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Abstract

We present an extension of Logic Programming (under stable models semantics) that, not only allows con-
cluding whether a true atom is a cause of another atom, but also deriving new conclusions from these
causal-effect relations. This is expressive enough to capture informal rules like “if some agent’s actions A
have been necessary to cause an event E then conclude atom caused(A, E),” something that, to the best
of our knowledge, had not been formalised in the literature. To this aim, we start from a first attempt that
proposed extending the syntax of logic programs with so-called causal literals. These causal literals are
expressions that can be used in rule bodies and allow inspecting the derivation of some atom A in the pro-
gram with respect to some query function ψ. Depending on how these query functions are defined, we can
model different types of causal relations such as sufficient, necessary or contributory causes, for instance.
The initial approach was specifically focused on monotonic query functions. This was enough to cover suf-
ficient cause-effect relations but, unfortunately, necessary and contributory are essentially non-monotonic.
In this work, we define a semantics for non-monotonic causal literals showing that, not only extends the
stable model semantics for normal logic programs, but also preserves many of its usual desirable properties
for the extended syntax. Using this new semantics, we provide precise definitions of necessary and contrib-
utory causal relations and briefly explain their behaviour on a pair of typical examples from the Knowledge
Representation literature.

1 Introduction

An important difference between classical models and most Logic Programming (LP) semantics
is that, in the latter, true atoms must be founded or justified by a given derivation. Consequently,
falsity is understood as absence of proof: for instance, a common informal way of reading for
default literal notA is “there is no way to deriveA.” Although this idea seems quite intuitive and,
in fact, several approaches have studied how to syntactically build these derivations or justifica-
tions (Specht 1993; Pemmasani et al. 2004; Pontelli et al. 2009; Denecker et al. 2015; Schulz
and Toni 2016), it actually resorts to a concept, the ways to derive A, outside the scope of the
standard LP semantics.

Such information on justifications for atoms can be of great interest for Knowledge Repre-
sentation (KR), and especially, for dealing with problems related to causality. For instance, in
the area of legal reasoning where determining a legal responsibility usually involves finding out
which agent or agents have eventually caused a given result, regardless the chain of effects in-
volved in the process. In this sense, an important challenge in causal reasoning is the capability
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of not only deriving facts of the form “A has caused B,” but also being able to represent and
reason about them. As an example, take the assertion:

“If somebody causes an accident, (s)he would receive a fine” (1)

This law does not specify the possible ways in which a person may cause an accident. Depending
on a representation of the domain, the chain of events from the agent’s action(s) to the final effect
may be simple (a direct effect) or involve a complex set of indirect effects and defaults like inertia.
Focussing on representing (1) in an elaboration tolerant manner (McCarthy 1998), we should be
able to write a single rule whose body only refers to the agent involved and the accident. For
instance, consider the following program

accident ← oil (2)

oil ← suzy (3)

suzy (4)

representing that accident is an indirect effect of Suzy’s actions. We may then represent (1) by
the following rule

fine(suzy) ← suzy necessary for accident (5)

that states that Suzy would receive a fine whenever the fact suzy was necessary to cause the
atom accident.

With this long term goal in mind, (Cabalar et al. 2014a) proposed a multi-valued semantics for
LP that extends the stable model semantics (Gelfond and Lifschitz 1988) and where justifications
are treated as algebraic constructions. In this semantics, causal stable models assign, to each
atom, one of these algebraic expressions that captures the set of all non-redundant logical proofs
for that atom. Recently, this semantics was used in (Fandinno 2015b) to extend the syntax of
logic programs with a new kind of literal, called causal literal, that allow representing rules like

fine(suzy) ← suzy sufficient for accident (6)

and derive, from a program P1 containing rules (2-4,6), that fine(suzy) holds. However, the ma-
jor limitation of this semantics is that causal literals must be monotonic and, therefore, rule (5)
cannot be represented. It is easy to see that rule (5) is non-monotonic: in a program P2 contain-
ing rules (2-5), the fact suzy is necessary for accident is satisfied and, thus, fine(suzy) must
hold, but in a program P3 obtained by adding a fact oil to this last program, suzy is not longer
necessary and, thus, fine(suzy) should not be a conclusion.

In this paper, we present a semantics for logic programs with causal literals defined in terms of
non-monotonic query functions. More specifically, we summarise our contributions as follows. In
Section 2, we define the syntax of causal literals and a multi-valued semantics for logic programs
whose causal values rely on a completely distributive lattice based on causal graphs. Section 3
shows that positive monotonic program has a least model that can be computed by an extension
of the direct consequences operator (van Emden and Kowalski 1976). In Section 4, we define
semantics for programs with negation and non-monotonic causal literals and show that it is a
conservative extension of the standard stable model semantics. Besides, with a running example,
we show how causal literals can be used to derive new conclusion from necessary causal relations
and, in Section 5, briefly relate this notion with the actual cause literature. In this section, we also
formalise the weaker notion of contributory cause, also related to the actual cause literature, and
show how causal literals may be used to derive new conclusion from them. In Section 6, we show



that our semantics satisfy the usual properties of the stable modles semantics for the new syntax.
Finally, Section 7 concluded the paper. Proofs of formal results from the paper can be found in
an extended version (Fandinno 2016).

2 Causal Programs

We start by reviewing some definitions from (Cabalar et al. 2014a).

Definition 1 (Term). Given a set of labels Lb, a term t is recursively defined as one of the
following expressions

t ::= l
∣∣∣ ∏S

∣∣∣ ∑S
∣∣∣ t1 · t2

where l ∈ Lb is a label, t1, t2 are in their turn terms and S is a (possibly empty and possible
infinite) set of terms.

When S = {t1, . . . , tn} is a finite set, we will write t1 ∗ . . . ∗ tn and t1 + . . . + tn instead
of
∏
S and

∑
S, respectively. When S = ∅, we denote

∏
S and

∑
S by 1 and 0, respectively.

We assume that application ‘·’ has higher priority than product ‘∗’ and, in its turn, product ‘∗’
has higher priority than addition ‘+’. Application ‘·’ represents application of a rule label to a
previous justifications. For instance, the justification in program P1 for atom suzy is the fact
suzy itself. If rules (2-3) in program P1 are labelled in the following way

r1 : accident ← oil (7)

r2 : oil ← suzy (8)

we may represent the justification of oil as suzy·r2, in other words, oil is true because of the the
application of rule r2 to the fact suzy. Similarly, we may represent the justification of accident
as suzy·r2·r1. Addition ‘+’ is used to capture alternative independent causes: each addend is
one of those independent causes. For instance, the justification of oil, in program P3, may be
represented as suzy·r2 + oil and the justification of accident as (suzy·r2 + oil) · r1. As we
will see below application distributes over addition, so that, the justification of accident can
also be written as suzy·r2·r1 + oil·r1, which better illustrates the existence of two alternatives.
Product ‘∗’ represents conjunction or joint causation. For instance, in a program P4 obtained by
adding the fact billy to P3 and replacing rule (8) by

r2 : oil ← suzy, billy (9)

the justifications of oil will be (suzy∗billy)·r2+oil. Similarly, the justification of accident will
be (suzy∗billy)·r2·r1+oil·r1. Intuitively, terms without addition ‘+’ represent individual causes
while terms with addition ‘+’ represent sets of causes. It is worth to mention that these algebraic
expressions are in a one-to-one correspondence with non-redundant proofs of an atom (Cabalar
et al. 2014a) and that they may also be understood as a formalisation of Lewis’ concept of causal
chain (Lewis 1973) (see Fandinno 2015b).

Definition 2 (Value). (Causal) values are the equivalence classes of terms under axioms for a
completely distributive (complete) lattice with meet ‘∗’ and join ‘+’ plus the axioms of Figure 1.
The set of values is denoted by VLb. Furthermore, by CLb we denote the subset of causal values
with some representative term without sums ‘+’.

All three operations, ‘∗’, ‘+’ and ‘·’ are associative. Product ‘∗’ and addition ‘+’ are also



Associativity

t · (u·w) = (t·u) · w

Absorption

t = t + u · t · w
u · t · w = t ∗ u · t · w

Identity

t = 1 · t
t = t · 1

Annihilator

0 = t · 0
0 = 0 · t

Indempotence

l · l = l

Addition distributivity

t · (u+w) = (t·u) + (t·w)
(t + u) · w = (t·w) + (u·w)

Product distributivity

c · d · e = (c · d) ∗ (d · e) with d 6= 1
c · (d ∗ e) = (c · d) ∗ (c · e)
(c ∗ d) · e = (c · e) ∗ (d · e)

Fig. 1. Properties of the ‘·’operators: t, u, w are terms, l is a label and c, d, e are terms without ‘+’.
Addition and product distributivity are also satisfied over infinite sums and products.

commutative, and they satisfy the usual absorption and distributive laws with respect to infinite
sums and products of a completely distributive lattice. The lattice order relation is defined as:

t ≤ u iff t ∗ u = t iff t+ u = u

An immediately consequence of this definition is that product, addition, 1 and 0 respectively
are the greatest lower bound, the least upper bound and the top and the bottom element of the
≤-relation. Term 1 represents a value which holds by default, without an explicit cause, and will
be assigned to the empty body. Term 0 represents the absence of cause or the empty set of causes,
and will be assigned to false. Furthermore, applying distributivity (and absorption) of product and
application over addition, every term can be represented in (minimal) disjunctive normal form in
which addition is not in the scope of any other operation and every pair of addends are pairwise
≤-incomparable. In the following, we will assume that every term is in disjunctive normal form.

This semantics was used in (Fandinno 2015b), to define the concept of causal query, here
m-query: a monotonic function φ : CLb −→ {0, 1}. Unfortunately, m-queries are not expressive
enough to capture necessary causation for two reasons: (i) they are monotonic and (ii) they
cannot capture relations between sets of causes. We introduced here the following definition
which removes these two limitations.

Definition 3 (Causal query). A causal query ψ : CLb×VLb −→ {0, 1} is a function mapping
pairs cause-value into 1 (true) and 0 (false) which is anti-monotonic in the second argument,
that is, ψ(G, t) ≤ ψ(G, u) for every G ∈ CLb and {t, u} ⊆ VLb such that t ≥ u.

Syntax. We define the semantics of logic programs using its grounding. Therefore, for the re-
mainder of this paper, we restrict our attention to ground logic programs. A signature is a triple
〈At, Lb,Ψ〉 where At, Lb and Ψ respectively represent sets of atoms (or propositions), labels
and causal queries. We assume the signature of every program contains a causal query ψ1 ∈ Ψ

s.t. ψ1(G, t) def= 1 for every G ∈ CLb and value t ∈ VLb.

Definition 4 (Causal literal). A (causal) literal is an expression (ψ :: A) where A ∈ At is an
atom and ψ ∈ Ψ is a causal query.

A causal atom (ψ1 :: A) is said to be regular and, by abuse of notation, we will use atom A

as shorthand for regular causal literals of the form (ψ1 :: A). We will see below the justification
for this notation. A literal is either a causal literal (ψ :: A) (positive literal), or a negated causal
literal not(ψ :: A) (negative literal) or a double negated causal literal not not(ψ :: A) (consistent
literal) with A ∈ At an atom and ψ ∈ Ψ a causal query.



Definition 5 (Causal program). A (causal) program P is a set of rules of the form:

ri : A ← B1, . . . , Bm (10)

where 0 ≤ m is a non-negative integer, ri ∈ Lb is a label or ri = 1, A (the head of the rule) is
an atom and each Bi with 1 ≤ i ≤ m (the body of the rule) is a literal or a term.

A rule r is said to be positive iff all literals in its body are positive and it is said to be regular
if all causal literals in its body are regular. When m = 0, we say that the rule is a fact and omit
the body and sometimes the symbol ‘←.’ Furthermore, for clarity sake, we also assume that, for
every atom A ∈ At, there is an homonymous label A ∈ Lb and that the label of an unlabelled
rule is assumed to be its head. In this sense, a fact A in a program actually stands for the labelled
rule (A : A←). A program P is positive or regular when all its rules are positive (i.e. it contains
no default negation) or regular, respectively. A standard program is a regular program in which
the label of every rule is ‘1 :’.

Semantics. A (causal) interpretation is a mapping I : At −→ VLb assigning a value to each
atom. For interpretations I and J , we write I ≤ J when I(A) ≤ J(A) for every atom A ∈ At.
Hence, there is a ≤-bottom interpretation 0 (resp. a ≤-top interpretation 1) that stands for the
interpretation mapping every atom A to 0 (resp. 1). For an interpretation I and atom A ∈ At, by
max I(A) we denote the set

max I(A) def=
{
G ∈ CLb

∣∣ G ≤ I(A) and there is no G′ ∈ CLb s.t. G < G′ ≤ I(A)
}

containing the maximal terms without addition (or individual causes) of A w.r.t. I .

Definition 6 (Causal literal valuation). The valuation of a causal literal of the form (ψ :: A) with
respect to an interpretation I , in symbols I(ψ :: A), is given by

I(ψ :: A) def=
∑{

G∈ max I(A)
∣∣ ψ(G, I(A) ) = 1

}
We say that I satisfies a causal literal (ψ :: A), in symbols I |= (ψ :: A), iff I(ψ :: A) 6= 0.

Notice now that I(ψ1 :: A) = I(A) for any atom A and, thus, writing a standard atom A as a
shorthand for causal literal (ψ1 :: A) does not modify its intended meaning. Causal literals can
be used to represent the body of rule (5). For instance, given a set of labels A ⊆ Lb representing
the actions of some agent A, we may define the query function

ψnec
A (G, t) def=

{
1 if t ≤

∑
A

0 otherwise
(11)

and represent the body of rule (5) by a causal literal of the form (ψnec
Suzy :: accident) where Suzy

is the set of labels {suzy}. In the sake of clarity, we usually will write (A necessary for A)

in rule bodies instead (ψnec
A :: A).

If we consider an interpretation I which assigns to the atom accident its justification in pro-
gram P2, that is, I(accident) = suzy·r2·r1, then any term without addition G ∈ CLb, satisfies

ψnec
Suzy(G, I)(accident) = 1 iff suzy·r2·r1 ≤

∑
{suzy}

iff suzy·r2·r1 ≤ suzy

iff suzy·r2·r1 + suzy = suzy



which holds applying identity and associativity of application and absorption w.r.t. addition

suzy·r2·r1 + suzy = 1 · suzy · (r2·r1) + suzy = suzy

Similarly, in program P3, ψnec
Suzy(G, I ′(accident)) = 1 iff suzy·r2·r1 + oil ≤ suzy which does

not hold. In other words, Suzy’s actions has been necessary in program P2 but not in program P3.
The valuation of a causal term t is the class of equivalence of t. The valuation of non-positive

literals is defined as follows

I(not(ψ :: A)) def=

{
1 iff I(ψ :: A) = 0

0 otherwise

I(not not(ψ :: A)) def=

{
1 iff I(ψ :: A) 6= 0

0 otherwise

Furthermore, for any literal or term L, we write I |= L iff I(L) 6= 0.

Definition 7 (Causal model). Given a rule r of the form (10), we say that an interpretation I
satisfies r, in symbols I |= r, if and only if the following condition holds:(

I(B1) ∗ . . . ∗ I(Bm)
)
· ri ≤ I(A) (12)

An interpretation I is a causal model of P , in symbols I |= P , iff I satisfies all rules in P .

Let P5 be the program containing rules (7) and (8) plus the labelled fact (suzy : suzy ←)

and P6 be the program containing rules (7) and (9) plus the labelled facts (suzy : suzy ←)

and (billy : billy ←). Then, it can be checked that these programs respectively have unique
≤-minimal models I5 and I6 which satisfy

I5(accident) = suzy·r2·r1 I6(accident) = (suzy ∗ billy)·r2·r1 + oil

Let now P7 and P8 be the labelled programs respectively obtained by adding the following rule

r3 : fine(suzy) ← suzy necessary for accident (13)

(resulting of labelling rule (5) with r3) to programs P5 and P6. Then it can be checked that these
programs also have unique≤-minimal models I7 and I8 which respectively agree with I5 and I6
in all atoms but in fine(suzy) and, as we have seen above,

I7(ψnec
Suzy :: accident) = I7(accident) = suzy·r2·r1 I8(ψnec

Suzy :: accident) = 0

Furthermore, by definition, it holds that Ij(fine(suzy)) = Ij(ψ
nec
Suzy :: accident)·r3 for

j ∈ {7, 8} which implies that

I7(fine(suzy))) = suzy·r2·r3
I8(fine(suzy))) = 0·r3 = 0

That is, Suzy would receive a fine for causing the accident, I7 |= fine(suzy), w.r.t P7, but not
w.r.t. program P8 because I8 6|= fine(suzy).

It is worth to note that positive programs may contain non-monotonic causal literals that,
somehow, play the role of negation and, hence, they may have several≤-minimal causal models.
Consider, for instance, the following positive program P9

r1 : p r2 : q ← A1 necessary for p



where A1
def={r1}. Program P9 has two ≤-minimal causal models. The first one which satisfies

I9(p) = r1 and I9(q) = r1·r2; and a second unintended one which satisfies I ′9(p) = r1 + r2
and I ′9(q) = 0. In the following section, we introduce the notion of monotonic programs which
have a least model and a well-behaved direct consequences operator (when they are positive). In
Section 4, we will see that, in fact, only I9 is a causal stable model of program P9.

3 Positive monotonic Programs

A causal query ψ is said to be monotonic iff ψ(G, u) ≤ ψ(G′, w) for any values {G,G′} ⊆ CLb

and {u,w} ⊆ VLb such that G ≤ G′. A causal literal (ψ :: A) is monotonic if ψ is monotonic. A
program P is monotonic iff all causal literals occurring in P are monotonic. We show next that
every monotonic program can be reduced to the syntax and semantics of (Fandinno 2015b). For
space reasons, we omit here the details of (Fandinno 2015b), which can be found in the extended
verison (Fandinno 2016).

Definition 8. Given a query ψ (resp. m-query φ), its corresponding m-query (resp. query) is
given by φψ(G) def= ψ(G, 1) (resp. ψφ(G, t) def= φ(G)). Similarly, for any program P (resp. m-
program Q) its corresponding m-program Q (resp. program P ) is obtained by replacing every
query ψ in P (resp. m-query φ in Q) by its corresponding m-query φψ (resp.query ψφ).

Theorem 1. If P is the corresponding program of some positive m-programQ with the syntax of
Definition 5 or Q is the corresponding m-program of some positive monotonic program P , then
an interpretation I is a model of P iff I is a model of Q.

An immediate consequence of Theorem 1, plus Theorem 3.8 in (Fandinno 2015b), is that pos-
itive monotonic programs have a least model that can be computed by iteration of the following
extension of the direct consequences operator of van Emden and Kowalski (1976).

Definition 9 (Direct consequences). Given a causal program P , the operator of direct conse-
quences is a function TP from interpretations to interpretations such that

TP (I)(A) def=
∑{ (

I(B1) ∗ . . . ∗ I(Bm)
)
· r1

∣∣ (ri : A ← B1, . . . , Bm) ∈ P
}

for any interpretation I and any atom A ∈ At. The iterative procedure is defined as usual

T↑αP (0) def= TP (T↑α−1P (0)) if α is a successor ordinal

T↑αP (0) def=
∑
β<α

T↑βP (0) if α is a limit ordinal

As usual 0 and ω respectively denote the first limit ordinal and the first limit ordinal that is
greater than all integers. Thus, T↑0P (0) = 0.

Corollary 1. Any (possibly infinite) positive monotonic program P has a least causal model I
which (i) coincides with the least fixpoint lfp(TP ) of the direct consequences operator TP and
(ii) can be iteratively computed from the bottom interpretation I = lfp(TP ) = T↑ωP (0).

Corollary 1 guarantees that the least fixpoint of TP is well-behaved and corresponds to the
least model of the program P . In fact, we can check now that the least model I6 of program P6

satisfies I6(accident) = (suzy ∗ billy)·r2·r1 + oil·r1. First note, that program P6 contains facts
suzy, billy and oil whose label is the same as the name atom and, thus, T↑1P6

(0)(A) = A for each
atom A ∈ {suzy, billy, oil}. Then, since T↑1P6

(0)(suzy) = suzy, T↑1P6
(0)(billy) = billy and



rule (8) and fact oil belong to program P6, it follows that T↑2P6
(0)(oil) = (suzy ∗ billy) · r2 +oil.

Similarly, we can check that

T↑3P6
(0)(accident) = ( (suzy ∗ billy) · r2 + oil) · r1 = (suzy ∗ billy)·r2·r1 + oil·r1

and, thus, I6 = T↑3P6
(0) is the least fixpoint of TP6

. Checking that T↑3P5
(0) = I5, that T↑4P7

(0) = I7

and that T↑4P8
(0) = I8 are the least fixpoint and the least models respectively of programs P5, P7

and P8 is analogous.
It is easy to see that every true atom, according to the standard least model semantics, has a

non-zero causal value associated in the causal least model of the program, that is, some associated
cause. An interpretation I is two-valued when it maps each atom into the set {0, 1}. By Icl, we
denote the two-valued (or “classic”) interpretation corresponding to some interpretation I s.t.

Icl(A) def=

{
1 iff I(A) > 0

0 iff I(A) = 0

Corollary 2. Let P be a regular, positive monotonic program and Q its standard unlabelled
version obtained by removing all labels from the rules in P . Let I and J be the least models of
P and Q, respectively. Then, Icl = J .

4 Non-monotonic causal queries and negation

We introduce now the semantics for programs with non-monotonic causal queries and negation
by extending the concept of reduct (Gelfond and Lifschitz 1988) to causal queries.

Definition 10 (Reduct). For any term t, by ψt we denote a query such that

ψt(G, u) def=

{
1 iff exists some G′ ≤ G s.t. G′ ∈ max t and ψ(G′, t) = 1

0 otherwise

The reduct of a causal literal (ψ :: A) w.r.t some interpretation I is itself if ψ is monotonic and
(ψI(A) :: A) if ψ is non-monotonic. The reduct of a program P w.r.t. an interpretation I , in
symbols P I , is the result of (i) removing all rules whose body contains a non satisfied negative
or consistent literal, (ii) removing all the negative and consistent literals for the remaining rules
and (iii) replacing the remaining causal literals (ψ :: A) by their reducts (ψ :: A)I .

It is easy to see that the reduct P I of any program P is a positive monotonic program and,
therefore, it has a least causal model.

Definition 11 (Causal stable model). We say that an interpretation I is a causal stable model of
a program P iff I is the least model of the positive program P I .

We can check now that interpretation I9 is, in fact, the unique causal stable model of pro-
gram P9. Let Q = P I99 be the reduct of program P9 w.r.t. I9 consisting in the following rules

r1 : p r2 : q ← (ψ :: p)

where ψ(G, t) = 1 iff there exists some G′ ≤ G s.t. G′ ∈ max I9(p) = r1 and ψnec
A1

(G′, I9(p))

iff r1 ≤ G and r1 ≤
∑
A1 = r1 iff r1 ≤ G. First note that T↑αQ (0)(p) = r1 = I9(p) for

any ordinal α ≥ 1 because r1 is the only rule with the atom p in the head. Then, note that



T↑αQ (0)(ψ :: p) = T↑αQ (0)(p) because r1 ≤ G for every G∈ maxT↑αQ (0)(p) = r1 (there is only
one such G = r1) and, thus,

T↑βQ (0)(q) = T↑αQ (0)(ψ :: p)·r2 = T↑αQ (0)(p)·r2 = r1·r2 = I9(q)

for any ordinal β ≥ 2. Hence, I9 is a causal stable model of P9. On the other hand, we can
check that I ′9 is not a causal stable model of P9. Let Q′ = P

I′9
9 be the reduct of program P9

w.r.t. I ′9 consisting in the same rules than program Q, but replacing ψ by ψ′ where ψ′(G, t) = 1

iff there exists some G′ ≤ G s.t. G′ ∈ max I ′9(p) = r1 + r2 and ψnec
A1

(G′, I ′9(p)). As above,
T↑αQ′ (0)(p) = r1 6= I ′9(p) = r1 +r2 for any ordinal α ≥ 1 and, therefore, I9 is not a causal stable
model of program P9.

It is worth to mention that, as happened with positive programs, we can stablish a correspon-
dence between the causal stable models of regular programs and the standard stable models of
their standard version.

Definition 12 (Two-valued equivalence). Two programs P and Q are said to be two-valued
equivalent iff for every causal stable model I of P there is an unique causal stable model J of Q
such that Icl = Jcl, and vice-versa.

Theorem 2. Let P be a regular program andQ be its corresponding standard program obtained
by removing all labels in P . Then P and Q are two-valued equivalent.

Theorem 2 asserts that, labelling a standard program does not change which atoms are true
or false in its stable models, in other words, the causal stable semantics presented here is a
conservative extension of the standard stable model semantic.

5 Contributory cause and its relation with actual causation

Until now we have considered that an agent is a cause of an event when its actions have been nec-
essary to cause that event. This understanding is similar to the definition of the modified Halpern-
Pearl definition of causality given by Halpern (2015). However, in some scenarios it makes sense
to consider a weaker definition in which those agents whose actions have contributed to that
event are also considered causes, even if their actions have not been necessary (Pearl 2000).
Consider, for instance, the following example from (Hopkins and Pearl 2003).

Example 1. For a firing squad consisting of shooters Billy and Suzy, it is John’s job to load
Suzy’s gun. Billy loads and fires his own gun. On a given day, John loads Suzy’s gun. When the
time comes, Suzy and Billy shoot the prisoner. The agents who caused the prisoner death would
be punished with imprisonment.

In this example, although the actions of any of the agents are not necessary for the prisoner’s
death, commonsense tells that all three should be considered responsible of it. If we represent
Example 1 by the following program P10

r1 : dead ← shoot(suzy), loaded

r2 : dead ← shoot(billy)

r3 : loaded ← load(john)

rA : long prison(A) ← A necessary for dead

shoot(suzy)

shoot(billy)

load(john)



for A ∈ {suzy, billy, john}, it can be shown that its unique causal stable model I10 satisfies

I10(dead) =
(
load(john)·r3 ∗ shoot(suzy)

)
· r1 + shoot(billy)·r2

Recall that, we assume that every fact has a label with the same name. According to I10, the
actions of the three agents appear in the causes of the atom dead, but there is no agent whose
actions occur in all causes. Then, the causal literal (A necessary for dead) is not sat-
isfied for any agent A and, therefore, for every agent A ∈ {suzy, billy, john}, it holds that
I10(long prison(A)) = 0. That is, no agent is punished with imprisonment for the prisoner’s
death. On the other hand, if P11 is a program obtained by replacing rules rA by rules

cA : short prison(A, dead) ← A contributed to dead

in programP10, we may expect that short prison(A) holds, in its unique causal stable model I11,
for any A ∈ {suzy, billy, john}. We formalise this by defining the following query

ψcont
A (G, t) def=

{
1 if G ≤

∑
A

0 otherwise
(14)

In the sake of clarity, we will write (A contributed to dead) instead of (ψcont
A :: dead). It

can be checked that
(
load(john)·r3 ∗ shoot(suzy)

)
· r1 ≤ load(john) and, therefore,

I11(john contributed to dead) =
(
load(john)·r3 ∗ shoot(suzy)

)
· r1

Consequently, I11(short prison(john)) =
(
load(john)·r3 ∗ shoot(suzy)

)
· r1 · cjohn. Simi-

larly, it can be shown that

I11(short prison(suzy)) =
(
load(john)·r3 ∗ shoot(suzy)

)
· r1·csuzy

I11(short prison(billy)) = shoot(billy)·r2 · cbilly

It is worth to note that contributory causes are non-monotonic when defaults are taken into
account. Consider now the following variation of Example 1.

Example 2. Now Suzy also loads her gun as Billy does. However, Suzy’s gun was broken and
John repaired it.

As in Example 1, John’s repairing action is necessary in order for Suzy to be able to fire her
gun. However, in this case, it seems too severe to consider that John has contributed to the pris-
oner’s death. This consideration has been widely attributed to the fact that we consider that, by
default, things are not broken and that causes must be events that deviate from the norm (Maudlin
2004; Hall 2007; Halpern 2008; Hitchcock and Knobe 2009). If we represent this variation by a
program P12 containing the following rules1

r1 : dead ← shoot(suzy), un broken

r2 : dead ← shoot(billy)

r3 : un broken ← repair(john)

cA : short prison(A) ← A contributed to dead

shoot(suzy)

shoot(billy)

repair(john)

1 We have chosen this representation in order to illustrate the non-monotonicity of contributory cause. However, solving
the Frame and Qualification Problems (McCarthy and Hayes 1969; McCarthy 1987) would require the introduction of
time and the inertia laws, plus the replacement of rule r1 by the pair of rules (r1 : dead ← shoot(suzy), not ab)
and (ab ← broken). For a detailed discussion of how causality and the inertia laws can combined we refer
to (Fandinno 2015a).



for A ∈ {suzy, billy, john}, then it is easy to see that

I12(dead) =
(
repair(john)·r3 ∗ shoot(suzy)

)
· r1 + shoot(billy)·r2

where I12 is the least model of program P12 and, thus, responsible(john, dead) will be a con-
clusion of it. Just note that program P12 is the result of replacing atoms loaded and load(john)

in program P11 by un broken and repair(john), respectively. Note also that nothing in pro-
gram P12 reflects the fact that by default guns are un broken. We state that guns are un broken
by default adding the following rule

1 : un broken ← not broken (15)

If P13 is the result of adding rule (15) to program P12 and I13 is the least model of P13, then

I13(un broken) = I12(un broken) + 1 = 1

and, consequently,

I12(dead) =
(
1·r3 ∗ shoot(suzy)

)
· r1 + shoot(billy)·r2

=
(
r3 ∗ shoot(suzy)

)
· r1 + shoot(billy)·r2

which shows that John is not considered to have contributed to the prisoner’s death. Hence,
short prison(john) is not a conclusion of program P13. It is worth to mention that besides the
two syntactic differences between causal queries and m-queries already mentioned, there is a,
perhaps, less noticeable difference in the evaluation of causal literals. Note that,(

repair(john)·r3 ∗ shoot(suzy)
)
· r1 ≤

(
r3 ∗ shoot(suzy)

)
· r1

and, thus, if we replaced G∈ max I(A) by G ≤ I(A) in Definition 6 (as done in Fandinno
2015b), it would follows that atom short prison(john) would be an unintended conclusion
of program P13. It is also worth to mention that, besides (Pearl 2000) approach, the notion of
contributory cause is also behind the definitions of actual cause given in (Halpern and Pearl
2005; Hall 2007).

6 Properties of causal logic programs

Theorem 2 established a correspondence for regular programs, but they say nothing about pro-
grams with causal queries. For instance, positive program with non-monotonic causal literals
may have more than one causal stable model. Consider the following positive program P14

r1 : p

r3 : q

r2 : q ← A1 necessary for p

r4 : p ← A2 necessary for q

obtained by adding rules r3 and r4 to program P9 and where A2
def={r3}. Program P14 has two

causal stable causal models. The first that satisfies I14(p) = r1 + r3·r4 and I14(q) = r3. The
second I ′14(p) = r1 and I ′14(q) = r3 + r1·r2. Let now Q = P I1414 be the reduct of program P14

w.r.t. I14, which consists in the following rules

r1 : p

r3 : q

r2 : q ← (ψ1 :: p)

r4 : p ← (ψ2 :: q)

where ψ1(G, t) = 1 iff there exists some G′ ≤ G such that G′ ∈ max I14(p) = r1 + r3·r4
and ψnec

A1
(G′, I14(p)) and ψ2(G, t) = 1 iff there exists G′ ≤ G such that G′ ∈ max I14(q) = r3



and ψnec
A2

(G′, I14(p)). First, note that ψnec
A1

(G′, I14(p)) iff I14(p) = r1 + r3·r4 ≤
∑
A1 = r1

which does not hold. Thus, ψ1(G, t) = 0 for every G ∈ CLb and t ∈ VLb. Then, it is clear
that the body of rule r2 is never satisfied and, therefore, T↑αQ (0)(q) = r3 for any ordinal α ≥ 1.
It can also be checked that ψ2(r3, T

↑α
Q (0)(q)) = 1 because there exists G′ = r3 such that

G′ ∈ max I ′14(q) = r3 and ψnec
A2

(G′, I14(q)) = ψnec
A2

(r3, r3) = 1 since r3 ≤
∑
A2 = r3. Hence,

since r3 ∈ maxT↑αQ (0)(q) and ψ2(r3, T
↑α
Q (0)(q)) = 1, it follows that T↑αQ (0)(ψ2 :: q) = r3 and

T↑βQ (0)(p) = r1 + T↑αQ (0)(q)·r4 = r1 + r3·r4 = I9(p) for any ordinal β ≥ 2. Hence, I14 is the
least model of P I1414 and a causal stable model of program P14. Showing that I ′14 is also a causal
stable model of P14 is symmetric.

In the following we revise some desired general properties for a LP semantics. First, causal
stable models should also be supported models. Note that the concept of supported model bellow
is analogous to the usual concept used in standard LP, but it is stronger in the sense that, not only
requires that true atoms are supported, but also all their causes must be supported by a rule and a
cause of its body.

Definition 13. A interpretation I is a (causally) supported model of a program P iff I is a model
of P and for every true atom A and cause G ∈ CLb such that G ≤ I(A) there is a rule r in P of
the form of (10) such that G ≤ ( I(B1) ∗ . . . ∗ I(Bm)) · ri.

Proposition 1. Any causal stable model I of a program P is a also supported model of P .

Furthermore, as happen with programs with nested negation under the standard stable models
semantics (where stable models may not be minimal models of the program), causal stable mod-
els may not be minimal models either. In fact, this may happen even when the nested negation is
replaced by a non-monotonic causal literal. Consider, for instance, the following program P15

r1 : p r2 : p ← not (A1 necessary for p)

where A1
def={r1}. Program P15 has two causal models. One which satisfies I15(p) = r1. The

other which satisfies I ′15(p) = r1 + r2. We define now the notion of normal program whose
causal stable models are also ≤-minimal models. A program P is normal iff no body rule in P
contains a consistent literal (double negated literal) nor a negated non-monotonic causal literal.
In other words, a program is normal iff it does not contains nested negation nor non-monotonic
causal literals in the scope of negation.

Proposition 2. Any causal stable model I of normal program P is also a≤-minimal model.

Splitting programs. The intuitive meaning of the causal rule (13) in programs P7 and P8 is
to cause the atom fine(suzy) whenever the causal query expressed by its body is true with
respect to a programs P5 and P6, respectively. This intuitive understanding can be formalised as
a splitting theorem in (Lifschitz and Turner 1994).

Theorem 3 (Splitting). Let 〈Pb, Pt〉 a partition of a program P such that no atom occurring in
the head of a rule in Pt occurs in Pb. An interpretation I is a causal stable model of P iff there
is some causal stable model J of Pb such that I is a causal stable model of (J ∪ Pt).

In our running example, the bottom part are P7,b = P5 and P8,b = P6 while their top part
P7,t = P8,t is the program containing the rule (13). This result can be generalised to infinite
splitting sequences as follows.



Definition 14. A splitting sequence of a program P is a family (Pα)α<µ of pairwise disjoint sets
such that P =

⋃
α<µ Pα and no atom occurring in the head of a rule in some Pα occurs in the

body of a rule in
⋃
β<α Pβ . A solution of a splitting (Pα)α<µ is a family (Iα)α<µ such that

(1.) I0 is a stable model of P0,

(2.) Iα is a stable model of (Jα ∪ Pα) for any ordinal 0 < α < µ where Jα =
∑
β<α Iβ .

A splitting sequence is said to be strict in α if, in addition, no atom occurring in the head of a
rule in Pα occurs (in the head of a rule) in

⋃
β<α Pβ and it is said to be strict if it is strict in α

for every α < µ.

Theorem 4 (Splitting sequences). Let (Pα)α<µ a splitting sequence of some program P . An
interpretation I is a causal stable model of P iff there is some solution (Iα)α<µ of (Pα)α<µ
such that I =

∑
α<µ Iα. Furthermore, if such solution is strict in α, then Iα = I|Sα

where Sα
is the set of all atoms not occurring in the head of any rule in

⋃
α<β<µ Pβ and I|Sα

denotes the
restriction if I to Sα.

A program P is said to be stratified if there is a some ordinal µ and mapping λ from the set of
atoms At into the set of ordinals {α < µ} such that, for every rule of the form (10) and atom B

occurring in its body, it satisfies λ(A) ≥ λ(B) if B does not occur in the scope of negation nor
in a non-monotonic causal literal, and λ(A) > λ(B) if B does occur under the scope of negation
or in a non-monotonic causal literal.

Proposition 3. Every stratified causal program P has a unique causal stable model.

7 Conclusions, related work and open issues

The main contribution of this work is the introduction of a semantics for non-monotonic causal
literals that allow deriving new conclusions by inspecting the causal justifications of atoms in
an elaboration tolerant manner. In particular, we have used causal literals to define necessary
and contributory causal relations which are intuitively related to some of the most established
definitions of actual causation in the literature (Pearl 2000; Halpern and Pearl 2005; Hall 2007;
Halpern 2015). Besides, by some running examples we have shown that causal literals allow, not
only to derive whether some event is the cause or not of another event, but also to derive new
conclusions from this fact. From a technical point of view, we have shown that our semantics is a
conservative extension of the stable model semantics and that satisfy the usual desired properties
for an LP semantics (casual stable models are supported models, minimal models in case of
normal programs and can be iteratively computed by split table programs). It worth to mention
that, besides the syntactic approaches to justifications in LP, the more related approach to our
semantics is (Damásio et al. 2013), for which a formal comparative can be found in (Cabalar
and Fandinno 2016a) and that (Pontelli et al. 2009) allows a Prolog system to reason about
justifications of an ASP program, but justifications cannot be inspected inside the ASP program.

Regarding complexity, it has been shown in (Cabalar et al. 2014b) that there may be an ex-
ponential number of causes for a given atom w.r.t. each causal stable model. Despite that, the
existence of stable model for programs containing only monotonic queries evaluable in polyno-
mial time is NP-complete (Fandinno 2015b). For programs containing only necessary causal lit-
erals we can prove NP-complete (NP-hard holds even for programs containing a single negated
regular literal or positive programs containing a single constraint, see (Fandinno 2016)). The



complexity for programs including other non-monotonic causal literals (like contributory) is
still an open question. A preliminary prototype extending the syntax of logic programs with
causal literals capturing sufficient, necessary and contributory causal relation can be tested on-
line at http://kr.irlab.org/cgraphs-solver/nmsolver.

In a companion paper (Cabalar and Fandinno 2016b), the causal semantics used here has been
extended to disjunctive logic programs, which will be useful for representing non-deterministic
causal laws. Interesting topics include a extend the complexity assessment for contributory causes,
studying an extension to arbitrary theories as with Equilibrium Logic (Pearce 2006) for the non-
causal case; and formalise the relation between our notions of necessary and contributory cause
with the above definitions of the actual causation and, in particular, with (Vennekens 2011) who
has studied it in the context of CP-logic. A promising approach seems to translate structural
equations into logic programs in a similar way as it has been done to translate them into the
causal theories (Giunchiglia et al. 2004; Bochman and Lifschitz 2015).
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Y. Lin, and L. Ü. Yalçinalp, Eds. IRISA, Campus de Beaulieu, France, 8–13.

VAN EMDEN, M. H. AND KOWALSKI, R. A. 1976. The semantics of predicate logic as a programming
language. Journal of the ACM (JACM) 23, 4, 733–742.

VENNEKENS, J. 2011. Actual causation in CP-logic. Theory and Practice of Logic Programming
TPLP 11, 4-5, 647–662.


