Transactions on Computers 48, 5, 506–521.

MELLARKOD, V. AND GELFOND, M. 2008. Integrating answer set reasoning with constraint solving
techniques. In Proceedings of the Ninth International Symposium on Functional and Logic Programming
(FLOPS’08), J. Garrigue and M. Hermenegildo, Eds. Lecture Notes in Computer Science, vol. 4989.
Springer-Verlag, 15–31.

MELLARKOD, V., GELFOND, M., AND ZHANG, Y. 2008. Integrating answer set programming and constraint
logic programming. Annals of Mathematics and Artificial Intelligence 53, 1-4, 251–287.

METODI, A., CODISH, M., AND STUCKEY, P. 2013. Boolean equi-propagation for concise and efficient
SAT encodings of combinatorial problems. Journal of Artificial Intelligence Research 46, 303–341.

OHRIMENKO, O., STUCKEY, P., AND CODISH, M. 2009. Propagation via lazy clause generation. Con-
straints 14, 3, 357–391.

OSTROWSKI, M. 2017. Modern constraint answer set solving. Ph.D. thesis, University of Potsdam.
OSTROWSKI, M. AND SCHAUB, T. 2012. ASP modulo CSP: The clingcon system. Theory and Practice of

Logic Programming 12, 4-5, 485–503.
ROSSI, F., VAN BEEK, P., AND WALSH, T., Eds. 2006. Handbook of Constraint Programming. Elsevier

Science.
ROUSSEL, O. AND LECOUTRE, C. 2009. XML representation of constraint networks: Format XCSP 2.1.

CoRR abs/0902.2362.
SCHULTE, C. AND TACK, G. 2005. Views and iterators for generic constraint implementations. In Pro-

ceedings of the Eleventh International Conference on Principles and Practice of Constraint Programming
(CP’05), P. van Beek, Ed. Lecture Notes in Computer Science, vol. 3709. Springer-Verlag, 118–132.

SIMONS, P., NIEMELÄ, I., AND SOININEN, T. 2002. Extending and implementing the stable model
semantics. Artificial Intelligence 138, 1-2, 181–234.

SOH, T., INOUE, K., TAMURA, N., BANBARA, M., AND NABESHIMA, H. 2010. A SAT-based method for
solving the two-dimensional strip packing problem. Fundamenta Informaticae 102, 3-4, 467–487.

TAMURA, N., BANBARA, M., AND SOH, T. 2013. Compiling pseudo-boolean constraints to SAT with
order encoding. See Brodsky (2013), 1020–1027.

TAMURA, N., TAGA, A., KITAGAWA, S., AND BANBARA, M. 2009. Compiling finite linear CSP into SAT.
Constraints 14, 2, 254–272.

THIBAUT, F. AND STUCKEY, P. 2009. Lazy clause generation reengineered. In Proceedings of the Fifteenth
International Conference on Principles and Practice of Constraint Programming (CP’09), I. Gent, Ed.
Lecture Notes in Computer Science, vol. 5732. Springer-Verlag, 352–366.

THIFFAULT, C., BACCHUS, F., AND WALSH, T. 2004. Solving non-clausal formulas with DPLL search. In
Proceedings of the Tenth International Conference on Principles and Practice of Constraint Programming
(CP’04), M. Wallace, Ed. Lecture Notes in Computer Science, vol. 3258. Springer-Verlag, 663–678.

WALSH, T. 2000. SAT versus CSP. In Proceedings of the Sixth International Conference on Principles and
Practice of Constraint Programming (CP’00), R. Dechter, Ed. Lecture Notes in Computer Science, vol.
1894. Springer-Verlag, 441–456.

ZHANG, L., MADIGAN, C., MOSKEWICZ, M., AND MALIK, S. 2001. Efficient conflict driven learning in a
Boolean satisfiability solver. In Proceedings of the International Conference on Computer-Aided Design
(ICCAD’01). ACM Press, 279–285.

