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Abstract

Standardization of solver input languages has been a main driver for the growth of several areas within knowledge

representation and reasoning, fostering the exploitation in actual applications. In this document we present the ASP-

Core-2 standard input language for Answer Set Programming, which has been adopted in ASP Competition events

since 2013.
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1 Introduction

The process of standardizing the input languages of solvers for knowledge representation and reasoning

research areas has been of utmost importance for the growth of the related research communities: this

has been the case for, e.g., the CNF-DIMACS format for SAT, then extended to describe input formats for

Max-SAT and QBF problems, the OPB format for pseudo-Boolean problems, somehow at the intersection

between the CNF-DIMACS format and the LP format for Integer Linear Programming, the XCSP3 format

for CP solving, SMT-LIB format for SMT solving, and the STRIPS/PDDL language for automatic plan-

ning. The availability of such common input languages have led to the development of efficient solvers in

different KR communities, through a series of solver competitions that have pushed the adoption of these

standards. The availability of efficient solvers, together with a presence of a common interface language,

has helped the exploitation of these methodologies in applications.

The same has happened for Answer Set Programming (ASP) (Brewka et al. 2011), a well-known ap-

proach to knowledge representation and reasoning with roots in the areas of logic programming and non-

monotonic reasoning (Gelfond and Lifschitz 1991), through the development of the ASP-Core language

(Calimeri et al. 2011). The first ASP-Core version was a rule-based language whose syntax stems from

plain Datalog and Prolog, and was a conservative extension to the non-ground case of the Core language

adopted in the First ASP Competition held in 2002 during the Dagstuhl Seminar “Nonmonotonic Reason-

ing, Answer Set Programming and Constraints”1. It featured a restricted set of constructs, i.e. disjunction

in the rule heads, both strong and negation-as-failure negation in rule bodies, as well as non-ground rules.

In this document we present the latest evolution of ASP-Core, namely ASP-Core-2, which currently

constitutes the standard input language of ASP solvers adopted in the ASP Competition series since

2013 (Calimeri et al. 2014; Calimeri et al. 2016; Gebser et al. 2017b; Gebser et al. 2017a). ASP-Core-2

substantially extends its predecessor by incorporating many language extensions that became mature and

widely adopted over the years in the ASP community, such as aggregates, weak constraints, and function

symbols. The ASP competition series pushed its adoption, and significantly contributed both to the avail-

ability of efficient solvers for ASP (Lierler et al. 2016; Gebser et al. 2018) and to the exploitation of the

ASP methodology in academic and in industrial applications (Erdem et al. 2016; Leone and Ricca 2015;

Gebser et al. 2018). In the following, we first present syntax and semantics for the basic building blocks

of the language, and then introduce more expressive constructs such as choice rules and aggregates, which

help with obtaining compact problem formulations. Eventually, we present syntactic restrictions for the

use of ASP-Core-2 in practice.

2 ASP-Core-2 Language Syntax

For the sake of readability, the language specification is herein given in the traditional mathematical no-

tation. A lexical matching table from the following notation to the actual raw input format is provided in

Section 6.

Terms. Terms are either constants, variables, arithmetic terms or functional terms. Constants can be

either symbolic constants (strings starting with some lowercase letter), string constants (quoted strings) or

integers. Variables are denoted by strings starting with some uppercase letter. An arithmetic term has form

−(t) or (t⋄u) for terms t and u with ⋄ ∈ {“+”,“−”,“∗”,“/”}; parentheses can optionally be omitted in which

case standard operator precedences apply. Given a functor f (the function name) and terms t1, . . . , tn, the

expression f (t1, . . . , tn) is a functional term if n > 0, whereas f () is a synonym for the symbolic constant f .

Atoms and Naf-Literals. A predicate atom has form p(t1, . . . , tn), where p is a predicate name, t1, . . . , tn

are terms and n≥ 0 is the arity of the predicate atom; a predicate atom p() of arity 0 is likewise represented

1 https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=02381.

https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=02381
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by its predicate name p without parentheses. Given a predicate atom q, q and ¬q are classical atoms. A

built-in atom has form t ≺ u for terms t and u with ≺ ∈ {“<”,“≤”,“=”,“,”,“>”,“≥”}. Built-in atoms a as

well as the expressions a and not a for a classical atom a are naf-literals.

Aggregate Literals. An aggregate element has form

t1, . . . , tm : l1, . . . , ln

where t1, . . . , tm are terms and l1, . . . , ln are naf-literals for m ≥ 0 and n ≥ 0.

An aggregate atom has form

#aggr E ≺ u

where #aggr ∈ {“#count”,“#sum”,“#max”,“#min”} is an aggregate function name, ≺ ∈ {“<”,“≤”,“=”,

“,”,“>”,“≥”} is an aggregate relation, u is a term and E is a (possibly infinite) collection of aggregate

elements, which are syntactically separated by “;”. Given an aggregate atom a, the expressions a and not a

are aggregate literals. In the following, we write atom (resp., literal) without further qualification to refer

to some classical, built-in or aggregate atom (resp., naf- or aggregate literal).

We here allow for infinite collections of aggregate elements because the semantics in Section 3 is based

on ground instantiation, which may map some non-ground aggregate element to infinitely many ground

instances. The semantics of Abstract Gringo (Gebser et al. 2015) handles such cases by means of infini-

tary propositional formulas, while the Abstract Gringo language avoids infinite collections of aggregate

elements in the input. As shown in (Harrison and Lifschitz 2019), the semantics by ground instantiation or

infinitary propositional formulas, respectively, are equivalent on the common subset of Abstract Gringo

and ASP-Core-2. Moreover, we note that the restrictions to ASP-Core-2 programs claimed in Section 5

require the existence of a finite equivalent ground instantiation for each input, so that infinite collections

of aggregate elements do not show up in practice.

Rules. A rule has form

h1 | . . . | hm← b1, . . . ,bn.

where h1, . . . ,hm are classical atoms and b1, . . . ,bn are literals for m ≥ 0 and n ≥ 0. When n = 0, the rule is

called a fact. When m = 0, the rule is referred to as a constraint.

Weak Constraints. A weak constraint has form

� b1, . . . ,bn. [w@l, t1, . . . , tm]

where t1, . . . , tm are terms and b1, . . . ,bn are literals for m ≥ 0 and n ≥ 0; w and l are terms standing for a

weight and a level. Writing the part “@l” can optionally be omitted if l = 0; that is, a weak constraint has

level 0 unless specified otherwise.

Queries. A query Q has form a?, where a is a classical atom.

Programs. An ASP-Core-2 program is a set of rules and weak constraints, possibly accompanied by a

(single) query.2 A program (rule, weak constraint, query, literal, aggregate element, etc.) is ground if it

contains no variables.

3 Semantics

We herein give the full model-theoretic semantics of ASP-Core-2. As for non-ground programs, the se-

mantics extends the traditional notion of Herbrand interpretation, taking care of the fact that all integers are

2 Unions of conjunctive queries (and more) can be expressed by including appropriate rules in a program.
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part of the Herbrand universe. The semantics of propositional programs is based on (Gelfond and Lifschitz 1991),

extended to aggregates according to (Faber et al. 2004; Faber et al. 2011). Choice atoms (Simons et al. 2002)

are treated in terms of the reduction given in Section 4.

We restrict the given semantics to programs containing non-recursive aggregates (see Section 5 for this

and further restrictions to the family of admissible programs), for which the general semantics presented

herein is in substantial agreement with a variety of proposals for adding aggregates to ASP (Kemp and Stuckey 1991;

Van Gelder 1992; Osorio and Jayaraman 1999; Ross and Sagiv 1997; Denecker et al. 2001; Gelfond 2002;

Simons et al. 2002; Dell’Armi et al. 2003; Pelov and Truszczyński 2004; Pelov et al. 2004; Ferraris 2005;

Pelov et al. 2007).

Herbrand Interpretation. Given a program P, the Herbrand universe of P, denoted by UP, consists of

all integers and (ground) terms constructible from constants and functors appearing in P. The Herbrand

base of P, denoted by BP, is the set of all (ground) classical atoms that can be built by combining predicate

names appearing in P with terms from UP as arguments. A (Herbrand) interpretation I for P is a subset

of BP.

Ground Instantiation. A substitution σ is a mapping from a set V of variables to the Herbrand uni-

verse UP of a given program P. For some object O (rule, weak constraint, query, literal, aggregate element,

etc.), we denote by Oσ the object obtained by replacing each occurrence of a variable v ∈ V by σ(v) in O.

A variable is global in a rule, weak constraint or query r if it appears outside of aggregate elements

in r. A substitution from the set of global variables in r is a global substitution for r; a substitution from

the set of variables in an aggregate element e is a (local) substitution for e. A global substitution σ for r

(or substitution σ for e) is well-formed if the arithmetic evaluation, performed in the standard way, of any

arithmetic subterm (−(t) or (t ⋄ u) with ⋄ ∈ {“+”,“−”,“∗”,“/”}) appearing outside of aggregate elements

in rσ (or appearing in eσ) is well-defined.

Given a collection E of aggregate elements, the instantiation of E is the following set of aggregate

elements:

inst(E) =
⋃

e∈E{eσ | σ is a well-formed substitution for e}

A ground instance of a rule, weak constraint or query r is obtained in two steps: (1) a well-formed global

substitutionσ for r is applied to r; (2) for every aggregate atom #aggr E ≺ u appearing in rσ, E is replaced

by inst(E).

The arithmetic evaluation of a ground instance r of some rule, weak constraint or query is obtained by

replacing any maximal arithmetic subterm appearing in r by its integer value, which is calculated in the

standard way.3 The ground instantiation of a program P, denoted by grnd(P), is the set of arithmetically

evaluated ground instances of rules and weak constraints in P.

Term Ordering and Satisfaction of Naf-Literals. A classical atom a ∈ BP is true w.r.t. a interpreta-

tion I ⊆ BP if a ∈ I. A Naf-Literal of the form not a, where a is a classical atom, is true w.r.t. I if a < I,

and it is false otherwise.

To determine whether a built-in atom t ≺ u (with ≺ ∈ {“<”,“≤”,“=”,“,”,“>”,“≥”}) holds, we rely on a

total order � on terms in UP defined as follows:

• t � u for integers t and u if t ≤ u;

• t � u for any integer t and any symbolic constant u;

• t � u for symbolic constants t and u if t is lexicographically smaller than or equal to u;

• t � u for any symbolic constant t and any string constant u;

• t � u for string constants t and u if t is lexicographically smaller than or equal to u;

3 Note that the outcomes of arithmetic evaluation are well-defined relative to well-formed substitutions.



ASP-Core-2 Input Language Format 5

• t � u for any string constant t and any functional term u;

• t � u for functional terms t = f (t1, . . . , tm) and u = g(u1, . . . ,un) if

— m < n (the arity of t is smaller than the arity of u),

— m ≤ n and g � f (the functor of t is smaller than the one of u, while arities coincide) or

— m ≤ n, f � g and, for any 1 ≤ j ≤ m such that t j � u j, there is some 1 ≤ i < j such that ui � ti

(the tuple of arguments of t is smaller than or equal to the arguments of u).

Then, t ≺ u is true w.r.t. I if t � u for ≺ = “≤”; u � t for ≺ = “≥”; t � u and u � t for ≺ = “<”; u � t and t � u

for ≺ = “>”; t � u and u � t for ≺ = “=”; t � u or u � t for ≺ = “,”. A positive naf-literal a is true w.r.t. I

if a is a classical or built-in atom that is true w.r.t. I; otherwise, a is false w.r.t. I. A negative naf-literal

not a is true (or false) w.r.t. I if a is false (or true) w.r.t. I.

Satisfaction of Aggregate Literals. An aggregate function is a mapping from sets of tuples of terms

to terms, +∞ or −∞. The aggregate functions associated with aggregate function names introduced in

Section 2 map a set T of tuples of terms to a term, +∞ or −∞ as follows:4

• #count(T ) =

{
|T | if T is finite

+∞ if T is infinite;

• #sum(T ) =

{∑
(t1, . . . , tm) ∈ T , t1 is an integer t1 if {(t1, . . . , tm) ∈ T | t1 is a non-zero integer} is finite

0 if {(t1, . . . , tm) ∈ T | t1 is a non-zero integer} is infinite;

• #max(T ) =



max{t1 | (t1, . . . , tm) ∈ T } if T , ∅ is finite

+∞ if T is infinite

−∞ if T = ∅;

• #min(T ) =



min{t1 | (t1, . . . , tm) ∈ T } if T , ∅ is finite

−∞ if T is infinite

+∞ if T = ∅.

The terms selected by #max(T ) and #min(T ) for finite sets T , ∅ are determined relative to the total

order � on terms in UP. In the special cases that #aggr(T ) = +∞ or #aggr(T ) = −∞, we adopt the con-

vention that −∞ � u and u � +∞ for every term u ∈ UP. An expression #aggr(T ) ≺ u is true (or false) for

#aggr ∈ {“#count”,“#sum”,“#max”,“#min”}, an aggregate relation ≺ ∈ {“<”,“≤”,“=”,“,”,“>”,“≥”} and

a term u if #aggr(T ) ≺ u is true (or false) according to the corresponding definition for built-in atoms,

given previously, extended to the values +∞ and −∞ for #aggr(T ).

An interpretation I ⊆ BP maps a collection E of aggregate elements to the following set of tuples of

terms:

eval(E, I) = {(t1, . . . , tm) | t1, . . . , tm : l1, . . . , ln occurs in E and l1, . . . , ln are true w.r.t. I}

A positive aggregate literal a = #aggr E ≺ u is true (or false) w.r.t. I if #aggr(eval(E, I)) ≺ u is true (or

false) w.r.t. I; not a is true (or false) w.r.t. I if a is false (or true) w.r.t. I.

Answer Sets. Given a program P and a (consistent) interpretation I ⊆ BP, a rule h1 | . . . | hm← b1, . . . ,bn.

in grnd(P) is satisfied w.r.t. I if some h ∈ {h1, . . . ,hm} is true w.r.t. I when b1, . . . ,bn are true w.r.t. I; I is a

model of P if every rule in grnd(P) is satisfied w.r.t. I. The reduct of P w.r.t. I, denoted by PI , consists of

the rules h1 | . . . | hm← b1, . . . ,bn. in grnd(P) such that b1, . . . ,bn are true w.r.t. I; I is an answer set of P

if I is a ⊆-minimal model of PI . In other words, an answer set I of P is a model of P such that no proper

subset of I is a model of PI .

The semantics of P is given by the collection of its answer sets, denoted by AS(P).

4 The special cases in which #aggr(T ) = +∞, #aggr(T ) = −∞ or #sum(T ) = 0 for an infinite set {(t1, . . . , tm) ∈ T | t1 is a non-zero
integer} are adopted from Abstract Gringo (Gebser et al. 2015).
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Optimal Answer Sets. To select optimal members of AS(P), we map an interpretation I for P to a set of

tuples as follows:

weak(P, I) = {(w@l, t1, . . . , tm) |

� b1, . . . ,bn. [w@l, t1, . . . , tm] occurs in grnd(P) and b1, . . . ,bn are true w.r.t. I}

For any integer l, let

PI
l =



∑
(w@l, t1, . . . , tm) ∈ weak(P, I), w is an integerw if {(w@l, t1, . . . , tm) ∈ weak(P, I) | w is a non-zero integer}

is finite

0 if {(w@l, t1, . . . , tm) ∈ weak(P, I) | w is a non-zero integer}

is infinite

denote the sum of integers w over tuples with w@l in weak(P, I). Then, an answer set I ∈ AS(P) is dom-

inated by I′ ∈ AS(P) if there is some integer l such that PI′

l
< PI

l
and PI′

l′
= PI

l′
for all integers l′ > l. An

answer set I ∈ AS(P) is optimal if there is no I′ ∈ AS(P) such that I is dominated by I′. Note that P has

some (and possibly more than one) optimal answer sets if AS(P) , ∅.

Queries. Given a ground query Q = q? of a program P, Q is true if q ∈ I for all I ∈ AS(P). Otherwise, Q is

false. Note that, if AS(P) = ∅, all queries are true. In presence of variables one is interested in substitutions

that make the query true. Given the non-ground query Q = q(t1, . . . , tn)? of a program P, let Ans(Q,P) be

the set of all substitutions σ for Q such that Qσ is true. The set Ans(Q,P) constitutes the set of answers

to Q. Note that, if AS(P) = ∅, Ans(Q,P) contains all possible substitutions for Q.

Note that query answering, according to the definitions above, corresponds to cautious (skeptical) rea-

soning as defined in, e.g., (Abiteboul et al. 1995).

4 Syntactic Shortcuts

This section specifies additional constructs by reduction to the language introduced in Section 2.

Anonymous Variables. An anonymous variable in a rule, weak constraint or query is denoted by “ ”

(character underscore). Each occurrence of “ ” stands for a fresh variable in the respective context (i.e.,

different occurrences of anonymous variables represent distinct variables).

Choice Rules. A choice element has form

a : l1, . . . , lk

where a is a classical atom and l1, . . . , lk are naf-literals for k ≥ 0.

A choice atom has form

C ≺ u

where C is a collection of choice elements, which are syntactically separated by “;”, ≺ is an aggregate

relation (see Section 2) and u is a term. The part “≺ u” can optionally be omitted if ≺ is “≥” and u = 0.

A choice rule has form

C ≺ u← b1, . . . ,bn.

where C ≺ u is a choice atom and b1, . . . ,bn are literals for n ≥ 0.

Intuitively, a choice rule means that, if the body of the rule is true, an arbitrary subset of the classical

atoms a such that l1, . . . , lk are true can be chosen as true in order to comply with the aggregate relation ≺

between C and u. In the following, this intuition is captured by means of a proper mapping of choice rules

to rules without choice atoms (in the head).

For any predicate atom q = p(t1, . . . , tn), let q̂ = p̂(1, t1, . . . , tn) and ¬̂q = p̂(0, t1, . . . , tn), where p̂ , p is an
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(arbitrary) predicate and function name that is uniquely associated with p, and the first argument (which

can be 1 or 0) indicates the “polarity” q or ¬q, respectively.5

Then, a choice rule stands for the rules

a | â← b1, . . . ,bn, l1, . . . , lk.

for each choice element a : l1, . . . , lk in C along with the constraint

← b1, . . . ,bn,not #count{ â : a, l1, . . . , lk | (a : l1, . . . , lk) ∈C} ≺ u.

The first group of rules expresses that the classical atom a in a choice element a : l1, . . . , lk can be chosen

as true (or false) if b1, . . . ,bn and l1, . . . , lk are true. This “generates” all subsets of the atoms in choice

elements. On the other hand, the second rule, which is an integrity constraint, requires the condition C ≺ u

to hold if b1, . . . ,bn are true.6

For illustration, consider the choice rule

{p(a) : q(2);¬p(a) : q(3)} ≤ 1← q(1).

Using the fresh predicate and function name p̂, the choice rule is mapped to three rules as follows:

p(a) | p̂(1,a)← q(1),q(2).

¬p(a) | p̂(0,a)← q(1),q(3).

← q(1),not #count{p̂(1,a) : p(a),q(2); p̂(0,a) : ¬p(a),q(3)} ≤ 1.

Note that the three rules are satisfied w.r.t. an interpretation I such that {q(1),q(2),q(3), p̂(1,a), p̂(0,a)} ⊆ I

and {p(a),¬p(a)}∩ I = ∅. In fact, when q(1), q(2), and q(3) are true, the choice of none or one of the atoms

p(a) and ¬p(a) complies with the aggregate relation “≤” to 1.

Aggregate Relations. An aggregate or choice atom

#aggr E ≺ u or C ≺ u

may be written as

u ≺−1 #aggr E or u ≺−1 C

where “<”−1 = “>”; “≤”−1 = “≥”; “=”−1 = “=”; “,”−1 = “,”; “>”−1 = “<”; “≥”−1 = “≤”.

The left and right notation of aggregate relations may be combined in expressions as follows:

u1 ≺1 #aggr E ≺2 u2 or u1 ≺1 C ≺2 u2

Such expressions are mapped to available constructs according to the following transformations:

⋄ u1 ≺1 C ≺2 u2← b1, . . . ,bn. stands for

u1 ≺1 C← b1, . . . ,bn.

C ≺2 u2← b1, . . . ,bn.

⋄ h1 | . . . | hk← b1, . . . ,bi−1,u1 ≺1 #aggr E ≺2 u2,bi+1, . . . ,bn. stands for

h1 | . . . | hk← b1, . . . ,bi−1,u1 ≺1 #aggr E,#aggr E ≺2 u2,bi+1, . . . ,bn.

5 It is assumed that fresh predicate and function names are outside of possible program signatures and cannot be referred to within
user input.

6 In disjunctive heads of rules of the first form, an occurrence of â denotes an (auxiliary) atom that is linked to the original atom a.
Given the relationship between a and â, the latter is reused as a term in the body of a rule of the second form. That is, we overload
the notation â by letting it stand both for an atom (in disjunctive heads) and a term (in #count aggregates).
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⋄ h1 | . . . | hk← b1, . . . ,bi−1,not u1 ≺1 #aggr E ≺2 u2,bi+1, . . . ,bn. stands for

h1 | . . . | hk← b1, . . . ,bi−1,not u1 ≺1 #aggr E,bi+1, . . . ,bn.

h1 | . . . | hk← b1, . . . ,bi−1,not #aggr E ≺2 u2,bi+1, . . . ,bn.

⋄ � b1, . . . ,bi−1,u1 ≺1 #aggr E ≺2 u2,bi+1, . . . ,bn. [w@l, t1, . . . , tk] stands for

� b1, . . . ,bi−1,u1 ≺1 #aggr E,#aggr E ≺2 u2,bi+1, . . . ,bn. [w@l, t1, . . . , tk]

⋄ � b1, . . . ,bi−1,not u1 ≺1 #aggr E ≺2 u2,bi+1, . . . ,bn. [w@l, t1, . . . , tk] stands for

� b1, . . . ,bi−1,not u1 ≺1 #aggr E,bi+1, . . . ,bn. [w@l, t1, . . . , tk]

� b1, . . . ,bi−1,not #aggr E ≺2 u2,bi+1, . . . ,bn. [w@l, t1, . . . , tk]

5 Using ASP-Core-2 in Practice – Restrictions

To promote declarative programming as well as practical system implementation, ASP-Core-2 programs

are supposed to comply with the restrictions listed in this section. This particularly applies to input pro-

grams starting from the System Track of the 4th Answer Set Programming Competition (Calimeri et al. 2014).

Safety. Any rule, weak constraint or query is required to be safe; to this end, for a set V of variables and

literals b1, . . . ,bn, we inductively (starting from an empty set of bound variables) define v ∈ V as bound by

b1, . . . ,bn if v occurs outside of arithmetic terms in some bi for 1 ≤ i ≤ n such that bi is

• (i) a classical atom,

• (ii) a built-in atom t = u or u = t and any member of V occurring in t is bound by {b1, . . . ,bn} \bi or

• (iii) an aggregate atom #aggrE = u and any member of V occurring in E is bound by {b1, . . . ,bn}\bi.

The entire set V of variables is bound by b1, . . . ,bn if each v ∈ V is bound by b1, . . . ,bn.

A rule, weak constraint or query r is safe if the set V of global variables in r is bound by b1, . . . ,bn

(taking a query r to be of form b1?) and, for each aggregate element t1, . . . , tk : l1, . . . , lm in r with occurring

variable set W, the set W \V of local variables is bound by l1, . . . , lm. For instance, the rule

p(X,Y)← q(X),#sum{S ,X : r(T,X),S = (2 ∗T )−X}= Y.

is safe because all variables are bound by q(X),r(T,X), while

p(X,Y)← q(X),#sum{S ,X : r(T,X),S +X = 2 ∗T } = Y.

is not safe because the expression S +X = 2 ∗T does not respect condition (ii) above.

Finiteness. Pragmatically, ASP programs solving real problems have a finite number of answer sets of

finite size. As an example, a program including p(X+1)← p(X). or p( f (X))← p(X). along with a fact like

p(0). is not an admissible input in ASP Competitions. There are pragmatic conditions that can be checked

to ensure that a program admits finitely many answer sets (e.g., (Calimeri et al. 2011)); in alternative,

finiteness can be witnessed by providing a known maximum integer and maximum function nesting level

per problem instance, which correctly limit the absolute values of integers as well as the depths of func-

tional terms occurring as arguments in the atoms of answer sets. The last option is the one adopted in ASP

competitions since 2011.
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Aggregates. For the sake of an uncontroversial semantics, we require aggregates to be non-recursive. To

make this precise, for any predicate atom q = p(t1, . . . , tn), let qv = p/n and ¬qv = ¬p/n. We further define

the directed predicate dependency graph DP = (V,E) for a program P by

• the set V of vertices av for all classical atoms a appearing in P and

• the set E of edges (hv
i
,hv

1
), . . . , (hv

i
,hv

m) and (hv
1
,av), . . . , (hv

m,a
v) for all rules h1 | . . . | hm← b1, . . . ,bn.

in P, 1 ≤ i ≤ m and classical atoms a appearing in b1, . . . ,bn.

The aggregates in P are non-recursive if, for any classical atom a appearing within aggregate elements in

a rule h1 | . . . | hm← b1, . . . ,bn. in P, there is no path from av to hv
i

in DP for 1 ≤ i ≤ m.

Predicate Arities. The arity of atoms sharing some predicate name is not assumed to be fixed. However,

system implementers are encouraged to issue proper warning messages if an input program includes

classical atoms with the same predicate name but different arities.

Undefined Arithmetics. The semantics of ASP-Core-2 requires that substitutions that lead to undefined

arithmetic subterms (and are thus not well-formed) are excluded by ground instantiation as specified in

Section 3. In practice, this condition is not easy to meet and implement for a number of technical reasons;

thus, it might cause problems to existing implementations, or even give rise to unexpected behaviors.

In order to avoid such complications, we require that a program P shall be invariant under undefined

arithmetics; that is, grnd(P) is supposed to be equivalent to any ground program P′ obtainable from P

by freely replacing arithmetic subterms with undefined outcomes by arbitrary terms from UP. Intuitively,

rules have to be written in such a way that the semantics of a program does not change, no matter the

handling of substitutions that are not well-formed.

For instance, the program

a(0).

p← a(X),not q(X/X).

has the (single) answer set {a(0)}. This program, however, is not invariant under undefined arithmetics.

Indeed, a vanilla grounder that skips arithmetic evaluation (in view of no rule with atoms of predicate q in

the head) might produce the (simplified) ground rule p← a(0)., and this would result in the wrong answer

set {a(0), p}.

In contrast to the previous program,

a(0).

p← a(X),not q(X/X),X , 0.

is invariant under undefined arithmetics, since substitutions that are not well-formed cannot yield appli-

cable ground rules. Hence, a vanilla grounder as considered above may skip the arithmetic evaluation of

ground terms obtained from X/X without risking wrong answer sets.
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6 EBNF Grammar and Lexical Table

<program> ::= [<statements>] [<query>]

<statements> ::= [<statements>] <statement>

<query> ::= <classical_literal> QUERY_MARK

<statement> ::= CONS [<body>] DOT

| <head> [CONS [<body>]] DOT

| WCONS [<body>] DOT

SQUARE_OPEN <weight_at_level> SQUARE_CLOSE

<head> ::= <disjunction> | <choice>

<body> ::= [<body> COMMA]

(<naf_literal> | [NAF] <aggregate>)

<disjunction> ::= [<disjunction> OR] <classical_literal>

<choice> ::= [<term> <binop>]

CURLY_OPEN [<choice_elements>]

CURLY_CLOSE [<binop> <term>]

<choice_elements> ::= [<choice_elements> SEMICOLON]

<choice_element>

<choice_element> ::= <classical_literal> [COLON [<naf_literals>]]

<aggregate> ::= [<term> <binop>] <aggregate function>

CURLY_OPEN [<aggregate_elements>]

CURLY_CLOSE [<binop> <term>]

<aggregate_elements> ::= [<aggregate_elements> SEMICOLON]

<aggregate_element>

<aggregate_element> ::= [<basic_terms>] [COLON [<naf_literals>]]

<aggregate_function> ::= AGGREGATE_COUNT

| AGGREGATE_MAX

| AGGREGATE_MIN

| AGGREGATE_SUM

<weight_at_level> ::= <term> [AT <term>] [COMMA <terms>]

<naf_literals> ::= [<naf_literals> COMMA] <naf_literal>

<naf_literal> ::= [NAF] <classical_literal> | <builtin_atom>

<classical_literal> ::= [MINUS] ID [PAREN_OPEN [<terms>] PAREN_CLOSE]

<builtin_atom> ::= <term> <binop> <term>

<binop> ::= EQUAL

| UNEQUAL

| LESS

| GREATER
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| LESS_OR_EQ

| GREATER_OR_EQ

<terms> ::= [<terms> COMMA] <term>

<term> ::= ID [PAREN_OPEN [<terms>] PAREN_CLOSE]

| NUMBER

| STRING

| VARIABLE

| ANONYMOUS_VARIABLE

| PAREN_OPEN <term> PAREN_CLOSE

| MINUS <term>

| <term> <arithop> term>

<basic_terms> ::= [<basic_terms> COMMA] <basic_term>

<basic_term> ::= <ground_term> |

<variable_term>

<ground_term> ::= SYMBOLIC_CONSTANT |

STRING | [MINUS] NUMBER

<variable_term> ::= VARIABLE |

ANONYMOUS_VARIABLE

<arithop> ::= PLUS

| MINUS

| TIMES

| DIV
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Token Name Mathematical Notation Lexical Format

used within this document (exemplified) (Flex Notation)

ID a,b,anna, . . . [a-z][A-Za-z0-9_]*

VARIABLE X,Y,Name, . . . [A-Z][A-Za-z0-9_]*

STRING “http://bit.ly/cw6lDS”, “Peter”, . . . \"([ˆ\"]|\\\")*\"

NUMBER 1,0,100000, . . . "0"|[1-9][0-9]*

ANONYMOUS_VARIABLE "_"

DOT . "."

COMMA , ","

QUERY_MARK ? "?"

COLON : ":"

SEMICOLON ; ";"

OR | "|"

NAF not "not"

CONS ← ":-"

WCONS � ":˜"

PLUS + "+"

MINUS − or ¬ "-"

TIMES ∗ "*"

DIV / "/"

AT @ "@"

PAREN_OPEN ( "("

PAREN_CLOSE ) ")"

SQUARE_OPEN [ "["

SQUARE_CLOSE ] "]"

CURLY_OPEN { "{"

CURLY_CLOSE } "}"

EQUAL = "="

UNEQUAL , "<>"|"!="

LESS < "<"

GREATER > ">"

LESS_OR_EQ ≤ "<="

GREATER_OR_EQ ≥ ">="

AGGREGATE_COUNT #count "#count"

AGGREGATE_MAX #max "#max"

AGGREGATE_MIN #min "#min"

AGGREGATE_SUM #sum "#sum"

COMMENT % this is a comment "%"([ˆ*\n][ˆ\n]*)?\n

MULTI_LINE_COMMENT %* this is a comment *% "%*"([ˆ*]|\*[ˆ%])*"*%"

BLANK [ \t\n]+

Lexical values are given in Flex7 syntax. The COMMENT, MULTI_LINE_COMMENT and BLANK tokens can

be freely interspersed amidst other tokens and have no syntactic or semantic meaning.

7 Conclusions

In this document we have presented the ASP-Core-2 standard language that defines syntax and semantics

of a standard language to which ASP solvers have to adhere in order to enter the ASP Competitions

series, since 2013. The standardization committee is still working on the evolution of the language in

order to keep it aligned with the achievements of the ASP research community. Among the features

that are currently under consideration we mention here a semantics for recursive aggregates, for which

7 http://flex.sourceforge.net/

http://flex.sourceforge.net/
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several proposals are at the moment in place, e.g., (Pelov 2004; Faber et al. 2011; Alviano et al. 2011;

Gelfond and Zhang 2014; Alviano et al. 2015), and a standard for intermediate (Gebser et al. 2016) and

output (Brain et al. 2007; Krennwallner 2013) formats for ASP solvers.
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