
To appear in Theory and Practice of Logic Programming 1

A Framework for Compiling Preferences in
Logic Programs

JAMES P. DELGRANDE
School of Computing Science, Simon Fraser University,

Burnaby, B.C., Canada V5A 1S6

(e-mail: jim@cs.sfu.ca)

TORSTEN SCHAUB∗
Institut für Informatik, Universität Potsdam,

Postfach 90 03 27, D–14439 Potsdam, Germany

(e-mail: torsten@cs.uni-potsdam.de)

HANS TOMPITS
Institut für Informationssysteme 184/3, Technische Universität Wien,

Favoritenstraße 9–11, A–1040 Vienna, Austria
(e-mail: tompits@kr.tuwien.ac.at)

Abstract

We introduce a methodology and framework for expressing general preference information
in logic programming under the answer set semantics. An ordered logic program is an
extended logic program in which rules are named by unique terms, and in which prefer-
ences among rules are given by a set of atoms of form s ≺ t where s and t are names.
An ordered logic program is transformed into a second, regular, extended logic program
wherein the preferences are respected, in that the answer sets obtained in the transformed
program correspond with the preferred answer sets of the original program. Our approach
allows the specification of dynamic orderings, in which preferences can appear arbitrarily
within a program. Static orderings (in which preferences are external to a logic program)
are a trivial restriction of the general dynamic case. First, we develop a specific approach
to reasoning with preferences, wherein the preference ordering specifies the order in which
rules are to be applied. We then demonstrate the wide range of applicability of our frame-
work by showing how other approaches, among them that of Brewka and Eiter, can be
captured within our framework. Since the result of each of these transformations is an
extended logic program, we can make use of existing implementations, such as dlv and
smodels. To this end, we have developed a publicly available compiler as a front-end for
these programming systems.

1 Introduction

In commonsense reasoning in general, and in logic programming in particular, one
frequently prefers one conclusion over another, or the application of one rule over
another. For example, in buying a car one may have various desiderata in mind

∗ Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada.

2 J. P. Delgrande, T. Schaub, and H. Tompits

(inexpensive, safe, fast, etc.) where these preferences come with varying degrees
of importance. In legal reasoning, laws may apply in different situations, but laws
may also conflict with each other. Conflicts are resolved by appeal to higher-level
principles such as authority or recency. So federal laws will have a higher priority
than state laws, and newer laws will take priority over old. Further preferences,
such as authority holding sway over recency, may also be required.

In logic programming, in basic logic programs, which do not employ negation as
failure, there is no issue with preferences, since a given basic logic program is guar-
anteed to have a single, unique, set of conclusions. However, basic logic programs
are expressively weak. Once negation as failure is introduced, as in extended logic
programs (Gelfond & Lifschitz, 1991), we are no longer guaranteed a single set of
conclusions, but rather may have several answer sets, each giving a feasible set of
conclusions. There is no a priori reason to accept one answer set over another, yet,
as noted above, we may have reasons to prefer one over another.

In this situation, preferences are usually expressed by a strict partial order on
the set of rules. For example, consider the following program (technical definitions
and notation are introduced in the next section):

r1 = ¬a ←
r2 = b ← ¬a, not c
r3 = c ← not b.

Each ri identifies the respective rule. This program has two regular answer sets, one
given by {¬a, b} and the other given by {¬a, c}. For the first answer set, rules r1

and r2 are applied; for the second, r1 and r3. However, assume that we have reason
to prefer r2 to r3, expressed by r3 < r2. In this case we would want to obtain just
the first answer set.

There have been numerous proposals for expressing preferences in extended logic
programs, including (Sakama & Inoue, 1996; Brewka, 1996; Gelfond & Son, 1997;
Zhang & Foo, 1997; Brewka & Eiter, 1999; Wang et al., 2000). The general approach
in such work has been to employ meta-formalisms for characterising “preferred an-
swer sets”. For instance, a common approach is to generate all answer sets for a
program and then, in one fashion or other, select the most preferred set(s). Conse-
quently, non-preferred as well as preferred answer sets are first generated, and the
preferred sets next isolated by a filtering step. Such approaches generally have a
higher complexity than the underlying logic programming semantics (see Section 7
for details).

Our goal in this paper is to (i) present a general methodology and framework for
expressing and implementing preferences where (ii) only preferred answer sets are
generated. We do this by describing a general methodology in which a logic program
with preferences is translated into a second “regular” logic program, such that the
answer sets of the second program in a precise sense correspond to and express only
the preferred answer sets of the first. This makes it possible to encode preferences
within the very same logic programming framework. As we argue, the framework is
very general and admits the encoding of different preference strategies. Moreover, we
are able to express dynamic preferences within a logic program, in contrast to most

A Framework for Compiling Preferences in Logic Programs 3

previous work, which adopts an external static preference order. The complexity of
our approach is in the same complexity class as the underlying logic programming
semantics. This approach is suited to a prescriptive interpretation of preference,
wherein the preference ordering specifies the order in which the rules are to be
applied.

We begin by developing and exploring our “preferred” interpretation of prefer-
ence, using a strongly prescriptive interpretation of preference. However, we also
show how it is possible to encode other interpretations. To this end, we show how
Brewka and Eiter’s approach to preference (Brewka & Eiter, 1999) can be expressed
in the framework. This encoding shows that we can also handle more descriptive-
oriented approaches. Encodings of other approaches, such as that given in Wang,
Zhou, & Lin (2000), are briefly described as well.

The general framework then also provides a common basis in which different
approaches can be expressed and compared. Equivalently, the framework provides
a common setting in which various different strategies can be encoded. Thus it
provides a uniform way of capturing the different strategies that are originally
given in rather heterogeneous ways. The translations then in a sense axiomatise

how a preference ordering is to be understood. While the notion of semantics as
such is not our major concern, we do discuss various encodings in connection with
the notion of order preservation. In fact, the strategy discussed in Section 4 was
developed from just this concept of order preservation.

Lastly, since we translate a program into an extended logic program, it is straight-
forward implementing our approach. To this end, we have developed a translator for
ordered logic programs that serves as a front-end for the logic programming systems
dlv (Eiter et al., 1997) and smodels (Niemelä & Simons, 1997). The possibility to
utilise existing logic programming systems for implementation purposes is a major
advantage of our framework. In contrast, most other approaches are based on a
change of semantics and thus require dedicated algorithms to solve the respective
reasoning tasks at hand.

The next section gives background terminology and notation, while Section 3
describes the overall methodology. We develop our central approach in Section 4
and explore its formal properties. Section 5 presents our encoding of Brewka and
Eiter’s approach, while Section 6 deals with our implementation. Section 7 considers
other work, and Section 8 concludes with some further issues and a brief discussion.
This paper regroups and strongly extends the work found in Delgrande, Schaub, &
Tompits (2000c; 2000b; 2000d; 2000a; 2001).

2 Definitions and Notation

We deal with extended logic programs (Lifschitz, 1996) that contain the symbol ¬
for classical negation in addition to not used for negation as failure. This allows for
distinguishing between goals that fail in the sense that they do not succeed and
goals that fail in the stronger sense that their negation succeeds. Classical negation
is thus also referred to as strong negation, whilst negation as failure is termed weak

negation.

4 J. P. Delgrande, T. Schaub, and H. Tompits

Our formal treatment is based on propositional languages. Let A be a non-empty
set of symbols, called atoms. The choice of A determines the language of the pro-
grams under consideration. As usual, a literal, L, is an expression of form A or ¬A,
where A is an atom. We assume a possibly infinite set of such atoms. The set of all
literals over A is denoted by LA. A literal preceded by the negation as failure sign
not is said to be a weakly negated literal. A rule, r , is an expression of form

L0 ← L1, . . . ,Lm , not Lm+1, . . . , not Ln , (1)

where n ≥ m ≥ 0, and each Li (0 ≤ i ≤ n) is a literal. The literal L0 is called
the head of r , and the set {L1, . . . ,Lm , not Lm+1, . . . , not Ln} is the body of r .
If n = m, then r is said to be a basic rule; if n = 0, then r is called a fact. An
(extended) logic program, or simply a program, is a finite set of rules. A program
is basic if all rules in it are basic. For simplicity, we associate the language of a
program with the set of literals LA, rather than the set of all rules induced by LA.

We use head(r) to denote the head of rule r , and body(r) to denote the body of r .
Furthermore, let body+(r) = {L1, . . . ,Lm} and body−(r) = {Lm+1, . . . ,Ln} for r
as in (1). The elements of body+(r) are referred to as the prerequisites of r . Thus,
if body+(r) = ∅ (or m = 0), then r is said to be prerequisite free. We say that rule
r is defeated by a set X of literals iff body−(r) ∩ X 6= ∅. Given that body(r) 6= ∅,
we also allow the situation where r has an empty head, in which case r is called
an integrity constraint, or constraint, for short. A constraint with body as in (1)
appearing in some program Π can be regarded as a rule of form

p ← L1, . . . ,Lm , not Lm+1, . . . , not Ln , not p,

where p is an atom not occurring elsewhere in Π.
A set of literals X ⊆ LA is consistent iff it does not contain a complementary

pair A, ¬A of literals. We say that X is logically closed iff it is either consistent or
equals LA. Furthermore, X is closed under a basic program Π iff, for any r ∈ Π,
head(r) ∈ X whenever body(r) ⊆ X . In particular, if X is closed under the basic
program Π, then body(r) 6⊆ X for any constraint r ∈ Π. The smallest set of literals
which is both logically closed and closed under a basic program Π is denoted by
Cn(Π).

Let Π be a basic program and X ⊆ LA a set of literals. The operator TΠ is
defined as follows:

TΠX = {head(r) | r ∈ Π and body(r) ⊆ X }

if X is consistent, and TΠX = LA otherwise. Iterated applications of TΠ are written
as T j

Π for j ≥ 0, where T 0
ΠX = X and T i

ΠX = TΠT i−1
Π X for i ≥ 1. It is well-known

that Cn(Π) =
⋃

i≥0 T i
Π∅, for any basic program Π.

Let r be a rule. Then r+ denotes the basic rule obtained from r by deleting
all weakly negated literals in the body of r , that is, r+ = head(r) ← body+(r).
Accordingly, we define for later usage r− = head(r)← body−(r). The reduct, ΠX ,
of a program Π relative to a set X of literals is defined by

ΠX = {r+ | r ∈ Π and body−(r) ∩X = ∅}.

In other words, ΠX is obtained from Π by:

A Framework for Compiling Preferences in Logic Programs 5

1. deleting any r ∈ Π which is defeated by X , and
2. deleting each weakly negated literal occurring in the bodies of the remaining

rules.

We say that a set X of literals is an answer set of a program Π iff Cn(ΠX) = X .
Clearly, for each answer set X of a program Π, it holds that X =

⋃
i≥0 T i

ΠX ∅.
The set ΓX

Π of all generating rules of an answer set X from Π is given by

ΓX
Π = {r ∈ Π | body+(r) ⊆ X and body−(r) ∩X = ∅}.

That is, ΓX
Π comprises all rules r ∈ Π such that r is not defeated by X and each

prerequisite of r is in X . Finally, a sequence 〈ri〉i∈I of rules is grounded iff, for all
i ∈ I , body+(ri) ⊆ {head(rj) | j < i} providing {head(rj) | j < i} is consistent.
We say that a rule r is grounded1 in a set R of rules iff there is an grounded
enumeration of R and body+(r) ⊆ {head(r) | r ∈ R}.

The answer set semantics for extended logic programs has been defined in Gel-
fond & Lifschitz (1991) as a generalisation of the stable model semantics (Gelfond
& Lifschitz, 1988) for general logic programs (i.e., programs not containing classical
negation, ¬). The reduct ΠX is often called the Gelfond-Lifschitz reduction.

3 From Ordered to Tagged Logic Programs

A logic program Π over a propositional language L is said to be ordered if L contains
the following pairwise disjoint categories:

• a set N of terms serving as names for rules;
• a set A of regular (propositional) atoms of a program; and
• a set A≺ of preference atoms s ≺ t , where s, t ∈ N are names.

We assume furthermore a bijective2 function n(·) assigning to each rule r ∈ Π a
name n(r) ∈ N . To simplify our notation, we usually write nr instead of n(r) (and
we sometimes abbreviate nri by ni). Also, the relation t = n(r) is written as t : r ,
leaving the naming function n(·) implicit. The elements of A≺ express preferences
among rules. Intuitively, nr ≺ nr ′ asserts that r ′ has “higher priority” than r . Thus,
r ′ is viewed as having precedence over r . That is, r ′ should, in some sense, always
be considered “before” r . (Note that some authors use ≺ or < in the opposite sense
from us.)

Formally, given an alphabet A, an ordered logic program can be understood as
a triple (Π,N ,n), where Π is an extended logic program over LA∪A≺ and n is a
bijective function between Π and the set of names N .3 In what follows, we leave

1 Note that some authors (for example Niemelä & Simons (1997)) use grounded to refer to the
process of eliminating variables from a rule by replacing it with its set of ground instances. We
use the term grounded in reference to grounded enumerations only. When we discuss replacing
variables with ground terms in Section 6, we will refer to an instantiation of a rule.

2 In practice, function n is only required to be injective since only rules participating in the
preference relation require names.

3 Note that A≺ is determined by N .

6 J. P. Delgrande, T. Schaub, and H. Tompits

the set of names N and the naming function n implicit and rather associate the
notion of an ordered logic program with the underlying extended logic program Π.

It is important to note that we impose no restrictions on the occurrences of
preference atoms. This allows for expressing preferences in a very flexible, dynamic
way. For instance, we may specify

nr ≺ nr ′ ← p, not q

where p and q may themselves be (or rely on) preference atoms.
A special case is given by programs containing preference atoms only among

their facts. We say that a logic program Π over L is statically ordered if it is
of form Π = Π′ ∪ Π′′, where Π′ is an extended logic program over LA and
Π′′ ⊆ {(nr ≺ nr ′) ← | r , r ′ ∈ Π′}· The static case can be regarded as being
induced from an external order, <, where the relation r < r ′ between two rules
holds iff the fact (nr ≺ nr ′) ← is included in the ordered program. We make this
explicit by denoting a statically ordered program Π as a pair (Π′, <), representing
the program Π′ ∪ {(nr ≺ nr ′) ← | r , r ′ ∈ Π′, r < r ′}. We stipulate for each stat-
ically ordered program (Π, <) that < is a strict partial order. The static concept
of preference corresponds to most previous approaches to preference handling in
logic programming and nonmonotonic reasoning, where the preference information
is specified as a fixed relation at the meta-level (cf. (Baader & Hollunder, 1993;
Brewka, 1994; Zhang & Foo, 1997; Brewka & Eiter, 1999; Wang et al., 2000)).

The idea behind our methodology for compiling preferences is straightforward.
Given a preference handling strategy σ, our approach provides a mapping Tσ that
transforms an ordered logic program Π into a standard logic program Tσ(Π), such
that the answer sets of Π preferred by σ correspond to the (standard) answer sets of
Tσ(Π). Intuitively, the translated program Tσ(Π) is constructed in such a way that
the resulting answer sets comply with σ’s interpretation of the preference infor-
mation (induced by the original program Π). This is achieved by adding sufficient
control elements to the rules of Π that will guarantee that successive rule applica-
tions are in accord with the intended order. Such control elements, or tags for short,
are given through newly introduced atoms that allow us to detect and control rule
applications within the object language. Hence, a translation Tσ maps ordered logic
programs onto standard logic programs whose language is extended by appropriate
tags.

Given the relation r < r ′ (or the atom nr ≺ nr ′ , respectively), we want to ensure
that r ′ is considered before r , in the sense that rule r ′ is known to be applied or
blocked ahead of r (with respect to the order of rule application). We do this by first
translating rules so that the order of rule application can be explicitly controlled.
For this purpose, we need to be able to detect when a rule applies or when a rule
is defeated or ungroundable; as well we need to be able to control the application
of a rule based on other antecedent conditions.

First, we introduce, for each rule r in the given program Π, a new special-purpose
atom ap(nr) to detect the case where a rule’s applicability conditions are satisfied.
For instance, the rule

r42 = p ← q , not w

A Framework for Compiling Preferences in Logic Programs 7

is mapped onto the rule

ap(n42) ← q , not w . (2)

The consequent of the original rule, p, is replaced by the tag ap(n42), just recording
the fact that r42 is applicable. The addition of

p ← ap(n42) (3)

then “restores” the effect of the original rule. This mapping separates the applica-
bility of a rule from its actual application.

Second, for detecting when a rule’s applicability conditions cannot be satisfied
(i.e., the rule will be blocked), we introduce, for each rule r in Π, another new atom
bl(nr). Unlike the above, however, there are two cases for a rule r not to be applied:
it may be that some literal in body+(r) does not appear in the answer set, or it
may be that a literal in body−(r) is in the answer set. For rule r42 we thus get two
rules:

bl(n42) ← not q , (4)

bl(n42) ← w . (5)

As made precise in Section 4, this tagging technique provides us already with com-
plete information about the applicability status of each rule r ∈ Π with respect to
any answer set X of the “tagged program” Π′:

ap(nr) ∈ X iff bl(nr) 6∈ X . (6)

(Informally, the “tagged program” Π′ is obtained from Π by treating each rule in Π
as described above for r42, that is, by replacing each rule by the appropriate rules
corresponding to (2)–(5).) Although this is all relatively straightforward, it can be
seen that via these tags we can detect when a rule is or is not applied. We note
that a more fine-grained approach is obtainable by distinguishing the two causes of
blockage by means of two different tags, like bl+(n) and bl−(n).

Lastly, for controlling the application of rule r , we introduce an atom ok(nr)
among the body literals of r . Then, clearly the transformed rule can (potentially)
be applied only if ok(nr) is asserted. More generally, we can combine this with the
preceding mapping and so have ok(nr) appear in the prerequisite of rules (2), (4),
and (5). In our example, we get

ap(n42) ← ok(n42), q , not w ,

bl(n42) ← ok(n42), not q ,

bl(n42) ← ok(n42),w .

With this tagging, (6) can be refined so that for each rule r ∈ Π and any answer
set X of the “tagged program” Π′′ we have

if ok(nr) ∈ X , then ap(nr) ∈ X iff bl(nr) 6∈ X .

For preference handling, informally, we conclude ok(nr) for rule r just if it is
“ok” with respect to every <-greater rule r ′. The exact meaning of this process

8 J. P. Delgrande, T. Schaub, and H. Tompits

is fixed by the given preference handling strategy. For instance, in the strategy of
Section 4, ok(nr) is concluded just when each <-greater rule r ′ is known to be
blocked or applied. Using tags, a single preference like r2 < r4, saying that r4 is
preferred to r2, could thus be encoded directly in the following way (together with
the appropriately tagged rules):

ok(n4) ← ,

ok(n2) ← ap(n4) ,

ok(n2) ← bl(n4) .

Similar to the addition of ok-literals to the rules’ prerequisites, we can introduce
literals of form not ko(n) among the weakly negated body literals of a rule. Now
the transformed rule behaves exactly as the original, except that we can defeat
(or “knock out”) this rule by asserting ko(n). For instance, adding not ko(n42) to
the body of (3) would allow us to assert the applicability of r42 without asserting
its original consequent, whenever ko(n42) is derivable. This manner of blocking a
rule’s application has of course appeared earlier in the literature, where ko was most
commonly called ab (for “abnormal” (McCarthy, 1986)).

4 Order Preserving Logic Programs

This section elaborates upon a fully prescriptive strategy for preference handling,
having its roots in Delgrande & Schaub (1997). The idea of this approach is to select
those answer sets of the program that can be generated in an “order preserving
way”. This allows us to enforce the ordering information during the construction
of answer sets.

In order to guarantee that rules are treated in an “order preserving way” our
strategy stipulates that the question of applicability must be settled for higher
ranked rules before that of lower ranked rules. In this way, a rule can never be
defeated or grounded by lower ranked rules. While a lower ranked rule may of
course depend on the presence (or absence) of a literal appearing in the head of
a higher ranked rule, the application of lower ranked rules is independent of the

fact that a higher ranked rule has been applied or found to be blocked. This is
important to guarantee the selection among existing answer sets, since otherwise
not all rules of the original program are considered (cf. Proposition 2 and 5).

Let us illustrate this by means of the following statically ordered program taken
from Baader & Hollunder (1993):4

r1 = ¬f ← p, not f
r2 = w ← b, not ¬w
r3 = f ← w , not ¬f
r4 = b ← p
r5 = p ←

r2 < r1 . (7)

4 Letters b, p, f ,w stand, as usual, for birds, penguins, flies, and wings, respectively. Baader &
Hollunder (1993) formulate their approach in default logic (Reiter, 1980).

A Framework for Compiling Preferences in Logic Programs 9

Program Π7 = {r1, . . . , r5} has two answer sets: X1 = {p, b,w ,¬f } and X2 =
{p, b,w , f }. Consider

ΠX1
7 = { ¬f ← p

w ← b

b ← p
p ← }

and ΠX2
7 = {

w ← b
f ← w
b ← p
p ← } .

This gives rise to the following constructions:

T 1

Π
X1
7
∅ = {p}

T 2

Π
X1
7
∅ = {p, b,¬f }

T 3

Π
X1
7
∅ = {p, b,¬f ,w}

and T 1

Π
X2
7
∅ = {p}

T 2

Π
X2
7
∅ = {p, b}

T 3

Π
X2
7
∅ = {p, b,w}

T 4

Π
X2
7
∅ = {p, b,w , f } .

Let us now take a closer look at the grounded enumerations associated with X1 and
X2. The construction of X1 leaves room for three grounded enumerations:

〈r5, r4, r2, r1〉, 〈r5, r4, r1, r2〉, and 〈r5, r1, r4, r2〉 . (8)

According to our strategy only the last two enumerations are order preserving since
they reflect the fact that r1 is treated before r2. The construction of X2 induces a
single grounded enumeration

〈r5, r4, r2, r3〉 . (9)

Unlike the above, r1 does not occur in this sequence. So the question arises whether
it was blocked in an order preserving way. In fact, once r5 and r4 have been applied
both r1 and r2 are applicable, that is, their prerequisites have been derived and
neither of them is defeated at this point. Clearly, the application of r2 rather than
r1 violates the preference r2 < r1 (in view of the given strategy). Therefore, only
X1 can be generated in an order preserving way, which makes our strategy select it
as the only preferred answer set of (Π7, <).

Let us make this intuition precise for statically ordered programs.

Definition 1
Let (Π, <) be a statically ordered program and let X be a consistent answer set
of Π.

Then, X is called <-preserving, if there exists an enumeration 〈ri〉i∈I of ΓX
Π such

that, for every i , j ∈ I , we have that:

1. body+(ri) ⊆ {head(rk) | k < i};
2. if ri < rj , then j < i ; and
3. if ri < r ′ and r ′ ∈ Π \ ΓX

Π , then

(a) body+(r ′) 6⊆ X or
(b) body−(r ′) ∩ {head(rk) | k < i} 6= ∅.

10 J. P. Delgrande, T. Schaub, and H. Tompits

While Condition 2 guarantees that all generating rules are applied according to the
given order, Condition 3 assures that any preferred yet inapplicable rule is either
blocked due to the non-derivability of its prerequisites or because it is defeated by
higher ranked or unrelated rules.

Condition 1 makes the property of groundedness explicit. Although any standard
answer set is generated by a grounded sequence of rules, we will see in the following
sections that this property is sometimes weakened when preferences are at issue.

For simplicity, our motivation was given in a static setting. The generalisation of
order preservation to the dynamic case is discussed in Section 4.2.

4.1 Encoding

We now show how the selection of <-preserving answer sets can be implemented
via a translation of ordered logic programs back into standard programs. Unlike the
above, this is accomplished in a fully dynamic setting, as put forward in Section 3.

Given an ordered program Π over L, let L+ be the language obtained from L by
adding, for each r , r ′ ∈ Π, new pairwise distinct propositional atoms ap(nr), bl(nr),
ok(nr), and rdy(nr , nr ′).5 Then, our translation T maps an ordered program Π over
L into a regular program T (Π) over L+ in the following way.

Definition 2
Let Π = {r1, . . . , rk} be an ordered logic program over L.

Then, the logic program T (Π) over L+ is defined as

T (Π) =
⋃

r∈Πτ(r) ,

where the set τ(r) consists of the following rules, for L+ ∈ body+(r), L− ∈ body−(r),
and r ′, r ′′ ∈ Π :

a1(r) : head(r) ← ap(nr)
a2(r) : ap(nr) ← ok(nr), body(r)

b1(r ,L+) : bl(nr) ← ok(nr), not L+

b2(r ,L−) : bl(nr) ← ok(nr),L−

c1(r) : ok(nr) ← rdy(nr , nr1), . . . , rdy(nr , nrk
)

c2(r , r ′) : rdy(nr , nr ′) ← not (nr ≺ nr ′)
c3(r , r ′) : rdy(nr , nr ′) ← (nr ≺ nr ′), ap(nr ′)
c4(r , r ′) : rdy(nr , nr ′) ← (nr ≺ nr ′), bl(nr ′)

t(r , r ′, r ′′) : nr ≺ nr ′′ ← nr ≺ nr ′ , nr ′ ≺ nr ′′

as(r , r ′) : ¬(nr ′ ≺ nr) ← nr ≺ nr ′ .

We write T (Π, <) instead of T (Π′) whenever we deal with a statically ordered
program Π′ = Π ∪ {(nr ≺ nr ′)← | r , r ′ ∈ Π, r < r ′}.

The first four rules of τ(r) express applicability and blocking conditions of the
original rules: For each rule r ∈ Π, we obtain two rules, a1(r) and a2(r), along with

5 rdy(·, ·), for “ready”, are auxiliary atoms for ok(·).

A Framework for Compiling Preferences in Logic Programs 11

|body+(r)| rules of form b1(r ,L+) and |body−(r)| rules of form b2(r ,L−). A rule r
is thus represented by |body(r)|+ 2 rules in τ(r).

The second group of rules encodes the strategy for handling preferences. The
first of these rules, c1(r), “quantifies” over the rules in Π, in that we conclude
ok(nr) just when r is “ready” to be applied with respect to all the other rules. This
is necessary when dealing with dynamic preferences since preferences may vary
depending on the corresponding answer set. The three rules c2(r , r ′), c3(r , r ′), and
c4(r , r ′) specify the pairwise dependency of rules in view of the given preference
ordering: For any pair of rules r , r ′, we derive rdy(nr , nr ′) whenever nr ≺ nr ′ fails
to hold, or else whenever either ap(nr ′) or bl(nr ′) is true. This allows us to derive
ok(nr), indicating that r may potentially be applied whenever we have for all r ′

with nr ≺ nr ′ that r ′ has been applied or cannot be applied. It is important to
note that this is only one of many strategies for dealing with preferences: different
strategies are obtainable by changing the specification of ok(·) and rdy(·, ·), as we
will see in the subsequent sections.

The last group of rules renders the order information a strict partial order.
Given that occurrences of nr can be represented by variables, the number of rules

in T (Π) is limited by (|Π| · (maxr∈Π|body(r)|+ 2)) + 4 + 2. A potential bottleneck
in this translation is clearly rule c1(r) whose body may contain |Π| literals. In
practice, however, this can always be reduced to the number of rules involved in
the preference handling (cf. Section 6).

As an illustration of our approach, consider the following program, Π10:

r1 = ¬a ←
r2 = b ← ¬a, not c
r3 = c ← not b
r4 = n3 ≺ n2 ← not d ,

(10)

where ni denotes the name of rule ri (i = 1, . . . , 4). This program has two regular
answer sets: X1 = {¬a, b,n3 ≺ n2} and X2 = {¬a, c,n3 ≺ n2}. While n3 ≺ n2 is in
both answer sets, it is only respected by X1, in which r2 overrides r3.

In fact, X1 corresponds to the single answer set obtained from T (Π10). To see this,
observe that for any X ⊆ {head(r) | r ∈ T (Π10)}, we have ni ≺ nj 6∈ X whenever
(i , j) 6= (3, 2). We thus get for such X and i , j that rdy(ni , nj) ∈ T 1

T (Π10)X ∅ by

(reduced) rules c2(ri , rj)+, and so ok(ni) ∈ T 2
T (Π10)X ∅ via rule c1(ri)+ = c1(ri) for

i = 1, 2, 4. Analogously, we get that ap(n1), ap(n4),¬a, and n3 ≺ n2 belong to any
answer set of T (Π10).

Now consider the following rules from T (Π10):

a2(r2) : ap(n2) ← ok(n2),¬a, not c
b1(r2,¬a) : bl(n2) ← ok(n2), not ¬a

b2(r2, c) : bl(n2) ← ok(n2), c

a2(r3) : ap(n3) ← ok(n3), not b
b2(r3, b) : bl(n3) ← ok(n3), b

c3(r3, r2) : rdy(n3, n2) ← (n3 ≺ n2), ap(n2)
c4(r3, r2) : rdy(n3, n2) ← (n3 ≺ n2), bl(n2) .

12 J. P. Delgrande, T. Schaub, and H. Tompits

Given ok(n2) and ¬a, rule a2(r2) leaves us with the choice between c 6∈ X or c ∈ X .
First, assume c 6∈ X . We get ap(n2) from a2(r2)+ ∈ T (Π10)X . Hence, we get

b, rdy(n3, n2), and finally ok(n3), which results in bl(n3) via b2(r3, b). Omitting
further details, this yields an answer set containing b while excluding c.

Second, assume c ∈ X . This eliminates a2(r2) when turning T (Π10) into
T (Π10)X . Also, b1(r2,¬a) is defeated since ¬a is derivable. b2(r2, c) is inappli-
cable, since c is only derivable (from ap(n3) via a1(r3)) in the presence of ok(n3).
But ok(n3) is not derivable since neither ap(n2) nor bl(n2) is derivable. Since this
circular situation is unresolvable, there is no answer set containing c.

Whenever one deals exclusively with static preferences, a simplified version of
translation T can be used. Given a statically ordered program (Π, <), a static
translation T ′(Π, <) is obtained from T (Π, <) by

1. replacing c1(r), c2(r , r ′), c3(r , r ′), and c4(r , r ′) in τ(r) by

c1(r) : ok(nr) ← rdy(nr , ns1), . . . , rdy(nr , nsk
)

c3(r , si) : rdy(nr , nsi) ← ap(nsi)
c4(r , si) : rdy(nr , nsi

) ← bl(nsi
)

for i = 1, . . . , k where {s1, . . . , sk} = {s | r < s}, and
2. deleting t(r , r ′, r ′′) and as(r , r ′) in τ(r).

Note that the resulting program T ′(Π, <) does not contain any preference atoms
anymore. Rather the preferences are directly “woven” into the resulting program
in order to enforce order preservation.

4.2 Formal Elaboration

Our first result ensures that the dynamically generated preference information en-
joys the usual properties of partial orderings. To this end, we define the following
relation: for each set X of literals and every r , r ′ ∈ Π, the relation r <X r ′ holds
iff nr ≺ nr ′ ∈ X .

Proposition 1
Let Π be an ordered logic program and X a consistent answer set of T (Π).

Then, we have:

1. <X is a strict partial order; and
2. if Π has only static preferences, then <X = <Y , for any answer set Y

of T (Π).

For statically ordered programs, one can show that the addition of preferences can
never increase the number of <-preserving answer sets.

The next result ensures that we consider all rules and that we gather complete
knowledge on their applicability status.

Proposition 2
Let Π be an ordered logic program and X a consistent answer set of T (Π).

Then, we have for any r ∈ Π:

A Framework for Compiling Preferences in Logic Programs 13

1. ok(nr) ∈ X ; and
2. ap(nr) ∈ X iff bl(nr) 6∈ X .

The following properties shed light on the program induced by translation T ; they
elaborate upon the logic programming operator TT (Π)X of a reduct T (Π)X :

Proposition 3
Let Π be an ordered logic program and X a consistent answer set of T (Π).

Let Ω = T (Π)X . Then, we have for any r ∈ Π:

1. if r is not defeated by X , ok(nr) ∈ T i
Ω∅, and body+(r) ⊆ T j

Ω∅, then ap(nr) ∈
T max(i,j)+1

Ω ∅;
2. ok(nr) ∈ T i

Ω∅ and body+(r) 6⊆ X implies bl(nr) ∈ T i+1
Ω ∅;

3. if r is defeated by X and ok(nr) ∈ T i
Ω∅, then bl(nr) ∈ T j

Ω∅ for some j > i ;
4. ok(nr) 6∈ T i

Ω∅ implies ap(nr) 6∈ T j
Ω∅ and bl(nr) 6∈ T k

Ω∅ for all j , k < i + 2.

The next result captures the prescriptive principle underlying the use of ok-literals
and their way of guiding the inference process along the preference order. In fact,
it shows that their derivation strictly follows the partial order induced by the given
preference relation. Clearly, this carries over to the images of the original program
rules, as made precise in the subsequent corollary.

Theorem 1
Let Π be an ordered logic program, X a consistent answer set of T (Π), and 〈ri〉i∈I

a grounded enumeration of the set ΓX
T (Π) of generating rules of X from T (Π).

Then, we have for all r , r ′ ∈ Π:

If r <X r ′, then j < i for ri = c1(r) and rj = c1(r ′) .

This result obviously extends to the respective images of rules r and r ′.

Corollary 1
Given the same prerequisites as in Theorem 1, we have for all r , r ′ ∈ Π:

If r <X r ′, then j < i

for all ri equaling a2(r) or bk (r ,L) for some k = 1, 2 and some L ∈ body(r), and
some rj equaling a2(r ′) or bk ′(r ′,L′) for some k ′ = 1, 2 and some L′ ∈ body(r ′).

The last results reflect nicely how the prescriptive strategy is enforced. Whenever
a rule r ′ is preferred to another rule r , one of its images, say b2(r ′,¬d), occurs
necessarily before all images of the less preferred rule, e.g., a2(r). (Note that the
existential quantification of rj is necessary since r ′ could be blocked in several ways.)

For static preferences, our translation T amounts to selecting <-preserving an-
swer sets of the underlying (unordered) program, as given by Definition 1.

Theorem 2
Let (Π, <) be a statically ordered logic program and let X be a consistent set of
literals.

Then, X is a <-preserving answer set of Π iff X = Y ∩ LA for some answer set
Y of T (Π, <).

14 J. P. Delgrande, T. Schaub, and H. Tompits

This result provides semantics for statically ordered programs; it provides an exact
correspondence between answer sets issued by our translation and regular answer
sets of the original program.

Note that inconsistent answer sets are not necessarily reproduced by T . To see
this, consider Π = {p ←,¬p ←}. While Π has an inconsistent answer set, T (Π)
has no answer set. This is due to the fact that rules like c2(r , r ′) are removed from
T (Π)L. In such a case, there is then no way to derive “ok”-literals via c1(r). On
the other hand, one can show that T (Π, <) has an inconsistent answer set only if
Π has an inconsistent answer set, for any statically ordered program (Π, <).6

We obtain the following corollary to Theorem 2, demonstrating that our strategy
implements a selection function among the standard answer sets of the underlying
program.

Corollary 2
Let (Π, <) be a statically ordered logic program and X a set of literals.

If X = Y ∩LA for some answer set Y of T (Π, <), then X is an answer set of Π.

Note that the last two results do not directly carry over to the general (dynamic)
case, since a dynamic setting admits no way of selecting answer sets in an undiffer-
entiated way due to the lack of a uniform preference relation.

The key difference between static and dynamic preference handling boils down
to the availability of preferences. While the full preference information is available
right from the start in the static case, it develops with the formation of answer sets
in the dynamic case. Moreover, from the viewpoint of rule application, a dynamic
setting not only necessitates that the question of applicability has been settled for
all higher ranked rules before a rule is considered for application but also that one
knows about all higher ranked rules at this point. That is, before considering a rule r
for application, all preferences of form nr ≺ nr ′ must have been derived. This adds a
new requirement to the concept of order preservation in the dynamic case, expressed
by Condition 2 below. A major consequence of this additional requirement is that
we cannot restrict our attention to the generating rules of an answer set anymore,
as in the static case, but that we have to take all rules of the program into account,
no matter whether they eventually apply or not.

Preference information is now drawn from the considered answer sets. We only
have to make sure that the resulting preferences amount to a strict partial order.
For this purpose, let Π? denote the program obtained from Π by adding transitivity
and antisymmetry rules, that is Π? = Π ∪ {t(r , r ′, r ′′), as(r , r ′) | r , r ′, r ′′ ∈ Π}.

Taking all this into account, we arrive at the following concept of order preser-
vation for dynamic preferences.

Definition 3
Let Π be an ordered program and let X be a consistent answer set of Π?.

Then, X is called <X -preserving, if there exists an enumeration 〈ri〉i∈I of Π?

such that, for every i , j ∈ I , we have that:

6 Observe that the static translation T ′(Π, <) preserves inconsistent answer sets of Π, however.

A Framework for Compiling Preferences in Logic Programs 15

1. if ri <X rj , then j < i ;
2. if ri <X rj , then there is some rk ∈ ΓX

Π? such that

(a) k < i and
(b) head(rk) = (nri ≺ nrj);

3. if ri ∈ ΓX
Π? , then body+(ri) ⊆ {head(rk) | rk ∈ ΓX

Π? , k < i}; and
4. if ri ∈ Π? \ ΓX

Π? , then

(a) body+(ri) 6⊆ X or
(b) body−(ri) ∩ {head(rk) | rk ∈ ΓX

Π? , k < i} 6= ∅.

Despite the fact that this conception of order preservation takes all rules into ac-
count, as opposed to generating rules only, it remains a generalisation of its static
counterpart given in Definition 1. In fact, above Conditions 3, 1, and 4 can be seen
as extension of Conditions 1, 2, and 3 in Definition 1 from sets of generating rules
to entire programs.

For illustration, consider answer set X = {¬a, b,n3 ≺ n2,¬(n3 ≺ n2)} of Π?
10;

this answer set is <X -preserving. To see this, consider the following enumeration of
Π10 (omitting rules in Π?

10\Π10 for simplicity; we write r to indicate that r 6∈ ΓX
Π?10

):

〈r1, r4, r2, r3〉 . (11)

The only preference r3 <X r2 induces, through Condition 1, that r2 occurs before
r3 and that r4 occurs before r3 via Condition 2. Furthermore, due to Condition 3,
r1 occurs before r2, while Condition 4b necessitates (also) that r2 occurs before
r3. Intuitively, the enumeration in (11) corresponds to that of the images of Π10

generating the standard answer set of T (Π?
10), viz.

〈. . . , a2(r1), . . . , a2(r4), . . . , a2(r2), . . . , b2(r3, b), . . .〉 .

As discussed above, the difference to the static case manifests itself in Condition 2,
which reflects the fact that all relevant preference information must be derived
before a rule is considered for application. This also mirrors the strong commitment
of the strategy to a successive development of preferred answer sets in accord with
groundedness. This is different from the approach discussed in Section 5 that drops
the groundedness requirement.

For illustrating Condition 2, consider programs Π12a = {r1, r2, r3a} and Π12b =
{r1, r2, r3b}, where

r1 = a ← not ¬a
r2 = b ← not ¬b
r3a = n1 ≺ n2 ← a

r1 = a ← not ¬a
r2 = b ← not ¬b
r3b = n1 ≺ n2 ← b .

(12)

Both programs have the same standard answer set X12 = {a, b, n1 ≺ n2}. However,
this answer set is only <X12-preserving for Π12b but not for Π12a . This is because
Π12b allows to derive the preference atom n1 ≺ n2 before the lower ranked rule,
r1, is considered for application, while this is impossible with Π12a . That is, while
there is an enumeration of Π12b satisfying both Condition 2 and 3 there is no such
enumeration of Π12a . A dynamic extension of the approach dropping Condition 2
is described in Section 5.5.

16 J. P. Delgrande, T. Schaub, and H. Tompits

We have the following result demonstrating soundness and completeness of trans-
lation T with respect to <X -preserving answer sets.

Theorem 3
Let Π be an ordered logic program and let X be a consistent set of literals.

Then, X is a <X -preserving answer set of Π? iff X = Y ∩L for some answer set
Y of T (Π).

As above, we obtain the following corollary.

Corollary 3
Let Π be an ordered logic program and let X be a set of literals.

If X = Y ∩ L for some answer set Y of T (Π), then X is an answer set of Π?.

Also, if no preference information is present, transformation T amounts to stan-
dard answer set semantics. Moreover, the notions of statically ordered and (dynam-
ically) ordered programs coincide in this case. The following result expresses this
property in terms of order preserving answer sets.

Theorem 4
Let Π be a logic program over LA and let X be a consistent set of literals.

Then, the following statements are equivalent:

1. X is a <X -preserving answer set of the dynamically ordered program Π and
<X = ∅.

2. X is a <-preserving answer set of the statically ordered program (Π, <) and
< = ∅.

3. X is a regular answer set of logic program Π.

From these properties, we immediately obtain the following result for our encod-
ing T , showing that preference-free programs yield regular answer sets.

Corollary 4
Let Π be a logic program over LA and let X be a consistent set of literals.

Then, X is an answer set of Π iff X = Y ∩ L for some answer set Y of T (Π).

Brewka & Eiter (1999) have suggested two properties, termed Principle I and
Principle II, which they argue any defeasible rule system handling preferences
should satisfy. The next result shows that order preserving answer sets7 enjoy
these properties. However, since the original formulation of Principle I and II is
rather generic—motivated by the aim to cover as many different approaches as
possible—we must instantiate them in terms of the current framework. It turns
out that Principle I is only suitable for statically ordered programs, whilst Princi-
ple II admits two guises, one for statically ordered programs, and another one for
(dynamically) ordered programs.

Principles I and II, formulated for our setting, are as follows:

7 In the sense of Definitions 1 and 3.

A Framework for Compiling Preferences in Logic Programs 17

Principle I. Let (Π, <) be a statically ordered logic program and let X1 and X2 be
two (regular) answer sets of Π generated by ΓX1

Π = R∪{r1} and ΓX2
Π = R∪{r2},

respectively, where r1, r2 6∈ R.
If r1 < r2, then X1 is not a <-preserving answer set of Π.

Principle II-S (Static Version). Let (Π, <) be a statically ordered logic pro-
gram and let X be a <-preserving answer set of Π. Let r be a rule where
body+(r) 6⊆ X and let (Π ∪ {r}, <′) be a statically ordered logic program where
< = <′ ∩(Π×Π).
Then, X is a <′-preserving answer set of Π ∪ {r}.

Principle II-D (Dynamic Version). Let Π be a (dynamically) ordered logic
program and let X be a <X -preserving answer set of Π?. Let r be a rule such
that body+(r) 6⊆ X .
Then, X is a <X -preserving answer set of Π? ∪ {r}.

Theorem 5
We have the following properties.

1. Order preserving answer sets in the sense of Definition 1 satisfy Principles I
and II-S.

2. Order preserving answer sets in the sense of Definition 3 satisfy Principle
II-D.

Finally, we mention some properties concerning the computational complexity
of order preserving answer sets. Since transformation T is clearly polynomial in
the size of ordered logic programs, in virtue of Theorems 2, 3, and 4, it follows
in a straightforward way that the complexity of answer set semantics under order
preservation coincides with the complexity of standard answer set semantics. We
note the following results.

Theorem 6
Order preserving answer sets enjoy the following properties:

1. Given an ordered program Π, checking whether Π has an answer set X which
is <X -preserving is NP-complete.

2. Given an ordered program Π and some literal L, checking whether Π has an
answer set X which is <X -preserving and which contains L is NP-complete.

3. Given an ordered program Π and some literal L, checking whether L is con-
tained in any answer set X which is <X -preserving is coNP-complete.

4.3 Variations

A strategy similar to the one described above has been advocated in Wang, Zhou, &
Lin (2000). There, fixed-point definitions are used to characterise preferred answer
sets (of statically ordered programs). It turns out that this preferred answer set
semantics can be implemented by a slight modification of the translation given in
Definition 2.

18 J. P. Delgrande, T. Schaub, and H. Tompits

Definition 4 (Schaub & Wang, 2001a)
Given the same prerequisites as in Definition 2, the logic program W(Π) over L+

is defined as

W(Π) =
⋃

r∈Πτ(r) ∪ {c5(r , r ′) | r , r ′ ∈ Π},

where

c5(r , r ′) : rdy(nr , nr ′) ← (nr ≺ nr ′), head(r ′) .

The purpose of c5(r , r ′) is to eliminate rules from the preference handling process
once their head has been derived. A corresponding soundness and completeness
result can be found in Schaub & Wang (2001a).

In terms of order preservation, this amounts to weakening the integration of
preferences and groundedness:

Definition 5 (Schaub & Wang, 2001a)
Let (Π, <) be a statically ordered program and let X be a consistent answer set
of Π.

Then, X is called <wzl-preserving, if there exists an enumeration 〈ri〉i∈I of ΓX
Π

such that for every i , j ∈ I we have that:

1. (a) body+(ri) ⊆ {head(rj) | j < i} or
(b) head(ri) ∈ {head(rj) | j < i};

2. if ri < rj , then j < i ; and
3. if ri < r ′ and r ′ ∈ Π \ ΓX

Π , then

(a) body+(r ′) 6⊆ X or
(b) body−(r ′) ∩ {head(rj) | j < i} 6= ∅ or
(c) head(r ′) ∈ {head(rj) | j < i}.

The primary difference of this concept of order preservation to the original one is
clearly the weaker notion of groundedness. This involves the rules in ΓX

Π (via Con-
dition 1b) as well as those in Π \ ΓX

Π (via Condition 3c). The rest of the definition is
the same as in Definition 1. We refer to Schaub & Wang (2001a) for formal details.

Informally, the difference between both strategies can be explained by means of
the following program Π13 = {r1, r2, r3}, where

r1 = a ← not ¬a
r2 = b ← a, not ¬b
r3 = b ←

and r1 < r2 . (13)

Clearly, Π13 has a single standard answer set, {a, b}. This answer set cannot be
generated by an enumeration of Π13 that preserves r1 < r2 in the sense of Defini-
tion 1. This is different after adding Condition 1b. In accord with the approach in
Wang, Zhou, & Lin (2000), the modified concept of order preservation accepts the
enumeration 〈r3, r2, r1〉.

All of the above strategies enforce a selection among the standard answer sets
of the underlying program. That is, no new answer sets appear; neither are exist-
ing ones modified. While the former seems uncontroversial, the latter should not

A Framework for Compiling Preferences in Logic Programs 19

be taken for granted, as exemplified by a “winner-takes-all” strategy. In such an
approach, one wants to apply the highest ranked default, if possible, and only the
highest ranked default. This can be accomplished by removing rule

c3(r , r ′) : rdy(nr , nr ′) ← (nr ≺ nr ′), ap(nr ′) (14)

from Definition 2. Then, once a higher ranked rule, such as r ′, is applied, none
of the lower ranked rules, like r , are considered for application anymore because
there is no way to derive the indispensable “ok-literal”, ok(nr). A similar strategy
is developed in Gelfond & Son (1997) (cf. Section 7).

A particular instance of a “winner-takes-all” strategy is inheritance of default
properties. In this case, the ordering on rules reflects a relation of specificity among
the (default) rules prerequisites. Informally, for adjudicating among conflicting de-
faults, one determines the most specific (with respect to rule antecedents) defaults
as candidates for application. Consider for example defaults concerning primary
means of locomotion: “animals normally walk”, “birds normally fly”, “penguins
normally swim”. This can be expressed using (default) rules as follows:

r1 = w ← a, not ¬w
r2 = f ← b, not ¬f
r3 = s ← p, not ¬s

ra = a ← b
rb = b ← p
r1 < r2 < r3 .

(15)

If we learn that some object is a penguin, viz. p ←, (and so a bird and animal via
ra and rb), then we would want to apply the highest ranked default, if possible,
and only the highest ranked default. Significantly, if the penguins-swim default r3

is blocked (say, the penguin in question has a fear of water, viz. ¬s ←) we don’t

try to apply the next default to see if it might fly.
So, given a chain of rules expressing default properties r1 < r2 < . . . < rm ,

the elimination of (14) in Definition 2 portrays the following comportment: We
apply ri , if possible, where ri is the <-maximum default such that for every default
rj , j = i + 1, . . . ,m, the prerequisite of rj is not known to be true. Otherwise,
no default in the chain is applicable. As mentioned above, the elimination of (14)
allows lower ranked default rules to be applied only in case higher ranked rules are
blocked because their prerequisite is not derivable. Otherwise, the propagation of
ok(·)-atoms is interrupted so that no defaults below ri are considered.

5 Brewka and Eiter’s Approach to Preference

We now turn to a strategy for preference handling proposed in Brewka &
Eiter (1998; 1999). Unlike above, this approach is not fully prescriptive in the sense
that it does not enforce the ordering information during the construction of an an-
swer set. Rather it relies on the existence of a regular answer set of the underlying
non-ordered program, whose order preservation is then verified in a separate test
(see Definition 10).

20 J. P. Delgrande, T. Schaub, and H. Tompits

5.1 Original Definition

To begin with, we describe the approach to dealing with ordered logic programs, as
introduced in Brewka & Eiter (1999). First, Brewka and Eiter deal with statically
ordered logic programs only. Also, partially ordered programs are reduced to totally
ordered ones:8 A fully ordered logic program is a statically ordered logic program
(Π,�) where � is a total ordering. The case of arbitrarily ordered programs is
reduced to this restricted case in the following way.

Definition 6
Let (Π, <) be a statically ordered logic program and let X be a set of literals.

Then, X is a be-preferred answer set of (Π, <) iff X is a be-preferred answer set
of some fully ordered logic program (Π,�) such that < ⊆ �.

The construction of be-preferred answer sets relies on an operator, defined for
prerequisite-free programs.

Definition 7
Let (Π,�) be a fully ordered prerequisite-free logic program, let 〈ri〉i∈I be the
enumeration of Π according to the ordering �, and let X be a set of literals.

Then,9 C (X) is the smallest logically closed set of literals containing
⋃

i∈I Xi ,
where Xj = ∅ for j 6∈ I and

Xi =


Xi−1 if body−(ri) ∩Xi−1 6= ∅;

Xi−1 if head(ri) ∈ X and body−(ri) ∩X 6= ∅;

Xi−1 ∪ {head(ri)} otherwise.

This construction is unique insofar that for any fully ordered prerequisite-free
program (Π,�), there is at most one (standard) answer set X of Π such that
C (X) = X (cf. Lemma 4.1 in Brewka & Eiter (1999)). Accordingly, this set is used
to define a be-preferred answer set for prerequisite-free logic programs, if it exists:

Definition 8
Let (Π,�) be a fully ordered prerequisite-free logic program and let X be a set of
literals.

Then, X is the be-preferred answer set of (Π,�) iff C (X) = X .

The second condition in Definition 7 amounts to eliminating from the above
construction all rules whose heads are in X but which are defeated by X . This can
be illustrated by the following logic program, adapted from Brewka & Eiter (2000):

r1 = a ← not b
r2 = ¬a ← not a
r3 = a ← not ¬a
r4 = b ← not ¬b

with {rj < ri | i < j} . (16)

8 While Brewka & Eiter (1999) deal with potentially infinite well-orderings, we limit ourselves
here to finite programs.

9 Note that C is implicitly parameterised with (Π,�).

A Framework for Compiling Preferences in Logic Programs 21

Program Π16 = {r1, . . . , r4} has two answer sets, {a, b} and {¬a, b}. The applica-
tion of operator C relies on sequence 〈r1, r2, r3, r4〉. For illustration, consider the
process induced by C ({a, b}), with and without the second condition:

X1 = {} X2 = {¬a} X3 = {¬a} X4 = {¬a, b}
X ′1 = {a} X ′2 = {a} X ′3 = {a} X ′4 = {a, b} .

Thus, without the second condition, {a, b} would be a preferred answer set. How-
ever, Brewka & Eiter (1999; 2000) argue that such an answer set does not preserve
priorities because r2 is defeated in {a, b} by applying a rule which is less preferred
than r2, namely r3. The above program has therefore no be-preferred answer set.

The next definition accounts for the general case by reducing it to the
prerequisite-free one. For checking whether a given regular answer set X is be-
preferred, Brewka and Eiter evaluate the prerequisites of the rules with respect to
the answer set X .

Definition 9
Let (Π,�) be a fully ordered logic program and X a set of literals.

The logic program (ΠX ,�X) is obtained from (Π,�) as follows:

1. ΠX = {r− | r ∈ Π and body+(r) ⊆ X }; and
2. for any r ′1, r

′
2 ∈ ΠX , r ′1 �X r ′2 iff r1 � r2 where ri = max�{r ∈ Π | r− = r ′i}.

In other words, ΠX is obtained from Π by first eliminating every rule r ∈ Π such
that body+(r) 6⊆ X , and then substituting all remaining rules r by r− = head(r)←
body−(r). This results in a prerequisite-free logic program.

be-preferred answer sets are then defined as follows.

Definition 10
Let (Π,�) be a fully ordered logic program and X a set of literals.

Then, X is a be-preferred answer set of (Π,�), if

1. X is a (standard) answer set of Π, and
2. X is a be-preferred answer set of (ΠX ,�X).

For illustration, consider Example 5.1 of Brewka & Eiter (1999):

r1 = b ← a, not ¬b
r2 = ¬b ← not b
r3 = a ← not ¬a

with {rj < ri | i < j} . (17)

Program Π17 = {r1, r2, r3} has two standard answer sets: X1 = {a, b} and X2 =
{a,¬b}. (Π17)X1 turns r1 into b ← not ¬b while leaving r2 and r3 unaffected. Also,
we obtain that C (X1) = X1, that is, X1 is a be-preferred answer set. In contrast to
this, X2 is not be-preferred. While (Π17)X2 = (Π17)X1 , we get C (X2) = X1 6= X2.
That is, C (X2) reproduces X1 rather than X2.

22 J. P. Delgrande, T. Schaub, and H. Tompits

5.2 Order Preservation

Before giving an encoding for the approach of Brewka and Eiter, we would like to
provide some insight into its semantics and its relation to the previous strategy
in terms of the notion of order preservation. First, the approach is equivalent to
the strategy developed in Section 4 on normal prerequisite-free default theories
(Delgrande & Schaub, 2000a). Interestingly, this result does not extend to either
normal or to prerequisite-free theories. While the former difference is caused by the
second condition in Definition 7, the latter is due to the different attitude towards
groundedness (see below). Despite these differences it turns out that every order
preserving extension in the sense of Definition 1 is also obtained in Brewka and
Eiter’s approach but not vice versa (cf. (Delgrande & Schaub, 2000a)).

To see the latter, consider the example in (7). Among the two answer sets X1 =
{p, b,w ,¬f } and X2 = {p, b,w , f } of Π7, only X1 is order preserving in the sense of
Definition 1. In contrast to this, both answer sets are be-preferred. This is because
groundedness is not at issue when verifying order preservation in the approach of
Brewka and Eiter due to the removal of prerequisites in Definition 9. This can be
made precise by means of a corresponding notion of order preservation, taken from
Schaub & Wang (2001a):10

Definition 11
Let (Π, <) be a statically ordered program and let X be a consistent answer set
of Π.

Then, X is called <be-preserving, if there exists an enumeration 〈ri〉i∈I of ΓX
Π

such that, for every i , j ∈ I , we have that:

1. if ri < rj , then j < i ; and
2. if ri < r ′ and r ′ ∈ Π \ ΓX

Π , then

(a) body+(r ′) 6⊆ X or
(b) body−(r ′) ∩ {head(rj) | j < i} 6= ∅ or
(c) head(r ′) ∈ X .

This criterion differs from the one in Definition 1 in the two (aforementioned)
respects: First, it drops the requirement of a grounded enumeration and, second, it
adds the second condition from Definition 7. Note that any <be-preserving answer
set is still generated by some grounded enumeration of rules; it is just that this
property is now separated from the preference handling process.

Although the only grounded sequence given in (9) is still not <be-preserving,
there are now other <be-preserving enumerations supporting the second answer set
X2, e.g. 〈r5, r4, r3, r2〉. None of these enumerations enjoys groundedness. Rather, all
of them share the appearance of r3 before r2 although the application of r3 relies on
that of r2. The reversal of the groundedness relation between r2 and r3 is however
essential for defeating r1 (before r2 is considered for application). Otherwise, there
is no way to satisfy Condition 2b.

10 An alternative characterisation of be-preferred answer sets for fully ordered logic programs,
originally given in Proposition 5.1 in Brewka & Eiter (1999), is repeated in Theorem 9.

A Framework for Compiling Preferences in Logic Programs 23

The discussion of Example (7) has already shed light on the difference between
the strictly prescriptive strategy discussed in the previous section and Brewka and
Eiter’s more descriptive approach. The more descriptive attitude of their approach
is nicely illustrated by the example in (17). Without dropping the requirement of
deriving the prerequisite of the most preferred rule r1, there is no way of justifying
an answer set containing b. Such an approach becomes reasonable if we abandon
the strictly prescriptive view of Section 4 and adopt a more descriptive one by de-
composing the construction of a preferred answer set into a respective guess and
check step (as actually reflected by Definition 9). That is, once we know that there
is an answer set containing certain formulas, we may rely on it when dealing with
preferences. The descriptive flavour of this approach stems from the availability
of an existing answer set of the underlying program when dealing with preference
information. For instance, given the regular answer set X1 = {a, b} we know that
a and b are derivable in a grounded fashion. We may then rely on this information
when taking preferences into account, although the order underlying the construc-
tion of the regular answer set may be incompatible with the one imposed by the
preference information.

Observe that program Π17 has no <-preserving answer set. Intuitively, this can
be explained by the observation that for the highest ranked default r1, neither ap-
plicability nor blockage can be asserted: Either of these properties relies on the
applicability of less ranked defaults, effectively resulting in a circular situation de-
stroying any possible <-preserving answer set.

5.3 Encoding

Although Brewka and Eiter’s approach was originally defined only for the static
case, we provide in this section an encoding for the more general dynamic case.

We have seen above that the underlying preference handling strategy drops
groundedness, an indispensable property of standard answer sets. As a consequence,
our encoding cannot keep the strictly prescriptive nature, as the one given in Sec-
tion 4. Rather, we have to decouple the generation of standard answer sets from
the actual preference handling process. Given a statically ordered program (Π, <),
the idea is thus to take the original program Π and to extend it by a set of rules
T ′(Π, <) that ensures that the preferences in < are preserved (without necessi-
tating groundedness). In fact, T ′(Π, <) provides an image of Π, similar to that of
Section 4, except that the rules in T ′(Π, <) are partially disconnected from those
in Π by means of an extended language. All this is made precise in the sequel.

Given a program Π over language L, we assume a disjoint language L′ containing
literals L′ for each L in L. Likewise, rule r ′ results from r by replacing each literal
L in r by L′. Then, in analogy to Section 4.1, we map ordered programs over some
language L onto standard programs in the language L◦ obtained by extending L∪L′
by new atoms (nr ≺ ns), ok(nr), rdy(nr , ns), bl(nr), and ap(nr), for each r , s in Π.

Definition 12
Let Π = {r1, . . . , rk} be an ordered logic program over L.

24 J. P. Delgrande, T. Schaub, and H. Tompits

Then, the logic program U(Π) over L◦ is defined as

U(Π) = Π ∪
⋃

r∈Πτ(r) ,

where the set τ(r) consists of the following rules, for L ∈ body+(r), K ∈ body−(r),
s, t ∈ Π, and J ∈ body−(s):

a1(r) : head(r ′) ← ap(nr)
a2(r) : ap(nr) ← ok(nr), body(r), not body−(r ′)

b1(r ,L) : bl(nr) ← ok(nr), not L, not L′

b2(r ,K) : bl(nr) ← ok(nr),K ,K ′

c1(r) : ok(nr) ← rdy(nr , nr1), . . . , rdy(nr , nrk
)

c2(r , s) : rdy(nr , ns) ← not (nr ≺ ns)
c3(r , s) : rdy(nr , ns) ← (nr ≺ ns), ap(ns)
c4(r , s) : rdy(nr , ns) ← (nr ≺ ns), bl(ns)

c5(r , s, J) : rdy(nr , ns) ← head(s), J

d(r) : ← not ok(nr)

t(r , s, t) : nr ≺ nt ← nr ≺ ns , ns ≺ nt

as(r , s) : ¬(ns ≺ nr) ← nr ≺ ns .

First of all, it is important to note that the original program Π is contained in
the image U(Π) of the translation. As we show in Proposition 4, this allows us
to construct (standard) answer sets of Π within answer sets of U(Π). Such an
answer set can be seen as the guess in a guess-and-check approach; it corresponds
to Condition 1 in Definition 10.

The corresponding check, viz. Condition 2 in Definition 10, is accomplished by
the remaining rules in τ(r). Before entering into details, let us stress the principal
differences among these rules and those used in translation T in Section 4:

1. The first group of rules is “synchronised” with the original rules in Π. That
is, except for the literals in body+(a2(r)), all primed body literals are doubled
in the original language.

2. As with the encoding in Section 4.3, the second group of rules accommodates
the modified strategy by adding a fifth rule.

3. Integrity constraint d(r) is added for ruling out unsuccessful candidate answer
sets of Π.

As before, the first group of rules of τ(r) expresses applicability and blocking
conditions. The rules of form ai(r), i = 1, 2, aim at rebuilding the guessed answer
set within L′. They form in L′ the prerequisite-free counterpart of the original
program. In fact, the prerequisite of a2(r) refers via body+(r) ⊆ body(r) to the
guessed extension in L; no formula in L′ must be derived for applying a2(r). This
accounts for the elimination of prerequisites in Condition 1 of Definition 9. The
elimination of rules whose prerequisites are not derivable is accomplished by rules
of form b1(r ,L). Rules of form b2(r ,L) guarantee that defaults are only defeatable
by rules with higher priority. In fact, it is K ′ that must be derivable in such a way
only.

A Framework for Compiling Preferences in Logic Programs 25

The application of rules according to the given preference information is enforced
by the second group of rules. In addition to the four rules used in Definition 2, an
atom like rdy(nr , ns) is now also derivable if the head of s is true although s itself
is defeated (both relative to the candidate answer set of Π in L). This treatment
of rules like s through c5(r , s, J) amounts to their elimination from the preference
handling process, as originated by the second condition in Definition 7. As before,
the whole group of “rdy”-rules allows us to derive ok(nr), indicating that r may
potentially be applied, whenever we have for all s with r < s that s has been
applied or cannot be applied, or s has already been eliminated from the preference
handling process.

Lastly, d(r) rules out unsuccessful attempts in rebuilding the answer set from L
within L′ according to the given preference information. In this way, we eliminate
all answer sets that do not respect preferences.

For illustration, reconsider program Π17:

r1 = b ← a, not ¬b
r2 = ¬b ← not b
r3 = a ← not ¬a

with r1 being most preferred, then r2, and finally r3. We get, among others:

b′ ← ap(n1) ¬b′ ← ap(n2) a ′ ← ap(n3)
ap(n1) ← ok(n1), ap(n2) ← ok(n2), ap(n3) ← ok(n3),

a,
not ¬b, not b, not ¬a,
not ¬b′ not b′ not ¬a ′

bl(n1) ← ok(n1),
not a,
not a ′

bl(n1) ← ok(n1), bl(n2) ← ok(n2), bl(n3) ← ok(n3),
¬b,¬b′ b, b′ ¬a,¬a ′.

First, suppose there is an answer set of U(Π17) containing the standard answer
set X2 = {a,¬b} of Π17. Clearly, r2 and r3 would contribute to this answer set,
since they also belong to U(Π17). Having ¬b denies the derivation of ap(n1). Also,
we do not get bl(n1) since we can neither derive ¬b′ nor not a. Therefore, we do not
obtain ok(n2). This satisfies integrity constraint d(r2), which destroys the putative
answer set at hand. Hence, as desired, U(Π17) has no answer set including X2.

For a complement, consider the <be-preserving answer set X1 = {a, b} of Π17. In
this case, r3 and r1 apply. Given ok(n1) and a, we derive b′ and ap(n1). This gives
ok(n2), b, and b′, from which we get bl(n2). Finally, we derive ok(n3) and a ′ and
ap(n3). Unlike above, no integrity constraint is invoked and we obtain an answer
set containing a and b.

For another example, consider the program given in (16). While Π16 has two stan-
dard answer sets, it has no be-preferred ones under the ordering imposed in (16).

26 J. P. Delgrande, T. Schaub, and H. Tompits

Suppose U(Π16) had an answer set containing a and b. This yields rdy(n2,n1) (via
c5(n2,n1, b)) from which we get ok(n2). Having a excludes

a2(r2) = ap(n2)← ok(n2), not a, not a ′ .

Moreover,

b2(r2, a) = bl(n2)← ok(n2), a ′

is inapplicable since a ′ is not derivable (by higher ranked rules). We thus cannot
derive ok(n3), which makes d(r3) destroy the putative answer set.

5.4 Formal Elaboration

The next theorem gives the major result of this section.

Theorem 7
Let (Π, <) be a statically ordered logic program and let X be a consistent set of
literals.

Then, X is a be-preferred answer set of (Π, <) iff X = Y ∩ LA for some answer
set Y of U(Π) ∪ {(n1 ≺ n2)←| (r1, r2) ∈ <}.

In what follows, we elaborate upon the structure of the encoded logic programs:

Proposition 4
Let Π be an ordered logic program over L and let X be a consistent answer set of
U(Π).

Then, we have the following results:

1. X ∩ L is a consistent (standard) answer set of Π;
2. (X ∩ L)′ = X ∩ L′ (or L ∈ X iff L′ ∈ X for L ∈ L);
3. r ∈ Π ∩ ΓX

U(Π) iff a2(r) ∈ ΓX
U(Π);

4. r ∈ Π\ΓX
U(Π) iff b1(r ,L) ∈ ΓX

U(Π) or b2(r ,L) ∈ ΓX
U(Π) for some L ∈ body+(r)∪

body−(r);
5. if c5(r , s,L) ∈ ΓX

U(Π), then b2(s,L) ∈ ΓX
U(Π) for L ∈ body−(s).

The last property shows that eliminated rules are eventually found to be inappli-
cable. Thus, it is sufficient to remove r ′ from the preference handling process in L′;
the rule is found to be blocked anyway.

In analogy to Proposition 2, the following result shows that our encoding treats
all rules and it gathers complete knowledge on their applicability status.

Proposition 5
Let X be a consistent answer set of U(Π) for ordered logic program Π.

We have for all r ∈ Π that

1. ok(nr) ∈ X ; and
2. ap(nr) ∈ X iff bl(nr) 6∈ X .

A Framework for Compiling Preferences in Logic Programs 27

The last result reveals an alternative choice for integrity constraint d(r), namely

← not ap(nr), not bl(nr) .

One may wonder how our translation avoids the explicit use of total extensions of
the given partial order. The next theorem shows that these total extensions are re-
flected by the subsequent derivation of ok-literals within the grounded enumerations
of the generating default rules.

Theorem 8
Let X be a consistent answer set of

U ′(Π) = U(Π) ∪ {(n1 ≺ n2)←| (r1, r2) ∈ <}

for some statically ordered logic program (Π, <). Let 〈si〉i∈I be a grounded enu-
meration of ΓX

U ′(Π).
Define

Π̂ = Π \ {r ∈ Π | head(r) ∈ X , body−(r) ∩X 6= ∅}

and, for all r1, r2 ∈ Π̂, define r1 � r2 iff k2 < k1 where skj = c1(rj) for j = 1, 2.
Then, � is a total ordering on Π̂ such that (< ∩ (Π̂× Π̂)) ⊆ �.

That is, whenever Π = Π̂, we have that� is a total ordering on Π such that <⊆�.
Finally, one may ask why we do not need to account for the “inherited” ordering

in Condition 2 of Definition 9. In fact, this is taken care of through the tags ap(nr)
in the consequents of rules a2(r) that guarantee an isomorphism between Π and
{a2(r) | r ∈ Π} in Definition 9. More generally, such a tagging of consequents
provides an effective correspondence between the applicability of default rules and
the presence of their consequents in an answer set at hand.

5.5 Extensions to the Dynamic Case

The original elaboration of be-preferred answer sets in Brewka & Eiter (1998;
1999) deals with the static case only.11 In fact, our framework leaves room for
two alternative extensions to the dynamic case, depending on how (or: “where”)
preference information is formed. The more prescriptive option is to form preference
information “on the fly” within language L′. This is close to the dynamic setting
explored in Section 4. The more descriptive approach is to gather all preference
information inside the standard answer set formed in language L and then to rely
on this when verifying preferences within L′.

While the latter approach is already realised through U in Definition 12,12 the
former is obtained by replacing all occurrences of ≺ in c2(r , s), c3(r , s), and c4(r , s)
by ≺′ and by adding (t(r , s, t))′ and (as(r , s))′ so that ≺′ becomes a strict partial

11 An extension to the dynamic case is briefly described for default theories in Brewka &
Eiter (2000).

12 A closer look at the encoding of static preferences in Theorem 7 reveals that there are no
“primed” occurrences of preference atoms.

28 J. P. Delgrande, T. Schaub, and H. Tompits

order. Let us refer to the variant of U obtained in this way by V. The difference be-
tween both strategies can be explained by the following example. Consider ordered
program Π18 = {r1, . . . , r4}, where

r1 = a ← not ¬a ,

r2 = b ← not ¬b ,
r3 = n1 ≺ n2 ← ,

r4 = n3 ≺ n1 ← .

(18)

Clearly, Π18 has a single answer set, {a, b, n3 ≺ n1, n1 ≺ n2}. While this answer
set is accepted by the strategy underlying U(Π18), it is denied by that of V(Π18).
To see this, observe that V necessitates that all preference information concerning
higher ranked rules has been derived before a rule can be considered for application
(as formalised in Condition 2 in Definition 3). This is however impossible for rule
r1 because it dominates r3 which contains preference information about r1. Unlike
this, U accepts each rule application order tolerating n3 ≺ n1 and n1 ≺ n2.

In fact, we can characterise the strategy underlying transformation U in the gen-
eral (dynamic) case by adapting its static concept of order preservation, given in
Definition 11. For this, it is sufficient to substitute Π and < by Π? and <X in
Definition 11. In contrast to Definition 3, this extension to the dynamic case avoids
an additional condition assuring that all preference information about a rule is
available before it is considered for application. This works because U gathers all
preference information in language L and then relies on it when verifying prefer-
ences within L′. Similar to the static setting, this dynamic strategy thus separates
preference formation from preference verification. This is different from the prescrip-
tive strategy of V that integrates both processes and thus necessitates a concept of
order preservation including Condition 2 in Definition 3.

Both strategies U as well as V differ from the strictly prescriptive strategies
discussed in Section 4. To see this, consider the program Π19 = {r1, r2, r3} with

r1 = a ← not ¬a ,

r2 = b ← not ¬b ,
r3 = n1 ≺ n2 ← a, b .

(19)

Π19 has a single answer set, {a, b, n1 ≺ n2}. Both U and V accept this set as a
preferred one. This is due to the above discussed elimination of groundedness from
the preference test. Unlike this, T yields no answer set on Π19 because there is no
way to apply r3 before r1, as stipulated by Condition 2 in Definition 3.

While it is easy to drop Condition 2 in Definition 3, it takes more effort to realise
such a concept of order preservation. First of all, one has to resort to a generate and
test construction similar to the one used above. That is, apart from the original
program in some language L, we need a constrained reconstruction process in a
mirror language L′. A corresponding translation can be obtained from the one in
Definition 12 as follows.

Given an ordered logic program Π, let τ ′(r) be the collection of rules obtained
from τ(r) in Definition 12 by

A Framework for Compiling Preferences in Logic Programs 29

Table 1. Summary of dynamic translations.

Integrated features T S U V

preference verification and groundedness × ×
preference verification and preference formation × ×

1. replacing a2(r) by

a2(r) : ap(nr) ← ok(nr), body(r), body(r ′); and

2. deleting c5(r , s, J).

(Condition 1 leaves the prerequisites of rules intact, and Condition 2 eliminates the
filter expressed by Condition 2c in Definition 11.)

Then, define the logic program S(Π) over L◦ as S(Π) = Π ∪
⋃

r∈Πτ
′(r). One

can then show that the answer sets of S(Π) are order preserving in the sense of
Definition 1, once Π and < are replaced by Π? and <X . This leaves us with an
enumeration of the generating rules, as opposed to the entire program and there is
no need for stipulating Condition 2 in Definition 3 anymore.

Note that the strategy underlying S amounts to a synergy between that of T
and U : While borrowing the guessing of preferences from U , it sticks to the integra-
tion of groundedness into the associated concept of order preservation. The above
translations along with their properties are summarised in Table 1.

6 Implementation

Our approach has been implemented and serves as a front-end to the logic program-
ming systems dlv (Eiter et al., 1997) and smodels (Niemelä & Simons, 1997). These
systems represent state-of-the-art implementations for logic programming within
the family of stable model semantics (Gelfond & Lifschitz, 1988). For instance, dlv

also admits strong negation and disjunctive rules. The resulting compiler, called
plp (for preference logic programming), is implemented in Prolog and is publicly
available at

http://www.cs.uni-potsdam.de/~torsten/plp/ .

This URL contains also diverse examples taken from the literature, including those
given in the preceding sections. The current implementation runs under the Prolog
systems ECLiPSe and SICStus and comprises roughly 1400 lines of code. It cur-
rently implements the three major strategies elaborated upon in this paper, namely
T ,U , and W, given in Sections 4, 5, and 4.3, respectively.

The plp compiler differs from the approach described above in two minor respects:
first, the translation applies to named rules only, that is, it leaves unnamed rules
unaffected; and second, it admits the specification of rules containing variables,
whereby rules of this form are processed by applying an additional instantiation
step.

30 J. P. Delgrande, T. Schaub, and H. Tompits

Table 2. The syntax of plp input files.

Meaning Symbols Internal

⊥,> false/0, true/0
¬ neg/1, -/1 (prefix) neg L, L ∈ L
not not/1, ∼/1 (prefix)
∧ ,/1 (infix; in body)
∨ ;/1, v/2, |/2 (infix; in head)
← :-/1 (infix; in rule)

≺ </2 (infix) prec/2

nr : 〈head(r)〉 ← 〈body(r)〉 〈head(r)〉 :- name(nr), 〈body(r)〉
〈head(r)〉 :- [nr], 〈body(r)〉

ok, rdy ok/1, rdy/2
ap, bl ap/1, bl/1

The syntax of plp is summarised in Table 2. For illustration, we give in Figure 1
the file comprising Example (10). Once this file is read into plp it is subject to
multiple transformations. Most of these transformations are rule-centered in the
sense that they apply in turn to each single rule. The first phase of the compilation
is system independent and corresponds more or less to the transformations given in
the preceding sections. While the original file is supposed to have the extension lp,
the result of the system-independent compilation phase is kept in an intermediate
file with extension pl. Applying the implementation of transformation T to the
source file in Figure 1 yields at first the file in Figure 2. We see that merely rules r2

and r3 are translated, while r1 and r4 are unaffected. This is reasonable since only
r2 and r3 are subject to preference information. This is similar to the Prolog rule
representing c1(r), insofar as its body refers to r2 and r3 only. Classical negation is
implemented in the usual way by appeal to integrity constraints, given at the end
of Figure 2.

While this compilation phase can be engaged explicitly by the command lp2pl/1,
for instance in SICStus Prolog by typing

| ?- lp2pl(’Examples/example’). ,

one is usually interested in producing system-specific code that is directly usable
by either dlv or smodels. This can be done by means of the commands lp2dlv/2

and lp2sm/2,13 which then produce system-specific code resulting in files having
extensions dlv and sm, respectively. These files can then be fed into the respective
system by a standard command interpreter, such as a UNIX shell, or from within

13 These files are themselves obtainable from the intermediate pl-files via commands pl2dlv/1
and pl2sm/1, respectively.

A Framework for Compiling Preferences in Logic Programs 31

neg a .

b :- name(n2), neg a, not c.

c :- name(n3), not b.

(n3 < n2) :- not d.

Fig. 1. The source code of Example (10), given in file example.lp.

neg_a.

b :- ap(n2).

ap(n2) :- ok(n2), neg_a, not c.

bl(n2) :- ok(n2), not neg_a.

bl(n2) :- ok(n2), c.

c :- ap(n3).

ap(n3) :- ok(n3), not b.

bl(n3) :- ok(n3), b.

prec(n3, n2) :- not d.

ok(X) :- name(X), rdy(X, n2), rdy(X, n3).

rdy(X,Y) :- name(X), name(Y), not prec(X,Y).

rdy(X,Y) :- name(X), name(Y), prec(X,Y), ap(Y).

rdy(X,Y) :- name(X), name(Y), prec(X,Y), bl(Y).

neg_prec(Y, X) :- name(X), name(Y), prec(X,Y).

prec(X,Z) :- name(X), name(Z), name(Y), prec(X,Y), prec(Y,Z).

name(n3). name(n2).

false :- a, neg_a. false :- b, neg_b.

false :- c, neg_c. false :- d, neg_d.

false :- name(X), name(Y), prec(X,Y), neg_prec(X,Y).

Fig. 2. The (pretty-printed) intermediate code resulting from Example (10), given in file
example.pl.

the Prolog system through commands dlv/1 or smodels/1. For example, after
compiling our example by lp2dlv, we may proceed as follows.

| ?- dlv(’Examples/example’).

Calling :dlv Examples/example.dlv

dlv [build BEN/Jun 11 2001 gcc 2.95.2 19991024 (release)]

{true, name(n2), name(n3), neg_a, ok(n2), rdy(n2,n2), rdy(n2,n3),

rdy(n3,n3),prec(n3,n2), neg_prec(n2,n3), ap(n2), b, rdy(n3,n2),

ok(n3), bl(n3)}

Both commands can be furnished with the option nice (as an additional argument)
in order to strip off auxiliary predicates.

| ?- dlv(’Examples/example’,nice).

Calling :dlv -filter=a [...] -filter=neg_d Examples/example.dlv

dlv [build BEN/Jun 11 2001 gcc 2.95.2 19991024 (release)]

{neg_a, b}

32 J. P. Delgrande, T. Schaub, and H. Tompits

〈file〉.lp
�

�
	plp

〈file〉.dlv

〈file〉.sm

�

�
	dlv

�

�
	smodels

Standard
output

Standard
output

- �
�
��

A
A
AU

-

-

-

-

lp2dlv/1

lp4dlv/1

lp2sm/1

lp4sm/1

Fig. 3. Compilation with plp: external view.

The above series of commands can be engaged within a single one by means of
lp4dlv/2 and lp4sm/2, respectively. The overall (external) comportment of plp is
illustrated in Figure 3.

For treating variables, some more preprocessing is necessary for instantiating
the rules prior to their compilation. The presence of variables is indicated by file
extension vlp. The contents of such a file is first instantiated by systematically
replacing variables by constants and then freed from function symbols by replacing
terms by constants, e.g., f(a) is replaced by f a. This is clearly a rather pragmatic
approach. A more elaborated compilation would be obtained by proceeding right
from the start in a system-specific way.

For illustration, we give in Figure 4 a formalisation of the popular legal reasoning
example due to (Gordon, 1993):

“A person wants to find out if her security interest in a certain ship is ‘perfected’, or
legally valid. This person has possession of the ship, but has not filed a financing statement.
According to the code UCC, a security interest can be perfected by taking possession of
the ship. However, the federal Ship Mortgage Act (SMA) states that a security interest
in a ship may only be perfected by filing a financing statement. Both UCC and SMA are
applicable; the question is which takes precedence here. There are two legal principles for
resolving such conflicts. Lex Posterior gives precedence to newer laws; here we have that
UCC is more recent than SMA. But Lex Superior gives precedence to laws supported by
the higher authority; here SMA has higher authority since it is federal law.”

Compiling file legal.vlp yields the following result.

| ?- vlp4dlv(’Examples/Variables/legal’,nice).

Calling :dlv -filter=[...] Examples/Variables/legal.dlv

dlv [build BEN/Jun 11 2001 gcc 2.95.2 19991024 (release)]

A Framework for Compiling Preferences in Logic Programs 33

perfected :- [ucc], possession, not neg perfected.

neg perfected :- [sma], ship, neg finstatement, not perfected.

(Y < X) :- [lex_posterior(X,Y)],

newer(X,Y), not neg (Y < X).

(X < Y) :- [lex_superior(X,Y)],

state_law(X), federal_law(Y), not neg (X < Y).

possession. newer(ucc,sma).

ship. federal_law(sma).

neg finstatement. state_law(ucc).

(lex_posterior(X,Y) < lex_superior(X,Y)).

Fig. 4. A formalisation of Gordon’s legal reasoning example, given in file legal.vlp.

{possession, ship, neg_finstatement, newer(ucc,sma),

state_law(ucc), federal_law(sma), neg_perfected}

More details on the plp compiler can be found at the above cited URL or in Del-
grande, Schaub, & Tompits (2000b).

7 Other Approaches to Preference

The present preference framework has its roots in an approach proposed in Del-
grande & Schaub (1997; 2000a) for handling preference information in default logic.
There, preference information is expressed using an ordered default theory, con-
sisting of default rules, world knowledge, and a preference relation between de-
fault rules. Such ordered default theories are then translated into standard de-
fault theories, determining extensions of the given theory in which the preferences
are respected. Both static and dynamic orderings are discussed, albeit in a less
uniform manner than realised in the present case. More specifically, Delgrande &
Schaub (1997; 2000a) define the notion of an order preserving extension for static
preference orderings only. As well, the encoding of dynamic preferences relies on
an additional predicate ⊀, expressing non-preference between two (names of) rules.
In contrast, the current framework is specified right from the beginning for the
dynamic case, and static preferences are just a special instance of dynamic ones.
Furthermore, Delgrande & Schaub (1997; 2000a) are primarily concerned with a
specific preference strategy, similar to the one expressed by Definition 1, whilst
here the emphasis is to demonstrate the flexibility of the framework by providing
encodings for differing preference strategies. Lastly, in contradistinction to other
preference approaches requiring dedicated algorithms, the existence of readily avail-
able solvers for the answer set semantics, like dlv and smodels, makes a realisation
of the current approach straightforward, as documented by the discussion in the
previous section.

34 J. P. Delgrande, T. Schaub, and H. Tompits

The problem of dealing with preferences in the context of nonmonotonic rule
systems has attracted extensive interest in the past decades. In fact, for almost
every nonmonotonic approach there exist prioritised versions designed to handle
preference information of some form (cf., e.g., (Gelfond et al., 1989; Konolige, 1988;
Rintanen, 1994; Benferhat et al., 1993; Nebel, 1998; Eiter & Gottlob, 1995; Brewka,
1989; Brewka, 1996)). Prioritised versions of default logic and logic programming
under the answer set semantics includes (Baader & Hollunder, 1993; Brewka, 1994;
Rintanen, 1998b; Sakama & Inoue, 1996; Gelfond & Son, 1997; Zhang & Foo,
1997) as well as those approaches discussed earlier. As argued in Delgrande &
Schaub (2000a), these approaches can be divided into descriptive and prescriptive

approaches. In the former case, one has a “wish list” where the intent is that one
way or another the highest-ranked rules be applied. In the latter case the ordering
reflects the order in which rules should be applied. The relationship of Doyle and
Wellman’s work (Doyle & Wellman, 1991) to such preferences is also discussed in
Delgrande & Schaub (2000a).

The approach of Rintanen (1998b) addresses descriptive preference orders in
default logic. This notion of preference differs conceptually from the preference
orderings dealt with here. In particular, Rintanen’s method is based on a meta-level
filtering process eliminating extensions which are not considered to be preferred
according to certain criteria. This method yields a higher worst-case complexity
than standard default logic (providing the polynomial hierarchy does not collapse),
and a similar method applied to logic programs under the answer set semantics
results likewise in an increase of complexity. Consequently, Rintanen’s approach
is not polynomial-time translatable into standard logic programs (given the same
proviso as before) and can thus not be efficiently represented within our framework.
Furthermore, as argued in Brewka & Eiter (1999), Rintanen’s approach does not
obey Principle II, and exhibits counter-intuitive results in some cases.

For prescriptive approaches, Baader & Hollunder (1993) and Brewka (1994)
present prioritised variants of default logic in which the iterative specification of
an extension is modified. Preference information is given at the meta-level (thus,
only static preferences are considered), and a default is only applicable at an iter-
ation step if no <-greater default is applicable.14 The primary difference between
these approaches rests on the number of defaults applicable at each step: while
Brewka allows only for applying a single default that is maximal with respect to
a total extension of <, Baader and Hollunder allow for applying all <-maximal
defaults at each step. Both approaches violate Principle I, but, as shown by Rin-
tanen (1998a), neither of them result in an increase of worst-complexity compared
to standard default logic. Thus, the relevant reasoning tasks associated with these
preference approaches can be translated in polynomial time into equivalent prob-
lems of standard default logic, which makes the two preference methods amenable
for the framework of Delgrande & Schaub (1997; 2000a). However, neither Brewka
nor Baader and Hollunder deal with context-sensitive preferences.

14 These authors use < in the reverse order from us.

A Framework for Compiling Preferences in Logic Programs 35

The previously discussed methods rely on a two-level approach, treating prefer-
ences at the meta-level by defining an alternative semantics. A similar methodology
is inherent to most approaches to preference handling in extended logic program-
ming. One of the few exceptions is given by the approach in Gelfond & Son (1997),
which avoids defining a new logic programming formalism in order to cope with
preference information, although it still utilises a two-layered approach in reifying
rules and preferences. For example, a rule such as p ← r ,¬s, not q is expressed
by the formula default(n, p, [r ,¬s], [q]) (or, after reification, by the corresponding
term inside a holds-predicate, respectively) where n is the name of the rule. The
semantics of a domain description is given in terms of a set of domain-independent
rules for predicates like holds. These rules can be regarded as a meta-interpreter
for the domain description. Interestingly, the approach is based on the notion of
“defeat” (of justifications) in contrast to an order-preserving consideration of rules,
as found in our approach. Also, the specific strategy elaborated upon in Gelfond &
Son (1997) differs from the ones considered here in that the preference d1 < d2

“stops the application of default d2 if defaults d1 and d2 are in conflict with each

other and the default d1 is applicable” (Gelfond & Son, 1997). (Such strategies are
also studied in Delgrande & Schaub (2000b).) For detecting such conflicts, how-
ever, the approach necessitates an extra conflict-indicating predicate. That is, one
must state explicitly conflict(d1, d2) to indicate that d1 and d2 are conflicting. In
principle, as with our framework, the approach of Gelfond and Son offers a variety
of different preference handling instances.

Zhang and Foo (1997) present an operational semantics for ordered logic pro-
grams based on an iterative reduction to standard programs. The approach admits
both static and dynamic preferences, in which the dynamic case is reduced to the
static one. Interestingly, the semantics has a nondeterministic flavour in the sense
that an ordered program may be reduced in more than one way to a standard pro-
gram. As shown by Zhang (2000), the somewhat elaborate semantics results in a
worst-case complexity which lies at the second level of the polynomial hierarchy.
Thus, it is intrinsically harder than standard answer set semantics, providing the
polynomial hierarchy does not collapse. Consequently, under this proviso, it is not
possible to express Zhang and Foo’s method within our framework in a polynomial
way, unless our language is extended. Their approach leads also to new answer sets,
once preferences are added, as illustrated by the following program:

r1 = p ← not q1

r2 = ¬p ← not q2

and r1 < r2 .

Zhang and Foo’s approach yields two answer sets (one with p and one with ¬p). In
contrast, no preferred answer set is obtained under dst-, wzl-, or be-preference.
Finally, their approach violates Principle II of Brewka and Eiter (1999).

The method of Sakama and Inoue (1996) has the interesting feature that the
given preference order is not a relation between (names of) rules, as in the previous
frameworks, but represents a relation between literals.15 This relation is used to

15 Cf. (Geffner & Pearl, 1992) for another approach to preferences on literals.

36 J. P. Delgrande, T. Schaub, and H. Tompits

determine a preference relation on the answer sets of a disjunctive logic program.16

Intuitively, an answer set X1 is at least as preferable as an answer set X2 iff there are
literals L1 ∈ X1 \X2 and L2 ∈ X2 \X1 such that L1 has at least the priority of L2,
and there is no literal L′2 ∈ X2 \ X1 which has strictly higher priority than L1. An
answer set X is preferred iff there is no other answer set which is strictly preferred
over X . The minimality criterion on answer sets makes this approach (presumably)
harder than standard answer set semantics for disjunctive logic programs, yielding a
worst-case complexity which lies at the third level of the polynomial hierarchy. Thus,
even by restricting rules to the non-disjunctive case, Sakama and Inoue’s approach
does not admit a polynomial representation within our framework (providing the
polynomial hierarchy does not collapse). As well, their approach does not satisfy
Principle II of Brewka & Eiter (1999).

Finally, Wang, Zhou, & Lin (2000) present an approach intermediate between
the prescriptive approach described in Section 4 and the more descriptive approach
of Brewka and Eiter (1999), expressed in our framework in Section 5. An encoding
of Wang, Zhou, and Lin’s approach in our framework was given in Section 4.3. We
obtain the following relations among these three approaches. For differentiating the
answer sets obtained in these approaches, let us refer to the answer sets obtained
in the approach of Wang et al. (2000) as wzl-preferred, in analogy to the term
be-preferred answer set introduced earlier, referring to an answer set obtained in
the approach of Brewka & Eiter (1999).

Then, for a given statically ordered logic program (Π, <), the following results
can be shown (Schaub & Wang, 2001a):

(i). Every <-preserving answer set (in the sense of Section 4) is wzl-preferred.
(ii). Every wzl-preferred answer set is be-preferred.
(iii). Every be-preferred answer set is an answer set.

In no instance do we obtain the converse. For example, (13) is a counterexample
in the first case, and (19) in the second. Thus, the framework illustrates that the
preference approaches of Section 4, Wang et al. (2000), and Brewka & Eiter (1999)
form a hierarchy of successively-weaker notions of preference. In fact, this hierar-
chy is of practical value since it allows us to apply the concept of a “back-up”-
semantics (van der Hoek & Witteveen, 2000) for validating strategies on specific
ordered logic programs. The idea is to first interpret a program with respect to the
strongest semantics, and then to gradually weaken the strategy until a desirable set
of conclusions is forthcoming.

A feature common to the latter three approaches is that, for statically ordered
programs, the addition of preferences never increases the number of preferred an-
swer sets.17 In fact, we have seen above that preferences may sometimes be too
strong and deny the existence of preferred answer sets although standard answer
sets exist. This is because preferences impose additional dependencies among rules
that must be respected by the standard answer sets. In a related paper (Schaub &

16 Disjunctive logic programs are characterised by permitting disjunctions in rule heads.
17 Cf. Proposition 5.4 in Brewka & Eiter (1999).

A Framework for Compiling Preferences in Logic Programs 37

Wang, 2001b), it is shown that programs whose order amounts to a stratification
guarantee a unique answer set. Furthermore, Delgrande & Schaub (2000a) show
how graph structures, as introduced in Papadimitriou & Sideri (1994), give suffi-
cient conditions for guaranteeing preferred extensions of ordered default theories;
these results obviously carry over to extended logic programs due to the results in
Gelfond & Lifschitz (1991).

8 Discussion

8.1 Further Issues and Refinements

We briefly sketch the range of further applicability and point out distinguishing
features of our framework here.

First, we draw the reader’s attention to the expressive power offered by dynamic
preferences in connection with variables in the input language. Consider the rule

n1(x) ≺ n2(y)← p(y), not (x = c), (20)

where n1(x),n2(y) are names of rules containing the variables x and y , respectively.
Although such a rule represents only its set of ground instances, it nonetheless
constitutes a much more concise specification. Since most other approaches employ
static preferences of the form n1(x) ≺ n2(y)←, these approaches would necessarily
have to express (20) as an enumeration of static ground preferences rather than a
single rule.

Second, we note that our methodology is also applicable to disjunctive logic
programs (where rule heads are disjunctions of literals). To see this, observe that
the transformed rules unfold the conditions expressed in the body of the rules, while
a rule’s head remain untouched, as manifested by rule a1(r). In addition to handling
preferences about disjunctive rules, our approach allows us to express disjunctive
preferences, such as

(n3 ≺ n2) ∨ (n3 ≺ n4)← ¬a ,

saying that if ¬a holds, then either r2 or r4 are preferred to r3. Thus, informally,
given ¬a along with three mutually exclusive rules r1, r2, r3, the above preference
results in two rather than three answer sets.

Finally, there is a straightforward way of accommodating preferences on literals,
as for instance put forward in Sakama & Inoue (2000). A preference p � q among
two literals p, q ∈ L can then be realised by stipulating that r1 < r2 whenever
head(r1) = p and head(r2) = q .

8.2 Concluding Remarks

We have described a general methodology in which logic programs containing pref-
erences on the set of rules can be compiled into logic programs under the answer
set semantics. An ordered logic program, in which preference atoms appear in the
program rules, is transformed into a second, extended logic program. In this second

38 J. P. Delgrande, T. Schaub, and H. Tompits

program, no explicit preference information appears, yet preferences are respected,
in that the answer sets obtained in the transformed theory correspond to the pre-
ferred answer sets of the original theory.

In our main approach, we provide an encoding for capturing a strongly prescrip-
tive notion of preference, in which rules are to be applied in accordance with the
prescribed order. Since this approach admits a dynamic (as well as, trivially, static)
notion of preference, one is able to specify preferences holding in a given context, by
“default”, or where one preference depends on another. We also show how the ap-
proach of Brewka & Eiter (1999) can be expressed in our framework for preferences.
Further, we extend their approach to handle the dynamic case as well.

These translations illustrate the generality of our framework. As well, they shed
light specifically on Brewka and Eiter’s approaches, since we can provide a trans-
lation and encoding of their approaches into extended logic programs. In a sense
then, our overall methodology provides a means of axiomatising different prefer-
ence orderings, in that the image of a translation shows how an approach can be
encoded in an extended logic program. The contrast between Definitions 2 and 12
for example illustrate succinctly how our main approach to preferences and that
of Brewka & Eiter (1999) relate. In general then our approach provides a uniform
basis within which diverse approaches and encodings can be compared. This is illus-
trated by the hierarchy of approaches discussed at the end of Section 7. Similarly,
the framework allows us to potentially formalise the interaction of several orderings
inside the same framework, and to specify in the theory how they interact.

In all of these approaches we can prove that the resulting transformations accom-
plish what is claimed: that the appropriate rules in the image of the transformation
are treated in the correct order, that all rules are considered, that we do indeed ob-
tain preferred answer sets, and so on. In addition to the formal results, we illustrate
the generality of the approach by formalising an example due to Gordon (1993), as
well as giving examples of context-based preference, canceling preferences, prefer-
ences among preferences, and preferences by default.

Our approach of translating preferences into extended logic programs has several
other advantages over previous work. First, we avoid the two-level structure of
such work. While the previous “meta-level” approaches must commit themselves
to a semantics and a fixed strategy, our approach (as well as that of Gelfond &
Son (1997)) is very flexible with respect to changing strategies, and is open for
adaptation to different semantics and different concepts of preference handling (as
illustrated by our encoding and extension of the method of Brewka & Eiter (1999)).
Second, for a translated program in our approach, any answer set is “preferred”, in
the sense that only “preferred” answer sets (as specified by the ordering on rules)
are produced. In contrast, many previous approaches, in one fashion or another,
select among answer sets for the most preferred. Hence one could expect the present
approach to be (pragmatically) more efficient, since it avoids the generation of
unnecessary answer sets. As well, as Section 7 notes, some of these other approaches
are at a higher level of the complexity hierarchy than standard extended logic
programs. Lastly, in “compiling” preferences into extended logic programs, some
light is shed on the foundations of extended logic programs. In particular, we show

A Framework for Compiling Preferences in Logic Programs 39

implicitly that for several notions of explicit, dynamic, preference expressed among
rules, such preference information does not increase the expressibility of an extended
logic program.

Finally, this paper demonstrates that these approaches are easily implementable.
We describe here a compiler (described more fully in Delgrande, Schaub, & Tom-
pits (2000b)) as a front-end for dlv and smodels. The current prototype is available
at

http://www.cs.uni-potsdam.de/~torsten/plp/ .

This implementation is used as the core reasoning engine in a knowledge-based
information system for querying Internet movie databases, currently developed at
the Vienna University of Technology (Eiter et al., 2002). Also, it serves for modeling
linguistic phenomena occurring in phonology and syntax (Besnard et al., 2002),
which are treated in linguistics within Optimality Theory (Prince & Smolensky,
1993; Kager, 1999).

Acknowledgements

The authors would like to thank the anonymous referees for their constructive com-
ments which helped to improve the paper. The first author was partially supported
by a Canadian NSERC Research Grant; the second author was partially supported
by the German Science Foundation (DFG) under grant FOR 375/1-1, TP C; and
the third author was partially supported by the Austrian Science Fund (FWF)
under grants N Z29-INF and P13871-INF.

A Proofs

For later usage, we provide the following lemmata without proof.

Lemma 1
Let X be an answer set of logic program Π. Then, we have for r ∈ Π

1. if body+(r) ⊆ X and body−(r) ∩X = ∅, then head(r) ∈ X ;
2. if r ∈ ΓX

Π , then head(r) ∈ X .

The inverse of each of these propositions holds, whenever head(r) = head(r ′) im-
plies r = r ′.

Lemma 2
Let X be an answer set of logic program Π.

Then, there is a grounded enumeration 〈ri〉i∈I of ΓX
Π .

That is, we have for consistent X that body+(ri) ⊆ {head(rj) | j < i}.
The following result is taken from Proposition 5.1 in Brewka & Eiter (1999).

Theorem 9
Let (Π,�) be a fully ordered program and let X be an answer set of Π.

Then, X is a be-preferred answer set of (Π,�) iff for each rule r ∈ Π with

40 J. P. Delgrande, T. Schaub, and H. Tompits

1. body+(r) ⊆ X and
2. head(r) 6∈ X

there is some rule r ′ ∈ ΓX
Π such that

1. r � r ′ and
2. head(r ′) ∈ body−(r).

In the sequel, we give the proofs for the theorems in the order the latter appear
in the body of the paper.

A.1 Proofs of Section 4

Proof of Proposition 1
Let X be a consistent answer set of T (Π) for an ordered program Π.

1. Since rules t(r , r ′, r ′′) and as(r , r ′) are members of T (Π), for any r , r ′, r ′′ ∈ Π,
the relation <X is clearly transitive and antisymmetric. Thus, <X is a strict
partial order.

2. Suppose Π contains static preferences only, i.e., Π = Π′ ∪ Π′′, where Π′′ ⊆
{(nr ≺ nr ′) ←| r , r ′ ∈ Π′} and Π′ contains no occurrences of preference
atoms of form n ≺ m for some names n,m. Hence, for each consistent answer
set Z ,Z ′ of Π and any (nr ≺ nr ′) ← ∈ Π′′, we have that (nr ≺ nr ′) ∈ Z iff
(nr ≺ nr ′) ∈ Z ′. Since X is assumed to be consistent, well-known properties
of answer sets imply that any other answer set Y of Π is also consistent. It
follows that (nr ≺ nr ′) ∈ X iff (nr ≺ nr ′) ∈ Y , for any answer set Y of Π.
From this, <X =<Y for any answer set Y is an immediate consequence.

Proof of Proposition 2
Let X be a consistent answer set of T (Π) for an ordered program Π.

1+2. We prove both propositions by parallel induction on <X .

Base. Let r be a maximal element of <X .

1. By assumption, nr ≺ nr ′ 6∈ X for all r ′ ∈ Π. This implies that

rdy(nr , nr ′)← ∈ T (Π)X for all r ′ ∈ Π ,

which results in ok(nr) ∈ Cn(T (Π)X) because Cn(T (Π)X) is closed
under T (Π)X . Hence, ok(nr) ∈ X , since X = Cn(T (Π)X).

2. We distinguish the following two cases:

– If a2(r) ∈ ΓX
T (Π), then ap(nr) ∈ X by Lemma 1.

– If a2(r) 6∈ ΓX
T (Π), then we have in view of Property 1, namely

ok(nr) ∈ X , that one of the following two cases is true:

· If body+(r) 6⊆ X , then there is some L+ ∈ body+(r) with L+ 6∈ X .
Hence, (b1(r ,L+))+ ∈ T (Π)X , yielding bl(nr) ∈ X in analogy
to 1.

· If body−(r) ∩ X 6= ∅, then there is some L− ∈ body−(r) with
L− ∈ X . Hence, (b2(r ,L−))+ ∈ T (Π)X , yielding bl(nr) ∈ X in
analogy to 1.

A Framework for Compiling Preferences in Logic Programs 41

This shows that either ap(nr) ∈ X or bl(nr) ∈ X . In other words,
ap(nr) ∈ X iff bl(nr) 6∈ X .

Step. Consider r ∈ Π. Assume that ok(nr ′) ∈ X and either ap(nr ′) ∈ X or
bl(nr ′) ∈ X for all r ′ with r <X r ′.

1. In analogy to the base case, we have rdy(nr , nr ′′) ∈ X for all r ′′ ∈ Π
with r 6<X r ′′.
Consider r ′ with r <X r ′. We thus have nr ≺ nr ′ ∈ X . By the induction
hypothesis, we have either ap(nr ′) ∈ X or bl(nr ′) ∈ X . Hence we have
either

body((c3(r , r ′))+) ⊆ X or body((c4(r , r ′))+) ⊆ X .

This implies rdy(nr , nr ′) ∈ X for all r ′ ∈ Π with r <X r ′.
We have thus shown that rdy(nr , nr ′′′) ∈ X for all r ′′′ ∈ Π.
By the fact that X is closed, we get ok(nr) ∈ X .

2. Analogous to the base case.

Proof of Proposition 3
Let X be a consistent answer set of T (Π) for an ordered program Π, let Ω = T (Π)X ,
and consider some r ∈ Π.

1. Given ok(nr) ∈ T i
Ω∅ and body+(r) ⊆ T j

Ω∅, we get body+(a2(r)) ⊆ T max(i,j)
Ω ∅.

With body−(a2(r)) ∩X = ∅, this implies ap(nr) ∈ T max(i,j)+1
Ω ∅.

2. Given ok(nr) ∈ T i
Ω∅ and body+(r) 6⊆ X , we get body+(b1(r ,L+)) ⊆ T i

Ω∅ and
body−(b1(r ,L+)) ∩X = ∅, for some L+ ∈ body+(r). Thus, bl(nr) ∈ T i+1

Ω ∅.
3. We have ok(nr) ∈ T i

Ω∅ and L− ∈ X for some L− ∈ body−(r). Assume L− ∈
T k

Ω∅ for some minimal k . Then, we get body(b2(r ,L−)) ⊆ T max(i,k)
Ω ∅. This

implies bl(nr) ∈ T max(i,k)+1
Ω ∅. That is, bl(nr) ∈ T j

Ω∅ for some j > i .
4. Assume ap(nr) ∈ T j

Ω∅ for some j < i +2. Since ap(nr) can only be derived by
means of rule a2(r) ∈ T (Π), we obtain that ok(nr) ∈ T j−1

Ω ∅. But T j−1
Ω ∅ ⊆

T i
Ω∅, so ok(nr) ∈ T i

Ω∅. Similar arguments show that bl(nr) ∈ T k
Ω∅ for some

k < i + 2 implies ok(nr) ∈ T i
Ω∅.

Proof of Theorem 1
Let Π be an ordered logic program, X a consistent answer set of T (Π), and 〈ri〉i∈I

a grounded enumeration of ΓX
T (Π).

Consider r1, r2 ∈ Π with nr1 <X nr2 . Let ri = c1(r1) and rj = c1(r2). We show
that j < i .

Given that ri = c1(r1), we have {rdy(r1, r) | r ∈ Π} ⊆ {head(rk) | k < i}. In
particular, we then have rdy(r1, r2) ∈ {head(rk) | k < i}. Because of nr1 <X nr2 ,
we have (nr1 ≺ nr2) ∈ X . Therefore, c2(r1, r2) 6∈ ΓX

T (Π). Hence, we must have either

c3(r1, r2) ∈ {rk | k < i} or c4(r1, r2) ∈ {rk | k < i}

and then furthermore that either

a2(r2) ∈ {rk | k < i} or b1(r2,L+) ∈ {rk | k < i} or b2(r2,L−) ∈ {rk | k < i}

for some L+ ∈ body+(r2) or some L− ∈ body−(r2). In either case, we must have
ok(r2) ∈ {head(rk) | k < i}, that is, c1(r2) ∈ {rk | k < i}, and thus j < i .

42 J. P. Delgrande, T. Schaub, and H. Tompits

Proof of Theorem 2
Let (Π, <) be a statically ordered logic program over LA and X a set of literals.

Only-if part. Let X be a <-preserving answer set of Π.
Define Π = (Π ∪ {(nr ≺ nr ′)← | r < r ′})? and X = X ∪{¬(nr ′ ≺ nr) | r < r ′}.
We draw on the following propositions in the sequel.

Lemma 3
Given the above prerequisites, we have

(i). X = X ∩ LA ;
(ii). < = <X = <X ;
(iii). X is a <-preserving answer set of Π.

Hence there is an enumeration 〈ri〉i∈I of ΓX
Π

satisfying Conditions 1 to 3 in
Definition 1. Without loss of generality, assume that there is some m ∈ I such that

{ri | 0 ≤ i ≤ m, i ∈ I } = {r | head(r) ∈ LA≺}
and {head(ri) | i > m, i ∈ I } ∩ LA≺ = ∅ .

(A 1)

From 〈ri〉i∈I , we construct an enumeration 〈rj 〉j∈J of Π with I ⊆ J and�I⊆�J

(where �I ,�J are the total orders on ΓX
Π

and Π induced by 〈ri〉i∈I and 〈rj 〉j∈J ,
respectively) such that for every i , j ∈ J we have that:

1. If ri < rj , then j < i .
This is obtainable by letting �J be a total extension of <, that is, < ⊆ �J .

2. If ri < rj , then there is some rk ∈ ΓX
Π

such that
2a. k < i and
2b. head(rk) = (nri ≺ nrj).
This is trivially satisfiable because of (A 1).

3. If ri ∈ ΓX
Π

, then body+(ri) ⊆ {head(rk) | rk ∈ ΓX
Π
, k < i}.

This is a direct consequence of Condition 1 in Definition 1.
4. If ri ∈ Π \ ΓX

Π
, then

4a. body+(ri) 6⊆ X or
4b. body−(ri) ∩ {head(rk) | rk ∈ ΓX

Π
, k < i} 6= ∅.

Suppose rj < ri for some rj ∈ ΓX
Π

. Then, 4a is a direct consequence of its
counterpart in Definition 1, expressed there as Condition 3a.
Now, consider the �I -smallest rule rl ∈ ΓX

Π
with rl < ri . Then, the counter-

part of 4b, Condition 3b in Definition 1, implies that body−(ri)∩ {head(rk) |
rk ∈ ΓX

Π
, k < l} 6= ∅. Let rh ∈ ΓX

Π
be the predecessor of rl in 〈ri〉i∈I . Then,

we have body−(ri) ∩ {head(rk) | rk ∈ ΓX
Π
, k ≤ h} 6= ∅. Without violating any

other constraints, we can then position ri in 〈rj 〉i∈J such that h < i < l .
Consequently, we obtain body−(ri) ∩ {head(rk) | rk ∈ ΓX

Π
, k < i} 6= ∅.

Otherwise, that is, whenever rj 6< ri for every rj ∈ ΓX
Π

, rule ri can be posi-
tioned after the �I -maximal rule in 〈rj 〉i∈J ; this satisfies all constraints.

Given that < = <X , we get that X is a <X -preserving answer set of Π. According
to Theorem 3, there is then some answer set Y of T (Π, <) such that X = Y ∩ L.
Consequently, we obtain that X = X ∩ LA = (Y ∩ L) ∩ LA = Y ∩ LA.

A Framework for Compiling Preferences in Logic Programs 43

If part. Let Y be an answer set of T (Π, <), i.e., of

T (Π ∪ {(nr ≺ nr ′)← | r < r ′}).

According to Theorem 3, there is then an enumeration 〈sk 〉k∈K of

(Π ∪ {(nr ≺ nr ′)←| r < r ′})?

satisfying Conditions 1, 2, 3, and 4 in Definition 3.
Define 〈ri〉i∈I as the enumeration obtained from 〈sk 〉k∈K by

1. deleting all rules apart from those of form a2(r) for r ∈ Π; and
2. replacing each rule of form a2(r) by r .

Define X = {head(ri) | i ∈ I }. Then, we have X = Y ∩ LA and ΓX
Π = {head(ri) |

i ∈ I }. Hence 〈ri〉i∈I is an enumeration of ΓX
Π . Moreover, 〈ri〉i∈I satisfies Condi-

tions 1, 2, and 3 in Definition 1 by virtue of 〈sk 〉k∈K satisfying Conditions 1, 2, 3,
and 4 in Definition 3. More specifically, Condition 1 in Definition 1 is a direct con-
sequence of Condition 3 in Definition 3. As well, Condition 2 in Definition 1 follows
immediately from Condition 1 in Definition 3, while Condition 3 in Definition 1 is
a consequence of Conditions 4 and 1 in Definition 3. Hence, X is a <-preserving
answer set of Π.

Proof of Theorem 3
Let Π be an ordered logic program over language L.

If part. Let Y be a consistent answer set of T (Π). Define

X = {head(r) | ap(nr) ∈ Y } ∪ {nr ≺ nt | r <Y s, s <Y t}
∪ {¬(ns ≺ nr) | r <Y s} .

Observe that X = Y ∩ L. Furthermore, we note the following useful relationships
for X and Y .

Lemma 4
For any L ∈ L, we have that L ∈ Y iff L ∈ X .

Given that Y is consistent, this implies that X is consistent, too.

Lemma 5
We have that <Y = <X .

If part, I. First, we show that X is a (standard) answer set of Π?. That is, X =
Cn((Π?)X).

Observe that (Π?)X = ΠX ∪ {t(r , s, t), as(r , s) | r , s, t ∈ Π}.

“⊇” part. We start by showing that X is closed under (Π?)X .
Consider r+ ∈ ΠX with body+(r) ⊆ X . We then have body−(r) ∩X = ∅. Hence,

we also have body−(r) ∩ Y = ∅ by Lemma 4. This implies that a2(r)+ ∈ T (Π)Y .
Note that body+(r) ⊆ X implies body+(r) ⊆ Y . Also, we have ok(nr) ∈ Y by

44 J. P. Delgrande, T. Schaub, and H. Tompits

Condition 1 of Proposition 2. The fact that Y is closed under T (Π)Y implies
ap(nr) ∈ Y . We thus get head(r) ∈ X by definition of X .

Consider t(r , s, t) with {nr ≺ ns , ns ≺ nt} ⊆ X . By Lemma 5, we get r <Y s
and s <Y t . We thus get head(t(r , s, t)) = nr ≺ nt ∈ X by definition of X .

Consider as(r , s) with nr ≺ ns ∈ X . By Lemma 5, we get r <Y s. We thus get
head(as(r , s)) = ¬(ns ≺ nr) ∈ X by definition of X .

Note that the closure of X under (Π?)X shows that Cn((Π?)X) ⊆ X .

“⊆” part. We now show that X is the smallest set being closed under (Π?)X , or
equivalently that X ⊆ Cn((Π?)X). We observe that

X = Y ∩ L =
(⋃

i≥0T i
T (Π)Y ∅

)
∩ L .

We then show by induction that (T i
T (Π)Y ∅) ∩ L ⊆ Cn((Π?)X) for i ≥ 0.

Base. Trivial since T 0
T (Π)Y ∅ = ∅.

Step. Assume (T j
T (Π)Y ∅) ∩ L ⊆ Cn((Π?)X) for 0 ≤ j ≤ i .

• If (T i+1
T (Π)Y ∅) ∩ L = ∅, our claim obviously holds.

• If there is some r ∈ Π such that head(r) ∈ (T i+1
T (Π)Y ∅)∩L, that is, head(r) =

head(a1(r)+), we have{
a1(r)+ : head(r) ← ap(nr)
a2(r)+ : ap(nr) ← ok(nr), body+(r)

}
⊆ T (Π)Y .

Consequently, we must have {ap(nr), ok(nr)} ∪ body+(r) ⊆ T i
T (Π)Y ∅.

According to the induction hypothesis, body+(r) ⊆ (T i
T (Π)Y ∅) ∩ L implies

body+(r) ⊆ Cn((Π?)X).
Also, a2(r)+ ∈ T (Π)Y implies that body−(r)∩Y = ∅. By Lemma 4, we thus
get body−(r) ∩X = ∅, which implies r+ ∈ ΠX .
Given that Cn((Π?)X) is closed under ΠX , we get that head(r) ∈ Cn((Π?)X).

• If head(t(r , s, t)) ∈ (T i+1
T (Π)Y ∅) ∩ L, then we must have {nr ≺ ns , ns ≺ nt} ⊆

T i
T (Π)Y ∅. And by the induction hypothesis, we further get {nr ≺ ns , ns ≺

nt} ⊆ Cn((Π?)X). Given that Cn((Π?)X) is closed under t(r , s, t) ∈ (Π?)X ,
we thus obtain that head(t(r , s, t)) ∈ Cn((Π?)X).

• If head(as(r , s)) ∈ (T i+1
T (Π)Y ∅) ∩ L, then we must have nr ≺ ns ∈ T i

T (Π)Y ∅.
And by the induction hypothesis, we further get nr ≺ ns ∈ Cn((Π?)X).
Given that Cn((Π?)X) is closed under as(r , s) ∈ (Π?)X , we thus obtain that
head(as(r , s)) ∈ Cn((Π?)X).

In all, we have now shown that X = Cn((Π?)X). That is, X is a (standard) answer
set of Π?.

If part, II. Next, we show that X is a <X -preserving answer set of Π?. Since Y
is a (standard) answer set of T (Π), according to Lemma 2, there is a grounded
enumeration 〈sk 〉k∈K of ΓY

T (Π).
Define 〈ri〉i∈I as the enumeration obtained from 〈sk 〉k∈K by

A Framework for Compiling Preferences in Logic Programs 45

1. deleting all rules apart from those of form a2(r), b1(r ,L+), b2(r ,L−);
2. replacing each rule of form a2(r), b1(r ,L+), b2(r ,L−) by r ; and
3. removing duplicates18 by increasing i

for r ∈ Π? and L+ ∈ body+(r), L− ∈ body−(r).
First of all, we note that 〈ri〉i∈I satisfies Condition 3. This is a direct consequence

of the fact that 〈sk 〉k∈K enjoys groundedness.
For establishing Condition 4, consider ri 6∈ ΓX

Π? . If we have body+(ri) 6⊆ X , then
this establishes Condition 4a and we are done. Otherwise, if we have body−(r)∩X 6=
∅, then there is some L− ∈ body−(r) such that L− ∈ X . This implies L− ∈ Y by
Lemma 4. Given this and that ok(r) ∈ Y by Condition 1 of Proposition 2, we
obtain b2(r ,L−) ∈ ΓY

T (Π). More precisely, let b2(r ,L−) = sk for some k ∈ K . Then,
we have that L− ∈ {head(sl) | l ∈ K , l < k}. Given the way 〈ri〉i∈I is obtained
from 〈sk 〉k∈K , we thus obtain that L− ∈ {head(rl) | rl ∈ ΓX

Π? , l < i}. That is, we
obtain Condition 4b.

Next, we show that 〈ri〉i∈I satisfies Condition 1. Consider ri , rj ∈ Π for some
i , j ∈ I . Then, there are ki , kj ∈ K such that

ski
= a2(ri)

or ski = b1(ri ,L+) for some L+ ∈ body+(ri)
or ski

= b2(ri ,L−) for some L− ∈ body−(ri) , and
skj

= a2(rj)
or skj = b1(rj ,L+) for some L+ ∈ body+(rj)
or skj

= b2(rj ,L−) for some L− ∈ body−(rj) ·

Assume ri <X rj . Then, we also have ri <Y rj by Lemma 5. Given this, by the
properties of transformation T , it is easy to see that kj < ki must hold. Given the
way 〈ri〉i∈I is obtained from 〈sk 〉k∈K , the relation kj < ki implies that j < i . This
establishes Condition 1.

For addressing Condition 2, assume ri <X rj for i , j ∈ I . By definition, ri <X rj

implies (nri ≺ nrj) ∈ X . That is, there is some smallest h ∈ I such that rh ∈ ΓX
Π?

and head(rh) = (nri
≺ nrj

). Furthermore, we obtain (nri
≺ nrj

) ∈ Y by Lemma 5.
We thus have c2(ri , rj)+ 6∈ T (Π)Y , while we have{

c3(ri , rj)+ : rdy(nri
, nrj

) ← (nri
≺ nrj

), ap(nrj
)

c4(ri , rj)+ : rdy(nri
, nrj

) ← (nri
≺ nrj

), bl(nrj
)

}
⊆ T (Π)Y .

Since rdy(nri , nrj) ⊆ Y (by Condition 1 in Proposition 2), we have either c3(ri , rj) ∈
ΓY
T (Π) or c4(ri , rj) ∈ ΓY

T (Π). Analogously, we have c1(ri) ∈ ΓY
T (Π).

Now, consider the enumeration 〈sk 〉k∈K of ΓY
T (Π), and, in particular, rules ski

(as
defined above) and skh

= a2(rh) for some kh ∈ K . Since 〈sk 〉k∈K is grounded, the
minimality of kh (due to that of h) implies that there are some l1, l2, l3 > 0 such
that

• either skh+l1 = c3(ri , rj) or skh+l1 = c4(ri , rj),
• skh+l1+l2 = c1(ri), and

18 Duplicates can only occur if a rule is blocked in multiple ways.

46 J. P. Delgrande, T. Schaub, and H. Tompits

• skh+l1+l2+l3 = ski .

Consequently, we have kh < ki . The construction of 〈ri〉i∈I from 〈sk 〉k∈K implies
that h < i , which establishes Condition 2.

Only-if part. Let X be a consistent <X -preserving answer set of Π?.
Define

Y = {head(r) | r ∈ ΓX
Π?}

∪ {ap(nr) | r ∈ ΓX
Π?} ∪ {bl(nr) | r 6∈ ΓX

Π?}
∪ {ok(nr) | r ∈ Π?} ∪ {rdy(nr , nr ′) | r , r ′ ∈ Π?} .

We note the following useful relationship for X and Y .

Lemma 6
For any L ∈ L, we have that L ∈ X iff L ∈ Y .

Given that X is consistent, this implies that Y is consistent, too.

Lemma 7
We have that <Y = <X .

We must show that Y is an answer set of T (Π), that is, Y = Cn(T (Π)Y).

“⊇” part. We start by showing that Y is closed under T (Π)Y . For this, we show
for r ∈ T (Π) that head(r+) ∈ Y whenever r+ ∈ T (Π)Y with body+(r) ⊆ Y .

1. Consider a1(r) : head(r)← ap(nr) ∈ T (Π). We have (a1(r))+ = a1(r).
Clearly, a1(r) ∈ T (Π)Y . By definition of Y , we have head(r) ∈ Y when-
ever ap(nr) ∈ Y .

2. Consider a2(r) : ap(nr)← ok(nr), body(r) ∈ T (Π). Suppose (a2(r))+ =
ap(nr)← ok(nr), body+(r) ∈ T (Π)Y with body−(r) ∩ Y = ∅. Assume
{ok(nr)}∪body+(r) ⊆ Y . From Lemma 6, we get body+(r) ⊆ X . Accordingly,
body−(r) ∩Y = ∅ implies body−(r) ∩X = ∅. Hence, we have r ∈ ΓX

Π? , which
implies ap(nr) ∈ Y by definition of Y .

3. Consider b1(r ,L+) : bl(nr) ← ok(nr), not L+ ∈ T (Π), and assume
(b1(r ,L+))+ = bl(nr)← ok(nr) ∈ T (Π)Y with L+ ∩ Y = ∅. The latter and
Lemma 6 imply that L+ 6∈ X for L+ ∈ body+(r). Hence, r 6∈ ΓX

Π? , implying
that bl(nr) ∈ Y by definition of Y .

4. Consider b2(r ,L−) : bl(nr)← ok(nr),L− ∈ T (Π). We have (b2(r ,L−))+ =
b2(r ,L−). Clearly, b2(r ,L−) ∈ T (Π)Y . Suppose {ok(nr),L−} ⊆ Y . Lemma 6
implies that L− ∈ X for L− ∈ body−(r). Hence, r 6∈ ΓX

Π? , implying that
bl(nr) ∈ Y by definition of Y .

5. Consider c1(r) : ok(nr)← rdy(nr , nr1), . . . , rdy(nr , nrk
) ∈ T (Π). We have

(c1(r))+ = c1(r). Clearly, c1(r) ∈ T (Π)Y . We trivially have ok(nr) ∈ Y
by definition of Y .

6. Consider {c2(r , r ′), c3(r , r ′), c4(r , r ′)} ⊆ T (Π). Clearly, head(ci(r , r ′)) =
rdy(nr , nr ′) for i = 2, 3, 4. We trivially have rdy(nr , nr ′) ∈ Y by definition
of Y .

A Framework for Compiling Preferences in Logic Programs 47

7. Consider t(r , r ′, r ′′) : nr ≺ nr ′′ ← nr ≺ nr ′ , nr ′ ≺ nr ′′ ∈ T (Π). We have
(t(r , r ′, r ′′))+ = t(r , r ′, r ′′). Clearly, t(r , r ′, r ′′) ∈ T (Π)Y . Assume {nr ≺ nr ′ ,
nr ′ ≺ nr ′′} ⊆ Y . From Lemma 6, we get {nr ≺ nr ′ , nr ′ ≺ nr ′′} ⊆ X . That
is, body+(t(r , r ′, r ′′)) ⊆ X for t(r , r ′, r ′′) ∈ Π?. In analogy to what we
have shown above in 2 and 1, we then obtain ap(nt(r ,r ′,r ′′)) ∈ Y and
head(t(r , r ′, r ′′)) ∈ Y . We thus get nr ≺ nr ′′ ∈ Y .

8. Consider as(r , r ′) : ¬(nr ′ ≺ nr)← nr ≺ nr ′ ∈ T (Π). We have (as(r , r ′))+ =
as(r , r ′). Clearly, as(r , r ′) ∈ T (Π)Y . Assume (nr ≺ nr ′) ∈ Y . Then, in anal-
ogy to 7, we get ¬(nr ′ ≺ nr) ∈ Y .

Note that the closure of Y under T (Π)Y shows that Cn(T (Π)Y) ⊆ Y .

“⊆” part. We must now show that Y is the smallest set being closed under T (Π)Y ,
or equivalently that Y ⊆ Cn(T (Π)Y).

Since X is a <X -preserving answer set of Π?, there is an enumeration 〈ri〉i∈I

of Π? satisfying all conditions given in Definition 3. We proceed by induction on
〈ri〉i∈I and show that

{head(ri), ap(nri) | ri ∈ ΓX
Π? , i ∈ I }

∪ {bl(nri
) | ri 6∈ ΓX

Π? , i ∈ I }
∪ {ok(nri

) | i ∈ I } ∪ {rdy(nri
, nrj

) | i , j ∈ I } ⊆ Cn(T (Π)Y) .

Base. Consider r0 ∈ Π?. Given that X is consistent, we have (r0, r) 6∈ <X for all
r ∈ Π? by Condition 1. By Lemma 7, we thus have (nr0 ≺ nr) 6∈ Y for all r ∈ Π?.
Consequently,

c2(r0, r)+ = rdy(nr0 , nr)← ∈ T (Π)Y for all r ∈ Π?.

Since Cn(T (Π)Y) is closed under T (Π)Y , we get rdy(nr0 , nr) ∈ Cn(T (Π)Y) for
all r ∈ Π?. Given that Π? = {r1, . . . , rk} and that

c1(r0) = c1(r0)+ = ok(nr0) ← rdy(nr0 , nr1), . . . , rdy(nr0 , nrk
) ∈ T (Π)Y ,

the closure of Cn(T (Π)Y) under T (Π)Y implies furthermore that ok(nr0) ∈
Cn(T (Π)Y).
We distinguish two cases.

• Suppose r0 ∈ ΓX
Π? . Since 〈ri〉i∈I satisfies Condition 3, we have body+(r0) = ∅.

Also, r0 ∈ ΓX
Π? implies that body−(r0) ∩ X = ∅, from which we obtain by

Lemma 6 that body−(r0) ∩Y = ∅. We thus obtain that

a2(r0) = a2(r0)+ = ap(nr0)← ok(nr0) ∈ T (Π)Y . (A 2)

We have shown above that ok(nr0) ∈ Cn(T (Π)Y). Accordingly, since
Cn(T (Π)Y) is closed under T (Π)Y , we obtain ap(nr0) ∈ Cn(T (Π)Y) be-
cause of (A 2).
This, the closure of Cn(T (Π)Y) under T (Π)Y , and the fact that

a1(r0) = a1(r0)+ = head(r0)← ap(nr0) ∈ T (Π)Y

imply furthermore that head(r0) ∈ Cn(T (Π)Y).

48 J. P. Delgrande, T. Schaub, and H. Tompits

• Otherwise, we have r0 ∈ Π? \ ΓX
Π? . Because r0 cannot satisfy Condition 4b,

since body−(r)∩ {head(rj) | j < 0} = ∅, we must have body+(r0) 6⊆ X . Then,
there is some L+ ∈ body+(r0) with L+ 6∈ X . By Lemma 6, we also have
L+ 6∈ Y . Therefore,

b1(r0,L+) = b1(r0,L+)+ = bl(nr0)← ok(nr0) ∈ T (Π)Y . (A 3)

We have shown above that ok(nr0) ∈ Cn(T (Π)Y). Given this along with (A 3)
and the fact that Cn(T (Π)Y) is closed under T (Π)Y , we obtain bl(nr0) ∈
Cn(T (Π)Y).

Step. Consider ri ∈ Π? and assume that our claim holds for all rj ∈ Π? with j < i .
We start by providing the following lemma.

Lemma 8
Given the induction hypothesis, we have

(i). ok(nri
) ∈ Cn(T (Π)Y), and

(ii). {rdy(nri , nrj) | j ∈ I } ⊆ Cn(T (Π)Y).

Proof of Lemma 8
We first prove that rdy(nri

, nrj
) ∈ Cn(T (Π)Y) for all j ∈ I .

Suppose ri <X rj . Since 〈ri〉i∈I satisfies Condition 1, we have that j < i . Then,
the induction hypothesis implies that either ap(nrj

) ∈ Cn(T (Π)Y) or bl(nrj
) ∈

Cn(T (Π)Y). According to Condition 2, there is some rk ∈ ΓX
Π? with k ∈ I such

that head(rk) = (nri ≺ nrj) and k < i . By the induction hypothesis, we get that
head(rk) ∈ Cn(T (Π)Y). Hence, we obtain (nri

≺ nrj
) ∈ Cn(T (Π)Y). Clearly, we

have that{
c3(ri , rj)+ : rdy(nri , nrj) ← (nri ≺ nrj), ap(nrj)
c4(ri , rj)+ : rdy(nri

, nrj
) ← (nri

≺ nrj
), bl(nrj

)

}
⊆ T (Π)Y .

Since Cn(T (Π)Y) is closed under T (Π)Y , we obtain rdy(nri
, nrj

) ∈ Cn(T (Π)Y).
Therefore, we have shown that rdy(nri

, nrj
) ∈ Cn(T (Π)Y) whenever ri <X rj .

Contrariwise, suppose (ri , rj) 6∈ <X . We get by Lemma 6 that (nri ≺ nrj) 6∈ Y .
This implies that c2(ri , rj)+ = rdy(nri

, nrj
) ← ∈ T (Π)Y . Since Cn(T (Π)Y) is

closed under T (Π)Y , we obtain rdy(nri , nrj) ∈ Cn(T (Π)Y).
Hence, we have rdy(nri

, nrj
) ∈ Cn(T (Π)Y) for all j ∈ I .

Since Cn(T (Π)Y) is closed under c1(ri)+ ∈ T (Π)Y , we obtain ok(nri
) ∈

Cn(T (Π)Y).

We now distinguish the following two cases.

• If ri ∈ ΓX
Π? , then body+(ri) ⊆ {head(rj) | rj ∈ ΓX

Π? , j < i} according
to Condition 3. By the induction hypothesis, we hence obtain body+(ri) ⊆
Cn(T (Π)Y).
By Lemma 8, we have ok(nri

) ∈ Cn(T (Π)Y).
Also, ri ∈ ΓX

Π? implies body−(ri) ∩ X = ∅. By Lemma 6, we thus have
body−(ri) ∩Y = ∅. This implies

a2(ri) = a2(ri)
+ = ap(nri

)← ok(nri
), body+(ri) ∈ T (Π)Y . (A 4)

As shown above, we have body(a2(ri)
+) ⊆ Cn(T (Π)Y). Given (A 4) and the

A Framework for Compiling Preferences in Logic Programs 49

fact that Cn(T (Π)Y) is closed under T (Π)Y , we therefore get ap(nri) ∈
Cn(T (Π)Y). Accordingly, we obtain head(ri) ∈ Cn(T (Π)Y) because of
a1(ri)

+ ∈ T (Π)Y .
• Otherwise, we have ri ∈ Π? \ ΓX

Π? . According to Condition 4, we may distin-
guish the following two cases.

— If body+(ri) 6⊆ X , then there is some L+ ∈ body+(ri) with L+ 6∈ X . By
Lemma 6, we also have L+ 6∈ Y . Therefore,

b1(ri ,L+) = b1(ri ,L+)+ = bl(nri)← ok(nri) ∈ T (Π)Y . (A 5)

By Lemma 8, we have ok(nri) ∈ Cn(T (Π)Y). Given this along with (A 5)
and the fact that Cn(T (Π)Y) is closed under T (Π)Y , we obtain bl(nri

) ∈
Cn(T (Π)Y).

— If body−(r) ∩ {head(rj) | rj ∈ ΓX
Π? , j < i} 6= ∅, then there is some L− ∈

body−(ri) with L− ∈ {head(rj) | rj ∈ ΓX
Π? , j < i}. That is, L− = head(rj)

for some rj ∈ ΓX
Π? with j < i . With the induction hypothesis, we then

obtain L− ∈ Cn(T (Π)Y). By Lemma 8, we have ok(nri
) ∈ Cn(T (Π)Y).

Since Cn(T (Π)Y) is closed under

b2(ri ,L−) = b2(ri ,L−)+ = bl(nri)← ok(nri),L
− ∈ T (Π)Y ,

we obtain bl(nri) ∈ Cn(T (Π)Y).

Proof of Theorem 4
Suppose Π contains no preference information. Obviously, Π can then be regarded
both as a dynamically ordered program as well as a statically ordered program
(Π, <) with < = ∅. Hence, Theorems 2 and 3 imply that X is <-preserving iff X is
<X -preserving. This proves the equivalence of 2 and 1. Inspecting the conditions of
Definition 1, it is easily seen that any answer set is trivially <-preserving for < = ∅.
It follows that 2 is equivalent to 3.

Proof of Theorem 5

Principle I. Let (Π, <) be a statically ordered logic program, let X1 and X2 be two
answer sets of Π generated by ΓX1

Π = R ∪ {r1} and ΓX2
Π = R ∪ {r2}, respectively,

where r1, r2 6∈ R, and assume r1 < r2.
Suppose X1 is a <-preserving answer set of Π. Clearly, both X1 and X2 must be

consistent. Furthermore, we have that r2 /∈ ΓX1
Π , i.e., r2 is defeated by X1. On the

other hand, given that ΓX2
Π = R∪{r2} and since r2 /∈ R, it follows that body+(r2) ⊆

{head(r ′) | r ′ ∈ R}, which in turn implies that body+(r2) ⊆ X1. Since r1 < r2 and
X1 is assumed to be <-preserving, we obtain that body−(r2)∩{head(r ′k) | k < j0} 6=
∅ for some enumeration 〈r ′i 〉i∈I of ΓX1

Π and some j0 such that r1 = r ′j0 . Hence, there
is some k0 < j0 such that head(r ′k0

) ∈ body−(r2). But r ′k0
∈ R, so r2 is defeated by

X2, which is a contradiction. It follows that X1 is not <-preserving.

Principle II-S. Let (Π, <) be a statically ordered logic program and let X be a <-
preserving answer set of Π. Furthermore, let r be a rule where body+(r) 6⊆ X , and
let (Π ∪ {r}, <′) be a statically ordered logic program where <′ is a strict partial
order which agrees with < on rules from Π. We show that X is a <′-preserving
answer set of Π ∪ {r}.

50 J. P. Delgrande, T. Schaub, and H. Tompits

First of all, it is rather obvious that X is an answer set of Π∪{r}. Now consider
an enumeration 〈ri〉i∈I of ΓX

Π satisfying Items 1–3 of Definition 1 with respect to
<. Since ΓX

Π = ΓX∪{r}
Π , 〈ri〉i∈I is also an enumeration of ΓX∪{r}

Π . It remains to
show that 〈ri〉i∈I satisfies Items 1–3 of Definition 1 with respect to <′. Clearly,
Condition 1 is unaffected by <′ and is thus still satisfied. Moreover, <′ agrees with
< on the rules of Π, so Condition 2 holds for <′ as well. Finally, Condition 3 holds
in virtue of r /∈ ΓX∪{r}

Π and body+(r) 6⊆ X .

Principle II-D. Let Π be a (dynamically) ordered logic program, let X be a <X -
preserving answer set of Π?, and consider a rule r such that body+(r) 6⊆ X . We
must show that X is an <X -preserving answer set of Π? ∪ {r}.

If r ∈ Π?, then Principle II-D holds trivially, so let us assume that r /∈ Π?. Similar
to the above, X is clearly an answer set of Π? ∪{r}. Let 〈ri〉i∈I be an enumeration
of Π? satisfying Items 1–4 of Definition 3. Define 〈r ′j 〉j∈J as the sequence starting
with r and continuing with the sequence 〈ri〉i∈I . Clearly, 〈r ′j 〉j∈J is an enumeration
of Π? ∪ {r}. Moreover, it satisfies Items 1–4 of Definition 3. To see this, we first
note that, according to the definition of an ordered program, the term nr does
not occur in the rules of Π? because r is assumed not to be a member of Π?.
Hence, the relation r ′i <X r ′j holds at most for rules r ′i , r

′
j ∈ Π?. Consequently,

〈r ′j 〉j∈J obeys Items 1 and 2, because 〈ri〉i∈I does. Furthermore, Item 3 holds,

because ΓX∪{r}
Π? = ΓX

Π? . Concerning the final condition of Definition 3, observe that
(Π?∪{r})\ΓX∪{r}

Π? = (Π?\ΓX
Π?)∪{r}. Now, each r ′ ∈ Π?\ΓX

Π? satisfies Condition 4,
and r satisfies it as well, because body+(r) 6⊆ X . Therefore, Condition 4 is met. It
follows that X is <X -preserving.

A.2 Proofs of Section 5

Proof of Theorem 7
Let (Π, <) be a statically ordered logic program over language L.

We abbreviate U(Π) ∪ {(n1 ≺ n2)←| (r1, r2) ∈ <} by U ′(Π).

Only-if part. Let X be a consistent be-preferred answer set of (Π, <). By definition,
X is then a standard answer set of Π. Define

Y = {head(r) | r ∈ ΓX
Π } ∪ {head(r ′) | r ∈ ΓX

Π }
∪ {ok(nr) | r ∈ Π} ∪ {rdy(nr , nr ′) | r , r ′ ∈ Π}
∪ {ap(nr) | r ∈ ΓX

Π } ∪ {bl(nr) | r 6∈ ΓX
Π }

∪ {(nr ≺ nr ′) | (r , r ′) ∈ <} ∪ {¬(nr ≺ nr ′) | (r ′, r) ∈ <}.

We note the following useful relationships for X and Y .

Lemma 9
For any L ∈ L, we have

1. L ∈ X iff L ∈ Y ;
2. L′ ∈ X ′ iff L′ ∈ Y ; and

A Framework for Compiling Preferences in Logic Programs 51

3. L ∈ Y iff L′ ∈ Y .

Given that X is consistent, this implies that Y is consistent, too.

Lemma 10
For r , s ∈ Π, we have nr ≺ ns ∈ Y iff r < s.

We must show that Y is an answer set of U ′(Π), that is, Y = Cn(U ′(Π)Y).

“⊇” part. We start by showing that Y is closed under U ′(Π)Y . For this, we show
for r ∈ U ′(Π) that head(r+) ∈ Y whenever r+ ∈ U ′(Π)Y with body+(r) ⊆ Y .

1. Consider a1(r) : head(r ′) ← ap(nr) ∈ U ′(Π). We have (a1(r))+ = a1(r).
Clearly, a1(r) ∈ U ′(Π)Y . By definition of Y , we have head(r ′) ∈ Y whenever
ap(nr) ∈ Y .

2. Consider a2(r) : ap(nr) ← ok(nr), body(r), not body−(r ′) ∈ U ′(Π), and sup-
pose that (a2(r))+ ∈ U ′(Π)Y , i.e., (body−(r) ∪ body−(r ′)) ∩ Y = ∅. Assume
{ok(nr)} ∪ body+(r) ⊆ Y . From Condition 1 of Lemma 9 we get body+(r) ⊆
X . Accordingly, (body−(r) ∪ body−(r ′)) ∩ Y = ∅ implies body−(r) ∩ X = ∅.
Hence, we have r ∈ ΓX

Π , which implies ap(nr) ∈ Y by definition of Y .
3. Consider b1(r ,L) : bl(nr) ← ok(nr), not L, not L′ ∈ U ′(Π), and suppose that

(b1(r ,L))+ = bl(nr) ← ok(nr) ∈ U ′(Π)Y with {L,L′} ∩ Y = ∅. The latter
and Condition 1 of Lemma 9 imply that L 6∈ X for L ∈ body+(r). Hence,
r 6∈ ΓX

Π , implying that bl(nr) ∈ Y by definition of Y .
4. Consider b2(r ,K) : bl(nr) ← ok(nr),K ,K ′ ∈ U ′(Π). We have (b2(r ,K))+ =

b2(r ,K). Clearly, b2(r ,K) ∈ U ′(Π)Y . Suppose {ok(nr),K ,K ′} ⊆ Y . Condi-
tion 1 of Lemma 9 implies that K ∈ X for K ∈ body−(r). Hence, r 6∈ ΓX

Π ,
implying that bl(nr) ∈ Y by definition of Y .

5. Consider c1(r) : ok(nr) ← rdy(nr , nr1), . . . , rdy(nr , nrk
) ∈ U ′(Π). We have

(c1(r))+ = c1(r). Clearly, c1(r) ∈ U ′(Π)Y . We trivially have ok(nr) ∈ Y by
definition of Y .

6. Consider the case that {c2(r , s), c3(r , s), c4(r , s), c5(r , s, J)} ⊆ U ′(Π). Clearly,
head(ci(r , s)) = rdy(nr , ns) for i = 2, . . . , 5. We trivially have rdy(nr , ns) ∈ Y
by definition of Y .

7. Consider d(r) : ← not ok(nr) ∈ U ′(Π). Suppose (d(r))+ ∈ U ′(Π)Y , i.e.,
ok(nr)∩Y = ∅. This is impossible by definition of Y . Hence, d(r)+ 6∈ U ′(Π)Y .

8. Consider t(r , s, t) : nr ≺ nt ← nr ≺ ns , ns ≺ nt ∈ U ′(Π). Then,
we have that (t(r , s, t))+ = t(r , s, t). Clearly, t(r , s, t) ∈ U ′(Π)Y . Assume
{nr ≺ ns , ns ≺ nt} ⊆ Y . By definition of Y , this implies r < s and s < t .
By transitivity of <, we then obtain r < t . Again, by definition of Y , we get
nr ≺ nt ∈ Y .

9. Consider as(r , s) : ¬(ns ≺ nr) ← nr ≺ ns ∈ U ′(Π). We have (as(r , s))+ =
as(r , s). Clearly, as(r , s) ∈ U ′(Π)Y . Assume nr ≺ ns ∈ Y . By definition of
Y , this implies r < s. Again, by definition of Y , we then get ¬(ns ≺ nr) ∈ Y .

Note that the closure of Y under U ′(Π)Y shows that Y ⊇ Cn(U ′(Π)Y).

52 J. P. Delgrande, T. Schaub, and H. Tompits

“⊆” part. We must now show that Y is the smallest set being closed under U ′(Π)Y ,
or equivalently that Y ⊆ Cn(U ′(Π)Y).

First, we show that

{head(r) | r ∈ ΓX
Π } ⊆ Cn(U ′(Π)Y) . (A 6)

Observe that {head(r) | r ∈ ΓX
Π } =

⋃
i≥0T i

ΠX ∅. Given this, we proceed by induction
and show that T i

ΠX X ⊆ Cn(U ′(Π)Y) for i ≥ 0.

Base. Trivial, since T 0
ΠX ∅ = ∅.

Step. Assume T j
ΠX ∅ ⊆ Cn(U ′(Π)Y) for 0 ≤ j ≤ i , and consider head(r+) ∈ T i+1

ΠX ∅
for some r+ ∈ ΠX .
Given that r ∈ U ′(Π) and that X = Y ∩ L by Condition 1 of Lemma 9, we also
have r+ ∈ U ′(Π)Y .
Now, head(r+) ∈ T i+1

ΠX ∅ implies that body(r+) ⊆ T i
ΠX ∅. Then, the induction

hypothesis provides us with body(r+) ⊆ Cn(U ′(Π)Y). The fact that Cn(U ′(Π)Y)
is closed under U ′(Π)Y implies that head(r+) ∈ Cn(U ′(Π)Y).

Second, we show that

{(nr ≺ nr ′) | (r , r ′) ∈ <} ∪ {¬(nr ≺ nr ′) | (r , r ′) 6∈ <} ⊆ Cn(U ′(Π)Y). (A 7)

By definition, we have {(nr ≺ nr ′) ←| (r , r ′) ∈ <} ⊆ U ′(Π) as well as {(nr ≺
nr ′)←| (r , r ′) ∈ <} ⊆ U ′(Π)Y . From this, we obviously get {(nr ≺ nr ′) | (r , r ′) ∈
<} ⊆ Cn(U ′(Π)Y). On the other hand, we have as(r , r ′) ∈ U ′(Π) and clearly also
as(r , r ′)+ ∈ U ′(Π)Y . The fact that Cn(U ′(Π)Y) is closed under U ′(Π)Y implies
that head(as(r , r ′)+) ∈ Cn(U ′(Π)Y) whenever body(as(r , r ′)+) ∈ Cn(U ′(Π)Y).
That is, ¬(nr ′ ≺ nr) ∈ Cn(U ′(Π)Y) whenever nr ≺ nr ′ ∈ Cn(U ′(Π)Y). Given that
we have just shown that {(nr ≺ nr ′) | (r , r ′) ∈ <} ⊆ Cn(U ′(Π)Y) holds, we get
{¬(nr ′ ≺ nr) | (r , r ′) ∈ <} ⊆ Cn(U ′(Π)Y).

Third, we show that

{head(r ′), ap(nr) | r ∈ ΓX
Π }

∪ {bl(nr) | r 6∈ ΓX
Π }

∪ {ok(nr) | r ∈ Π} ∪ {rdy(nr , nr ′) | r , r ′ ∈ Π} ⊆ Cn(U ′(Π)Y) .

We do so by induction on �, the total order on Π inducing X according to Defini-
tion 6.

Base. Let r0 ∈ Π be the �-greatest rule. In analogy to the base case in the
“⊆”-part of the proof of the only-if direction of Theorem 3, we can prove that
ok(nr0) ∈ Cn(U ′(Π)Y). Given this, we can show that ap(nr0) ∈ Cn(U ′(Π)Y) or
bl(nr0) ∈ Cn(U ′(Π)Y) holds in analogy to the (more general) proof carried out
in the induction step below.

Step. Consider r ∈ Π and assume that our claim holds for all s ∈ Π such that
r � s.
We start by providing the following lemma.

Lemma 11
Given the induction hypothesis, we have

A Framework for Compiling Preferences in Logic Programs 53

(i). ok(nr) ∈ Cn(U ′(Π)Y) and
(ii). {rdy(nr , ns) | s ∈ Π} ⊆ Cn(U ′(Π)Y).

Proof of Lemma 11
First, we prove {rdy(nr , ns) | s ∈ Π} ⊆ Cn(U ′(Π)Y).
Consider rdy(nr , ns) ∈ Y for some s ∈ Π. We distinguish the following cases.

• Assume that head(s) ∈ X and body−(s) ∩ X 6= ∅. That is, J ∈ X for
some J ∈ body−(s). We have shown in (A 6) that X ⊆ Cn(U ′(Π)Y).
Hence, {head(s), J} ⊆ X implies {head(s), J} ⊆ Cn(U ′(Π)Y). That is,
body(c5(r , s, J)+) ⊆ Cn(U ′(Π)Y). We clearly have c5(r , s, J)+ ∈ U ′(Π)Y .
Since Cn(U ′(Π)Y) is closed under U ′(Π)Y , we have head(c5(r , s, J)+) ∈
Cn(U ′(Π)Y). That is, rdy(nr , ns) ∈ Cn(U ′(Π)Y).

• Assume r 6� s. Since Y is consistent, we thus get (nr ≺ ns) 6∈ Y .
Hence, we have c2(r , s)+ ∈ U ′(Π)Y . Trivially, we have body(c2(r , s)+) =
∅ ⊆ Cn(U ′(Π)Y). Since Cn(U ′(Π)Y) is closed under U ′(Π)Y , we have
head(c2(r , s)+) ∈ Cn(U ′(Π)Y). That is, rdy(nr , ns) ∈ Cn(U ′(Π)Y).
• Otherwise, r � s holds. By the induction hypothesis, we have

{ap(ns) | r � s, s ∈ ΓX
Π } ∪ {bl(ns) | r � s, s 6∈ ΓX

Π } ⊆ Cn(U ′(Π)Y) .

Moreover, we get (nr ≺ ns) ∈ Cn(U ′(Π)Y) by what we have shown in (A 7).
We distinguish the following two cases.

— Assume body−(s) ∩ X = ∅. If body+(s) ⊆ X , then s ∈ ΓX
Π . By the in-

duction hypothesis, we get ap(ns) ∈ Cn(U ′(Π)Y). Therefore, we have
body(c3(r , s)+) = {(nr ≺ ns), ap(ns)} ⊆ Cn(U ′(Π)Y). Clearly, we have
c3(r , s)+ ∈ U ′(Π)Y . Since Cn(U ′(Π)Y) is closed under U ′(Π)Y , we have
head(c3(r , s)+) ∈ Cn(U ′(Π)Y). That is, rdy(nr , ns) ∈ Cn(U ′(Π)Y). If
body+(s) 6⊆ X , then s 6∈ ΓX

Π , as dealt with next.

— Assume head(s) 6∈ X . That is, s 6∈ ΓX
Π . By the induction hypothe-

sis, we get bl(ns) ∈ Cn(U ′(Π)Y). Therefore, we have body(c4(r , s)+) =
{(nr ≺ ns), bl(ns)} ⊆ Cn(U ′(Π)Y). Clearly, we have c4(r , s)+ ∈ U ′(Π)Y .
Since Cn(U ′(Π)Y) is closed under U ′(Π)Y , we have head(c4(r , s)+) ∈
Cn(U ′(Π)Y). That is, rdy(nr , ns) ∈ Cn(U ′(Π)Y).

We have shown that rdy(nr , ns) ∈ Cn(U ′(Π)Y) for all s ∈ Π. This implies
that body(c1(r)+) ⊆ Cn(U ′(Π)Y). Clearly, we have c1(r)+ ∈ U ′(Π)Y . Since
Cn(U ′(Π)Y) is closed under U ′(Π)Y , we have head(c1(r)+) ∈ Cn(U ′(Π)Y). That
is, ok(nr) ∈ Cn(U ′(Π)Y).

We distinguish the following three cases.

1. Assume body+(r) ⊆ X and body−(r) ∩X = ∅. That is, r ∈ ΓX
Π .

From body−(r) ∩ X = ∅, we deduce body−(r) ∩ Y = ∅, by Condi-
tion 1 of Lemma 9. Moreover, Condition 3 of Lemma 9 gives body−(r ′) ∩
Y = ∅. Therefore, a2(r)+ ∈ U ′(Π)Y . We have just shown in (A 6) that
X ⊆ Cn(U ′(Π)Y). This and body+(r) ⊆ X imply that body+(r) ⊆
Cn(U ′(Π)Y). From Lemma 11, we get ok(nr) ∈ Cn(U ′(Π)Y). We thus have
body(a2(r)+) ⊆ Cn(U ′(Π)Y). Since Cn(U ′(Π)Y) is closed under U ′(Π)Y , we
have head(a2(r)+) ∈ Cn(U ′(Π)Y). That is, ap(nr) ∈ Cn(U ′(Π)Y).

54 J. P. Delgrande, T. Schaub, and H. Tompits

Clearly, a1(r)+ ∈ U ′(Π)Y . Given ap(nr) ∈ Cn(U ′(Π)Y) and the fact that
Cn(U ′(Π)Y) is closed under U ′(Π)Y , we have head(a1(r)+) ∈ Cn(U ′(Π)Y).
That is, head(r ′) ∈ Cn(U ′(Π)Y).

2. Assume body+(r) ⊆ X and body−(r) ∩X 6= ∅.
By Theorem 9, there is then some rule r∗ ∈ ΓX

Π such that r � r∗ and
head(r∗) ∈ body−(r). Clearly, r∗ ∈ ΓX

Π implies that head(r∗) ∈ X . We have
shown in (A 6) that X ⊆ Cn(U ′(Π)Y). Accordingly, head(r∗) ∈ Cn(U ′(Π)Y).
By the induction hypothesis, we also have head(r∗)′ ∈ Cn(U ′(Π)Y). From
Lemma 11, we obtain ok(nr) ∈ Cn(U ′(Π)Y). We thus have body(b2(r ,K)+) =
{ok(nr),K ,K ′} ⊆ Cn(U ′(Π)Y) for K = head(r∗). Clearly, we have
b2(r ,K)+ ∈ U ′(Π)Y . Given that Cn(U ′(Π)Y) is closed under U ′(Π)Y , we
obtain that head(b2(r ,K)+) ∈ Cn(U ′(Π)Y). That is, bl(nr) ∈ Cn(U ′(Π)Y).

3. Assume body+(r) 6⊆ X . That is, there is some L ∈ body+(r) such that L 6∈ X .
By Lemma 9, we then also have L 6∈ Y and L′ 6∈ Y . We then have
b1(r ,L)+ ∈ U ′(Π)Y . Given that ok(nr) ∈ Cn(U ′(Π)Y) by Lemma 11, and
since Cn(U ′(Π)Y) is closed under U ′(Π)Y , we obtain that head(b1(r ,L)+) ∈
Cn(U ′(Π)Y). That is, bl(nr) ∈ Cn(U ′(Π)Y).

This completes our proof of Y ⊆ Cn(U ′(Π)Y).
In all, we have thus shown that Y = Cn(U ′(Π)Y). That is, Y is an answer set

of U ′(Π).

If part. Let Y be a consistent answer set of U ′(Π). We show that X = Y ∩ LA is
a be-preferred answer set of (Π, <).

The definition of U ′(Π) induces the following properties for X and Y .

Lemma 12
For any L ∈ L, we have that L ∈ X iff L ∈ Y .

Given that Y is consistent, this implies that X is consistent, too.

Lemma 13
For r , s ∈ Π, we have nr ≺ ns ∈ Y iff r < s.

Consider r ∈ Π such that body+(r) ⊆ X and head(r) 6∈ X . To show that X
is be-preferred, we must prove, according to Theorem 9, that there is some rule
r∗ ∈ Π such that (i) r∗ ∈ ΓX

Π , (ii) head(r∗) ∈ body−(r), and (iii) r � r∗.
Since X is a standard answer set of Π (by Property 1 of Proposition 4), our

choice of r implies that body−(r) ∩ X 6= ∅. By Lemma 12, the latter condition
implies, in turn, body−(r) ∩Y 6= ∅. Hence, a2(r)+ 6∈ U ′(Π)Y . And so, ap(nr) 6∈ Y .
Consequently, we obtain bl(nr) ∈ Y from Condition 2 of Proposition 5 and the fact
that Y is consistent. Moreover, body+(r) ⊆ X ⊆ Y implies b1(r ,L)+ 6∈ U ′(Π)Y

for all L ∈ body+(r). Since bl(nr) ∈ Y , we must therefore have b2(r ,K) ∈ ΓY
U ′(Π)

for some K ∈ body−(r). That is, body+(b2(r ,K)) = {ok(nr),K ,K ′} ⊆ Y . Hence,
there is some r∗ ∈ Π with head(r∗) = K , establishing Condition (ii).

More precisely, we have head(r∗)′ = K ′ such that ap(nr∗) ∈ Y . That is,
{a1(r∗), a2(r∗)} ⊆ ΓY

U ′(Π). In fact, a2(r∗) ∈ ΓY
U ′(Π) implies that body+(r∗) ⊆ Y and

A Framework for Compiling Preferences in Logic Programs 55

body−(r∗)∩Y 6= ∅ holds. With Lemma 12, we get furthermore that body+(r∗) ⊆ X
and body−(r∗) ∩X 6= ∅. That is, r∗ ∈ ΓX

Π , establishing Condition (i).
Because Y is an answer set of U ′(Π) there is some minimal k such that
{ok(nr),K ,K ′} ⊆ T k

U ′(Π)Y ∅. By minimality of k , we have bl(nr) 6∈ T k
U ′(Π)Y ∅.

Obviously, we also have ap(nr) 6∈ T k
U ′(Π)Y ∅ because ap(nr) 6∈ Y . On the other

hand, for deriving K ′, we must have ap(nr∗) ∈ T k
U ′(Π)Y ∅. This implies that

ok(nr∗) ∈ T k
U ′(Π)Y ∅ and, in particular, that rdy(nr∗ , nr) ∈ T k

U ′(Π)Y ∅. Now, ob-
serve that c5(nr∗ , nr , J) 6∈ ΓY

U ′(Π) because body−(r)∩Y 6= ∅, as shown above. Also,
we have just shown that ap(nr) 6∈ T k

U ′(Π)Y ∅ and bl(nr) 6∈ T k
U ′(Π)Y ∅. Therefore,

we must have rdy(nr∗ , nr) ∈ T k
U ′(Π)Y ∅ because of c2(nr∗ , nr) ∈ ΓY

U ′(Π). That is,

c2(nr∗ , nr)+ ∈ U ′(Π)Y which implies that (nr∗ ≺ nr) 6∈ Y . This and Lemma 13
imply that r∗ 6< r . That is, either r < r∗ holds or neither r∗ 6< r nor r 6< r∗ is
true. In either case, there is some total order � extending < with r � r∗. This
establishes Condition (iii).

In all, we therefore obtain with Theorem 9 that X is a be-preferred answer set
of Π.

Proof of Proposition 4
Let Π be an ordered logic program over L and let X be a consistent answer set
of U(Π).

1. The consistency of X ∩ L follows from that of X .
Since X is an answer set of U(Π), we have X = Cn(U(Π)X). That is,

X = Cn(ΠX ∪ (U(Π) \Π)X) .

Observe that ΠX = ΠX∩L and head((U(Π) \Π)X)∩L = ∅. Consequently, we
have X ∩ L = Cn(ΠX∩L).

2. Consider L ∈ L. We show L ∈ X iff L′ ∈ X .

If part. Suppose L′ ∈ X . Then, there is some r ∈ Π such that L = head(r)
and ap(nr) ∈ X . From the latter, we get that a2(r) ∈ ΓX

U(Π) must hold, which
in turn implies body+(r) ⊆ X and body−(r) ∩X = ∅. Hence, L ∈ X .

Only-if part. Assume L ∈ X . Since L ∈ L, there is some r ∈ Π such that r ∈
ΓX
U(Π). Suppose L′ /∈ X . Then, ap(nr) /∈ X . Since ok(nr) ∈ X (by Condition 1

of Proposition 5) and both body+(r) ⊆ X and body−(r) ∩ X = ∅ holds (by
condition r ∈ ΓX

U(Π)), it follows that there is some K ′ ∈ body−(r ′) ∩ X .
This in turn implies that there exists some s ∈ Π such that K = head(s)
(and thus K ′ = head(s ′)) and a2(s) ∈ ΓX

U(Π). From the last condition we get
body+(s) ⊆ X and body−(s)∩X = ∅, and therefore K = head(s) ∈ X . Thus,
K ∈ X ∩ body−(r), contradicting r ∈ ΓX

U(Π).
3. This property is a simple consequence of the observation that body(a2(r)) =
body(r) ∪ body−(r ′), together with Item 2. The details follow.

56 J. P. Delgrande, T. Schaub, and H. Tompits

If part. Since body(r) ⊆ body(a2(r)), the conditions body+(a2(r)) ⊆ X and
body−(a2(r))∩X = ∅ yield body+(r) ⊆ X and body−(r)∩X = ∅. So, a2(r) ∈
ΓX
U(Π) implies r ∈ Π ∩ ΓX

U(Π).

Only-if part. From Item 2, it holds that body−(r)∩X = ∅ implies body−(r ′)∩
X = ∅. Thus, using the relation body(a2(r)) = body(r) ∪ body−(r ′), we get
that the two conditions body+(r) ⊆ X and body−(r) ∩ X = ∅ jointly imply
body+(a2(r)) ⊆ X and body−(a2(r)) ∩ X = ∅. Therefore, r ∈ Π ∩ ΓX

U(Π) only
if a2(r) ∈ ΓX

U(Π).
4. Consider r ∈ Π.

If part. Assume b1(r ,L) ∈ ΓX
U(Π) or b2(r ,L) ∈ ΓX

U(Π) for some L ∈ body+(r)∪
body−(r).

— Suppose b1(r ,L) ∈ ΓX
U(Π). Then, L /∈ X , for L ∈ body+(r). Hence,

body+(r) 6⊆ X and therefore r /∈ ΓX
U(Π).

— Suppose b2(r ,L) ∈ ΓX
U(Π). Then, L ∈ X , for L ∈ body−(r). Hence,

body−(r) ∩X 6= ∅ and therefore r /∈ ΓX
U(Π).

Only-if part. Suppose r /∈ ΓX
U(Π). There are two cases to distinguish.

— body+(r) 6⊆ X : Then, there is some L ∈ body+(r) such that L /∈ X . Ac-
cording to Item 2, we also have L′ /∈ X . Furthermore, by Condition 1
of Proposition 5, we have ok(nr) ∈ X . So, body+(b1(r ,L)) ⊆ X and
body−(b1(r ,L)) ∩X = ∅. This means that b1(r ,L) ∈ ΓX

U(Π) holds.
— body−(r) ∩ X 6= ∅: Then, there is some L ∈ body−(r) such that L ∈ X .

Invoking Item 2 again, we get L′ ∈ X . Thus, b2(r ,L) ∈ ΓX
U(Π).

5. Suppose c5(r , s,L) ∈ ΓX
U(Π). Then, L ∈ X for L ∈ body−(s). By Item 2, we

also have L′ ∈ X . Furthermore, ok(nr) ∈ X , by Condition 1 of Proposition 5.
It follows that b2(s,L) ∈ ΓX

U(Π) holds.

Proof of Proposition 5
Analogous to the proof of Proposition 2.

Proof of Theorem 8
Let (Π, <) be a statically ordered logic program and let X be a consistent answer
set of

U ′(Π) = U(Π) ∪ {(n1 ≺ n2)←| (r1, r2) ∈ <} .

Furthermore, let

Π̂ = Π \ {r ∈ Π | head(r) ∈ X , body−(r) ∩X 6= ∅}

and let 〈si〉i∈I be some grounded enumeration of ΓX
U ′(Π).

Lemma 14
Given the above prerequisites, we have for all r , r ′ ∈ Π̂:

If r < r ′, then j < i for si = c1(r) and sj = c1(r ′).

A Framework for Compiling Preferences in Logic Programs 57

Proof of Lemma 14
Analogous to the proof of Theorem 1.

By Proposition 5, we have ok(r) ∈ X for all r ∈ Π. Therefore, we also have
c1(r) ∈ ΓX

U ′(Π) for all r ∈ Π. Now, define for all r1, r2 ∈ Π̂ that r1 � r2 if j < i for

si = c1(r1) and sj = c1(r2). By definition,� is a total ordering on Π̂. Furthermore,
r1 < r2 implies r1 � r2. That is, (< ∩ (Π̂× Π̂)) ⊆ �.

References

Baader, F., & Hollunder, B. (1993). How to prefer more specific defaults in terminolog-
ical default logic. Pages 669–674 of: Bajcsy, R. (ed), Proceedings of the Thirteenth
International Joint Conference on Artificial Intelligence (IJCAI’93). Morgan Kaufmann
Publishers.

Benferhat, S., Cayrol, C., Dubois, D., Lang, J., & Prade, H. (1993). Inconsistency man-
agement and prioritized syntax-based entailment. Pages 640–647 of: Bajcsy, R. (ed),
Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence
(IJCAI’93). Morgan Kaufmann Publishers.

Besnard, Ph., Mercer, R., & Schaub, T. (2002). Optimality theory via default logic.
Benferhat, S., & Giunchiglia, E. (eds), Proceedings of the Ninth International Workshop
on Non-Monotonic Reasoning. To appear.

Brewka, G. (1989). Preferred subtheories: An extended logical framework for default rea-
soning. Pages 1043–1048 of: Proceedings of the Eleventh International Joint Conference
on Artificial Intelligence (IJCAI’89). Morgan Kaufmann Publishers.

Brewka, G. (1994). Adding priorities and specificity to default logic. Pages 247–260 of:
Pereira, L., & Pearce, D. (eds), European Workshop on Logics in Artificial Intelligence
(JELIA’94). Lecture Notes in Artificial Intelligence, vol. 838. Springer-Verlag.

Brewka, G. (1996). Well-founded semantics for extended logic programs with dynamic
preferences. Journal of Artificial Intelligence Research, 4, 19–36.

Brewka, G., & Eiter, T. (1998). Preferred answer sets for extended logic programs. Pages
86–97 of: Cohn, A., Schubert, L., & Shapiro, S. (eds), Proceedings of the Sixth In-
ternational Conference on the Principles of Knowledge Representation and Reasoning
(KR’98). Morgan Kaufmann Publishers.

Brewka, G., & Eiter, T. (1999). Preferred answer sets for extended logic programs. Arti-
ficial Intelligence, 109(1-2), 297–356.

Brewka, G., & Eiter, T. (2000). Prioritizing default logic. Pages 27–45 of: Hölldobler,
St. (ed), Intellectics and Computational Logic — Papers in Honour of Wolfgang Bibel.
Kluwer Academic Publishers.

Delgrande, J., & Schaub, T. (1997). Compiling reasoning with and about preferences
into default logic. Pages 168–174 of: Pollack, M. (ed), Proceedings of the Fifteenth
International Joint Conference on Artificial Intelligence (IJCAI’97). Morgan Kaufmann
Publishers.

Delgrande, J., & Schaub, T. (2000a). Expressing preferences in default logic. Artificial
Intelligence, 123(1-2), 41–87.

Delgrande, J., & Schaub, T. (2000b). The role of default logic in knowledge representation.
Pages 107–126 of: Minker, J. (ed), Logic-Based Artificial Intelligence. Dordrecht: Kluwer
Academic Publishers.

Delgrande, J., Schaub, T., & Tompits, H. (2000a). A compilation of Brewka and Eiter’s
approach to prioritization. Pages 376–390 of: Ojeda-Aciego, M., Guzmán, I., Brewka,

58 J. P. Delgrande, T. Schaub, and H. Tompits

G., & Pereira, L. (eds), Proceedings of the Eighth European Workshop on Logics in
Artificial Intelligence (JELIA 2000). Lecture Notes in Artificial Intelligence, vol. 1919.
Springer-Verlag.

Delgrande, J., Schaub, T., & Tompits, H. (2000b). A compiler for ordered logic programs.
Baral, C., & Truszczyński, M. (eds), Proceedings of the Eighth International Workshop
on Non-Monotonic Reasoning. arXiv.org e-Print archive. System Abstract.

Delgrande, J., Schaub, T., & Tompits, H. (2000c). Logic programs with compiled pref-
erences. Baral, C., & Truszczyński, M. (eds), Proceedings of the Eighth International
Workshop on Non-Monotonic Reasoning. arXiv.org e-Print archive.

Delgrande, J., Schaub, T., & Tompits, H. (2000d). Logic programs with compiled pref-
erences. Pages 392–398 of: Horn, W. (ed), Proceedings of the Fourteenth European
Conference on Artificial Intelligence (ECAI 2000). IOS Press.

Delgrande, J., Schaub, T., & Tompits, H. (2001). plp: A generic compiler for ordered logic
programs. Pages 411–415 of: Eiter, T., Faber, W., & Truszczyński, M. (eds), Proceed-
ings of the Sixth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR 2001). Lecture Notes in Artificial Intelligence, vol. 2173. Springer-
Verlag.

Doyle, J., & Wellman, M. (1991). Impediments to universal preference-based default
theories. Artificial Intelligence, 49(1-3), 97–128.

Eiter, T., & Gottlob, G. (1995). The complexity of logic-based abduction. Journal of the
ACM, 42, 3–42.

Eiter, T., Leone, N., Mateis, C., Pfeifer, G., & Scarcello, F. (1997). A deductive system
for nonmonotonic reasoning. Pages 363–374 of: Dix, J., Furbach, U., & Nerode, A.
(eds), Proceedings of the Fourth International Conference on Logic Programming and
Non-Monotonic Reasoning (LPNMR’97). Lecture Notes in Artificial Intelligence, vol.
1265. Springer-Verlag.

Eiter, T., Fink, M., Sabbatini, G., & Tompits, H. (2002). A generic approach for
knowledge-based information-site selection. Proceedings of the Eighth International
Conference on the Principles of Knowledge Representation and Reasoning (KR 2002).
Morgan Kaufmann Publishers.

Geffner, H., & Pearl, J. (1992). Conditional entailment: Bridging two approaches to default
reasoning. Artificial Intelligence, 53(2-3), 209–244.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic programming.
Pages 1070–1080 of: Proceedings of the Fifth International Conference on Logic Pro-
gramming (ICLP’88). The MIT Press.

Gelfond, M., & Lifschitz, V. (1991). Classical negation in logic programs and deductive
databases. New Generation Computing, 9, 365–385.

Gelfond, M., & Son, T. (1997). Reasoning with prioritized defaults. Pages 164–223 of:
Dix, J., Pereira, L., & Przymusinski, T. (eds), Third International Workshop on Logic
Programming and Knowledge Representation. Lecture Notes in Computer Science, vol.
1471. Springer-Verlag.

Gelfond, M., Przymusinska, H., & Przymusinski, T. (1989). On the relationship between
circumscription and negation as failure. Artificial Intelligence, 38(1), 75–94.

Gordon, T. (1993). The pleading game: An artificial intelligence model of procedural
justice. Dissertation, Technische Hochschule Darmstadt, Alexanderstraße 10, D-64283
Darmstadt, Germany.

Kager, R. (1999). Optimality theory: A textbook. Cambridge University Press.

Konolige, K. (1988). Hierarchic autoepistemic theories for nonmonotonic reasoning. Pages
439–443 of: Proceedings of the Seventh National Conference on Artificial Intelligence
(AAAI’88). Morgan Kaufmann Publishers.

A Framework for Compiling Preferences in Logic Programs 59

Lifschitz, V. (1996). Foundations of logic programming. Pages 69–127 of: Brewka, G. (ed),
Principles of Knowledge Representation. CSLI Publications.

McCarthy, J. (1986). Applications of circumscription to formalizing common-sense knowl-
edge. Artificial Intelligence, 28, 89–116.

Nebel, B. (1998). How hard is it to revise a belief base? Pages 77–145 of: Dubois, D.,
& Prade, H. (eds), Handbook of Defeasible Reasoning and Uncertainty Management
Systems, Volume 3: Belief Change. Dordrecht: Kluwer Academic Publishers.

Niemelä, I., & Simons, P. (1997). Smodels: An implementation of the stable model and
well-founded semantics for normal logic programs. Pages 420–429 of: Dix, J., Furbach,
U., & Nerode, A. (eds), Proceedings of the Fourth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’97). Lecture Notes in Artificial
Intelligence, vol. 1265. Springer-Verlag.

Papadimitriou, C., & Sideri, M. (1994). Default theories that always have extensions.
Artificial Intelligence, 69, 347–357.

Prince, A., & Smolensky, P. (1993). Optimality theory: Constraint interaction in generative
grammar. Tech. rept. University of Colorado, Boulder.

Reiter, R. (1980). A logic for default reasoning. Artificial Intelligence, 13(1-2), 81–132.

Rintanen, J. (1994). Prioritized autoepistemic logic. Pages 232–246 of: MacNish, C.,
Pearce, D., & Pereira, L. M. (eds), Proceedings of the European Workshop on Logics
in Artificial Intelligence (JELIA’94). Lecture Notes in Artificial Intelligence, vol. 838.
Berlin: Springer-Verlag.

Rintanen, J. (1998a). Complexity of prioritized default logics. Journal of Artificial Intel-
ligence Research, 9, 423–461.

Rintanen, J. (1998b). Lexicographic priorities in default logic. Artificial Intelligence, 106,
221–265.

Sakama, C., & Inoue, K. (1996). Representing priorities in logic programs. Pages 82–96 of:
Maher, M. (ed), Proceedings of the 1996 Joint International Conference and Symposium
on Logic Programming. Cambridge: The MIT Press.

Sakama, C., & Inoue, K. (2000). Prioritized logic programming and its application to
commonsense reasoning. Artificial Intelligence, 123(1-2), 185–222.

Schaub, T., & Wang, K. (2001a). A comparative study of logic programs with preference.
Pages 597–602 of: Nebel, B. (ed), Proceedings of the Seventeenth International Joint
Conference on Artificial Intelligence (IJCAI 2001). Morgan Kaufmann Publishers.

Schaub, T., & Wang, K. (2001b). Towards a semantic framework for preference handling
in logic programming. Submitted for publication; extended version of (Schaub & Wang,
2001a).

van der Hoek, W., & Witteveen, C. (2000). Classical and general frameworks for recovery.
Pages 33–37 of: Horn, W. (ed), Proceedings of the Fourteenth European Conference on
Artificial Intelligence (ECAI 2000). Amsterdam: IOS Press.

Wang, K., Zhou, L., & Lin, F. (2000). Alternating fixpoint theory for logic programs
with priority. Pages 164–178 of: Proceedings of the First International Conference
on Computational Logic (CL 2000). Lecture Notes in Computer Science, vol. 1861.
Springer-Verlag.

Zhang, Y. (2000). Logic program based updates. Draft available at http://www.cit.uws.
edu.au/~yan/.

Zhang, Y., & Foo, N. (1997). Answer sets for prioritized logic programs. Pages 69–84 of:
Maluszynski, J. (ed), Proceedings of the International Symposium on Logic Program-
ming (ILPS’97). The MIT Press.

