
Under consideration for publication in Theory and Practice of Logic Programming 1

Enablers and Inhibitors in
Causal Justifications of Logic Programs∗

Pedro Cabalar and Jorge Fandinno
Department of Computer Science

University of Corunna, Spain
(e-mail: {cabalar, jorge.fandino}@udc.es)

submitted October 21 2015; revised January 26 2016; accepted February 22 2016

Abstract

To appear in Theory and Practice of Logic Programming (TPLP). In this paper we propose an extension
of logic programming (LP) where each default literal derived from the well-founded model is associated
to a justification represented as an algebraic expression. This expression contains both causal explanations
(in the form of proof graphs built with rule labels) and terms under the scope of negation that stand for
conditions that enable or disable the application of causal rules. Using some examples, we discuss how
these new conditions, we respectively call enablers and inhibitors, are intimately related to default negation
and have an essentially different nature from regular cause-effect relations. The most important result is a
formal comparison to the recent algebraic approaches for justifications in LP: Why-not Provenance (WnP)
and Causal Graphs (CG). We show that the current approach extends both WnP and CG justifications
under the Well-Founded Semantics and, as a byproduct, we also establish a formal relation between these
two approaches.

KEYWORDS: causal justifications, well-founded semantics, stable models, answer set programming.

1 Introduction

The strong connection between Non-Monotonic Reasoning (NMR) and Logic Programming (LP)
semantics for default negation has made possible that LP tools became nowadays an impor-
tant paradigm for Knowledge Representation (KR) and problem-solving in Artificial Intelli-
gence (AI). In particular, Answer Set Programming (ASP) (?; ?) has established as a preeminent
LP paradigm for practical NMR with applications in diverse areas of AI including planning, rea-
soning about actions, diagnosis, abduction and beyond. The ASP paradigm is based on the stable
models semantics (?) and is also closely related to the other mainly accepted interpretation for
default negation, well-founded semantics (WFS) (?). One interesting difference between these
two LP semantics and classical models (or even other NMR approaches) is that true atoms in
LP must be founded or justified by a given derivation. These justifications are not provided in
the semantics itself, but can be syntactically built in some way in terms of the program rules, as
studied in several approaches (?; ?; ?; ?; ?; ?; ?).

Rather than manipulating justifications as mere syntactic objects, two recent approaches have

∗ This is an extended version of a paper presented at the Logic Programming and Nonmonotonic Reasoning Conference
(LPNMR 2015), invited as a rapid communication in TPLP. The authors acknowledge the assistance of the conference
program chairs Giovambattista Ianni and Miroslaw Truszczynski.

2 P. Cabalar & J. Fandinno

considered extended multi-valued semantics for LP where justifications are treated as algebraic
constructions: Why-not Provenance (WnP) (?) and Causal Graphs (CG) (?). Although these two
approaches present formal similarities, they start from different understandings of the idea of
justification. On the one hand, WnP answers the query “why literal L might hold” by providing
conjunctions of hypothetical modifications on the program that would allow deriving L. These
modifications include rule labels, expressions like not(A) with A an atom, or negations ‘¬’ of the
two previous cases. As an example, a justification for L like r1 ∧ not(p)∧¬r2 ∧¬not(q) means
that the presence of rule r1 and the absence of atom p would allow deriving L (hypothetically)
if both rule r2 were removed and atom q were added to the program. If we want to explain why
L actually holds, we have to restrict to justifications without ‘¬’, that is, those without program
modifications (which will be the focus of this paper).

On the other hand, CG-justifications start from identifying program rules as causal laws so
that, for instance, (p← q) can be read as “event q causes effect p.” Under this viewpoint, (pos-
itive) rules offer a natural way for capturing the concept of causal production, i.e. a continuous
chain of events that has helped to cause or produce an effect (?; ?). The explanation of a true
atom is made in terms of graphs formed by rule labels that reflect the ordered rule applications
required for deriving that atom. These graphs are obtained by algebraic operations exclusively
applied on the positive part of the program. Default negation in CG is understood as absence of
cause and, consequently, a false atom has no justification.

The explanation of an atom A in CG is more detailed than in WnP, since the former contains
graphs that correspond to all relevant proofs of A whereas in WnP we just get conjunctions that
do not reflect any particular ordering among rule applications. However, as explained before,
CG does not capture the effect of default negation in a given derivation and, sometimes, this
information is very valuable, especially if we want to answer questions of the form “why not.”

As in the previous paper on CG (?), our final goal is to achieve an elaboration tolerant repre-
sentation of causality that allows reasoning about cause-effect relations. Under this perspective,
although WnP is more oriented to program debugging, its possibility of dealing with hypotheti-
cal reasoning of the form “why not” would be an interesting feature to deal with counterfactuals,
since several approaches to causality (see Section ??) are based on this concept. To understand
the kind of problems we are interested in, consider the following example. A drug d in James
Bond’s drink causes his paralysis p provided that he was not given an antidote a that day. We
know that Bond’s enemy, Dr. No, poured the drug:

p ← d, not a (1)

d (2)

In this case it is obvious that d causes p, whereas the absence of a just enables the application
of the rule. Now, suppose we are said that Bond is daily administered an antidote by the MI6,
unless it is a holiday h:

a← not h (3)

Adding this rule makes a become an inhibitor of p, as it prevents d to cause p by rule (??). But
suppose now that we are in a holiday, that is, fact h is added to the program (??)-(??). Then, the
inhibitor a is disabled and d causes p again. However, we do not consider that the holiday h is
a (productive) cause for Bond’s paralysis p although, indeed, the latter counterfactually depends
on the former: “had not been a holiday h, Bond would have not been paralysed.” We will say that
the fact h, which disables inhibitor a, is an enabler of p, as it allows applying rule (??).

Enablers and Inhibitors in Causal Justifications of Logic Programs 3

In this work we propose dealing with these concepts of enablers and inhibitors by augmenting
CG justifications with a new negation operator ‘∼’ in the CG causal algebra. We show that this
new approach, which we call Extended Causal Justifications (ECJ), captures WnP justifications
under the Well-founded Semantics, establishing a formal relation between WnP and CG as a
byproduct.

The rest of the paper is structured as follows. The next section defines the new approach.
Sections ?? and ?? explain the formal relations to CG and WnP through a running example.
Section ?? studies several examples of causal scenarios from the literature and finally, Section ??
concludes the paper. Appendix ?? contains an auxiliary figure depicting some common algebraic
properties and Appendix ?? contains the formal proofs of theorems from the previous sections.

2 Extended Causal Justifications (ECJ)

A signature is a pair 〈At,Lb〉 of sets that respectively represent atoms (or propositions) and labels.
Intuitively, each atom in At will be assigned justifications built with rule labels from Lb. In prin-
ciple, the intersection At ∩Lb does not need to be empty: we may sometimes find it convenient
to label a rule using an atom name (normally, the head atom). Justifications will be expressions
that combine four different algebraic operators: a product ‘∗’ representing conjunction or joint
causation; a sum ‘+’ representing alternative causes; a non-commutative product ‘·’ that captures
the sequential order that follows from rule applications; and a non-classical negation ‘∼’ which
will precede inhibitors (negated labels) and enablers (doubly negated labels).

Definition 1 (Terms)
Given a set of labels Lb, a term, t is recursively defined as one of the following expressions
t ::= l | ∏S | ∑S | t1 · t2 | ∼t1 where l ∈ Lb, t1, t2 are in their turn terms and S is a (possibly
empty and possibly infinite) set of terms. A term is elementary if it has the form l, ∼l or ∼∼l
with l ∈ Lb being a label. �

When S = {t1, . . . , tn} is finite we simply write ∏S as t1 ∗· · ·∗tn and ∑S as t1+ · · ·+tn. Moreover,
when S = /0, we denote ∏S by 1 and ∑S by 0, as usual, and these will be the identities of the
product ‘∗’ and the addition ‘+’, respectively. We assume that ‘·’ has higher priority than ‘∗’
and, in turn, ‘∗’ has higher priority than ‘+’.

Definition 2 (Values)
A (causal) value is each equivalence class of terms under axioms for a completely distributive
(complete) lattice with meet ‘∗’ and join ‘+’ plus the axioms of Figures ?? and ??. The set of
(causal) values is denoted by VLb. �

Note that 〈VLb,+,∗,∼ ,0,1〉 is a completely distributive Stone algebra (a pseudo-complemented,
completely distributive, complete lattice which satisfies the weak excluded middle axiom) whose
meet and join are, as usual, the product ‘∗’ and the addition ‘+’. Informally speaking, this means
that these two operators satisfy the properties of a Boolean algebra but without negation.

Note also that all three operations, ‘∗’, ‘+’ and ‘·’ are associative. Product ‘∗’ and addition
‘+’ are also commutative, and they hold the usual absorption and distributive laws with respect
to infinite sums and products of a completely distributive lattice.

The axioms for ‘·’ in Figure ?? are directly extracted from the CG algebraic structure. For a
more detailed explanation on their induced behaviour see (?). The new contribution in this paper
with respect to the CG algebra is the introduction of the ‘∼’ operator whose meaning is captured

4 P. Cabalar & J. Fandinno

Associativity

t · (u·w) = (t·u) · w

Absorption

t = t + u · t · w
u · t · w = t ∗ u · t · w

Identity

t = 1 · t
t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Idempotency

x · x = x

Addition distributivity

t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity

c ·d · e = (c ·d)∗ (d · e) with d 6= 1
c · (d ∗ e) = (c ·d)∗ (c · e)
(c∗d) · e = (c · e)∗ (d · e)

Fig. 1. Properties of the ‘·’ operator (c,d,e are terms without ‘+’ and x is an elementary term).
Distributivity is also satisfied over infinite sums and products.

Pseudo-complement

t ∗ ∼t = 0
∼∼∼t = ∼t

De Morgan

∼(t+u) = (∼t ∗∼u)
∼(t ∗u) = (∼t+∼u)

Weak excl. middle

∼t + ∼∼t = 1

appl. negation

∼(t · u) = ∼(t ∗ u)

Fig. 2. Properties of the ‘∼’ operator.

by the axioms in Figure ??. As we can see, this operator satisfies De Morgan laws and acts as a
complement for the product t ∗∼t = 0. However, it diverges from a classical Boolean negation in
some aspects. In the general case, the axioms∼∼t = t (double negation) and t+∼t = 1 (excluded
middle) are not valid. Instead1, we can replace a triple negation∼∼∼t by∼t, and we have a weak
version of the excluded middle axiom ∼t +∼∼t = 1. The negation of an application is defined
as the negation of the product ∼(t ·u) def=∼(t ∗u) which, in turn, is equivalent to ∼(u∗ t), since ∗
is commutative. In other words, under negation, the rule application ordering is disregarded. It is
not difficult to see that we can apply the axioms of negation to reach an equivalent expression that
avoids its application to other operators. We say that a term is in negation normal form (NNF) if
no other operator is in the scope of negation ‘∼’. Moreover, an NNF term is in disjuntive normal
form (DNF) if: (1) no sum is in the scope of another operator; (2) only elementary terms are
in the scope of application; and (3) every product is transitively closed, that is, of the form of
a·b ∗ b·c ∗ a·c. Without loss of generality, we assume from now that all functions defined over
causal terms are applied over their DNF form, although, we will usually write them in NNF for
short.

The lattice order relation is defined as usual in the following way:

t ≤ u iff (t ∗u = t) iff (t +u = u)

Consequently 1 and 0 are respectively the top and bottom elements with respect to relation ≤.

Definition 3 (Labelled logic program)
Given a signature 〈At,Lb〉, a (labelled logic) program P is a set of rules of the form:

ri : H ← B1, . . . , Bm, notC1, . . . , notCn (4)

where ri ∈ Lb is a label or ri = 1, H (the head of the rule) is an atom, and Bi’s and Ci’s (the body
of the rule) are either atoms or terms. �

1 This behaviour coincides indeed with the properties for default negation obtained in Equilibrium Logic (?) or the
equivalent General Theory of Stable Models (?).

Enablers and Inhibitors in Causal Justifications of Logic Programs 5

When n = 0 we say that the rule is positive, furthermore, if in addition m = 0 we say that the
rule is a fact and omit the symbol ‘←.’ When ri ∈ Lb we say that the rule is labelled; otherwise
ri = 1 and we omit both ri and ‘:’. By these conventions, for instance, an unlabelled fact A is
actually an abbreviation of (1 : A←). A program P is positive when all its rules are positive, i.e.
it contains no default negation. It is uniquely labelled when each rule has a different label or no
label at all. In this paper, we will assume that programs are uniquely labelled. Furthermore, for
the sake of clarity, we also assume that, for every atom A ∈ At, there is an homonymous label
A ∈ Lb, and that each fact A in the program actually stands for the labelled rule (A : A←). For
instance, following these conventions, a possible labelled version for the James Bond’s program
could be program P1 below:

r1 : p ← d,not a

r2 : a ← not h

d

h

where facts d and h stand for rules (d : d←) and (h : h←), respectively.
An ECJ-interpretation is a mapping I : At −→ VLb assigning a value to each atom. For in-

terpretations I and J we say that I ≤ J when I(A)≤ J(A) for each atom A ∈ At. Hence, there
is a ≤-bottom interpretation 0 (resp. a ≤-top interpretation 1) that stands for the interpretation
mapping each atom A to 0 (resp. 1). The value assigned to a negative literal not A by an interpre-
tation I, denoted as I(not A), is defined as I(not A) def=∼I(A), as expected. Similarly, for a term t,
I(t) def= [t] is the equivalence class of t.

Definition 4 (Model)
An interpretation I satisfies a rule like (??) iff(

I(B1)∗ . . .∗ I(Bm)∗ I(notC1)∗ . . .∗ I(notCn)
)
· ri ≤ I(H) (5)

and I is a (causal) model of P, written I |= P, iff I satisfies all rules in P. �

As usual in LP, for positive programs, we may define a direct consequence operator TP s.t.

TP(I)(H) def= ∑
{ (

I(B1)∗ . . .∗ I(Bn)
)
· ri | (ri : H← B1, . . . ,Bn) ∈ P

}
for any interpretation I and atom H ∈ At. We also define TP ↑α (0) def= TP(TP ↑α−1 (0)) for any
successor ordinal α and

TP ↑α (0) def= ∑
β<α

TP ↑β (0)

for any limit ordinal alpha. As usual, ω denotes the smallest infinite limit ordinal. Note that 0 is
considered a limit ordinal and, thus, TP ↑0 (0) = ∑β<0 TP ↑β (0) = 0.

Theorem 1
Let P be a (possibly infinite) positive logic program. Then, (i) the least fixpoint of the TP operator,
denoted by lfp(TP), satisfies lfp(TP) = TP ↑ω (0) and it is the least model of P, (ii) furthermore,
if P is positive and has n rules, then lfp(TP) = TP ↑ω (0) = TP ↑n (0). �

Theorem ?? asserts that, as usual, positive programs have a ≤-least causal model. As we will
see later, this least model coincides with the traditional least model (of the program without
labels) when one just focuses on the set of true atoms, disregarding the justifications explaining
why they are true. For programs with negation we define the following reduct.

6 P. Cabalar & J. Fandinno

Definition 5 (Reduct)
Given a program P and an interpretation I we denote by PI the positive program containing a
rule of the form

ri : H← B1, . . . ,Bm, I(notC1), . . . , I(notCn) (6)

for each rule of the form (??) in P. �

Program PI is positive and, from Theorem ??, it has a least causal model. By ΓP(I) we denote the
least model of program PI . The operator ΓP is anti-monotonic and, consequently, Γ2

P is monotonic
(Proposition ?? in the appendix) so that, by Knaster-Tarski’s theorem, it has a least fixpoint
LP and a greatest fixpoint UP

def= ΓP(LP). These two fixpoints respectively correspond to the
justifications for true and for non-false atoms in the (standard) well-founded model (WFM), we
denote as WP.

For instance, in our running example, LP??(d) = Γ2
P??
↑α (0)(d) = d for 1 ≤ α points out that

atom d is true because of fact d. Similarly, LP??(h) = h and LP??(a) =∼h·r2 reveals that atom h
is true because of fact h, and that atom a is not true because fact h has inhibited rule r2.

Furthermore,

LP??(p) = Γ
2
P??
↑α (0)(p) = (∼(∼h·r2)∗d)·r1 = (∼∼h∗d)·r1 +(∼r2 ∗d)·r1

for 2 ≤ α . That is, Bond has been paralysed because fact h has enabled drug d to cause the
paralysis by means of rule r1. This corresponds to the justification (∼∼h ∗ d)·r1. Notice how
the real cause d is a positive label (not in the scope of negation) whereas the enabler h is in the
scope of a a double negation ∼∼h. Justification (∼r2 ∗d)·r1 means that d·r1 would have been
sufficient to cause p, had not been present r2. This example is also useful for illustrating the
importance of axiom appl. negation. By directly evaluating the body of rule r1, we have seen that
Γ2

P??
↑2 (0)(p)=(∼(∼h · r2)∗d) · r1. Then, axiom appl. negation allows us to break the depen-

dence between ∼h and r2 into enablers and inhibitors: ∼(∼h · r2) =∼(∼h∗ r2) =∼∼h+∼r2

and, applying distributivity, we obtain one enabled justification, (∼∼h∗d)·r1, and one disabled
one, (∼r2 ∗d)·r1.

In our previous example, the least and greatest fixpoint coincided LP?? = UP?? = Γ2
P??
↑2 (0).

To illustrate the case where this does not hold consider, for instance, the program P2 formed by
the following negative cycle:

r1 : a← not b r2 : b← not a

In this case, the least fixpoint of Γ2
P assigns LP??(a) =∼r2·r1 and LP??(b) =∼r1·r2, while, in its

turn, the greatest fixpoint of Γ2
P corresponds to UP??(a) = r1 and UP??(b) = r2. If we focus on

atom a, we can observe that it is not concluded to be true, since the least fixpoint LP has only
provided one disabled justification∼r2·r1 meaning that r2 is acting as a disabler for a. But, on the
other hand, a cannot be false either since the greatest fixpoint provides an enabled justification r1

for being non-false (remember that UP provides justifications for non-false atoms). As a result,
we get that a is left undefined because r2 prevents it to become true while r1 can still be used to
conclude that it is not false.

To capture these intuitions, we provide some definitions. A query literal (q-literal) L is either
an atom A, its default negation ‘not A’ or the expression ‘undef A’ meaning that A is undefined.

Definition 6 (Causal well-founded model)

Enablers and Inhibitors in Causal Justifications of Logic Programs 7

Given a program P, its causal well-founded model WP is a mapping from q-literals to values s.t.

WP(A)
def= LP(A) WP(not A) def= ∼UP(A) WP(undef A) def=∼WP(A)∗∼WP(not A) �

Let l be a label occurrence in a term t in the scope of n≥ 0 negations. We say that l is an odd
or an even occurrence if n is odd or even, respectively. We further say that l is a strictly even
occurrence if it is even and n > 0.

Definition 7 (Justification)
Given a program P and a q-literal L we say that a term E with no sums is a (sufficient causal)
justification for L iff E ≤ WP(L). Odd (resp. strictly even) labels2 in E are called inhibitors
(resp. enablers) of E. A justification is said to be inhibited if it contains some inhibitor and it is
said to be enabled otherwise. �

True atoms will have at least one enabled justification, whereas false atoms only contain dis-
abled justifications. As an example of a query for a plain atom A, take the already seen explana-
tion for p in Bond’s example program P??: WP??(p)=LP??(p)=(∼∼h∗d)·r1 +(∼r2 ∗d)·r1. We
have here two justifications for atom p, let us call them E1=(∼∼h∗d)·r1 and E2 = (∼r2 ∗d)·r1.
Justification E1 is enabled because it contains no inhibitors (in fact, E1 is the unique real support
for p). Moreover, h is an enabler in E1 because it is strictly even (it is in the scope of double
negation) whereas d is a productive cause, since it is not in the scope of any negation. On the
contrary, E2 is disabled because it contains the inhibitor r2 (it occurs in the scope of one nega-
tion). Intuitively, r2 has prevented d·r1 to become a justification of p. On the other hand, for
atom a we had WP??(a)=∼h · r2 that only contains an inhibited justification (being h the in-
hibitor), and so, atom a is not true. Now, if we query about the negative q-literal not a, we obtain
WP??(not a)=∼UP??(a) which in this case happens to be ∼LP??(a)=∼(∼h · r2) = ∼∼h+∼r2.
That is, q-literal not a holds, being enabled by h. Moreover, ∼r2 points out that removing r2

would suffice to cause not a too. It is easy to see that the explanations we can get for q-literals
not A or undef A will have all their labels in the scope of negation (either as inhibitors or as
enablers).

To illustrate a query for undef A, let us return to program P?? whose standard well-founded
model left both a and b undefined. Given the values we obtained in the least and greatest fixpoints,
the causal WFM will assign WP??(a) = ∼r2·r1 and WP??(b) = ∼r1·r2, that is, r2 prevents r1

to cause a and r1 prevents r2 to cause b. Furthermore, the values assigned to their respective
negations, WP??(not a) =∼r1 and WP??(not b) =∼r2, point out that atoms a and b are not false
because rules r1 and r2 have respectively prevented them to be so. Finally, we obtain that undef a
is true because

WP(undef a) =∼WP??(a)∗∼WP??(not a) = (∼∼r2 +∼r1)∗∼∼r1 =∼∼r2 ∗∼∼r1

that is, rules r1 and r2 together have made a undefined. Similarly, b is also undefined because of
rules r1 and r2, WP(undef b) =∼∼r1 ∗∼∼r2.

The next theorem shows that the literals satisfied by the standard WFM are precisely those
ones containing at least one enabled justification in the causal WFM.

2 We just mention labels, and not their occurrences because terms are in NNF and E contains no sums. Thus, having
odd and even occurrences of a same label at a same time would mean that E = 0.

8 P. Cabalar & J. Fandinno

Theorem 2
Let P be a labelled logic program over a signature 〈At,Lb〉where Lb is a finite set of labels and let
WP its (standard) well-founded model. A q-literal L holds with respect to WP if and only if there
is some enabled justification E of L, that is, E ≤WP(L) and E does not contain odd negative
labels. �

Back to our example program P??, as we had seen, atom p had a unique enabled justification
E1 = (∼∼h ∗ d)·r1. The same happens for atoms d and h whose respective justifications are
just their own atom labels. Therefore, these three atoms hold in the standard WFM, WP?? . On
the contrary, as we discussed before, the only justification for a, WP??(a) = ∼h·r2, is inhibited
by h, and thus, a does not hold in WP?? . The interest of an inhibited justification for a literal
is to point out “potential” causes that have been prevented by some abnormal situation. In our
case, the presence of ∼h in WP??(a) = ∼h·r2 points out that an exception h has prevented r2 to
cause a. When the exception is removed, the inhibited justification (after removing the inhibitors)
becomes an enabled justification.

In our running example, if we consider a program P3 obtained by removing the fact h from
P??, then WP??(a) = r2 points out that a has been caused by rule r2 in this new scenario. This
intuition about inhibited justifications is formalized as follows.

Definition 8
Given a term t in DNF, by ρx : VCG

Lb −→VCG
Lb , we denote the function that removes the elementary

term x from t as follows:

ρx(t)
def=

ρx(u)⊗ρx(w) if t = u⊗ v with ⊗ ∈ {+,∗, ·}
1 if ∼∼t is equivalent to ∼∼x

0 if t is equivalent to ∼x

Note that we have assumed that t is in DNF. Otherwise, ρx(t)
def= ρx(u) where u is an equivalent

term in DNF. �

Theorem 3
Let P be a program over a signature 〈At,Lb〉 where Lb is a finite set of labels. Let Q be the result
of removing from P all rules labelled by some ri ∈ Lb. Then, the result of removing ri from the
justifications of some atom A with respect to program P are justifications of A with respect to Q,
that is, ρ∼ri(WP(A))≤WQ(A).

3 Relation to Causal Graph Justifications

We discuss now the relation between ECJ and CG approaches. Intuitively, ECJ extends CG causal
terms by the introduction of the new negation operator ‘∼’. Semantically, however, there are more
differences than a simple syntactic extension. A first minor difference is that ECJ is defined in
terms of a WFM, whereas CG defines (possibly) several causal stable models. In the case of
stratified programs, this difference is irrelevant, since the WFM is complete and coincides with
the unique stable model. A second, more important difference is that CG exclusively considers
productive causes in the justifications, disregarding additional information like the inhibitors or
enablers from ECJ. As a result, a false atom in CG has no justification – its causal value is 0
because there was no way to derive the atom. For instance, in program P??, the only CG stable

Enablers and Inhibitors in Causal Justifications of Logic Programs 9

model I just makes I(a) = 0 and we lose the inhibited justification ∼h · r2 (default r2 could not
be applied). True atoms like p also lose any information about enablers: I(p) = d·r1 and nothing
is said about ∼∼h. Another consequence of the CG orientation is that negative literals not A are
never assigned a cause (different from 0 or 1), since they cannot be “derived” or produced by
rules. In the example, we simply get I(not a) = 1 and I(not p) = 0.

To further illustrate the similarities and differences between ECJ and CG, consider the follow-
ing program P4 capturing a variation of the Yale Shooting Scenario.

dt+1 : deadt+1 ← shoott , loadedt , not abt

lt+1 : loadedt+1← loadt

at+1 : abt+1 ← watert

loaded0

dead0

ab0

load1

water3

shoot8

plus the following rules corresponding inertia axioms

Ft+1← Ft , not F t+1 F t+1← F t , not Ft+1

for F ∈ {loaded, ab, dead}. Atoms of the form A represent the strong negation of A and we
disregard models satisfying both A and A. Atom dead9 does not hold in the standard WFM
of P??, and so there is no CG-justification for it. Note here the importance of default reasoning.
On the one hand, the default flow of events is that the turkey, Fred, continues to be alive when
nothing threats him. Hence, we do not need a cause to explain why Fred is alive. On the other
hand, shooting a loaded gun would normally kill Fred, being this a cause of its death. But, in this
example, another exceptional situation – water spilled out – has inhibited this existing threat and
allowed the world to flow as if nothing had happened (that is, following its default behaviour).

In the CG-approach, dead9 is simply false by default and no justification is provided. How-
ever, a gun shooter could be “disappointed” since another conflicting default (shooting a loaded
gun normally kills) has not worked. Thus, an expected answer for the shooter’s question “why
not dead9?” is that water3 broke the default, disabling d9. In fact, ECJ yields the following in-
hibited justification for dead9:

WP??(dead9) = (∼water3 ∗ shoot8 ∗ load1·l2) ·d9 (7)

meaning that dead9 could not be derived because inhibitor water3 prevented the application of
rule d9 to cause the death of Fred. Note that inertia rules are not labelled, which, as mentioned
before, is syntactic sugar for rules with label 1. Since 1 is the identity of product and application,
this has the effect of not being traced in the justifications. Note also that, according to Theo-
rem ??, if we remove fact water3 (the inhibitor) from P?? leading to a new program P5, then we
get:

WP??(dead9) = (shoot8 ∗ load1·l2) ·d9 (8)

which is nothing else but the result of removing ∼water3 from (??). In fact, the only CG sta-
ble model of P?? makes this same assignment (??) which also corresponds to the causal graph
depicted in Figure ??. In the general case, CG-justifications intuitively correspond to enabled
justifications after forgetting all the enablers. Formally, however, there is one more difference in
the definition of causal values: CG causal values are defined as ideals for the poset of a type of
graphs formed by rule labels.

Definition 9 (Causal graph)
Given some set Lb of (rule) labels, a causal graph (c-graph) G ⊆ Lb×Lb is a reflexively and

10 P. Cabalar & J. Fandinno

shoot8

))

load1

��

shoot8

))

��

load1

��

��

l2

tt

l2

tt

ee

d9 d9FF

G2 G∗2

Fig. 3. G2 is the cause of dead9 in program P?? while G∗2 is its associated causal graphs, that is, its
reflexive and transitive closure.

transitively closed set of edges. By GLb, we denote the set of causal graphs. Given two c-graphs
G and G′, we write G≤ G′ when G⊇ G′. �

Intuitively, causal graphs, like G2 in Figure ??, are directed graphs representing the causal
structure that has produced some event. Furthermore, G ≤ G′ means that G contains enough
information to yield the same effect as G′, but perhaps more than needed (this explains G ⊇
G′). For this reason, we sometimes read G ≤ G′ as “G′ is stronger than G.” Causes will be ≤-
maximal (or⊆-minimal) causal graphs. Formally, including reflexive and transitive edges allows
to capture this intuitive relation simply by the subgraph relation. Note that, since causal graphs
are reflexively closed, every vertex has at least one edge (the reflexive one) and, thus, we can
omit the set of vertices. Besides, for the sake of clarity, we only depict the minimum set of edges
necessary for defining a causal graph (transitive and reflexive reduction). For instance, graph G2

in Figure ?? is the transitive and reflexive reduction of the causal graph G∗2.

Definition 10 (CG Values in ?)
Given a set of labels Lb, a CG causal value is any ideal (or lower-set) for the poset 〈GLb,≤〉.
By ICG

Lb , we denote the set of CG causal values. Product ‘∗’, sums ‘+’ and the≤-order relation are
defined as the set intersection, union and the subset relation, respectively. Application is given
by U ·U ′ def= { G′′ ≤ G ·G′

∣∣ G ∈U and G′ ∈U ′ }. �

It has been shown in (?) that CG values can be alternatively characterised as a free algebra
generated by rule labels under the axioms of a complete distributive lattice plus the axioms of
Figure ??.

Definition 11 (CG Values in ?)
Given a set of labels Lb, a CG term is a term without negation ‘∼’. CG causal values are the
equivalence classes of CG terms for a completely distributive (complete) lattice with meet ‘∗’
and join ‘+’ plus the axioms of Figure ??. By VCG

Lb , we denote the set of CG causal values. �

Theorem 4 (Causal values isomorphism from ?)
The function term : ICG

Lb −→ VCG
Lb given by

term(U) 7→ ∑
G∈U

∏
(v1,v2)∈G

v1·v2

is an isomorphism between algebras 〈ICG
Lb ,+,∗, ·,GLb, /0〉 and 〈VCG

Lb ,+,∗, ·,1,0〉. �

Theorem ?? states that CG causal values can be equivalently described either as ideals of
causal graphs or as elements of an algebra of terms. Furthermore, by abuse of notation, by G

Enablers and Inhibitors in Causal Justifications of Logic Programs 11

we also denote the ideal whose maximum element is G, corresponding to term(G) as well. For
instance, for the causal graph G2 in Figure ??, it follows G2 = term(G2) = term(↓G2) with ↓G2

the ideal whose maximum element is G2. Moreover, from the equivalences in Figure ??, it also
follows that

G2 = shoot8·d9 ∗ load1·l2 ∗ l2·d9 ∗ α

= shoot8·d9 ∗ load1·l2 ∗ l2·d9

= shoot8·d9 ∗ load1·l2·d9

= (shoot8 ∗ load1·l2)·d9

where α = load1·d9 ∗ shoot8·shoot8 ∗ d9·d9 ∗ load1·load1 ∗ l2·l2 ∗ d9·d9 is a term that, as we can
see, can be ruled out and corresponds to the transitive and reflexive doted edges in G∗2. That is,
justification (??) associated to atom dead9 by the causal well-founded model of program P??
actually corresponds to causal graph G2.

Theorem ?? also formalises the intuition that opens this section: ECJ extends CG causal terms
by the introduction of the new negation operator ‘∼’. We formalise next the correspondence
between CG and ECJ justifications.

Definition 12 (CG mapping)
We define a mapping λ c : VLb −→ VCG

Lb from ECJ values into CG values in the following recur-
sive way:

λ
c(t) def=

λ c(u)⊗λ c(w) if t = u⊗ v with ⊗ ∈ {+,∗, ·}
1 if t =∼∼l with l ∈ Lb

0 if t = ∼l with l ∈ Lb

l if t = l with l ∈ Lb

Note that we have assumed that t is in DNF. Otherwise, λ c(t) def= λ c(u) where u is an equivalent
term in DNF. �

Function λ c maps every negated label ∼l to 0 (which is the annihilator of both product ‘∗’ and
application ‘·’ and the identity of addition ‘+’). Hence λ c removes all the inhibited justifica-
tions. Furthermore λ c maps every doubly negated label ∼∼l to 1 (which is the identity of both
product ‘∗’ and application ‘·’). Therefore λ c removes all the enablers (i.e. doubly negated labels
∼∼l) for the remaining (i.e. enabled) justifications.

A CG interpretation is a mapping Ĩ : At −→ VCG
Lb . The value assigned to a negative literal not A

by a CG interpretation Ĩ, denoted as Ĩ(not A), is defined as: Ĩ(not A) def= 1 if Ĩ(A) = 0; Ĩ(not A) def= 0
otherwise. A CG interpretation Ĩ is a CG model of rule like (??) iff(

Ĩ(B1)∗ . . .∗ Ĩ(Bm)∗ Ĩ(notC1)∗ . . .∗ Ĩ(notCn)
)
· ri ≤ Ĩ(H) (9)

Notice that the value assigned to a negative literal by CG and ECJ interpretations is different.
According to (?), a CG interpretation Ĩ is a CG stable model of a program P iff Ĩ is the least
model of the program PĨ . In the following, we provide an ECJ based characterisation of the
CG stable models that will allow us to relate both approaches. By λ c(I) we will denote a CG
interpretation Ĩ s.t. Ĩ(A) = λ c(I(A)) for every atom A.

Definition 13 (CG stable models)

12 P. Cabalar & J. Fandinno

Given a program P, a CG interpretation Ĩ is a CG stable model of P iff there exists a fixpoint I of
the operator Γ2

P, i.e. ΓP(ΓP(I)) = I, such that Ĩ = λ c(I) = λ c(ΓP(I)). �

Theorem 5
Let P be a program over a signature 〈At,Lb〉where Lb is a finite set of labels. Then, the CG stable
models (Definition ??) are exactly the causal values and causal stable models defined in (?). �

Theorem ?? shows that Definition ?? is an alternative definition of CG causal stable models.
Furthermore, it settles that every causal model corresponds to some fixpoint of the operator Γ2

P.
Therefore, for every enabled justification there is a corresponding CG-justification common to
all stable models. In order to formalise this idea we just take the definition of causal explanation
from (?).

Definition 14 (CG-justification)
Given an interpretation I we say that a c-graph G is a (sufficient) CG-justification for an atom A
iff term(G)≤ Ĩ(A). �

Since term(·) is a one-to-one correspondence, we can define its inverse graph(v) def= term−1(v)
for all v ∈ VCG

Lb .

Theorem 6
Let P be a program over a signature 〈At,Lb〉 where Lb is a finite set of labels. For any en-
abled justification E of some atom A w.r.t. WP, i.e. E ≤WP(A), there is a CG-justification
G def= graph(λ c(E)) of A with respect to any stable model Ĩ of P. �

As happens between the (standard) well-founded and stable model semantics, the converse of
Theorem ?? does not hold in general. That is, we may get a justification that is common to all
CG-stable models but does not occur in the ECJ well-founded model. For instance, let P6 be the
program consisting on the following rules:

r1 : a← not b r2 : b← not a, not c c r3 : c← a r4 : d← b, not d

The (standard) WFM of program P?? is two-valued and corresponds to the unique (standard) sta-
ble model {a,c}. Furthermore, there are two causal explanations of c with respect to this unique
stable model: the fact c and the pair of rules r1·r3. Note that when c is removed {a,c} is still the
unique stable model, but all atoms are undefined in the WFM. Hence, r1·r3 is a justification with
respect to the unique stable model of the program, but not with respect to its WFM.

4 Relation to Why-not Provenance

An evident similarity between ECJ and WnP approaches is the use of an alternating fixpoint
operator (?) which has been actually borrowed from WnP. However, there are some slight differ-
ences. A first one is that we have incorporated from CG the non-commutative operator ‘·’ which
allows capturing not only which rules justify a given atom, but also the dependencies among
these rules. The second is the use of a non-classical negation ‘∼’ that is crucial to distinguish
between productive causes and enablers. This distinction cannot be represented with the classical
negation ‘¬’ in WnP since double negation can always be removed. Apart from the interpretation
of negation in both formalisms, there are other differences too. As an example, let us compare

Enablers and Inhibitors in Causal Justifications of Logic Programs 13

the justifications we obtain for dead9 in program P??. While for ECJ we obtained (??) (or graph
G2 in Figure ??), the corresponding WnP justification has the form:

l2∧d9∧ load1∧ shoot8
∧not(ab1)∧not(ab2)∧ . . .∧not(ab7)∧not(water0)∧ . . .∧not(water6)

(10)

A first observation is that the subexpression l2∧d9∧ load1∧shoot8 constitutes, informally speak-
ing, a “flattening” of (??) (or graph G2) where the ordering among rules has been lost. We get,
however, new labels of the form not(A) meaning that atom A is required not to be a program
fact, something that is not present in CG-justifications. For instance, (??) points out that water
can not be spilt on the gun along situations 0, . . . ,7. Although this information can be useful for
debugging (the original purpose of WnP) its inclusion in a causal explanation is obviously in-
convenient from a Knowledge Representation perspective, since it explicitly enumerates all the
defaults that were applied (no water was spilt at any situation) something that may easily blow
up the (causally) irrelevant information in a justification.

An analogous effect happens with the enumeration of exceptions to defaults, like inertia. Take
program P7 obtained from P?? by removing all the performed actions, i.e., facts load1, water3,
and shoot7. As expected, Fred will be alive, deadt , at any situation t by inertia. ECJ will assign
no cause for deadt , not even any inhibited one, i.e. WP(deadt) = 1 and WP(deadt) = 0 for any t.
The absence of labels in WP(deadt) = 1 is, of course, due to the fact that inertia axioms are
not labelled, as they naturally represent a default and not a causal law. Still, even if inertia were
labelled, say, with ink per each situation k, we would obtain a unique cause for WP(deadt) =

in1 · . . . · int for any t > 0 while maintaining no cause for WP(deadt) = 0. However, the number
of minimal WnP justifications of deadt grows quadratically, as it collects all the plans for killing
Fred in t steps loading and shooting once. For instance, among others, all the following:

d9∧¬not(load0)∧ r2∧¬not(shoot1)∧not(water0)∧ not(ab1)

d9∧¬not(load0)∧ r2∧¬not(shoot2)∧not(water0)∧not(water1)∧not(ab1)∧not(ab2)

d9∧¬not(load1)∧ r2∧¬not(shoot3)∧not(water0)∧
∧ not(water1) ∧not(water2)∧ not(ab1) ∧not(ab2)∧not(ab3)

. . .

are WnP-justifications for dead9. The intuitive meaning of expressions of the form ¬not(A) is
that dead9 can be justified by adding A as a fact to the program. For instance, the first conjunction
means that it is possible to justify dead9 by adding the facts load0 and shoot1 and not adding the
fact water0. We will call these justifications, which contain a subterm of the form ¬not(A),
hypothetical in the sense that they involve some hypothetical program modification.

Definition 15 (Provenance values)
Given a set of labels Lb, a provenance term t is recursively defined as one of the following
expressions t ::= l | ∏S | ∑S | ¬t1 where l ∈ Lb, t1 is in its turn a provenance term and S is
a (possibly empty and possible infinite) set of provenance terms. Provenance values are the
equivalence classes of provenance terms under the equivalences of the Boolean algebra. We
denote by BLb the set of provenance values over Lb. �

Informally speaking, with respect to ECJ, we have removed the application ‘·’ operator, whereas
product ‘∗’ and addition ‘+’ hold the same equivalences as in Definition ?? and negation ‘∼’ has
been replaced by ‘¬’ from Boolean algebra. Thus, ‘¬’ is classical and satisfies all the axioms

14 P. Cabalar & J. Fandinno

of ‘∼’ plus ¬¬t = t. Note also that, in the examples, we have followed the convention from (?)
of using the symbols ‘∧’ and ∨ to respectively represent meet and join. However, in formal
definitions, we will keep respectively using ‘∗’ and ‘+’ for that purpose. We define a mapping
λ p : VLb −→ BLb in the following recursive way:

λ
p(t) def=

λ p(u)⊗λ p(w) if t = u⊗ v with ⊗ ∈ {+,∗}
λ p(u) ∗ λ p(w) if t = u · v
¬λ p(u) if t =∼u

l if t = l with l ∈ Lb

Definition 16 (Provenance)
Given a program P, the why-not provenance program P(P) def= P∪P′ where P′ contains a la-
belled fact of the form (∼not(A) : A) for each atom A ∈ At not occurring in P as a fact. We will
write P instead of P(P) when the program P is clear by the context. We denote by WhyP(L)

def=

λ p(WP(L)) the why-not provenance of a q-literal L. We also say that a justification is hypothet-
ical when not(A) occurs oddly negated in it, non-hypothetical otherwise. �

Theorem 7
Let P be program over a finite signature 〈At,Lb〉. Then, the provenance of a literal according to
Definition ?? is equivalent to the provenance defined by (?). �

Theorem 8
Let P be program over a finite signature 〈At,Lb〉. WP is the result of removing all non-hypothetical
justification from WP and each occurrence of the form ∼∼not(A) for the remaining ones, that
is, WP = ρ(WP) where ρ is the result of removing every label of the form not(A), that is ρ is
the composition of ρnot(A1) ◦ρnot(A2) ◦ . . .◦ρnot(An) with At = {A1,A2, . . . ,An}. �

On the one hand, Theorem ?? shows that the provenance of a literal can be obtained by replac-
ing the negation ‘∼’ by ‘¬’ and ‘·’ by ‘∗’ in the causal WFM of the augmented program P.
On the other hand, Theorem ?? asserts that non-hypothetical justifications of a program and its
augmented one coincide when subterms of the form ∼∼not(A) are removed from justifications
of the latter. Consequently, we can establish the following correspondence between the ECJ jus-
tifications and the non-hypothetical WnP justifications.

Theorem 9
Let P be program over a finite signature 〈At,Lb〉. Then, the ECJ justifications of some atom A
(after replacing “·” by “∗” and “∼” by “¬”) correspond to the WnP justifications of A (after
removing every label of the form not(B) with B ∈ At), that is, λ p(WP)(A) = ρ(WhyP)(A) where
ρ is the result of removing every label of the form not(A) as in Theorem ??. �

Theorem ?? establishes a correspondence between non-hypothetical WnP-justifications and (flat-
tened) ECJ justifications. In our running example, (??) is the unique causal justification of dead9,
while (??) (below) is its unique non-hypothetical WnP justification.

¬water3∧ shoot8∧ load1∧ l2∧d9∧
∧not(dead1)∧ . . .∧not(dead9)∧not(ab1)∧ . . .∧not(ab8)

(11)

Enablers and Inhibitors in Causal Justifications of Logic Programs 15

It is easy to see that, by applying λ p to (??) we obtain

λ
p((∼water3 ∗ shoot8 ∗ load1·l2) ·d9

)
= ¬water3∧ shoot8∧ load1∧ l2∧d9 (12)

which is just the result of removing all labels of the form ‘not(A)’ from (??). The correspondence
between the ECJ justification (??) and the WnP justification (??) for program P?? can be easily
checked in a similar way.

Hypothetical justifications are not directly captured by ECJ, but can be obtained using the
augmented program P as stated by Theorem ??. As a byproduct we establish a formal relation
between WnP and CG.

Theorem 10
Let P be a program over a finite signature 〈At,Lb〉. Then, every non-hypothetical and enabled
WnP-justification D of some atom A (after removing every label of the form not(B) with B ∈ At)
is a justification with respect to every CG stable model Ĩ (after replacing “·” by “∗” and “∼” by
“¬”), that is D ≤WhyP(A) implies ρ(D) ≤ λ p(Ĩ)(A) where ρ is the result of removing every
label of the form not(B) as in Theorem ??. �

Note that, as happened between the ECJ and CG justifications, the converse of Theorem ?? does
not hold in general due to the well-founded vs stable model difference in their definitions. As an
example, the explanation for atom c at program P?? has a unique WnP justification c as opposed
to the two CG justifications, c and r1·r3.

5 Contributory causes

Intuitively, a contributory cause is an event that has helped to produce some effect. For instance,
in program P??, it is easy to identify both actions, load1 and shoot8, as events that have helped
to produce dead9 and, thus, they are both contributory causes of Fred’s death. We may define
the above informal concept of contributory cause as: any non-negated label l that occurs in a
maximal enabled justification of some atom A. Similarly, a contributory enabler can be defined as
a doubly negated label∼∼l that occurs in a maximal enabled justification of some atom A. These
definitions correctly identify load1 and shoot8 as contributory causes of dead9 in program P?? and
d as a contributory cause of p in program P??. Fact h is considered a contributory enabler of p.
These definitions will also suffice for dealing with what Hall (?) calls trouble cases: non-existent
threats, short-circuits, late-preemption and switching examples.

It is worth to mention that, in the philosophic and AI literature, the concept of contributory
cause is usually discussed in the broader sense of actual causation which tries to provide an
unique everyday-concept of causation. Pearl (?) studied actual and contributory causes relying
on causal networks. In this approach, it is possible to conclude cause-effect relations like “A
has been an actual (resp. contributory) cause of B” from the behaviour of structural equations
by applying, under some contingency (an alternative model in which some values are fixed)
the counterfactual dependence interpretation from (?): “had A not happened, B would not have
happened.” Consider the following example which illustrates the difference between contributory
and actual causes under this approach.

Example 1 (Firing Squad)
Suzy and Billy form a two-man firing squad that responds to the order of the captain. The shot of
any of the two riflemen would kill the prisoner. Indeed, the captain gives the order, both riflemen
shoot together and the prisoner dies. �

16 P. Cabalar & J. Fandinno

On the one hand, the captain is an actual cause of the prisoner’s death: “had the captain not
given the order, the riflemen would not have shot and the prisoner would not have died.” On
the other hand, each rifleman alone is not an actual cause: “had one rifleman not shot, the pris-
oner would have died anyway because of the other rifleman.” However, each rifleman’s shot is
a contributory cause because, under the contingency where the other rifleman does not shoot,
the prisoner’s death manifests counterfactual dependence on the first rifleman’s shot. Later ap-
proaches like (?; ?; ?; ?) have not made this distinction and consider the captain and the two
riflemen as actual causes of the prisoner’s death, while (?) considers the captain and the conjunc-
tion of both riflemen’s shoots, but not each of them alone, as actual causes. We will focus here on
representing the above concept of contributory cause and leave to the reader whether this agrees
with the concept of cause in the every-day discourse or not.

As has been slightly discussed in the introduction, Hall (?; ?), has emphasized the difference
between two types of causal relations: dependence and production. The former relies on the idea
that “counterfactual dependence between wholly distinct events is sufficient for causation.” The
latter is characterised by being transitive, intrinsic (two processes following the same laws must
be both or neither causal) and local (causes must be connected to their effects via sequences of
causal intermediates).

These two concepts can be illustrated in Bond’s example by observing the difference between
pouring the drug (atom d), which is a cause under both understandings, and being a holiday (atom
h), which is not considered a cause under the production viewpoint, although it is considered a
cause under the dependence one.

In this sense, all the above approaches to actual causation, but (?), can be classified in the
dependence category. ECJ and CG do not consider h a productive cause of d because the default
(or normal) behaviour of rule (??) is that “d causes p.” This default criterion is also shared
by (?; ?; ?; ?). Note that, ECJ (but not CG) captures the fact that d counterfactually depends
on h, as it considers it an enabler. In (?), the author relies on intrinsicness for rejecting h as
a productive cause of d: any causal structure (justification) including h and p would have to
include the absence of the antidote (atom a), and it would be enough that Bond had taken the
antidote by another reason to break the counterfactual dependence between h and p. By applying
the above contributory cause definition to the WnP justification h∧ d ∧ r1 of Bond’s paralysis
(atom p) in program P??, we can easily identify that h is being considered a cause in WnP, thus,
a causal interpretation of WnP clearly follows the dependence-based viewpoint. On the other
hand, the unique CG justification d·r1 only considers d as a cause, which illustrates the fact that
CG is mostly related to the concept of production. ECJ combines both understandings, and what
is a cause under the dependence viewpoint is either an enabler or a cause under the production
viewpoint.

In order to illustrate how ECJ can be used for representing the so-called non-existent threat
scenarios, consider a variation of Bond’s example where today is not a holiday and, thus, Bond
takes the antidote. The poured drug d is a threat to Bond’s safety, represented as s, but that threat
is prevented by the antidote. We may represent this scenario by program P8 below:

r1 : p← d,not a

r2 : a← not h

r3 : s ← not p

a

d

Enablers and Inhibitors in Causal Justifications of Logic Programs 17

The causal WFM of program P?? assigns

WP??(s) = ∼∼r2·r3 + ∼d·r3 + ∼r1·r3

which recognises rule r2 (taking the antidote) as a contributory enabler of Bond’s safety. The
difficulty in this kind of scenarios consists in avoiding the wrong recognition of r2 as an enabler
when the threat d does not exist. If we remove fact d from P?? to get the new program P9 then
we obtain that WP??(d) = 0 and, consequently, WP??(s) = r3. Intuitively, in the absence of any
threat, Bond is just safe because that is his default behaviour as stated by rule r3.

Short-circuit examples consist in avoiding the wrong recognition of an event as a contributory
enabler that provokes a threat that eventually prevents itself. Consider the program P10 below:

r1 : p← a, not f

r2 : f ← c, not b

r3 : b← c

a

c

Here, c is a threat to p, since it may cause f through rule r2. However, c eventually prevents r2,
since it also causes b through rule r3. The causal WFM of program P?? assigns

WP??(p) = (a∗∼∼r3)·r1 + (a∗∼r2)·r1 + (a∗∼c)·r1

which correctly avoids considering c as a contributory enabler of p and recognises r3 as the
enabler of p. Note that c is actually considered an inhibitor due to justification (a∗∼c)·r1 point-
ing out that, had c not happened, then a·r1 would have been an enabled justification. But then,
(a∗∼∼r3)·r1 would stop being a justification since (a∗∼∼r3)·r1 +a·r1 = a·r1.

To illustrate late-preemention consider the following example from (?).

Example 2 (Rock Throwers)
Billy and Suzy throw rocks at a bottle. Suzy throws first and her rock arrives first. The bottle
shattered. When Billy’s rock gets to where the bottle used to be, there is nothing there but flying
shards of glass. Who has caused the bottle to shatter? �

The key of this example is to recognise that Suzy, and not Billy, has caused the shattering. The
usual way of representing this scenario in the actual causation literature is by introducing two
new fluents hit suzy and hit billy in the following way (?; ?; ?; ?):

hit suzy ← throw suzy (13)

hit billy ← throw billy, ¬hit suzy (14)

shattered ← hit suzy (15)

shattered ← hit billy (16)

It is easy to see that such a representation mixes, in law (??), both the description of the world and
the narrative fact asserting that Suzy threw first. This may easily lead to a problem of elaboration
tolerance. For instance, if we have N shooters and they shoot sequentially we would have to
modify the equations for all of them in an adequate way, so that the last shooter’s equation would
have the negation of the preceding N-1 and so on. Moreover, all these equations would have to
be reformulated if we simply change the shooting order. On the other hand, we may represent
this scenario by a program P11 consisting of the following rules

st+1 : shatteredt+1 ← throw(A)t , not shatteredt

shattered0

throw(suzy)0

throw(billy)1

18 P. Cabalar & J. Fandinno

with A ∈ {suzy, billy}, plus the following rules corresponding to the inertia axioms

shatteredt+1 ← shatteredt , not shatteredt+1

shatteredt+1 ← shatteredt , not shatteredt+1

Atom shattered2 holds in the standard WFM of P?? and its justification corresponds to

throw(suzy)0·s1 + (∼throw(suzy)∗ throw(billy)1)·s2 + (∼s1 ∗ throw(billy)1)·s2

On the one hand, the first addend points out that fact throw(suzy)0 has caused shattered2 by
means of rule s1. On the other hand, the second addend indicates that throw(billy)1 has not
caused it because Suzy’s throw has prevented it. Finally, the third addend means that throw(billy)1

would have caused the shattering if it were not for rule s1. This example shows how our semantics
is able to recognise that it was Suzy, and not Billy, who caused the bottle shattering. Furthermore,
it also explains that Billy did not cause it because Suzy did it first.

Finally, consider the following example from (?).

Example 3 (The Engineer)
An engineer is standing by a switch in the railroad tracks. A train approaches in the distance. She
flips the switch, so that the train travels down the right-hand track, instead of the left. Since the
tracks reconverge up ahead, the train arrives at its destination all the same; let us further suppose
that the time and manner of its arrival are exactly as they would have been, had she not flipped
the switch. �

This has been a controversial example. In (?), the author has argued that the switch should
be considered a cause of the arrival because switch has contributed to the fact that the train has
travelled down the right-hand track. In a similar manner, it seems clear that the train travelling
down the right-hand track has contributed to the train arrival. If causality is considered to be a
transitive relation, as (?) does, the immediate consequence of the above reasoning is that flipping
the switch has contributed to the train arrival. In (?) he argues otherwise and points out that
commonsense tells that the switch is not a cause of the arrival. (?) had considered switch a cause
of arrival depending on whether the train travelling down the tracks is represented by one or two
variables in the model. Although our understanding of causality is closer to the one expressed in
(?), it is not the aim of this work to go more in depth in this discussion, but to show instead how
both understandings can be represented in ECJ. Consider the following program P12

r1 : arrival ← right

r2 : arrival ← le f t

r3 : right ← train, not switch

r4 : le f t ← train, not switch

switch ← not switch

switch ← not switch

train

switch

where switch represents the strong negation of switch. The two unlabelled rules capture the idea
that the switch behaves classically, that is, it must be activated or not. The literal not switch in
the body of rule r3 points out that the switch position is an enabler and not a cause of the track
taken by the train. This representation can be arguable, but the way in which the rule has been
written would be expressing that if a train is coming, then a train will cross the right track by
default unless switch prevents it. In that sense, the only productive cause for right (a train in the
right track) is train (a train is coming) whereas the switch position just enables the causal rule to
be applied. A similar default r4 is built for the left track, flipping the roles of switch and switch.

Enablers and Inhibitors in Causal Justifications of Logic Programs 19

The causal WFM of program P?? corresponds to

WP??(arrival) = (train∗∼∼switch)·r3·r1 + (train∗∼switch)·r4·r2

It is easy to see that switch is a doubly-negated label occurring in the maximal enabled justifi-
cation E1 = (train ∗∼∼switch)·r3·r1 and, thus, we may identify it as a contributory enabler of
arrival, but not its productive cause. On the other hand, by looking at the inhibited justification
E2 = (train∗∼switch)·r4·r2, we observe that switch is also preventing rules r4 and r2 to produce
the same effect, arrival, that is helping to produce in E1.

If we want to ignore the way in which the train arrives, one natural possibility is using the
same label for all the rules for atom arrival, reflecting in this way that we do not want to trace
whether r1 or r2 has been actually used. Suppose we label r2 with r1 instead, leading to the new
program P13

r1 : arrival ← right

r1 : arrival ← le f t

r3 : right ← train, not switch

r3 : le f t ← train, not switch

switch ← not switch

switch ← not switch

train

switch

whose causal WFM corresponds to

WP??(arrival) = (train∗∼∼switch)·r3·r1 + (train∗∼switch)·r3·r1 = train·r3·r1

As we can see, this justification does not consider switch at all as a cause of the arrival (nor even
a contributory enabler, as before). In other words, switch is irrelevant for the train arrival, which
probably coincides with the most common intuition.

However, we do not find this solution fully convincing yet, because the explanation we obtain
for right, WP??(right) = (train∗∼∼switch)·r3 is showing that switch is just acting as an enabler,
as we commented before. If we wanted to represent switch as a contributory cause of right,
we would have more difficulties to simultaneously keep switch irrelevant in the explanation of
arrival. One possibility we plan to explore in the future is allowing the declaration of a given
atom or fluent, like our switch, as classical so that we include both, the the rule:

switch← not not switch

in the logic program3 and the axiom ∼∼switch = switch in the algebra. The latter immediately
implies switch+∼switch = 1 (due to the weak excluded middle axiom).

Then, P?? could be simply expressed as

r1 : arrival ← right

r1 : arrival ← le f t

r3 : right ← train, switch

r3 : le f t ← train, not switch

train

switch

and the justification of right and le f t would become

WP(right) = (train∗ switch)·r3 WP(le f t) = (train∗∼switch)·r3

3 This implication actually corresponds to a choice rule 0{switch}1, commonly used in Answer Set Programming.

20 P. Cabalar & J. Fandinno

pointing out that switch is a cause (resp. an inhibitor) of the train travelling down the right (resp.
left) track. Then, the justification of arrival would be

WP(arrival) = (train∗ switch)·r3·r1 + (train∗∼switch)·r3·r1 = train·r3·r1

We leave the study of this possibility for a future deeper analysis.

6 Conclusions and other related work

In this paper we have introduced a unifying approach that combines causal production with en-
ablers and inhibitors. We formally capture inhibited justifications by introducing a “non-classical”
negation ‘∼’ in the algebra of causal graphs (CG). An inhibited justification is nothing else but
an expression containing some negated label. We have also distinguished productive causes from
enabling conditions (counterfactual dependences that are not productive causes) by using a dou-
ble negation ‘∼∼’ for the latter. The existence of enabled justifications is a sufficient and neces-
sary condition for the truth of a literal. Furthermore, our justifications capture, under the Well-
Founded Semantics, both Causal Graph and Why-not Provenance justifications. As a byproduct
we established a formal relation between these two approaches.

We have also shown how several standard examples from the literature on actual causation can
be represented in our formalism and illustrated how this representation is suitable for domains
which include dynamic defaults – those whose behaviour are not predetermined, but rely on some
program condition – as for instance the inertia axioms. As pointed out by (?), causal knowledge
can be structured by a combination of inertial laws – how the world would evolve if nothing
intervened – and deviations from these inertial laws.

In addition to the literature on actual causes cited in Section ??, our work also relates to papers
on reasoning about actions and change (?; ?; ?). These works have been traditionally focused on
using causal inference to solve representational problems (such as, the frame, ramification and
qualification problems) without paying much attention to the derivation of cause-effect relations.
Focusing on LP, our work obviously relates to explanations obtained from ASP debugging ap-
proaches (?; ?; ?; ?; ?; ?; ?). The most important difference of these works with respect to
ECJ, and also WnP and CG, is that the last three provide fully algebraic semantics in which
justifications are embedded into program models. A formal relation between (?) and WnP was
established in (?) and so, using Theorems ?? and ??, it can be directly extended to ECJ, but at
the cost of flattening the graph information (i.e. losing the order among rules).

Interesting issues for future study are incorporating enabled and inhibited justifications to the
stable model semantics and replacing the syntactic definition in favour of a logical treatment of
default negation, as done for instance with the Equilibrium Logic (?) characterisation of stable
models. Other natural steps would be the consideration of syntactic operators, for capturing more
specific knowledge about causal information as done in (?) capturing sufficient causes in the CG
approach, and also the representation of non-deterministic causal laws, by means of disjunctive
programs or the incorporation of probabilistic knowledge.

Acknowledgements We are thankful to Carlos Damásio for his suggestions and comments on
earlier versions of this work. We also thank the anonymous reviewers for their help to improve
the paper. This research was partially supported by Spanish Project TIN2013-42149-P.

Enablers and Inhibitors in Causal Justifications of Logic Programs 21

References

BALBES, R. AND DWINGER, P. 1975. Distributive lattices. Melinda Inn.
CABALAR, P., FANDINNO, J., AND FINK, M. 2014a. Causal graph justifications of logic programs. Theory

and Practice of Logic Programming TPLP 14, 4-5, 603–618.
CABALAR, P., FANDINNO, J., AND FINK, M. 2014b. A complexity assessment for queries involving

sufficient and necessary causes. In Logics in Artificial Intelligence - 14th European Conference, JELIA
2014, Funchal, Madeira, Portugal, September 24-26, 2014. Proceedings, E. Fermé and J. Leite, Eds.
Lecture Notes in Computer Science, vol. 8761. Springer, 297–310.

DAMÁSIO, C. V., ANALYTI, A., AND ANTONIOU, G. 2013. Justifications for logic programming. In Logic
Programming and Nonmonotonic Reasoning, Twelfth International Conference, LPNMR 2013, Corunna,
Spain, September 15-19, 2013. Proceedings, P. Cabalar and T. C. Son, Eds. Lecture Notes in Computer
Science, vol. 8148. Springer, 530–542.

DENECKER, M. AND SCHREYE, D. D. 1993. Justification semantics: A unifiying framework for the
semantics of logic programs. In Logic Programming and Non-monotonic Reasoning, 2nd International
Workshop, LPNMR 1993, Lisbon, Portugal, June 1993. The MIT Press, 365–379.

FANDINNO, J. 2015a. A causal semantics for logic programming. Ph.D. thesis, University of Corunna.
FANDINNO, J. 2015b. Towards deriving conclusions from cause-effect relations. In ASPOCP.
FERRARIS, P., LEE, J., AND LIFSCHITZ, V. 2007. A new perspective on stable models. In IJCAI 2007,

Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, Jan-
uary 6-12, 2007, M. M. Veloso, Ed. 372–379.

GEBSER, M., PÜHRER, J., SCHAUB, T., AND TOMPITS, H. 2008. A meta-programming technique for
debugging answer-set programs. In Proceedings of the Twenty-Third AAAI Conference on Artificial
Intelligence, AAAI 2008, Chicago, Illinois, USA, July 13-17, 2008, D. Fox and C. P. Gomes, Eds. AAAI
Press, 448–453.

GELFOND, M. AND LIFSCHITZ, V. 1988. The stable model semantics for logic programming. In Logic
Programming, Proceedings of the Fifth International Conference and Symposium, Seattle, Washington,
August 15-19, R. A. Kowalski and K. A. Bowen, Eds. MIT Press, 1070–1080.

HALL, N. 2000. Causation and the price of transitivity. The Journal of Philosophy 97, 4, 198–222.
HALL, N. 2004. Two concepts of causation. In Causation and counterfactuals, J. Collins, N. Hall, and

L. A. Paul, Eds. Cambridge, MA: MIT Press, 225–276.
HALL, N. 2007. Structural equations and causation. Philosophical Studies 132, 1, 109–136.
HALPERN, J. Y. 2008. Defaults and normality in causal structures. In Principles of Knowledge Representa-

tion and Reasoning: Proceedings of the Eleventh International Conference, KR 2008, Sydney, Australia,
September 16-19, 2008, G. Brewka and J. Lang, Eds. AAAI Press, 198–208.

HALPERN, J. Y. 2014. Appropriate causal models and stability of causation. In Principles of Knowl-
edge Representation and Reasoning: Proceedings of the Fourteenth International Conference, KR 2014,
Vienna, Austria, July 20-24, 2014, C. Baral, G. D. Giacomo, and T. Eiter, Eds. AAAI Press.

HALPERN, J. Y. 2015. A modification of the halpern-pearl definition of causality. In Proceedings of
the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires,
Argentina, July 25-31, 2015, Q. Yang and M. Wooldridge, Eds. AAAI Press, 3022–3033.

HALPERN, J. Y. AND HITCHCOCK, C. 2011. Actual causation and the art of modeling.
CoRR abs/1106.2652.

HALPERN, J. Y. AND PEARL, J. 2001. Causes and explanations: A structural-model approach. part I:
Causes. Proceedings of the Seventeenth Conference in Uncertainty in Artificial Intelligence, UAI 2001,
University of Washington, Seattle, Washington, USA, August 2-5, 194–202.

HALPERN, J. Y. AND PEARL, J. 2005. Causes and explanations: A structural-model approach. part I:
Causes. British Journal for Philosophy of Science 56, 4, 843–887.

HITCHCOCK, C. AND KNOBE, J. 2009. Cause and norm. Journal of Philosophy 11, 587–612.
HUME, D. 1748. An enquiry concerning human understanding. Reprinted by Open Court Press, LaSalle,

IL, 1958.

22 P. Cabalar & J. Fandinno

LEWIS, D. K. 2000. Causation as influence. The Journal of Philosophy 97, 4, 182–197.
LIN, F. 1995. Embracing causality in specifying the indirect effects of actions. In Proceedings of the Four-

teenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada,
August 20-25 1995, 2 Volumes. Morgan Kaufmann, 1985–1993.

MAREK, V. W. AND TRUSZCZYŃKI, M. 1999. Stable models and an alternative logic programming
paradigm. In The Logic Programming Paradigm, K. R. Apt, V. W. Marek, M. Truszczyński, and D. War-
ren, Eds. Artificial Intelligence. Springer Berlin Heidelberg, 375–398.

MAUDLIN, T. 2004. Causation, counterfactuals, and the third factor. In Causation and Counterfactuals,
J. Collins, E. J. Hall, and L. A. Paul, Eds. MIT Press.

MCCAIN, N. AND TURNER, H. 1997. Causal theories of action and change. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence and Ninth Innovative Applications of Artificial
Intelligence Conference, AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island., B. Kuipers and
B. L. Webber, Eds. AAAI Press / The MIT Press, 460–465.

NIEMELÄ, I. 1999. Logic programs with stable model semantics as a constraint programming paradigm.
Annals of Mathematics and Artificial Intelligence 25, 3-4, 241–273.

OETSCH, J., PÜHRER, J., AND TOMPITS, H. 2010. Catching the ouroboros: On debugging non-ground
answer-set programs. CoRR abs/1007.4986.

PEARCE, D. 1996. A new logical characterisation of stable models and answer sets. In Non-Monotonic
Extensions of Logic Programming, NMELP 1996, Bad Honnef, Germany, September 5-6, 1996, Selected
Papers, J. Dix, L. M. Pereira, and T. C. Przymusinski, Eds. Lecture Notes in Computer Science, vol.
1216. Springer, 57–70.

PEARL, J. 2000. Causality: models, reasoning, and inference. Cambridge University Press, New York, NY,
USA.

PEMMASANI, G., GUO, H., DONG, Y., RAMAKRISHNAN, C. R., AND RAMAKRISHNAN, I. V. 2004. On-
line justification for tabled logic programs. In Functional and Logic Programming, Seventh International
Symposium, FLOPS 2004, Nara, Japan, April 7-9, 2004, Proceedings, Y. Kameyama and P. J. Stuckey,
Eds. Lecture Notes in Computer Science, vol. 2998. Springer, 24–38.

PONTELLI, E., SON, T. C., AND EL-KHATIB, O. 2009. Justifications for logic programs under answer set
semantics. Theory and Practice of Logic Programming TPLP 9, 1, 1–56.

SCHULZ, C. AND TONI, F. 2013. Aba-based answer set justification. Theory and Practice of Logic
Programming TPLP 13, 4-5 Online-Supplement.

SPECHT, G. 1993. Generating explanation trees even for negations in deductive database systems. In
Proceedings of the Fifth Workshop on Logic Programming Environments (LPE 1993), October 29-30,
1993, In conjunction with ILPS 1993, Vancouver, British Columbia, Canada, M. Ducassé, B. L. Charlier,
Y. Lin, and L. Ü. Yalçinalp, Eds. IRISA, Campus de Beaulieu, France, 8–13.

THIELSCHER, M. 1997. Ramification and causality. Artificial Intelligence 89, 1-2, 317–364.
VAN GELDER, A. 1989. The alternating fixpoint of logic programs with negation. In Proceedings of the

Eighth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, March 29-31,
1989, Philadelphia, Pennsylvania, USA, A. Silberschatz, Ed. ACM Press, 1–10.

VAN GELDER, A., ROSS, K. A., AND SCHLIPF, J. S. 1991. The well-founded semantics for general logic
programs. Journal of the ACM (JACM) 38, 3, 620–650.

Enablers and Inhibitors in Causal Justifications of Logic Programs 23

Appendix A. Auxiliary figures

Associativity

t + (u+w) = (t+u) + w
t ∗ (u∗w) = (t ∗u) ∗ w

Commutativity

t + u = u + t
t ∗ u = u ∗ t

Absorption

t = t + (t ∗u)
t = t ∗ (t+u)

Distributive

t + (u∗w) = (t+u) ∗ (t+w)
t ∗ (u+w) = (t ∗u) + (t ∗w)

Identity

t = t + 0
t = t ∗ 1

Idempotency

t = t + t
t = t ∗ t

Annihilator

1 = 1 + t
0 = 0 ∗ t

Fig. A 1. Sum and product satisfy the properties of a completely distributive lattice.

Appendix B. Proofs of Theorems and Implicit Results

In the following, by abuse of notation, for every function f : VLb −→ VLb, we will also denote
by f a function over the set of interpretations such that f (I)(A) = f (I(A)) for every atom A ∈ At.
We have organized the proofs into different subsections.

Appendix B.1. Proofs of Propositions ?? to ??

Proposition 1
Negation ‘∼’ is anti-monotonic. That is t ≤ u holds if and only if ∼t ≥ ∼u for any given two
causal terms t and u. �

Proof . By definition t ≤ u iff t ∗u = t. Furthermore, by De Morgan laws,∼(t ∗u) =∼t+∼u and,
thus, ∼(t ∗u) = ∼t iff ∼t +∼u = ∼t. Finally, just note that ∼t +∼u = ∼t iff ∼t ≥ ∼u. Hence,
t ≤ u holds iff ∼t ≥∼u. �

Proposition 2
The map t 7→ ∼∼t is a closure. That is, it is monotonic, idempotent and it holds that t ≤∼∼t for
any given causal term t. �

Proof . To show that t 7→ ∼∼t is monotonic just note that t 7→ ∼t is antimonotonic (Proposi-
tion ??) and then t ≤ u iff∼t ≥∼u iff∼∼t ≤∼∼u. Furthermore,∼∼(∼∼t)=∼(∼∼∼t)=∼∼t,

24 P. Cabalar & J. Fandinno

that is, t 7→ ∼∼t is idempotent. Finally, note that, by definition, t ≤∼∼t iff t ∗∼∼t = t and

t ∗∼∼t = t ∗∼∼t + 0 (identity)

= t ∗∼∼t + t ∗∼t (pseudo-complement)

= (t ∗∼∼t + t)∗ (t ∗∼∼t +∼t) (distributivity)

= (t + t) ∗ (∼∼t + t) ∗ (t +∼t) ∗ (∼∼t +∼t) (distributivity)

= t ∗ (∼∼t + t) ∗ (t +∼t) ∗ (∼∼t +∼t) (idempotency)

= t ∗ (t +∼t) ∗ (∼∼t + t) ∗ 1 (w. excluded middle)

= t ∗ (t +∼t) ∗ (∼∼t + t) (identity)

= t ∗ (∼∼t + t) (absorption)

= t (absorption)

Hence, t 7→ ∼∼t is a closure. �

Proposition 3
Given any term t, it can be rewritten as an equivalent term u in negation and disjuntive normal
forms. �

Proof . This is a trivial proof by structural induction using the DeMorgan laws and negation of
application axiom. Furthermore, using the axiom ∼∼∼t = t no more than two nested negations
are required. Furthermore, it is easy to see that by applying distributivity of “·” and “∗” over
“+,” every term can be equivalently represented as a term “+” is not in the scope of any other
operation. Moreover, applying distributivity of “·” over “∗” every such term can be represented
as one in every application subterm is elementary. �

Lemma B.1
Let t be a join irreducible causal value. Then, either t ∗∼∼u = 0 or t ∗∼∼u is join irreducible
for every causal value u ∈ VLb. �

Proof . Suppose that t ∗u is not join irreducible and let W ⊆ VLb a set of causal values such that
w 6= t ∗∼∼u for every w ∈W and t ∗∼∼u = ∑w∈W w. Since t ∗∼∼u = ∑w∈W w, it follows that
w ≤ t ∗∼∼u for every w ∈W and, since w 6= t ∗∼∼u, it follows that w < t ∗∼∼u for every
w ∈W . Furthermore, t ∗∼∼u+ t ∗∼u = t ∗ (∼∼u+∼u) = t.

Since t is join irreducible, it follows that either t = t ∗∼∼u or t = t ∗∼u. If t = t ∗∼u, then
t ∗∼∼u = (t ∗∼u)∗∼∼u = 0. Otherwise, t = t ∗∼∼u and t is join irreducible by hypothesis. �

Lemma B.2
Let t be a term. Then λ p(∼t) = ¬λ p(t). �

Proof . We proceed by structural induction assuming that t is in negated normal form. In case that
t = a is elementary, it follows that λ p(∼a) = ¬a = ¬λ p(a). In case that t =∼a with a elemen-
tary, λ p(∼t) = λ p(∼∼a) and λ p(∼∼a) = a = ¬¬a = ¬λ p(∼a) = λ p(t). In case that t =∼∼a,
with a elementary, λ p(∼t) = λ p(∼∼∼a) and

λ
p(∼∼∼a) = λ

p(∼a) = ¬a = ¬λ
p(∼∼a) = ¬λ

p(t)

Enablers and Inhibitors in Causal Justifications of Logic Programs 25

In case that t = u+ v. Then

λ
p(∼t) = λ

p(∼u∗∼v) = λ
p(∼u)∧λ

p(∼v)

By induction hypothesis λ p(∼u) = ¬λ p(u) and λ p(∼v) = ¬λ p(v) and, therefore, it holds that
λ p(∼t) = ¬λ p(u)∧¬λ p(v). Thus, ¬λ p(t) = ¬(λ p(u)∨λ p(v)) = ¬λ p(u)∧¬λ p(v) = λ p(∼t).

In case that t = u⊗ v with ⊗ ∈ {∗, ·}. Then λ p(∼t) = λ p(∼u+∼v) = λ p(∼u)∨λ p(∼v) and
by induction hypothesis λ p(∼u) = ¬λ p(u) and λ p(∼v) = ¬λ p(v). Consequently it holds that
λ p(∼t) = ¬λ p(t). �

Lemma B.3
Let t be a term and φ a provenance term. If φ ≤ λ p(t), then λ p(∼t)≤¬φ and if λ p(t)≤ φ , then
¬φ ≤ λ p(∼t). �

Proof . If φ ≤ λ p(t), then φ = λ p(t)∗φ and then¬φ =¬λ p(t)+¬φ and, by Lemma ??, it follows
that ¬φ = λ p(∼t)+¬φ . Hence λ p(∼t) ≤ ¬φ . Furthermore if λ p(t) ≤ φ , then φ = λ p(t)+ φ

and then ¬φ = ¬λ p(t)∗¬φ and, by Lemma ??, it follows that ¬φ = λ p(∼t)∗¬φ . Hence ¬φ ≤
λ p(∼t). �

Appendix B.2. Proof of Theorem ??

The proof of Theorem ?? will relay on the definition of the following direct consequence operator

T̃P(Ĩ)(H) def= ∑
{ (

Ĩ(B1)∗ . . .∗ Ĩ(Bn)
)
· ri | (ri : H← B1, . . . ,Bn) ∈ P

}
for any CG interpretation Ĩ and atom H ∈ At. Note that the definition of this direct consequence
operator T̃P is analogous to the TP operator, but the domain and image of T̃P are the set of CG
interpretations while the domain and image of TP are the set of ECJ interpretations.

Theorem 11 (Theorem 2 from ?)
Let P be a (possibly infinite) positive logic program with n causal rules. Then, (i) lfp(T̃P) is the
least model of P, and (ii) lfp(T̃P) = T̃P ↑ω (0) = T̃P ↑n (0). �

Proof of Theorem ??. Assume that every term occurring in P is NNF and let Q be the program
obtained by renaming in P each occurrence of ∼l as l′ and each occurrence of ∼∼l as l′′ with l′

and l′′ new symbols. Note that this renaming implies that ∼l and ∼∼l are treated as completely
independent symbols from l and, thus, all equalities among terms derived from program Q are
also satisfied by P, although the converse does not hold. Note also that, since ∼ does not occur
in Q, this is also a CG program. From Theorem ??, lfp(T̃Q) = T̃Q ↑ω (0) is the least model of Q.
By renaming back l′ and l′′ as ∼l and ∼∼l in T̃Q ↑k (0) we obtain TP ↑k (0) for any k. Hence,
lfp(TP) = TP ↑ω (0) is the least model of P. Statement (ii) is proved in the same manner. �

26 P. Cabalar & J. Fandinno

Appendix B.3. Proof of Proposition ??

Lemma B.4
Let P1 and P2 be two programs and let U1 and U2 be two interpretations such that P1 ⊇ P2 and
U1 ≤U2. Let also I1 and I2 be the least models of PU1

1 and PU2
2 , respectively. Then I1 ≥ I2. �

Proof . First, for any rule ri and pair of interpretations J1 and J2 such that J1 ≥ J2,

J1(body+(rU1
i)) ≥ J2(body+(rU2

i))

Furthermore, since U1 ≤U2, by Proposition ??, it follows

U1(body−(rU1
i)) ≥ U2(body−(rU2

i))

and, since by Definition ?? J j(body−(rU1
i)) def= U j(body−(rU1

i)), it follows that

J1(body−(rU1
i)) ≥ J2(body−(rU2

i))

Hence, we obtain that J1(body(rU1
i))≥ J2(body(rU2

i)).

Since P1 ⊇ P2, it follows that every rule ri ∈ P2 is in P1 as well. Thus, T
P

U1
1
(J1)(H)≥ T

P
U2
2
(J2)(H)

for every atom H. Furthermore, since

T
P

U1
1
↑0 (0)(H) = T

P
U2
2
↑0 (0)(H) = 0

it follows T
P

U1
1
↑i (0)(H) ≥ T

P
U2
2
↑i (0)(H) for all 0≤ i. Finally,

T
P

Uj
j
↑ω (0)(H) def= ∑

i≤ω

T
P

Uj
j
↑i (0)(H) = 0

and hence T
P

U1
1
↑ω (0)(H) ≥ T

P
U2
2
↑ω (0)(H). By Theorem ??, these are respectively the least

models of PU1
1 and PU2

2 . That is I1 ≥ I2. �

Proposition 4
ΓP operator is anti-monotonic and operator Γ2

P is monotonic. That is, ΓP(U1) ≥ ΓP(U2) and
Γ2

P(U1)≤ Γ2
P(U2) for any pair of interpretations U1 and U2 such that U1 ≤U2. �

Proof . Since U1 ≤U2, by Lemma ??, it follows I1 ≥ I2 with I1 and I2 being respectively the least
models of PU1 and PU2 . Then, ΓP(U1) = I1 and ΓP(U2) = I2 and, thus, ΓP(U1)≥ ΓP(U2). Since
ΓP is anti-monotonic it follows that Γ2

P is monotonic. �

Appendix B.4. Proof of Theorem ??

The proof of Theorem ?? will rely on the relation between ECJ justifications and non-hypothetical
WnP justifications established by Theorem ?? and it can be found below the proof of that theorem
in page ??.

Enablers and Inhibitors in Causal Justifications of Logic Programs 27

Appendix B.5. Proof of Theorem ??

Definition 17
A term t ∈ VLb is join irreducible iff t = ∑u∈U u implies that u = t for some u ∈U and it is join
prime iff t ≤ ∑u∈U u implies that u≤ t for some u ∈U . �

Proposition 5
The following results hold:

1. A term is join irreducible iff is join prime.
2. If Lb is finite, then every term t can be represented as a unique finite sum of pairwise

incomparable join irreducible terms. �

Proof . The first result directly follows from Theorem 1 in (?, page 65). Furthermore, from The-
orem 2 in (?, page 66), in every distributive lattice satisfying the descending chain condition,
any element can be represented as a unique finite sum of pairwise incomparable join irreducible
elements and it is clear that every finite lattice satisfies the descending chain condition. �

Lemma B.5
Let P be a positive program over a signature 〈At,Lb〉 where Lb is a finite set of labels and Q be
the result of removing all rules labelled by some label l ∈ Lb. Let I and J be two interpretations
such that J such that ρ∼l(I)≥ J. Then, ρ∼l(ΓP(I))≤ ΓQ(J). �

Proof . By definition ΓP(I) and ΓQ(J) are the least models of programs PI and QJ , respectively.
Furthermore, from Theorem ??, the least model of any program P is the least fixpoint of the
TP operator, that is, ΓX (Y) = TXY ↑ω (0) with X ∈ {P,Q} and XY ∈ {PI ,PJ}. Then, the proof
follows by induction assuming that u ≤ TQJ ↑β (0)(H) implies ρ∼l(u) ≤ TQI ↑β (0)(H) for any
join irreducible u, atom H and every ordinal β < α .

Note that TQJ ↑0 (0)(H) = 0 = ρ∼l(0) = TPI ↑0 (0)(A) for any atom H and, thus, the statement
holds vacuous.

If α is a successor ordinal, since u≤ TPI ↑α (0)(H), there is a rule in P of the form (??) such that

u ≤ (uB1 ∗ . . .∗uBm ∗uC1 ∗ . . .∗uCn) · ri

where uB j ≤ TPI ↑α−1 (0)(B j) and uC j ≤∼I(C j) for each positive literal B j and each negative
literal not C j in the body of rule ri. Then,

1. By induction hypothesis, it follows that ρ∼l(uB j)≤ TQJ ↑α−1 (0)(B j), and
2. from ρ∼l(I(H))≥ J(H), it follows that uC j ≤∼I(C j) implies ρ∼l(uC j)≤∼J(C j).

Furthermore, if ri 6= l, then ri ∈ Q and, thus,

ρ∼l(u) ≤ (ρ∼l(uB1)∗ . . .∗ρ∼l(uBm)∗ρ∼l(uC1)∗ . . .∗ρ∼l(uCn)) · ri ≤ TQJ ↑α (0)(H)

If otherwise ri = l, then ρ∼l(u) = 0≤ TQJ ↑α (0)(H).

In case that α is a limit ordinal, u ≤ TPI ↑α (0) iff u ≤ TPI ↑β (0) for some β < α and any join
irreducible u. Hence, by induction hypothesis, it follows that ρ∼l(u) ≤ TQJ ↑β (0) ≤ TQJ ↑α (0)
and, thus, ρ∼l(TPI ↑α (0))≤ TQJ ↑α (0). �

28 P. Cabalar & J. Fandinno

Proof of Theorem ??. In the sake of simplicity, we just write ρ instead of ρ∼ri . Note that, by
definition, for any atom H, it follows that WX (H) = LX (H) with X ∈ {P,Q}. The proof follows
by induction in the number of steps of the Γ2 operator assuming as induction hypothesis that
Γ2

Q ↑β (0) ≤ ρ(Γ2
P ↑β (0)) for every β < α . Note that Γ2

Q ↑0 (0)(H) = 0≤ ρ(Γ2
P ↑0 (0))(H) and,

thus, the statement trivially holds for α = 0 .

In case that α is a successor ordinal, by induction hypothesis, it follows that

Γ
2
Q ↑α−1 (0) ≤ ρ(Γ2

P ↑α−1 (0))

and, from Lemma ??, it follows that

ΓQ(Γ
2
Q ↑α−1 (0)) ≥ ρ(ΓP(Γ

2
P ↑α−1 (0)))

Γ
2
Q(Γ

2
Q ↑α−1 (0)(H))) ≤ ρ(Γ2

P(Γ
2
P ↑α−1 (0)))

That is, Γ2
Q ↑α (0) ≤ ρ(Γ2

P ↑α (0).

Finally, in case that α is a limit ordinal, every join irreducible u satisfies u ≤ Γ2
Q ↑α (0) =

∑β<α Γ2
Q ↑β (0) iff u ≤ Γ2

Q ↑β (0) for some β < α and, thus, by induction hypothesis ρ(u) ≤
Γ2

P ↑β (0)≤ Γ2
P ↑α (0). Consequently, Γ2

Q ↑∞ (0)≤ ρ(Γ2
P ↑∞ (0) and WQ(A)≤ ρ(WP(A) for any

atom A. �

Appendix B.6. Proof of Theorem ??

By Γ̃P(Ĩ) we denote the least model of a program PĨ . Note that the relation between Γ̃P and ΓP is
similar to the relation between T̃P and TP: the Γ̃P operator is a function in the set of CG interpre-
tations while ΓP is a function in the set of ECJ interpretations. Note also that the evaluation of
negated literals with respect to CG and ECJ interpretations and, thus, the reducts PĨ and PI may
be different even if Ĩ(A) = I(A) for every atom A.

Lemma B.6
Let P be a labelled logic program, Ĩ and J be respectively an CG and a ECJ interpretation such
that Ĩ ≥ λ c(J). Then Γ̃P(Ĩ)≤ λ c(ΓP(J)). �

Proof . By definition Γ̃P(Ĩ) and ΓP(J) are respectively the least model of the programs PĨ and PJ .
Furthermore, from Theorem ?? the least model of any program P is the least fixpoint of the TP

operator, that is, Γ̃P(Ĩ) = T̃PĨ ↑ω (0) and ΓP(J) = TPJ ↑ω (0). In case that α = 0, it follows that
T̃PĨ ↑0 (0)(H) = 0 ≤ λ c(TPJ ↑0 (0))(H) for every atom H. We assume as induction hypothesis
that T̃PĨ ↑β (0)≤ λ c(TPJ ↑β (0)) for all β < α .

In case that α is a successor ordinal, E ≤ T̃PĨ ↑α (0)(H) = T̃PĨ (T̃PĨ ↑α−1 (0))(H) if and only if
there is a rule RI in PĨ of the form

ri : H← B1, . . . ,Bm,

which is the reduct of a rule R of the form (??) in P and that satisfies E ≤ (EB1 ∗ . . . ∗EBm) · ri

with each EB j ≤ T̃PĨ ↑α−1 (0)(B j) and Ĩ(C j) = 0 for all B j and C j in body(R). Hence there is a
rule in PJ of the form

ri : H← B1, . . . ,Bm, J(notC1), . . . , J(notCn)

Enablers and Inhibitors in Causal Justifications of Logic Programs 29

and, by induction hypothesis, EB j ≤ λ c
(
TPJ ↑α−1 (0)(B j)

)
for all B j. Furthermore, by definition(

TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)∗ J(notC1)∗ . . .∗ J(notCm)
)
· ri ≤ TPJ ↑α (0)(H)

From the fact that Ĩ(C j) = 0 and the lemma’s hypothesis Ĩ ≥ λ c(J), it follows that 0≥ λ c(J(C j))

and, thus, 1≤ λ c(∼J(C j)) = λ c(J(notC j)). Hence,

λ
c((TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)∗ J(notC1)∗ . . .∗ J(notCm)) · ri

)
=

= λ
c((TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)

)
∗λ

c(J(notC1)
)
∗ . . .∗λ

c(J(notCm)
))
· ri

= λ
c((TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)

)
∗1∗ . . .∗1

)
· ri

= λ
c((TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)

))
· ri

and, thus,

λ
c((TPJ ↑α−1 (0)(B1)∗ . . .∗TPJ ↑α−1 (0)(Bm)

))
· ri ≤ λ

c(TPJ ↑α (0)(H)
)

Since EB j ≤ λ c
(
TPJ ↑α−1 (0)(B j)

)
for all B j, it follows that

E ≤ (EB1 ∗ . . .∗EBm) · ri ≤ λ
c(TPJ ↑α (0))(H)

Finally, in case that α is a limit ordinal, it follows from Theorem ?? that α = ω . Furthermore,
since Ĩ is a CG interpretation, it follows that PĨ is a CG program and, thus, E ≤ TPĨ ↑ω (0) iff
E ≤ TPĨ ↑n (0) for some n < ω (see ?). Hence, by induction hypothesis, it follows that E ≤
TPJ ↑n (0)≤ TPJ ↑ω (0). �

Lemma B.7
Let P be a labelled logic program over a signature 〈At,Lb〉 where Lb is a finite set of labels, Ĩ and
J respectively be a CG and a ECJ interpretation such that Ĩ ≤ λ c(J). Then Γ̃P(Ĩ)≥ λ c(ΓP(J)). �

Proof . Since Lb is finite, it follows that VLb is also finite. Furthermore, since VLb is a finite
distributive lattice, every element t ∈ VLb can be represented as a unique sum of join irreducible
elements (Proposition ??).

Assume as induction hypothesis that u≤ TPJ ↑β (0)(H) implies λ c(u)≤ T̃PĨ ↑β (0)(H) for every
join irreducible u, atom H ∈ At and ordinal β < α .

In case that α is a successor ordinal. For any join irreducible justification u≤ TPJ ↑α (0)(H) there
is a rule RJ in PJ of the form (??) and there are join irreducible terms uB j ≤ TPJ ↑α−1 (0)(B j) and
uC j ≤∼J(C j) for all B j and C j such that

u ≤ (uB1 ∗ . . .∗uBm ∗uC1 ∗ . . .∗uCn) · ri

If uC j contains an oddly negated label for some C j, then λ c(uC j) = 0 and it consequently follows
that λ c(u) = 0 ≤ T̃PĨ ↑α (0)(H). Thus, we assume that uC j only contains evenly negated labels
for any C j. Note that, since uC j ≤ ∼J(C j), then uC j cannot contain any non-negated label, that
is, all occurrences of labels in uC j are strictly evenly negated and, thus, every term u′C j

≤ J(C j)

must contain some oddly negated label. Hence, Ĩ(C j)≤ λ c(J(C j)) = 0 for any C j and there is a
rule RĨ in QĨ of the form

ri : H← B1, . . . ,Bm

30 P. Cabalar & J. Fandinno

By induction hypothesis, uB j ≤ TPJ ↑α−1 (0)(B j) implies λ c(uB j) ≤ T̃PĨ ↑α−1 (0)(B j) and, con-
sequently, λ c(u)≤ T̃PĨ ↑α (0)(H).

Since TPJ ↑α (0)(H) = ∑u∈UH u where every u ∈UH is join irreducible and every u ∈UH satisfies
u≤ TPJ ↑α (0)(H), it follows that λ c(u)≤ T̃PĨ ↑α (0)(H) and, thus, ∑u∈UH λ c(u)≤ T̃PĨ ↑α (0)(H).
Note that, by definition, λ c(∑u∈UH u) = ∑u∈UH λ c(u) and, thus,

λ
c(TPJ ↑α (0)(H)) = λ

c(∑
u∈UH

u) ≤ T̃PĨ ↑α (0)(H)

In case that α is a limit ordinal, it follows u ≤ TPJ ↑α (0)(H) iff u ≤ TPJ ↑β (0)(H) for some
β < ω and, by induction hypothesis, it follows that λ c(u)≤ T̃PĨ ↑β (0)(H)≤ T̃PĨ ↑α (0)(H) and,
thus, T̃PĨ ↑α (0)≥ λ c(TPJ ↑α (0)).

Finally, by definition Γ̃P(Ĩ) and ΓP(J) are respectively the least models of PĨ and PJ and, from
Theorem ??, these are precisely T̃PĨ ↑ω (0) and TPJ ↑ω (0). Hence, T̃PĨ ↑ω (0) ≥ λ c(TPJ ↑ω (0))
implies Γ̃P(Ĩ)≥ λ c(ΓP(J)). �

Proposition 6

Given a program P over a signature 〈At,Lb〉 where Lb is a finite set of labels, any ECJ interpre-
tation I satisfies Γ̃P(λ

c(I)) = λ c(ΓP(I))). �

Proof of Proposition ??. Let Ĩ be a CG interpretation such that I(H) = Ĩ(H) for every atom H.
Then, it follows that Ĩ = λ c(I). Hence, from Lemmas ?? and ??, it respectively follows that
Γ̃P(Ĩ)≤ λ c(ΓP(I)) and Γ̃P(Ĩ)≥ λ c(ΓP(I)). Then, Γ̃P(Ĩ) = Γ̃P(λ

c(I)) = λ c(ΓP(I)). �

Proof of Theorem ??. According to (?), a CG interpretation Ĩ is a CG stable model of P iff Ĩ is
the least model of the program PĨ . Then, the CG stable models are just the fixpoints of the Γ̃P

operator.

Let Ĩ be a CG stable model according to (?), let I be a ECJ interpretation such that I(H) = Ĩ(H)

for every atom H ∈ At and let J def= Γ2
P ↑∞ (I) be the least fixpoint of Γ2

P iterating from I. Since
I(H) = Ĩ(H) for every atom H ∈ At, it follows that Ĩ = λ c(I) and, by definition of CG stable
model, it follows that Ĩ = Γ̃P(Ĩ). Thus, from Proposition ??, it follows that Ĩ = λ c(ΓP(I)). Apply-
ing Γ̃P to both sides of this equality, we obtain that Γ̃P(Ĩ) = Γ̃P(λ

c(ΓP(I))). From Proposition ??
again, it follows that Γ̃P(λ

c(ΓP(I)))= λ c(ΓP(ΓP(I)))= λ c(Γ2
P(I)) and, thus, Γ̃P(Ĩ)= λ c(Γ2

P(I)).
Furthermore, since Ĩ = Γ̃P(Ĩ), it follows that Ĩ = λ c(Γ2

P(I)). Inductively applying this argument,
it follows that Ĩ = λ c(Γ2

P ↑α (I)) for any successor ordinal α . Moreover, for a limit ordinal α ,

λ
c(

Γ
2
P ↑α (I)

)
= λ

c
(

∑
β<α

Γ
2
P ↑β (I)

)
= ∑

β<α

λ
c(

Γ
2
P ↑β (I)

)
= Ĩ

Then, since we have defined J = Γ2
P ↑∞ (I), it follows that Ĩ = λ c(J) = λ c(I) and, since we also

have that Ĩ = λ c(ΓP(I)), we obtain that λ c(I) = λ c(ΓP(I)).

The other way around. Let I be a fixpoint of Γ2
P such that λ c(I) = λ c(ΓP(I)) and let Ĩ def= λ c(I).

In the same way as above, it follows that Γ̃P(Ĩ) = λ c(ΓP(I)) = λ c(I) = Ĩ. That is, Γ̃P(Ĩ) = Ĩ and
so that Ĩ is a causal stable model of P according to (?). �

Enablers and Inhibitors in Causal Justifications of Logic Programs 31

Appendix B.7. Proof of Theorem ??

Proof of Theorem ?? . Let Ĩ be a causal stable model of P and I be the correspondent fixpoint of
Γ2

P with Ĩ = λ c(I). Since E is a enabled justification of A, i.e. E ≤WP(A), then E ≤ LP(A) with
LP the least fixpoint of Γ2

P. Since, I is a fixpoint of Γ2
P, if follows that E ≤ LP(A) ≤ I(A) and,

thus, λ c(E) ≤ λ c(I(A)) = Ĩ(A). Then G def= graph(λ c(E)) is, by definition, a causal explanation
of the atom A.

Appendix B.8. Proof of Theorem ??

The proof of Theorem ?? will need the following definition.

Definition 18
Given a program P, a WnP interpretation is a mapping I : At −→ BLb assigning a Boolean for-
mula to each atom. The evaluation of a negated literal not A with respect to a WnP interpretation
is given by I(not A) = ¬I(A). An interpretation I is a WnP model of rule like (??) iff

I(B1)∗ . . .∗I(Bm)∗I(notC1)∗ . . .∗I(notCn)∗ ri ≤ I(H)

The operator GP(I) maps a WnP interpretation I to the least model of the program PI. �

Note that the only differences in the model evaluation between ECJ and WnP comes from the
valuation of negative literals and the use of ‘∗’ instead of ‘·’ for keeping track of rule application.
Besides, we will also use the following facts whose proof is addressed in an appendix.

Definition 19
Given a positive program P, we define a direct consequence operator TP such that

TP(I)(H) def= ∑
{
I(B1)∗ . . .∗I(Bn)∗ ri | (ri : H← B1, . . . ,Bn) ∈ P

}
for any WnP interpretation I and atom H ∈ At. �

Definition 20 (From ?)
Given a program P, its why-not program is given by P def= P∪P′ here P′ contains a labelled fact
of the form

¬not(A) : A

for each atom A∈ At not occurring in P as a fact. The why-not provenance information under the
well-founded semantics is defined as follows: WhyP(H) = [TP(H)]; WhyP(H) = [¬TUP(H)];
and WhyP(undef A) = [¬TP(H)∧TUQ(H)] where TP and TUP =GP(TP) be the least and
greates fixpoints of G2

P , respectively. �

Lemma B.8
Let P be a labelled logic program over a signature 〈At,Lb〉 where Lb is a finite set of labels
and let I and I be respectively a ECJ and a WnP interpretation such that λ p(I) ≥ I. Then,
λ p(ΓP(I))≤GP(I).

Proof . By definition ΓP(I) and GP(I) are the least model of the programs PI and PI, respec-
tively. Furthermore, the least model of programs PI and PI are the least fixpoint of the TPI and
TPJ operators, that is, ΓP(I) = TPI ↑ω (0) and GP(J) = TPI ↑ω (⊥).

32 P. Cabalar & J. Fandinno

In case that α = 0, it follows that λ p(TPI ↑0 (0)(H)) = TPI ↑0 (⊥)(H) = 0 for every atom H.
We assume as induction hypothesis that λ p(TPI ↑β (0))≤ TPI ↑β (⊥) for all β < α .

In case that α is a successor ordinal. Assume that u≤ TPI ↑α−1 (0)(H) for some join irreducible u
and atom H. Then there is a rule ri ∈ P of the form (??) and

u ≤ (uB1 ∗ . . .∗uB1 ∗uC1 ∗ . . .∗uC1) · ri

where uB j ≤ TPI ↑α−1 (0)(B j) and uC j ≤∼I(C j). Hence, by induction hypothesis, it follows that
λ p(uB j) ≤ TPI ↑α−1 (⊥)(B j) and, since uC j ≤∼I(C j), it also follows that λ p(uC j)≤ ¬I(C j)

for all C j. Consequently, we have that λ p(u)≤ TPI ↑α (⊥)(H).

In case that α is a limit ordinal, u ≤ TPI ↑α (0) iff u ≤ TPI ↑β (0) for some β < α and all join
irreducible u. Hence, by induction hypothesis, it follows that λ p(u)≤ TPJ ↑β (0)≤ TPJ ↑α (0)
and, thus, λ p(TPI ↑α (0))≤ TPJ ↑α (⊥). �

Lemma B.9
Let P be a labelled logic program over a signature 〈At,Lb〉 where Lb is a finite set of labels
and let I and I be respectively a ECJ and a WnP interpretation such that λ p(I) ≤ I. Therefore,
λ p(ΓP(I))≥GP(I). �

Proof . The proof is similar to the proof of Lemma ?? and we just show the case in which α is a
successor ordinal.

Assume that u≤ TPI ↑α (⊥)(H) for some join irreducible u and atom H. Hence, there is some
rule ri ∈ P of the form (??) and

u ≤ uB1 ∗ . . .∗uBm ∗uC1 ∗ . . .∗uCn ∗ ri

where uB j ≤ TPI ↑α−1 (⊥)(B j) for each B j and uC j ≤ ¬I(C j) for each C j. By induction hy-
pothesis, uB j ≤ λ p(TPI ↑α−1 (0))(B j) for all B j. Furthermore, since λ p(I) ≤ I it follows, from
Lemma ??, that λ p(∼I) ≥ ¬I and, since uC j ≤ ¬I(C j), it also follows that uC j ≤ λ p(∼I(C j)).
Hence,

λ (u) ≤ (λ p(uB1)∗ . . .∗λ
p(uB1)∗λ

p(uC1)∗ . . .∗λ
p(uC1))∗ ri ≤ λ

p(TPI ↑α (0)(H))

Thus, TPI ↑α (⊥)(B j)≤ λ p(TPI ↑α (0)(B j)). �

Note that the image of λ p is a boolean algebra and the set of causal values corresponding to
negated terms { ∼t

∣∣ t ∈ VLb } are also a boolean algebra. Consequently, we define a function
λ q(t) =∼∼t which is analogous to λ p but whose image is in VLb.

Lemma B.10
Let P be a labelled logic program and let I be an ECJ interpretation. Then, ΓP(I) = ΓP(λ q(I))
and λ p(t) = λ p(λ q(t)). �

Proof . For ΓP(I) = ΓP(λ q(I)). Since λ q(t) =∼∼t and ∼∼∼t =∼t, it follows that λ q(∼I) =
∼∼∼I = ∼I and, thus, PI =Pλ q(I). Since by definition ΓP(I) and ΓP(λ q(I)) are respectively
the least models of programs PI and Pλ q(I) it is clear that ΓP(I) = ΓP(λ q(I)).

For λ p(t) = λ p(λ q(t)), just note λ p(λ q(t)) = λ p(∼∼t) = ¬¬λ p(t) = λ p(t). �

Enablers and Inhibitors in Causal Justifications of Logic Programs 33

Proposition 7
Let P be a program over a signature 〈At,Lb〉 where Lb is a finite set of labels. Then, any causal
interpretation I satisfies:

(i). GP(λ p(I)) = λ p(ΓP(I)),
(ii). ΓP(λ q(I)) = ΓP(I) and

(iii). λ p(t) = λ p(λ q(t)). �

Proof . (i) From Lemmas ?? and ??, it respectively follows that λ p(ΓP(I)) ≤ GP(λ p(I)) and
that λ p(ΓP(I))≥GP(λ p(I)). Then, GP(λ

p(I))= λ p(ΓP(I)). (ii) and (iii) follow from Lemma ??. �

Proof of Theorem ??. Note that WhyP(A) = TP(A) and that, by λ p definition, it follows that
λ p(0) = 0 and thus, from Proposition ?? (i), it follows that GP(⊥) =GP(λ p(0)) = λ p(ΓP(0))
and

GP(⊥) = GP(λ p(0)) = λ
p(ΓP(0)) = λ

p(λ q(ΓP(0)))

Hence, from Proposition ??, it follows that

G2
P(⊥) = GP(GP(⊥)) = GP(λ p(λ q(ΓP(0))))

= λ
p(ΓP(λ q(ΓP(0)))) = λ

p(ΓP(ΓP(0))) = λ
p(Γ2

P(0))

Inductively applying this reasoning it follows that G2
P ↑∞ (0)= λ p(Γ2

P ↑∞ (0)) which, by Knaster-
Tarski theorem are the least fixpoints of the operators, that is, TP = λ p(LP) and, consequently,
WhyP(A) = TP(A) = λ p(LP(A)) = λ p(WP(A)) =WhyP(A). Similarly, by definition, it fol-
lows that WhyP(not A) = ¬TUP(A) where TUP is the greatest fixpoint of the operator G2

P .
Thus,

WhyP(not A) = ¬GP(TP) = λ
p(∼ΓP(LP)) = λ

p(∼UP(A)) = λ
p(WP(not A))

Finally, WhyP(undef A) = ¬TP(A)∗TUP(A) and, thus

WhyP(undef A) = λ
p(∼LP(A))∗λ

p(∼∼UP(A))

= λ
p(∼LP(A)∗∼∼UP(A))

= λ
p(∼WP(A)∗∼WP(not A)) = λ

p(WP(undef A))

and, thus, WhyP(undef A) = λ p(WP(undef A)) =WhyP(not A). �

Appendix B.9. Proof of Theorem ??

Lemma B.11
Let P be a labelled logic program over a signature 〈At,Lb〉 where Lb is a finite set of labels and
no rule is a labelled by not(A) nor ∼∼not(A). Let Q be the result of removing all rules labelled
by ∼not(A) for some atom A. Let I and J be two interpretations such that J = ρnot(A)(I). Then,
ΓQ(J) = ρnot(A)(ΓP(I)). �

Proof . In the sake of simplicity, we just write ρ instead of ρnot(A). By definition ΓP(I) and ΓQ(J)
are respectively the least model of PI and QJ . The proof follows then by induction on the steps
of the TP operator assuming that ρ(TPI ↑β (0)) = TQJ ↑β (0) for all β < α .

34 P. Cabalar & J. Fandinno

Note that, TX ↑0 (0)(H) = 0 for any program X and atom H and, thus, the statement trivially
holds.

In case that α is a successor ordinal. Let u ∈ VLb be a join irreducible causal value such that
u≤ TPI ↑α (0)(H). Then, there is a rule in P of the form (??) such that

u ≤ (uB1 ∗ . . .∗uBm ∗uC1 ∗ . . .∗uCn) · ri

where uB j ≤ TPI ↑α−1 (0)(B j) and uC j ≤∼I(C j) for each positive literal B j and each negative
literal notC j in the body of rule ri.

If ri =∼not(A), then ρ(u) = 0≤ TQ ↑α−1 (0)(H). Otherwise,

1. By induction hypothesis, it follows that ρ(uB j)≤ TQ ↑α−1 (0)(B j), and
2. from J(H) = ρ(I(H)) and uC j ≤∼I(C j), it follows that ρ(uC j)≤∼J(C j).

Furthermore, no rule in the program P is labelled with not(A) nor ∼∼not(A) and, thus, ri 6=
not(A) and ri 6=∼∼not(A). Hence, ρ(u)≤ TQ ↑α−1 (0)(H).

The other way around is similar. Since u ≤ TQJ ↑α (0)(H) there is a rule in Q of the form (??)
such that

u ≤ (uB1 ∗ . . .∗uBm ∗uC1 ∗ . . .∗uCn) · ri

and uB j ≤ TQJ ↑α−1 (0)(B j) and uC j ≤∼J(C j) for each positive literal B j and each negative lit-
eral notC j in the body of rule ri. By induction hypothesis, uB j ≤ ρ(TPI ↑α−1 (0)(B j)) for each B j

with 1≤ j ≤ m and, since J(H) = ρ(I(H)) and uC j ≤∼J(C j), it follows that uC j ≤ ρ(∼I(C j)).
Then, u≤ ρ(TPI ↑α (0)(H)).

In case that α is a limit ordinal TX ↑α (0) = ∑β<α TX ↑β (0)(H) and, thus, u ≤ TX ↑α (0) if and
only if u≤TX ↑β (0)(H) with β <α . By induction hypothesis, ρ(TPI ↑β (0)(H))=TQJ ↑β (0)(H)

and, thus, u≤ ρ(TPI ↑α (0)) if and only if u≤ TQJ ↑α (0). Hence, ρ(TPI ↑α (0)) = TQJ ↑α (0) and,
consequently, ΓQ(J) = ρ(ΓP(I)). �

Proposition 8
Let P be a labelled logic program over a signature 〈At,Lb〉where Lb is a finite set of labels where
no rule is a labelled by not(A) nor ∼∼not(A). Let Q be the result of removing all rules labelled
by ∼not(A) for some atom A. Then, LQ = ρnot(A)(LP) and UQ = ρnot(A)(UP). �

Proof . Note that LX = Γ2
X ↑∞ (0) with X ∈ {P,Q}. Furthermore, by definition, it follows that

Γ2
P ↑0 (0) = Γ2

Q ↑0 (0) = 0. Then, assume as induction hypothesis that Γ2
Q ↑β (0) = ρ(Γ2

P ↑β (0))
for all β < α . When α is a successor ordinal, by definition Γ2

X ↑α (0) = Γ2
X (Γ

2
X ↑α−1 (0)) =

ΓX (ΓX (Γ
2
X ↑α−1 (0))) with X ∈ {P, Q} and, thus, the statement follows from Lemma ??.

In case that α is a limit ordinal Γ2
X ↑α (0) = ∑β<α Γ2

X ↑β (0). Then, for every join irreducible u it
follows that u≤ Γ2

P ↑α (0) if and only if u≤ Γ2
P ↑β (0) for some β < α (by induction hypothesis)

iff ρ(u) ≤ Γ2
P ↑β (0) iff ρ(u) ≤ Γ2

P ↑α (0). Hence, Γ2
Q ↑α (0) = ρ(Γ2

P ↑α (0)) and, conseuqntly,
LQ = ρ(LP)

Finally, note that UX = ΓX (LX) with X ∈ {P, Q} and, thus, the statement follows directly from
Lemma ??. �

Enablers and Inhibitors in Causal Justifications of Logic Programs 35

Proof of Theorem ??. By definition, program P is the result of removing all rules labelled with
∼not(A) in P. In case that L is some atom H, by definition, it follows that WP(H) = LP(H)

and WP(H) = LP(H) and, from Proposition ??, it follows that LP = ρ(LP) and, thus WP =

ρ(WP).

Similarly, in case that L is a negative literal (L = not H), then WP(H) =∼UP(H) and WP(H) =

∼UP(H) and, from Proposition ??, it follows that UP = ρ(UP). Just note tha ρx(∼u) =∼ρx(u)
for any elementary term x and any value u. Hence, UP = ρ(UP) implies that ∼UP = ρ(∼UP)

and, consequently, WP = ρ(WP).

In case that L is an undefined literal (L = undef H), by definition, it follows that WP(H) =

∼WP(H)∗∼WP(not H) =∼LP(H)∗∼∼UP(H) and WP(H) =∼LP(H)∗∼∼UP(H) and the
result follows as before from Proposition ??. �

Appendix B.10. Proof of Theorem ??

Proof of Theorem ??. Note that ρ(λ p(u)) = λ p(ρ(u)) for any causal value u ∈ VLb. By defini-
tion WhyP(L) = λ p(WP)(L) and, thus

ρ(WhyP(L)) = ρ(λ p(WP)(L)) = λ
p(ρ(WP))(L)

From Theorem ??, it follows that WP = ρ(WP) and, thus, ρ(WhyP(L)) = λ p(WP)(L). �

Appendix B.11. Proof of Theorem ??

The proof of Theorem ?? will rely on the relation between ECJ justifications and non-hypothetical
WnP justifications established by Theorem ?? plus the following result from (?). First, we need
some notation. Given a conjuntion of labels D, by Remove(D) we denote the set of negated labels
in D, by Keep(D) the set of positive labels, by AddFacts(D) the set of facts A such that ¬not(A)
occurs in D and by NoFacts(D) the set of facts A such that not(A) occurs in D.

Theorem 12 (Theorem 3 from ?)
Given a labelled logic program P, let N be a set of facts not in program P and R be a sub-
set of rules of P. A literal L belongs to the WFM of (P\R) ∪ N iff there is a conjunction
of literals D |=WhyP(L), such that Remove(D)⊆ R, Keep(D)∩R = /0, AddFacts(D)⊆ N, and
NoFacts(D)∩N = /0. �

Definition 21
Given a positive program P, we define a direct consequence operator T̂P such that

T̂P(Î)(H) def= ∑
{

Î(B1)∗ . . .∗ Î(Bn) | (ri : H← B1, . . . ,Bn) ∈ P
}

for any standard interpretation interpretation Î and atom H ∈ At. �

Lemma B.12
Let P be a labelled logic program over a signature 〈At,Lb〉 where Lb is a finite set of labels and
let I and Î be respectively a ECJ and a standard interpretation satisfying that there is some enable
justification E ≤ ∼I(H) for every atom H such that Î(H) = 0. Then, every atom H satisfies
Γ̂P(Î)(H) = 1 iff there is some enabled justification E ≤ ΓP(I)(H). �

36 P. Cabalar & J. Fandinno

Proof . By definition ΓP(I) and Γ̂P(Î) are the least model of the programs PI and PÎ , respectively.
Furthermore, the least model of programs PI and PÎ are the least fixpoint of the TP and T̂P

operators, that is, ΓP(I) = TPI ↑ω (0) and Γ̂P(J) = T̂PÎ ↑ω (0). In case that α = 0, it follows that
T̂PÎ ↑0 (0)(H) for every atom H and, thus, the statement holds vacuous. We assume as induction
hypothesis that for every atom H and ordinal β < α such that T̂PÎ ↑β (0)(H) = 1, there is some
enabled justification E ≤ TPI ↑β (0)(H).

In case that α is a successor ordinal. If T̂PI ↑α−1 (0)(H) = 1, then there is a rule ri ∈ P of the form
(??) such that T̂PI ↑α−1 (0)(B j) = 1 and I(C j) = 0. On the one hand, by induction hypothesis, it
follows that there is some enabled justification EB j ≤ TPI ↑α−1 (0)(B j) and, by hypothesis, there
is some enabled justification EC j ≤∼I(C j). Hence,

E def= (EB1 ∗ . . .EBm ∗EC1 ∗ . . .∗ECn)·ri

is an enabled justification E ≤ TPI ↑α (0)(H).

The other way around, let E be some join irreducible justification. If E ≤ TPI ↑α (0)(H), then
there is a rule ri ∈ P of the form (??) such that

E ≤ (EB1 ∗ . . .EBm ∗EC1 ∗ . . .∗ECn)·ri

where EB j ≤ TPI ↑α (0)(B j) and EC j ≤ ∼I(C j) are enabled justifications. Hence, it follows that
T̂PÎ ↑α (0)(B j) = 1 and Î(C j) = 0.

In case that α is a limit ordinal, T̂PĨ ↑α (0) = 1 iff T̂PĨ ↑β (0) = 1 for some β < α iff there is a
join irreducible enabled justification E ≤ TPI ↑β (0))≤ λ p(TPI ↑α (0). �

Proof of Theorem ??. Let E ≤WP(L) be an enabled justification of L ∈ {A, not A, undef A}.
From Theorem ??, it follows that λ p(E)≤ λ p(WP(L))= ρ(WhyP(L)), that is, λ p(E)≤ ρ(WhyP(L)).
Note that the minimum causal value t such that ρ(t) = ρ(WhyP(L)) is WhyP(L)∧

∧
A∈At not(A)

and, thus, D ≤WhyP(L) where D is defined by D = λ p(E)∧
∧

A∈At not(A). Furthermore, since
E is an enabled justification, λ p(E) is a positive conjunction and, thus, so it is D. Hence, there is
a positive conjunction D such that D ≤WhyP(L) and, from Theorem ??, it follows that L holds
with respect to the standard WFM of P.

The other way around. If L = A is an atom, then L holds with respect to the standard WFM iff
lfp(Γ̂2

P)(L) = 1. Furthermore, Γ̂2
P ↑0 (0)(H) = Γ2

P ↑0 (0) = 0 for any atom H and, thus, there is
an enabled justification E ≤ ∼Γ2

P ↑0 (0) = ∼0 = 1 for any atom H. Then, from Lemma ??, for
any atom H , there is an enabled justification E ≤ ΓP(Γ

2
P ↑0 (0))(H) iff Γ̂P(Γ̂

2
P ↑0 (0))(H) = 1.

Applying this result again, it follows that E ≤ Γ2
P ↑1 (0)(H) = Γ2

P(Γ
2
P ↑0 (0))(H) if and only

if Γ̂2
P ↑1 (0))(H) = Γ̂2

P(Γ̂
2
P ↑0 (0))(H) = 1. Inductively applying this reasoning it follows that

Γ̂2
P ↑∞ (0)(H) = 1 iff there is an enabled justification E ≤ Γ2

P ↑∞ (0)(H) which, by Knaster-Tarski
theorem are the least fixpoints respectively of the Γ̂P and ΓP operators.

Similarly, if L= not A, then L holds with respect to the standard WFM if and only if gfp(Γ̂2
P)(L)=

Γ̂P(lfp(Γ̂2
P))(L)= 0 iff there is not any an enabled justification E ≤ΓP(lfp(Γ2

P))(L)= gfp(Γ2
P)(L)

iff there is an enabled justification E ≤WP(L) =∼gfp(Γ2
P)(L).

Finally, if L = undef A, then L holds with respect to the standard WFM iff lfp(Γ̂2
P)(L) = 0 and

gfp(Γ̂2
P)(L) = 1 if and only if there is not any enabled justification E ≤WP(L) and there is not

Enablers and Inhibitors in Causal Justifications of Logic Programs 37

any enabled justification E ≤WP(not L) iff there is some enabled justification E ≤ ∼WP(L)
and there is some enabled justification E ≤ ∼WP(not L) iff there is some enabled justification
WP(undef A) =∼WP(A)∗∼WP(not A). �

Appendix B.12. Proof of Theorem ??

Lemma B.13
Let t and u be two causal terms such that no-sums occur in t ant t ≤ u. Then, ρx(t)≤ ρx(u). �

Proof . By definition t ≤ u if and only if t = t ∗u. Then, ρx(t) = ρx(t ∗u) = ρx(t)∗ρx(u) and, thus
if follows that ρx(t)≤ ρx(u). �

Lemma B.14
Let t be a causal term. Then, λ c(λ p(t))≤ λ p(λ c(t)). �

Proof . If t ∈ Lb is a label, then λ c(t) = t and λ p(t) = t and, thus, λ c(λ p(t)) = t ≤ t = λ p(λ c(t)).
If t = ∼l with l ∈ Lb a label, then λ c(t) = 0 and λ p(t) = ¬l and, thus, λ c(λ p(t)) = 0 ≤ 0 =

λ p(λ c(t)). If t =∼∼l with l ∈ Lb a label, then λ c(t) = 1 and λ p(t) = l and, thus, λ c(λ p(t)) =
l ≤ 1 = λ p(λ c(t)).

Assume as induction hypothesis that λ c(λ p(u)) ≤ λ p(λ c(u)) for every subterm u of t. If t =
u1·u2, then

λ
c(λ p(u1·u2)) = λ

c(λ p(u1)∗λ
c(λ p(u2) ≤ λ

p(λ c(u1)∗λ
p(λ c(u2) = λ

p(λ c(u1·u2))

Similarly, if t = ∑u∈U u, then

λ
c(λ p(∑

u∈U
u) = ∑

u∈U
λ

c(λ p(u) ≤ ∑
u∈U

λ
p(λ c((u)) = λ

p(λ c(∑
u∈U

u))

and if t = ∏u∈U u, then

λ
c(λ p(∏

u∈U
u) = ∏

u∈U
λ

c(λ p(u) ≤ ∏
u∈U

λ
p(λ c((u)) = λ

p(λ c(∏
u∈U

u))

�

Proof of Theorem ??. From Theorem ??, it follows that ρ(WhyP(A)) = λ p(WP)(A). Further-
more, since D≤WhyP(A), from Lemma ??, it follows that

ρ(D) ≤ ρ(WhyP(A)) = λ
p(WP)(A) = λ

p(LP)(A)

and, thus, λ c(ρ(D))≤ λ c(λ p(LP))(A). Let Ĩ be any CG stable model. Then, since Ĩ = λ c(I) for
some fixpoint I of Γ2

P, it follows that λ c(LP) ≤ Ĩ and, thus, λ p(λ c(LP)) ≤ λ p(Ĩ). Furthermore,
from Lemma ??, it follows that λ c(λ p(LP))≤ λ p(λ c(LP)) and, thus

λ
c(ρ(D)) ≤ λ

c(λ p(LP))(A) ≤ λ
p(λ c(LP))(A) ≤ λ

p(Ĩ)(A)

Note that, since D is non-hypothetical and enabled, it does not contain negated labels and, thus,
λ c(ρ(D)) = ρ(D). Consequently, ρ(D)≤ λ p(Ĩ)(A). �

