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Abstract

We present the new multi-threaded version of the state-of-the-art answer set solver clasp. We detail
its component and communication architecture and illustrate how they support the principal func-
tionalities of clasp. Also, we provide some insights into the data representation used for different
constraint types handled by clasp. All this is accompanied by an extensive experimental analysis of
the major features related to multi-threading in clasp.

1 Introduction

The increasing availability of multi-core technology offers a great opportunity for fur-
ther improving the performance of solvers for Answer Set Programming (ASP; (Baral
2003)). This paper describes how we redesigned and reimplemented the award-winning1

ASP solver clasp (Gebser et al. 2007b) in order to leverage the power of today’s multi-core
shared memory machines by supporting parallel search. To this end, we chose a coarse-
grained, task-parallel approach via shared memory multi-threading. This has led to the
clasp 2 series supporting a single- and a multi-threaded variant sharing a common code
base. clasp allows for parallel solving by search space splitting and/or competing strate-
gies. While the former involves dynamic load balancing in view of highly irregular search
spaces, both modes aim at running searches as independently as possible in order to take
advantage of enhanced sequential algorithms. In fact, a portfolio of solver configurations
cannot only be used for competing but also in splitting-based search. The latter is option-
ally combined with global restarts to escape from uninformed initial splits.

For promoting the scalability of parallel search, all major routines of clasp 2 are lock-
free. Also, we enforced a clear distinction between read-only, shared, and thread-local data
and incorporated accordingly optimized representations. This is implemented by means
of Intel’s Threading Building Blocks (TBB) for providing platform-independent threads,
atomics, and concurrent containers. Currently, clasp supports up to 64 configurable (non-
hierarchic) threads. Apart from parallel search, another major extension of previous ver-
sions of clasp regards the exchange of recorded nogoods. While unary, binary, and ternary

∗ Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.
1 The multi-threaded variant of clasp 2 won the first place in the Crafted/UNSAT and the second place in the

Crafted/SAT+UNSAT category, respectively, at the 2011 SAT competition in terms of number of solved in-
stances and wall-clock time. In addition, clasp 2 was among the three genuine parallel solvers participating in
the 32 cores track (restricted to benchmarks from the Application category; the fourth solver used a portfolio,
including clasp 1.3). Also, clasp 2 participated “out of competition” at the 2011 ASP competition, which was
dominated by the single-threaded variant of clasp 2.
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nogoods are always shared among all threads, longer ones can optionally be exchanged,
configurable at the sender as well as at the receiver side. In fact, clasp provides different
measures estimating the quality of shared nogoods as well as various heuristics and filters
for controlling their integration. For instance, the sharing of a nogood can be subject to the
number of distinct decision levels associated with its literals. Conversely, the integration of
a nogood may depend on its satisfaction and/or scores in host heuristics.

In view of the wide distribution of clasp, we put a lot of effort into transferring the
entire functionality from the sequential, viz. clasp series 1.3, to the parallel setting. For
one, this concerned clasp’s reasoning modes (cf. (Gebser et al. 2011a)), including enumer-
ation, projected enumeration, intersection and union of models, and optimization. More-
over, we extended clasp’s language capacities by allowing for solving weighted and/or par-
tial MaxSAT (Li and Manyà 2009) as well as Boolean optimization (Marques-Silva et al.
2011) problems. Finally, it goes without saying that clasp’s basic infrastructure has also
significantly evolved with the new design; e.g. the preprocessing capacities of clasp were
extended with blocked clause elimination (Järvisalo et al. 2010), and its conflict analysis
has been significantly improved by on-the-fly subsumption (Han and Somenzi 2009).

In what follows, we focus on describing the multi-threaded variant of clasp 2. To this
end, the next section provides a high-level view on modern parallel ASP solving. The gen-
eral component and communication architecture of the new version of clasp are presented
in Section 3 and 4. Section 5 details the design of data structures underlying the implemen-
tation of clasp 2. Parallel search features of clasp 2 are empirically assessed in Section 6.
Finally, Section 7 and 8 discuss related work and the achieved results, respectively.

2 Parallel ASP Solving

We presuppose some familiarity with search procedures for (Boolean) constraint solving,
that is, Davis-Putnam-Logemann-Loveland (DPLL; (Davis and Putnam 1960; Davis et al.
1962)) and Conflict-Driven Constraint Learning (CDCL; (Marques-Silva and Sakallah
1999; Zhang et al. 2001)). In fact, (sequential) ASP solvers like smodels (Simons et al.
2002) adopt the search pattern of DPLL based on systematic chronological backtracking,
or like clasp (series 1.3) apply lookback techniques from CDCL, which include conflict-
driven learning and non-chronological backjumping. In what follows, we primarily con-
centrate on CDCL and principal points for its parallelization in the clasp 2 series.

In order to solve the basic decision problem of solution existence, CDCL first extends a
given (partial) assignment via deterministic (unit) propagation. Importantly, every derived
literal is “forced” by some nogood (set of literals that must not jointly be assigned), which
would be violated if the literal’s complement were assigned. Although propagation aims
at forgoing nogood violations, assigning a literal forced by one nogood may lead to the
violation of another nogood; this situation is called conflict. If the conflict can be resolved
(the violated nogood contains backtrackable literals), it is analyzed to identify a conflict
constraint. The latter represents a “hidden” conflict reason that is recorded and guides
backjumping to an earlier stage such that the complement of some formerly assigned literal
is forced by the conflict constraint, thus triggering propagation. Only when propagation
finishes without conflict, a (heuristically chosen) literal can be assigned at a new decision
level, provided that the assignment at hand is partial, while a solution (total assignment
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while work available
while no (result) message to send

communicate // exchange information with other solver instances
propagate // deterministically assign literals
if no conflict then

if all variables assigned then send solution

else decide // non-deterministically assign some literal
else

if root-level conflict then send unsatisfiable

else if external conflict then send unsatisfiable

else
analyze // analyze conflict and add conflict constraint
backjump // unassign literals until conflict constraint is unit

communicate // exchange results with (and receive work from) other solver instances

Fig. 1. High-level algorithm for multi-threaded Conflict-Driven (Boolean) Constraint Learning.

not violating any nogood) has been found otherwise. The eventual termination of CDCL
is guaranteed (cf. (Zhang and Malik 2003; Ryan 2004)), by either returning a solution or
encountering an unresolvable conflict (independent of unforced decision literals).

Figure 1 provides a high-level view on the parallelization of CDCL-style search in clasp.
We first note that entering the inner search loop relies on the availability of work. In fact,
when search spaces to investigate in parallel are split up by means of guiding paths (Zhang
et al. 1996), a solver instance must acquire some spare guiding path before it can start to
search. In this case, all (decision) literals of the guiding path are assigned up to the solver’s
root level, precluding them from becoming unassigned upon backtracking/backjumping.
Apart from search space splitting, parallelization of clasp can be based on algorithm port-
folios (Gomes and Selman 2001), running different solving strategies competitively on the
same search space. Once a solver instance is working on some search task, it combines
deterministic propagation with communication. The latter includes nogood exchange with
other solver instances, work requests from idle solvers (asking for a guiding path), and ex-
ternal conflicts raised to abort the current search.2 An external conflict or an (unresolvable)
root-level conflict likewise make a solver instance stop its current search, and the same ap-
plies when a solution is found. In such a case, the respective result is communicated (in the
last line of Figure 1), and a new search task may be received in turn.

As mentioned in the introductory section, the infrastructure of clasp also allows for
conducting sophisticated reasoning modes like enumeration and optimization in parallel.
This is accomplished via enriched message protocols, e.g. (upper) bounds are exchanged
in addition to nogoods when performing parallel optimization, while an external conflict
(raised upon finding the first solution) switches competing solvers of an algorithm portfolio
into enumeration mode based on guiding paths. In fact, search space splitting and algorithm
portfolios can be applied exclusively or be combined to flexibly orchestrate parallel solvers.

In the following sections, we detail the parallel architecture and underlying implementa-

2 For instance, a solver instance may discover unconditional unsatisfiability (even when using guiding paths; cf.
(Ellguth et al. 2009)) and then inform others about the needlessness of performing further work.



4 Martin Gebser and Benjamin Kaufmann and Torsten Schaub

Logic 
Program

SharedContext
Propositional Variables

Atoms Bodies

Static Nogoods

Implication Graph

ParallelSolve

Nogood
Distributor

Solver 1...n Conflict
Resolution

Decision
Heuristic

Assignment
Atoms/Bodies

Propagation

Recorded
Nogoods

Threads S1 ...S2 Sn

Counter T ...W S

Shared Nogoods

Queue P1 ...P2 Pn

Enumerator

Unit Pro-
pagation

Post Pro-
pagation

Preprocessing

Program
Builder

Pre-
processor

Fig. 2. Multi-threading architecture of clasp 2.

tion techniques of clasp 2. Regarding data structures, it is worthwhile to note that unit prop-
agation over “long” nogoods (involving more than three literals) relies on a two-watched-
literals approach (Moskewicz et al. 2001), monitoring two references to unassigned literals
for triggering propagation once the second last literal becomes assigned. We also presup-
pose basic familiarity with parallel computing concepts, such as race conditions, atomic
operations, (dead- and spin-) locks, semaphores, etc. (cf. (Herlihy and Shavit 2008)).

3 Component Architecture

To explain the architecture and functioning of the new version of clasp, let us follow the
workflow underlying its design. To this end, consider clasp’s architectural diagram given in
Figure 2. Although clasp also accepts other input formats, like (extended) dimacs, opb, and
wbo for describing Boolean satisfiability (SAT; (Biere et al. 2009)) and optimization prob-
lems, we detail its functioning for computing answer sets of (propositional) logic programs,
as output by grounders like gringo (Gebser et al. 2011a) or lparse (Syrjänen). Similarly,
we concentrate on the multi-threaded setting, neglecting the single-threaded one.

At the start, only the main thread is active. Once the logic program is read in, it is subject
to several preprocessing stages, all conducted by the main thread. At first, the program is
(by default) simplified while identifying equivalences among its constituents (Gebser et al.
2008). The simplified program is then transformed into a compact representation in terms
of Boolean constraints (whose core is generated from the completion (Clark 1978) of the
simplified program). After that, the constraints are (optionally) subject to further, mostly
SAT-based preprocessing (Eén and Biere 2005; Järvisalo et al. 2010). Such techniques are
more involved in our ASP setting because variables relevant to unfounded-set checking,
optimization, or part of complex (i.e. cardinality and weight) constraints cannot be simply
eliminated. Note that both preprocessing steps identify redundant variables that can be
expressed in terms of the relevant ones included in the resulting set of constraints.
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The outcomes of the preprocessing phase are stored in a SharedContext object that is
initialized by the main thread and shared among all participating threads. Among others,
this object contains

• the set of relevant Boolean variables together with type information
(e.g. atom, body, aggregate, etc.),

• a symbol table, mapping (named) atoms from the program to internal variables,
• the positive atom-body dependency graph, restricted to its strongly connected com-

ponents,
• the set of Boolean constraints, among them nogoods, cardinality and weight con-

straints, minimize constraints, and
• an implication graph capturing inferences from binary and ternary nogoods.3

The richness of this information is typical for ASP, and it is much sparser in a SAT setting.
After its initialization in association with a “master solver,” further (solver) threads are

(concurrently) attached to the SharedContext, where its constraints are “cloned.” Notably,
each constraint is aware of how to clone itself efficiently (cf. Section 5 on implementation
details). Moreover, the Enumerator and NogoodDistributor objects are used globally in or-
der to coordinate various model enumeration modes and nogood exchange among solver
instances. We detail their functioning in Section 4.

Each thread contains one Solver object, implementing the algorithm in Figure 1. Each
Solver stores

• local data, including assignment, watch lists, constraint database, etc.,
• local strategies, regarding heuristics, restarts, constraint deletion, etc.,

and it uses the NogoodDistributor to share recorded nogoods. A solver assigns variables
either by (deterministic) propagation or (non-deterministic) decisions. Motivated by the
nature of ASP problems,3 each solver propagates first binary and ternary nogoods (shared
through the aforementioned implication graph), then longer nogoods and other constraints,
before it finally applies any available post propagators.

Post propagators constitute another important new feature of clasp 2, providing an ab-
straction easing clasp’s extensibility with more elaborate propagation mechanisms. For
this, each solver maintains a list of post propagators that are consecutively processed af-
ter unit propagation. For instance, failed-literal detection and unfounded-set checking are
implemented in clasp 2 as post propagators. Similarly, they are used in the new version of
clasp’s extension with constraint processing, clingcon (Gebser et al. 2009), to realize the-
ory propagation. Post propagators are assigned different priorities and are called in priority
order. Typically, we distinguish three priority classes:

• single post propagators are deterministic and only extend the current decision level.
Unfounded-set checking is a typical example.

• multi post propagators are deterministic and may add or remove decision levels.
Failed-literal detection is a typical example.

3 ASP problems usually yield a large majority of binary nogoods due to program completion (Clark 1978). Also
note that unary nogoods capture initial problem simplifications that need not be rechecked during search.
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• complex post propagators may or may not be deterministic.
Nogood exchange is an example for this (see below).

Moreover, parallelism is also handled by means of post propagators, as described next.
ParallelSolve controls concurrent solving with up to 64 individually configurable

threads. When attaching a solver to the SharedContext, ParallelSolve associates a thread
with the solver and adds dedicated post propagators to it. One high-priority post propaga-
tor is added for message handling and another, very low-priority post propagator is supplied
for integrating information stemming from models4 and/or shared nogoods.

For controlling parallel search, ParallelSolve maintains a set of atomic message flags:

• terminate signals the end of a computation,
• interrupt forces outside termination (e.g. when the user hits Ctrl+C),
• sync indicates that all threads shall synchronize, and
• split is set during splitting-based search whenever at least one thread needs work.

These flags are used to implement clasp’s two major search strategies:

• splitting-based search via distribution of guiding paths and dynamic load balancing
via a split-request and -response protocol, and

• competition-based search via freely configurable solver portfolios.

Notably, solver portfolios can also be used in splitting-based search, that is, different guid-
ing paths may be solved with different configurations.

4 Communication Architecture

A salient transverse aspect of the architecture of clasp 2 is its communication infrastruc-
ture, used for implementing advanced reasoning procedures. To begin with, the Parallel-
Solve object keeps track of threads’ load, particularly in splitting-based search. Moreover,
the Enumerator controls enumeration-based reasoning modes, while the NogoodDistributor
handles the exchange of recorded nogoods among solver threads. These communication-
intense components along with fundamental implementation techniques are detailed below
in increasing order of complexness.

4.1 Thread Coordination

The basic communication architecture of clasp relies on message passing, efficiently im-
plemented by lock-free atomic integers. On the one hand, globally shared atomic counters
are stored in ParallelSolve. For instance, all aforementioned control flags are stored in a
single shared atomic integer. On the other hand, each thread has a local message counter
hosted by the message handling post propagator (see above). Message passing builds upon
two basic methods: postMessage() and hasMessage(). Posting a message amounts
to a Compare-And-Swap5 (CAS) on an atomic integer, and checking for messages (via

4 This can regard an enumerated model to exclude, intersect, or union, as well as objective function values.
5 Conditional writing is performed as atomic CPU instruction to achieve synchronization in multi-threading.
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specialized post propagators) is equivalent to an atomic read. Of particular interest is com-
munication during splitting-based search. This is accomplished via a lock-free work queue,
an atomic work request counter, and a work semaphore in ParallelSolve. Initially, the work
queue only contains the empty guiding path, and all threads “race” for this work package
by issuing a work request. A work request first tries to pop a guiding path from the work
queue and returns upon success. Otherwise, the work request counter is incremented and a
split request is posted, which results in raising the split flag. Afterwards, a wait() is tried
on the work semaphore.6 If wait() fails because the number of idle threads now equals
the total number of threads, the requesting thread posts a terminate message and wakes
up all waiting threads. Otherwise, the thread is blocked until new work arrives. On the re-
ceiver side, the message handling post propagator of each thread checks whether the split
flag has been set. If so, and provided that the thread at hand has work to split, its message
handler proceeds as follows. At first, it decrements the work request counter. (Note that
the message handler thus declares the request as handled before actually serving it in order
to minimize over-splitting.) If the work request counter reached 0, the message handler
also resets the split flag. Afterwards, the search space is split and a (short) guiding path is
pushed to the work queue in ParallelSolve. At last, the message handler signals the work
semaphore and hence eventually wakes up a waiting thread.

Splitting-based search usually suffers from uninformed early splits of the search space.
To counterbalance this, ParallelSolve supports an advanced global restart scheme based
on a two-phase strategy. In the first phase, threads vote upon effectuating a global restart
based on some given criterion (currently, number of conflicts); however, individual threads
may veto a global restart. For instance, this may happen in enumeration when a first model
is found during this first restarting phase. Once there are enough votes, a global restart is
initiated in the second phase. For this, a sync message is posted and threads wait until all
solvers have reacted to this message. The last reacting thread decides on how to continue.
If no veto was issued, the global restart is executed. That is, threads give up their guiding
paths, the work queue is cleared, and the initial (empty) guiding path is again added to
the work queue. Otherwise, the restart is abandoned, and the threads simply continue with
their current guiding paths.

If splitting-based search is not active (i.e. during competition-based search), the work
queue initially contains one (empty) guiding path for each thread, and additional work
requests simply result in the posting of a terminate message.

4.2 Nogood Exchange

Given that each thread implements conflict-driven search involving nogood learning, the
corresponding solvers may benefit from a controlled exchange of their recorded informa-
tion. However, such an interchange must be handled with great care because each individ-
ual solver may already learn exponentially many nogoods, so that their additional sharing
may significantly hamper the overall performance.

To differentiate which nogoods to share, clasp 2 pursues a hybrid approach regarding

6 See http://en.wikipedia.org/wiki/Semaphore_(programming) in case of unfamiliarity
with the working of semaphores.
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both nogood exchange and storage. As described in Section 3, the binary and ternary im-
plication graph (as well as the positive atom-body dependency graph) are shared among
all solver threads. Otherwise, each solver maintains its own local nogood database. The
sharing of these nogoods is optional, as we detail next.

The actual exchange of nogoods is controlled in clasp by separate distribution and in-
tegration components for carefully selecting the spread constraints. This is supported by
thread-local interfaces along with the global NogoodDistributor (see Figure 2). All compo-
nents rely on interfaces abstracting from the specific sharing mechanism used underneath.

The distribution of nogoods is configurable in two ways. First, the exported nogoods
can be filtered by their type, viz. conflict, loop, or short (i.e. binary and ternary), or be
exhaustive or inhibited. The difference between globally sharing short nogoods (via their
implication graph) and additionally “distributing” them lies in the proactiveness of the pro-
cess. While the mere sharing leaves it to each solver to discover nogoods added by others,
their explicit distribution furthermore communicates this information through the standard
distribution process. Second, the export of nogoods is subject to their respective number of
distinct decision levels associated with the contained literals, called the Literal Block Dis-
tance (LBD; (Audemard and Simon 2009)). Fewer distinct decision levels are regarded as
advantageous since they are prone to prune larger parts of the search space. This criterion
has empirically shown to be rather effective and largely superior to a selection by length.

The integration of nogoods is likewise configurable in two ways. The first criterion cap-
tures the relevance of a nogood to the local search process. First, the state of a nogood
is assessed by checking whether it is satisfied, violated, open (i.e. neither satisfied nor
violated), or unit w.r.t. the current (partial) assignment. While violated and unit nogoods
are always considered relevant, open nogoods are optionally passed through a filter using
the solver’s current heuristic values to discriminate the relevance of the candidate nogood
to the current solving process. Finally, satisfied nogoods are either ignored or considered
open depending on the configuration of the corresponding filter and their state relative to
the original guiding path. The second integration criterion is expressed by a grace period
influencing the size of the local import queue and thereby the minimum time a nogood is
stored. Once the local import queue is full, the least recently added nogood is evicted and
either transferred to the thread’s nogood database (where it becomes subject to the thread’s
nogood deletion policy) or immediately discarded. Currently, two modes are distinguished.
The thread transfers either all or only “heuristically active” nogoods from its import queue
while discarding all others.

Both distribution and integration are implemented as dedicated (complex) post propaga-
tors, based upon a global distribution scheme implemented via an efficient lock-free Multi-
Read-Multi-Write (MRMW) list situated in ParallelSolve.7 Distribution roughly works as
follows. When the solver of Thread i records a nogood that is a candidate for sharing, it is
first integrated into the thread-local nogood database. In addition, the nogood’s reference
counter is set to the total number of threads plus one, and its target mask to all threads
except i. At last, Thread i appends the shared nogood to the aforementioned MRMW list.

Conversely upon integration, Thread j traverses the MRMW list, thereby ignoring all

7 This choice is motivated by the fact that we aim at optimizing clasp for desktop computers, still mostly pos-
sessing few genuine processing units. Other strategies are possible and an active subject of current research.
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nogoods whose target mask excludes j. Depending on the state of a nogood, the afore-
mentioned filters decide whether a nogood is relevant or not. All relevant nogoods are
integrated into the search process of Thread j and added to its local import queue. The
reference counter of each nogood is decremented by each thread moving its read pointer
beyond it. In addition, the sharing thread i decrements a nogood’s reference counter when-
ever it no longer uses it. Hence, the reference counter of a shared nogood can only drop to
zero once it is no longer addressed by any read pointer. This makes it subject to deletion.

Notably, the shared representation of a nogood is only created when the nogood is ac-
tually distributed. Otherwise, its optimized (single-threaded) representation is used. Upon
integration, the “best” representation is selected, for instance, short nogoods are copied
while longer ones are physically shared (see Section 5 for implementation details).

4.3 Complex Reasoning Modes

In addition to model printing, all enumeration-based reasoning modes of clasp 2 are con-
trolled by the global Enumerator (see Figure 2). These reasoning modes include regular
and projected model enumeration, intersection and union of models, uniform and hierar-
chical (multi-criteria) optimization as well as combinations thereof, like computing the
intersection of all optimal models.

As already mentioned, one global Enumerator is shared among all threads and is pro-
tected by a lock. Whenever applicable, it hosts global constraints, like minimize con-
straints, that are updated whenever a model is found. Additionally, the Enumerator adds
a local enumeration-specific constraint to each solver for storing thread-local data, e.g.
current optima (see below). Once a model is found, a dedicated message update-model is
send to all threads, but threads only react to the most recent one.

In fact, enumeration is combinable with both search strategies described in Section 3,
either by applying dedicated enumeration algorithms taking advantage of guiding paths or
by using solution recording in a competitive setting. The latter setting exploits the infras-
tructure for nogood exchange in order to distribute solutions among solver threads. Once
a solution is converted into a nogood, it can be treated as usual, except that its integra-
tion is imperative and that it is exempt from deletion. However, this approach suffers from
exponential space complexity in the worst case. Unlike this, splitting-based enumeration
runs in polynomial space, following a distributed version of the enumeration algorithm
introduced in (Gebser et al. 2007a). In order to avoid uninformed splits at the beginning,
all solver threads may optionally start in a competitive setting. Once the first model is
found, the Enumerator enforces splitting-based search among all solver threads and dis-
ables global restarts. In addition to the distribution of disjoint guiding paths, backtrack
levels (see (Gebser et al. 2007a)) are dealt with locally in order to guarantee an exhaustive
and duplicate-free enumeration of all models.

In optimization, solver threads cooperate in enumerating one better model after another
until no better one is found, so that the last model is optimal. Whenever a better model is
found, its objective value is stored in the Enumerator. The threads react upon the following
update-model message by integrating the new value into their local minimize constraint
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representation8 and thus into the search processes of their solvers. Minimize constraints
provide methods for efficiently re-computing their state after an update, so that restart-
ing search is unnecessary in most cases. An innovative feature of clasp 2 is hierarchical
optimization (Gebser et al. 2011b), build on top of uniform optimization. Hierarchical
optimization allows for solving multi-criteria optimization problems by considering crite-
ria according to their respective priorities. Such an approach is much more involved than
standard branch-and-bound-based optimization because it must recover from several unsat-
isfiable subproblems, one for each criterion. This is accomplished by dynamic minimize
constraints that may be disabled and reinitialized during search. Accordingly, nogoods
learned under minimize constraints must be retracted once the constraint gets disabled.
Another benefit of such dynamic constraints is that we may decrease the (upper) bound in
a non-uniform way, and successively re-increase it upon unsatisfiability. Hierarchical opti-
mization allows for gaining an order of magnitude on multi-criteria problems, as witnessed
in Linux configuration (Gebser et al. 2011c).

Also, brave and cautious reasoning, computing the union and intersection of all models,
respectively, are implemented through a global constraint within the Enumerator. When-
ever a new model is found, the constraint is intersected with the model (or its complement).

5 Implementation

A major design goal of clasp 2 was to leverage the power of today’s multi-core shared
memory machines, while keeping the resulting overhead low so that the single-threaded
variant does not suffer from a significant loss in performance. In particular, we aimed at
empowering physical sharing of constraints and data while avoiding false sharing, locking,
and communication overhead. To this end, our design foresees a clear distinction between
three types of data representations, viz.

• read-only data providing lock- and wait-free sharing (without deadlocks and races),
• shared data being subject to concurrent updates via CAS or locks (admitting races),

and
• thread-local data being private to each thread and thus not sharable (avoiding dead-

locks and races).

Let us make this more precise by detailing the data representations of the various types
of constraints used in clasp. Constraints are typically separated into a thread-local and a
(possibly shared) read-only part. While the former usually contains search-specific and
thus dynamic data, the latter typically comprises static data not being subject to change.

As mentioned above, the implication graph is shared among all threads and stores
inferences from binary and ternary nogoods. The corresponding data structure is separated
into two parts. On the one hand, a static read-only part is initialized during preprocessing; it
stores two vectors, bin(l) and tern(l), for each literal l. The former contains literals
being forced once l becomes true. Similarly, the latter stores binary clauses being activated
when l becomes true. For better data locality, bin(l) and tern(l) are actually stored

8 While the literals of a minimize constraint are stored globally, corresponding upper bounds are local to threads,
and changes are communicated through the Enumerator.
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in one memory block. On the other hand, the dynamic part supports concurrent updates for
storing and distributing short recorded nogoods. To this end, it includes, for each literal l,
an atomic pointer, learnt(l), to a linked list of CACHE LINE SIZE-sized memory
blocks. Each such memory block contains a fixed-size array of binary and ternary nogoods.
This setting guarantees that propagation over learnt(l) is efficient and does not need
any locks (given that short clauses are never removed). Moreover, we rely on fine-grained
spinlocks to enable efficient updates of fixed-size arrays.

In analogy, longer nogoods are separated into two parts, called head and tail. The head
part is always thread-local and is referenced in the owning thread’s watch lists. It stores
two watched literals, one cache literal, and some extra dynamic data, like nogood activ-
ity. The cache literal provides a (potential) spare watched literal, in case one of the two
original ones is assigned. That is, upon updating the watched literals, the cache literal is
inspected before a costly visit of the literals in the (possibly shared) tail part is engaged.9

Further contents of the head part depend on whether a nogood is shared. If not, the nogood
stores its unshared tail part, including the nogood’s size and remaining literals, together
with the head in one continuous memory block. Otherwise, the head points to a read-only
shared tail object containing the nogood’s literals, an (atomic) reference counter, and fur-
ther static data, like the size of the nogood. The separation into a dynamic thread-local
and a static read-only shared part is motivated by the fact that sharing only needs to repli-
cate the search-specific state of a nogood, like its watched literals and activity. Notably,
although a more local representation of shared nogoods would be possible, it is important
to avoid storing dynamic data of different threads in the same coherence block (e.g. a cache
line); otherwise, writes of one thread lead to (logically) unnecessary coherence operations
in other threads. Our separation of data ensures that thread-local data of different threads
is never stored together and thus avoids such “false sharing.” Regarding representation,
clasp employs the following policies. Short nogoods of up to five literals are never physi-
cally shared, but completely stored in thread-local head parts for improving access locality.
Original problem nogoods are physically shared in the presence of multiple threads, except
if copying (instead of sharing) of problem nogoods is enforced. Finally, recorded nogoods
are only shared on demand, as described in Section 4.

Analogously to nogoods, weight constraints have a thread-local part storing current
assignments (to enclosed literals) and the corresponding sum of weights as well as a shared
part storing size, literals, weights, and a reference counter. The shared part of a minimize
constraint (cf. Section 4) in addition includes priority levels of literals, and thread-local
parts contain current (upper) bounds.

Finally, unfounded-set checking also relies on a bipartite data representation. As
mentioned above, it is implemented as a dedicated post propagator utilizing the (read-
only) shared strongly connected components of a program’s positive atom-body depen-
dency graph (cf. Section 3). This is again counterbalanced by a thread-local part storing
assignment-specific data, like source pointers (cf. (Simons et al. 2002)).

9 The Watched Literal Reference Lists of miraxt (Schubert et al. 2009) follow a similar approach.
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Fig. 3. Number of solved instances per time for clasp 2 and other multi-threaded SAT solvers.

6 Experiments

We conducted two series of experiments, the first comparing clasp 2 to other multi-threaded
CDCL-based (SAT) solvers and the second assessing the impact of different parallel search
features. In fact, efforts to parallelize CDCL have so far concentrated on the area of SAT,
and thus we compare clasp (version 2.0.5) to the following multi-threaded SAT solvers:
cryptominisat (version 2.9.2; (Soos et al. 2009)), manysat (version 1.1; (Hamadi et al.
2009b)), miraxt (version 2009; (Schubert et al. 2009)), and plingeling (version 587f; (Biere
2011)). While miraxt performs search space splitting via guiding paths, the three other
solvers let different configurations of an underlying sequential SAT solver compete with
one another. Furthermore, nogood exchange among individual threads is either confined to
short nogoods, only unary (plingeling) or binary ones as well (cryptominisat), performed
adaptively (manysat; cf. (Hamadi et al. 2009a)), or exhaustive in view of a shared nogood
database (miraxt). The solvers were run on a Linux machine with two Intel Quad-Core
Xeon E5520 2.27GHz processors, imposing a limit of 1000 (or 1200) seconds wall-clock
time per solver and benchmark instance in the first (or second) series of experiments.10

Our first series of experiments evaluates the performance of clasp in comparison to
other multi-threaded SAT solvers. To this end, we ran the aforementioned solvers on 160
benchmark instances from the Crafted category at the 2011 SAT competition.11 The plot
in Figure 3 displays numbers of solved instances (on the y-axis) as a function of time (in
log scale on the x-axis). As (sequential) baseline, we include clasp running one thread
in the configuration submitted to the 2011 SAT competition. This configuration is con-
trasted with four- and eight-threaded variants of the considered parallel SAT solvers, us-
ing a prefabricated portfolio (clasp --create-template) for competing threads of
clasp. First of all, we observe in Figure 3 that all multi-threaded solvers complete more
instances than sequential clasp when given sufficient time (more than 10 seconds). This
is unsurprising because the available CPU time roughly amounts to the product of wall-
clock time and number of threads, given that our benchmark machine offers sufficient

10 The benchmark suites are available at http://www.cs.uni-potsdam.de/clasp.
11 From the whole collection of 300 competition benchmarks, the 160 selected instances could be solved with

ppfolio (Roussel 2011), the (wall-clock time) winner in the Crafted category at the 2011 SAT competition,
within 1000 seconds. Without this preselection, plenty (more) runs of the considered solvers would not finish
in the time limit, and running the experiments would have consumed an order of magnitude more time.
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Fig. 4. Number of solved instances per time for different parallel search strategies of clasp 2.

computing resources for concurrent thread execution. In fact, we further observe that each
multi-threaded solver benefits from running more (eight instead of four) threads. How-
ever, the increase in the number of solved instances is solver-specific and rather small with
manysat, which mainly duplicates its fixed portfolio of four configurations in the transition
to eight threads (changing only the random seed used in the branching heuristics). Unlike
this, the other multi-threaded solvers complete between five (clasp) and eight (cryptomin-
isat, miraxt, and plingeling) more instances in the time limit when doubling the number
of threads. These improvements are significant because harnessing additional computing
resources for parallel search is justified when it makes instances accessible that are hard
(or unpredictable) to solve sequentially.12 Comparing the performance of multi-threaded
clasp to other SAT solvers shows that clasp is very competitive, thus emphasizing the
(low-level) efficiency of its parallel infrastructure. But please take into account that Crafted
benchmarks are closer to ASP problems, which clasp is originally designed for, than those
in SAT competitions’ Application category, to which the other four SAT solvers are tai-
lored. Finally, although solver portfolios (as used in ppfolio) proved to be powerful at the
2011 SAT competition, we do not include them in our experiments because their diverse
members are run in separation, thus not utilizing multi-threading for parallelization.

The second series of experiments assesses parallel search features of clasp on a broad
collection of 1435 benchmark instances, stemming from the 2009 ASP and SAT com-
petitions as well as the 2006 and 2008 SAT races. To begin with, the plot in Figure 4
compares different parallel search strategies, viz. portfolio of competing threads (PORT),
search space splitting via guiding paths (GP), splitting-based search with a portfolio of dif-
ferent configurations (PORT+GP), and the previous setting augmented with global restarts
(PORT+GP+GR). Note that the PORT mode matches the clasp setup that has already been
used above, and that up to ten restarts (according to the geometric policy 500∗1.5i) are
performed globally with the PORT+GP+GR mode. As in our first experiments, we ob-
serve that all multi-threaded clasp modes dominate the baseline of running a single thread.
Similarly, each mode benefits from more threads, where the transition from two to four
threads is particularly significant with portfolio approaches (e.g. 32 more instances com-
pleted with PORT). In fact, the latter dominate the GP mode relying on a uniform clasp

12 The speedup (in terms of wall-clock time) of eight-threaded over single-threaded clasp is about 1.5, which may
seem low, but the eight-threaded variant completes 31 instances (with unknown sequential solving time) more.
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Fig. 5. Number of solved instances per time for different nogood exchange policies of clasp 2.

(default) configuration, especially when the number of threads is greater than two. This
indicates the difficulty of making fair splits in view of irregular search spaces, while run-
ning different configurations in parallel improves the chance of success (cf. (Hyvärinen
et al. 2011)). Although the robustness of splitting-based search is somewhat enhanced by
running different configurations (PORT+GP) and additionally applying global restarts to
refine uninformed splits (PORT+GP+GR), its combinations with guiding paths could not
improve over the plain PORT mode. However, it would be interesting to scale this experi-
ment further up (on a machine with more than eight cores) in order to investigate whether a
portfolio becomes saturated at some point, so that combinations with search space splitting
would be natural to exploit greater parallelism.

Finally, Figure 5 plots the performances of clasp (PORT mode) w.r.t. nogood exchange
policies. Given that the binary and ternary implication graph is always shared among
all threads, the difference between the NO and SHORT modes is that short nogoods are
recorded “silently” with NO and proactively communicated with SHORT (cf. Section 4.2).
The LBD-2 and -4 modes further extend SHORT by additionally distributing “long” no-
goods whose LBD does not exceed 2 or 4, respectively, independent of the nogood size in
terms of literals. While the amount of solved instances is primarily influenced by the num-
ber of threads, different nogood exchange policies are responsible for gradual differences
between clasp variants running the same number of threads. With four and eight threads,
the LBD modes are more successful than NO and SHORT, especially in the time inter-
val from 10 to a few hundred seconds. This shows that the exchange of information helps
to reduce redundancies between the search processes of individual threads; it further sup-
ports the conjecture in (Audemard and Simon 2009) that “our measure [LBD] will also be
very useful in the context of parallel SAT solvers.” Interestingly, even when running eight
threads, the performances of LBD-2 and -4 modes are close to each other, with a slight
tendency towards LBD-4. Our experiments do thus not exhibit bottlenecks due to the ad-
ditional exchange of nogoods with LBD 3 and 4. However, more exhaustive experiments
are required (and part of our ongoing work) to find a good trade-off between number of
threads and LBD limit for exchange. Ultimately, dynamic measures like those suggested
in (Hamadi et al. 2009a) are indispensable for self-adapting nogood exchange to different
problem characteristics, and adding such measures to clasp is a subject to future work.
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7 Related Work

Parallel ASP solving was so far dominated by approaches distributing tree search by ex-
tending the solver smodels in various ways (Finkel et al. 2001; Hirsimäki 2001; Pontelli
et al. 2003; Balduccini et al. 2005; Gressmann et al. 2005; Gressmann et al. 2006). While
smodels applies systematic backtracking-based search, following the scheme of DPLL
used in traditional SAT solving, clasp as well as modern SAT solvers are based on CDCL,
relying on conflict-driven learning and backjumping. However, the clear edge of CDCL-
based solvers over DPLL-based ones also brings about more sophisticated search proce-
dures that have to be accommodated in a distributed setting. Apart from distributed con-
straint learning, this particularly affects the coordination of model enumeration.

The approach taken with claspar (Ellguth et al. 2009; Gebser et al. 2011d) can be re-
garded as a precursor to our present work. claspar is designed for a cluster-oriented setting
without any shared memory. It thus aims at large-scale computing environments, where
physical distribution necessitates data copying rather than sharing. In fact, claspar can be
understood as a wrapper controlling the distribution of independent clasp instances via
MPI (Gropp et al. 1999), thereby taking advantage of clasp’s interfaces for data exchange.
However, compared to claspar, (quasi) instantaneous communication via shared memory
enables a much closer collaboration (e.g. rapid nogood exchange) among threads in clasp.

Although much work has also been carried out in the area of parallel logic programming,
among which or-parallelism (Gupta et al. 2001; Chassin de Kergommeaux and Codognet
1994) is similar to search space splitting, our work is more closely related to parallel SAT
solving, tracing back to (Zhang et al. 1996; Blochinger et al. 2003). Among modern ap-
proaches to multi-threaded SAT solving, the ones of miraxt (Schubert et al. 2009) and
manysat (Hamadi et al. 2009b) are of particular interest due to their complementary treat-
ment of recorded nogoods. miraxt is implemented via pthreads and uses a globally shared
nogood database. The advantage of this is that each thread sees all nogoods and can inte-
grate them with low latency. However, given that multiple threads read and write on the
database, it needs readers-writer locks. Moreover, many nogoods are actually never used
by more than one thread, but still produce some maintenance overhead in each thread.
manysat is implemented via openmp and uses a copying approach to nogood exchange,
proscribing any physical sharing. That is, each among n solver threads has its own nogood
database, and nogood exchange is accomplished by copying via n∗(n−1) pairwise distri-
bution queues. While this approach performs well for a small number n of solver threads,
it does not scale up due to the quadratic number of queues and excessive copying. Recent
parallel SAT solvers further include plingeling (Biere 2011) and the multi-threaded vari-
ant of cryptominisat (Soos et al. 2009). Finally, note that, while knowledge exchange and
(shared) memory access matter likewise in parallel SAT and ASP solving, the scope of the
latter also stretches out over enumeration and optimization of answer sets.

8 Discussion

We have presented major design principles and key implementation techniques underlying
the clasp 2 series, thus providing the first CDCL-based ASP solver supporting paralleliza-
tion via multi-threading. While its multi-threaded variant aims at leveraging the power
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of today’s multi-core shared memory machines in parallel search, clasp 2 has also been
designed with care not to sacrifice the (low-level) performance of its single-threaded vari-
ant, sharing a common code base. In fact, the competitiveness of single- as well as multi-
threaded clasp 2 variants is, for instance, witnessed by their performances at the 2011 SAT
competition. Beyond powerful parallel search, multi-threaded clasp 2 allows for conduct-
ing the various reasoning modes of its single-threaded sibling, including enumeration and
(hierarchical) optimization, in parallel. On the one hand, this makes the multi-threaded
variant of clasp 2 highly flexible, offering parallel solving capacities for various reasoning
tasks. On the other hand, the vast configuration space of a CDCL-based solver becomes
even more complex, as individual threads as well as their interaction can be configured
in manifold ways. In view of this, adaptive solving strategies (e.g. regarding nogood ex-
change) and automatic parallel solver configuration are important issues to future work.
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