
Under consideration for publication in Theory and Practice of Logic Programming 1

Answer Set Programming as a Modeling Language
for Course Timetabling

MUTSUNORI BANBARA, TAKEHIDE SOH, NAOYUKI TAMURA

Kobe University, 1-1 Rokko-dai, Nada-ku, Kobe, Hyogo 657-8501, Japan
(e-mail: {banbara@,soh@lion.,tamura@}kobe-u.ac.jp)

KATSUMI INOUE

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
(e-mail: inoue@nii.ac.jp)

TORSTEN SCHAUB

University of Potsdam, August-Bebel-Strasse 89, D-14482 Potsdam, Germany
(e-mail: torsten@cs.uni-potsdam.de)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

The course timetabling problem can be generally defined as the task of assigning a number
of lectures to a limited set of timeslots and rooms, subject to a given set of hard and soft
constraints. The modeling language for course timetabling is required to be expressive enough
to specify a wide variety of soft constraints and objective functions. Furthermore, the resulting
encoding is required to be extensible for capturing new constraints and for switching them
between hard and soft, and to be flexible enough to deal with different formulations. In this
paper, we propose to make effective use of ASP as a modeling language for course timetabling.
We show that our ASP-based approach can naturally satisfy the above requirements, through
an ASP encoding of the curriculum-based course timetabling problem proposed in the third
track of the second international timetabling competition (ITC-2007). Our encoding is compact
and human-readable, since each constraint is individually expressed by either one or two rules.
Each hard constraint is expressed by using integrity constraints and aggregates of ASP. Each
soft constraint S is expressed by rules in which the head is the form of penalty(S,V ,C), and
a violation V and its penalty cost C are detected and calculated respectively in the body. We
carried out experiments on four different benchmark sets with five different formulations. We
succeeded either in improving the bounds or producing the same bounds for many combinations
of problem instances and formulations, compared with the previous best known bounds.

KEYWORDS: answer set programming, educational timetabling, course timetabling

1 Introduction

Recent advances in Answer Set Programming (ASP) (Gelfond and Lifschitz 1988; Niemelä

1999; Baral 2003; Gebser et al. 2012) suggests a successful direction to extend logic

programming to be more expressive and more efficient. ASP provides a rich language

and can be well suited for modeling combinatorial problems in computer science and

artificial intelligence. Recent remarkable improvements in the efficiency of ASP solvers

encourage researchers to solve many problems by ASP.



2 M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub

The general timetabling problem is known to be complex and difficult. Starting with

(Gotlieb 1962), a great deal of research has been done on timetabling in several areas such

as metaheuristics, integer programming, (constraint) logic programming, propositional

satisfiability (SAT), and constraint programming (Schaerf 1999; Burke and Petrovic 2002;

Lewis 2007). In recent years, timetabling has become an area of increasing interest in an

international community involving both researchers and practitioners, such as the inter-

national series of PATAT conferences. The typical topics of this area include educational

timetabling, transport timetabling, employee timetabling, sports timetabling, and so on. In

this paper we consider an educational timetabling problem.

The educational timetabling problem can be generally defined as the task of assigning a

number of events, such as lectures and examinations, to a limited set of timeslots (and per-

haps rooms), subject to a given set of hard and soft constraints. The hard constraints must

be strictly satisfied. The soft constraints are not necessarily satisfied but the sum of viola-

tions should be desirably minimized. Usually the educational timetabling problems can be

classified into three categories: school timetabling, examination timetabling, and course

timetabling. The course timetabling problems can be further classified into two sub-

categories: curriculum-based course timetabling and post-enrolment course timetabling.

The modeling language and problem modeling play a very important role in the real-

world timetable generation (McCollum 2007). The latter is particularly challenging be-

cause different institutions have their own needs and policies, and problem formulation

(a specific set of soft constraints) may change from institution to institution and from

time to time. There have been therefore several proposals for problem modeling of the

educational timetabling problems(Faber et al. 1998; Carter 2001; Burke and Petrovic

2002; Qualizza and Serafini 2005; Daskalaki and Birbas 2005; Schimmelpfeng and Hel-

ber 2007; Burke et al. 2010a; Burke et al. 2010b; Lach and Lübbecke 2012; Burke et al.

2012; Achá and Nieuwenhuis 2012). However, these works were mostly done in the area

of integer programming, and there is very little literature on ASP.

In this paper, we propose to make effective use of ASP as a modeling language for course

timetabling. The modeling language for course timetabling is required to be expressive

enough to specify a wide variety of soft constraints and objective functions that reflect

the real-world scenarios. Furthermore, the resulting encoding is required to be extensible

for capturing new constraints and for switching them between hard and soft, and to be

flexible enough to deal with different formulations. We show that our ASP-based approach

can naturally satisfy the above requirements. Consequently, it enables a timetable keeper

to rapidly specify problems and to experiment with different formulations at a purely

declarative level. ASP solvers are then used for finding and enumerating solutions without

the need of developing dedicated algorithms.

We present an ASP encoding of the curriculum-based course timetabling (CB-CTT)

problem proposed in the third track of the second international timetabling competition

(ITC-2007)(Gaspero et al. 2007; McCollum et al. 2010). Our encoding is compact and

human-readable, since each constraint is individually expressed by either one or two rules.

Each hard constraint is expressed by integrity constraints and aggregates of ASP. For

the soft constraints, we use the predicate penalty(S,V ,C) which is intended to express

that a soft constraint S is violated by V and its penalty cost is C. Each soft constraint S

is expressed by rules in which the head is the form of penalty(S,V ,C), and a violation

V and its penalty cost C are detected and calculated respectively in the body.



ASP as a Modeling Language for Course Timetabling 3

To evaluate the efficiency of our proposed encoding, we carried out experiments on

four different benchmark sets (36 instances in total) with 5 different formulations. For

the tested 180 combinations, we succeeded either in improving the bounds or producing

the same bounds for 70 combinations (39% in the total), compared with the previous

best known bounds. More precisely, our encoding was able to improve the bounds for 34

combinations and to prove that 13 of them are optimal. It was also able to produce the

same bounds for 36 combinations and to prove that 3 of them are newly optimal.

2 Curriculum-Based Course Timetabling

2.1 Problem Definition

The basic entities of the CB-CTT problem are courses, rooms, days, and periods per day.

A timeslot is a pair composed of a day and a period. A curriculum is a group of courses

that shares common students. The CB-CTT problem is defined as the task of assigning

all lectures of each course into a weekly timetable, subject to a given set of constraints:

hard constraints (H1–H4, see below) and soft constraints (S1–S9). The former must be

strictly satisfied. The latter are not necessarily satisfied but the sum of violations should

be desirably minimized. From the viewpoint of violations, the soft constraints can be

divided into two types: the soft constraints with constant cost (S3 and S7–S9) and the

soft ones with calculated cost (S1–S2 and S4–S6). The difference is that for those with

constant cost only one penalty point is imposed on each violation, whereas many penalty

points calculated dynamically in accordance with each violation are imposed for those

with calculated cost. A feasible solution of the problem is an assignment in which all

lectures are assigned to a timeslot and a room, so that the hard constraints are satisfied.

The objective of the problem is to find a feasible solution of minimal penalty costs. The

following definitions are based on (Bonutti et al. 2012).

• H1. Lectures: All lectures of each course must be scheduled, and they must be

assigned to distinct timeslots.

• H2. Conflicts: Lectures of courses in the same curriculum or taught by the same

teacher must be all scheduled in different timeslots.

• H3. RoomOccupancy: Two lectures can not take place in the same room in the

same timeslot.

• H4. Availability: If the teacher of the course is not available to teach that course

at a given timeslot, then no lecture of the course can be scheduled at that timeslot.

• S1. RoomCapacity: For each lecture, the number of students that attend the

course must be less than or equal the number of seats of all the rooms that host its

lectures. The penalty points, reflecting the number of students above the capacity,

are imposed on each violation.

• S2. MinWorkingDays: The lectures of each course must be spread into a given

minimum number of days. The penalty points, reflecting the number of days below

the minimum, are imposed on each violation.

• S3. IsolatedLectures: Lectures belonging to a curriculum should be adjacent

to each other in consecutive timeslots. For a given curriculum we account for a

violation every time there is one lecture not adjacent to any other lecture within

the same day. Each isolated lecture in a curriculum counts as 1 violation.



4 M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub

Table 1. Problem Formulations

Constraint UD1 UD2 UD3 UD4 UD5

H1. Lectures H H H H H
H2. Conflicts H H H H H
H3. RoomOccupancy H H H H H
H4. Availability H H H H H
S1. RoomCapacity 1 1 1 1 1
S2. MinWorkingDays 5 5 - 1 5
S3. IsolatedLectures 1 2 - - 1
S4. Windows - - 4 1 2
S5. RoomStability - 1 - - -
S6. StudentMinMaxLoad - - 2 1 2
S7. TravelDistance - - - - 2
S8. RoomSuitability - - 3 H -
S9. DoubleLectures - - - 1 -

• S4. Windows: Lectures belonging to a curriculum should not have time windows

(periods without teaching) between them. For a given curriculum we account for a

violation every time there is one window between two lectures within the same day.

The penalty points, reflecting the length in periods of time window, are imposed

on each violation.

• S5.RoomStability: All lectures of a course should be given in the same room. The

penalty points, reflecting the number of distinct rooms but the first, are imposed

on each violation.

• S6. StudentMinMaxLoad: For each curriculum the number of daily lectures

should be within a given range. The penalty points, reflecting the number of lectures

below the minimum or above the maximum, are imposed on each violation.

• S7. TravelDistance: Students should have the time to move from one building to

another one between two lectures. For a given curriculum we account for a violation

every time there is an instantaneous move: two lectures in rooms located in different

building in two adjacent periods within the same day. Each instantaneous move in

a curriculum counts as 1 violation.

• S8. RoomSuitability: Some rooms may be not suitable for a given course because

of the absence of necessary equipment. Each lecture of a course in an unsuitable

room counts as 1 violation.

• S9. DoubleLectures: Some courses require that lectures in the same day are

grouped together (double lectures). For a course that requires grouped lectures,

every time there is more than one lecture in one day, a lecture non-grouped to

another is not allowed. Two lectures are grouped if they are adjacent and in the

same room. Each non-grouped lecture counts as 1 violation.

The formulation is defined as a specific set of soft constraints in company with the

weights associated with each of them. The CB-CTT problem is formulated as a com-

binatorial optimization problem whose objective function is to minimize the weighted

sum of penalty points. Until now five formulations have been proposed: UD1–UD5. UD1

is a basic formulation (Gaspero and Schaerf 2003). UD2 is a formulation used in ITC-

2007 (Gaspero et al. 2007). To capture more different scenarios, UD3, UD4, and UD5 are

proposed recently (Bonutti et al. 2012). These new formulations focus on student load

(UD3), double lectures (UD4), and travel cost (UD5), respectively. Table 1 shows the



ASP as a Modeling Language for Course Timetabling 5

Name: Toy
Courses: 4
Rooms: 3
Days: 5
Periods_per_day: 4
Curricula: 2
Min_Max_Daily_Lectures: 2 3
UnavailabilityConstraints: 8
RoomConstraints: 3

COURSES:
SceCosC Ocra 3 3 30 1
ArcTec Indaco 3 2 42 0
TecCos Rosa 5 4 40 1
Geotec Scarlatti 5 4 18 1

ROOMS:
rA 32 1
rB 50 0
rC 40 0

CURRICULA:
Cur1 3 SceCosC ArcTec TecCos
Cur2 2 TecCos Geotec

UNAVAILABILITY_CONSTRAINTS:
TecCos 2 0
TecCos 2 1
TecCos 3 2
TecCos 3 3
ArcTec 4 0
ArcTec 4 1
ArcTec 4 2
ArcTec 4 3

ROOM_CONSTRAINTS:
SceCosC rA
Geotec rB
TecCos rC

END.

Fig. 1. toy.ectt: Input
Example

name("Toy").
courses(4).
rooms(3).
days(5).
periods_per_day(4).
curricula(2).
min_max_daily_lectures(2,3).
unavailabilityconstraints(8).
roomconstraints(3).

course("SceCosC","Ocra",3,3,30,1).
course("ArcTec","Indaco",3,2,42,0).
course("TecCos","Rosa",5,4,40,1).
course("Geotec","Scarlatti",5,4,18,1).

room(rA,32,1). room(rB,50,0). room(rC,40,0).

curricula("Cur1","SceCosC"). curricula("Cur1","ArcTec").
curricula("Cur1","TecCos"). curricula("Cur2","TecCos").
curricula("Cur2","Geotec").

unavailability_constraint("TecCos",2,0).
unavailability_constraint("TecCos",2,1).
unavailability_constraint("TecCos",3,2).
unavailability_constraint("TecCos",3,3).
unavailability_constraint("ArcTec",4,0).
unavailability_constraint("ArcTec",4,1).
unavailability_constraint("ArcTec",4,2).
unavailability_constraint("ArcTec",4,3).

room_constraint("SceCosC",rA). room_constraint("Geotec",rB).
room_constraint("TecCos",rC).

Fig. 2. ASP Input Example for toy.ectt

assigned("SceCosC",rB,3,0). assigned("SceCosC",rB,2,2).
assigned("SceCosC",rB,4,2). assigned("ArcTec",rB,3,1).
assigned("ArcTec",rB,0,2). assigned("ArcTec",rB,1,2).
assigned("TecCos",rB,0,1). assigned("TecCos",rB,0,3).
assigned("TecCos",rB,1,3). assigned("TecCos",rB,2,3).
assigned("TecCos",rB,4,3). assigned("Geotec",rA,4,1).
assigned("Geotec",rA,0,2). assigned("Geotec",rA,1,2).
assigned("Geotec",rA,2,2). assigned("Geotec",rA,4,2).

Fig. 3. ASP Output Example for toy.ectt in UD2

weights associated with each soft constraint for all formulations. The symbol ‘H’ indicates

that the constraint is a hard constraint. The symbol ‘-’ indicates that the constraint is

not included in the formulation.

2.2 Problem Instance Example

Fig. 1 shows a tiny instance toy.ectt written in the ‘.ectt’ format, a standard input

format of the CB-CTT problem (Bonutti et al. 2012). Converting a ‘.ectt’ instance to

ASP facts is straightforward. Fig. 2 shows an ASP representation of toy.ectt.

• The first nine facts express the scalar values of each entity. This instance named

Toy consists of 4 courses, 3 rooms, 2 curricula, 8 unavailability constraints, and 3

room constraints. The weekly timetable consists of 5 days and 4 periods per day,

where they start from 0.

• The fact course(C,T,N,MWD,M,DL) expresses that a course C taught by a

teacher T has N lectures, which must be spread into MWD days. The number

of students that attend the course C is M . The course C requires double lectures



6 M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub

c(C) :- course(C,_,_,_,_,_). t(T) :- course(_,T,_,_,_,_).
r(R) :- room(R,_,_). cu(Cu) :- curricula(Cu,_).
d(0..D-1) :- days(D). ppd(0..P-1) :- periods_per_day(P).

Fig. 4. Auxiliary Rules

% H1. Lectures
N { assigned(C,R,D,P) : r(R) : d(D) : ppd(P) } N :- course(C,_,N,_,_,_).
:- not { assigned(C,R,D,P) : r(R) } 1, c(C), d(D), ppd(P).

% H2. Conflicts
:- not { assigned(C,R,D,P) : r(R) : course(C,T,_,_,_,_) } 1, t(T), d(D), ppd(P).
:- not { assigned(C,R,D,P) : r(R) : curricula(Cu,C) } 1, cu(Cu), d(D), ppd(P).

% H3. RoomOccupancy
:- not { assigned(C,R,D,P) : c(C) } 1, r(R), d(D), ppd(P).

% H4. Availability
:- assigned(C,R,D,P), r(R), unavailability_constraint(C,D,P).

Fig. 5. Direct Encoding

% H1. Lectures
N { assigned(C,D,P) : d(D) : ppd(P) } N :- course(C,_,N,_,_,_).

% H2. Conflicts
:- not { assigned(C,D,P) : course(C,T,_,_,_,_) } 1, t(T), d(D), ppd(P).
:- not { assigned(C,D,P) : curricula(Cu,C) } 1, cu(Cu), d(D), ppd(P).

% H3. RoomOccupancy
1 { assigned(C,R,D,P) : r(R) } 1 :- assigned(C,D,P).
:- not { assigned(C,R,D,P) : c(C) } 1, r(R), d(D), ppd(P).

% H4. Availability
:- assigned(C,D,P), unavailability_constraint(C,D,P).

Fig. 6. Linked Encoding

if DL = 1. The fact room(R,CAP,BLD) expresses that a room R located in

a building BLD has a seating capacity of CAP . The fact curricula(CUR, C)

expresses that a curriculum CUR includes a course C.

• The fact unavailability constraint(C,D,P), which is used to specify H4, ex-

presses that a course C is not available at a period P on a day D. The fact

room constraint(C,R), which is used to specify S8, expresses that a room R

is not suitable for a course C.

As an output example, Fig. 3 shows an optimal solution with zero cost of the tiny

instance toy.ectt with the UD2 formulation. In this solution, all three lectures of the

course SceCosC are assigned to the room rB at the third period (2) on Wednesday (2),

the first period (0) on Thursday (3), and the third period (2) on Friday (4).

3 Encoding of Hard Constraints

We present two different encodings called Direct encoding and Linked encoding. In our

encodings, the hard constraints can be compactly expressed by using integrity constraints

and aggregates of ASP. We use the syntax supported by the grounder gringo and the

solver clasp (Gebser et al. 2007; Gebser et al. 2009).



ASP as a Modeling Language for Course Timetabling 7

Fig. 4 shows common auxiliary rules shared by our two encodings. Given a problem

instance, for each course C, teacher T, room R, and curriculum Cu, the first four rules

generate c(C), t(T), r(R), and cu(Cu) respectively. In the last two rules, d(0..D-1)

and ppd(0..P-1) express that the days are integers in the range 0 to D-1, and the

periods per day are integers in the range 0 to P-1.

Direct encoding. The most direct modeling would be using a quaternary predicate

assigned/4. The predicate assigned(C,R,D,P) is intended to express that a lecture

of a course C is assigned to a room R at a period P on a day D. Fig. 5 shows an ASP

encoding of the hard constraints (H1–H4). It uses special constructs called cardinality

expressions of the form ℓ{a1, . . . , ak}u where each ai is an atom and ℓ and u are non-

negative integers denoting the lower bound and the upper bound of the cardinality

expression. For H1, the first rule, for every course C having N lectures, generates a

solution candidate at first and then constrains that there are exactly N lectures such

that assigned(C,R,D,P) holds. The second rule constrains that, for every course C,

day D, and period P, there is at most one room R such that assigned(C,R,D,P) holds.

For H2, the third rule constrains that, for every teacher T, day D, and period P, there

is at most one course C taught by T such that assigned(C,R,D,P) holds. The fourth

rule constrains that, for every curriculum Cu, day D, and period P, there is at most

one course C that belongs to Cu such that assigned(C,R,D,P) holds. For H3, the

fifth rule constrains that, for every room R, day D, and period P, there is at most one

course C such that assigned(C,R,D,P) holds. For H4, the sixth rule constrains that,

for every room R, a course C is not assigned to a room R at a period P on a day D, if

unavailability_constraint(C,D,P) holds.

Linked encoding. It is obvious that we do not always have to take account of the

room information to specify the hard constraints except H3. Fig. 6 shows another

ASP encoding. The difference from the direct encoding is that we use a ternary pred-

icate assigned/3 in addition to assigned/4. The predicate assigned(C,D,P) is

intended to express that a lecture of a course C is assigned to a period P on a day

D. The hard constraints except H3 are expressed by the first three and sixth rules

that are slightly modified to adjust the predicate assigned/3 by just deleting r(R)

from the corresponding rules of the direct encoding. For H3, the fourth rule first

generates a solution candidate and then constrains that there is exactly one room R

such that assigned(C,R,D,P) holds if assigned(C,D,P) holds. That is, the predicate

assigned/3 is linked to assigned/4 in this rule. The fifth rule is the same as one of the

direct encoding. In the linked encoding, the constraints can be expressed more concisely

by using different predicates for each, than the direct encoding. In addition, the fol-

lowing rule ‘:- not { assigned(C,D,P) : c(C) } N, d(D), ppd(P), rooms(N).’

constrains that, for a given number of rooms N, and for every day D and period P,

there are at most N lectures such that assigned(C,D,P) holds. This rule expresses an

implied constraint and can be omitted. However, we use it as an additional rule, since

it gives a performance improvement for some problem instances.

To evaluate the efficiency of our proposed encodings above, we carry out experi-

ments on four different benchmark sets: ITC-2007 (Gaspero et al. 2007) consisting

of 21 instances denoted by comp*, DDS-2008 (Bonutti et al. 2012) of 7 instances by

DDS*, Erlangen of 4 instances by erlangen*, and Test (Gaspero and Schaerf 2003)



8 M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub

Table 2. Benchmark results of different ASP encodings (Hard Constraints Only)

Instance
Direct encoding Linked encoding

CPU #Choices #Conflicts #Restarts CPU #Choices #Conflicts #Restarts

comp01 2.070 93644 74068 11 0.200 1902 892 0
comp02 3.400 155236 50303 21 1.510 23443 16115 2
comp03 3.500 163311 65586 19 0.300 3500 79 0
comp04 2.480 125015 48818 10 0.350 4478 11 0
comp05 0.480 11949 2715 2 0.350 1420 12 0
comp06 1.910 91625 16541 6 2.110 27304 16255 2
comp07 7.320 137697 48158 4 3.610 43477 32106 3
comp08 3.680 180398 65095 14 0.370 4701 116 0
comp09 4.500 178973 66930 32 0.340 4104 17 0
comp10 0.900 33042 6623 0 2.280 23770 16604 2
comp11 1.840 65586 50515 14 0.220 1247 74 0
comp12 0.530 14264 1763 0 0.880 6408 3602 0
comp13 7.140 166161 65699 20 1.980 24907 16918 2
comp14 1.370 47933 18426 1 1.330 24608 16150 1
comp15 3.500 163311 65586 19 0.320 3500 79 0
comp16 5.080 230339 53636 6 2.110 26798 16718 2
comp17 1.840 79955 17091 11 2.120 23043 16692 1
comp18 0.140 7070 728 0 0.180 1619 219 0
comp19 4.810 215313 84309 32 0.290 3586 129 0
comp20 4.920 94172 32718 2 2.270 27068 17188 4
comp21 2.390 52274 24951 1 1.850 25410 17438 2
DDS1 132.830 25681926 1073907 2574 3.880 37030 17145 6
DDS2 0.770 18384 2659 0 0.660 2468 0 0
DDS3 0.370 20791 6081 1 0.330 3784 448 0
DDS4 34.180 2665514 69925 61 15.400 2516522 32848 2
DDS5 21.300 839860 76747 126 1.960 11465 14 0
DDS6 0.600 26894 4921 0 2.000 24237 16109 2
DDS7 3.320 73722 48379 3 0.350 3166 22 0
erlangen2011 2 114.330 3151932 32460 1 30.960 140993 2 0
erlangen2012 1 24.850 1230689 4227 0 25.020 87210 0 0
erlangen2012 2 57.830 2776461 18465 1 28.890 116116 0 0
erlangen2013 1 41.280 3321458 18412 1 26.780 107708 2 0
test1 1.640 50949 33311 2 0.100 1637 0 0
test2 2.370 121361 66109 22 0.180 2148 118 0
test3 3.560 192608 112756 32 0.160 1931 12 0
test4 0.800 53703 21070 18 1.330 19719 16008 1

Average 13.995 1181487 68047 85.194 4.527 93956 7504 0.889

of 4 instances by test*. These instances are based on real data from several Euro-

pean universities. Among them the instances of Erlangen are very large. For example,

the instance erlangen2012_2.ectt consists of 850 courses, 132 rooms, 850 curricula,

7,780 unavailability constraints, and 45,603 room constraints. More detailed features

are shown in (Bonutti et al. 2012). All the instances are available from a web portal

(http://tabu.diegm.uniud.it/ctt/) maintained by the organizers of ITC-2007.

We solve the instances as decision problems by taking only the hard constraints into

account. We use the grounder gringo 3.0.4 and the solver clasp 2.1.1 (Gebser et al. 2007;

Gebser et al. 2009) on Mac OS X with 1.8 GHz Intel Core i7 and 4 GB memory.

For each encoding, we were able to find a feasible solution in 180 seconds for every

instance. Table 2 shows CPU time in seconds and the number of choices, conflicts, and

restarts obtained by using the option --stats of clasp. We observe in Table 2 that the

linked encoding is faster and can be more scalable to the number of courses than the

direct encoding. The linked encoding is 3 times faster, 12, 9, and 95 times smaller on

the number of choices, conflicts, and restarts respectively than the direct encoding on

the average. For the tested 36 instances, the linked encoding solved 22 instances with



ASP as a Modeling Language for Course Timetabling 9

% S1. RoomCapacity
penalty("RoomCapacity",assigned(C,R,D,P),(N-Cap)*penalty_of_room_capacity) :-

assigned(C,R,D,P), course(C,_,_,_,N,_), room(R,Cap,_), N > Cap.

% S2. MinWorkingDays
working_day(C,D) :- assigned(C,D,P).
penalty("MinWorkingDays",course(C,MWD,N),(MWD-N)*penalty_of_min_working_days) :-

course(C,_,_,MWD,_,_), N = [ working_day(C,_) ], N < MWD.

% S3. IsolatedLectures
scheduled_curricula(Cu,D,P) :- assigned(C,D,P), curricula(Cu,C).
penalty("IsolatedLectures",isolated_lectures(Cu,D,P),penalty_of_isolated_lectures) :-

scheduled_curricula(Cu,D,P), not scheduled_curricula(Cu,D,P-1),
not scheduled_curricula(Cu,D,P+1).

% S4. Windows
penalty("Windows",windows(Cu,C1,C2,D,P1,P2),(P2-P1-1)*penalty_of_windows) :-

curricula(Cu,C1), curricula(Cu,C2), assigned(C1,D,P1), assigned(C2,D,P2),
P1 + 1 < P2, not scheduled_curricula(Cu,D,P) : P = P1+1..P2-1.

% S5. RoomStability
using_room(C,R) :- assigned(C,R,D,P).
penalty("RoomStability",using_room(C,N),(N-1)*penalty_of_room_stability) :-

c(C), N = [ using_room(C,_) ], N > 1.

% S6. StudentMinMaxLoad
penalty("StudentMinMaxLoad",student_min_max_load(Cu,D,N,many),(N-Max)*penalty_of_student_min_max_load) :-

cu(Cu), d(D), N = { assigned(C,D,P) : curricula(Cu,C) : ppd(P) },
min_max_daily_lectures(Min,Max), N > Max.

penalty("StudentMinMaxLoad",student_min_max_load(Cu,D,N,few),(Min-N)*penalty_of_student_min_max_load) :-
cu(Cu), d(D), N = { assigned(C,D,P) : curricula(Cu,C) : ppd(P) },
min_max_daily_lectures(Min,Max), 0 < N, N < Min.

% S7. TravelDistance
penalty("TravelDistance",instantaneous_move(Cu,C1,C2,D,P,P+1),penalty_of_travel_distance) :-

curricula(Cu,C1), curricula(Cu,C2), assigned(C1,R1,D,P), assigned(C2,R2,D,P+1),
room(R1,_,BLG1), room(R2,_,BLG2), BLG1 != BLG2.

% S8. RoomSuitability
penalty("RoomSuitability",assigned(C,R,D,P),penalty_of_room_suitability) :-

assigned(C,R,D,P), room_constraint(C,R).

% S9. DoubleLectures
penalty("DoubleLectures",non_grouped_lecture(C,R,D,P),penalty_of_double_lectures) :-

course(C,_,_,_,_,1), d(D), 2 [ assigned(C,D,_) ],
assigned(C,R,D,P), not assigned(C,R,D,P-1), not assigned(C,R,D,P+1).

Fig. 7. Encoding of Soft Constraints

#minimize [ penalty(_,_,P) = P ].

Fig. 8. Encoding of Objective Function

0 restarts, compared with 6 instances of the direct encoding. Moreover, it solved very

large instances erlangen* with either 0 or 2 conflicts, compared with more than 4,000

conflicts of the direct encoding. From these observations, we decide to adopt the linked

encoding as a basis for expressing the soft constraints.

4 Encoding of Soft Constraints

We present an ASP encoding of the soft constraints based on the linked encoding. We use

the ternary predicate penalty(Si,V ,C) that is intended to express that a constraint Si

is violated by V and its penalty cost is C. Each constraint Si is expressed by either one

or two rules in which the head is the form of penalty(Si,V ,C), and a violation V and

its penalty cost C are detected and calculated respectively in the body. That is, for each



10 M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub

violation V of Si, the predicate penalty(Si,V ,C) is generated. We refer to an instance

of penalty/3 as a penalty atom.

Fig. 7 shows an ASP encoding of the soft constraints (S1–S9). The constants de-

noted by penalty_of_* indicate the weights associated with each soft constraint defined

in Table 1. Due to the page limitation, we give a detailed explanation of S1–S3 that

constitute the basic formulation UD1. For S1, the first rule, for every course C that N

students attend and room R that has a seating capacity of Cap, generates a penalty

atom with the cost of the production of N-Cap and penalty_of_room_capacity, if

N > Cap and assigned(C,R,D,P) holds. For S2, we use the second rule as an auxil-

iary rule. It generates an atom working_day(C,D) for every course C, day D, and period

P if assigned(C,D,P) holds. The atom working_day(C,D) expresses that a course C

is given on a day D. The third rule, for every course C whose lectures must be spread

into MWD days, generates a penalty atom with the cost of the production of MWD-N and

penalty_of_min_working_days, if the number of days (N) in which a course C spread is

less than MWD. For S3, we use the fourth rule as an auxiliary rule. It generates an atom

scheduled_curricula(Cu,D,P) for every curriculum Cu, course C that belongs to Cu, day

D, and period P if assigned(C,D,P) holds. The atom scheduled_curricula(Cu,D,P)

expresses that a curriculum Cu is scheduled at a period P on a day D. The fifth rule, for

every curriculum Cu, day D, and period P, generates a penalty atom with the constant

cost penalty_of_isolated_lectures, if a curriculum Cu is scheduled at a period P on

a day D, but not at P-1 and P+1 within the same day D.

5 Full Encoding

The objective of the CB-CTT problem is to find a feasible solution of minimal penalty

costs. The objective function of the problem is expressed by only one rule in Fig. 8.

Full linked encoding consists of the rules of the auxiliaries (Fig. 4), the hard con-

straints (Fig. 6), the soft constraints (Fig. 7), and the objective function (Fig. 8). Now

we go back to the requirements for the modeling language and problem encoding of course

timetabling mentioned in Section 1, and see how they are satisfied in our approach. First,

ASP is expressive enough to specify a wide variety of soft constraints and objective func-

tions, since it can naturally express not only the classical constraints S1–S3 but also the

relatively new constraints S4–S9. ASP also supports multi-criteria optimization. Second,

our encoding is extensible enough for capturing new constraints, since the constraints

can be compactly expressed by ASP, and all we have to do for new constraints is adding

rules. It is also extensible enough for switching constraints between hard and soft. For

example, S8 is defined as a hard constraint in UD4 as can be seen in Table 1. For the

direction from soft to hard, in this case, we only have to delete the head from the twelfth

rule in Fig. 7 like ‘:- assigned(C,R,D,P), room_constraint(C,R).’. Another method

is known to just assign a big number to the penalty cost. It is also easy to switch con-

straints in the opposite direction. For example, to define H4 as a soft constraint, we only

have to add a penalty atom to the head of sixth rule in Fig. 6. Finally, our encoding is

flexible enough to deal with different formulations, since the constraints are expressed

individually by separable rules, and we can easily select necessary rules depending on

each formulation.

Perhaps the most relevant works are problem encodings in the area of integer pro-



ASP as a Modeling Language for Course Timetabling 11

Table 3. Comparison results on the best known bounds

Instance

UD1 UD2 UD3 UD4 UD5
Best

ASP
Best

ASP
Best

ASP
Best

ASP
Best

ASPknown known known known known

comp01 4 = 4 5 = 5 8 10 6 9 11 45
comp02 12 40 24 125 22 > 12 32 107 168 714
comp03 38 111 66 196 29 147 362 474 173 523
comp04 18 = 18 35 36 2 =∗ 2 15 >∗ 13 80 215
comp05 219 522 290 947 324 1232 260 584 658 2753
comp06 14 27 27 155 10 >∗ 8 24 39 130 747
comp07 3 = 3 6 79 0 = 0 12 >∗ 3 77 910
comp08 20 > 19 37 39 4 >∗ 2 17 > 15 77 212
comp09 54 139 96 264 10 >∗ 8 41 122 164 428
comp10 2 = 2 4 = 4 2 >∗ 0 12 >∗ 3 92 633
comp11 0 = 0 0 = 0 0 = 0 0 = 0 0 = 0
comp12 239 606 300 1114 92 1281 111 479 595 2180
comp13 32 61 59 112 26 63 45 109 157 488
comp14 27 = 27 51 52 0 = 0 18 = 18 109 541
comp15 38 111 66 196 28 118 34 129 216 656
comp16 11 = 11 18 28 6 >∗ 4 16 >∗ 7 127 914
comp17 30 75 56 171 14 >∗ 12 29 58 181 818
comp18 34 98 62 184 0 = 0 27 93 144 509
comp19 32 41 57 91 28 93 35 123 147 619
comp20 2 = 2 4 80 6 >∗ 0 18 168 196 2045
comp21 43 119 74 232 20 > 6 42 121 178 651
DDS1 39 >∗ 38 48 87 3272 5727 2593 > 2278 2445 5214
DDS2 0 = 0 0 = 0 120 391 76 199 68 303
DDS3 0 = 0 0 = 0 22 = 22 11 12 22 = 22
DDS4 16 17 17 26 153 4057 124 6793 269 19988
DDS5 0 = 0 0 = 0 54 390 163 454 98 616
DDS6 0 = 0 0 = 0 0 = 0 5 >∗ 0 116 1148
DDS7 0 = 0 0 = 0 34 432 25 382 61 631
erlangen2011 2 n.a > 3061 1171 7017 n.a > 8122 n.a > 3152 n.a > 8010
erlangen2012 1 n.a > 2782 943 5716 n.a > 7544 n.a > 2694 n.a > 7585
erlangen2012 2 n.a > 3332 1310 10638 n.a > 9731 n.a > 4624 n.a > 9081
erlangen2013 1 n.a > 2608 1092 5476 n.a > 7289 n.a > 3553 n.a > 7253
test1 212 316 224 383 200 286 208 370 232 491
test2 8 = 8 16 31 0 = 0 4 =∗ 4 20 185
test3 35 38 67 172 18 =∗ 18 21 28 97 194
test4 27 72 73 232 12 20 33 92 166 453

gramming (Burke et al. 2010a; Burke et al. 2010b; Lach and Lübbecke 2012; Burke et al.

2012). These encodings use the binary variables xC,D,P and/or xC,R,D,P that corre-

spond to the predicate assigned(C,D,P) and/or assigned(C,R,D,P) respectively.

SAT/MaxSAT encodings (Achá and Nieuwenhuis 2012) also use the same binary vari-

ables, but requires expensive SAT encodings of cardinality constraints. The main ad-

vantage of our approach is not only a compact and declarative representation but also

human-readability with the help of the direct symbolic processing, gained by using ASP

as a modeling language.

6 Comparison

To evaluate the efficiency of our proposed full encoding, we carry out experiments on the

same benchmark sets as in Section 3. The differences from Section 3 are that we solve 36

instances as optimization problems with five different formulations UD1–UD5. We set a

timeout of 3 hours for each except 24 hours for erlangen*. All times were measured on

Mac OS X with 2.66 GHz Intel Xeon and 24 GB memory.

Table 3 shows the best upper bounds obtained by our encoding, compared with the

best known bounds available on the web (http://tabu.diegm.uniud.it/ctt/, last ac-



12 M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub

cessed on 22 June 2013). The symbols ‘>’ and ‘=’ indicate that our encoding produced

the improved and the same bounds respectively, compared to the previous best known

bounds. If followed by a superscript ‘∗’, these symbols indicate that our encoding proved

the optimality of the obtained bounds. The symbol ‘n.a’ indicates that the result is not

available on the web.

For the tested 180 combinations, we succeeded either in improving the bounds or

producing the same bounds for 70 combinations (39% in the total), compared with the

previous best known bounds. More precisely, our encoding was able to improve the bounds

for 34 combinations and to prove that 13 of them are optimal. That is, we found and

proved new optimal solutions for 13 combinations. It was also able to produce the same

bounds for 36 combinations and to prove that 3 of them are newly optimal. Furthermore,

it was able to produce upper bounds for very large instances erlangen* with every

formulation, and 16 of them were unsolvable before.

7 Conclusion

In this paper, we showed that ASP is an ideal modeling language for course timetabling,

as demonstrated by our proposed encoding of the curriculum-based course timetabling

problem. In our experiments, we succeeded either in improving the bounds or pro-

ducing the same bounds for many combinations of problem instances and formula-

tions, compared with the previous best known bounds. All source code is available from

http://kaminari.istc.kobe-u.ac.jp/resource/ctt/cttasp-0.8.tgz.

The course timetabling problem is known to be difficult, since it contains both hard

constraints and several types of soft constraints. ASP is useful to handle those mixed types

of constraints. That is why we can gain good performance in this problem. Future works

include using the weak constraints of ASP-Core-2 that gringo-4 supports for expressing

soft constraints of the problem. Our ASP-based approach can be applied to a wide range

of combinatorial optimization problems such as the other timetabling problems and the

resource-constrained project scheduling problem(Schutt et al. 2011).

Finally, we discuss some more details of our experimental results on ASP solvers. We

used the default search strategy of clasp for finding optimal solutions. However, we met

the difficulty of decreasing the upper bounds sufficiently. Particularly in UD2 and UD5,

a large number of bounds obtained by our encoding are far from the current best known

bounds. This shows a limitation of our approach at present. To overcome this issue, there

might be at least two approaches. One is finding the best configuration of clasp, since

it offers several options which control search strategy. In further experiments, for some

instances with UD2, we used the option --opt-value of clasp that initializes the objective

function. We were then able to reproduce and re-prove the previously known optimal

bounds of comp16 and comp20 in 6,630 and 409 seconds respectively. This result shows a

possibility of further performance improvement, since these bounds were not obtained by

the default setting. Another is building a solver portfolio including unsatisfiability-based

ASP solvers. It would be promising because a portfolio-based solver claspfolio (Gebser

et al. 2011) and an unsatisfiability-based solver unclasp (Andres et al. 2012) have been

recently shown to be effective for ASP solving.

Acknowledgments. This work was partially funded by JSPS KAKENHI Grant

Number 24300007 and DFG grant SCHA 550/9-1.



ASP as a Modeling Language for Course Timetabling 13

References

Achá, R. A. and Nieuwenhuis, R. 2012. Curriculum-based course timetabling with SAT and
MaxSAT. Annals of Operations Research (February 2012), 1–21.

Andres, B., Kaufmann, B., Matheis, O., and Schaub, T. 2012. Unsatisfiability-based opti-
mization in clasp. In Technical Communications of the 28th International Conference on Logic
Programming (ICLP’12), A. Dovier and V. S. Costa, Eds. Leibniz International Proceedings
in Informatics (LIPIcs), vol. 17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 211–221.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press.

Bonutti, A., Cesco, F. D., Gaspero, L. D., and Schaerf, A. 2012. Benchmarking
curriculum-based course timetabling: formulations, data formats, instances, validation, vi-
sualization, and results. Annals of Operations Research 194, 1, 59–70.

Burke, E. K., Marecek, J., Parkes, A. J., and Rudová, H. 2010a. Decomposition, reformu-
lation, and diving in university course timetabling. Computers & Operations Research 37, 3,
582–597.

Burke, E. K., Marecek, J., Parkes, A. J., and Rudová, H. 2010b. A supernodal for-
mulation of vertex colouring with applications in course timetabling. Annals of Operations
Research 179, 1, 105–130.

Burke, E. K., Marecek, J., Parkes, A. J., and Rudová, H. 2012. A branch-and-cut pro-
cedure for the udine course timetabling problem. Annals of Operations Research 194, 1,
71–87.

Burke, E. K. and Petrovic, S. 2002. Recent research directions in automated timetabling.
European Journal of Operational Research 140, 2, 266–280.

Carter, M. W. 2001. A comprehensive course timetabling and student scheduling system at the
university of waterloo. In Proceedings of the 3th International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2000), E. K. Burke and W. Erben, Eds. Lecture
Notes in Computer Science, vol. 2079. Springer, 64–84.

Daskalaki, S. and Birbas, T. 2005. Efficient solutions for a university timetabling problem
through integer programming. European Journal of Operational Research 160, 1, 106–120.

Faber, W., Leone, N., and Pfeifer, G. 1998. Representing school timetabling in a disjunctive
logic programming language. In Proceedings of the 13th Workshop on Logic Programming
(WLP’98), U. Egly and H. Tompits, Eds. 43–52.

Gaspero, L. D., McCollum, B., and Schaerf, A. 2007. The second interna-
tional timetabling competition (ITC-2007): Curriculum-based course timetabling
(track 3). Technical report, Queen’s University, Belfast, United Kingdom.
http://www.cs.qub.ac.uk/itc2007/curriculmcourse/report/curriculumtechreport.pdf.

Gaspero, L. D. and Schaerf, A. 2003. Multi-neighbourhood local search with application to
course timetabling. In Proceedings of the 4th International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2002), E. K. Burke and P. D. Causmaecker, Eds.
Lecture Notes in Computer Science, vol. 2740. Springer, Berlin Heidelberg, 262–275.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2012. Answer Set Solving in
Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan & Clay-
pool Publishers.

Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T., Schneider, M. T., and Ziller,
S. 2011. A portfolio solver for answer set programming: Preliminary report. In Proceedings
of the 11th International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR 2011), J. P. Delgrande and W. Faber, Eds. Lecture Notes in Computer Science, vol.
6645. Springer, 352–357.

Gebser, M., Kaufmann, B., Neumann, A., and Schaub, T. 2007. Conflict-driven answer set
solving. In Proceedings of the 20th International Joint Conference on Artificial Intelligence
(IJCAI 2007). MIT Press, 386–392.



14 M. Banbara, T. Soh, N. Tamura, K. Inoue, and T. Schaub

Gebser, M., Kaufmann, B., and Schaub, T. 2009. The conflict-driven answer set solver clasp:
Progress report. In Proceedings of the 10th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2009), E. Erdem, F. Lin, and T. Schaub, Eds. Lecture
Notes in Computer Science, vol. 5753. Springer, 509–514.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In Proceedings of the Fifth International Conference and Symposium on Logic Programming.
MIT Press, 1070–1080.

Gotlieb, C. C. 1962. The construction of class-teacher time-tables. In Proceedings of IFIP
Congress 62, C. M. Popplewell, Ed. North-Holland, 73–77.

Lach, G. and Lübbecke, M. E. 2012. Curriculum based course timetabling: new solutions to
udine benchmark instances. Annals of Operations Research 194, 1, 255–272.

Lewis, R. 2007. A survey of metaheuristic-based techniques for university timetabling problems.
OR Spectrum 30, 1, 167–190.

McCollum, B. 2007. A perspective on bridging the gap between theory and practice in uni-
versity timetabling. In Proceedings of the 6th International Conference on the Practice and
Theory of Automated Timetabling (PATAT 2006), Revised Selected Papers, E. K. Burke and
H. Rudová, Eds. Lecture Notes in Computer Science, vol. 3867. Springer, 3–23.

McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J.,
Gaspero, L. D., Qu, R., and Burke, E. K. 2010. Setting the research agenda in auto-
mated timetabling: The second international timetabling competition. INFORMS Journal on
Computing 22, 1, 120–130.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Ann. Mathematics and Artificial Intelligence 25, 3–4, 241–273.

Qualizza, A. and Serafini, P. 2005. A column generation scheme for faculty timetabling.
In Proceedings of the 5th international conference on the practice and theory of automated
timetabling (PATAT 2004), E. K. Burke and M. A. Trick, Eds. Lecture Notes in Computer
Science, vol. 3616. Springer, 161–173.

Schaerf, A. 1999. A survey of automated timetabling. Artificial Intelligence Review 13, 2,
87–127.

Schimmelpfeng, K. and Helber, S. 2007. Application of a real-world university-course
timetabling model solved by integer programming. OR Spectrum 29, 4, 783–803.

Schutt, A., Feydy, T., Stuckey, P. J., and Wallace, M. G. 2011. Explaining the cumu-
lative propagator. Constraints 16, 3, 250–282.


