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LERIA, Université d’Angers, France

TORSTEN SCHAUB and ANNA SCHUHMANN

University of Potsdam, Germany

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

We elaborate upon the theoretical foundations of a metric temporal extension of Answer Set
Programming. In analogy to previous extensions of ASP with constructs from Linear Temporal
and Dynamic Logic, we accomplish this in the setting of the logic of Here-and-There and its
non-monotonic extension, called Equilibrium Logic. More precisely, we develop our logic on the
same semantic underpinnings as its predecessors and thus use a simple time domain of bounded
time steps. This allows us to compare all variants in a uniform framework and ultimately combine
them in a common implementation.

This article is under consideration for acceptance in TPLP.

1 Introduction

Reasoning about action and change, or more generally reasoning about dynamic systems,

is not only central to knowledge representation and reasoning but at the heart of computer

science. We addressed this over the last years by combining traditional approaches, like

Dynamic and Linear Temporal Logic (DL (Harel et al. 2000) and LTL (Pnueli 1977)), with

the base logic of Answer Set Programming (ASP (Lifschitz 1999)), namely, the logic of

Here-and-There (HT (Heyting 1930)) and its non-monotonic extension, called Equilibrium

Logic (EL (Pearce 1997). This resulted in non-monotonic linear dynamic and temporal

equilibrium logics (DEL (Bosser et al. 2018; Cabalar et al. 2019) and TEL (Aguado et al.

2013; Cabalar et al. 2018)) that gave rise to the temporal ASP system telingo (Cabalar

et al. 2019; Cabalar et al. 2020) extending the full-featured ASP system clingo (Gebser

et al. 2016). A key design decision has been to base both logics on the same semantic

structures so that language constructs from both can be jointly used in an implementation.

Another commonality of dynamic and temporal logics is that they abstract from specific

time points and rather focus on capturing temporal relationships. For instance, we can

express in a temporal logic that a machine has to be eventually cleaned after being used

with the formula �(use → ♦clean). However, sometimes this is not enough to capture the

desired relation. That is, we might also want to quantify the time difference between both
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2 Cabalar et al.

events. For instance, whenever the machine is used, it has to be cleaned within less than

5 time units. This can be expressed by means of metric temporal operators as follows:

�(use → ♦5clean) . (1)

In this paper, we address this issue and elaborate upon a combination of Metric

Temporal Logic (MTL (Alur and Henzinger 1992; Ouaknine and Worrell 2005) 1) with HT

and EL. Our development of Metric Equilibrium Logic (MEL) not only parallels the one of

TEL and DEL mentioned above but, moreover, builds on the same semantic foundations.

This allows us to relate all three systems in a uniform semantic setting and, ultimately,

to integrate the corresponding language constructs in a common implementation.

A full version of this paper including proofs of results can be found at http://arxiv.

org/abs/2008.02038.

2 Metric Equilibrium Logic

Given a set A of atoms, or alphabet, we define a (metric) formula ϕ by the grammar:

ϕ ::= a | ⊥ | ϕ1 ./ ϕ2 | •ϕ | ϕ1Snϕ2 | ϕ1Tnϕ2 | ◦ϕ | ϕ1Unϕ2 | ϕ1Rnϕ2

where a ∈ A is an atom and ./ ∈ {→,∧,∨} is a binary Boolean connective; n is a numeral

constant (referring to some integer number) or the symbolic constant ` (standing for

the length of a trace; see below). The last six cases of ϕ correspond to the metric past

connectives previous, since, trigger, and their future counterparts next, until, and release,

where n > 0 restricts the scope of each operator to the last (resp. next) n time points,

including the current state.2

We also define several derived operators like the Boolean connectives>def
= ¬⊥, ¬ϕdef

= ϕ→
⊥, ϕ↔ ψ

def
= (ϕ→ ψ) ∧ (ψ → ϕ), and the following derived metric operators:

I def
= ¬•>

•̂ϕ def
= •ϕ ∨ I

�nϕ
def
= ⊥Tnϕ

�nϕ
def
= >Snϕ

F def
= ¬◦>

◦̂ϕ def
= ◦ϕ ∨ F

�nϕ
def
= ⊥Rnϕ

♦nϕ
def
= >Unϕ

On the left, we give past operators, namely, initial, weak previous, always before, eventually

before, while the right column lists their future counterparts final, weak next, always

afterward, eventually afterward. We define the iterated application of the one step operators

as ⊗0ϕ
def
= ϕ and ⊗nϕ def

= ⊗ ⊗n−1 ϕ for n > 0 and ⊗ ∈ {•,◦, •̂, ◦̂}. For instance, ◦2p

corresponds to ◦◦p. Here, the use of n with temporal operators captures a number of

iterations of some one step expression so that, as we see below, for instance, ♦3ϕ amounts

to ϕ ∨ ◦ϕ ∨ ◦2ϕ.

An example of metric formulas is the modeling of traffic lights. While the light is red by

default, it changes to green within less than 3 time units whenever the button is pushed;

and it stays green for other 3 time units. This can be represented by

�(red ∧ green → ⊥) (2)

1 Unlike traditional approaches usually having continuous time domains (Alur and Henzinger 1992), we
deal with point-based semantics based on discrete linear time, similar to (Ouaknine and Worrell 2005).

2 Values n ≤ 0 are tolerated but trivialize the subformula at hand, as made precise in Proposition 6.

http://arxiv.org/abs/2008.02038
http://arxiv.org/abs/2008.02038
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�(¬green → red) (3)

�(push → ♦3�4green) (4)

Note that this example combines a default rule (3) with a metric rule (4), describing

the initiation and duration period of events. This nicely illustrates the interest in non-

monotonic metric representation and reasoning methods.

Given a ∈ N and b ∈ N ∪ {ω}, we let [a..b] stand for the set {i ∈ N | a ≤ i ≤ b}, [a..b)

for {i ∈ N | a ≤ i < b} and (a..b] for {i ∈ N | a < i ≤ b}. For the semantics, we start by

defining a trace of length λ over alphabet A as a sequence (Hi)i∈[0..λ) of sets Hi ⊆ A. A

trace is infinite if λ = ω and finite if λ = n for some natural number n ∈ N. Given traces

H = (Hi)i∈[0..λ) and H′ = (H ′i)i∈[0..λ) both of length λ, we write H ≤ H′ if Hi ⊆ H ′i for

each i ∈ [0..λ); accordingly, H < H′ iff both H ≤ H′ and H 6= H′.

Our semantics is based on Here-and-There traces (for short HT-traces (Cabalar et al.

2018)) of length λ over alphabet A being sequences of pairs (〈Hi, Ti〉)i∈[0..λ) such that

Hi ⊆ Ti ⊆ A for any i ∈ [0..λ). We often represent an HT-trace as a pair of traces 〈H,T〉
of length λ where H = (Hi)i∈[0..λ) and T = (Ti)i∈[0..λ) such that H ≤ T. When an

HT-trace 〈H,T〉 satisfies H = T, it is called total.

We assume a one-to-one correspondence between numeral constants and integers and

let n stand for the number corresponding to numeral n. For the symbolic constant `,

we fix ` = λ to the length λ of the trace. For simplicity, we let expressions like n −m,

formed with numeral constants n and m, stand for the numeral representing the difference

between n and m.

We define the semantics of metric formulas in terms of HT-traces.

Definition 1 (Satisfaction)

Let M = 〈H,T〉 be an HT-trace of length λ over alphabet A, and let ϕ be a metric

formula over A. The trace M satisfies ϕ at time point k ∈ [0..λ), written M, k |= ϕ, if

1. M, k 6|= ⊥
2. M, k |= a iff a ∈ Hk, for any atom a ∈ A
3. M, k |= ϕ ∧ ψ iff M, k |= ϕ and M, k |= ψ

4. M, k |= ϕ ∨ ψ iff M, k |= ϕ or M, k |= ψ

5. M, k |= ϕ→ ψ iff 〈H′,T〉, k 6|= ϕ or 〈H′,T〉, k |= ψ, for all H′ ∈ {H,T}
6. M, k |= •ϕ iff k > 0 and M, k−1 |= ϕ

7. M, k |= ◦ϕ iff k + 1 < λ and M, k+1 |= ϕ

8. M, k |= ϕUnψ iff for some j ∈ [0..n) such that k+j ∈ [0..λ) we have M, k+j |= ψ

and M, k+i |= ϕ for all i ∈ [0..j)

9. M, k |= ϕRnψ iff for all j ∈ [0..n) such that k+j ∈ [0..λ) we have M, k+j |= ψ or

M, k+i |= ϕ for some i ∈ [0..j)

10. M, k |= ϕSnψ iff for some j ∈ [0..n) such that k−j ∈ [0..λ) we have M, k−j |= ψ

and M, k−i |= ϕ for all i ∈ [0..j)

11. M, k |= ϕTnψ iff for all j ∈ [0..n) such that k−j ∈ [0..λ) we have M, k−j |= ψ or

M, k−i |= ϕ for some i ∈ [0..j)

The fundamental difference to standard temporal logics is clearly the satisfaction of

implication ‘→’ that is inherited from the (non-temporal) logic HT, an intermediate

logic dealing with exactly two worlds h, t with the reflexive accessibility relation h ≤ t.

When traces are total 〈T,T〉, we get h = t and this distinction disappears, so implication
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becomes classical. From the perspective of metric temporal logic, the definition of release

and trigger in 9 and 11, respectively, are additionally conditioned by the trace’s limits and

can thus be seen as weak variants of the standard counterparts. Similarly, the satisfaction

of until and since formulas in 8 and 10, respectively, is restricted to the time points within

a trace. Clearly, for infinite traces, the restriction of future operators vanishes.

An HT-trace M is a model of a metric theory Γ if M, 0 |= ϕ for all ϕ ∈ Γ. A formula

ϕ is a tautology (or is valid), written |= ϕ, iff M, k |= ϕ for any HT-trace M and any

k ∈ [0..λ). We call the logic induced by the set of all tautologies Metric logic of Here

and There (MHT for short). We say that an HT-trace M is a model of a set of formulas

(or theory) Γ iff M, 0 |= ϕ for any ϕ ∈ Γ. Two formulas ϕ,ψ are equivalent if |= ϕ↔ ψ.

Whenever two formulas ϕ and ψ are equivalent, they are completely interchangeable in

any theory without altering the theory’s semantics.

We write MHT(Γ, λ) to stand for the set of models of length λ of a theory Γ, and define

MHT(Γ)
def
= MHT(Γ, ω) ∪

⋃
λ≥0 MHT(Γ, λ), that is, the whole set of models of Γ of any

length. An interesting subset of MHT(Γ, λ) is the one formed by total traces 〈T,T〉, we

denote as MTL(Γ, λ). We also use MTL(Γ) to stand for MHT(Γ, ω) ∪
⋃
λ≥0 MTL(Γ, λ).

In the non-metric version of temporal HT, the restriction to total models turns out to

correspond to Linear Temporal Logic (LTL). In our case, it defines a metric version of LTL

that we call Metric Temporal Logic (MTL for short). It can be proved that MTL(Γ, λ)

are those models of MHT(Γ, λ) satisfying the excluded middle axiom schema:

�`(p ∨ ¬p) (for any atom p ∈ A) (5)

The semantics of the derived operators in MHT can be easily deduced.

Proposition 1 (Satisfaction)

Let M = 〈H,T〉 be an HT-trace of length λ over A. Given the respective definitions of

derived operators, we get the following satisfaction conditions:

12. M, k |= �nϕ iff for all j ∈ [0..n) such that k−j ∈ [0..λ) we have M, k−j |= ψ

13. M, k |= �nϕ iff for some j ∈ [0..n) such that k−j ∈ [0..λ) we have M, k−j |= ψ

14. M, k |= I iff k = 0

15. M, k |= �nϕ iff for all j ∈ [0..n) such that k+j ∈ [0..λ) we have M, k+j |= ψ

16. M, k |= ♦nϕ iff for some j ∈ [0..n) such that k+j ∈ [0..λ) we have M, k+j |= ψ

17. M, k |= F iff k + 1 = λ

18. M, k |= •̂ϕ iff k = 0 or M, k−1 |= ϕ

19. M, k |= ◦̂ϕ iff k + 1 = λ or M, k+1 |= ϕ

As in the temporal logic of HT (Cabalar et al. 2018), referred to as THT, the operators

I and F exclusively depend on the value of time point k, and are thus independent of

M. In fact, operator F allows us to influence the length of models. The inclusion of the

axiom ♦nF for example forces its models to have length λ ≤ n with n ∈ N. On the other

hand, the inclusion of the axiom ¬♦`F forces models to be of infinite length. As well, we

distinguish MHT on finite and infinite traces, and refer to the respective logics as MHTf
and MHTω.

Following the definitions of TEL (Cabalar et al. 2018) and DEL (Cabalar et al. 2019),

we now introduce non-monotonicity by selecting a particular set of traces that we call

temporal equilibrium models. First, given an arbitrary set S of HT-traces, we define the

ones in equilibrium as follows.
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Definition 2 (Temporal Equilibrium/Stable models)

Let S be some set of HT-traces. A total HT-trace 〈T,T〉 ∈ S is an equilibrium trace of

S iff there is no other 〈H,T〉 ∈ S such that H < T.

If 〈T,T〉 is such an equilibrium trace, we also say that trace T is a stable trace of S. We

further talk about temporal equilibrium or temporal stable models of a theory Γ when

S = MHT(Γ), respectively.

We write MEL(Γ, λ) and MEL(Γ) to stand for the temporal equilibrium models of

MHT(Γ, λ) and MHT(Γ), respectively. Besides, as the ordering relation among traces is

only defined for a fixed λ, it is easy to see the following result:

Proposition 2

The set of temporal equilibrium models of Γ can be partitioned by the trace length λ,

that is,
⋃ω
λ=0 MEL(Γ, λ) = MEL(Γ).

Metric Equilibrium Logic (MEL) is the non-monotonic logic induced by temporal

equilibrium models of metric theories. We obtain the variants MELf and MELω by

applying the respective restriction to finite or infinite traces, respectively.

Let us illustrate this by using the example of the pedestrian traffic light introduced

above. Consider the models of the theory Γ = {(2), (3), (4)} for length λ = 1. In this case,

we only have time point k = 0, and the metric or temporal aspect is less interesting, since

HT-traces amount to pairs 〈H0, T0〉. Still, this helps to illustrate the difference among

the different sets of models defined above. In the example, we abbreviate a set of atoms

as a string formed by their initials: for instance gp stands for {green, push}. Then, we

obtain the following sets:

MTL(Γ, 1) = { 〈r〉, 〈g〉, 〈gp〉 }
MHT(Γ, 1) = MTL(Γ, 1) ∪ { 〈∅, g〉, 〈∅, gp〉, 〈g, gp〉 }
MEL(Γ, 1) = { 〈r〉 }

As we can see, total models MTL(Γ, 1) allow for choosing either red or green but, if we

include push, then green is mandatory because it is the only way to satisfy ♦3�4green

with λ = 1. Note how the unique equilibrium model in MEL(Γ, 1) is the only total model

〈T,T〉 with T = 〈r〉 in MTL(Γ, 1) for which there is no 〈H,T〉 ∈ MHT(Γ, 1) with smaller

H < T. Informally, this is because (3) suffices to justify red by default, while the other

two total models in MTL(Γ, 1), which assume green or push in T0, admit weaker H0’s

where these atoms are not justified. As a result, MEL(Γ, λ) = 〈Ti〉i∈[0..λ) with Ti = {red}
for all i ∈ [0..λ). To illustrate non-monotonicity, suppose we add the formula

◦push (6)

that ensures the button is pushed in the second state of the trace (i.e. at k = 1) and

take λ = 3. For readability sake, we represent traces (T0, T1, T2) as T0 · T1 · T2. For length

λ = 3, formula (4) amounts in MTL to requiring green at k = 2 whenever push holds at

any point. Thus, given Γ′ = Γ ∪ {(6)} and λ = 3, we get

MTL(Γ′, 3) = {〈T〉 = 〈T0 · T1 · T2〉 | T0 ∈ {r, g, rp, gp}, T1 ∈ {rp, gp}, T2 ∈ {g, gp}}

Now, for those 〈T,T〉 with T0 6= r and T2 = gp, we always have, among others, a smaller

model 〈∅ ·T1 · g,T〉 in MHT(Γ′, 3). This means that, in MEL, we conclude by default that
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we do not push in other situations k 6= 1 and the traffic light is red at the initial state.

From the remaining possible total models 〈r · rp · g〉 and 〈r · gp · g〉, the latter is not in

equilibrium, since 〈r · p · g, r · gp · g〉 is an model in MHT that reveals that green at k = 0

is not justified. As a result MEL(Γ′, 3) contains the unique temporal equilibrium model

〈r · rp · g〉 and the MEL conclusion ◦2r, we could obtain from Γ alone, is not derived any

more once (6) is added to the theory. In this example, we obtain one equilibrium model

because �4green becomes trivially true on traces shorter than λ = 4. When the trace is

long enough (λ ≥ 7), Γ′ generates the three expected temporal equilibrium models:

〈r · gp · g · g · g · r · r · r . . . 〉
〈r · rp · g · g · g · g · r · r . . . 〉
〈r · rp · r · g · g · g · g · r . . . 〉

In the following, we elaborate on the formal characteristics of our approach. At first,

we show that a basic property of HT is maintained in MHT:

Proposition 3 (Persistence)

Let 〈H,T〉 be an HT-trace of length λ and ϕ be a metric formula. Then, for any k ∈ [0..λ),

1. if 〈H,T〉, k |= ϕ then 〈T,T〉, k |= ϕ.

2. 〈H,T〉, k |= ¬ϕ iff 〈T,T〉, k 6|= ϕ

All MHT tautologies are MTL tautologies but not vice versa (cf. (5) above). However,

they coincide for some types of equivalences, as stated below.

Proposition 4

Let ϕ and ψ be metric formulas without implications (and so, without negations either).

Then, ϕ ≡ ψ in MTL iff ϕ ≡ ψ in MHT.

Another useful tool that can save some effort when proving groups of equivalences in MHT

is the use of duality properties. A first type of duality has to do with the temporal direction

(future or past) of the modal operators. Let ◦/•, ◦̂/•̂, Un/Sn, Rn/Tn, �n/�n and ♦n/�n
denote all pairs of swapped-time connectives and let σ(ϕ) denote the replacement in ϕ of

each connective by its swapped-time version. If we restrict ourselves to finite traces, we

get the following result.

Lemma 1

Let M be an HT-trace of length λ and ϕ be a metric formula. Then, there exists an

HT-trace M′ of length λ such that M, k |= ϕ iff M′, n−k |= σ(ϕ) for any k ∈ [0..λ).

Theorem 1 (Temporal Duality Theorem)

A metric formula ϕ is a tautology in MHTf iff σ(ϕ) is a tautology in MHTf .

For instance, suppose we obtain a proof for

♦n p↔ p ∨ ◦♦n−1 p (7)

Then, we can immediately apply Theorem 1 to guarantee that �np↔ p ∨ •�n−1 p is a

tautology too. A second kind of duality has to do the analogy between Boolean disjunction

and conjunction. Let us define all the pairs of dual connectives as follows: ∧/∨, >/⊥,

Un/Rn, ◦/◦̂, ♦n/�n, Sn/Tn, •/•̂, �n/�n. For a formula ϕ without implications, we

define δ(ϕ) as the result of replacing each connective by its dual operator. Then, we get

the following result.



Towards Metric Temporal Answer Set Programming 7

Proposition 5 (Boolean Duality)

Let ϕ and ψ be formulas without implication.3 Then, ϕ↔ ψ is a tautology in MHT iff

δ(ϕ)↔ δ(ψ) is a tautology in MHT.

Following with our example of equivalence (7), we can now apply Theorem 5 to conclude:

�n p↔ p ∧ ◦̂�n−1 p
Next, we show how metric operators on formulas can be characterized inductively.

Proposition 6

The following formulas are valid in MHT. For any numeral n with n ≤ 0:

ϕUnψ ↔ ⊥ ϕRnψ ↔ > ϕSnψ ↔ ⊥ ϕTnψ ↔ >

For any numeral n with n > 0, we have

ϕUnψ ↔ ψ ∨ (ϕ ∧ ◦(ϕUn−1ψ)) ϕRnψ ↔ ψ ∧
(
ϕ ∨ ◦̂(ϕRn−1ψ)

)
ϕSnψ ↔ ψ ∨ (ϕ ∧ •(ϕSn−1ψ)) ϕTnψ ↔ ψ ∧

(
ϕ ∨ •̂(ϕTn−1ψ)

)
The propositions above allow us to unfold metric operators containing numerals. It is

easy to see that, for n = 1, the four operators collapse to the formula ψ on their right.

For instance, ♦5clean ↔ clean ∨ ◦♦4clean whereas ♦1clean ↔ clean and ♦0clean ↔ ⊥.

For metric operators depending on the trace length, the value of which is not necessarily

known, Proposition 6 cannot be applied. Instead, we have the following tautologies.

Proposition 7

The following formulas are valid in MHT:

ϕU`ψ ↔ ψ ∨ (ϕ ∧ ◦(ϕU`ψ)) ϕR`ψ ↔ ψ ∧
(
ϕ ∨ ◦̂(ϕR`ψ)

)
ϕS`ψ ↔ ψ ∨ (ϕ ∧ •(ϕS`ψ)) ϕT`ψ ↔ ψ ∧

(
ϕ ∨ •̂(ϕT`ψ)

)
That is, when the limit is the trace length `, the unfolding contains the same operator, it

is not altered. As an example, we consider the machine that has to be cleaned eventually

before the end of the trace. We then have ♦`clean ↔ clean ∨ ◦♦`clean.

Alternatively, metric operators may also be parametrized by intervals4 rather than

a mere upper bound. In our setting, this is however no restriction since such metric

operators can also be expressed, as we show next.

The definition of our interval operators then depends on the type of numeral expression

involved. For numeral constants n,m where n,m ∈ [0..λ), we define:

�[m;n) ϕ
def
= •̂m �n−mϕ

�[m;n) ϕ
def
= •m �n−mϕ

ϕ S[m;n) ψ
def
= •m (ϕSn−mψ)

ϕ T[m;n) ψ
def
= •̂m (ϕTn−mψ)

�[m;n) ϕ
def
= ◦̂m �n−mϕ

♦[m;n) ϕ
def
= ◦m ♦n−mϕ

ϕU[m;n) ψ
def
= ◦m (ϕUn−mψ)

ϕ R[m;n) ψ
def
= ◦̂m (ϕRn−mψ)

3 Note that this also means without negation.
4 This concept of interval operators should not be confounded with the ones of Allen’s interval alge-
bra (Allen 1983).
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For intervals spanning to the end (or beginning) of the trace, we have:

�[m;`) ϕ
def
= •̂m �`ϕ

�[m;`) ϕ
def
= •m �`ϕ

ϕ S[m;`) ψ
def
= •m (ϕS`ψ)

ϕ T[m;`) ψ
def
= •̂m (ϕT`ψ)

�[m;`) ϕ
def
= ◦̂m �`ϕ

♦[m;`) ϕ
def
= ◦m ♦`ϕ

ϕU[m;`) ψ
def
= ◦m (ϕU`ψ)

ϕ R[m;`) ψ
def
= ◦̂m (ϕR`ψ)

As an example of an interval formula, reconsider the machine, discussed in the beginning,

and assume that it cannot be cleaned immediately but only within 3 to 5 time steps

after usage. This can be expressed as �(use → ♦[3;5)clean). In the definitions, note that

when m ≥ n the interval [m;n) is empty and the operator is always reducible to a truth

constant. For instance, ♦[5;3)ϕ becomes ◦5♦−2ϕ which amounts to ◦5⊥ or simply ⊥. For

this reason, we do not consider intervals with ` as lower bound, since they are always

empty by definition.

Proposition 8 (Satisfaction)

Let M = 〈H,T〉 be an HT-trace of length λ over A. Given the respective definitions of

derived operators, we get the following satisfaction conditions:

20. M, k |= ϕU[m;n)ψ iff for some j ∈ [m..n) such that k+j ∈ [0..λ) we have M, k+j |= ψ

and M, k+i |= ϕ for all i ∈ [0..j)

21. M, k |= ϕR[m;n)ψ iff for all j ∈ [m..n) such that k+j ∈ [0..λ), we have M, k+j |= ψ

or M, k+i |= ϕ for some i ∈ [0..j)

22. M, k |= ϕS[m;n)ψ iff for some j ∈ [m..n) such that k−j ∈ [0..λ) we have M, k−j |= ψ

and M, k−i |= ϕ for all i ∈ [0..j)

23. M, k |= ϕT[m;n)ψ iff for all j ∈ [m..n) such that k−j ∈ [0..λ), we have M, k−j |= ψ

or M, k−i |= ϕ for some i ∈ [0..j)

24. M, k |= ♦[m;n)ϕ iff for some j ∈ [m..n) such that k+j ∈ [0..λ) we have M, k+j |= ϕ

25. M, k |= �[m;n)ϕ iff for all j ∈ [m..n) such that k+j ∈ [0..λ), we have M, k+j |= ϕ

26. M, k |= �[m;n)ϕ iff for some j ∈ [m..n) such that k−j ∈ [0..λ) we have M, k−j |= ϕ

27. M, k |= �[m;n)ϕ iff for all j ∈ [m..n) such that k−j ∈ [0..λ), we have M, k−j |= ϕ

Note that one-step operators can be represented in terms of intervals, since we have

◦ϕ = ◦♦1ϕ = ♦[1;2)ϕ •ϕ = •�1ϕ = �[1;2)ϕ

◦̂ϕ = ◦̂�1ϕ = �[1;2)ϕ •̂ϕ = •̂�1ϕ = �[1;2)ϕ

Next, we present a three-valued semantics for MHT which turns out to be particularly

useful for formal elaborations. In particular, this three-valued interpretation has an

important advantage: it allows the interchange of subformulas in a larger formula provided

that the interchanged subformulas have the same three-valued interpretations. This

characterization relies on temporal three-valued interpretation (Cabalar 2010) and is

inspired, in its turn, by the characterization of HT in terms of Gödel’s logic G3 (Gödel

1932). Under this orientation, we deal with three truth values {0, 1, 2} standing for:

2 (or proved true) meaning satisfaction “here”; 0 (or assumed false) meaning falsity

“there”; and 1 (potentially true) for formulas assumed but not proved to be true. Given

an HT-trace 〈H,T〉, we define its associated truth valuation as a function m(k, ϕ) that

assigns a truth value in the set {0, 1, 2} to a metric formula ϕ at time point k ∈ [0..λ)

as follows. For propositional connectives, m(k, ϕ) directly corresponds to G3, that is,
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conjunction is the minimum, disjunction the maximum and implication m(k, ϕ→ ψ) is 2

if m(k, ϕ) ≤m(k, ψ), or is m(k, ψ) otherwise. For the rest of cases, we have:

m(k,⊥)
def
= 0

m(k,>)
def
= 2

m(k, p)
def
=


0 if p 6∈ Tk
1 if p ∈ Tk \Hk

2 if p ∈ Hk

for any atom p ∈ A

m(k,◦ϕ)
def
=

{
0 if k + 1 = λ;

m(k + 1, ϕ) otherwise

m(k, ◦̂ϕ)
def
=

{
2 if k + 1 = λ;

m(k + 1, ϕ) otherwise

m(k,•ϕ)
def
=

{
0 if k = 0;

m(k − 1, ϕ) otherwise

m(k, •̂ϕ)
def
=

{
2 if k = 0;

m(k − 1, ϕ) otherwise

For n being a numeral constant or the constant `, we have5

m(k, ϕUnψ)
def
= max{min{m(k + i, ψ),m(k + j, ϕ) | j ∈ [0..i), k + i < λ} | 0 ≤ i < n}

m(k, ϕRnψ)
def
= min{max{m(k + i, ψ),m(k + j, ϕ) | j ∈ [0..i), k + i < λ} | 0 ≤ i < n}

m(k, ϕSnψ)
def
= max{min{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} | 0 ≤ i < n}

m(k, ϕTnψ)
def
= min{max{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} | 0 ≤ i < n}

Proposition 9

Let 〈H,T〉 be a HT-trace of length λ, m its associated valuation and k ∈ [0..λ). Then,

for any formula ϕ, we have

• 〈H,T〉, k |= ϕ iff m(k, ϕ) = 2 and

• 〈T,T〉, k |= ϕ iff m(k, ϕ) 6= 0.

3 Metric and Temporal Equilibrium Logic

In this section, we study the relation between metric and temporal (equilibrium) logics.

In fact, temporal formulas constitute a subclass of metric formulas.

♦ϕ def
= ♦`ϕ �ϕ def

= �`ϕ �ϕ def
= �`ϕ �ϕ def

= �`ϕ

ϕU ψ
def
= ϕU`ψ ϕ R ψ def

= ϕR`ψ ϕ S ψ def
= ϕS`ψ ϕ T ψ

def
= ϕT`ψ

The next result guarantees that the original semantics of the temporal operators in

THT (Cabalar et al. 2018) is preserved.

5 Here, we assume that max(∅) = 0 and min(∅) = 2.
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Proposition 10 (Satisfaction)

Let M = 〈H,T〉 be an HT-trace of length λ over A. Given the respective definitions of

derived operators, we get the following satisfaction conditions:

28. M, k |= ♦ϕ iff M, i |= ϕ for some i ∈ [k..λ)

29. M, k |= �ϕ iff M, i |= ϕ for all i ∈ [k..λ)

30. M, k |= ϕ U ψ iff for some j ∈ [k..λ), we have M, j |= ψ and M, i |= ϕ for all

i ∈ [k..j)

31. M, k |= ϕRψ iff for all j ∈ [k..λ), we have M, j |= ψ or M, i |= ϕ for some i ∈ [k..j)

32. M, k |= �ϕ iff M, i |= ϕ for some i ∈ [0..k]

33. M, k |= �ϕ iff M, i |= ϕ for all i ∈ [0..k]

34. M, k |= ϕSψ iff for some j ∈ [0..k], we have M, j |= ψ and M, i |= ϕ for all i ∈ (j..k]

35. M, k |= ϕTψ iff for all j ∈ [0..k], we have M, j |= ψ or M, i |= ϕ for some i ∈ (j..k]

Interestingly, it turns out that metric formulas can also be translated into temporal

formulas. This is due to the discrete time domain of MHT and the resulting semantic

structure common to MHT and THT. In fact, we provide two alternative translations

possessing complementary properties.

Language-preserving translation. Our first translation refrains from extending the original

language and is independent of the length of the trace (and so the specific value of `).

Although this allows us to search for models of varying length without recompiling a

formula, when using temporal ASP solvers such as telingo (Cabalar et al. 2019), the

translation suffers from an exponential blowup in the worst case.

We define the translation recursively as follows:

τ(a)
def
= a for a ∈ A

τ(⊕ϕ)
def
= ⊕τ(ϕ) for ⊕ ∈ {¬,•,◦, •̂, ◦̂}

τ(ϕ⊗ψ)
def
= τ(ϕ)⊗ τ(ψ) for ⊗ ∈ {∧,∨,→}

τ(ϕ⊗`ψ)
def
= τ(ϕ)⊗ τ(ψ) for ⊗ ∈ {U,R,S,T}

τ(ϕ⊗1ψ)
def
= τ(ψ) for ⊗ ∈ {U,R,S,T}

τ(ϕUnψ)
def
= τ(ψ ∨ (ϕ ∧ ◦(ϕUn−1ψ)))

τ(ϕRnψ)
def
= τ(ψ ∧ (ϕ ∨ ◦̂(ϕRn−1ψ)))

τ(ϕSnψ)
def
= τ(ψ ∨ (ϕ ∧ •(ϕSn−1ψ)))

τ(ϕTnψ)
def
= τ(ψ ∧ (ϕ ∨ •̂(ϕTn−1ψ)))

Translating formula (4) from the traffic light example into a temporal formula yields

τ(�
(
push → ♦3�4green

)
)

= �(push → ((green ∧ ◦̂green ∧ ◦̂◦̂green ∧ ◦̂◦̂◦̂green)

∨ (◦(green ∧ ◦̂green ∧ ◦̂◦̂green ∧ ◦̂◦̂◦̂green))

∨ (◦◦(green ∧ ◦̂green ∧ ◦̂◦̂green ∧ ◦̂◦̂◦̂green))))

(8)

This illustrates the benefit of metric operators. While we are also able to express the
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same formula with temporal operators, it is much more concise and more readable with

metric operators.

Proposition 11

The translation τ(ϕ) terminates for any metric formula ϕ.

Proposition 12

For any HT-trace M and any time point k ∈ [0..λ), we have

M, k |= ϕ in MHT iff M, k |= τ(ϕ) in THT.

Corollary 1

For any metric formula ϕ over A, there exists a temporal formula ψ over A such that an

HT-trace M is a model for ψ in THT iff M is a model for ϕ in MHT.

Language-extending translation. For a complement, we provide an alternative translation

using an extended alphabet. This translation has the advantage of avoiding applications

of distributivity, a source of an exponential increase in size.

To this end, we adapt the notion of closure from (Cabalar et al. 2020) to provide a

translation of metric into temporal formulas. The original definition of closure is due

to (Fischer and Ladner 1979).

Definition 3 (Closure)

The closure cl(γ) of a metric formula γ is the subset minimal set of formulas satisfying

the inductive conditions:

1. γ ∈ cl(γ)

2. (ϕ⊗ ψ) ∈ cl(γ) implies ϕ ∈ cl(γ) and ψ ∈ cl(γ)

for ⊗ ∈ {∧,∨,→,Un,Rn,Sn,Tn} with n ∈ N ∪ `

3. If ⊗ψ ∈ cl(γ) then ψ ∈ cl(γ) for ⊗ ∈ {◦, ◦̂,•, •̂}
4. If ϕUnψ ∈ cl(γ) and n > 1 then ◦ (ϕUn−1ψ) ∈ cl(γ)

5. If ϕRnψ ∈ cl(γ) and n > 1 then ◦̂ (ϕRn−1ψ) ∈ cl(γ)

6. If ϕSnψ ∈ cl(γ) and n > 1 then • (ϕSn−1ψ) ∈ cl(γ)

7. If ϕTnψ ∈ cl(γ) and n > 1 then •̂ (ϕTn−1ψ) ∈ cl(γ)

8. If ϕU`ψ ∈ cl(γ) then ◦ (ϕU`ψ) ∈ cl(γ)

9. If ϕR`ψ ∈ cl(γ) then ◦̂ (ϕR`ψ) ∈ cl(γ)

10. If ϕS`ψ ∈ cl(γ) then • (ϕS`ψ) ∈ cl(γ)

11. If ϕT`ψ ∈ cl(γ) then •̂ (ϕT`ψ) ∈ cl(γ)

Any set satisfying these conditions is called closed.

Proposition 13

For any metric formula ϕ, cl(ϕ) is finite. Moreover, the total size of all the formulas

in cl(ϕ), |cl(ϕ)| is bound by |cl(ϕ)| ≤ 2kϕ|ϕ|, where kϕ = max{1, nϕ} and nϕ is the

maximum (metric) integer subindex occurring in ϕ.

Thus, given a metric formula ϕ over alphabet A at hand, we define the extended

alphabet Aϕ def
= A ∪ {Lµ | µ ∈ cl(ϕ)}. For convenience, we simply use Lϕ

def
= ϕ if ϕ is

>,⊥ or an atom a ∈ A.

As happened with the normal form reduction for TELf in (Cabalar et al. 2018), the
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translation is done in two phases: we first obtain a temporal theory containing double

implications, and then we unfold them into temporal rules. We start by defining the

temporal theory υ(ϕ) that introduces new labels Lµ for each formula µ ∈ cl(ϕ). This

theory contains the formula Lϕ and, per each label Lµ, a set of formulas df (µ) fixing the

label’s truth value. Formally, we define that

υ(ϕ) = {Lϕ} ∪ {df (µ) | µ ∈ cl(ϕ)} and υ(Γ) = {υ(ϕ) | ϕ ∈ Γ}.

Table 1 shows the definitions df (µ) for each µ in the closure cl(ϕ) depending on the

outer modality in the formula.

µ ∈ cl(ϕ) df (µ)

◦α ◦̂�(•Lµ ↔ Lα) �(F → ¬Lµ)

•α ◦̂�(Lµ ↔ •Lα) ¬Lµ

◦̂α ◦̂�(•Lµ ↔ Lα) �(F → Lµ)

•̂α ◦̂�(Lµ ↔ •Lα) Lµ

αU1β �(Lµ ↔ Lβ)

αR1β �(Lµ ↔ Lβ)

αS1β �(Lµ ↔ Lβ)

αT1β �(Lµ ↔ Lβ)

αUnβ � (Lµ ↔ Lβ ∨ (Lα ∧ Lα′)) with α′ = ◦ (αUn−1β)

αRnβ � (Lµ ↔ Lβ ∧ (Lα ∨ Lα′)) with α′ = ◦̂ (αRn−1β)

αSnβ � (Lµ ↔ Lβ ∨ (Lα ∧ Lα′)) with α′ = • (αSn−1β)

αTnβ � (Lµ ↔ Lβ ∧ (Lα ∨ Lα′)) with α′ = •̂ (αTn−1β)

αU`β � (Lµ ↔ Lβ ∨ (Lα ∧ Lα′)) with α′ = ◦ (αU`β)

αR`β � (Lµ ↔ Lβ ∧ (Lα ∨ Lα′)) with α′ = ◦̂ (αR`β)

αS`β � (Lµ ↔ Lβ ∨ (Lα ∧ Lα′)) with α′ = • (αS`β)

αT`β � (Lµ ↔ Lβ ∧ (Lα ∨ Lα′)) with α′ = •̂ (αT`β)

Table 1. Translation of metric modal operators

As we have seen, in the general case, formulas in df (µ) are not temporal rules, since

they sometimes contain double implications. However, they all have the forms ϕ, �ϕ,

◦̂�ϕ or �(F→ ϕ), for some inner propositional formula ϕ formed with temporal literals.

Given an HT-trace 〈H,T〉 = 〈Hi, Ti〉i∈[0..λ), we define its restriction to alphabet A as

〈H,T〉|A def
= 〈Hi ∩ A, Ti ∩ A〉i∈[0..λ). Similarly, for any set S of HT-traces, we write S|A

to stand for {〈H,T〉|A | 〈H,T〉 ∈ S}.
The following lemma shows that Lµ and µ are equivalent:

Proposition 14

Let γ be a metric formula over A and let 〈H,T〉 be a model in MHTf of υ(γ) being

associated with the three-valuation m.

Then, for any µ ∈ cl(γ) and any k ∈ [0..λ), we have m(k,Lµ) = m(k, µ).



Towards Metric Temporal Answer Set Programming 13

Theorem 2
For any metric formula ϕ and any length λ, we have

MHTf (ϕ, λ) = MHTf (υ(ϕ), λ)|A = THTf (υ(ϕ), λ)|A.

Corollary 2
For any temporal formula ϕ and any length λ, we have

THT(ϕ, λ) = MHT(ϕ, λ)

For example, the formula �(¬green → red) in (3) has the same models whether it is

interpreted as a temporal or a metric formula.

Corollary 3
Let ϕ be a metric formula over A. Then, translation υ(ϕ) is strongly faithful, that is:

MELf (ϕ ∧ ϕ′) = MELf (υ(ϕ) ∧ ϕ′)|A.

for any arbitrary metric formula ϕ′ over A.

The translation of formula (4) from the traffic light example yields the resulting set

of rules in Table 2 computed from cl(4). Although in this case, cl(4) is larger than the

Lµ µ ∈ cl(4) df (µ)

L1 � (push → ♦3�4green) � (L1 ↔ L3 ∧ L2)

L2 ◦̂� (push → ♦3�4green) ◦̂� (•L2 ↔ L1) � (F → L2)

L3 push → ♦3�4green � (L3 ↔ (push → L4))

L4 ♦3�4green � (L4 ↔ L9 ∨ L5)

L5 ◦♦2�4green ◦̂� (•L5 ↔ L6) � (F → ¬L5)

L6 ♦2�4green � (L6 ↔ L9 ∨ L7)

L7 ◦♦1�4green ◦̂� (•L7 ↔ L8) � (F → ¬L7)

L8 ♦1�4green � (L8 ↔ L9)

L9 �4green � (L9 ↔ green ∧ L10)

L10 ◦̂�3green ◦̂� (•L10 ↔ L11) � (F → L10)

L11 �3green � (L11 ↔ green ∧ L12)

L12 ◦̂�2green ◦̂� (•L12 ↔ L13) � (F → L12)

L13 �2green � (L13 ↔ green ∧ L14)

L14 ◦̂�1green ◦̂� (•L14 ↔ L15) � (F → L14)

L15 �1green � (L15 ↔ green)

Table 2. Translating formula (4) from the traffic light example.

language-preserving translation τ(4) = (8), note that the latter is not in the form of a

logic program yet, while double implications in Table 2 can be linearly reduced to a logic

program. In general, reducing τ(γ) to a (language-preserving) logic program induces an

exponential size increase due to the application of distributivity laws. For instance, the

formula τ(pUn q) amounts to a combination of conjunctions and disjunctions that, to

become a logic program, must be previously reduced to conjunctive normal form. On

the other hand, cl(γ) preserves a polynomial size, although at the cost of introducing

auxiliary atoms, one per formula in cl(γ).
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4 Discussion

We have defined and elaborated upon a metric temporal extension of the logic of Here-

and-There in order to lay the theoretical foundations of metric Answer Set Programming.

The resulting logics, MHT and its non-monotonic extension MEL, have a point-based

semantics based on discrete linear time. The choice of such a simple time domain was

motivated by the desire to base the approach on the same semantic structures as used in

previous extensions of HT and ASP with constructs from Linear Temporal and Dynamic

Logic, namely, linear HT-traces. As a result, we were able to inter-translate our approach

and the temporal logics of THT and TEL. This is of practical relevance since it allows us

to use temporal ASP solvers such as telingo (Cabalar et al. 2019) for implementation.

There exist other approaches that introduce metric temporal operators in logic pro-

gramming. For instance, a first metric extension for Horn Prolog was presented back

in (Brzoska 1995). This approach is more limited than MEL for several reasons: it does

not consider default negation, metric operators can only be used under a restricted syntax

and only for unary temporal operators, and the interpretation of programs relies on

resolution rather than on a purely model-theoretic description. Other more recent related

approaches introduce temporal metrics for stream reasoning for ASP (Beck et al. 2015;

Beck et al. 2016) and DATALOG (Brandt et al. 2018; Walega et al. 2019). The former

is not only closely related due to its ASP-based approach but also because it can be

characterized in terms of EL (Beck et al. 2016), although extra conditions are needed to

guarantee the persistence property of HT. While the DATALOG-based approach lacks

the rich language of ASP, they rely on more expressive metric operators. For instance,

(Brandt et al. 2018) deal with intervals over Q ∪ {−∞,+∞}. It will be interesting to

investigate the formal connection to such stream-oriented approaches and metric temporal

logic programming formalisms in general.

Another aspect to explore has to do with the fact that traditional metric logics rely

on continuous time domains (cf. (Alur and Henzinger 1992)), which often brings about

undecidability. Although we do not strive for such expressiveness, it will be interesting

future work to generalize our approach to more fine-grained time domains using integer

or rational numbers and to explore implementations with hybrid ASP systems. However,

the presented approach should already furnish a host system for action languages with

durative actions (Son et al. 2004) or even traditional event calculus (Kowalski and Sergot

1986), although this remains to be worked out.
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Appendix A Proofs

Proof of Proposition 3. The first item is proved by structural induction. We consider

the different cases below:

• Case ϕUnψ: if 〈H,T〉, k |= ϕUnψ then there exists 0 ≤ i < n such that k + i < λ,

〈H,T〉, k+ i |= ψ and for all 0 ≤ j < i, 〈H,T〉, k+ j |= ϕ. By induction hypothesis,

〈T,T〉, k + i |= ψ and for all 0 ≤ j < i, 〈T,T〉, k + j |= ϕ. Therefore, 〈H,T〉, k |=
ϕUnψ.

• Case ϕRnψ: assume by contradiction that 〈T,T〉, k 6|= ϕRnψ. This means that

there exists 0 ≤ i < n such that k + i < λ, 〈T,T〉, k + i 6|= ψ and for all 0 ≤
j < i, 〈T,T〉, k + j 6|= ϕ. By induction, 〈H,T〉, k + i 6|= ψ and for all 0 ≤ j < i,

〈H,T〉, k + j 6|= ϕ. Therefore, 〈H,T〉, k 6|= ϕRnψ: a contradiction.

• Case ϕSnψ: if 〈H,T〉, k |= ϕSnψ then there exists 0 ≤ i < n such that k − i ≥ 0,

〈H,T〉, k − i |= ψ and for all 0 ≤ j < i, 〈H,T〉, k − j |= ϕ. By the induction

hypothesis, 〈T,T〉, k − i |= ψ and for all 0 ≤ j < i, 〈T,T〉, k − j |= ϕ. Therefore,

〈T,T〉, k |= ϕSnψ
• Case ϕTnψ: assume by contradiction that 〈T,T〉, k 6|= ϕTnψ. This means that

there exists 0 ≤ i < n such that k − i ≥ 0, 〈T,T〉, k − i 6|= ψ and for all 0 ≤ j < i,

〈T,T〉, k − j 6|= ϕ. By induction hypothesis, 〈H,T〉, k − i 6|= ψ and for all 0 ≤ j < i,

〈H,T〉, k − j 6|= ϕ, so 〈H,T〉, k 6|= ϕTnψ: a contradiction.

• Case ϕU`ψ: if 〈H,T〉, k |= ϕU`ψ then there exists 0 ≤ i < λ such that k + i < λ,

〈H,T〉, k+ i |= ψ and for all 0 ≤ j < i, 〈H,T〉, k+ j |= ϕ. By induction hypothesis,

〈T,T〉, k + i |= ψ and for all 0 ≤ j < i, 〈T,T〉, k + j |= ϕ. Therefore, 〈H,T〉, k |=
ϕU`ψ.

• Case ϕR`ψ: assume by contradiction that 〈T,T〉, k 6|= ϕR`ψ. This means that

there exists 0 ≤ i < λ such that k + i < λ, 〈T,T〉, k + i 6|= ψ and for all 0 ≤
j < i, 〈T,T〉, k + j 6|= ϕ. By induction, 〈H,T〉, k + i 6|= ψ and for all 0 ≤ j < i,

〈H,T〉, k + j 6|= ϕ. Therefore, 〈H,T〉, k 6|= ϕR`ψ: a contradiction.

• Case ϕS`ψ: if 〈H,T〉, k |= ϕS`ψ then there exists 0 ≤ i < λ such that k − i ≥ 0,

〈H,T〉, k − i |= ψ and for all 0 ≤ j < i, 〈H,T〉, k − j |= ϕ. By the induction

hypothesis, 〈T,T〉, k − i |= ψ and for all 0 ≤ j < i, 〈T,T〉, k − j |= ϕ. Therefore,

〈T,T〉, k |= ϕS`ψ

• Case ϕT`ψ: assume by contradiction that 〈T,T〉, k 6|= ϕT`ψ. This means that there

exists 0 ≤ i < λ such that k − i ≥ 0, 〈T,T〉, k − i 6|= ψ and for all 0 ≤ j < i,

〈T,T〉, k − j 6|= ϕ. By induction hypothesis, 〈H,T〉, k − i 6|= ψ and for all 0 ≤ j < i,

〈H,T〉, k − j 6|= ϕ, so 〈H,T〉, k 6|= ϕT`ψ: a contradiction.

For the second item, assume by contradiction that 〈H,T〉, k |= ¬ϕ but 〈T,T〉, k |= ϕ.

By persistency, 〈T,T〉, k |= ¬ϕ and, therefore, 〈T,T〉, k |= ⊥: a contradiction. Con-

versely, Assume by contradiction that 〈H,T〉, k 6|= ¬ϕ. Therefore, either 〈H,T〉, k 6|= ϕ or

〈H,T〉, k 6|= ϕ. In any case, by persistence, we conclude that 〈T,T〉, k 6|= ϕ: a contradic-

tion.

QED

Proof of Proposition 6.

For ϕU1ψ ↔ ψ we reason as follows: from left to right, if 〈H,T〉, k |= ϕU1ψ then

〈H,T〉, k |= ψ by definition. Conversely, if 〈H,T〉, k + 0 |= ψ then 〈H,T〉, k |= ϕU1ψ by

definition.
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The proofs for ϕR1ψ ↔ ψ, ϕS1ψ ↔ ψ and ϕT1ψ ↔ ψ are done in a similar way.

From now on we will consider n with n > 1.

• For ϕUnψ ↔ ψ∨ (ϕ ∧ ◦ϕUn−1ψ), let us consider from left to right that 〈H,T〉, k |=
ϕUnψ. This means that there exists 0 ≤ i < n such that k+ i < λ, 〈H,T〉, k+ i |= ψ

and for all 0 ≤ j < i, 〈H,T〉, k + j |= ϕ. If i = 0 then we can easily conclude

〈H,T〉, k |= ψ. If i > 0 then 〈H,T〉, k + 1 |= ϕUn−1ψ and 〈H,T〉, k |= ϕ. As a

consequence, 〈H,T〉, k |= ψ ∨ (ϕ ∧ ◦ (ϕUn−1ψ)).

For the converse direction, assume that 〈H,T〉, k |= ψ ∨ (ϕ ∧ ◦ (ϕUn−1ψ)). If

〈H,T〉, k |= ψ then 〈H,T〉, k |= ϕUnψ by definition (just take i = 0). If 〈H,T〉, k |=
ϕ ∧ ◦ (ϕUn−1ψ) then 〈H,T〉, k |= ϕ, k + 1 < λ and 〈H,T〉, k + 1 |= ϕUn−1ψ. This

means that there exists 0 ≤ i < n− 1 such that k+ 1 + i < λ, 〈H,T〉, k+ 1 + i |= ψ

and for all 0 ≤ j < i, 〈H,T〉, k + 1 + j |= ϕ. From this and 〈H,T〉, k |= ϕ we

conclude that there exists 0 ≤ i′ < n such that k + i′ < λ and 〈H,T〉, k + i′ |= ψ

and for all 0 ≤ j′ < i, 〈H,T〉, k + j′ |= ϕ. Therefore, 〈H,T〉, k |= ϕUnψ.

• For ϕRnψ ↔ ψ ∧
(
ϕ ∨ ◦̂ϕRn−1ψ

)
, let us consider first the left to right direc-

tion. For this, let us assume for the sake of contradiction that 〈H,T〉, k 6|= ψ ∧(
ϕ ∨ ◦̂ (ϕRn−1ψ)

)
. If 〈H,T〉, k 6|= ψ then 〈H,T〉, k 6|= ϕRnψ by definition (just

take i = 0). If 〈H,T〉, k 6|= ϕ ∧ ◦̂ (ϕRn−1ψ) then 〈H,T〉, k 6|= ϕ, k + 1 < λ and

〈H,T〉, k + 1 6|= ϕRn−1ψ. This means that there exists 0 ≤ i < n− 1 such that

k + 1 + i < λ, 〈H,T〉, k + 1 + i 6|= ψ and for all 0 ≤ j < i, 〈H,T〉, k + 1 + j 6|= ϕ.

From this and 〈H,T〉, k 6|= ϕ we conclude that there exists 0 ≤ i′ < n such that

k+i′ < λ and 〈H,T〉, k+i′ 6|= ψ and for all 0 ≤ j′ < i, 〈H,T〉, k+j′ 6|= ϕ. Therefore,

〈H,T〉, k 6|= ϕRnψ: a contradiction.

From right to left, let us assume by contradiction that 〈H,T〉, k 6|= ϕRnψ. This

means that there exists 0 ≤ i < n such that k+ i < λ, 〈H,T〉, k+ i 6|= ψ and for all

0 ≤ j < i, 〈H,T〉, k + j 6|= ϕ. If i = 0 then we can easily conclude 〈H,T〉, k 6|= ψ.

If i > 0 then 〈H,T〉, k + 1 6|= ϕRn−1ψ and 〈H,T〉, k 6|= ϕ. As a consequence,

〈H,T〉, k 6|= ψ ∧
(
ϕ ∨ ◦̂ (ϕRn−1ψ)

)
.

• For ϕSnψ ↔ ψ∨(ϕ ∧ •ϕSn−1ψ), let us assume that 〈H,T〉, k |= ϕSnψ. This means

that there exists 0 ≤ i < n such that k − i ≥ 0, 〈H,T〉, k − i |= ψ and for all

0 ≤ j < i, 〈H,T〉, k − j |= ϕ. If i = 0 then we can easily conclude 〈H,T〉, k |= ψ.

If i > 0 then 〈H,T〉, k − 1 |= ϕSn−1ψ and 〈H,T〉, k |= ϕ. As a consequence,

〈H,T〉, k |= ψ ∨ (ϕ ∧ • (ϕSn−1ψ)).

For the converse direction, assume that 〈H,T〉, k |= ψ ∨ (ϕ ∧ • (ϕUn−1ψ)). If

〈H,T〉, k |= ψ then 〈H,T〉, k |= ϕSnψ by definition (just take i = 0). If 〈H,T〉, k |=
ϕ ∧ • (ϕSn−1ψ) then 〈H,T〉, k |= ϕ, k − 1 ≥ 0 and 〈H,T〉, k − 1 |= ϕSn−1ψ. This

means that there exists 0 ≤ i < n− 1 such that k− 1− i ≥ 0, 〈H,T〉, k− 1− i |= ψ

and for all 0 ≤ j < i, 〈H,T〉, k − 1 − j |= ϕ. From this and 〈H,T〉, k |= ϕ we

conclude that there exists 0 ≤ i′ < n such that k − i′ ≥ 0 and 〈H,T〉, k − i′ |= ψ

and for all 0 ≤ j′ < i, 〈H,T〉, k − j′ |= ϕ. Therefore, 〈H,T〉, k |= ϕSnψ.

• For ϕTnψ ↔ ψ ∧
(
ϕ ∨ •̂ϕTn−1ψ

)
, let us consider first the left to right direc-

tion. For this, let us assume for the sake of contradiction that 〈H,T〉, k 6|= ψ ∧(
ϕ ∨ •̂ (ϕTn−1ψ)

)
. If 〈H,T〉, k 6|= ψ then 〈H,T〉, k 6|= ϕTnψ by definition (just

take i = 0). If 〈H,T〉, k 6|= ϕ ∧ •̂ (ϕTn−1ψ) then 〈H,T〉, k 6|= ϕ, k > 0 and

〈H,T〉, k − 1 6|= ϕTn−1ψ. This means that there exists 0 ≤ i < n− 1 such that
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k − 1 − i ≥ 0, 〈H,T〉, k − 1 − i 6|= ψ and for all 0 ≤ j < i, 〈H,T〉, k − 1 − j 6|= ϕ.

From this and 〈H,T〉, k 6|= ϕ we conclude that there exists 0 ≤ i′ < n such that

k−i′ ≥ 0 and 〈H,T〉, k−i′ 6|= ψ and for all 0 ≤ j′ < i, 〈H,T〉, k−j′ 6|= ϕ. Therefore,

〈H,T〉, k 6|= ϕTnψ: a contradiction.

From right to left, let us assume by contradiction that 〈H,T〉, k 6|= ϕTnψ. This

means that there exists 0 ≤ i < n such that k − i ≥ 0, 〈H,T〉, k − i 6|= ψ and for all

0 ≤ j < i, 〈H,T〉, k − j 6|= ϕ. If i = 0 then we can easily conclude 〈H,T〉, k 6|= ψ.

If i > 0 then 〈H,T〉, k − 1 6|= ϕTn−1ψ and 〈H,T〉, k 6|= ϕ. As a consequence,

〈H,T〉, k 6|= ψ ∧
(
ϕ ∨ •̂ (ϕTn−1ψ)

)
.

QED

Proof of Proposition 7. We consider the different cases below:

• For ϕU`ψ ↔ ψ ∨ (ϕ ∧ ◦ϕU`ψ), let us consider from left to right that 〈H,T〉, k |=
ϕU`ψ. This means that there exists 0 ≤ i < λ such that k+ i < λ, 〈H,T〉, k+ i |= ψ

and for all 0 ≤ j < i, 〈H,T〉, k + j |= ϕ. If i = 0 then we can easily conclude

〈H,T〉, k |= ψ. If 0 < i < λ then 〈H,T〉, k + 1 |= ϕU`ψ and 〈H,T〉, k |= ϕ. As a

consequence, 〈H,T〉, k |= ψ ∨ (ϕ ∧ ◦ (ϕU`ψ)).

For the converse direction, assume that 〈H,T〉, k |= ψ∨(ϕ ∧ ◦ (ϕU`ψ)). If 〈H,T〉, k |=
ψ then 〈H,T〉, k |= ϕU`ψ by definition (just take i = 0). If 〈H,T〉, k |= ϕ∧◦ (ϕU`ψ)

then 〈H,T〉, k |= ϕ, k + 1 < λ and 〈H,T〉, k + 1 |= ϕU`ψ. This means that there

exists 0 ≤ i < λ such that k+ 1 + i < λ, 〈H,T〉, k+ 1 + i |= ψ and for all 0 ≤ j < i,

〈H,T〉, k + 1 + j |= ϕ. From this and 〈H,T〉, k |= ϕ we conclude that there exists

0 ≤ i′ < λ such that k + i′ < λ and 〈H,T〉, k + i′ |= ψ and for all 0 ≤ j′ < i,

〈H,T〉, k + j′ |= ϕ. Therefore, 〈H,T〉, k |= ϕU`ψ.

• For ϕR`ψ ↔ ψ∧
(
ϕ ∨ ◦̂ϕR`ψ

)
, let us consider first the left to right direction. For this,

let us assume for the sake of contradiction that 〈H,T〉, k 6|= ψ ∧
(
ϕ ∨ ◦̂ (ϕR`ψ)

)
. If

〈H,T〉, k 6|= ψ then 〈H,T〉, k 6|= ϕR`ψ by definition (just take i = 0). If 〈H,T〉, k 6|=
ϕ∨ ◦̂ (ϕR`ψ) then 〈H,T〉, k 6|= ϕ, k+ 1 < λ and 〈H,T〉, k+ 1 6|= ϕR`ψ. This means

that there exists 0 ≤ i < λ such that k + 1 + i < λ, 〈H,T〉, k + 1 + i 6|= ψ and

for all 0 ≤ j < i, 〈H,T〉, k + 1 + j 6|= ϕ. From this and 〈H,T〉, k 6|= ϕ we conclude

that there exists 0 ≤ i′ < λ such that k + i′ < λ and 〈H,T〉, k + i′ 6|= ψ and for all

0 ≤ j′ < i, 〈H,T〉, k + j′ 6|= ϕ. Therefore, 〈H,T〉, k 6|= ϕR`ψ: a contradiction.

From right to left, let us assume by contradiction that 〈H,T〉, k 6|= ϕR`ψ. This

means that there exists 0 ≤ i < λ such that k + i < λ, 〈H,T〉, k + i 6|= ψ

and for all 0 ≤ j < i, 〈H,T〉, k + j 6|= ϕ. If i = 0 then we can easily conclude

〈H,T〉, k 6|= ψ. If i > 0 then 〈H,T〉, k + 1 6|= ϕR`ψ and 〈H,T〉, k 6|= ϕ. As a

consequence, 〈H,T〉, k 6|= ψ ∧
(
ϕ ∨ ◦̂ (ϕR`ψ)

)
.

• For ϕS`ψ ↔ ψ ∨ (ϕ ∧ •ϕS`ψ), let us assume that 〈H,T〉, k |= ϕS`ψ. This means

that there exists 0 ≤ i < λ such that k − i ≥ 0, 〈H,T〉, k − i |= ψ and for all

0 ≤ j < i, 〈H,T〉, k − j |= ϕ. If i = 0 then we can easily conclude 〈H,T〉, k |= ψ. If

i > 0 then 〈H,T〉, k− 1 |= ϕS`ψ and 〈H,T〉, k |= ϕ. As a consequence, 〈H,T〉, k |=
ψ ∨ (ϕ ∧ • (ϕS`ψ)).

For the converse direction, assume that 〈H,T〉, k |= ψ∨(ϕ ∧ • (ϕU`ψ)). If 〈H,T〉, k |=
ψ then 〈H,T〉, k |= ϕS`ψ by definition (just take i = 0). If 〈H,T〉, k |= ϕ∧• (ϕSλψ)

then 〈H,T〉, k |= ϕ, k − 1 ≥ 0 and 〈H,T〉, k − 1 |= ϕSnψ. This means that there

exists 0 ≤ i < λ such that k− 1− i ≥ 0, 〈H,T〉, k− 1− i |= ψ and for all 0 ≤ j < i,
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〈H,T〉, k − 1− j |= ϕ. From this and 〈H,T〉, k |= ϕ we conclude that there exists

0 ≤ i′ < λ such that k − i′ ≥ 0 and 〈H,T〉, k − i′ |= ψ and for all 0 ≤ j′ < i,

〈H,T〉, k − j′ |= ϕ. Therefore, 〈H,T〉, k |= ϕS`ψ.

• For ϕT`ψ ↔ ψ∧
(
ϕ ∨ •̂ϕTλψ

)
, let us consider first the left to right direction. For this,

let us assume for the sake of contradiction that 〈H,T〉, k 6|= ψ ∧
(
ϕ ∨ •̂ (ϕTλψ)

)
. If

〈H,T〉, k 6|= ψ then 〈H,T〉, k 6|= ϕTλψ by definition (just take i = 0). If 〈H,T〉, k 6|=
ϕ ∧ •̂ (ϕTλψ) then 〈H,T〉, k 6|= ϕ, k > 0 and 〈H,T〉, k − 1 6|= ϕT`ψ. This means

that there exists 0 ≤ i < λ such that k − 1− i ≥ 0, 〈H,T〉, k − 1− i 6|= ψ and for

all 0 ≤ j < i, 〈H,T〉, k − 1 − j 6|= ϕ. From this and 〈H,T〉, k 6|= ϕ we conclude

that there exists 0 ≤ i′ < λ such that k − i′ ≥ 0 and 〈H,T〉, k − i′ 6|= ψ and for all

0 ≤ j′ < i, 〈H,T〉, k − j′ 6|= ϕ. Therefore, 〈H,T〉, k 6|= ϕT`ψ: a contradiction.

From right to left, let us assume by contradiction that 〈H,T〉, k 6|= ϕT`ψ. This

means that there exists 0 ≤ i < λ such that k − i ≥ 0, 〈H,T〉, k − i 6|= ψ and

for all 0 ≤ j < i, 〈H,T〉, k − j 6|= ϕ. If i = 0 then we can easily conclude

〈H,T〉, k 6|= ψ. If i > 0 then 〈H,T〉, k − 1 6|= ϕT`ψ and 〈H,T〉, k 6|= ϕ. As a

consequence, 〈H,T〉, k 6|= ψ ∧
(
ϕ ∨ •̂ (ϕT`ψ)

)
.

QED

Proof of Lemma 12. The proof is done by using double induction on the complexity of

the formula and on n. We consider the metric operators below

• Case ϕU1ψ: from left to right, if M, k |= ϕU1ψ in MHT then, by Proposition 6,

M, k |= ψ in MHT. By induction hypothesis, M, k |= τ(ψ) in THT and, conse-

quently, M, k |= τ(ϕU1ψ) in THT. Conversely, if M, k |= τ(ϕU1ψ) in THT then, by

definition, M, k |= τ(ψ) in THT and, by induction hypothesis, M, k |= ψ in MHT

and, thanks to Proposition 6 we conclude M, k |= ϕU1ψ.

• Cases ϕR1ψ, ϕS1ψ and ϕT1ψ are proved in a similar way.

• Case ϕUnψ with n > 1: from left to right, from M, k |= ϕUnψ and Proposition 6,

M, k |= ψ ∨ (ϕ ∧ ◦ (ϕUn−1ψ)) in MHT. By using induction on the subformulas

and on n we can conclude that M, k |= τ(ψ) in THT or both M, k |= τ(ϕ) and

M, k |= ◦τ(ϕUn−1ψ) in THT. By using the definition of τ( ) it follows that M, k |=
τ(ψ ∨ (ϕ ∧ ◦ (ϕUn−1ψ))) and so M, k |= τ(ϕUnψ) in THT. Conversely, if M, k |=
τ(ϕUnψ) in THT then, by using the definition of τ( ), we conclude that M, k |=
τ(ψ) ∨ (τ(ϕ) ∧ ◦τ(ϕUn−1ψ)) in THT. By applying induction on n and on the

subformulas we can easily conclude that M, k |= ψ ∨ (ϕ ∧ ◦ (ϕUn−1ψ)) in MHT.

Thanks to Proposition 6 we conclude that M, k |= ϕUnψ in MHT.

• Case ϕRnψ with n > 1: from left to right, assume by contradiction that M, k 6|=
τ(ϕRnψ) in THT. By definition of τ( ) we can derive that M, k 6|= τ(ψ)∧

(
τ(ϕ) ∨ ◦̂τ(ϕRn−1ψ)

)
in THT. By applying induction on n and on the subformulas we can easily con-

clude that M, k 6|= ψ ∧
(
ϕ ∨ ◦̂ (ϕRn−1ψ)

)
in MHT. Thanks to Proposition 6

we conclude that M, k 6|= ϕRnψ in MHT: a contradiction. For the converse di-

rection assume, again, by contradiction that M, k 6|= ϕRnψ and Proposition 6,

M, k 6|= ψ ∧
(
ϕ ∨ ◦̂ (ϕRn−1ψ)

)
in MHT. By using induction on the subformu-

las and on n we can conclude that M, k 6|= τ(ψ) in THT or both M, k 6|= τ(ϕ)

and M, k 6|= ◦̂τ(ϕRn−1ψ) in THT. By using the definition of τ( ) it follows that

M, k 6|= τ(ψ ∧
(
ϕ ∨ ◦̂ (ϕRn−1ψ)

)
) and so M, k 6|= τ(ϕRnψ) in THT: a contradiction.

• Case ϕSnψ with n > 1: from left to right, from M, k |= ϕSnψ and Proposition 6,
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M, k |= ψ ∨ (ϕ ∧ • (ϕSn−1ψ)) in MHT. By using induction on the subformulas

and on n we can conclude that M, k |= τ(ψ) in THT or both M, k |= τ(ϕ) and

M, k |= •τ(ϕSn−1ψ) in THT. By using the definition of τ( ) it follows that M, k |=
τ(ψ ∨ (ϕ ∧ • (ϕSn−1ψ))) and so M, k |= τ(ϕSnψ) in THT. Conversely, if M, k |=
τ(ϕSnψ) in THT then, by using the definition of τ( ), we conclude that M, k |=
τ(ψ) ∨ (τ(ϕ) ∧ •τ(ϕSn−1ψ)) in THT. By applying induction on n and on the

subformulas we can easily conclude that M, k |= ψ ∨ (ϕ ∧ • (ϕSn−1ψ)) in MHT.

Thanks to Proposition 6 we conclude that M, k |= ϕSnψ in MHT.

• Case ϕTnψ with n > 1: from left to right, assume by contradiction that M, k 6|=
τ(ϕTnψ) in THT. By definition of τ( ) we can derive that M, k 6|= τ(ψ)∧

(
τ(ϕ) ∨ •̂τ(ϕTn−1ψ)

)
in THT. By applying induction on n and on the subformulas we can easily con-

clude that M, k 6|= ψ ∧
(
ϕ ∨ •̂ (ϕTn−1ψ)

)
in MHT. Thanks to Proposition 6

we conclude that M, k 6|= ϕTnψ in MHT: a contradiction. For the converse di-

rection assume, again, by contradiction that M, k 6|= ϕTnψ and Proposition 6,

M, k 6|= ψ ∧
(
ϕ ∨ •̂ (ϕTn−1ψ)

)
in MHT. By using induction on the subformu-

las and on n we can conclude that M, k 6|= τ(ψ) in THT or both M, k 6|= τ(ϕ)

and M, k 6|= •̂τ(ϕTn−1ψ) in THT. By using the definition of τ( ) it follows that

M, k 6|= τ(ψ ∧
(
ϕ ∨ •̂ (ϕTn−1ψ)

)
) and so M, k 6|= τ(ϕTnψ) in THT: a contradiction.

• Case ϕU`ψ: from left to right, from M, k |= ϕU`ψ and Proposition 7, M, k |=
ψ∨(ϕ ∧ ◦ (ϕU`ψ)) in MHT. By using induction on the subformulas we can conclude

that M, k |= τ(ψ) in THT or both M, k |= τ(ϕ) and M, k |= ◦τ(ϕU`ψ) in THT.

By using the definition of τ( ) it follows that M, k |= τ(ψ ∨ (ϕ ∧ ◦ (ϕU`ψ))) and

so M, k |= τ(ϕU`ψ) in THT. Conversely, if M, k |= τ(ϕU`ψ) in THT then, by

using the definition of τ( ), we conclude that M, k |= τ(ψ) ∨ (τ(ϕ) ∧ ◦τ(ϕU`ψ))

in THT. By applying induction on the subformulas we can easily conclude that

M, k |= ψ ∨ (ϕ ∧ ◦ (ϕU`ψ)) in MHT. Thanks to Proposition 7 we conclude that

M, k |= ϕU`ψ in MHT.

• Case ϕR`ψ: from left to right, assume by contradiction that M, k 6|= τ(ϕR`ψ) in

THT. By definition of τ( ) we can derive that M, k 6|= τ(ψ) ∧
(
τ(ϕ) ∨ ◦̂τ(ϕR`ψ)

)
in THT. By applying induction on the subformulas we can easily conclude that

M, k 6|= ψ ∧
(
ϕ ∨ ◦̂ (ϕR`ψ)

)
in MHT. Thanks to Proposition 7 we conclude that

M, k 6|= ϕR`ψ in MHT: a contradiction. For the converse direction assume, again, by

contradiction that M, k 6|= ϕR`ψ and Proposition 7, M, k 6|= ψ ∧
(
ϕ ∨ ◦̂ (ϕR`ψ)

)
in

MHT. By using induction on the subformulas we can conclude that M, k 6|= τ(ψ) in

THT or both M, k 6|= τ(ϕ) and M, k 6|= ◦̂τ(ϕR`ψ) in THT. By using the definition

of τ( ) it follows that M, k 6|= τ(ψ ∧
(
ϕ ∨ ◦̂ (ϕR`ψ)

)
) and so M, k 6|= τ(ϕR`ψ) in

THT: a contradiction.

• Case ϕS`ψ: from left to right, from M, k |= ϕS`ψ and Proposition 7, M, k |=
ψ∨(ϕ ∧ • (ϕS`ψ)) in MHT. By using induction on the subformulas we can conclude

that M, k |= τ(ψ) in THT or both M, k |= τ(ϕ) and M, k |= •τ(ϕS`ψ) in THT.

By using the definition of τ( ) it follows that M, k |= τ(ψ ∨ (ϕ ∧ • (ϕS`ψ))) and

so M, k |= τ(ϕS`ψ) in THT. Conversely, if M, k |= τ(ϕS`ψ) in THT then, by

using the definition of τ( ), we conclude that M, k |= τ(ψ) ∨ (τ(ϕ) ∧ •τ(ϕS`ψ))

in THT. By applying induction on the subformulas we can easily conclude that

M, k |= ψ ∨ (ϕ ∧ • (ϕS`ψ)) in MHT. Thanks to Proposition 7 we conclude that

M, k |= ϕS`ψ in MHT.
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• Case ϕT`ψ: from left to right, assume by contradiction that M, k 6|= τ(ϕT`ψ) in

THT. By definition of τ( ) we can derive that M, k 6|= τ(ψ) ∧
(
τ(ϕ) ∨ •̂τ(ϕT`ψ)

)
in THT. By applying induction on the subformulas we can easily conclude that

M, k 6|= ψ ∧
(
ϕ ∨ •̂ (ϕT`ψ)

)
in MHT. Thanks to Proposition 7 we conclude that

M, k 6|= ϕT`ψ in MHT: a contradiction. For the converse direction assume, again, by

contradiction that M, k 6|= ϕT`ψ and Proposition 7, M, k 6|= ψ ∧
(
ϕ ∨ •̂ (ϕT`ψ)

)
in

MHT. By using induction on the subformulas we can conclude that M, k 6|= τ(ψ) in

THT or both M, k 6|= τ(ϕ) and M, k 6|= •̂τ(ϕT`ψ) in THT. By using the definition

of τ( ) it follows that M, k 6|= τ(ψ ∧
(
ϕ ∨ •̂ (ϕT`ψ)

)
) and so M, k 6|= τ(ϕT`ψ) in

THT: a contradiction.

The proof is done by structural induction. For each case, the proof can be done by using

the equivalences of Proposition 6 and Proposition 7 together with some propositional

reasoning. QED

Proof of Proposition 9. The proof is by structural induction. We consider only un-

til/release and since/trigger.

• ϕUnψ: from left to right assume that 〈H,T〉, k |= ϕUnψ. Therefore, there exists

i ∈ [0..n) such that k+i < λ, 〈H,T〉, k+i |= ψ and for all j ∈ [0..i), 〈H,T〉, k+j |= ϕ.

By induction hypothesis, m(k + i, ψ) = 2 and m(k + j, ϕ) = 2, for all j ∈ [0..i).

Therefore, min{m(k + i, ψ),m(k + j, ϕ) | j ∈ [0..i), k + i < λ} = 2 and so

max{min{m(k + i, ψ),m(k + j, ϕ) | j ∈ [0..i), k + i < λ} | i ∈ [0..n)} = 2.

Conversely, assume that m(k, ϕUnψ) = max{min{m(k + i, ψ),m(k + j, ϕ) | j ∈
[0..i), k + i < λ} | i ∈ [0..n)} = 2. Therefore there exists 0 ≤ i < n such that

min{m(k+i, ψ),m(k+j, ϕ) | j ∈ [0..i), k+i < λ} = 2. As a consequence, k+i < λ,

m(k + i, ψ) = 2 and m(k + j, ϕ) = 2, for all 0 ≤ j < i. By induction induction it

follows that 〈H,T〉, k + i |= ψ and 〈H,T〉, k + j |= ϕ, for all 0 ≤ j < i. This means

that 〈H,T〉, k |= ϕUnψ. The second item is proved in a similar way.

• ϕRnψ: from left to right, assume that m(k, ϕRnψ) = min{max{m(k+ i, ψ),m(k+

j, ϕ) | j ∈ [0..i), k + i < λ} | i ∈ [0..n)} 6= 2. therefore, there exists 0 ≤ i < n such

that max{m(k+i, ψ),m(k+j, ϕ) | j ∈ [0..i), k+i < λ} 6= 2. This means that k+i <

λ, m(k + i, ψ) 6= 2 and m(k + j, ϕ) 6= 2 for all 0 ≤ j < i. By induction hypothesis,

〈H,T〉, k + i 6|= ψ and 〈H,T〉, k + j 6|= ϕ, for all 0 ≤ j < i. From this we conclude

that 〈H,T〉, k 6|= ϕRnψ. Conversely, assume that 〈H,T〉, k 6|= ϕRnψ. This means

that there exists i ∈ [0..n) such that k+i < λ, 〈H,T〉, k+i 6|= ψ and for all j ∈ [0..i),

〈H,T〉, k + j 6|= ϕ. By induction hypothesis, m(k + i, ψ) 6= 2 and m(k + j, ϕ) 6= 2,

for all j ∈ [0..i). Therefore, max{m(k+ i, ψ),m(k+ j, ϕ) | j ∈ [0..i), k+ i < λ} 6= 2

and so min{max{m(k+ i, ψ),m(k+ j, ϕ) | j ∈ [0..i), k+ i < λ} | i ∈ [0..n)} = 2: a

contradiction. The second item is proved in a similar way.

• ϕSnψ From left to right, assume that 〈H,T〉, k |= ϕSnψ. Therefore, there exists

i ∈ [0..n) such that k−i ≥ 0, 〈H,T〉, k−i |= ψ and for all j ∈ [0..i), 〈H,T〉, k−j |= ϕ.

By induction hypothesis, m(k − i, ψ) = 2 and m(k − j, ϕ) = 2, for all j ∈ [0..i).

Therefore, min{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} = 2 and so

max{min{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} | i ∈ [0..n)} = 2.

Conversely, assume that m(k, ϕSnψ) = max{min{m(k − i, ψ),m(k − j, ϕ) | j ∈
[0..i), k − i ≥ 0} | i ∈ [0..n)} = 2. Therefore there exists 0 ≤ i < n such that

min{m(k− i, ψ),m(k−j, ϕ) | j ∈ [0..i), k− i ≥ 0} = 2. As a consequence, k− i ≥ 0,
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m(k − i, ψ) = 2 and m(k − j, ϕ) = 2, for all 0 ≤ j < i. By induction induction it

follows that 〈H,T〉, k − i |= ψ and 〈H,T〉, k − j |= ϕ, for all 0 ≤ j < i. This means

that 〈H,T〉, k |= ϕSnψ. The second item is proved in a similar way.

• ϕTnψ: from left to right, assume that m(k, ϕTnψ) = min{max{m(k− i, ψ),m(k−
j, ϕ) | j ∈ [0..i), k − i ≥ 0} | i ∈ [0..n)} 6= 2. therefore, there exists 0 ≤ i < n

such that max{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} 6= 2. This means

that k − i ≥ 0, m(k − i, ψ) 6= 2 and m(k − j, ϕ) 6= 2 for all 0 ≤ j < i. By

induction hypothesis, 〈H,T〉, k − i 6|= ψ and 〈H,T〉, k − j 6|= ϕ, for all 0 ≤ j <

i. From this we conclude that 〈H,T〉, k 6|= ϕTnψ: a contradiction. Conversely,

assume that 〈H,T〉, k 6|= ϕTnψ. This means that there exists i ∈ [0..n) such

that k − i ≥ 0, 〈H,T〉, k − i 6|= ψ and for all j ∈ [0..i), 〈H,T〉, k − j 6|= ϕ. By

induction hypothesis, m(k − i, ψ) 6= 2 and m(k − j, ϕ) 6= 2, for all j ∈ [0..i).

Therefore, max{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} 6= 2 and so

min{max{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} | i ∈ [0..n)} = 2. The

second item is proved in a similar way: a contradiction. The second item is proved

in a similar way.

• ϕU`ψ: from left to right assume that 〈H,T〉, k |= ϕU`ψ. Therefore, there exists

i ∈ [0..λ) such that k+i < λ, 〈H,T〉, k+i |= ψ and for all j ∈ [0..i), 〈H,T〉, k+j |= ϕ.

By induction hypothesis, m(k + i, ψ) = 2 and m(k + j, ϕ) = 2, for all j ∈ [0..i).

Therefore, min{m(k + i, ψ),m(k + j, ϕ) | j ∈ [0..i), k + i < λ} = 2 and so

max{min{m(k + i, ψ),m(k + j, ϕ) | j ∈ [0..i), k + i < λ} | i ∈ [0..λ)} = 2.

Conversely, assume that m(k, ϕU`ψ) = max{min{m(k + i, ψ),m(k + j, ϕ) | j ∈
[0..i), k + i < λ} | i ∈ [0..λ)} = 2. Therefore there exists 0 ≤ i < λ such that

min{m(k+i, ψ),m(k+j, ϕ) | j ∈ [0..i), k+i < λ} = 2. As a consequence, k+i < λ,

m(k + i, ψ) = 2 and m(k + j, ϕ) = 2, for all 0 ≤ j < i. By induction induction it

follows that 〈H,T〉, k + i |= ψ and 〈H,T〉, k + j |= ϕ, for all 0 ≤ j < i. This means

that 〈H,T〉, k |= ϕU`ψ. The second item is proved in a similar way.

• ϕR`ψ: from left to right, assume that m(k, ϕR`ψ) = min{max{m(k + i, ψ),m(k +

j, ϕ) | j ∈ [0..i), k + i < λ} | i ∈ [0..λ)} 6= 2. therefore, there exists 0 ≤ i < λ such

that max{m(k+i, ψ),m(k+j, ϕ) | j ∈ [0..i), k+i < λ} 6= 2. This means that k+i <

λ, m(k + i, ψ) 6= 2 and m(k + j, ϕ) 6= 2 for all 0 ≤ j < i. By induction hypothesis,

〈H,T〉, k + i 6|= ψ and 〈H,T〉, k + j 6|= ϕ, for all 0 ≤ j < i. From this we conclude

that 〈H,T〉, k 6|= ϕR`ψ. Conversely, assume that 〈H,T〉, k 6|= ϕR`ψ. This means

that there exists i ∈ [0..λ) such that k+i < λ, 〈H,T〉, k+i 6|= ψ and for all j ∈ [0..i),

〈H,T〉, k + j 6|= ϕ. By induction hypothesis, m(k + i, ψ) 6= 2 and m(k + j, ϕ) 6= 2,

for all j ∈ [0..i). Therefore, max{m(k+ i, ψ),m(k+ j, ϕ) | j ∈ [0..i), k+ i < λ} 6= 2

and so min{max{m(k+ i, ψ),m(k+ j, ϕ) | j ∈ [0..i), k+ i < λ} | i ∈ [0..λ)} = 2: a

contradiction. The second item is proved in a similar way.

• ϕS`ψ From left to right, assume that 〈H,T〉, k |= ϕS`ψ. Therefore, there exists

i ∈ [0..λ) such that k−i ≥ 0, 〈H,T〉, k−i |= ψ and for all j ∈ [0..i), 〈H,T〉, k−j |= ϕ.

By induction hypothesis, m(k − i, ψ) = 2 and m(k − j, ϕ) = 2, for all j ∈ [0..i).

Therefore, min{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} = 2 and so

max{min{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} | i ∈ [0..λ)} = 2.

Conversely, assume that m(k, ϕS`ψ) = max{min{m(k − i, ψ),m(k − j, ϕ) | j ∈
[0..i), k − i ≥ 0} | i ∈ [0..λ)} = 2. Therefore there exists 0 ≤ i < λ such that

min{m(k− i, ψ),m(k−j, ϕ) | j ∈ [0..i), k− i ≥ 0} = 2. As a consequence, k− i ≥ 0,
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m(k − i, ψ) = 2 and m(k − j, ϕ) = 2, for all 0 ≤ j < i. By induction it follows

that 〈H,T〉, k − i |= ψ and 〈H,T〉, k − j |= ϕ, for all 0 ≤ j < i. This means that

〈H,T〉, k |= ϕS`ψ. The second item is proved in a similar way.

• ϕT`ψ: from left to right, assume that m(k, ϕT`ψ) = min{max{m(k− i, ψ),m(k−
j, ϕ) | j ∈ [0..i), k − i ≥ 0} | i ∈ [0..λ)} 6= 2. therefore, there exists 0 ≤ i < λ

such that max{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} 6= 2. This means

that k − i ≥ 0, m(k − i, ψ) 6= 2 and m(k − j, ϕ) 6= 2 for all 0 ≤ j < i. By

induction hypothesis, 〈H,T〉, k − i 6|= ψ and 〈H,T〉, k − j 6|= ϕ, for all 0 ≤ j <

i. From this we conclude that 〈H,T〉, k 6|= ϕT`ψ: a contradiction. Conversely,

assume that 〈H,T〉, k 6|= ϕT`ψ. This means that there exists i ∈ [0..λ) such

that k − i ≥ 0, 〈H,T〉, k − i 6|= ψ and for all j ∈ [0..i), 〈H,T〉, k − j 6|= ϕ. By

induction hypothesis, m(k − i, ψ) 6= 2 and m(k − j, ϕ) 6= 2, for all j ∈ [0..i).

Therefore, max{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} 6= 2 and so

min{max{m(k − i, ψ),m(k − j, ϕ) | j ∈ [0..i), k − i ≥ 0} | i ∈ [0..λ)} = 2. The

second item is proved in a similar way: a contradiction. The second item is proved

in a similar way.

QED Proof of Proposition 13. We assume kϕ is defined for any metric formula ϕ

as stated in the proposition. We proceed by structural induction.

• case ϕ = p: in this case |p| = 1 and cl(p) = {p}, so |cl(p)| = 1. Since there is no

metric connective in p, kp = 1. Therefore, |cl(p)| = 1 ≤ 2 ∗ 1 ∗ |p| = 2.

• case ϕ ∧ ψ: in this case, cl(ϕ ∧ ψ) = {ϕ ∧ ψ} ∪ cl(ϕ) ∪ cl(ψ) and |cl(ϕ ∧ ψ)| ≤
1 + |cl(ϕ)|+ |cl(ψ)|. We assume, without loss of generality, max(kϕ, kψ) = kψ when

needed. We prove this case next:

|cl(ϕ ∧ ψ)| ≤ 1 + |cl(ϕ)|+ |cl(ψ)|
≤ 1 + 2kϕ|ϕ|+ 2kψ|ψ| by induction on ϕ and ψ

≤ 1 + 2kϕ|ϕ|+ 2kψ|ψ|+ 2(kψ − kϕ)|ϕ| 2(kψ − kϕ)|ϕ| ≥ 0

≤ 1 + 2kϕ|ϕ|+ 2kψ|ψ|+ 2kψ|ϕ| − 2kϕ|ϕ|
≤ 1 + 2kψ|ψ|+ 2kψ|ϕ|
≤ 1 + 2kψ (|ψ|+ |ϕ|)
≤ 1 + 2kψ (|ϕ ∧ ψ| − 1)

≤ 1− 2kψ + 2kψ|ϕ ∧ ψ|
≤ 2kψ|ϕ ∧ ψ|. 1− 2kψ < 0.

• the proof for the formulas ϕ ∨ ψ and ϕ→ ψ is done as for ϕ ∧ ψ.

• case ◦ϕ: in this case, cl(◦ϕ) = {◦ϕ} ∪ cl(ϕ) and |◦ϕ| = 1 + |ϕ|. It follows that

|cl(◦ϕ)| ≤ 1 + |cl(ϕ)|
≤ 1 + 2kϕ|ϕ| by induction on ϕ

≤ 1 + 2kϕ (|◦ϕ| − 1)

≤ 1− 2kϕ + 2kϕ|◦ϕ|
≤ 2kϕ|◦ϕ| 1− 2kϕ < 0
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• The proof for ◦̂ϕ, •ϕ and •̂ϕ follows the same line of reasoning as for ◦ϕ.

• Case ϕU`ψ: in this case, cl(ϕU`ψ) = {ϕU`ψ,◦ (ϕU`ψ)}∪cl(ϕ)∪cl(ψ) and |ϕU`ψ| =
1 + |ϕ| + |ψ|. We proceed in a similar way as in the previous cases. We will also

assume, without loss of generality, that max(kϕ, kψ) = kψ when needed.

|cl(ϕU`ψ)| ≤ 2 + |cl(ϕ)|+ |cl(ψ)|
≤ 2 + 2kϕ|ϕ|+ 2kψ|ψ| by induction on ϕ and ψ

≤ 2 + 2kϕ|ϕ|+ 2kψ|ψ|+ 2(kψ − kϕ)|ϕ| 2(kψ − kϕ)|ϕ| ≥ 0

≤ 2 + 2kϕ|ϕ|+ 2kψ|ψ|+ 2kψ|ϕ| − 2kϕ|ϕ|
≤ 2 + 2kψ|ψ|+ 2kψ|ϕ|
≤ 2 + 2kψ (|ψ|+ |ϕ|)
≤ 2 + 2kψ (|ϕU`ψ| − 1)

≤ 2− 2kψ + 2kψ|ϕU`ψ|
≤ 2kψ|ϕU`ψ|. 2− 2kψ ≤ 0

• The proof for ϕR`ψ, ϕS`ψ and ϕT`ψ follows the same reasoning as for the case

ϕU`ψ.

• Case ϕUnψ: in this case we have that |ϕUnψ| = 1 + |ϕ| + |ψ| and cl(ϕUnψ) =

{ϕUiψ | 1 ≤ i ≤ n} ∪ {◦ (ϕUiψ) | 1 ≤ i < n} ∪ cl(ϕ) ∪ cl(ψ). Therefore,

|cl(ϕUnψ)| ≤ 2n− 1 + |cl(ϕ)|+ |cl(ψ)|.

We consider two different cases:

1. n = max{n, kϕ, kψ}. Consequently, 2(n− kϕ)|ϕ| ≥ 0 and 2(n− kψ)|ψ| ≥ 0:

|cl(ϕUnψ)| ≤ 2n− 1 + |cl(ϕ)|+ |cl(ψ)|
≤ 2n− 1 + 2kϕ|ϕ|+ 2kψ|ψ| by induction on ϕ and ψ

≤ 2n− 1 + 2kϕ|ϕ|+ 2kψ|ψ|+ 2(n− kϕ)|ϕ|+ 2(n− kψ)|ψ|
≤ 2n− 1 + 2kϕ|ϕ|+ 2kψ|ψ|+ 2n|ϕ| − 2kϕ|ϕ|+ 2n|ψ| − 2kψ|ψ|
≤ 2n− 1 + 2n|ϕ|+ 2n|ψ|
≤ 2n− 1 + 2n (|ϕ|+ |ψ|)
≤ 2n− 1 + 2n (|ϕUnψ| − 1)

≤ 2n− 1− 2n+ 2n|ϕUnψ|
≤ −1 + 2n|ϕUnψ|
≤ 2n|ϕUnψ|.

2. otherwise, assume that kψ = max{kϕ, kψ}. Therefore, 2(kψ − kϕ)|ϕ| ≥ 0 :

|cl(ϕUnψ)| ≤ 2n− 1 + |cl(ϕ)|+ |cl(ψ)|
≤ 2n− 1 + 2kϕ|ϕ|+ 2kψ|ψ| by induction on ϕ and ψ

≤ 2n− 1 + 2kϕ|ϕ|+ 2kψ|ψ|+ 2(kψ − kϕ)|ϕ|
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≤ 2n− 1 + 2kϕ|ϕ|+ 2kψ|ψ|+ 2kψ|ϕ| − 2kϕ|ϕ|
≤ 2n− 1 + 2kψ|ϕ|+ 2kψ|ψ|
≤ 2n− 1 + 2kψ (|ϕ|+ |ψ|)
≤ 2n− 1 + 2kψ (|ϕUnψ| − 1)

≤ 2n− 1− 2kψ + 2kψ|ϕUnψ|
≤ 2kψ|ϕUnψ|. 2n− 1− 2kψ < 0

• The proof for ϕRnψ, ϕSnψ and ϕTnψ follows the same line of reasoning as for

ϕUnψ.

QED

Proof of Proposition 14. We proceed by structural induction on µ. We consider only

the the metric operators.

• If µ = ϕUnψ we proceed by cases. If n = 1 we conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ)

IH
= m(k, ψ)

Prop. 6
= m(k, µ).

If n > 1, let us take ϕ′ = ◦ (ϕUn−1ψ) to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′))

IH
= m(k, ψ ∨ (ϕ ∧ ϕ′)) Prop. 6

= m(k, µ).

For the case of ` let us take ϕ′ = ◦ (ϕU`ψ) to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′))

IH
= m(k, ψ ∨ (ϕ ∧ ϕ′)) Prop. 7

= m(k, µ).

• If µ = ϕRnψ we proceed by cases. If n = 1 we use the first formula to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ)

IH
= m(k, ψ) = m(k, µ)

If n > 1, let us take ϕ′ = ◦̂ (ϕRn−1ψ) to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ ∧ (Lϕ ∨ Lϕ′))

IH
= m(k, ψ ∧ (ϕ ∨ ϕ′)) Prop. 6

= m(k, µ).

For the case of ` let us take ϕ′ = ◦̂ (ϕR`ψ) to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ ∧ (Lϕ ∨ Lϕ′))

IH
= m(k, ψ ∧ (ϕ ∨ ϕ′)) Prop. 7

= m(k, µ).

• If µ = ϕSnψ we proceed by cases. If n = 1 we use the first formula to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ)

IH
= m(k, ψ) = m(k, µ)

If n > 1, let us take ϕ′ = • (ϕSn−1ψ) to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′))

IH
= m(k, ψ ∨ (ϕ ∧ ϕ′)) Prop. 6

= m(k, µ).

For the case of `, let us take ϕ′ = • (ϕS`ψ) to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′))

IH
= m(k, ψ ∨ (ϕ ∧ ϕ′)) Prop. 7

= m(k, µ).
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• If µ = ϕTnψ we proceed by cases. If n = 1 we use the first formula to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ)

IH
= m(k, ψ) = m(k, µ)

If n > 1, let us take ϕ′ = •̂ (ϕTn−1ψ) to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ ∧ (Lϕ ∨ Lϕ′))

IH
= m(k, ψ ∧ (ϕ ∨ ϕ′)) Prop. 6

= m(k, µ).

For the case of `, let us take ϕ′ = •̂ (ϕT`ψ) to conclude that

m(k,Lµ)
η(µ)
= m(k,Lψ ∧ (Lϕ ∨ Lϕ′))

IH
= m(k, ψ ∧ (ϕ ∨ ϕ′)) Prop. 7

= m(k, µ).

QED

Proof of Theorem 2. Take the MELf -trace 〈H′,T′〉 whose three valued interpretation

m′ satisfies:

m′(k,Lϕ) = m(k, ϕ)

for any formula ϕ over A and for all i ∈ [k..λ). When ϕ is an atom a ∈ A then

m′(k, a) = m′(k,La) = m(k, a), which implies that both valuations coincide for atoms,

and so, 〈H′,T′〉|A = 〈H,T〉. It remains to be shown that 〈H′,T′〉 |= υ(ϕ), which is

equivalent to

〈H′,T′〉 |= {Lϕ} ∪ {η(µ) | µ ∈ cl(ϕ)}
⇔ 〈H′,T′〉 |= {Lϕ} and 〈H′,T′〉 |= {η(µ) | µ ∈ cl(ϕ)}

The first satisfaction relation follows directly from the definition of 〈H′,T′〉 since

m′(0,Lϕ) = 2 iff m(0, ϕ) = 2 and we had that 〈H,T〉 is a model of ϕ.

For the second part, we consider the following cases depending on the structure of µ:

• The boolean connectives and temporal formulas ◦ϕ, •ϕ, •̂ϕ and ◦̂ϕ are left to the

reader.

• For the formula µ = ϕU1ψ, note that ϕ,ψ ∈ cl(µ). Let us reason as follows

m′(k,Lµ) = m(k, µ) = m(k, ϕU1ψ)
Prop. 6

= m(k, ψ) = m(k,Lψ).

The cases ϕR1ψ, ϕS1ψ and ϕT1ψ are proved in a similar way.

• For the formula µ = ϕUnψ, with n > 1, let us take ϕ′ = ◦ (ϕUn−1ψ). Note that,

by definition ϕ,ψ, ϕ′ ∈ cl(µ). Having said that, we reason as follows

m′(k,Lµ) = m(k, µ) = m(k, ϕUnψ)

Prop. 6
= m(k, ψ ∨ (ϕ ∧ ◦ (ϕUn−1ψ)))

= max{m(k, ψ),min(m(k, ϕ),m(k,◦ (ϕUn−1ψ)))}
= max{m(k,Lψ),min(m(k,Lϕ),m(k,Lϕ′))}
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′)).

• For the formula µ = ϕRnψ, with n > 1, let us take ϕ′ = ◦̂ (ϕRn−1ψ). Note that,

by definition ϕ,ψ, ϕ′ ∈ cl(µ). Having said that, we reason as follows
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m′(k,Lµ) = m(k, µ) = m(k, ϕRnψ)

Prop. 6
= m(k, ψ ∧

(
ϕ ∨ ◦̂ (ϕRn−1ψ)

)
)

= min{m(k, ψ),max(m(k, ϕ),m(k, ◦̂ (ϕRn−1ψ)))}
= min{m(k,Lψ),max(m(k,Lϕ),m(k,Lϕ′))}
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′)).

• For the formula µϕSnψ, with n > 1, let us take ϕ′ = • (ϕSn−1ψ). Note that, by

definition ϕ,ψ, ϕ′ ∈ cl(µ). Having said that, we reason as follows

m′(k,Lµ) = m(k, µ) = m(k, ϕSnψ)

Prop. 6
= m(k, ψ ∨ (ϕ ∧ • (ϕSn−1ψ)))

= max{m(k, ψ),min(m(k, ϕ),m(k,• (ϕSn−1ψ)))}
= max{m(k,Lψ),min(m(k,Lϕ),m(k,Lϕ′))}
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′)).

• For the formula µ = ϕTnψ, with n > 1, let us take ϕ′ = •̂ (ϕTn−1ψ). Note that,

by definition ϕ,ψ, ϕ′ ∈ cl(µ). Having said that, we reason as follows

m′(k,Lµ) = m(k, µ) = m(k, ϕTnψ)

Prop. 6
= m(k, ψ ∧

(
ϕ ∨ •̂ (ϕTn−1ψ)

)
)

= min{m(k, ψ),max(m(k, ϕ),m(k, •̂ (ϕTn−1ψ)))}
= min{m(k,Lψ),max(m(k,Lϕ),m(k,Lϕ′))}
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′)).

• For the formula µ = ϕU`ψ, let us take ϕ′ = ◦ (ϕU`ψ). Note that, by definition

ϕ,ψ, ϕ′ ∈ cl(µ). Having said that, we reason as follows

m′(k,Lµ) = m(k, µ) = m(k, ϕU`ψ)

Prop. 7
= m(k, ψ ∨ (ϕ ∧ ◦ (ϕU`ψ)))

= max{m(k, ψ),min(m(k, ϕ),m(k,◦ (ϕU`ψ)))}
= max{m(k,Lψ),min(m(k,Lϕ),m(k,Lϕ′))}
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′)).

• For the formula µ = ϕR`ψ, let us take ϕ′ = ◦̂ (ϕR`ψ). Note that, by definition

ϕ,ψ, ϕ′ ∈ cl(µ). Having said that, we reason as follows
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m′(k,Lµ) = m(k, µ) = m(k, ϕR`ψ)

Prop. 7
= m(k, ψ ∧

(
ϕ ∨ ◦̂ (ϕR`ψ)

)
)

= min{m(k, ψ),max(m(k, ϕ),m(k, ◦̂ (ϕR`ψ)))}
= min{m(k,Lψ),max(m(k,Lϕ),m(k,Lϕ′))}
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′)).

• For the formula µ = ϕS`ψ, let us take ϕ′ = • (ϕS`ψ). Note that, by definition

ϕ,ψ, ϕ′ ∈ cl(µ). Having said that, we reason as follows

m′(k,Lµ) = m(k, µ) = m(k, ϕS`ψ)

Prop. 7
= m(k, ψ ∨ (ϕ ∧ • (ϕS`ψ)))

= max{m(k, ψ),min(m(k, ϕ),m(k,• (ϕS`ψ)))}
= max{m(k,Lψ),min(m(k,Lϕ),m(k,Lϕ′))}
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′)).

• For the formula µ = ϕT`ψ, let us take ϕ′ = •̂ (ϕT`ψ). Note that, by definition

ϕ,ψ, ϕ′ ∈ cl(µ). Having said that, we reason as follows

m′(k,Lµ) = m(k, µ) = m(k, ϕT`ψ)

Prop. 7
= m(k, ψ ∧

(
ϕ ∨ •̂ (ϕT`ψ)

)
)

= min{m(k, ψ),max(m(k, ϕ),m(k, •̂ (ϕT`ψ)))}
= min{m(k,Lψ),max(m(k,Lϕ),m(k,Lϕ′))}
= m(k,Lψ ∨ (Lϕ ∧ Lϕ′)).

QED
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