
ar
X

iv
:1

60
8.

00
87

0v
2

 [
cs

.L
O

]
 1

1
O

ct
 2

01
6

Under consideration for publication in Theory and Practice of Logic Programming 1

Justifications for Programs with

Disjunctive and Causal-choice Rules∗

Pedro Cabalar and Jorge Fandinno

Department of Computer Science

University of Corunna, Corunna, Spain

(e-mail: {cabalar, jorge.fandino}@udc.es)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

In this paper, we study an extension of the stable model semantics for disjunctive logic programs
where each true atom in a model is associated with an algebraic expression (in terms of rule
labels) that represents its justifications. As in our previous work for non-disjunctive programs,
these justifications are obtained in a purely semantic way, by algebraic operations (product,
addition and application) on a lattice of causal values. Our new definition extends the concept of
causal stable model to disjunctive logic programs and satisfies that each (standard) stable model
corresponds to a disjoint class of causal stable models sharing the same truth assignments, but
possibly varying the obtained explanations. We provide a pair of illustrative examples showing
the behaviour of the new semantics and discuss the need of introducing a new type of rule,
which we call causal-choice. This type of rule intuitively captures the idea of “A may cause B”
and, when causal information is disregarded, amounts to a usual choice rule under the standard
stable model semantics.

1 Introduction

The strong connection between Non-Monotonic Reasoning (NMR) and Logic Program-

ming (LP) semantics for default negation has made possible that LP tools became

nowadays an important paradigm for Knowledge Representation (KR) and problem-

solving in Artificial Intelligence (AI). In particular, Answer Set Programming (ASP)

(Niemelä 1999; Marek and Truszczyński 1999) is an LP paradigm based on the stable

models semantics (Gelfond and Lifschitz 1988; Gelfond and Lifschitz 1991) that has be-

come established as a preeminent framework for practical NMR with applications in di-

verse areas of AI including planning, reasoning about actions, diagnosis, abduction and

beyond (Baral 2003). An important difference between most LP semantics (including

the stable model semantics) and classical models (or even some other NMR approaches)

is that true atoms in LP must be founded or justified by a given derivation. These

justifications are not provided in the semantics itself, but can be syntactically built in

some way in terms of the program rules, as studied in several approaches (Specht 1993;

Pemmasani et al. 2004; Pontelli et al. 2009; Denecker et al. 2015; Schulz and Toni 2016).

Rather than manipulating justifications as mere syntactic objects, two recent ap-

proaches have considered extended multi-valued semantics LP extensions where justi-

∗ This research was partially supported by Spanish Project TIN2013-42149-P.

http://arxiv.org/abs/1608.00870v2

fications are treated as algebraic constructions in terms of rule labels: Why-not Prove-

nance (Damásio et al. 2013) and Causal Graph Justifications (CJ) (Cabalar et al. 2014a).

For instance, as an illustration of the latter, consider the following positive program P1

r1 : dead ← shoot (1)

r2 : shoot ← harvey (2)

harvey (3)

It has been showed in (Cabalar et al. 2014a) that program P1 has a least causal model I,

which not only makes dead true, but also assigns the expression I(dead) = harvey·r2·r1

capturing the successive application of r2 and then r1. The availability of such information

on justifications inside the models of a program can be of great interest for Knowledge

Representation (KR) since it allows defining new types of literals to inspect the causal

relations among derived atoms.

For instance, (Fandinno 2015b) introduced constructs like:

prison(harvey) ← harvey sufficient for dead (4)

where ‘sufficient for’ decides whether harvey has been a sufficient cause for dead by

completely relying on the semantic definitions, rather than making a syntactic analysis

of the program. Note that avoiding the latter is crucial to achieve an elaboration tolerant

representation, since causation may be affected by multiple levels of indirect effects or

the interplay with defaults like inertia. (Fandinno 2016) extends this formalism allowing

the use of ‘necessary for’ and ‘contributed to’ to capture whether harvey has been nec-

essary for (resp. contributed to) dead . To the best of our knowledge, no other formalism

integrates this kind of literals in LP or allows deriving new conclusions from information

about cause-effect relations. Unfortunately, CJ is only defined for non-disjunctive logic

programs – this holds, in fact, for all the approaches aforementioned. This is obviously a

drawback from an ASP point of view, since no CJ justifications were defined for programs

with disjunction, but also, from a KR point of view, since disjunction is a natural way

for expressing non-deterministic causation.

In this paper, we investigate an extension of the CJ semantics for disjunctive logic

programs, in which, per each standard stable model, we will obtain a class of causal

stable models providing explanations for the derived (true) atoms. As an example, let

program P2 be the result of replacing (2) in P1 by the following rules

r2 : shoot ← tails (5)

r3 : head ∨ tails ← harvey (6)

stating that Harvey throws a coin and only shoots when he gets tails. This program has

two standard stable models: {harvey, head} and {harvey, tails, shoot , dead}. In the latter,

the explanation for dead will have the form

harvey·rtails
3 ·r2·r1 (7)

where rtails
3 points out that the disjunct tails in r3 has been effectively applied.

We summarise our contributions as follows.

• We define a multi-valued semantics for disjunctive logic programs1 in which each

atom A is associated to an algebraic expression formed by rule labels and three

operations: a product ‘∗’ representing conjunction or joint causation; an addition ‘+’

separating alternative causes; and a non-commutative product ‘·’ that stands for

rule application. We show that there is a one-to-one correspondence between the

standard stable models and a corresponding class of causal stable models that provide

explanations for each true atom in each model (Section 3).

• We show that disjunctive rules are not enough to capture informal statements like “A

may cause B” and introduce the notion of causal-choice rule to represent this kind

of statement. When causal information is disregarded, causal-choice rules amount

to usual choice rules under the standard stable model semantics (Section 4).

The rest of the paper is organised as follows. The next section revises the standard stable

model semantics for disjunctive logic programs and recalls the causal algebra introduced

in (Cabalar et al. 2014a). Section 3 provides the new definition of causal stable models

for disjunctive programs and shows some correspondence properties with standard stable

models. In Section 4, we introduce causal-choice rules, explain their behaviour with an

example and, again, provide a correspondence with standard ASP. Section 5 revises some

related approaches and, finally, Section 6 concludes the paper. Proofs of formal results

from the paper can be found in an extended version (Cabalar and Fandinno 2016b).

2 Preliminaries

We start by recalling some standard LP definitions, with the only extension of rule

labels. A signature is a pair 〈At, Lb〉 of sets that respectively represent a set of atoms

(or propositions) and a set of labels. As usual, a literal is defined as an atom A (positive

literal) or its default negation not A (negative literal).

Definition 1 (Program). Given a signature 〈At, Lb〉, a rule is an expression of the form

ri : A1 ∨ . . . ∨Al ∨ not Al+1 ∨ . . . ∨ not Ak ← B1, . . . , Bm, not Bm+1, . . . , not Bn (8)

where ri ∈ Lb is a label and all Aj ∈ At and Bj are atoms with 0 ≤ l ≤ k and 0 ≤ m ≤ n.

A program P is a set of rules. �

Given a rule r of the form of (8), by head+(r) def={A1 . . . Al} and head−(r) def={Al+1 . . . Ak},

we respectively denote the positive and negative head of r. By head(r) def= head+(r) ∪

not head−(r), we denote the whole head of r where not head−(r) stands for the set

{ not A
∣

∣ A ∈ head+(r) }. By body+(r) def={B1, . . . , Bm} and body−(r) def={Bm+1, . . . , Bn},

we respectively denote the positive and negative body of r and, by body(r) def= body+(r)∪

not body−(r), its whole body. A rule r is said to be normal iff its head is a single positive

literal, that is, head(r) = head+(r) = {A} and it is said to be positive iff all literals

in it are positive, that is, head−(r) = body−(r) = ∅. A normal rule with empty body,

body(r) = ∅, is called a fact and we usually represent it omitting the body and sometimes

the symbol ‘←.’ Furthermore, we will also allow atom names to be used as labels, that is,

At ⊆ Lb, and that fact A in a program actually stands for the labelled rule (A : A ←).

1 For simplicity, in this paper, we will not consider causal literals as in rule (4), but the extension can
be done in a similar way as (Fandinno 2015b) extended (Cabalar et al. 2014a).

Any rule that is not a fact has a label from LbR
def= Lb\At. When head(r) = ∅, we say

that the rule r is a constraint and we may omit the rule label. A program P is said to

be normal or positive when all its rules are normal or positive, respectively.

We say that a set of atoms S ⊆ At is closed under P if and only if, for every rule

r ∈ P , head+(r) ∩ S , ∅ whenever body+(r) ∪ head−(r) ⊆ S and body−(r) ∩ S = ∅. We

recall next the definitions of reduct and stable model. The reduct of a program P w.r.t.

a set of atoms S ⊆ At, in symbols P S , is the result of
1. removing all rules such that B ∈ S for some B ∈ body−(r),

2. removing all rules such that B < S for some B ∈ head−(r),

3. removing all the negative literals for the remaining rules.
A set of atoms S ⊆ At is a GL-stable model of a program P iff it is a ⊆-minimal closed

set under the positive program P S .

We will also need the following definitions from (Cabalar et al. 2014a).

Definition 2 (Term). Given a set of labels Lb, a term t is recursively defined as one of

the following expressions

t ::= l
∣

∣

∣

∏

S
∣

∣

∣

∑

S
∣

∣

∣
t1 · t2

where l ∈ Lb is a label, t1, t2 are in their turn terms and S is a (possibly empty and

possibly infinite) set of terms. �

When S = {t1, . . . , tn} is a finite set, we will write t1∗. . .∗tn and t1+. . .+tn instead of
∏

S

and
∑

S, respectively. The empty sum and empty product are respectively represented

as 0 and 1. We assume that application ‘·’ has higher priority than product ‘∗’ and, in its

turn, product ‘∗’ has higher priority than addition ‘+’. As commented in the introduction,

product ‘∗’ represents join causation. Consider for instance a program P3 obtained by

adding the fact loaded to program P1 and replacing rule (1) by

r1 : dead ← shoot, loaded (9)

Program P3 will assign the expression (loaded ∗ harvey·r2)·r1 to the atom dead . On the

other hand, addition ‘+’ is used to capture alternative causes. As an illustration, if we

add the rules:
joker stab (10)

r4 : dead ← joker stab (11)

to program P1, meaning that the Joker stabs the victim, apart from the simultaneous

Harvey’s shot, then this new program P4 will assign the expression (loaded∗harvey·r2)·r1+

joker stab·r4 reflecting the existence of two alternative and independent causes.

Definition 3 (Value). (Causal) values are the equivalence classes of terms under axioms

for a completely distributive (complete) lattice with meet ‘∗’ and join ‘+’ plus the axioms

of Figure 1. The set of values is denoted by VLb. Furthermore, by CLb we denote the

subset of causal values with some representative term without addition ‘+’. �

All three operations, ‘∗’, ‘+’ and ‘·’ are associative. Product ‘∗’ and addition ‘+’ are also

commutative, and they satisfy the usual absorption and distributive laws with respect to

infinite sums and products of a completely distributive lattice. The lattice order relation

is defined as:

t ≤ u iff t ∗ u = t iff t + u = u

Associativity

t · (u·w) = (t·u) · w

Absorption

t = t + u · t · w

u · t · w = t ∗ u · t · w

Identity

t = 1 · t

t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Indempotence

l · l = l

Addition distributivity

t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity

c · d · e = (c · d) ∗ (d · e) with d , 1
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Fig. 1. Properties of the ‘·’operators: t, u, w are terms, l is a label and c, d, e are terms

without addition ‘+’. Addition and product distributivity are also satisfied over infinite

sums and products.

An immediate consequence of this definition is that the ≤-relation has the product as

g.l.b., the addition as l.u.b., 1 as top element and 0 as bottom element. Term 1 represents

a value which holds by default, without an explicit cause, and will be assigned to the

empty body. Term 0 represents the absence of cause or the empty set of causes, and will

be assigned to falsity. Furthermore, applying distributivity (and absorption) of products

and applications over addition, every term can be represented in a (minimal) disjunctive

normal form in which addition is not in the scope of any other operation and every pair

of addends are pairwise ≤-incomparable. This normal form emphasizes the intuition that

addition ‘+’ separates alternative causes. Consider, for instance, a program P5 containing

the rule

r4 : no heartbeat ← dead (12)

plus program P4={(1), (2), (3), (10), (11)}. Program P5 has a least model that coincides

with I4 of P4 in all atoms excepting for the new atom no heartbeat, whose justification

becomes:

I5(no heartbeat) = I5(dead) · r4 (13)

=
(

(loaded ∗ harvey·r2)·r1 + joker stab·r3

)

· r4 (14)

= (loaded ∗ harvey·r2)·r1 · r4 + joker stab·r3 · r4 (15)

Expression (15) is in minimal disjunctive normal and emphasizes the existence of two

alternative causes. In this sense, any term without addition G ∈ CLb represents an

individual cause, while terms with addition t ∈ VLb\CLb will be used to represent sets

of non-redundant causes.

Furthermore, each individual cause G ∈ CLb can be depicted as a graph whose vertices

are labels. For instance, graphs G1 and G2 in Figure 2 correspond to the two individual

causes of the atom no heartbeat with respect to the least model of P5. This correspon-

dence was formalised in (Fandinno 2015a) in the following way.

Definition 4 (Causal graph). Given a set of labels Lb, a causal graph (or c-graph)

G ⊆ Lb × Lb is a set of edges transitively and reflexively closed. By GLb we denote

the set of all c-graphs that can be formed with labels from Lb. Furthermore, given two

causal graphs {G, G′} ⊆ GLb, by G · G′ and G ∗ G′, we denote the transitive closure of

G ∪G′ ∪ { (v, v′)
∣

∣ (v, v) ∈ G and (v′, v′) ∈ G′ } and G ∪G′, respectively. �

loaded

**

harvey

��

joker stab

��

joker stab

��

��

��

r2

rrr1

��

r3

��

r3

��

ff

r4 r4 r4EE

G1 G2 G∗

2

Fig. 2. Graphs G1 and G2 representing the two alternative causes of no heartbeat in program P5.
Graph G

∗

2 is the reflexive and transitive closure of G2 and, thus, the c-graph associated to G2.

Theorem 1 (From Fandinno 2015a). The function term : GLb −→ CLb given by

term(G) 7→
∏

(v1,v2)∈G

v1·v2

is an isomorphism between algebras 〈GLb, ∗, ·, ∅,⊆〉 and 〈CLb, ∗, ·, 1,≤〉. �

Defining causal graphs as transitively and reflexively closed is convenient for a simpler

definition of product and application over graphs. However, for the sake of readability,

we will just depict a causal graph G as one of its transitive and reflexive reductions2. For

instance, Figure 2 shows a graph G2 that will actually stand for its closure, the causal

graph G∗
2. Furthermore, we will also allow writing I5(no heartbeat) = G1 + G2 instead

of (15). It is also worth to mention that each path in a causal graph may be understood

as causal chain in the sense of Lewis (1973): a finite sequence of actual events e1, . . . , en

where each ei causally depends on ei−1 (for 0 < i ≤ n).

3 Causal stable models for disjunctive logic programs

An interpretation is a mapping I : At −→ VLb assigning a value to each atom. An in-

terpretation I is said to be standard or two-valued when it maps each atom into the

set {0, 1}. The value assigned to a negative literal not A by an interpretation I, denoted

as I(not A), is defined as: I(not A) def= 1 if I(A) = 0; and I(not A) def= 0 otherwise. For any

pair of interpretations I and J , we write I ≤ J to represent the straightforward causal

ordering, that is, I(A) ≤ J(A) for every atom A ∈ At.

Since body disjunction can be captured by addition ‘+’ (Fandinno 2015b), an im-

mediate attempt for interpreting disjunctive programs would consist in just defining

I(A∨A′) = I(A) + I(A′) and selecting ≤-minimal models. However, this naive approach

does not capture the intending meaning. Consider for instance the following program P6

r1 : head ∨ tails ← toss a : toss b : toss

where two persons a and b both give the command to toss a coin. One may expect that

2 Recall that the transitive and reflexive reduction of a graph G is a graph G′ whose transitive and
reflexive closure is G. A causal graph, in which every cycle is a reflexive edge, has a unique transitive
and reflexive reduction.

program P6 has two causal stable models, one I6 in which I6(head) = a·rhead
1 + b·rhead

1

and I6(tails) = 0, and another I ′

6 in which I ′

6(head) = 0 and I ′

6(tails) = a·rtails
1 +b·rtails

1 .

However, under this naive definition, there are other two additional causal stable stable

models that unintendedly “distribute” the causes of toss among head and tails. We get,

for instance, I ′′

6 where I ′′

6(head) = a·rhead
1 and I ′′

6(tails) = b·rtails
1 , and a dual model I ′′′

6
that switches the roles of a and b.

This example shows that, rather than taking the sum of all disjuncts in the head, the

evaluation of rules should consider each head disjunct independently, as defined below.

Definition 5 (Model). An interpretation I satisfies rule r of the form of (8) iff
(

I(B1) ∗ . . . ∗ I(Bm) ∗ I(not Bm+1) ∗ . . . ∗ I(not Bn)
)

· ri ·Aj ≤ I(Aj) (16)

for some atom Aj ∈ head(r). We say that an interpretation I is a model of a program P ,

in symbols I |= P , iff I satisfies all rules in P . Moreover, if I is standard (two-valued)

we further write I |=st P and call it standard model. �

Observation 1. If r is a fact A, that is, it has the form (A : A ←) then I |= r iff

I(A) ≥ A ·A = A (by idempotence of application on labels). �

It is easy to see that, under Definition 5, interpretations I ′′

6 and I ′′′

6 are no longer

models of P6. Still, a second issue comes from selecting ≤-minimal models. Consider, for

instance, the following program P7

r1 : head ∨ tails head

which has two≤-minimal models, one in which I7(head) = head+rhead
1 and I7(tails) = 0,

plus another in which I ′

7(head) = head and I ′

7(tails) = rtails
1 . However, only the former

corresponds to the unique GL-stable model of this program, which leaves tails false

under its truth-minimality criterion. To overcome this issue, we will define an extra

partial order ⊑. First, for any interpretation I we define its corresponding standard

interpretation, Ist, as follows:

Ist(A) def=

{

1 iff I(A) > 0

0 iff I(A) = 0

We define the set of true atoms in an interpretation I as Atoms(I) def={ A ∈ At
∣

∣ I(A) , 0 }.

Proposition 1. For any standard interpretation I and positive program P : I |=st P iff

Atoms(I) is closed under P . �

Then, for any pair of interpretations I and J , we write I ⊑ J when either I ≤ J or

Atoms(I) ⊂ Atoms(J). That is, I ⊑ J is a weaker relation, since apart from the cases in

which I ≤ J it also holds when true atoms in I are a strict subset of true atoms in J .

As usual, we write I < J (resp. I ⊏ J) iff I ≤ J (resp I ⊑ J) and I , J . Notice that

Atoms(I) ⊂ Atoms(J) implies I , J and so I ⊏ J . We say that an interpretation I is

≤-minimal (resp. ⊑-minimal) satisfying some property when there is no J < I (resp.

J ⊏ I) satisfying that property. It is worth to notice that there is a ≤-bottom and

⊑-bottom interpretation 0 (resp. a ≤-top and ⊑-top interpretation 1) that stands for

the interpretation mapping every atom A to 0 (resp. 1).

Definition 6 (Causal/standard stable model of a positive program). Let P be a positive

program. A model I of P is a causal stable model iff it is ⊑-minimal among models of P .

A standard model I of P is a standard stable model iff I is ⊑-minimal among standard

models of P . �

Standard stable models have a straightforward relation to GL-stable models, as stated

below:

Theorem 2. Let P be a positive program. An interpretation I is a standard stable model

of P iff Atoms(I) is a GL-stable model of P . �

From now on we use both concepts indistinctly. Note that not any standard stable

model I of P needs to be causal stable, since there could exist another non-standard

model J ⊏ I. Still, there exists a strong connection between standard and causal stable

models.

Theorem 3. Let P be a positive program. Then, a standard interpretation J is a standard

stable model of P iff there is some causal stable model I of P such that Ist = J . �

In other words, there is a one-to-one correspondence between each standard stable

model and a class of causal stable models that agree in the truth assignment of atoms

(but may vary in their explanations). For instance, P2={(1), (3), (5), (6)} has two GL-

stable models, S2 = {harvey, head} and S′

2 = {harvey, tails, shoot, dead}. Notice that

any model I2 of program P2 must satisfy I2(harvey) ≥ harvey and, thus, any ⊑-minimal

model must satisfy that I2(harvey) = harvey. Similarly, any model I2 must satisfy ei-

ther I2(head) ≥ harvey·r1·head or I2(tails) ≥ harvey·r1·tails and, thus, there are two

⊑-minimal models, I2 and I ′

2, of P2 satisfying:

I2(harvey) = harvey

I2(head) = harvey·r1·head

I2(tails) = 0

I2(shoot) = 0

I2(dead) = 0

I ′

2(harvey) = harvey

I ′

2(head) = 0

I ′

2(tails) = harvey·r1·tails

I2(shoot) = harvey·r1·tails·r2·shoot

I2(dead) = harvey·r1·tails·r2·shoot·r3·dead

For the sake of clarity, we will write rA
i instead of ri·A when ri ∈ LbR and A ∈ At.

Intuitively, symbol rA
i means that among the possible consequences of rule ri, it has

caused A. For normal rules like r1 and r2 stating the selected atom is redundant and,

thus, we will usually omit the head atom label. Using these conventions, we may rewrite

the ⊑-minimal models of P2 as

I2(harvey) = harvey

I2(head) = harvey·rhead
1

I2(tails) = 0

I2(shoot) = 0

I2(dead) = 0

I ′

2(harvey) = harvey

I ′

2(head) = 0

I ′

2(tails) = harvey·rtails
1

I ′

2(shoot) = harvey·rtails
1 ·r2

I ′

2(dead) = harvey·rtails
1 ·r2·r3

Note that I ′

2(dead) is just the justification of dead mentioned in the introduction (7).

Another interesting observation is that the sets of true atoms in each model, Atoms(I2) =

{harvey, head} and Atoms(I ′

2) = {harvey, tails, shoot , dead}, respectively corresponding

to the two GL-stable models of P2. This correspondence, however, is not always one-

to-one, as stated by Theorem 3. To see why, consider a program P8 consisting of the

following rules

r1 : a ∨ b ← r2 : a ← b r3 : b ← a

Program P8 has a unique GL-stable model {a, b} but two causal stable models I8 and

I ′

8 such that:

I8(a) = ra
1

I8(b) = ra
1 ·r3

I ′

8(a) = rb
1·r2

I ′

8(b) = rb
1

As we can see, the true atoms in both models Atoms(I) = Atoms(I ′) = {a, b} coin-

cide with the unique GL-stable model, but their explanations differ. In I8, atom a is

a (non-deterministic) effect of the disjunction r1, while b is derived from a through r3.

Analogously, I ′

8 makes b true because of r1 and then obtains a from b through r2.

Programs with negation. To introduce default negation, let us consider a variation of

our running example in which shooting the victim may fail in several ways: the victim

may be wearing a bulletproof vest, the gunpowder may be wet, etc. A possible encoding of

this scenario is program P9 obtained from program P2={(1), (3), (5), (6)} after replacing

rule (1) by

r1 : dead ← shoot, not ab (17)

and rules for every possible exception in the following way

r5 : ab ← wet (18)

r6 : ab ← bulletproof (19)

From a causal perspective, saying that the lack of an exception is part of a cause (e.g., for

dead) may seem rather counterintuitive. It is not the case that we are dead because the

gunpowder was not wet, or because we are not wearing a bulletproof vest, or whatever

other possible exception that might be added in the future3. Instead, as nothing violated

default (17), the justifications for dead should be the same as in program P2. In this

sense, falsity in understood as the default situation that is broken when a cause is found4.

This interpretation carries over to negative literals, so that the presence of not A in a rule

body does not propagate causal information, but instead, it simply checks the absence of

an exception. To capture this behaviour, we proceed to extend the traditional program

reduct (Gelfond and Lifschitz 1988) to causal logic programs.

Definition 7 (Program reduct). The reduct of a program P with respect to an interpre-

tation I, in symbols P I , is the result of

1. removing all rules such that I(B) , 0 for some B ∈ body−(r),

2. removing all rules such that I(B) = 0 for some B ∈ head−(r),

3. removing all the negative literals for the remaining rules. �

3 A case of the well-known qualification problem (McCarthy 1987), i.e., the impossibility of listing all
the possible conditions that prevent an action to cause a given effect.

4 The paper (Hitchcock and Knobe 2009) contains an extended discussion with several examples show-
ing how people ordinarily understand causes as deviations from a norm.

Definition 8 (Causal stable model). We say that an interpretation I is a causal stable

model of some program P iff I is a causal stable model of the positive program P I .

Observation 2. Note that P I coincides with P Ist

, i.e., the reduct does not vary if we

just use the standard interpretation Ist. Moreover, it also coincides with the classical

GL-reduct P Atoms(I). �

Theorem 4. Let P be a labelled program. Then, J is a standard stable model (i.e.

Atoms(J) is a GL-stable model) of P iff there is some causal stable model I of P such

that Ist = J (i.e. Atoms(I) = Atoms(J)). �

Theorem 4 is an immediate consequence of Observation 2 plus Theorem 3. Further-

more, it is easy to see that program P9 has the same two standard stable models of P2.

The reduct of P9 with respect to interpretations I2 and I ′

2 is just the result of removing

not ab from the body of (17). Thus, these are also the two causal stable models of P9.

On the other hand, a program P10, obtained by adding the fact wet to program P9, has

two standard stable models {harvey, head , wet} and {harvey, tails, wet} and two corre-

sponding causal stable models. Note that the reduct of program P9 w.r.t. I9 and I ′

9 is

just the result of removing rule (17) and, thus, there is no justification for dead in any

of these two causal stable models.

4 Causal-choice rules

Disjunctive rules are useful for representing non-deterministic causal laws that represent

the possible outcomes of an experiment like throwing a coin. However, disjunction alone

is not enough to capture the causal nature of some non-deterministic statements of the

form “A may cause B.” In order to illustrate this limitation, consider the statement “An

infection may cause the patient to have fever .” A frequent way to represent this kind of

statements in ASP is using a choice rule as follows

r1 : fever ∨ not fever ← infection (20)

infection (21)

Program P11 consisting of rules (20-21) has two standard stable models S11 = {fever}

and S′

11 = {infection, fever} and, in fact, two respective causal stable models I11 and

I ′

11:

I11(infection) = infection

I11(fever) = 0

I ′

11(infection) = infection

I ′

11(fever) = infection·rfever
1

which obtain the expected result. However, the causal behaviour of (20) is not exactly

what we look for but, instead, would correspond to the assertion “infection may cause

fever or fever is false.” This becomes evident if we add a second external cause for fever :

r2 : fever ← (22)

The unique standard stable model of the new program P12 formed by P11 plus (22) is

now S′

11, since once fever is fixed by r2, the choice r1 is forced to cause fever . This

“forced causation” is irrelevant when we do not consider causal explanations: in fact,

under GL-stable models semantics, once we add a fact for fever , rule r1 becomes a

tautology and can always be safely removed from the program. However, r1 cannot be

removed under the causal semantics (since it expresses some relation between infection

and fever) and, as (22) fixes fever true for any model I, the corresponding reduct of r1

will mandatorily be:

r1 : fever ← infection (23)

Under these circumstances, it is easy to see that we get a unique causal stable model I12
of program P12 that satisfies I12(fever) = infection·rfever

1 + r2. In other words, we get

now that infection is always forced to be one of the causes of fever , although the only

addition we made was providing an (independent) alternative cause r2.

For capturing the correct meaning of “may cause” in this example, we should have

obtained a second causal stable model I ′

12 where I ′

12(fever) = r2, that is, fever is still

true due to r2 but the infection does not result to be an alternative cause of fever

this time. The problem with this second model is that while Atoms(I ′

12) = Atoms(I12)

means that the reduct for both models will always coincide, and we also have5 I ′

12 ⊏ I12,

meaning that no program may have both interpretations as ⊑-minimal models of such a

reduct. Hence, it is clear that no program using the previous language can capture the

intended models of this example. We introduce next the notion of causal-choice rule (and

its associated program reduct) that intuitively captures the idea of “A may cause B” and

that, when causal information is disregarded, amounts to a usual choice rule under the

standard stable model semantics.

Definition 9. A causal-choice rule is an expression of the form of

ri : A1 ∨ . . . ∨Al ∨ not Al+1 ∨ . . . ∨ not Ak f B1, . . . , Bm, not Bm+1, . . . , not Bn (24)

where ri ∈ Lb is a label and all Aj ∈ At and Bj are atoms. For every causal-choice rule r

of the form of (24), by rule(r) we denote its corresponding rule of the form of (8), i.e.,

rule(r) corresponds to replacing ‘ f ’ by ‘ ← .’ �

Definition 10. The reduct of a program with causal-choice rules P , with respect to an

interpretation I, in symbols also P I , is obtained by

1. removing every causal-choice rule r such that I does not satisfy rule(r),

2. replacing the remaining causal-choice rules r by rule(r)

3. apply the reduct of Definition 7 to the result of the previous two steps.

An interpretation I is a causal stable model of a program with causal-choice rules P iff

I is a causal stable model of P I . �

We can now represent the variation of our running example with program P13:

r1 : fever f infection (25)

r2 : fever ← (26)

infection (27)

On the one hand, the reduct of program P13 w.r.t. I12 is the program obtained by

replacing the choice rule (25) by its corresponding rule (23). It is easy to check that I12

5 Indeed, I′

12(fever) = r2 < infection·r
fever
1

+ r2 = I12(fever) while I12(infection) = I′

12(infection) =

infection.

is a ⊑-minimal model of P
I12
13 and, thus, a causal stable model of P13. On the other

hand, the reduct of program P13 w.r.t. I ′

12 is the result of removing rule (25) and, thus,

I ′

12 is also a ⊑-minimal model of P
I′

12
13 and a causal stable model of program P13.

As explained before, this example illustrates that there are programs with causal-

choice rules whose causal stable models cannot be captured by programs without them.

Despite that, it can be shown that, when causal information is disregarded, causal-choice

rules behave like standard choice rules. The following definition and Theorem 5 below

formalise this intuitive idea.

Definition 11. For any program P and causal-choice rule r ∈ P of the form of (24), by

ch(r, P), we denote the program obtained after replacing r by a set of rules of the form of

ri : A1∨. . .∨Aj∨not Aj∨. . .∨Al∨not Al+1∨. . .∨not Ak ← body(r) (28)

per each atom Aj ∈ head+(r). �

As an example, the causal-choice (25) in a program P would be replaced by the stan-

dard choice (20) in ch((25), P).

Theorem 5. Let P be a program with causal-choice rules, r ∈ P be a causal-choice rule

and let I be a standard interpretation. Then, I is a standard stable model of P iff I is a

standard stable model of ch(r, P). �

5 Related Work

The most obvious related work is our previous approach for non-disjunctive programs (Cabalar et al. 2014a).

The following result established a one-to-one correspondence between our causal stable

models and the CJ-stable models from (Cabalar et al. 2014a).

Theorem 6. Let P be a normal program, for every causal stable model I, there is a

unique CJ-causal stable model J such that Ist = Jst, and vice-versa. Furthermore, if I

and J are respectively a causal stable model and CJ-stable model of P such that Ist = Jst,

then there is a justification G′ = λ(G) such that G′ ≤ J(A) for every atom A and

justification G ≤ I(A), where λ(G) denotes the result of removing every edge containing

an atom label A ∈ At in the causal graph G. �

Note, that causal justifications with respect to any causal stable model are always

a (possibly strict) subset of the causal justifications with the corresponding CJ-stable

model. To illustrate this difference, consider the following normal program P14

r1 : a ← r3 : b ← a r4 : c ← a r5 : d ← b, c

whose unique CJ-stable model satisfies I14(d) = G1 with each G1 being the causal

graph G1 depicted in Figure 3. Similarly, the unique causal stable model of program P14
satisfies I14(d) = G′

1 where G′
1 is the result of removing every edge containing an atom

label A ∈ At in the causal graph G1. However, if we consider a program P15 obtained by

adding rule (r2 : a ←) to program P14, then this program has a unique CJ-stable model

that satisfies J15(d) = G1 +G2 +G3 +G4 with each Gj the corresponding causal graph

depicted in Figure 3. On the other hand, under our current definition, program P15 has a

unique causal stable model satisfying I15(d) = G′
1 +G′

2 with G1 and G2 being the result

r1

��✄✄
✄

��
❀❀
❀

r2

��✄✄
✄

��
❀❀
❀

r1

��

r2

��

r2

��

r1

��
r3

))

r4

uu

r3

))

r4

uu

r3

))

r4

uu

r3

))

r4

uu
r5 r5 r5 r5

G1 G2 G3 G4

Fig. 3. Causal graphs associated with d by the unique CJ-stable model of program P14.

of removing every edge containing an atom label A ∈ At in the causal graphs G′
1 and G′

2,

respectively. Note that causal graphs G3 and G4 can be considered somehow redundant

with respect to G1 and G2 and, in this sense, our current definition, not only extends

the definition of causal stable models given in (Cabalar et al. 2014a) for disjunctive logic

programs, but also better captures the notion of non-redundant justification for non-

disjunctive programs (for more details we refer to Cabalar and Fandinno 2016b).

Papers on reasoning about actions and change (Lin 1995; McCain 1997; Thielscher 1997)

have been traditionally focused on using causal inference to solve representational prob-

lems (mostly, the frame, ramification and qualification problems) without paying much

attention to the derivation of cause-effect relations. Perhaps the most established AI ap-

proach for causality is relying on causal networks (Pearl 2000). In this approach, it is

possible to conclude cause-effect relations like “A has caused B” from the behaviour of

structural equations by applying the counterfactual interpretation: “had A not happened,

B would not have happened.” As discussed by Hall (2004), this counterfactual-based def-

inition corresponds to recognising some kind of dependence relation in the behaviour

of a non-causal system description. As opposed to this, Hall considers a different (and

incompatible) definition where causes must be connected to their effects via sequences

of causal intermediates, something that is closer to our explanations in terms of causal

graphs. A similar approach has also been studied by Vennekens (2011) in CP-logic.

Focusing on LP, our work obviously relates to approaches on justifications (Specht 1993;

Pemmasani et al. 2004; Pontelli et al. 2009; Damásio et al. 2013; Denecker et al. 2015; Schulz and Toni 2016)

which, as mentioned in the introduction, are limited to non-disjunctive programs. Among

these, Why-not Provenance Justifications (WnP) (Damásio et al. 2013) share with our

approach a semantic definition in terms of algebraic operations. A formal compari-

son was done in (Cabalar and Fandinno 2016a). With respect to (Pontelli et al. 2009),

a formal relation has not been established yet. We conjecture that our causal expla-

nations can be seen as non-redundant off-line justifications with respect to a kind of

“maximal set of assumptions.” Still, this would apply to non-disjunctive programs only,

since (Pontelli et al. 2009) do not cover disjunction.

A more far-fetched resemblance exists with respect to other meta-programming tech-

niques for ASP debugging (Gebser et al. 2008; Oetsch et al. 2010) which have a different

goal, tackling the question of why some interpretations are not stable models of a (possi-

bly disjunctive) program without negative literals in the head. These approaches can be

used to generate explanations for a set of literals L, with respect to an interpretation I,

by recursively asking why I\L is not an stable model of the program. However, the given

explanation cannot be used for our purpose of identifying causal relations, since it just

provides a plain set of rules, without distinguishing which of them are a part of the same

justification or which are their dependences.

6 Conclusions and open issues

We have provided an extension of a logic programming semantics based on causal justifi-

cations to cope with disjunctive programs. As in the previous, non-disjunctive approach,

each true atom is assigned a set of non-redundant justifications, expressions built with

rule labels and three algebraic operations: addition, product and application. We have

shown that, for each standard stable model of a program, there is a class of causal stable

models that capture the different ways in which (the same) true atoms can be justified.

We have also shown that disjunctive rules are not enough to capture informal statements

like “A may cause B” and introduced causal-choice rules to represent them.

Regarding complexity, since the existence of causal stable models is completely deter-

mined by the existence of standard stable models, it intermediately follows that this prob-

lem is ΣP
2 -complete (Eiter and Gottlob 1995). For query answering, it has been shown

in (Cabalar et al. 2014b), that deciding whether a causal graph is a brave necessary cause

is ΣP
2 -complete, even in the non-disjunctive case. Whether disjunction makes the problem

harder is still an open question.

Several other topics remain open for future study. Interesting topics include a complex-

ity assessment or studying an extension to arbitrary theories as with Equilibrium Logic

(Pearce 2006) for the non-causal case. Further ongoing work is focused on implementa-

tion, the introduction of strong negation, a formal comparative with (Pontelli et al. 2009)

and (Schulz and Toni 2016).

References

Baral, C. 2003. Knowledge representation, reasoning and declarative problem solving. Cam-
bridge university press.

Cabalar, P. and Fandinno, J. 2016a. Enablers and inhibitors in causal justifications of logic
programs. Theory and Practice of Logic Programming, TPLP, (First View).

Cabalar, P. and Fandinno, J. 2016b. Justifications for programs with disjunctive and causal-
choice rules. CoRR abs/1608.00870.

Cabalar, P., Fandinno, J., and Fink, M. 2014a. Causal graph justifications of logic programs.
Theory and Practice of Logic Programming TPLP 14, 4-5, 603–618.

Cabalar, P., Fandinno, J., and Fink, M. 2014b. A complexity assessment for queries in-
volving sufficient and necessary causes. In Logics in Artificial Intelligence - 14th European
Conference, JELIA 2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proc., E. Fermé
and J. Leite, Eds. Lecture Notes in Computer Science, vol. 8761. Springer, 297–310.

Damásio, C. V., Analyti, A., and Antoniou, G. 2013. Justifications for logic programming.
In Logic Programming and Nonmonotonic Reasoning, Twelfth Intl. Conference, LPNMR 2013,
Corunna, Spain, September 15-19, 2013. Proc., P. Cabalar and T. C. Son, Eds. Lecture Notes
in Computer Science, vol. 8148. Springer, 530–542.

Denecker, M., Brewka, G., and Strass, H. 2015. A formal theory of justifications. In Logic
Programming and Nonmonotonic Reasoning - 13th Intl. Conference, LPNMR 2015, Lexington,
KY, USA, September 27-30, 2015. Proc., F. Calimeri, G. Ianni, and M. Truszczynski, Eds.
Lecture Notes in Computer Science, vol. 9345. Springer, 250–264.

Eiter, T. and Gottlob, G. 1995. On the computational cost of disjunctive logic programming:
Propositional case. Annals of Mathematics and Artificial Intelligence 15, 3-4, 289–323.

Fandinno, J. 2015a. A causal semantics for logic programming. Ph.D. thesis, University of
Corunna.

Fandinno, J. 2015b. Towards deriving conclusions from cause-effect relations. In in Proc. of the

8th Intl. Workshop on Answer Set Programming and Other Computing Paradigms, ASPOCP
2015, Cork, Ireland, August 31, 2015.

Fandinno, J. 2016. Deriving conclusions from non-monotonic cause-effect relations. Theory
and Practice of Logic Programming TPLP. (to appear).

Gebser, M., Pührer, J., Schaub, T., and Tompits, H. 2008. A meta-programming technique
for debugging answer-set programs. In Proc. of the 23rd AAAI Conf. on Artificial Intelligence,
Chicago, USA, July 13-17, 2008, D. Fox and C. P. Gomes, Eds. AAAI Press, 448–453.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming. In
Logic Programming, Proc. of the Fifth Intl. Conference and Symposium, Seattle, Washington,
August 15-19, R. A. Kowalski and K. A. Bowen, Eds. MIT Press, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3-4, 365–386.

Hall, N. 2004. Two concepts of causation. In Causation and counterfactuals, J. Collins, N. Hall,
and L. A. Paul, Eds. Cambridge, MA: MIT Press, 225–276.

Hitchcock, C. and Knobe, J. 2009. Cause and norm. Journal of Philosophy 11, 587–612.

Lewis, D. K. 1973. Causation. The journal of philosophy 70, 17, 556–567.

Lin, F. 1995. Embracing causality in specifying the indirect effects of actions. In Proc. of
the Fourteenth Intl. Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec,
Canada, August 20-25 1995, 2 Volumes. Morgan Kaufmann, 1985–1993.

Marek, V. W. and Truszczyński, M. 1999. Stable models and an alternative logic pro-
gramming paradigm. In The Logic Programming Paradigm, K. R. Apt, V. W. Marek,
M. Truszczyński, and D. Warren, Eds. Artificial Intelligence. Springer, 375–398.

McCain, N. C. 1997. Causality in commonsense reasoning about actions. Ph.D. thesis, Uni-
versity of Texas at Austin.

McCarthy, J. 1987. Epistemological problems of artificial intelligence. Readings in artificial
intelligence, 459.

Niemelä, I. 1999. Logic programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 3-4, 241–273.

Oetsch, J., Pührer, J., and Tompits, H. 2010. Catching the ouroboros: On debugging
non-ground answer-set programs. CoRR abs/1007.4986.

Pearce, D. 2006. Equilibrium logic. Annals of Mathematics and Artificial Intelligence 47, 1-2,
3–41.

Pearl, J. 2000. Causality: models, reasoning, and inference. Cambridge University Press, New
York, NY, USA.

Pemmasani, G., Guo, H., Dong, Y., Ramakrishnan, C. R., and Ramakrishnan, I. V.

2004. Online justification for tabled logic programs. In Functional and Logic Programming,
7th Intl. Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004, Proc., Y. Kameyama and
P. J. Stuckey, Eds. Lecture Notes in Computer Science, vol. 2998. Springer, 24–38.

Pontelli, E., Son, T. C., and El-Khatib, O. 2009. Justifications for logic programs under
answer set semantics. Theory and Practice of Logic Programming TPLP 9, 1, 1–56.

Schulz, C. and Toni, F. 2016. Justifying answer sets using argumentation. Theory and
Practice of Logic Programming TPLP 16, 1, 59–110.

Specht, G. 1993. Generating explanation trees even for negations in deductive database sys-
tems. In Proc. of the 5th Workshop on Logic Programming Environments (LPE 1993), October
29-30, 1993, Vancouver, British Columbia, Canada, M. Ducassé, B. L. Charlier, Y. Lin, and
L. Ü. Yalçinalp, Eds. IRISA, Campus de Beaulieu, France, 8–13.

Thielscher, M. 1997. Ramification and causality. Artificial Intelligence 89, 1-2, 317–364.

Vennekens, J. 2011. Actual causation in CP-logic. Theory and Practice of Logic Programming
TPLP 11, 4-5, 647–662.

	1 Introduction
	2 Preliminaries
	3 Causal stable models for disjunctive logic programs
	4 Causal-choice rules
	5 Related Work
	6 Conclusions and open issues
	References

