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Abstract

Answer Set Programming (ASP) is a prominent knowledge representation language with roots in logic
programming and non-monotonic reasoning. Biennial ASP competitions are organized in order to furnish
challenging benchmark collections and assess the advancement of the state of the art in ASP solving. In
this paper, we report on the design and results of the Seventh ASP Competition, jointly organized by the
University of Calabria (Italy), the University of Genova (Italy), and the University of Potsdam (Germany),
in affiliation with the 14th International Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR 2017). (Under consideration foracceptance in TPLP).
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1 Introduction

Answer Set Programming (ASP) is a prominent knowledge representation language with roots
in logic programming and non-monotonic reasoning (Baral 2003; Brewka et al. 2011; Eiter et al.
2009; Gelfond and Leone 2002; Lifschitz 2002; Marek and Truszczyński 1999; Niemelä 1999).
The goal of the ASP Competition series is to promote advancements in ASP methods, collect
challenging benchmarks, and assess the state of the art in ASP solving (see, e.g., (Alviano et al.
2015; Alviano et al. 2017; Bruynooghe et al. 2015; Gebser et al. 2015; Lefèvre et al. 2017;
Maratea et al. 2015; Marple and Gupta 2014; Calimeri et al. 2017) for recent ASP systems, and
(Gebser et al. 2018) for a recent survey). Following a nowadays customary practice of publishing
results of AI-based competitions in archival journals, where they are expected to remain available
and can be used as references, the results of ASP competitions have been hosted in prominent
journals of the area (see, (Calimeri et al. 2014; Calimeri et al. 2016; Gebser et al. 2017b)).
Continuing the tradition, this paper reports on the design and results of the Seventh ASP Com-
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petition,1 which was jointly organized by the University of Calabria (Italy), the University of
Genova (Italy), and the University of Potsdam (Germany), in affiliation with the 14th Interna-
tional Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR 2017).2

The Seventh ASP Competition is conceived along the lines of the System track of previous
competition editions (Calimeri et al. 2016; Lierler et al. 2016; Gebser et al. 2016; Gebser et al.
2017b), with the following characteristics: (i) benchmarks adhere to the ASP-Core-2 standard
modeling language,3 (ii) sub-tracks are based on language features utilized in problem encodings
(e.g., aggregates, choice or disjunctive rules, queries, and weak constraints), and (iii) problem
instances are classified and selected according to their expected hardness. Both single and multi-
processor categories are available in the competition, where solvers in the first category run
on a single CPU (core), while they can take advantage of multiple processors (cores) in the
second category. In addition to the basic competition design, which has also been addressed in a
preliminary version of this report (Gebser et al. 2017a), we detail the revised benchmark selection
process as well as the results of the event, which were orally presented during LPNMR 2017 in
Hanasaari, Espoo, Finland.

The rest of this paper is organized as follows. Section 2 introduces the format of the Seventh
ASP Competition. In Section 3, we describe new problem domains contributed to this compe-
tition edition as well as the revised benchmark selection process for picking instances to run in
the competition. The participant systems of the competition are then surveyed in Section 4. In
Section 5, we then present the results of the Seventh ASP Competition along with the winning
systems of competition categories. Section 6 concludes the paper with final remarks.

2 Competition Format

This section gives an overview of competition categories, sub-tracks, and scoring scheme(s),
which are similar to the previous ASP Competition edition. One addition though concerns the
system ranking of Optimization problems, where a ranking by the number of instances solved
“optimally” complements the relative scoring scheme based on solution quality used previously.

Categories. The competition includes two categories, depending on the computational resources
provided to participant systems: SP, where one processor (core) is available, and MP, where
multiple processors (cores) can be utilized. While the SP category aims at sequential solving
systems, MP allows for exploiting parallelism.

Sub-tracks. Both categories are structured into the following four sub-tracks, based on the ASP-
Core-2 language features utilized in problem encodings:

• Sub-track #1 (Basic Decision): Encodings consisting of non-disjunctive and non-choice
rules (also called normal rules) with classical and built-in atoms only.

• Sub-track #2 (Advanced Decision): Encodings exploiting the language fragment allow-
ing for aggregates, choice as well as disjunctive rules, and queries, yet excepting weak
constraints and non-head-cycle-free (non-HCF) disjunction.

1 http://aspcomp2017.dibris.unige.it
2 http://lpnmr2017.aalto.fi
3 http://www.mat.unical.it/aspcomp2013/ASPStandardization/

http://aspcomp2017.dibris.unige.it
http://lpnmr2017.aalto.fi
http://www.mat.unical.it/aspcomp2013/ASPStandardization/
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(a) A directed graph with edge costs.
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(b) Fact representation of the graph in (a).

1 node(1). edge(1,2). cost(1,2,3).
2 edge(1,4). cost(1,4,1).

3 node(2). edge(2,1). cost(2,1,2).
4 edge(2,3). cost(2,3,1).

5 node(3). edge(3,2). cost(3,2,2).
6 edge(3,4). cost(3,4,2).

7 node(4). edge(4,1). cost(4,1,2).
8 edge(4,3). cost(4,3,2).

(c) Basic Decision encoding of Hamiltonian cycles.

1 cycle(X,Y) :- edge(X,Y), edge(X,Z), Y != Z, not cycle(X,Z).

2 reach(Y) :- cycle(1,Y).
3 reach(Y) :- cycle(X,Y), reach(X).

4 :- node(Y), not reach(Y).

(d) Advanced Decision encoding of Hamiltonian cycles.

1 {cycle(X,Y) : edge(X,Y)} = 1 :- node(X).

2 reach(Y) :- cycle(1,Y).
3 reach(Y) :- cycle(X,Y), reach(X).

4 :- node(Y), not reach(Y).

(e) Unrestricted encoding of Hamiltonian cycles.

1 cycle(1,Y) | cycle(1,Z) :- edge(1,Y), edge(1,Z), Y != Z.
2 cycle(X,Y) | cycle(X,Z) :- edge(X,Y), edge(X,Z), Y != Z,

reach(X), X != 1.

3 reach(Y) :- cycle(X,Y).

4 :- node(Y), not reach(Y).

(f) Weak constraint for Hamiltonian cycle optimization.

1 :∼ cycle(X,Y), cost(X,Y,C). [C,X,Y]

Fig. 1: An example graph with edge costs, its fact representation, and corresponding encodings.

• Sub-track #3 (Optimization): Encodings extending the aforementioned language fragment
by weak constraints, while still excepting non-HCF disjunction.

• Sub-track #4 (Unrestricted): Encodings exploiting the full language and, in particular,
non-HCF disjunction.

A problem domain, i.e., an encoding together with a collection of instances, belongs to the first
sub-track its problem encoding is compatible with.
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Example 1
To illustrate the sub-tracks and respective language features, consider the directed graph dis-
played in Figure 1(a) and the corresponding fact representation given in Figure 1(b). Facts over
the predicate node/1 specify the nodes of the graph, those over edge/2 provide the edges, and
cost/3 associates each edge with its cost. The idea in the following is to encode the well-known
Traveling Salesperson problem, which is about finding a Hamiltonian cycle, i.e., a round trip
visiting each node exactly once, such that the sum of edge costs is minimal. Note that the exam-
ple graph in Figure 1(a) includes precisely two outgoing edges per node, and for simplicity the
encodings in Figures 1(c)–(e) build on this property, while accommodating an arbitrary number
of outgoing edges would also be possible with appropriate modifications.

The first encoding in Figure 1(c) complies with the language fragment of Sub-track #1, as it
does not make use of aggregates, choice or disjunctive rules, queries, and weak constraints. Note
that terms starting with an uppercase letter, such as X, Y, and Z, stand for universally quantified
first-order variables, Y != Z is a built-in atom, and not denotes the (default) negation connec-
tive. Given this, the rule in line 1 expresses that exactly one of the two outgoing edges per node
must belong to a Hamiltonian cycle, represented by atoms over the predicate cycle/2 within a
stable model (Lifschitz 2008). Starting from the distinguished node 1, the least fixpoint of the
rules in lines 2 and 3 provides the nodes reachable from 1 via the edges of a putative Hamiltonian
cycle. The so-called integrity constraint, i.e., a rule with an empty head that is interpreted as false,
in line 4 then asserts that all nodes must be reachable from the starting node 1, which guarantees
that stable models coincide with Hamiltonian cycles. While edge costs are not considered so far,
the encoding in Figure 1(c) can be used to decide whether a Hamiltonian cycle exists for a given
graph (with precisely two outgoing edges per node).

The second encoding in Figure 1(d) includes a choice rule in line 1, thus making use of lan-
guage features permitted in Sub-track #2, but incompatible with Sub-track #1. The instance of
this choice rule obtained for the node 1, {cycle(1,2); cycle(1,4)} = 1., again expresses
that exactly one outgoing edge of node 1 must be included in a Hamiltonian cycle, and respective
rule instances apply to the other nodes of the example graph in Figure 1(a). Notably, the choice
rule adapts to an arbitrary number of outgoing edges, and the assumption that there are precisely
two per node could be dropped when using the encoding in Figure 1(d).

The rules in lines 1 and 2 of the third encoding in Figure 1(e) are disjunctive, and rule instances
as follows are obtained together with line 3:

cycle(1,2) | cycle(1,4).
cycle(2,1) | cycle(2,3) :- reach(2).
cycle(3,2) | cycle(3,4) :- reach(3).
cycle(4,1) | cycle(4,3) :- reach(4).
reach(1) :- cycle(2,1). reach(3) :- cycle(2,3).
reach(1) :- cycle(4,1). reach(3) :- cycle(4,3).
reach(2) :- cycle(1,2). reach(2) :- cycle(3,2).
reach(4) :- cycle(1,4). reach(4) :- cycle(3,4).

Observe that reach(3) occurs in the body of a disjunctive rule with cycle(3,2) and
cycle(3,4) in the head. These atoms further imply reach(2) or reach(4), respectively,
which lead on two disjunctive rules, one containing cycle(2,3) in the head and the other
cycle(4,3). As the latter two atoms also occur in the body of rules with reach(3) in the head,
we have that all of the mentioned atoms recursively depend on each other. Since cycle(3,2)
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and cycle(3,4) jointly constitute the head of a disjunctive rule, this means that rule instances
obtained from the encoding in Figure 1(e) are non-HCF (Ben-Eliyahu and Dechter 1994) and
thus fall into a syntactic class of logic programs able to express problems at the second level of
the polynomial hierarchy (Eiter and Gottlob 1995). Hence, the encoding in Figure 1(e) makes
use of a language feature permitted in Sub-track #4 only.

Given that either of the encodings in Figures 1(c)–(e) yields stable models corresponding to
Hamiltonian cycles, the weak constraint in Figure 1(f) can be added to each of them to express
the objective of finding a Hamiltonian cycle whose sum of edge costs is minimal. In case of the
encodings in Figures 1(c) and 1(d), the addition of the weak constraint leads to a reclassification
into Sub-track #3, since the focus is shifted from a Decision to an Optimization problem. For the
encoding in Figure 1(e), Sub-track #4 still matches when adding the weak constraint, as non-HCF
disjunction is excluded in the other sub-tracks. �

Scoring Scheme. The applied scoring schemes are based on the following considerations:

• All domains are weighted equally.
• If a system outputs an incorrect answer to some instance in a domain, this invalidates its

score for the domain, even if other instances are solved correctly.

In general, 100 points can be earned in each problem domain. The total score of a system is the
sum of points over all domains.

For Decision problems and Query answering tasks, the score S(D) of a system S in a do-
main D featuring N instances is calculated as

S(D) =
NS ∗ 100

N

where NS is the number of instances successfully solved within the time and memory limits of
20 minutes wall-clock time and 12GB RAM per run.

For Optimization problems, we employ two alternative scoring schemes. The first one, which
has also been used in the previous competition edition, performs a relative ranking of systems by
solution quality, following the approach of the MANCOOSI International Solver Competition.4

Given M participant systems, the score S(D, I) of a system S for an instance I in a domain D

featuring N instances is calculated as

S(D, I) =
MS(I) ∗ 100

M ∗N
where MS(I) is

• 0, if S did neither produce a solution nor report unsatisfiability; or otherwise
• the number of participant systems that did not produce any strictly better solution than S,

where a confirmed optimum solution is considered strictly better than an unconfirmed one.

The score S1(D) of system S in domain D is then taken as the sum of scores S(D, I) over the
N instances I in D.

The second scoring scheme considers the number of instances solved “optimally”, i.e., a con-
firmed optimum solution or unsatisfiability is reported. Hence, the score S2(D) of a system S in
a domain D is defined as S(D) above, with NS being the number of instances solved optimally.

4 http://www.mancoosi.org/misc/

http://www.mancoosi.org/misc/
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This second scoring scheme (inspired by the MaxSAT Competition) gives more importance to
solvers that can actually solve instances to the optimum, but it does not consider “non-optimal”
solutions. The two measures provide alternative perspectives on the performance of participants
solving optimization problems.

Note that, as with Decision problems and Query answering tasks, S1(D) and S2(D) range
from 0 to 100 in each domain. S1(D) focuses on the best solutions found by participant systems,
while S2(D) on completed runs.

In each category and respective sub-tracks, the participant systems are ranked by their sums of
scores over all domains, in decreasing order. In case of a draw in terms of the sum of scores, the
sums of runtimes over all instances are taken into account as a tie-breaking criterion.

3 Benchmark Suite and Selection

The benchmark suite of the Seventh ASP Competition includes 36 domains, where 28 stem from
the previous competition edition (Gebser et al. 2017b), and 8 domains, as well as additional
instances for the Graph Colouring problem, were newly submitted. We first describe the eight
new domains and then detail the instance selection process based on empirical hardness.

3.1 New Domains

The eight new domains of this ASP Competition edition can be roughly characterized as closely
related to machine learning (Bayesian Network Learning, Markov Network Learning, and Su-
pertree Construction), personnel scheduling (Crew Allocation and Resource Allocation), or com-
binatorial problem solving (Paracoherent Answer Sets, Random Disjunctive ASP, and Travel-
ing Salesperson), respectively. While Traveling Salesperson constitutes a classical optimization
problem in computer science, the five domains stemming from machine learning and personnel
scheduling are application-oriented, and the contribution of such practically relevant benchmarks
to the ASP Competition is particularly encouraged (Gebser et al. 2017b). Moreover, the Para-
coherent Answer Sets and Random Disjunctive ASP domains contribute to Sub-track #4, which
was sparsely populated in recent ASP Competition editions, and beyond theoretical interest these
benchmarks are relevant to logic program debugging and industrial solvers development. The fol-
lowing paragraphs provide more detailed background information for each of the new domains.

Bayesian Network Learning. Bayesian networks are directed acyclic graphs representing
(in)dependence relations between variables in multivariate data analysis. Learning the structure
of Bayesian networks, i.e., selecting arcs such that the resulting graph fits given data best, is a
combinatorial optimization problem amenable to constraint-based solving methods like the one
proposed in (Cussens 2011). In fact, data sets from the literature serve as instances in this do-
main, while a problem encoding in ASP-Core-2 expresses optimal Bayesian networks, given by
directed acyclic graphs whose associated cost is minimal.

Crew Allocation. This scheduling problem, which has also been addressed by related constraint-
based solving methods (Guerinik and Caneghem 1995), deals with allocating crew members to
flights such that the amount of personnel with certain capabilities (e.g., role on board and spoken
language) as well as off-times between flights are sufficient. Moreover, instances with different
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numbers of flights and available personnel restrict the amount of personnel that may be allocated
to flights in such a way that no schedule is feasible under the given restrictions.

Markov Network Learning. As with Bayesian networks, the learning problem for Markov net-
works (Janhunen et al. 2017) aims at the optimization of graphs representing the dependence
structure between variables in statistical inference. In this domain, the graphs of interest are
undirected and required to be chordal, while associated scores express marginal likelihood with
respect to given data. Problem instances of varying hardness are obtained by taking samples of
different size and density from literature data sets.

Resource Allocation. This scheduling problem deals with allocating the activities of business
processes to human resources such that role requirements and temporal relations between activi-
ties are met (Havur et al. 2016). Moreover, the total makespan of schedules is subject to an upper
bound as well as optimization. The hardness of instances in this domain varies with respect to
the number of activities, temporal relations, available resources, and upper bounds.

Supertree Construction. The goal of the supertree construction problem (Koponen et al. 2015)
is to combine the leaves of several given phylogenetic subtrees into a single tree fitting the given
subtrees as closely as possible. That is, optimization aims at preserving the structure of subtrees,
where the introduction of intermediate nodes between direct neighbors is tolerated, while the
avoidance of such intermediate nodes is an optimization target as well. Instances of varying
hardness are obtained by mutating projections of binary trees with different numbers of leaves.

Traveling Salesperson. The well-known traveling salesperson problem (Applegate et al. 2007)
is to find a round trip through a (directed) graph that is optimal in terms of the accumulated edge
costs. Instances in this domain are twofold by stemming from the TSPLIB repository5 or being
randomly generated to increase the variety in the ASP Competition, respectively.

Paracoherent Answer Sets. Given an incoherent logic program P , i.e., a program P without an-
swer sets, a paracoherent (or semi-stable) answer set corresponds to a gap-minimal answer set
of the epistemic transformation of P (Inoue and Sakama 1996; Amendola et al. 2016). The in-
stances in this domain, used in (Amendola et al. 2017; Amendola et al. 2018) to evaluate genuine
implementations of paracoherent ASP, are obtained by grounding and transforming incoherent
programs from previous editions of the ASP Competition. In particular, weak constraints single
out answer sets of a transformed program containing a minimal number of atoms that are actually
underivable from the original program.

Random Disjunctive ASP. The disjunctive logic programs in this domain (Amendola et al. 2017)
express random 2QBF formulas, given as conjunctions of terms in disjunctive normal form, by
an extension of the Eiter-Gottlob encoding (Eiter and Gottlob 1995). Parameters controlling the
random generation of 2QBF formulas (e.g., number of variables and number of conjunctions)
are set so that instances lie close to the phase transition region, while having an expected average
solving time below the competition timeout of 20 minutes per run.

5 http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html
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Domain P Easy Medium Hard Too hard
Graph Colouring D 1 (1) 3 (5) 2 (2) 4(21) 2 (3) 5(16) 0 (0) 3 (3) Sub-track

#1

Knight Tour with Holes D 2 (5) 3 (4) 4 (4) 0 (0) 4 (9) 0 (0) 0 (0) 7(302)
Labyrinth D 4 (45) 0 (0) 5(72) 0 (0) 7 (83) 0 (0) 0 (0) 4 (8)
Stable Marriage D 0 (0) 0 (0) 3 (3) 0 (0) 6 (15) 1 (1) 0 (0) 10 (55)
Visit-all D 8 (14) 0 (0) 5 (5) 0 (0) 7 (40) 0 (0) 0 (0) 0 (0)
Combined Configuration D 1 (1) 0 (0) 1 (1) 0 (0) 12 (44) 0 (0) 0 (0) 6 (34)

Sub-track
#2

Consistent Query Answering Q 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 20(120)
Crew Allocation D 0 (0) 4(10) 0 (0) 6(11) 0 (0) 6(10) 0 (0) 4 (6)
Graceful Graphs D 3 (3) 0 (0) 4 (4) 1 (1) 4 (28) 2 (2) 0 (0) 6 (21)
Incremental Scheduling D 2 (11) 2 (6) 3(47) 2(11) 3 (37) 2(10) 0 (0) 6 (76)
Nomystery D 4 (4) 0 (0) 4 (5) 0 (0) 4 (10) 0 (0) 0 (0) 8 (32)
Partner Units D 3 (9) 1 (1) 4(34) 0 (0) 3 (15) 1 (1) 0 (0) 8 (32)
Permutation Pattern Matching D 2 (16) 2(32) 2(14) 2(58) 0 (0) 5(14) 0 (0) 7 (20)
Qualitative Spatial Reasoning D 5 (35) 4(35) 4(34) 2(19) 3 (7) 2 (2) 0 (0) 0 (0)
Reachability Q 0 (0) 0 (0) 10(30) 10(30) 0 (0) 0 (0) 0 (0) 0 (0)
Ricochet Robots D 2 (2) 0 (0) 7(18) 0 (0) 4(181) 0 (0) 0 (0) 7 (38)
Sokoban D 2 (77) 2(10) 2(84) 2 (8) 5(114) 2(12) 0 (0) 5(620)
Bayesian Network Learning O 4 (4) 0 (0) 4 (8) 0 (0) 8 (19) 0 (0) 4 (20) 0 (6)

Sub-track
#3

Connected Still Life O 0 (0) 0 (0) 5 (5) 0 (0) 10 (70) 0 (0) 5 (45) 0 (0)
Crossing Minimization O 1 (1) 0 (0) 1 (1) 0 (0) 17 (80) 0 (0) 1 (1) 0 (0)
Markov Network Learning O 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 10 (10) 10 (50)
Maximal Clique O 0 (0) 0 (0) 0 (0) 0 (0) 10 (41) 0 (0) 10 (94) 0 (1)
MaxSAT O 0 (0) 0 (0) 4 (4) 0 (0) 0 (0) 0 (0) 0 (0) 16 (50)
Resource Allocation O – (3) – (0) – (3) – (0) – (0) – (0) – (0) – (0)
Steiner Tree O 0 (0) 0 (0) 0 (0) 0 (0) 1 (1) 0 (0) 16 (45) 3 (3)
Supertree Construction O 0 (0) 0 (0) 0 (0) 0 (0) 6 (30) 0 (0) 14 (30) 0 (0)
System Synthesis O 0 (0) 0 (0) 0 (0) 0 (0) 8 (16) 0 (0) 8 (80) 4 (4)
Traveling Salesperson O 0 (0) 0 (0) 2 (2) 0 (0) 3 (3) 0 (0) 12 (60) 3 (3)
Valves Location O 6 (10) 0 (0) 2 (2) 0 (0) 7 (29) 0 (0) 5(244) 0 (23)
Video Streaming O 11 (16) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 8 (22) 1 (1)
Abstract Dialectical Frameworks O 4 (18) 0 (0) 8(20) 0 (0) 6(122) 0 (0) 2 (2) 0 (0) Sub-track

#4

Complex Optimization D 0 (0) 0 (0) 0 (0) 0 (0) 20 (78) 0 (0) 0 (0) 0 (0)
Minimal Diagnosis D 7(158) 2(55) 3 (9) 2 (8) 4 (4) 1 (1) 0 (0) 0 (0)
Paracoherent Answer Sets O 0 (0) 0 (0) 1 (1) 0 (0) 12(112) 0 (0) 0 (0) 7 (43)
Random Disjunctive ASP D 0 (0) 0 (0) 0 (0) 0 (0) 5 (48) 13(73) 0 (0) 2 (2)
Strategic Companies Q 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 0 (0) 20 (37)

Table 1: Problem domains of benchmarks for the Seventh ASP Competition, where entries in
the P column indicate Decision (“D”), Optimization (“O”), or Query answering (“Q”) tasks. The
remaining columns provide numbers of instances per empirical hardness class, distinguishing
satisfiable and unsatisfiable instances classified as Easy, Medium, or Hard, while Too hard in-
stances are divided into those known to be satisfiable and others whose satisfiability is unknown.
For each hardness class and satisfiability status, the number in front of parentheses stands for the
selected instances out of the respective available instances whose number is given in parentheses.

3.2 Benchmark Selection

Table 1 gives an overview of all problem domains, grouped by their respective sub-tracks, of the
Seventh ASP Competition, where the names of new domains are highlighted in boldface. The
second column provides the computational task addressed in a domain, distinguishing Decision
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(“D”) and Optimization (“O”) problems as well as Query answering (“Q”). Further columns
categorize the instances in each domain by their empirical hardness, where hardness classes are
based on the performance of the same reference systems, i.e., CLASP, LP2NORMAL2+CLASP, and
WASP-1.5, as in the previous ASP Competition edition (Gebser et al. 2017b):6

• Easy: Instances completed by at least one reference system in more than 20 seconds and
by all reference systems in less than 2 minutes solving time.

• Medium: Instances completed by at least one reference system in more than 2 minutes and
by all reference systems in less than 20 minutes (the competition timeout) solving time.

• Hard: Instances completed by at least one reference system in less than 40 minutes, while
also at least one (not necessarily the same) reference system did not finish solving in 20
minutes.

• Too hard: Instances such that none of the reference systems finished solving in 40 minutes.

For each of these hardness classes, numbers of available instances per problem domain are shown
within parentheses in Table 1, further distinguishing satisfiable and unsatisfiable instances, whose
respective numbers are given first or second, respectively. In case of instances classified as “too
hard”, however, no reference system could report unsatisfiability, and thus the numbers of in-
stances listed second refer to an unknown satisfiability status. Note that there are likewise no
“too hard” instances of Decision problems or Query answering domains known as satisfiable,
so that the respective numbers are zero. For example, the Sokoban domain features satisfiable
as well as unsatisfiable instances for each hardness class apart from the “too hard” one, where
0 instances are known as satisfiable and 620 have an unknown satisfiability status. Unlike that,
“too hard” instances of Optimization problems are frequently known to be satisfiable, in which
case none of the reference systems was able to confirm an optimum solution within 40 minutes.
Moreover, we discarded any instance of an Optimization problem that was reported to be unsat-
isfiable, so that the respective numbers given second are zero for the first three hardness classes.
This applies, e.g., to instances in the Bayesian Network Learning domain, including 4, 8, 19, and
20 satisfiable instances that are “easy”, “medium”, “hard”, or “too hard”, respectively, while the
satisfiability status of further 6 “too hard” instances is unknown. Finally, the numbers in front of
parentheses in Table 1 report how many instances were (randomly) selected per hardness class
and satisfiability status, and the selection process is described in the rest of this section.

Given the numbers of satisfiable, unsatisfiable, or unknown in case of “too hard” instances per
hardness class, our benchmark selection process aims at picking 20 instances in each problem
domain such that the four hardness classes are balanced, while another share of instances is
added freely. Perfect balancing would then consist of picking four instances per hardness class
and another four instances freely in order to guarantee that each hardness class contributes 20%
of the instances in a domain. Since in most domains the instances are not evenly distributed, it is
not possible though to insist on at least four instances per hardness class, and rather we have to
compensate for underpopulated classes at which the number of available instances is smaller.

The input to our balancing scheme includes a collection C of classes, where each class is
identified with the set of its contained instances. The first step of balancing then determines the
non-empty classes from which instances can be picked:

6 This choice of reference systems allows us to reuse the runtime results for previous domains gathered in exhaustive
experiments on all available instances that took about 212 CPU days on the competition platform. Instances that do
not belong to any of the listed hardness classes are in the majority of cases “very easy” and the remaining ones “non-
groundable”, and we exclude such (uninformative regarding the system ranking) instances from the benchmark suite.
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classes = {x ∈ C | x 6= ∅}.

The number of non-empty classes is used to calculate how many instances should ideally be
picked per class, where the calculation makes use of the parameters n = 20 and m = 1, standing
for the total number of instances to select per domain and the fraction of instances to pick freely,
respectively:

target = bn/(|classes|+m)c. (1)

To account for underpopulated classes, in the next step we calculate the gap between the intended
number of and the available instances in each class:

gap(x) =

{
0 if x ∈ C \ classes
target − |x| if x ∈ classes.

Example 2
In the Graceful Graphs domain, the “easy”, “medium”, “hard”, and “too hard” classes contain 3,
5, 30, or 21 instances, respectively, when not (yet) distinguishing between satisfiable and unsat-
isfiable instances. Since all four hardness classes are non-empty, we obtain classes = {“easy”,
“medium”, “hard”, “too hard”}. The calculation of instances to pick per class yields target =

b20/(4 + 1)c = 4, so that we aim at 4 instances per hardness class. Along with the number of
instances available in each class, we then get gap(“easy”) = 4 − 3 = 1, gap(“medium”) =

4 − 5 = −1, gap(“hard”) = 4 − 30 = −26, and gap(“too hard”) = 4 − 21 = −17. Note
that a positive number expresses underpopulation of a class relative to the intended number of
instances, while negative numbers indicate capacities to compensate for such underpopulation.�

Our next objective is to compensate for underpopulated classes by increasing the number of
instances to pick from other classes in a fair way. Regarding hardness classes, our compensation
scheme relies on the direct successor relation ≺ given by “easy” ≺ “medium”, “medium” ≺
“hard”, and “hard” ≺ “too hard”. We denote the strict total order obtained as the transitive
closure of ≺ by <, and its inverse relation by >. Moreover, we let ◦ below stand for either <
or > to specify calculations that are performed symmetrically, such as determining the number of
easier or harder instances available to compensate for the (potential) underpopulation of a class:

available(x)◦ =
∑

x′◦x
gap(x′).

The possibility of compensation in favor of easier or harder instances is then determined as
follows:

compensate(x)◦ = min{(|gap(x)|+ gap(x))/2, (|available(x)◦| − available(x)◦)/2}.

The calculation is such that a positive gap, standing for the underpopulation of a class, is a
prerequisite for obtaining a non-zero outcome, and the availability of easier or harder instances
to compensate with is required in addition. Given the compensation possibilities, the following
calculations decide about how many easier or harder instances, respectively, are to be picked to
resolve an underpopulation, where the distribution should preferably be even and tie-breaking in
favor of harder instances is used as secondary criterion if the number of instances to compensate
for is odd:7

7 Given that distribute(x)> (or distribute(x)<) is limited by compensate(x)< (or compensate(x)>), the super-
scripts “>” and “<” refer to easier or harder instances, respectively, to be picked in addition. This reading is chosen for
a convenient notation in the specification of classes whose numbers of instances are to be increased for compensation.
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distribute(x)> = min{compensate(x)<,max{|gap(x)| − compensate(x)>, b|gap(x)|/2c}}
distribute(x)< = min{compensate(x)>, |gap(x)| − distribute(x)>}.

It remains to choose classes whose numbers of instances are to be increased for compensation,
where we aim to distribute instances to closest classes with compensation capacities. The follow-
ing inductive calculation scheme accumulates instances to distribute according to this objective:

accumulate(x)◦ =


0 if {x′ ∈ C | x′ ◦ x} = ∅
accumulate(x′)◦ + distribute(x′)◦ − increase(x′)◦ if x′ ◦ x

and x′ ≺ x or x ≺ x′

increase(x)< = min{accumulate(x)<, (|gap(x)| − gap(x))/2}
increase(x)> = min{accumulate(x)>, (|gap(x)| − gap(x))/2− increase(x)<}.

In a nutshell, accumulate(x)< and accumulate(x)> express how many easier or harder in-
stances, respectively, ought to be distributed up to a class x, and increase(x)< and increase(x)>

stand for corresponding increases of the number of instances to be picked from x. The instances
to increase with are then added to the original number of instances to pick from a class as follows:

select(x) = |x| − (|gap(x)| − gap(x))/2 + increase(x)< + increase(x)>.

Example 3
Given gap(“easy”) = 1, gap(“medium”) = −1, gap(“hard”) = −26, and gap(“too hard”) =

−17 from Example 2 for the Graceful Graphs domain, we obtain the following numbers indi-
cating the availability of easier instances: available(“easy”)< = 0, available(“medium”)< = 1,
available(“hard”)< = 1 + (−1) = 0, and available(“too hard”)< = 1 + (−1) + (−26) =

−26. Likewise, the available harder instances are expressed by available(“too hard”)> = 0,
available(“hard”)> = −17, available(“medium”)> = (−17) + (−26) = −43, and
available(“easy”)> = (−17) + (−26) + (−1) = −44. Again note that positive numbers like
available(“medium”)< = 1 represent a (cumulative) underpopulation, while negative numbers
such as available(“easy”)> = −44 indicate compensation capacities.

Considering “easy” instances, we further calculate compensate(“easy”)< = min{(|1|+1)/2,

(|0| − 0)/2} = 0 and compensate(“easy”)> = min{(|1| + 1)/2, (|−44| − (−44))/2} = 1.
This tells us that we can add one harder instance to compensate for the underpopulation of
the “easy” class, while compensate(x)◦ = compensate(“easy”)< = 0 for the other classes
x ∈ {“medium”, “hard”, “too hard”} and ◦ ∈ {<,>}. Given that instances to distribute are
limited by compensation possibilities, which are non-zero at underpopulated classes only, it
is sufficient to concentrate on “easy” instances in the Graceful Graphs domain. This yields
distribute(“easy”)> = min{0,max{1 − 1, 0}} = 0 and distribute(“easy”)< = min{1,
1− 0} = 1, so that one harder instance is to be picked more.

The calculation of instance number increases to compensate for underpopulated classes then
starts with accumulate(“easy”)< = 0, increase(“easy”)< = min{0, (|1| − 1)/2} = 0,
accumulate(“medium”)< = 0 + 1 − 0 = 1, increase(“medium”)< = min{1, (|−1| −
(−1))/2} = 1, and accumulate(“hard”)< = 1 + 0 − 1 = 0. That is, the instance to
distribute from the underpopulated “easy” class to some harder class increases the number
of “medium” instances, while we obtain increase(“hard”)< = accumulate(“too hard”)< =

increase(“too hard”)< = 0 as well as accumulate(x)> = increase(x)> = 0 for all x ∈
{“easy”, “medium”, “hard”, “too hard”}. The final numbers of instances to pick per hardness
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class in the Graceful Graphs domain are thus determined by select(“easy”) = 3 − (|1| −
1)/2 + 0 + 0 = 3, select(“medium”) = 5 − (|−1| − (−1))/2 + 1 + 0 = 5, select(“hard”) =
30−(|−26|−(−26))/2+0+0 = 4, and select(“too hard”) = 21−(|−17|−(−17))/2+0+0 = 4.
Note that 16 instances are to be selected from particular hardness classes in total, sparing the
four instances to be picked freely, and also that our balancing scheme takes care of exchanging
an “easy” for a “medium” instance. �

After determining the numbers of instances to pick per hardness class, we also aim to bal-
ance between satisfiable and unsatisfiable instances within the same class. In fact, the above
balancing scheme is general enough to be reused for this purpose by letting C = {satisfiable(x),
unsatisfiable(x)} consist of the subclasses of satisfiable or unsatisfiable instances, respectively,
in a hardness class x that includes at least one instance known to be satisfiable or unsatisfiable.8

Moreover, the parameters n and m used in (1) are fixed to n = select(x) and m = 0, which
reflect that the satisfiability status should be balanced among all instances to be picked from x

without allocating an additional share of instances to pick freely. For the strict total order on
the subclasses in C, we use satisfiable(x) ≺ unsatisfiable(x), let < denote the transitive closure
of ≺, and > its inverse relation.

Example 4
Reconsidering the Graceful Graphs domain, we obtain the following number of instances to
pick based on their satisfiability status: select(satisfiable(“easy”)) = 3, select(unsatisfiable(
“easy”)) = 0, select(satisfiable(“medium”)) = 3, select(unsatisfiable(“medium”)) = 1,
select(satisfiable(“hard”)) = 2, and select(unsatisfiable(“hard”)) = 2. Note that select(

satisfiable(x)) + select(unsatisfiable(x)) = select(x) for x ∈ {“easy”, “hard”}, while
select(satisfiable(“medium”)) + select(unsatisfiable(“medium”)) = 3 + 1 = 4 < 5 =

select(“medium”). The latter is due to rounding in target = b5/2c = 2, and then compensating
for the underpopulated unsatisfiable instances by increasing the number of satisfiable “medium”
instances to pick by one. �

For instances of Decision problems or Query answering domains, we have that secondary bal-
ancing based on the satisfiability status is generally void for “too hard” instances, of which none
are known to be satisfiable or unsatisfiable. In case of Optimization problems, where we dis-
card instances known as unsatisfiable, select(satisfiable(x)) = select(x) holds for x ∈ {“easy”,
“medium”, “hard”}, while our balancing scheme favors “too hard” instances known as satisfi-
able over those with an unknown satisfiability status. This approach makes sure that “too hard”
instances to be picked possess solutions, yet confirming an optimum is hard, and instances with
an unknown satisfiability status can still be contained among those that are picked freely.

Example 5
Regarding the Optimization problem in the Valves Location domain, we obtain select(satisfiable(
“too hard”)) = select(“too hard”) = 4, given that the 23 instances whose satisfiability status is
unknown are not considered for balancing. �

The described twofold balancing scheme, first considering the hardness of instances and then
the satisfiability status of instances of similar hardness, is implemented by an ASP-Core-2 encod-
ing that consists of two parts: a deterministic program part (having a unique answer set) takes care

8 Otherwise, all subclasses to pick instances from are empty, which would lead to division by zero in (1).
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of determining the numbers select(x) from the runtime results of reference systems, and a non-
deterministic part similar to the selection program used in the previous ASP Competition edition
(Gebser et al. 2017b) encodes the choice of 20 instances per domain such that lower bounds
given by the calculated numbers select(x) are met. In comparison to the previous competition
edition, we updated the deterministic part of the benchmark selection encoding by implement-
ing the balancing scheme described above, which is more general than before and not fixed to a
particular number of classes (regarding hardness or satisfiability status) to balance. The instance
selection was then performed by running the ASP solver CLASP with the options --rand-freq,
--sign-def, and --seed for guaranteeing reproducible randomization, using the concate-
nation of winning numbers in the EuroMillions lottery of 2nd May 2017 as the random seed.
This process led to the numbers of instances picked per domain, hardness class, and satisfiability
status listed in Table 1.

As a final remark, we note that we had to exclude the Resource Allocation domain from the
main competition in view of an insufficient number of instances belonging to the hardness classes
under consideration. In fact, the majority of instances turned out to be “very easy” relative to an
optimized encoding devised in the phase of checking/establishing the ASP-Core-2 compliance of
initial submissions by benchmark authors. This does not mean that the problem of Resource Al-
location as such would be trivial or uninteresting, but rather time constraints on running the main
competition did unfortunately not permit to extend and then reassess the collection of instances.

4 Participant Systems

Fourteen systems, registered by three teams, participate in the System track of the Seventh ASP
Competition. The majority of systems runs in the SP category, while two (indicated by the suffix
“-MT” below) exploit parallelism in the MP category. In the following, we survey the registered
teams and systems.

Aalto. The team from Aalto University submitted nine systems that utilize normalization (Bo-
manson et al. 2014; Bomanson et al. 2016) and translation (Bogaerts et al. 2016; Bomanson et al.
2016; Gebser et al. 2014; Janhunen and Niemelä 2011; Liu et al. 2012) means. Two systems,
LP2SAT+LINGELING and LP2SAT+PLINGELING-MT, perform translation to SAT and use LINGELING

or PLINGELING, respectively, as back-end solver. Similarly, LP2MIP and LP2MIP-MT rely on trans-
lation to Mixed Integer Programming along with a single- or multi-threaded variant of CPLEX for
solving. The LP2ACYCASP, LP2ACYCPB, and LP2ACYCSAT systems incorporate translations based
on acyclicity checking, supported by CLASP run as ASP, Pseudo-Boolean, or SAT solver, as well
as the GRAPHSAT solver in case of SAT with acyclicity checking. Moreover, LP2NORMAL+LP2STS

takes advantage of the SAT-TO-SAT framework to decompose complex computations into several
SAT solving tasks. Unlike that, LP2NORMAL+CLASP confines preprocessing to the (selective) nor-
malization of aggregates and weak constraints before running CLASP as ASP solver. Beyond syn-
tactic differences between target formalisms, the main particularities of the available translations
concern space complexity and the supported language features. Regarding space, the translation
to SAT utilized by LP2SAT+LINGELING and LP2SAT+PLINGELING-MT comes along with a logarith-
mic overhead in case of non-tight logic programs that involve positive recursion (Fages 1994),
while the other translations are guaranteed to remain linear. Considering language features, the
systems by the Aalto team do not support queries, and the back-end solver CLASP of LP2ACYCASP,
LP2ACYCPB, and LP2NORMAL+CLASP provides a native implementation of aggregates, which the



14 M. Gebser, M. Maratea and F. Ricca

other systems treat by normalization within preprocessing. Optimization problems are supported
by all systems but LP2SAT+LINGELING, LP2SAT+PLINGELING-MT, and LP2NORMAL+LP2STS, while
only LP2NORMAL+LP2STS and LP2NORMAL+CLASP are capable of handling non-HCF disjunction.

ME-ASP. The ME-ASP team from the University of Genova, the University of Sassari, and the
University of Calabria submitted the multi-engine ASP system ME-ASP2, which is an updated
version of ME-ASP (Maratea et al. 2012; Maratea et al. 2014; Maratea et al. 2015), the winner
system in the Regular track of the Sixth ASP Competition. Like its predecessor version, ME-ASP2
investigates features of an input program to select its back-end among a pool of ASP grounders
and solvers. Basically, ME-ASP2 applies algorithm selection techniques before each stage of the
answer set computation, with the goal of selecting the most promising computation strategy over-
all. As regards grounders, ME-ASP2 can pick either DLV or GRINGO, while the available solvers
include a selection of those submitted to the Sixth ASP Competition as well as the latest ver-
sion of CLASP. The first selection (basically corresponding to the selection of the grounder) is
based on features of non-ground programs and was obtained by implementing the result of the
application of the PART decision list algorithm, whereas the choice of a solver is based on the
multinomial classification algorithm k-Nearest Neighbors, used to train a model on features of
ground programs extracted (whenever required) from the output generated by the grounder (for
more details, see (Maratea et al. 2015)).

UNICAL. The team from the University of Calabria submitted four systems utilizing the re-
cent IDLV grounder (Calimeri et al. 2017), developed as a redesign of (the grounder com-
ponent of) DLV going along with the addition of new features. Moreover, back-ends for
solving are selected from a variety of existing ASP solvers. In particular, IDLV-CLASP-
DLV makes use of DLV (Leone et al. 2006; Maratea et al. 2008) for instances fea-
turing a ground query; otherwise, it consists of the combination of the grounder IDLV

with CLASP executed with the option --configuration=trendy. The IDLV+-CLASP-
DLV system is a variant of the previous system that uses a heuristic-guided rewrit-
ing technique (Calimeri et al. 2018) relying on hyper-tree decomposition, which aims
to automatically replace long rules with sets of smaller ones that are possibly evalu-
ated more efficiently. IDLV+-WASP-DLV is obtained by using WASP in place of CLASP. In
more detail, WASP is executed with the options --shrinking-strategy=progression
--shrinking-budget=10 --trim-core --enable-disjcores, which configure
WASP to use two techniques tailored for Optimization problems. Inspired by ME-ASP, IDLV+S

(Fuscà et al. 2017) integrates IDLV+ with an automatic selector to choose between WASP and
CLASP on a per instance basis. To this end, IDLV+S implements classification, by means of the
well-known support vector machine technique. A more detailed description of the IDLV+S sys-
tem is provided in (Calimeri et al. 2019).

5 Results

This section presents the results of the Seventh ASP Competition. We first announce the winners
in the SP category and analyze their performance, and then proceed overviewing results in the
MP category. Finally, we analyze the results more in details outlining some of the outcomes.



The Seventh Answer Set Programming Competition: Design and Results 15

145	

135	

250	

260	

305	

320	

270	

330	

350	

400	

400	

385	

60	

340	

465	

500	

510	

620	

585	

590	

785	

785	

805	

790	

375	

0,9	

765,9	

784,1	

1024,1	

880,5	

881,8	

996,8	

1015,9	

1017,7	

1044,1	

125	

375,8	

420	

430	

435	

435	

450	

0	 500	 1000	 1500	 2000	 2500	 3000	

lp2mip	

lp2normal+lp2sts+sts	

lp2sat+lingeling	

lp2acycpb+clasp	

lp2acycsat+clasp	

lp2acycasp+clasp	

idlv+-wasp-dlv	

lp2normal+clasp	

me-asp	

idlv-clasp-dlv	

idlv+-clasp-dlv	

idlv+-s	

T1	

T2	

T3	

T4	

Fig. 2: Results of the SP category with computation S1 for Optimization problems.

5.1 Results in the SP Category

Figures 2 and 3 summarize the results of the SP category, by showing the scores of the various
systems, where Figure 2 utilizes function S1 for computing the score of Optimization problems,
while Figure 3 utilizes function S2. To sum up, considering Figure 2, the first three places go to
the systems:

1. IDLV+S, by the UNICAL team, with 2665 points;
2. IDLV+-CLASP-DLV, by the UNICAL team, with 2655,9 points;
3. IDLV-CLASP-DLV, by the UNICAL team, with 2634 points.

Also, ME-ASP is quite close in performance, earning 2560 points in total.
Thus, the first three places are taken by versions of the IDLV system pursuing the approaches

outlined in Section 4. The fourth place, with very positive results, is instead taken by ME-ASP

which pursues a portfolio approach, and was the winner of the last competition.
Going into the details of sub-tracks, the three top-performing systems overall take the first

places as well:

• Sub-track #1 (Basic Decision): IDLV-CLASP-DLV and IDLV+-CLASP-DLV with 400 points;
• Sub-track #2 (Advanced Decision): IDLV+-CLASP-DLV with 805 points;
• Sub-track #3 (Optimization): IDLV+-CLASP-DLV with 1015,9 points;
• Sub-track #4 (Unrestricted): IDLV+S with 450 points.

Considering Figure 3, which employs function S2 for computing scores of Optimization prob-
lems, the situation is slightly different, i.e., ME-ASP now gets the third place. To sum up, the first
three places go to the systems:

1. IDLV+S, by the UNICAL team, with 2330 points;
2. IDLV+-CLASP-DLV, by the UNICAL team, with 2200 points;
3. ME-ASP, by the ME-ASP team, with 2185 points.

IDLV+-CLASP-DLV is now fourth with the same score of 2185 points but higher cumulative
CPU time: the difference is in Sub-track #3, where relative results are different with respect to
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Fig. 3: Results of the SP category with computation S2 for Optimization problems.
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using S1, and with the new score computation ME-ASP earns 55 points more than IDLV+-CLASP-
DLV. In general, employing S2 function for computing scores of Optimization problems leads to
lower scores: indeed, S2 is more restrictive than S1 given that only optimal results are considered.

An overall view of the performances of all participant systems on all benchmarks is shown in
the cactus plot of Figure 4. Detailed results are reported in Appendix A.

Official results in Figures 2 and 3 are complemented by the data showed in Figures 5 and 6.
Figure 5 contains, for each solver, the number of (optimally) solved instances in each reason-
ing problem of the competition, i.e., Decision, Optimization and Query (denoted Dec, Opt, and
Query in the figure, respectively). From the figure, we can see that IDLV+-CLASP-DLV and IDLV-
CLASP-DLV are the solvers that perform best on Decision problems, while IDLV+-S is the best on
Optimization problems. For what concern Query answering, the first four solvers perform equally
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Fig. 6: Percentage of solved instances in the SP category.

well on them. Figure 6, instead, reports, for each solver, the percentage of solved instances (resp.
score) in the various sub-tracks out of the total number of (optimally) solved instances (resp.
global score), i.e., what is the “contribution” of tasks in each sub-track to the results of the re-
spective system.

5.2 Results in the MP category

Figure 7 shows results about the MP category. The bottom part of the figure reports the scores
acquired by the two participant systems, which cumulatively are: for

1. LP2SAT+PLINGELING-MT, by the Aalto team, 715 points;
2. LP2MIP-MT, by the Aalto team, 635 points.

Looking into details of the sub-tracks, we can note that LP2SAT+PLINGELING-MT is better
than LP2MIP-MT on Sub-track #1 and much better on Sub-track #2, while on Sub-track #3,
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where LP2SAT+PLINGELING-MT does not compete, LP2MIP-MT earns a consistent number of
points, but not enough to globally reach the score of LP2SAT+PLINGELING-MT in the first two
sub-tracks.

The top part of Figure 7, instead, complements the results by showing the “contribution” of
solved instances in each sub-track out of the score of the respective system.

5.3 Analysis of the results

There are some general observations that can be drawn out of the results presented in this sec-
tion. First, the best overall solver implements algorithm selection techniques, and continues the
“tradition” of the efficiency of portfolio-based solvers in ASP competitions, given that CLASP-
FOLIO (Gebser et al. 2011) and ME-ASP (Maratea et al. 2014) were the overall winners of the
2011 and 2015 competitions, respectively. At the same time, the result outlines the importance
of the introduction of new evaluation techniques and implementations. Indeed, although IDLV+-
S applies a strategy similar to the one of ME-ASP, IDLV+-S exploited a new component (i.e.,
the grounder (Calimeri et al. 2016)) that was not present in ME-ASP (which is based on solvers
from the previous competition). Second, the approach implemented by LP2NORMAL using CLASP

confirms its very good behavior in all sub-tracks, and thus overall. Third, specific istantiations
of the translation-based approach perform particularly well in some sub-tracks: this is the case
for the LP2ACYCASP solver using CLASP in Sub-track #3, especially when considering scoring
scheme S1, but also for LP2MIP, that compiles to a general purpose solver, in the same sub-track,
especially when considering scoring scheme S2 (even if to a less extent). As far as the compari-
son between solvers in the MP category and their counter-part in the SP category is concerned,
we can see that globally the score of LP2SAT+PLINGELING-MT and LP2SAT+PLINGELING is
the same, with the small advantage of LP2SAT+PLINGELING-MT in Sub-track #1 being compen-
sated in Sub-track #2. Instead, LP2MIP+MT earns a consistent number of points more than LP2MIP,
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especially in Sub-track #1 and #3. In general, more specific research is probably needed on ASP
solvers exploiting multi-threading to take real advantage from this setting.

6 Conclusion and Final Remarks

We have presented design and results of the Seventh ASP Competition, with particular focus on
new problem domains, revised benchmark selection process, systems registered for the event,
and results.

In the following, we draw some recommendations for future editions. These resemble the ones
of the past event: for some of them some steps have been already made in this seventh’s event,
but they may be considered, with the aim of widening the number of participant systems and ap-
plication domains that can be analyzed, starting from the next (Eighth) ASP competition that will
take place in 2019 in affiliation with the 15th International Conference on Logic Programming
and Non-Monotonic Reasoning (LPNMR 2019), in Philadelphia, US:

• We also tried to re-introduce a Model&Solve track at the competition. But, given the short
call for contributions and the low number of expressions of interest received, we decided
not to run the track. Despite this, we still think that a (restricted form of a) Model&Solve
track should be re-introduced in the ASP competition series.

• Our aim with the re-introduction of a Model&Solve track was at solving domains involv-
ing, e.g., discrete as well as continuous dynamics (Balduccini et al. 2017), so that exten-
sions like Constraint Answer Set Programming (Mellarkod et al. 2008) and incremental
ASP solving (Gebser et al. 2008) may be exploited. The mentioned extensions could be
added as tracks of the competition, but for CASP the first step that would be needed is a
standardization of its language.

• Given that still basically all participant systems rely on grounding, the availability of more
grounders is crucial. In this event the I-DLV grounder came into play, but there is also the
need for more diverse techniques. This may also help improving portfolio solvers, by ex-
ploiting machine learning techniques at non-ground level (for a preliminary investigation,
see (Maratea et al. 2013; Maratea et al. 2015)).

• Portfolio solvers showed good performance in the editions where they participated. How-
ever, no such system in the various editions has exploited a parallel portfolio approach.
Exploring such techniques in conjunction could be an interesting topic of future research
for further improving the efficiency.

• Another option for attracting (young) researchers from neighboring areas to the develop-
ment of ASP solvers may be a track dedicated to modifications of a common reference
system, in the spirit of the Minisat hack track of the SAT Competition series. This would
lower the entrance barrier by keeping the effort of a participation affordable, even for small
teams.
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(LPNMR’15), F. Calimeri, G. Ianni, and M. Truszczyński, Eds. Lecture Notes in Computer Science, vol.
9345. Springer-Verlag, 439–445.

MARATEA, M., RICCA, F., FABER, W., AND LEONE, N. 2008. Look-back techniques and heuristics in
dlv: Implementation, evaluation and comparison to qbf solvers. Journal of Algorithms in Cognition,
Informatics and Logics 63, 1–3, 70–89.



The Seventh Answer Set Programming Competition: Design and Results 23
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Appendix A Detailed Results

We report in this appendix the detailed results aggregated by solver. In particular, Figures A 1-A 4
report for each solver and for each domain the score with computation S1 for Optimization prob-
lems (ScoreASP2015), with computation score S2 for Optimization problems (ScoreSolved), the
sum of the execution times for all instances (Sum(Time)), the average memory usage on solved
instances (Avg(Mem)), the number of solved instances (#Sol), the number of timed out execu-
tions (#TO), the number of execution terminated because the solver exceeded the memory limit
(#MO) and the number of execution with abnormal execution (#OE), this last counting the in-
stances that could not be solved by a solver, thus including output errors, abnormal terminations,
give-ups as well as instances that cannot be solved by a solver when it did not participate to a
domain. An “*” near to a score of 0 indicates that the solver was disqualified from a domain
because it terminated normally but produced a wrong witness in some instance of the domain.
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Fig. A 1: Detailed results for IDLV-CLASP-DLV, IDLV+-CLASP-DLV, IDLV+-S.
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Fig. A 2: Detailed results for IDLV-WASP-DLV, LP2ACYCASP+CLASP, LP2ACYCPB+CLASP.
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Fig. A 3: Detailed results for LP2ACYCSAT+CLASP, LP2MIP, LP2NORMAL+CLASP.
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Fig. A 4: Detailed results for LP2NORMAL+LP2STS+STS, LP2SAT+LINGELING, ME-ASP.
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