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Abstract

Metabolic networks play a crucial role in biology since they capture all chemical reactions in
an organism. While there are networks of high quality for many model organisms, networks for
less studied organisms are often of poor quality and suffer from incompleteness. To this end, we
introduced in previous work an ASP-based approach to metabolic network completion. Although
this qualitative approach allows for restoring moderately degraded networks, it fails to restore
highly degraded ones. This is because it ignores quantitative constraints capturing reaction rates.
To address this problem, we propose a hybrid approach to metabolic network completion that
integrates our qualitative ASP approach with quantitative means for capturing reaction rates.
We begin by formally reconciling existing stoichiometric and topological approaches to network
completion in a unified formalism. With it, we develop a hybrid ASP encoding and rely upon the
theory reasoning capacities of the ASP system clingo for solving the resulting logic program with
linear constraints over reals. We empirically evaluate our approach by means of the metabolic
network of Escherichia coli. Our analysis shows that our novel approach yields greatly superior
results than obtainable from purely qualitative or quantitative approaches.

1 Introduction

Among all biological processes occurring in a cell, metabolic networks are in charge of

transforming input nutrients into both energy and output nutrients necessary for the

functioning of other cells. In other words, they capture all chemical reactions occurring in

an organism. In biology, such networks are crucial from a fundamental and technological

point of view to estimate and control the capability of organisms to produce certain

products. Metabolic networks of high quality exist for many model organisms. In addition,

recent technological advances enable their semi-automatic generation for many less studied
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organisms, also described as non-model organisms. However, the resulting metabolic

networks are usually of poor quality, due to error-prone, genome-based construction

processes and a lack of (human) resources. As a consequence, they usually suffer from

substantial incompleteness. The common fix is to fill the gaps by completing a draft

network by borrowing chemical pathways from reference networks of well studied organisms

until the augmented network provides the measured functionality.

In previous work (Schaub and Thiele, 2009), we introduced a logical approach to

metabolic network completion by drawing on the work in (Handorf et al., 2005). We

formulated the problem as a qualitative combinatorial (optimization) problem and solved

it with Answer Set Programming (ASP (Baral, 2003)). The basic idea is that reactions

apply only if all their reactants are available, either as nutrients or provided by other

metabolic reactions. Starting from given nutrients, referred to as seeds, this allows for

extending a metabolic network by successively adding operable reactions and their

products. The set of compounds in the resulting network is called the scope of the seeds

and represents all compounds that can principally be synthesized from the seeds. In

metabolic network completion, we query a database of metabolic reactions looking for

(minimal) sets of reactions that can restore an observed bio-synthetic behavior. This is

usually expressed by requiring that certain target compounds are in the scope of some

given seeds. For instance, in the follow-up work in (Collet et al., 2013; Prigent et al., 2014),

we successfully applied our ASP-based approach to the reconstruction of the metabolic

network of the macro-algae Ectocarpus siliculosus, using the collection of

We evidenced in (Prigent et al., 2017) that our ASP-based method partly restores

the bio-synthetic capabilities of a large proportion of moderately degraded networks: it

fails to restore the ones of both some moderately degraded and most of highly degraded

metabolic networks. The main reason for this is that our purely qualitative approach

misses quantitative constraints accounting for the law of mass conservation, a major

hypothesis about metabolic networks. This law stipulates that each internal metabolite

of a network must balance its production rate with its consumption rate at the steady

state of the system. Such rates are given by the weighted sums of all reaction rates

consuming or producing a metabolite, respectively. This calculation is captured by the

stoichiometry1 of the involved reactions. Hence, the qualitative ASP-based approach fails

to tell apart solution candidates with correct and incorrect stoichiometry and therefore

reports inaccurate results for some degraded networks.

We address this by proposing a hybrid approach to metabolic network completion

that integrates our qualitative ASP approach with quantitative techniques from Flux

Balance Analysis (FBA2 (Maranas and Zomorrodi, 2016)), the state-of-the-art quantitative

approach for capturing reaction rates in metabolic networks. We accomplish this by

taking advantage of recently developed theory reasoning capacities for the ASP system

clingo (Gebser et al., 2016). More precisely, we use an extension of clingo with linear

constraints over reals, as dealt with in Linear Programming (LP (Dantzig, 1963)). This

extension provides us with an extended ASP modeling language as well as a generic

interface to alternative LP solvers, viz. cplex and lpsolve, for dealing with linear constraints.

We empirically evaluate our approach by means of the metabolic network of Escherichia

1 See also https://en.wikipedia.org/wiki/Stoichiometry.
2 See also https://en.wikipedia.org/wiki/Flux_balance_analysis.
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Fig. 1: Example of a metabolic network. Compounds and reactions are depicted by circles and
rectangles respectively. Dashed reactions are reactions involving the boundary between the
organism’s metabolism and its environment. r5 is the target reaction. S1 and S2 are boundary
(and initiation) seeds. S3 is assumed to be an initiation seed. Numbers on arrows describe the
stoichiometry of reaction (default value is 1).

coli. Our analysis shows that our novel approach yields superior results than obtainable

from purely qualitative or quantitative approaches. Moreover, our hybrid application

provides a first evaluation of the theory extensions of the ASP system clingo with linear

constraints over reals in a non-trivial setting.

2 Metabolic Network Completion

Metabolism is the sum of all chemical reactions occurring within an organism. As the

products of a reaction may be reused as reactants, reactions can be chained to complex

chemical pathways. Such complex pathways are described by a metabolic network.

We represent a metabolic network as a labeled directed bipartite graph G = (R∪M,E, s),

where R and M are sets of nodes standing for reactions and compounds (also called

metabolites), respectively. When (m, r) ∈ E or (r,m) ∈ E for m ∈ M and r ∈ R, the

metabolite m is called a reactant or product of reaction r, respectively. More formally, for

any r ∈ R, define rcts(r) = {m ∈M | (m, r) ∈ E} and prds(r) = {m ∈M | (r,m) ∈ E}.
The edge labeling s : E → R gives the stoichiometric coefficients of a reaction’s reactants

and products, respectively, i.e., their relative quantities involved in the reaction. Finally,

the activity rate of reactions is bound by lower and upper bounds, denoted by lbr ∈ R+
0

and ubr ∈ R+
0 for r ∈ R, respectively. Whenever clear from the context, we refer to

metabolic networks with G (or G′, etc) and denote the associated reactions and compounds

with M and R (or M ′, R′ etc), respectively.

We distinguish a set S ⊆ M of compounds as initiation seeds, that is, compounds

initially present due to experimental evidence. Another set of compounds is assumed to be

activated by default. These boundary compounds are defined as: Sb (G) = {m ∈M | r ∈
R,m ∈ prds(r), rcts(r) = ∅}. For simplicity, we assume that all boundary compounds are

seeds: Sb (G) ⊆ S. Note that follow-up concepts like reachability and activity in network

completion are independent of this assumption.

For illustration, consider the metabolic network in Fig. 1. The network consists of 9

reactions, rs1 , rs2 , re and r0 to r5, and 8 compounds, A, . . . , F , S1, S2 and S3. Here,

S = {S1, S2, S3}, S1 and S2 being the two boundary compounds of the network. Dashed

rectangle describes the boundary of the system, outside of which is the environment of
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Fig. 2: Metabolic network completion problem. The purpose of its solving is to select the minimal
number of reactions from a database (dashed shaded reactions) such that activation of target
reaction r5 is restored from boundary and/or initiation seeds. There are three formalisms for
activation of target reaction: stoichiometric, topological and hybrid.

the organism. Consider reaction r4 : E → 2C transforming one unit of E into two units of

C (stoichiometric coefficients of 1 are omitted in the graphical representation; cf. Fig. 1).

We have rcts(r4) = {E}, prds(r4) = {C}, along with s(E, r4) = 1 and s(r4, C) = 2.

In biology, several concepts have been introduced to model the activation of reaction

fluxes in metabolic networks, or to synthesize metabolic compounds. To model this, we

introduce a function active that given a metabolic network G takes a set of seeds S ⊆M

and returns a set of activated reactions activeG(S) ⊆ R. With it, metabolic network

completion is about ensuring that a set of target reactions (reaction r5 in Fig. 1) is

activated from seed compounds in S by possibly extending the metabolic network with

reactions from a reference network (cf. shaded part in Fig. 2).

Formally, given a metabolic network G = (R∪M,E, s), a set S ⊆M of seed compounds

such that Sb (G) ⊆ S, a set RT ⊆ R of target reactions, and a reference network

(R′ ∪M ′, E′, s′), the metabolic network completion problem is to find a set R′′ ⊆ R′ \R
of reactions of minimal size such that RT ⊆ activeG′′(S) where3

G′′ = ((R ∪R′′) ∪ (M ∪M ′′), E ∪ E′′, s′′) , (1)

M ′′ = {m ∈M ′ | r ∈ R′′,m ∈ rcts(r) ∪ prds(r)} , (2)

E′′ = E′ ∩ ((M ′′ ×R′′) ∪ (R′′ ×M ′′)), and (3)

s′′ = s ∪ s′ . (4)

We call R′′ a completion of (R∪M,E, s) from (R′∪M ′, E′, s′) wrt S and RT . Our concept

of activation allows different biological paradigms to be captured. Accordingly, different

formulations of metabolic network completion can be characterized: the stoichiometric,

the relaxed stoichiometric, the topological, and the hybrid one. We elaborate upon their

formal characterizations in the following sections.

2.1 Stoichiometric Metabolic Network Completion

The first activation semantics has been introduced in the context of Flux Balance Analysis

capturing reaction flux distributions of metabolic networks at steady state. In this

3 Since s, s′ have disjoint domains we view them as relations and compose them by union.
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paradigm, each reaction r is associated with a metabolic flux value, expressed as a real

variable vr confined by the minimum and maximum rates:

lbr ≤ vr ≤ ubr for r ∈ R. (5)

Flux distributions are formalized in terms of a system of equations relying on the

stoichiometric coefficients of reactions.∑
r∈R s(r,m) · vr +

∑
r∈R−s(m, r) · vr = 0 for m ∈M. (6)

Given a target reaction rT ∈ RT , a metabolic network G = (R ∪M,E, s) and a set of

seeds S, stoichiometric activation is defined as follows:

rT ∈ actives
G(S) iff vrT > 0 and (5) and (6) hold for M and R. (7)

Note that the condition vrT > 0 strengthens the flux condition for rT ∈ R in the second

part. More generally, observe that activated target reactions are not directly related to

the network’s seeds S. However, the activation of targets highly depends on the boundary

compounds in Sb (G) for which (6) In our draft network G, consisting of all nodes

and edges depicted in Fig. 2 (viz. reactions rs1 , rs2 , re and r0 to r5 and compounds

A, . . . , F , S1, S2, and S3 and r5 the single target reaction) and the reference network G′,

consisting of the shaded part of Fig 2, (viz. reactions r6 to r9 and metabolite G) a strict

stoichiometry-based completion aims to obtain a solution with r5 ∈ actives
G′′({S1, S2, S3})

where vr5 is maximal. This can be achieved by adding the completion R′′
1 = {r6, r9}

(Fig. 3). The instance of Equation (6) controlling the reaction rates related to metabolite

C is 2 · vr4 − vr2 − vr5 = 0.

To solve metabolic network completion with flux-balance activated reactions, Linear

Programming can be used to maximize the flux rate vrT provided that the linear constraints

are satisfied. Nonetheless, this problem turns out to be hard to solve in practice and

existing approaches scale poorly to real-life applications (cf. (Orth and Palsson, 2010)).

This motivated the use of approximate methods. The relaxed problem is obtained by

weakening the mass-balance equation (6) as follows:∑
r∈R s(r,m) · vr +

∑
r∈R−s(m, r) · vr ≥ 0 for m ∈M. (8)

This lets us define the concept of relaxed stoichiometric activation:

rT ∈ activer
G(S) iff vrT > 0 and (5) and (8) hold for M and R. (9)

The resulting problem can now be efficiently solved with Linear Programming (Satish

Kumar et al., 2007). Existing systems addressing strict stoichiometric network completion

either cannot guarantee optimal solutions (Latendresse, 2014) or do not support a focus on

specific target reactions (Thiele et al., 2014). Other approaches either partially relax the

problem (Vitkin and Shlomi, 2012) or solve the relaxed problem based on Equation (8),

like the popular system gapfill (Satish Kumar et al., 2007). Applied to the network of

Fig. 2, the minimal completion under the relaxed stoichiometric activation is R′′
1 = {r6}

(Fig. 4) but does not carry flux because of the accumulation of metabolite G, allowed

by Equation (8). Note however that for strict steady-state modeling an a posteriori

verification of solutions is needed to warrant the exact mass-balance equation (6).
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Fig. 3: Solution to metabolic network
completion under stoichiometric activa-
tion hypothesis in order to satisfy Equa-
tions (5), (6) and (7). Within this network,
there exists at least one flux distribution
which activates r5.
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Fig. 4: Solution to metabolic network com-
pletion under relaxed stoichiometric acti-
vation hypothesis in order to satisfy Equa-
tions (5), (8) and (9). Notice that within
this completed network, there exist no flux
distribution allowing the reaction r5 to be
activated.

2.2 Topological Metabolic Network Completion

A qualitative approach to metabolic network completion relies on the topology of networks

for capturing the activation of reactions. Given a metabolic network G, a reaction r ∈ R

is activated from a set of seeds S if all reactants in rcts(r) are reachable from S. Moreover,

a metabolite m ∈ M is reachable from S if m ∈ S or if m ∈ prds(r) for some reaction

r ∈ R where all m′ ∈ rcts(r) are reachable from S. The scope of S, written ΣG(S), is the

closure of compounds reachable from S. In this setting, topological activation of reactions

from a set of seeds S is defined as follows:

rT ∈ activet
G(S) iff rcts(rT ) ⊆ ΣG(S). (10)

Note that this semantics avoids self-activated cycles by imposing an external entry

sufficient to initiate all cycles (S3 is not enough to activate the cycle as it does not activate

one of its reaction on its own). The resulting network completion problem can be expressed

as a combinatorial optimization problem and effectively solved with ASP (Schaub and

Thiele, 2009).

For illustration, consider again the draft and reference networks G and G′ in Fig. 1

and Fig. 2. We get ΣG({S1, S2, S3}) = {S1, S2, S3, B}, indicating that target reac-

tion r5 is not activated from the seeds with the draft network because A and C,

its reactants, are not reachable. This changes once the network is completed. Valid

minimal completions are R′′
2 = {r6, r7} (Fig. 5) and R′′

3 = {r6, r8} (Fig. 6) because

r5 ∈ activet
G′′

i
({S1, S2}) since {A,C} ⊆ ΣG′′

i
({S1, S2}) for all extended networks G′′

i

obtained from completions R′′
i of G for i ∈ {2, 3}.

Relevant elements from the reference network are given in dashed gray.

2.3 Hybrid Metabolic Network Completion

The idea of hybrid metabolic network completion is to combine the two previous activation

semantics: the topological one accounts for a well-founded initiation of the system from

the seeds and the stoichiometric one warrants its mass-balance. We thus aim at network

completions that are both topologically functional and flux balanced (without suffering

from self-activated cycles). More precisely, a reaction rT ∈ RT is hybridly activated from
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Fig. 5: First solution to metabolic network
completion under topological activation hy-
pothesis satisfying Equation (10). The pro-
duction of C cannot be explained by a self-
activated cycle and requires an external
source of compounds via S3 and reaction
r7.
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Fig. 6: Second solution to metabolic network
completion under topological activation hy-
pothesis satisfying Equation (10).
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Fig. 7: First solution to metabolic network
completion under hybrid activation hypoth-
esis satisfying Equation (11) (that is Equa-
tions (5), (6), (7) and (10)).
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Fig. 8: Second solution to metabolic net-
work completion under hybrid activation
hypothesis satisfying Equation (11) (that is
Equations (5), (6), (7) and (10)).

a set S of seeds in a network G, if both criteria apply:

rT ∈ activeh
G(S) iff rT ∈ actives

G(S) and rT ∈ activet
G(S). (11)

Applying this to our example in Fig. 2, we get the (minimal) hybrid solutions R′′
4 =

{r6, r7, r9} (Fig. 7) and R′′
5 = {r6, r8, r9} (Fig. 8). Both (topologically) initiate paths

of reactions from the seeds to the target, ie. r5 ∈ activet
G′′

i
({S1, S2, S3}) since {A,C} ⊆

ΣG′′
i
({S1, S2, S3}) for both extended networks G′′

i obtained from completions R′′
i of G for

i ∈ {4, 5}. Both solutions are as well stoichiometrically valid and balance the amount of

every metabolite, hence we also have r5 ∈ actives
G′′

i
({S1, S2, S3}).

2.4 Union of Metabolic Network Completions

As depicted in the toy examples for the topological (Fig. 5 and Fig. 6) and hybrid (Fig. 7

and Fig. 8) activation, several minimal solutions to one metabolic network completion

problem may exist. There might be dozens of minimal completions, depending on the

degradation of the original draft network, hence leading to difficulties for biologists and

bioinformaticians to discriminate the individual results. One solution to facilitate this

curation task is to provide, in addition to the enumeration of solutions, their union. This

has been done previously for the topological completion (Prigent et al., 2017).

Notably, the concept of “union of solutions” is particularly relevant from the biological
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perspective since it provides in a single view all possible reactions that could be inserted in

a solution to the network completion problem. Additionally, verifying the union according

to the desired (stoichiometric and hybrid) activation semantics, offers a way to analyze

the quality of approximation methods (topological and relaxed-stoichiometric ones). If

individual solutions contradict a definition of activation that the union satisfies, it suggests

that the family of reactions contained in the union, although possibly non-minimal, may

be of interest. Thus providing merit to the approximation method and their results.

Importantly, we notice that the operation of performing the union of solutions is stable

with the concept of activation, although it can contradict the minimality of the size of

completion. Indeed, the union of solutions to the topological network completion problem

is itself a (non-minimal) solution to the topological completion problem. Similarly, the

union of minimal stoichiometric solutions always displays the stoichiometric activation

of the target reaction(s). In fact, adding an arbitrary set of reactions to a metabolic

network still maintains stoichiometric activation, since flux distribution for the newly

added reactions may be set to zero. Consequently, the union of minimal hybrid solutions

always displays the hybrid activation in the target reaction(s).

The following theorems (Theorems 1, 2 and 3) are a formalization of the stability of

the union of solutions with respect to the three concepts of activation.

The union G = G1 ∪ G2 of two metabolic networks G1 = (R1 ∪ M1, E1, s1) and

G2 = (R2 ∪M2, E2, s2) is defined by

G = (R ∪M,E, s), (12)

R = R1 ∪R2, (13)

M = M1 ∪M2, (14)

E = E1 ∪ E2, (15)

s = s1 ∪ s2. (16)

Theorem 1. Let G1 and G2 be metabolic networks. If RT ⊆ activet
G1

(S), then RT ⊆
activet

G1∪G2
(S).

Proof. The proof is given by monotonicity of the union and the monotonicity of the

closure. Thus it can never be case that having more reactions disables reachability.

More formal, RT ⊆ activet
G1

(S) holds iff rcts(rT ) ⊆ ΣG1
(S). Furthermore, we have

ΣG1(S) ⊆ ΣG1∪G2(S) by the definition of the closure. This implies rcts(rT ) ⊆ ΣG1∪G2(S).

Finally, we have RT ⊆ activet
G1∪G2

(S).

Theorem 2. Let G1 and G2 be metabolic networks. If RT ⊆ actives
G1

(S), then RT ⊆
actives

G1∪G2
(S).

Proof. First, we define following bijective functions

f :R1 → {1, . . . , l} ⊆ N,
r 7→ f(r) = i

g :M1 → {1, . . . , k} ⊆ N,
m 7→ g(m) = j

f ′ :R1 ∪R2 → {1, . . . , l′} ⊆ N,
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r 7→ f ′(r) =

{
f(r) , if f(r) is defined

i , otherwise

g′ : M1 ∪M2 → {1, . . . , k′} ⊆ N

m 7→ g′(m) =

{
g(m) , if g(m) is defined

j , otherwise

for k = |M1|, l = |R1|, k′ = |M1 ∪M2| and l′ = |R1 ∪ R2| regarding G1 and G1 ∪ G2,

respectively. Now, we rewrite the system of (6) regarding G1 as a matrix equation Av = 0

of form a11 . . . a1l
...

. . .
...

ak1 . . . akl


v1

...

vl

 =

0
...

0


where A is a k × l matrix with coefficients

ag(m)f(r) =


s1(r,m) , (r,m) ∈ E1

−s1(m, r) , (m, r) ∈ E1

0 , otherwise

and v consists of variables vf(r) for r ∈ R1. By L = {v | Av = 0} we denote the set of

solutions induced by Av = 0.

Furthermore, we represent the system of linear equations of (6) regarding G1 ∪G2 as a

matrix equation A′v′ = 0 of form

a11 . . . a1l a1l+1 . . . a1l′
...

. . .
...

...
. . .

...

ak1 . . . akl akl+1 . . . akl′

0 . . . 0 ak+1l+1 . . . ak+1l′

...
. . .

...
...

. . .
...

0 . . . 0 ak′l+1 . . . ak′l′





v1
...

vl
vl+1

...

vl′


=

0
...

0



where A′ is a k′ × l′ matrix with coefficients

ag′(m)f ′(r) =


s(r,m) , (r,m) ∈ E1 ∪ E2

−s(m, r) , (m, r) ∈ E1 ∪ E2

0 , otherwise

where s = s1 ∪ s2 and v′ consists of variables vf ′(r) of (6) for r ∈ R1 ∪R2. Note that A′

can always be written in this form, since switching columns and rows will not change

solutions. By L′ = {v′ | A′v′ = 0} we denote the set of solutions induced by A′v′ = 0.

Since A′v′ = 0 is homogeneous, L ⊆ L′ holds by extending L with zeros for vf ′(r) with

r ∈ R2 \R1. Thus {v | v ∈ L,∀rT ∈ RT , vf(rT ) > 0} ⊆ {v | v ∈ L′,∀rT ∈ RT , vf ′(rT ) > 0}
by extending the first set with zeros for vf ′(r) with r ∈ R2 \R1. From RT ⊆ actives

G1
(S),

we know that the homogeneous system of linear equations from (6) regarding G1 is

non-trivial satisfiable, which finally implies that RT ⊆ actives
G1∪G2

(S).
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Fig. 11: Completion with the
union R1 ∪ R2 = {r2, r3}.
G = G1 ∪ G2 satisfies r4 ∈
activeh

G({S}) and thus is flux-
balanced.

Theorem 3. Let G1 and G2 be metabolic networks. If RT ⊆ activeh
G1

(S), then RT ⊆
activeh

G1∪G2
(S).

Proof. Follows directly by the definition of hybrid activation together with Theorem 1

and Theorem 2. More formal, RT ⊆ activeh
G1

(S) holds iff RT ⊆ activet
G1

(S) and RT ⊆
actives

G1
(S). From Theorem 1 and RT ⊆ activet

G1
(S) follows RT ⊆ activet

G1∪G2
(S).

Analogously, from Theorem 2 and RT ⊆ actives
G1

(S) follows RT ⊆ actives
G1∪G2

(S).

Finally, this implies RT ⊆ activeh
G1∪G2

(S).

In particular, studying the union in case of topological modeling can pinpoint interesting

cases. Individual solutions satisfying the topological activation can additionally satisfy

the stoichiometric and thus the hybrid activation semantics. A union including such a

solution will also adhere to the hybrid standard. In some cases, the union of solutions

will display the stoichiometric activation whereas the individual solutions only satisfy

the topological activation. Fig. 9 to Fig. 11 display an example of topological metabolic

network completions that do not satisfy stoichiometric (and hybrid) activation whereas

their union does. Fig. 12 to Fig. 14 provide an example of minimal topological completions

that do not satisfy stoichiometric (and hybrid) activation and for which the union does

not satisfy it either.

Both observations induce that in general we cannot derive anything about activation

of reactions in a graph resulting from the union of two or more graphs. And similarly,

we cannot infer about the activation of reactions in subgraphs arbitrarily derived from a

graph in which these reactions are activated.

3 Answer Set Programming with Linear Constraints

For encoding our hybrid problem, we rely upon the theory reasoning capacities of the

ASP system clingo that allows us to extend ASP with linear constraints over reals (as

addressed in Linear Programming). We confine ourselves below to features relevant to

our application and refer the interested reader for details to (Gebser et al., 2016).

As usual, a logic program consists of rules of the form

a0 :- a1 ,...,am,not am+1 ,...,not an

where each ai is either a (regular) atom of form p(t1,...,tk) where all ti are terms or a
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Fig. 12: Topological comple-
tion R1 = {r2} satisfies r4 ∈
activet

G1
({S}), but carries no

flux, due to accumulation of
compound B that contradicts
Eq. 6.
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Fig. 13: Topological comple-
tion R1 = {r3} satisfies r4 ∈
activet

G2
({S}), but carries no

flux, due to accumulation of
compounds A and E that
contradicts Eq. 6.
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Fig. 14: Completion with the
union R1 ∪ R2 = {r2, r3}.
G = G1 ∪ G2 satisfies r4 ∈
activet

G({S}), but contra-
dicts minimality and carries
no flux r4 6∈ actives

G({S}),
due to accumulation of com-
pound E that contradicts
Eq. 6.

linear constraint atom of form4 ‘&sum{w1*x1;. . .;wl*xl} <= k’ that stands for the linear

constraint w1 · x1 + · · ·+ wl · xl ≤ k. All wi and k are finite sequences of digits with at

most one dot5 and represent real-valued coefficients wi and k. Similarly all xi stand for

the real-valued variables xi. As usual, not denotes (default) negation. A rule is called a

fact if n = 0.

Semantically, a logic program induces a set of stable models, being distinguished models

of the program determined by stable models semantics (Gelfond and Lifschitz, 1991).

Such a stable model X is an LC-stable model of a logic program P ,6 if there is an

assignment of reals to all real-valued variables occurring in P that (i) satisfies all linear

constraints associated with linear constraint atoms in P being in X and (ii) falsifies

all linear constraints associated with linear constraint atoms in P being not in X. For

instance, the (non-ground) logic program containing the fact ‘a("1.5").’ along with the

rule ‘&sum{R*x} <= 7 :- a(R).’ has the stable model

{a("1.5"), &sum{"1.5"*x}<=7}.
This model is LC-stable since there is an assignment, e.g. {x 7→ 4.2}, that satisfies

the associated linear constraint ‘1.5 ∗ x ≤ 7’. We regard the stable model along with

a satisfying real-valued assignment as a solution to a logic program containing linear

constraint atoms.

To ease the use of ASP in practice, several extensions have been developed. First of

all, rules with variables are viewed as shorthands for the set of their ground instances.

Further language constructs include conditional literals and cardinality constraints (Simons

et al., 2002). The former are of the form a:b1,...,bm, the latter can be written as

s{d1;...;dn}t, where a and bi are possibly default-negated (regular) literals and each

dj is a conditional literal; s and t provide optional lower and upper bounds on the

number of satisfied literals in the cardinality constraint. We refer to b1,...,bm as a

condition. The practical value of both constructs becomes apparent when used with

4 In clingo, theory atoms are preceded by ‘&’.
5 In the input language of clingo, such sequences must be quoted to avoid clashes.
6 This corresponds to the definition of T -stable models using a strict interpretation of theory atoms (Geb-

ser et al., 2016), and letting T be the theory of linear constraints over reals.
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variables. For instance, a conditional literal like a(X):b(X) in a rule’s antecedent expands

to the conjunction of all instances of a(X) for which the corresponding instance of b(X)

holds. Similarly, 2{a(X):b(X)}4 is true whenever at least two and at most four instances

of a(X) (subject to b(X)) are true. Finally, objective functions minimizing the sum of

weights wi subject to condition ci are expressed as #minimize{w1:c1;. . .;wn:cn}.

In the same way, the syntax of linear constraints offers several convenience features. As

above, elements in linear constraint atoms can be conditioned, viz.

‘&sum{w1*x1:c1;...;wl*xl:cn} <= k’

where each ci is a condition. Moreover, the theory language for linear constraints offers

a domain declaration for real variables, ‘&dom{lb..ub} = x’ expressing that all values

of x must lie between lb and ub. And finally the maximization (or minimization) of

an objective function can be expressed with &maximize{w1*x1:c1;...;wl*xl:cn} (by

minimize). The full theory grammar for linear constraints over reals is available at https:

//potassco.org.

4 Solving Hybrid Metabolic Network Completion

In this section, we present our hybrid approach to metabolic network completion. We

start with a factual representation of problem instances. A metabolic network G with a

typing function t : M ∪R→ {d,r,s,t}, indicating the origin of the respective entities,

is represented as follows:

F (G, t) = {metabolite(m,t(m)) | m ∈M}
∪ {reaction(r,t(r)) | r ∈ R}
∪ {bounds(r,lbr,ubr)| r ∈ R} ∪ {objective(r,t(r))| r ∈ R}
∪ {reversible(r) | r ∈ R, rcts(r) ∩ prds(r) 6= ∅}
∪ {rct(m,s(m, r),r,t(r))| r ∈ R,m ∈ rcts(r)}
∪ {prd(m,s(r,m),r,t(r))| r ∈ R,m ∈ prds(r)}

While most predicates should be self-explanatory, we mention that reversible identifies

bidirectional reactions. Only one direction is explicitly represented in our fact format.

The four types d, r, s, and t tell us whether an entity stems from the draft or reference

network, or belongs to the seeds or targets.

In a metabolic network completion problem, we consider a draft network G = (R ∪
M,E, s), a set S of seed compounds, a set RT of target reactions, and a reference network

G′ = (R′ ∪M ′, E′, s′). An instance of this problem is represented by the set of facts

F (G, t) ∪ F (G′, t′). In it, a key role is played by the typing functions that differentiate

the various components:

t(n) =


d, if n ∈ (M \ (T ∪ S)) ∪ (R \ (RSb

∪RT ))

s, if n ∈ S ∪RSb

t, if n ∈ T ∪RT

and t′(n) = r,

where T = {m ∈ rcts(r) | r ∈ RT } is the set of target compounds and RSb
= {r ∈ R |

m ∈ Sb (G),m ∈ prds(r)} is the set of reactions related to boundary seeds.

Our encoding of hybrid metabolic network completion is given in Listing 1. Roughly,

the first 10 lines lead to a set of candidate reactions for completing the draft network.
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1 edge(R,M,N,T) :- reaction(R,T), rct(M,_,R,T), prd(N,_,R,T).
2 edge(R,M,N,T) :- reaction(R,T), rct(N,_,R,T), prd(M,_,R,T), reversible(R).

4 scope(M,d) :- metabolite(M,s).
5 scope(M,d) :- edge(R,_,M,T), T!=r, scope(N,d):edge(R,N,_,T’), N!=M, T’!=r.

7 scope(M,x) :- scope(M,d).
8 scope(M,x) :- edge(R,_,M,_), scope(N,x):edge(R,N,_,_), N!=M.

10 { completion(R) : edge(R,M,N,r), scope(N,x), scope(M,x) }.

12 scope(M,c) :- scope(M,d).
13 scope(M,c) :- edge(R,_,M,T), T!=r, scope(N,c):edge(R,N,_,T’), T’!=r, N!=M.
14 scope(M,c) :- completion(R), edge(R,_,M,r), scope(N,c):edge(R,N,_,r), N!=M.

16 :- metabolite(M,t), not scope(M,c).

18 &dom{L..U} = R :- bounds(R,L,U).

20 &sum{ IS*IR : prd(M,IS ,IR,T), T!=r; IS ’*IR’ : prd(M,IS ’,IR’,r), completion(IR ’);
21 -OS*OR : rct(M,OS ,OR,T), T!=r; -OS ’*OR ’ : rct(M,OS’,OR’,r), completion(OR ’)
22 } = "0" :- metabolite(M,_).

24 &sum{ R } > "0" :- reaction(R,t).

26 &maximize{ R : objective(R,t) }.
27 #minimize{ 1,R : completion(R) }.

Listing 1: Encoding of hybrid metabolic network completion

Their topological validity is checked in lines 12–16 with regular ASP, the stoichiometric

one in lines 18–24 in terms of linear constraints. (Lines 1–16 constitute a revision of the

encoding in (Schaub and Thiele, 2009).) The last two lines pose a hybrid optimization

problem, first minimizing the size of the completion and then maximizing the flux of the

target reactions.

In more detail, we begin by defining the auxiliary predicate edge/4 representing directed

edges between compounds connected by a reaction. With it, we calculate in Line 4 and 5

the scope ΣG(S) of the draft network G from the seed compounds in S; it is captured by

all instances of scope(M,d). This scope is then extended in Line 7/8 via the reference

network G′ to delineate all possibly producible compounds. We draw on this in Line 10

when choosing the reactions R′′ of the completion (cf. Section 2) by restricting their choice

to reactions from the reference network whose reactants are producible. This amounts to

a topological search space reduction.

The reactions in R′′ are then used in lines 12–14 to compute the scope ΣG′′(S) of the

completed network. And R′′ constitutes a topologically valid completion if all targets in

T are producible by the expanded draft network G′′: Line 16 checks whether T ⊆ ΣG′′(S)

holds, which is equivalent to RT ⊆ activet
G′′(S). Similarly, R′′ is checked for stoichiometric

validity in lines 18–24. For simplicity, we associate reactions with their rate and let their

identifiers take real values. Accordingly, Line 18 accounts for (5) by imposing lower and

upper bounds on each reaction rate. The mass-balance equation (6) is enforced for each

metabolite M in lines 20–22; it checks whether the sum of products of stoichiometric

coefficients and reaction rates equals zero, viz. IS*IR, -OS*OR, IS’*IR’, and -OS’*OR’.

Reactions IR, OR and IR’, OR’ belong to the draft and reference network, respectively,

and correspond to R ∪R′′. Finally, by enforcing rT > 0 for rT ∈ RT in Line 24, we make

sure that RT ⊆ actives
G′′(S).

In all, our encoding ensures that the set R′′ of reactions chosen in Line 10 induces an
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augmented network G′′ in which all targets are activated both topologically as well as

stoichiometrically, and is optimal wrt the hybrid optimization criteria.

5 System and Experiments

In this section, we introduce fluto, our new system for hybrid metabolic network completion,

and empirically evaluate its performance. The system relies on the hybrid encoding

described in Section 4 along with the hybrid solving capacities of clingo (Gebser et al.,

2016) for implementing the combination of ASP and LP. We use clingo 5.2.0 incorporating

as LP solvers either cplex 12.7.0.0 or lpsolve 5.5.2.5 via their respective Python interfaces.

We describe the details of the underlying solving techniques in a separate paper and focus

below on application-specific aspects.

The output of fluto consists of two parts. First, the completion R′′, given by instances

of predicate completion, and second, an assignment of floats to (metabolic flux variables

vr for) all r ∈ R ∪R′′. In our example, we get

R′′ = {completion(r6), completion(r8), completion(r9)}
and {rs1 = 49999.5, r9 = 49999.5, r3 = 49999.5, r2 = 49999.5,

re = 99999.0, r6 = 49999.5, r5 = 49999.5, r4 = 49999.5}.

Variables assigned 0 are omitted. Note the flux value r8 = 0 even though r8 ∈ R′′. This

is to avoid the self-activation of cycle C, D and E. By choosing r8, we ensure that the

cycle has been externally initiated at some point but activation of r8 is not necessary at

the current steady state.

We analyze (i) the impact of different system configurations (ii) the quality of fluto’s

approach to metabolic network completion, and (iii) compare the quality of fluto’s

solutions with other approaches. To have a realistic setting, we use degradations of a

functioning metabolic network of Escherichia coli (Reed et al., 2003) comprising 1075

reactions. The network was randomly degraded by 10, 20, 30 and 40 percent, creating

10 networks for each degradation by removing reactions until the target reactions were

inactive according to Flux Variability Analysis (Becker et al., 2007). 90 target reactions

with varied reactants were randomly chosen for each network, yielding 3600 problem

instances in total (Prigent et al., 2017). The reference network consists of reactions of

the original metabolic network.

We ran each benchmark on a Xeon E5520 2.4 GHz processor under Linux limiting

RAM to 20 GB. At first, we investigate two alternative optimization strategies for

computing completions of minimum size. The first one, branch-and-bound (bb), iteratively

produces solutions of better quality until the optimum is found and the other, unsatisfiable

core (usc), relies on successively identifying and relaxing unsatisfiable cores until an

optimal solution is obtained. Note that we are not only interested in optimal solutions

but if unavailable also solutions activating target reactions without trivially restoring the

whole reference network. In clingo, bb naturally produces these solutions in contrast to

usc. Therefore, we use usc with stratification (Ansótegui et al., 2013), which provides at

least some suboptimal solutions.
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PPPPPPPcore-
prop-

0 25 50 75 100

0 383.20(130) 388.51(134) 384.46(133) 388.45(137) 398.21(134)
25 385.05(132) 385.95(133) 391.84(131) 382.29(137) 401.73(134)
50 383.95(131) 377.51(123) 385.46(132) 391.05(137) 399.88(141)
75 358.77(129) 360.54(127) 356.89(131) 390.69(137) 399.36(134)

100 376.03(133) 370.75(132) 375.77(133) 389.77(139) 401.18(139)

Table 1: Comparision of propagation and core minimization heuristics for bb.

PPPPPPPcore-
prop-

0 25 50 75 100

0 297.38(102) 296.39(102) 296.48(103) 299.14(105) 475.12(200)
25 297.29(101) 293.69(100) 297.09(102) 293.43(101) 478.39(202)
50 292.65(102) 296.43(102) 294.4(103) 295.48(102) 477.67(200)
75 331.72(127) 336.34(129) 331.17(127) 294.17(103) 476.16(202)

100 308.88(108) 309.47(107) 324.9(122) 489.97(214) 476.17(201)

Table 2: Comparision of propagation and core minimization heuristics for usc.

5.1 System configurations

The configuration space of fluto is huge. In addition to its own parameters, the ones of

clingo and the respective LP solver amplify the number of options. We thus concentrate

on distinguished features revealing an impact in our experiments.

The first focus are two system options controlling the hybrid solving nature of fluto. First,

prop-n controls the frequency of LP propagation: the consistency of linear constraints

is only checked if n% of atoms are decided. Second, the fluto option core-n invokes

the irreducible inconsistent set algorithm (Ostrowski and Schaub, 2012) whenever n% of

atoms are decided. This algorithm extracts a minimal set of conflicting linear constraints

for a given conflict. Note that the second parameter depends on the first one, since conflict

analysis may only be invoked if the LP solver found an inconsistency.

The default is to use core-100, prop-0, and use LP solver cplex 7. This allows us

to detect conflicts among the linear constraints as soon as possible and only perform

expensive conflict analysis on the full assignment.

To get an overview, we conducted a preliminary experiment using bb and usc with fluto’s

default configuration on the 10, 20, and 30 percent degraded networks, 2700 instances

in total, limiting execution time to 20 minutes. For our performance experiments, we

selected at random three networks with at least one instance for which bb and usc could

find the optimum in 100 to 600 seconds. With the resulting 270 medium to hard instances,

we examined the cross product of values n ∈ {0, 25, 50, 75, 100} for core-n and prop-n,

respectively, limiting time to 600 seconds.

Table 1 and Table 2 display the results using bb and usc respectively. The columns

increase the value for prop-n and the rows for core-n in steps of 25, i.e., LP propagation

becomes less frequent from left to right, and conflict minimization from top to bottom.

The first value in each cell is the average runtime in seconds and the value in brackets

shows the number of timeouts. The shade of the cells depends on the average runtime,

7 We do not present results of lpsolve since it produced inferior results.
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FR JP TW TR CR HD
t to t to t to t to t to t to

bb 400.41 154 389.68 147 360.54 127 409.33 141 362.74 120 434.54 160
usc 227.38 78 293.96 100 316.54 107 293.54 102 221.84 74 297.32 104

Table 3: Comparision of clingo’s portfolio configurations for bb and usc.

i.e., the darker the cell, the less performant the combination of propagation and conflict

minimization heuristics.

Table 1 shows that propagation and conflict minimization heuristics have an overall

small impact on the performance of bb optimization. Since bb relies on iterating solutions

and learns weaker constraints, only pertaining to the best known bound, while optimizing,

the improvement step is less constraint compared to usc. Due to this, conflicts are more

likely to appear later on in the optimization process allowing for less impact of frequent

LP propagation and conflict minimization Nevertheless, we see a slight performance

improvement of propagating and conflict minimizing for every partial assignment (prop-

0, core-0) compared to only on full assignments (prop-100, core-100). To prove the

optimum, the solver is still required to cover the whole search space. For this purpose, early

pruning and conflict minimization may be effective. Furthermore, we see the best average

runtime in the area prop-0-50 at core-75. That indicates a good tradeoff between the

better quality conflicts which prune the search effectively and the overhead of the costly

conflict minimization. There is no clear best configuration, but prop-25 and core-75

shows the best tradeoff between average runtime and number of timeouts.

usc on the other hand (Table 2), clearly benefits from early propagation and conflict

minimization. The area prop-0-75 and core-0-50 has the lowest average runtime and

number of timeouts, best among them prop-25 and core-25 with the lowest timeouts and

average runtime that is not significantly different from the best value. usc aims at quickly

identifying unsatisfiable partial assignments and learning structural constraints building

upon each other, which is enhanced by frequent conflict detection and minimization.

Disabling LP propagation on partial assignments with usc leads to the overall worst

performance and we also see deterioration with core-75 and core-100 in the interval

prop-0-50. Overall, usc is more effective than bb for the instances and we see a benefit

in early LP propagation and conflict minimization as well as in fine-tuning the heuristics

at which point both are applied.

Now, we focus on the portfolio configurations of clingo. Those configurations were

crafted by experts to enhance the solving performance of problems with certain attributes.

and employ the following clingo options:

FR Refers to clingo’s configuration frumpy that uses more conservative defaults.

JP Refers to clingo’s configuration jumpy that uses more aggressive defaults.

TW Refers to clingo’s configuration tweety that is geared toward typical ASP problems.

TR Refers to clingo’s configuration trendy that is geared toward industrial problems.

CR Refers to clingo’s configuration crafty that is geared towards crafted problems.

HD Refers to clingo’s configuration handy that is geared towards larger problems.

For more information on clingo’s configurations, see (Gebser et al., 2015).

Table 3 shows the average runtime in seconds (t) and number of timeouts (to) for all six

configurations using bb and usc on the same 270 instances. Even though CR has slightly
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f(bb) f(usc) f(bb+usc) f(bb+usc)
degradation #sols #opts #sols #opts #sols #opts verified

10% (900) 900 900 892 892 900 900 900
20% (900) 830 669 793 769 867 814 867
30% (900) 718 88 461 344 780 382 780

all (2700) 2448 1657 2146 2005 2547 2096 2547

Table 4: Comparison of qualitative results.

f(vbs) verified
degradation #sols #opts f(vbs)

10% (900) 900 900 900
20% (900) 896 855 896
30% (900) 848 575 848
40% (900) 681 68 681

all (3600) 3325 2398 3325

Table 5: Results using best system options.

higher average runtime for bb compared to TW, it is the overall best configuration. This

configuration is geared towards problems with an inherent structure compared to randomly

generated benchmarks which fits with the metabolic network completion problem at hand

since the data is taken from an existing bacteria. Interestingly, bb performs worse under

more specific configurations and favors moderate once like TW and CR. This might be

due to the changing nature of improvement steps as the optimization process goes on from

finding any random solutions to an unsatisfiability proof in the end. usc on the other

hand, benefits from a more structural heuristics in CR and more conservative defaults in

FR which allow the solver to explore and collect conflicts instead of frequently restarting

and forgetting.

5.2 Solution quality

Now, we examine the quality of the solutions provided by fluto. Table 4 gives the number of

solutions (#sols) and optima (#opts) obtained by fluto (f) in its default setting within

20 minutes for bb, usc and the best of both (bb+usc), individually for each degradation

and overall. The data was obtained in our preliminary experiment using networks with

10, 20, and 30 percent degradation. For 94.3% of the instances fluto(bb+usc) found a

solution within the time limit and 82.3% of them were optimal. We observe that bb

provides overall more useful solutions but usc acquires more optima, which was to be

expected by the nature of the optimization techniques. Additionally, each technique finds

solutions to problem instances where the other exceeds the time limit, underlining the

merit of using both in tandem. Column verified shows the quality of solutions provided

by fluto. Each obtained best solution was checked with cobrapy 0.3.2 (Ebrahim et al.,

2013), a renowned system implementing an FBA-based gold standard (for verification

only). All solutions found by fluto could be verified by cobrapy. In detail, fluto found a

smallest set of reactions completing the draft network for 77.6%, a suboptimal solution

for 16.7%, and no solution for 5.6% of the problem instances.

Finally, we change the system configuration and examine how fluto scales on harder

instances. To this end, we use the best configurations from Section 5.1, prop-25, core-75

and CR for bb, and prop-25, core-25 and CR for usc, and rerun the experiment on all
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fluto meneco
min average max min average max

solutions per instance 1 2.24 12 1 1.88 6
reactions per solution 1 6.66 9 1 6.24 9

verified solutions 100% 73.39%
instances with only verified solutions 100% 72.94%

instances without verified solutions 0% 26.61%
instance with some verified solutions 0% 0.45%

Table 6: Comparison of fluto and meneco solutions for 10 percent degraded networks.

fluto meneco gapfill

verified union 100% 73.39% 6.20%
verified union of verified solutions 100% 72.94% NA

verified union of unverified solutions 0% 0.00% NA
verified union of partially verified solutions 0% 0.45% NA

Table 7: Comparison of fluto, meneco and gapfill unions for 10 percent degraded networks.

3600 instances. The results are shown in (Table 5). f(vbs) denotes the virtual best results,

meaning for each problem instance the best known solution among the two configurations

was verified. For 20% and 30% degradation, we obtain additional 29 and 68 solutions

and 41 and 193 optima, respectively. Overall, we find solutions for 92.4% out of the 3600

instances and 72.1% of them are optimal. The number of solutions decreases slightly and

the number of optima more drastically with higher degradation. The results show that

fluto is capable of finding correct completions for even highly degraded networks for most

of the instances in reasonable time.

5.3 Comparison to other approaches

We compare the quality of fluto with meneco 1.4.3 (Prigent et al., 2017) and gap-

fill8 (Satish Kumar et al., 2007). 9 Both meneco and gapfill are systems for metabolic

network completion. While meneco pursues the topological approach, gapfill applies the

relaxed stoichiometric variant using Inequation (8). We performed an enumeration of

all minimal solutions to the completion problem under the topological (meneco), the

relaxed stoichiometric (gapfill), and hybrid (fluto) activation semantics for the 10 percent

degraded networks of the benchmark set (900 instances to be completed).

First, we compare the quality of individual solutions of fluto and meneco. 10 Results

are displayed in Table 6. The first two rows give the minimum, average and maximum

number of solutions per instance, and reactions per solution, respectively, for fluto and

meneco. While fluto finds 19% more solutions on average and twice as many maximum

solutions per instance compared to meneco, the numbers of reactions in minimal solutions

of both tools are similar. The next four rows pertain to the solution quality as established

by cobrapy. First, what percent solutions over all instances could be verified, second,

what percent of instances had verified solutions exclusively, third, how many instances

8 Update of 2011-09-23 see http://www.maranasgroup.com/software.htm
9 The results for meneco and gapfill are taken from previous work (Prigent et al., 2017), where they

were run to completion with no time limit.
10 There was no data available for the individual solutions of gapfill.
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had no verified solutions at all, and finally, percent of instances where only a portion

of solutions could be verified. All of fluto’s solutions could be verified, compared to the

72.04% of meneco across all solutions and 72.94% of instances that were correctly solved.

Interestingly, meneco achieves hybrid activation in some but not all solutions for 0.45%

(4) of the instances. fluto does not only improve upon the quality of meneco, but also

provides more solution per instances without increasing the number of relevant reactions

significantly.

To empirically evaluate the properties established in Section 2.4, and be able to compare

to gapfill, for which only the union of reactions was available, we examine the union of

minimal solutions provided by all three systems and present the results in Table 7. The

four rows show, first, for what percent of instances the union of solutions could be verified,

second, how many instances had only verified solutions and their union was also verified,

third, the percentage of instances where the union of solutions displayed activation of

the target reactions even though all individual solutions did not provide that, and forth,

instances where the solutions were partly verifiable and their union could also be verified.

While again 100% of fluto’s solutions could be verified, only 73.3% and 6.2% are obtained

for meneco and gapfill, respectively, for 10 percent degraded networks. As reflected by the

results, the ignorance of meneco regarding stoichiometry leads to possibly unbalanced

networks. Still, the union of solutions provided a useful set of reactions in almost three

quarters of the instances, showing merit in the topological approximation of the metabolic

network completion problem. On the other hand, the simplified view of gapfill in terms

of stoichiometry misguides the search for possible completions and eventually leads to

unbalanced networks even in the union. Moreover, gapfill ’s ignorance of network topology

results in self-activated cycles. By exploiting both topology and stoichiometry, fluto avoids

such cycles while still satisfying the stoichiometric activation criteria. The results support

the observations made in Section 2.4. For both fluto and meneco all instances, for which

the complete solution set could be verified, the union is also verifiable, as well as all unions

for instances where meneco established hybrid activation for a fraction of solutions.

6 Discussion

We presented the first hybrid approach to metabolic network completion by combining

topological and stoichiometric constraints in a uniform setting. To this end, we elabo-

rated a formal framework capturing different semantics for the activation of reactions.

Based upon these formal foundations, we developed a hybrid ASP encoding reconciling

disparate approaches to network completion. The resulting system, fluto, thus combines

the advantages of both approaches and yields greatly superior results compared to purely

quantitative or qualitative existing systems. Our experiments show that fluto scales to

more highly degraded networks and produces useful solutions in reasonable time. In fact,

all of fluto’s solutions passed the biological gold standard. The exploitation of the net-

work’s topology guides the solver to more likely completion candidates, and furthermore

avoids self-activated cycles, as obtained in FBA-based approaches. Also, unlike other

systems, fluto allows for establishing optimality and address the strict stoichiometric

completion problem without approximation.

fluto takes advantage of the hybrid reasoning capacities of the ASP system clingo

for extending logic programs with linear constraints over reals. This provides us with a
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practically relevant application scenario for evaluating this hybrid form of ASP. To us,

the most surprising empirical result was the observation that domain-specific heuristic

allow for boosting unsatisfiable core based optimization. So far, such heuristics have only

been known to improve satisfiability-oriented reasoning modes, and usually hampered

unsatisfiability-oriented ones (cf. (Gebser et al., 2015)).
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Appendix A Factual representation of example metabolic network

The factual representation of the metabolic network in Fig. 2 is given in Listing 2.

1 metabolite ("S1",s). metabolite ("S2",s). metabolite ("S3",s).
2 metabolite ("a",t). metabolite ("b",d). metabolite ("c",t).
3 metabolite ("d",d). metabolite ("e",d). metabolite ("f",d).
4 metabolite ("g",r).

6 reaction (" R_importS1",s). reaction (" R_importS2",s).
7 reversible (" R_importS1 "). reversible (" R_importS2 ").
8 prd("S1","1"," R_importS1",s). prd("S2","1"," R_importS2",s).
9 reaction (" R_exportF",d). rct("f","1"," R_exportF",d).

11 reaction ("R0",d). reaction ("R1",d).
12 rct("b","1","R0",d). rct("S3","1","R1",d).
13 prd("S3","1","R0",d). prd("b","1","R1",d).

15 reaction ("R2",d). reaction ("R3",d).
16 rct("c","1","R2",d). rct("d","1","R3",d).
17 rct("S2","1","R2",d). prd("e","1","R3",d).
18 prd("d","1","R2",d).

20 reaction ("R4",d). reaction ("R9",r).
21 rct("e","1","R4",d). rct("g","1","R9",r).
22 prd("c","2","R4",d). prd("f","1","R9",r).

24 reaction ("R5",t). reaction ("R6",r).
25 rct("a","1","R5",t). rct("S1","1","R6",r).
26 rct("c","1","R5",t). prd("a","1","R6",r).
27 prd("f","1","R5",t). prd("g","1","R6",r).

29 reaction ("R7",r). reaction ("R8",r).
30 rct("S3","1","R7",r). rct("b","1","R8",r).
31 prd("e","1","R7",r). prd("e","1","R8",r).

33 objective(R,T) :- reaction(R,T), T!=t.
34 objective(R,t) :- reaction(R,t).

36 bounds(R ,"0" ,"99999") :- reaction(R,_), not reversible(R).
37 bounds(R ," -99999" ,"99999") :- reaction(R,_), reversible(R).

Listing 2: Example instance of metabolic network

Note that in lines 33 to 37 of Listing 2, the values of objective and bounds are set

globally, but they may be arbitrary in general.


