1904.09134v1 [cs.Al] 19 Apr 2019

arxXiv

Under consideration for publication in Theory and Practice of Logic Programming 1

The Seventh Answer Set Programming Competition:
Design and Results

MARTIN GEBSER

Institute for Computer Science, University of Potsdam, Germany
(e-mail: gebser@cs.uni-potsdam.de)

MARCO MARATEA

DIBRIS, University of Genova, Italy
(e-mail: marco@dibris.unige.it)

FRANCESCO RICCA

Dipartimento di Matematica e Informatica, Universita della Calabria, Italy
(e-mail: ricca@mat .unical.it)

submitted 1 January 2003; revised 1 January 2003; accepted 1 January 2003

Abstract

Answer Set Programming (ASP) is a prominent knowledge representation language with roots in logic
programming and non-monotonic reasoning. Biennial ASP competitions are organized in order to furnish
challenging benchmark collections and assess the advancement of the state of the art in ASP solving. In
this paper, we report on the design and results of the Seventh ASP Competition, jointly organized by the
University of Calabria (Italy), the University of Genova (Italy), and the University of Potsdam (Germany),
in affiliation with the 14th International Conference on Logic Programming and Non-Monotonic Reasoning
(LPNMR 2017). (Under consideration foracceptance in TPLP).

KEYWORDS: Answer Set Programming; Competition

1 Introduction

Answer Set Programming (ASP) is a prominent knowledge representation language with roots
in logic programming and non-monotonic reasoning (Baral 2003, [Brewka et al. 2011}, [Eiter et al/|
[2009;, [Gelfond and Leone 2002} [Lifschitz 2002; [Marek and Truszczynski 1999; [Niemeld 1999).
The goal of the ASP Competition series is to promote advancements in ASP methods, collect
challenging benchmarks, and assess the state of the art in ASP solving (see, e.g.,
[2013; [Alviano et al. 2017; Bruynooghe et al. 2013 [Gebser et al. 2015 [Lefévre et al. 2017}
[Maratea et al. 2015 [Marple and Gupta 2014; (Calimeri et al. 2017)) for recent ASP systems, and
(Gebser et al. 2018)) for a recent survey). Following a nowadays customary practice of publishing
results of Al-based competitions in archival journals, where they are expected to remain available
and can be used as references, the results of ASP competitions have been hosted in prominent
journals of the area (see, (Calimeri et al. 2014; |Calimeri et al. 2016; |Gebser et al. 2017b)).
Continuing the tradition, this paper reports on the design and results of the Seventh ASP Com-

2 M. Gebser, M. Maratea and F. Ricca

petitionE] which was jointly organized by the University of Calabria (Italy), the University of
Genova (Italy), and the University of Potsdam (Germany), in affiliation with the 14th Interna-
tional Conference on Logic Programming and Non-Monotonic Reasoning (LPNMR 2017)E]

The Seventh ASP Competition is conceived along the lines of the System track of previous
competition editions (Calimeri et al. 2016} |Lierler et al. 2016} |Gebser et al. 2016} |Gebser et al.
2017b), with the following characteristics: (i) benchmarks adhere to the ASP-Core-2 standard
modeling languageﬂ (1) sub-tracks are based on language features utilized in problem encodings
(e.g., aggregates, choice or disjunctive rules, queries, and weak constraints), and (¢i¢) problem
instances are classified and selected according to their expected hardness. Both single and multi-
processor categories are available in the competition, where solvers in the first category run
on a single CPU (core), while they can take advantage of multiple processors (cores) in the
second category. In addition to the basic competition design, which has also been addressed in a
preliminary version of this report (Gebser et al. 2017al), we detail the revised benchmark selection
process as well as the results of the event, which were orally presented during LPNMR 2017 in
Hanasaari, Espoo, Finland.

The rest of this paper is organized as follows. Section [2] introduces the format of the Seventh
ASP Competition. In Section [3] we describe new problem domains contributed to this compe-
tition edition as well as the revised benchmark selection process for picking instances to run in
the competition. The participant systems of the competition are then surveyed in Section 4 In
Section [5] we then present the results of the Seventh ASP Competition along with the winning
systems of competition categories. Section [6] concludes the paper with final remarks.

2 Competition Format

This section gives an overview of competition categories, sub-tracks, and scoring scheme(s),
which are similar to the previous ASP Competition edition. One addition though concerns the
system ranking of Optimization problems, where a ranking by the number of instances solved
“optimally” complements the relative scoring scheme based on solution quality used previously.

Categories. The competition includes two categories, depending on the computational resources
provided to participant systems: SP, where one processor (core) is available, and MP, where
multiple processors (cores) can be utilized. While the SP category aims at sequential solving
systems, MP allows for exploiting parallelism.

Sub-tracks. Both categories are structured into the following four sub-tracks, based on the ASP-
Core-2 language features utilized in problem encodings:

e Sub-track #1 (Basic Decision): Encodings consisting of non-disjunctive and non-choice
rules (also called normal rules) with classical and built-in atoms only.

e Sub-track #2 (Advanced Decision): Encodings exploiting the language fragment allow-
ing for aggregates, choice as well as disjunctive rules, and queries, yet excepting weak
constraints and non-head-cycle-free (non-HCF) disjunction.

1 http://aspcomp2017.dibris.unige.it
2http://lpnmr2017.aalto.fi
3http://www.mat.unical.it/aspcomp2013/ASPStandardization/

http://aspcomp2017.dibris.unige.it
http://lpnmr2017.aalto.fi
http://www.mat.unical.it/aspcomp2013/ASPStandardization/

The Seventh Answer Set Programming Competition: Design and Results

(a) A directed graph with edge costs.

3

(b) Fact representation of the graph in

1|node(1). edge(1,2). cost(1,2,3).
“.e 2 edge (1,4) . cost(1,4,1).
3|node (2). edge(2,1). cost(2,1,2).
4 edge (2,3). cost(2,3,1).
2 1 5|node (3). edge(3,2). cost(3,2,2).
6 edge (3,4) . cost(3,4,2).
e e 7|node (4) . edge(4,1). cost(4,1,2).
8 edge (4,3) . cost(4,3,2).
2
(c) Basic Decision encoding of Hamiltonian cycles.
l|cycle(X,Y) :- edge(X,Y), edge(X,Z), Y != 7, not cycle(X,Z).
2|reach(Y) :— cycle(1l,Y).
3|reach(Y) :- cycle(X,Y), reach(X).
4|:- node(Y), not reach(Y).
(d) Advanced Decision encoding of Hamiltonian cycles.
1|{cycle (X, Y) edge (X,Y)} = 1 :- node(X).
2|reach(Y) :— cycle(1l,Y).
3|reach(Y) :- cycle(X,Y), reach(X).
4|:- node(Y), not reach(Y).

(e) Unrestricted encoding of Hamiltonian cycles.

1|cycle(1,Y)
cycle (X, Y)

3|reach (Y)

:— node (Y),

cycle(l,Z) :- edge(l,Y), edge(l,Z2), Y != Z.
cycle (X,Z) :- edge(X,Y), edge(X,2), Y !'= Z,
reach(X), X != 1.
:— cycle(X,Y).
not reach(Y).

(f) Weak constraint for Hamiltonian cycle optimization.

1|:~ cycle(X,Y),

cost (X,Y,C). [C,X,Y]

Fig. 1: An example graph with edge costs, its fact representation, and corresponding encodings.

o Sub-track #3 (Optimization): Encodings extending the aforementioned language fragment
by weak constraints, while still excepting non-HCF disjunction.

e Sub-track #4 (Unrestricted): Encodings exploiting the full language and, in particular,
non-HCF disjunction.

A problem domain, i.e., an encoding together with a collection of instances, belongs to the first
sub-track its problem encoding is compatible with.

4 M. Gebser, M. Maratea and F. Ricca

Example 1

To illustrate the sub-tracks and respective language features, consider the directed graph dis-
played in Figure and the corresponding fact representation given in Figure Facts over
the predicate node/l specify the nodes of the graph, those over edge/2 provide the edges, and
cost/3 associates each edge with its cost. The idea in the following is to encode the well-known
Traveling Salesperson problem, which is about finding a Hamiltonian cycle, i.e., a round trip
visiting each node exactly once, such that the sum of edge costs is minimal. Note that the exam-
ple graph in Figure [I(a)] includes precisely two outgoing edges per node, and for simplicity the
encodings in Figures [I(c)H(e)| build on this property, while accommodating an arbitrary number
of outgoing edges would also be possible with appropriate modifications.

The first encoding in Figure complies with the language fragment of Sub-track #1, as it
does not make use of aggregates, choice or disjunctive rules, queries, and weak constraints. Note
that terms starting with an uppercase letter, such as X, v, and z, stand for universally quantified
first-order variables, Y != z is a built-in atom, and not denotes the (default) negation connec-
tive. Given this, the rule in line 1 expresses that exactly one of the two outgoing edges per node
must belong to a Hamiltonian cycle, represented by atoms over the predicate cycle/2 within a
stable model (Lifschitz 2008). Starting from the distinguished node 1, the least fixpoint of the
rules in lines 2 and 3 provides the nodes reachable from 1 via the edges of a putative Hamiltonian
cycle. The so-called integrity constraint, i.e., a rule with an empty head that is interpreted as false,
in line 4 then asserts that all nodes must be reachable from the starting node 1, which guarantees
that stable models coincide with Hamiltonian cycles. While edge costs are not considered so far,
the encoding in Figure[I(c)| can be used to decide whether a Hamiltonian cycle exists for a given
graph (with precisely two outgoing edges per node).

The second encoding in Figure [I[(d)]includes a choice rule in line 1, thus making use of lan-
guage features permitted in Sub-track #2, but incompatible with Sub-track #1. The instance of
this choice rule obtained for the node 1, {cycle(1,2); cycle(l,4)} = 1.,again expresses
that exactly one outgoing edge of node 1 must be included in a Hamiltonian cycle, and respective
rule instances apply to the other nodes of the example graph in Figure[I(a)l Notably, the choice
rule adapts to an arbitrary number of outgoing edges, and the assumption that there are precisely
two per node could be dropped when using the encoding in Figure [I(d)]

The rules in lines 1 and 2 of the third encoding in Figure[I(e)|are disjunctive, and rule instances
as follows are obtained together with line 3:

cycle(1l,2) | cycle(l,4).

cycle(2,1) | cycle(2,3) :— reach(2).

cycle(3,2) | cycle(3,4) :— reach(3).

cycle(4,1) | cycle(4,3) :- reach(4).

reach(l) :- cycle(2,1). reach(3) :- cycle(2,3).
reach(l) :- cycle(4,1). reach(3) :- cycle(4,3).
reach(2) :- cycle(1,2). reach(2) :- cycle(3,2).
reach(4) :—- cycle(1l,4). reach (4) :—- cycle(3,4)

Observe that reach (3) occurs in the body of a disjunctive rule with cycle(3,2) and
cycle (3,4) in the head. These atoms further imply reach (2) or reach (4), respectively,
which lead on two disjunctive rules, one containing cycle (2, 3) in the head and the other
cycle (4, 3). As the latter two atoms also occur in the body of rules with reach (3) in the head,
we have that all of the mentioned atoms recursively depend on each other. Since cycle (3, 2)

The Seventh Answer Set Programming Competition: Design and Results 5

and cycle (3, 4) jointly constitute the head of a disjunctive rule, this means that rule instances
obtained from the encoding in Figure @] are non-HCF (Ben-Eliyahu and Dechter 1994) and
thus fall into a syntactic class of logic programs able to express problems at the second level of
the polynomial hierarchy (Eiter and Gottlob 1995). Hence, the encoding in Figure makes
use of a language feature permitted in Sub-track #4 only.

Given that either of the encodings in Figures [1(c)H(e)| yields stable models corresponding to
Hamiltonian cycles, the weak constraint in Figure can be added to each of them to express
the objective of finding a Hamiltonian cycle whose sum of edge costs is minimal. In case of the
encodings in Figures and the addition of the weak constraint leads to a reclassification
into Sub-track #3, since the focus is shifted from a Decision to an Optimization problem. For the
encoding in Figure[I(e)] Sub-track #4 still matches when adding the weak constraint, as non-HCF
disjunction is excluded in the other sub-tracks. |

Scoring Scheme. The applied scoring schemes are based on the following considerations:

e All domains are weighted equally.
e If a system outputs an incorrect answer to some instance in a domain, this invalidates its
score for the domain, even if other instances are solved correctly.

In general, 100 points can be earned in each problem domain. The total score of a system is the
sum of points over all domains.

For Decision problems and Query answering tasks, the score S(D) of a system S in a do-
main D featuring IV instances is calculated as

Ng %100

N
where Ng is the number of instances successfully solved within the time and memory limits of
20 minutes wall-clock time and 12GB RAM per run.

For Optimization problems, we employ two alternative scoring schemes. The first one, which
has also been used in the previous competition edition, performs a relative ranking of systems by
solution quality, following the approach of the MANCOOSI International Solver CompetitionE]
Given M participant systems, the score S(D, I) of a system S for an instance I in a domain D
featuring N instances is calculated as

S(D)

_ Ms(I) %100
S(D,I) = TP
where Mg(I) is

e 0, if S did neither produce a solution nor report unsatisfiability; or otherwise
o the number of participant systems that did not produce any strictly better solution than S,
where a confirmed optimum solution is considered strictly better than an unconfirmed one.

The score S1(D) of system S in domain D is then taken as the sum of scores S(D, I) over the
N instances [in D.

The second scoring scheme considers the number of instances solved “optimally”, i.e., a con-
firmed optimum solution or unsatisfiability is reported. Hence, the score Sy(D) of a system S in
a domain D is defined as S(D) above, with Ng being the number of instances solved optimally.

4http://www.mancoosi.org/misc/

http://www.mancoosi.org/misc/

6 M. Gebser, M. Maratea and F. Ricca

This second scoring scheme (inspired by the MaxSAT Competition) gives more importance to
solvers that can actually solve instances to the optimum, but it does not consider “non-optimal”
solutions. The two measures provide alternative perspectives on the performance of participants
solving optimization problems.

Note that, as with Decision problems and Query answering tasks, S1(D) and S2(D) range
from 0 to 100 in each domain. S (D) focuses on the best solutions found by participant systems,
while S2(D) on completed runs.

In each category and respective sub-tracks, the participant systems are ranked by their sums of
scores over all domains, in decreasing order. In case of a draw in terms of the sum of scores, the
sums of runtimes over all instances are taken into account as a tie-breaking criterion.

3 Benchmark Suite and Selection

The benchmark suite of the Seventh ASP Competition includes 36 domains, where 28 stem from
the previous competition edition (Gebser et al. 2017b), and 8 domains, as well as additional
instances for the Graph Colouring problem, were newly submitted. We first describe the eight
new domains and then detail the instance selection process based on empirical hardness.

3.1 New Domains

The eight new domains of this ASP Competition edition can be roughly characterized as closely
related to machine learning (Bayesian Network Learning, Markov Network Learning, and Su-
pertree Construction), personnel scheduling (Crew Allocation and Resource Allocation), or com-
binatorial problem solving (Paracoherent Answer Sets, Random Disjunctive ASP, and Travel-
ing Salesperson), respectively. While Traveling Salesperson constitutes a classical optimization
problem in computer science, the five domains stemming from machine learning and personnel
scheduling are application-oriented, and the contribution of such practically relevant benchmarks
to the ASP Competition is particularly encouraged (Gebser et al. 2017b). Moreover, the Para-
coherent Answer Sets and Random Disjunctive ASP domains contribute to Sub-track #4, which
was sparsely populated in recent ASP Competition editions, and beyond theoretical interest these
benchmarks are relevant to logic program debugging and industrial solvers development. The fol-
lowing paragraphs provide more detailed background information for each of the new domains.

Bayesian Network Learning. Bayesian networks are directed acyclic graphs representing
(in)dependence relations between variables in multivariate data analysis. Learning the structure
of Bayesian networks, i.e., selecting arcs such that the resulting graph fits given data best, is a
combinatorial optimization problem amenable to constraint-based solving methods like the one
proposed in (Cussens 2011)). In fact, data sets from the literature serve as instances in this do-
main, while a problem encoding in ASP-Core-2 expresses optimal Bayesian networks, given by
directed acyclic graphs whose associated cost is minimal.

Crew Allocation. This scheduling problem, which has also been addressed by related constraint-
based solving methods (Guerinik and Caneghem 1995), deals with allocating crew members to
flights such that the amount of personnel with certain capabilities (e.g., role on board and spoken
language) as well as off-times between flights are sufficient. Moreover, instances with different

The Seventh Answer Set Programming Competition: Design and Results 7

numbers of flights and available personnel restrict the amount of personnel that may be allocated
to flights in such a way that no schedule is feasible under the given restrictions.

Markov Network Learning. As with Bayesian networks, the learning problem for Markov net-
works (Janhunen et al. 2017) aims at the optimization of graphs representing the dependence
structure between variables in statistical inference. In this domain, the graphs of interest are
undirected and required to be chordal, while associated scores express marginal likelihood with
respect to given data. Problem instances of varying hardness are obtained by taking samples of
different size and density from literature data sets.

Resource Allocation. This scheduling problem deals with allocating the activities of business
processes to human resources such that role requirements and temporal relations between activi-
ties are met (Havur et al. 2016). Moreover, the total makespan of schedules is subject to an upper
bound as well as optimization. The hardness of instances in this domain varies with respect to
the number of activities, temporal relations, available resources, and upper bounds.

Supertree Construction. The goal of the supertree construction problem (Koponen et al. 2015)
is to combine the leaves of several given phylogenetic subtrees into a single tree fitting the given
subtrees as closely as possible. That is, optimization aims at preserving the structure of subtrees,
where the introduction of intermediate nodes between direct neighbors is tolerated, while the
avoidance of such intermediate nodes is an optimization target as well. Instances of varying
hardness are obtained by mutating projections of binary trees with different numbers of leaves.

Traveling Salesperson. The well-known traveling salesperson problem (Applegate et al. 2007)
is to find a round trip through a (directed) graph that is optimal in terms of the accumulated edge
costs. Instances in this domain are twofold by stemming from the TSPLIB repositoryﬂ or being
randomly generated to increase the variety in the ASP Competition, respectively.

Paracoherent Answer Sets. Given an incoherent logic program P, i.e., a program P without an-
swer sets, a paracoherent (or semi-stable) answer set corresponds to a gap-minimal answer set
of the epistemic transformation of P (Inoue and Sakama 1996; |Amendola et al. 2016). The in-
stances in this domain, used in (Amendola et al. 2017;|/Amendola et al. 2018]) to evaluate genuine
implementations of paracoherent ASP, are obtained by grounding and transforming incoherent
programs from previous editions of the ASP Competition. In particular, weak constraints single
out answer sets of a transformed program containing a minimal number of atoms that are actually
underivable from the original program.

Random Disjunctive ASP. The disjunctive logic programs in this domain (Amendola et al. 2017)
express random 2QBF formulas, given as conjunctions of terms in disjunctive normal form, by
an extension of the Eiter-Gottlob encoding (Eiter and Gottlob 1995). Parameters controlling the
random generation of 2QBF formulas (e.g., number of variables and number of conjunctions)
are set so that instances lie close to the phase transition region, while having an expected average
solving time below the competition timeout of 20 minutes per run.

5http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

http://elib.zib.de/pub/mp-testdata/tsp/tsplib/tsplib.html

8 M. Gebser, M. Maratea and F. Ricca

[Domain |[P]| Easy | Medium | Hard | Toohard |
Graph Colouring D1 (1)3®G)2®@ 42D 2 3) 5160 ©O 3 3 %
Knight Tour with Holes D2 O3 4@ 004 O 0O 0 0O 7302)|F
Labyrinth D[4 (45) 0 (0)] 5(72) 0 (0)] 7 (83) O (O)| O (0) 4 (8 5
Stable Marriage D[0 (00 @O 33 065 1D 0 (0 10 35|
Visit-all D[8 (14H 0 (5 (G) 0O 7 @0 0O 0 (0 0 (0=
Combined Configuration D1 (1)0@| 1@ 0 (@12 @4 0O 0 (O 6 34
Consistent Query Answering QL0 (00 @ OO 0@ O O 0O (©200120)
Crew Allocation D[0 (0) 4(10)] 0 (0) 6(11)] 0O (0) 6(10)| O (0) 4 (6)
Graceful Graphs D3 Q0O 4@ 1] 428 220 (0 621 “
Incremental Scheduling D| 2 (11) 2 (6)| 3(47) 2(11)| 3 (37) 2(10)] 0 (0) 6 (76) =
Nomystery D4 HDO0M 465 00400 000 O 832
Partner Units D[3 O 1 (] 434 0@ 315 1M 0 0 8 (32)%
Permutation Pattern Matching |D| 2 (16) 2(32)| 2(14) 2(58)| 0 (0) 5(14)| 0 (0) 7 (20) z
Qualitative Spatial Reasoning |D| 5 (35) 4(35)| 4(34) 2(19)| 3 (7) 2 (2] 0 (©) 0 (0) =
Reachability Q[0 (0) 0 (0)[10(30) 10(30)] O (O) 0 (O O (©O) 0 (0)
Ricochet Robots D[2 (2) 0 ()] 7(18) 0 (0)| 4(181) 0 (0)| O (0) 7 (38)
Sokoban D| 2 (77) 2(10)| 2(84) 2 (8)| 5(114) 2(12)| 0 (0) 5(620)
Bayesian Network Learning O 4 @O0 4@ 0| 819 0O 420 0 (©)
Connected Still Life O 0 ()0 @] 5 @G) 0|10 (70) 0O 545 0 (0
Crossing Minimization O 1 (HOW| 1@ 0|17 B 0O 1 (1) 0 (0)
Markov Network Learning O 0 ()0 @] 0@ 0| O (0 00 (10) 10 (50)
Maximal Clique O 0 (0) 0 (] 0(@©O) 0 (|10 (41) 0 (O)[10 94) 0 (1) 74
MaxSAT o0 OO 4@ 00|00 O 0O ()16 50)|F
Resource Allocation O - B -0 -3 -O]- O -0O|- O - © §
Steiner Tree O/ 0 MO0 O 0O 0O (1) 0O)|6 @5 3 3=
Supertree Construction 0| 0 (0)0 (0 (@© 0 ©) 6 @B0) 00|14 30) 0 (0)&
System Synthesis O 0 () 0| 0@ 0|8 @16) 0O 8(@B0) 4 4
Traveling Salesperson Ol0 OO0 2@ 06MW 3 B 0|12 6O 3 B
Valves Location O 6 (10) 0 (O 2 (2) 0] 7 (29 0 (0)| 5244) 0 (23)
Video Streaming Of11 (16) 0 ()] 0 (O) 0 (O] O (0O) 0 (O) 8 (22) 1 (1)
Abstract Dialectical Frameworks|O| 4 (18) 0 (0)| 8(20) 0 (0)| 6(122) 0 (0)| 2 (2) 0 (0) “
Complex Optimization D/ O (0) 0@ 0@ 0 @©)|20 @8 0O 0 O 0 (O =
Minimal Diagnosis D| 7(158) 2(55)| 3 9 2®)|4 D 1 D0 O 0 O
Paracoherent Answer Sets Ol 0 (00 @O 1 () 0 @©[12(112) 0 ©)] 0 (0) 7 43)|&
Random Disjunctive ASP DI 0O (0) 0 () 0(@©) 0 ()] 5 @8 13(73)] 0 0O 2 (@2 ::
Strategic Companies Q0 ()0 W] 0@ 0@ 0 0 0O (©20 @37 =

Table 1: Problem domains of benchmarks for the Seventh ASP Competition, where entries in
the P column indicate Decision (“D”), Optimization (“O”), or Query answering (“Q”) tasks. The
remaining columns provide numbers of instances per empirical hardness class, distinguishing
satisfiable and unsatisfiable instances classified as Easy, Medium, or Hard, while Too hard in-
stances are divided into those known to be satisfiable and others whose satisfiability is unknown.
For each hardness class and satisfiability status, the number in front of parentheses stands for the
selected instances out of the respective available instances whose number is given in parentheses.

3.2 Benchmark Selection

Table[T] gives an overview of all problem domains, grouped by their respective sub-tracks, of the
Seventh ASP Competition, where the names of new domains are highlighted in boldface. The
second column provides the computational task addressed in a domain, distinguishing Decision

The Seventh Answer Set Programming Competition: Design and Results 9

(“D”) and Optimization (“O”) problems as well as Query answering (“Q”). Further columns
categorize the instances in each domain by their empirical hardness, where hardness classes are
based on the performance of the same reference systems, i.e., CLASP, LP2NORMAL2+CLASP, and
WASP-1.5, as in the previous ASP Competition edition (Gebser et al. 2017b)ﬂ

e Easy: Instances completed by at least one reference system in more than 20 seconds and
by all reference systems in less than 2 minutes solving time.

o Medium: Instances completed by at least one reference system in more than 2 minutes and
by all reference systems in less than 20 minutes (the competition timeout) solving time.

e Hard: Instances completed by at least one reference system in less than 40 minutes, while
also at least one (not necessarily the same) reference system did not finish solving in 20
minutes.

o Too hard: Instances such that none of the reference systems finished solving in 40 minutes.

For each of these hardness classes, numbers of available instances per problem domain are shown
within parentheses in Table[I] further distinguishing satisfiable and unsatisfiable instances, whose
respective numbers are given first or second, respectively. In case of instances classified as “too
hard”, however, no reference system could report unsatisfiability, and thus the numbers of in-
stances listed second refer to an unknown satisfiability status. Note that there are likewise no
“too hard” instances of Decision problems or Query answering domains known as satisfiable,
so that the respective numbers are zero. For example, the Sokoban domain features satisfiable
as well as unsatisfiable instances for each hardness class apart from the “too hard” one, where
0 instances are known as satisfiable and 620 have an unknown satisfiability status. Unlike that,
“too hard” instances of Optimization problems are frequently known to be satisfiable, in which
case none of the reference systems was able to confirm an optimum solution within 40 minutes.
Moreover, we discarded any instance of an Optimization problem that was reported to be unsat-
isfiable, so that the respective numbers given second are zero for the first three hardness classes.
This applies, e.g., to instances in the Bayesian Network Learning domain, including 4, 8, 19, and
20 satisfiable instances that are “easy”, “medium”, “hard”, or “too hard”, respectively, while the
satisfiability status of further 6 “too hard” instances is unknown. Finally, the numbers in front of
parentheses in Table [T| report how many instances were (randomly) selected per hardness class
and satisfiability status, and the selection process is described in the rest of this section.

Given the numbers of satisfiable, unsatisfiable, or unknown in case of “too hard” instances per
hardness class, our benchmark selection process aims at picking 20 instances in each problem
domain such that the four hardness classes are balanced, while another share of instances is
added freely. Perfect balancing would then consist of picking four instances per hardness class
and another four instances freely in order to guarantee that each hardness class contributes 20%
of the instances in a domain. Since in most domains the instances are not evenly distributed, it is
not possible though to insist on at least four instances per hardness class, and rather we have to
compensate for underpopulated classes at which the number of available instances is smaller.

The input to our balancing scheme includes a collection C' of classes, where each class is
identified with the set of its contained instances. The first step of balancing then determines the
non-empty classes from which instances can be picked:

6 This choice of reference systems allows us to reuse the runtime results for previous domains gathered in exhaustive
experiments on all available instances that took about 212 CPU days on the competition platform. Instances that do
not belong to any of the listed hardness classes are in the majority of cases “very easy” and the remaining ones “non-
groundable”, and we exclude such (uninformative regarding the system ranking) instances from the benchmark suite.

10 M. Gebser, M. Maratea and F. Ricca

classes = {z € C |z # 0}.

The number of non-empty classes is used to calculate how many instances should ideally be
picked per class, where the calculation makes use of the parameters n = 20 and m = 1, standing
for the total number of instances to select per domain and the fraction of instances to pick freely,
respectively:

target = |n/(|classes| +m)]. (1

To account for underpopulated classes, in the next step we calculate the gap between the intended
number of and the available instances in each class:
0 if x € C\ classes

gap(z) = :

target — |z| if x € classes.

Example 2
In the Graceful Graphs domain, the “easy”, “medium”, “hard”, and “too hard” classes contain 3,
5, 30, or 21 instances, respectively, when not (yet) distinguishing between satisfiable and unsat-
isfiable instances. Since all four hardness classes are non-empty, we obtain classes = {“easy”,
“medium”, “hard”, “too hard”}. The calculation of instances to pick per class yields target =
[20/(4 + 1)] = 4, so that we aim at 4 instances per hardness class. Along with the number of
instances available in each class, we then get gap(“easy”) = 4 — 3 = 1, gap(“medium”) =
4 -5 = —1, gap(“hard”) = 4 — 30 = —26, and gap(“too hard”) = 4 — 21 = —17. Note
that a positive number expresses underpopulation of a class relative to the intended number of
instances, while negative numbers indicate capacities to compensate for such underpopulation.ll

Our next objective is to compensate for underpopulated classes by increasing the number of
instances to pick from other classes in a fair way. Regarding hardness classes, our compensation
scheme relies on the direct successor relation < given by “easy” < “medium”, “medium” <
“hard”, and “hard” < “too hard”. We denote the strict total order obtained as the transitive
closure of < by <, and its inverse relation by >. Moreover, we let o below stand for either <
or > to specify calculations that are performed symmetrically, such as determining the number of

easier or harder instances available to compensate for the (potential) underpopulation of a class:

available(r)° = Z . gap(z’).

The possibility of compensation in favor of easier or harder instances is then determined as
follows:

compensate(x)® = min{(|gap(z)| + gap(z))/2, (|availadle(x)°| — available(x)®)/2}.

The calculation is such that a positive gap, standing for the underpopulation of a class, is a
prerequisite for obtaining a non-zero outcome, and the availability of easier or harder instances
to compensate with is required in addition. Given the compensation possibilities, the following
calculations decide about how many easier or harder instances, respectively, are to be picked to
resolve an underpopulation, where the distribution should preferably be even and tie-breaking in
favor of harder instances is used as secondary criterion if the number of instances to compensate
for is odd{’]

7 Given that distribute(x)> (or distribute(x)<) is limited by compensate(x)< (or compensate(x)™), the super-
scripts “>” and “<” refer to easier or harder instances, respectively, to be picked in addition. This reading is chosen for
a convenient notation in the specification of classes whose numbers of instances are to be increased for compensation.

The Seventh Answer Set Programming Competition: Design and Results 11

distribute(x)” = min{compensate(x)<, max{|gap(z)| — compensate(x)”, ||gap(z)|/2]}}

distribute(x)< = min{compensate(x)”,|gap(x)| — distribute(x)” }.

It remains to choose classes whose numbers of instances are to be increased for compensation,
where we aim to distribute instances to closest classes with compensation capacities. The follow-
ing inductive calculation scheme accumulates instances to distribute according to this objective:

0if {/€eC |2/ ox}=0
accumulate(z)® = ¢ accumulate(z')° + distribute(z')° — increase(x’)° if =’ oz
and ' <z or x < a’
increase(z)< = min{accumulate(z)<, (|gap(z)| — gap(z))/2}

increase(z)” = min{accumulate(z)”, (|gap(z)| — gap(z))/2 — increase(z)<}.
In a nutshell, accumulate(x)< and accumulate(x)” express how many easier or harder in-
stances, respectively, ought to be distributed up to a class x, and increase(x)< and increase(x)”
stand for corresponding increases of the number of instances to be picked from z. The instances
to increase with are then added to the original number of instances to pick from a class as follows:

select(z) = |z| — (Jgap(x)| — gap(x))/2 + increase(x)< + increase(z)”.

Example 3

Given gap(“easy”) = 1, gap(“medium”) = —1, gap(“hard”) = —26, and gap(“too hard”) =
—17 from Example [2] for the Graceful Graphs domain, we obtain the following numbers indi-
cating the availability of easier instances: available(“easy”)< = 0, available(“medium™)< =1,
available(“hard”)< = 1 4 (=1) = 0, and available(“too hard”)< = 1+ (—1) + (—26) =
—26. Likewise, the available harder instances are expressed by available(“too hard”)> = 0,
available(“hard”)”> = =17, available(“medium”)”> = (—17) + (—26) = —43, and
available(“easy”)” = (—17) + (—26) + (—1) = —44. Again note that positive numbers like
available(“medium”)< = 1 represent a (cumulative) underpopulation, while negative numbers
such as available(“easy”)” = —44 indicate compensation capacities.

Considering “easy” instances, we further calculate compensate(“easy”)< = min{(|1|+1)/2,
(|0] —0)/2} = 0 and compensate(“easy”)” = min{(|1]| + 1)/2, (|—44| — (—44))/2} = 1.
This tells us that we can add one harder instance to compensate for the underpopulation of
the “easy” class, while compensate(x)® = compensate(“easy”)< = 0 for the other classes
x € {“medium”, “hard”, “too hard”} and o € {<,>}. Given that instances to distribute are
limited by compensation possibilities, which are non-zero at underpopulated classes only, it
is sufficient to concentrate on “easy” instances in the Graceful Graphs domain. This yields
distribute(“easy”)” = min{0, max{1 — 1,0}} = 0 and distribute(“easy”’)< = min{1,
1 — 0} = 1, so that one harder instance is to be picked more.

The calculation of instance number increases to compensate for underpopulated classes then
starts with accumulate(“easy”)< = 0, increase(“easy”)< = min{0, (|]1] — 1)/2} = 0,
accumulate(“medium™)< = 0+ 1 — 0 = 1, increase(“medium”)< = min{1, (|-1| —
(-1))/2} = 1, and accumulate(“hard”)< = 1+ 0 — 1 = 0. That is, the instance to
distribute from the underpopulated “easy” class to some harder class increases the number
of “medium” instances, while we obtain increase(“hard”)< = accumulate(“too hard”)< =
increase(“too hard”)< = 0 as well as accumulate(x)” = increase(x)” = 0 for all z €

CLINT3

{“easy”, “medium”, “hard”, “too hard”}. The final numbers of instances to pick per hardness

12 M. Gebser, M. Maratea and F. Ricca

class in the Graceful Graphs domain are thus determined by select(“easy”) = 3 — (|1] —
1)/24+ 04 0 = 3, select(“medium™) = 5 — (|-1| — (=1))/2 + 1+ 0 = 5, select(“hard”) =
30—(]—26|—(—26))/24+0-+0 = 4, and select(“too hard”) = 21—(|—17|—(-=17))/2+0+0 = 4.
Note that 16 instances are to be selected from particular hardness classes in total, sparing the
four instances to be picked freely, and also that our balancing scheme takes care of exchanging
an “easy” for a “medium” instance. |

After determining the numbers of instances to pick per hardness class, we also aim to bal-
ance between satisfiable and unsatisfiable instances within the same class. In fact, the above
balancing scheme is general enough to be reused for this purpose by letting C' = {satisfiable(z),
unsatisfiable(z)} consist of the subclasses of satisfiable or unsatisfiable instances, respectively,
in a hardness class z that includes at least one instance known to be satisfiable or unsatisfiablef]
Moreover, the parameters n and m used in (I) are fixed to n = select(x) and m = 0, which
reflect that the satisfiability status should be balanced among all instances to be picked from x
without allocating an additional share of instances to pick freely. For the strict total order on
the subclasses in C, we use satisfiable(x) < unsatisfiable(x), let < denote the transitive closure
of <, and > its inverse relation.

Example 4
Reconsidering the Graceful Graphs domain, we obtain the following number of instances to
pick based on their satisfiability status: select(satisfiable(“easy”)) = 3, select(unsatisfiable(

“easy”)) = 0, select(satisfiable(“medium”)) = 3, select(unsatisfiable(“medium™)) = 1,
select(satisfiable(“hard”)) = 2, and select(unsatisfiable(“hard”)) = 2. Note that select(
satisfiable(z)) + select(unsatisfiable(z)) = select(z) for x € {“easy”,“hard”}, while

select(satisfiable(“medium™)) + select(unsatisfiable(“medium”)) = 3+ 1 = 4 < 5 =
select(“medium”). The latter is due to rounding in target = |5/2] = 2, and then compensating
for the underpopulated unsatisfiable instances by increasing the number of satisfiable “medium”
instances to pick by one. u

For instances of Decision problems or Query answering domains, we have that secondary bal-
ancing based on the satisfiability status is generally void for “too hard” instances, of which none
are known to be satisfiable or unsatisfiable. In case of Optimization problems, where we dis-
card instances known as unsatisfiable, select (satisfiable(z)) = select(x) holds for z € {“easy”,
“medium”, “hard”}, while our balancing scheme favors “too hard” instances known as satisfi-
able over those with an unknown satisfiability status. This approach makes sure that “too hard”
instances to be picked possess solutions, yet confirming an optimum is hard, and instances with
an unknown satisfiability status can still be contained among those that are picked freely.

Example 5

Regarding the Optimization problem in the Valves Location domain, we obtain select (satisfiable(
“too hard”)) = select(“too hard”) = 4, given that the 23 instances whose satisfiability status is
unknown are not considered for balancing.]

The described twofold balancing scheme, first considering the hardness of instances and then
the satisfiability status of instances of similar hardness, is implemented by an ASP-Core-2 encod-
ing that consists of two parts: a deterministic program part (having a unique answer set) takes care

8 Otherwise, all subclasses to pick instances from are empty, which would lead to division by zero in (T).

The Seventh Answer Set Programming Competition: Design and Results 13

of determining the numbers select(z) from the runtime results of reference systems, and a non-
deterministic part similar to the selection program used in the previous ASP Competition edition
(Gebser et al. 2017b)) encodes the choice of 20 instances per domain such that lower bounds
given by the calculated numbers select(x) are met. In comparison to the previous competition
edition, we updated the deterministic part of the benchmark selection encoding by implement-
ing the balancing scheme described above, which is more general than before and not fixed to a
particular number of classes (regarding hardness or satisfiability status) to balance. The instance
selection was then performed by running the ASP solver cLAsP with the options ——rand-freq,
-—-sign-def, and —-seed for guaranteeing reproducible randomization, using the concate-
nation of winning numbers in the EuroMillions lottery of 2nd May 2017 as the random seed.
This process led to the numbers of instances picked per domain, hardness class, and satisfiability
status listed in Table[T}

As a final remark, we note that we had to exclude the Resource Allocation domain from the
main competition in view of an insufficient number of instances belonging to the hardness classes
under consideration. In fact, the majority of instances turned out to be “very easy” relative to an
optimized encoding devised in the phase of checking/establishing the ASP-Core-2 compliance of
initial submissions by benchmark authors. This does not mean that the problem of Resource Al-
location as such would be trivial or uninteresting, but rather time constraints on running the main
competition did unfortunately not permit to extend and then reassess the collection of instances.

4 Participant Systems

Fourteen systems, registered by three teams, participate in the System track of the Seventh ASP
Competition. The majority of systems runs in the SP category, while two (indicated by the suffix
“-MT” below) exploit parallelism in the MP category. In the following, we survey the registered
teams and systems.

Aalto. The team from Aalto University submitted nine systems that utilize normalization (Bo-
manson et al. 2014;|Bomanson et al. 2016) and translation (Bogaerts et al. 2016;|Bomanson et al.
2016} |Gebser et al. 2014; Janhunen and Niemeld 2011} [Liu et al. 2012) means. Two systems,
LP2SAT+LINGELING and LP2SAT+PLINGELING-MT, perform translation to SAT and use LINGELING
or PLINGELING, respectively, as back-end solver. Similarly, LP2mIP and LP2MIP-MT rely on trans-
lation to Mixed Integer Programming along with a single- or multi-threaded variant of cpLEX for
solving. The LP2ACYCASP, LP2ACYCPB, and LP2ACYCSAT systems incorporate translations based
on acyclicity checking, supported by cLasP run as ASP, Pseudo-Boolean, or SAT solver, as well
as the GRAPHSAT solver in case of SAT with acyclicity checking. Moreover, LP2NORMAL+LP2STS
takes advantage of the SAT-TO-SAT framework to decompose complex computations into several
SAT solving tasks. Unlike that, LP2NORMAL+CLASP confines preprocessing to the (selective) nor-
malization of aggregates and weak constraints before running cLAspP as ASP solver. Beyond syn-
tactic differences between target formalisms, the main particularities of the available translations
concern space complexity and the supported language features. Regarding space, the translation
to SAT utilized by LP2SAT+LINGELING and LP2SAT+PLINGELING-MT comes along with a logarith-
mic overhead in case of non-tight logic programs that involve positive recursion (Fages 1994)),
while the other translations are guaranteed to remain linear. Considering language features, the
systems by the Aalto team do not support queries, and the back-end solver CLASP of LP2ACYCASP,
LP2ACYCPB, and LP2NORMAL+CLASP provides a native implementation of aggregates, which the

14 M. Gebser, M. Maratea and F. Ricca

other systems treat by normalization within preprocessing. Optimization problems are supported
by all systems but LP2SAT+LINGELING, LP2SAT+PLINGELING-MT, and LP2NORMAL+LP2STS, while
only LP2NORMAL+LP2STS and LP2NORMAL+CLASP are capable of handling non-HCF disjunction.

ME-ASP. The ME-ASP team from the University of Genova, the University of Sassari, and the
University of Calabria submitted the multi-engine ASP system ME-AspP2, which is an updated
version of ME-ASP (Maratea et al. 2012; Maratea et al. 2014; Maratea et al. 2015|), the winner
system in the Regular track of the Sixth ASP Competition. Like its predecessor version, ME-ASP2
investigates features of an input program to select its back-end among a pool of ASP grounders
and solvers. Basically, ME-ASP2 applies algorithm selection techniques before each stage of the
answer set computation, with the goal of selecting the most promising computation strategy over-
all. As regards grounders, ME-ASP2 can pick either DLV or GRINGO, while the available solvers
include a selection of those submitted to the Sixth ASP Competition as well as the latest ver-
sion of cLasp. The first selection (basically corresponding to the selection of the grounder) is
based on features of non-ground programs and was obtained by implementing the result of the
application of the PART decision list algorithm, whereas the choice of a solver is based on the
multinomial classification algorithm k-Nearest Neighbors, used to train a model on features of
ground programs extracted (whenever required) from the output generated by the grounder (for
more details, see (Maratea et al. 2015)).

UNICAL. The team from the University of Calabria submitted four systems utilizing the re-
cent IDLV grounder (Calimeri et al. 2017), developed as a redesign of (the grounder com-
ponent of) DLv going along with the addition of new features. Moreover, back-ends for
solving are selected from a variety of existing ASP solvers. In particular, IDLV-CLASP-
pLv makes use of pLv (Leone et al. 2006; [Maratea et al. 2008) for instances fea-
turing a ground query; otherwise, it consists of the combination of the grounder IDLV
with cLAsp executed with the option ——configuration=trendy. The IDLV+-CLASP-
DLV system is a variant of the previous system that uses a heuristic-guided rewrit-
ing technique (Calimeri et al. 2018) relying on hyper-tree decomposition, which aims
to automatically replace long rules with sets of smaller ones that are possibly evalu-
ated more efficiently. IDLV+-WASP-DLV is obtained by using wasp in place of cLAsp. In
more detail, wasp is executed with the options ——shrinking-strategy=progression
--shrinking-budget=10 --trim-core --enable-disjcores, which configure
WASP to use two techniques tailored for Optimization problems. Inspired by ME-ASP, IDLV+S
(Fusca et al. 2017) integrates IDLV+ with an automatic selector to choose between wasp and
CLASP on a per instance basis. To this end, IDLV+s implements classification, by means of the
well-known support vector machine technique. A more detailed description of the IDLV+S sys-
tem is provided in (Calimeri et al. 2019).

5 Results

This section presents the results of the Seventh ASP Competition. We first announce the winners
in the SP category and analyze their performance, and then proceed overviewing results in the
MP category. Finally, we analyze the results more in details outlining some of the outcomes.

The Seventh Answer Set Programming Competition: Design and Results 15

idlv+-s 385 : 790 : . 1044,1 : L4500
idlv+-clasp-div 400 . 805 . . 1017,7 . L...435
idlv-clasp-div 400 ' 785 ' . 10159 . . 435
me-asp 350 . 785 . . 996,8 . _430_,_
Ip2normal+clasp 330 590 . 881,8 | 40 “T1
idlv+-wasp-dlv 270 585 . 880,5 . 3758 “T2
Ip2acycasp+clasp 320 . 620 . 1024,1 13
Ip2acycsat+clasp 305 510 . 784,1 “Ta
Ip2acycpb+clasp 260 500 . 7659 .
Ip2sat+lingeling 250065
Ip2normal+lp2sts+sts [135.0.340...0,925
Ip2mip 145 60 375
0 500 1000 1500 2000 2500 3000

Fig. 2: Results of the SP category with computation .S; for Optimization problems.

5.1 Results in the SP Category

Figures [2]and [3]summarize the results of the SP category, by showing the scores of the various
systems, where Figure 2] utilizes function S; for computing the score of Optimization problems,
while Figure [3 utilizes function Ss. To sum up, considering Figure[2] the first three places go to
the systems:

1. IDLV+sS, by the UNICAL team, with 2665 points;
2. IDLV+-CLASP-DLV, by the UNICAL team, with 2655,9 points;
3. IDLV-CLASP-DLV, by the UNICAL team, with 2634 points.

Also, ME-ASP is quite close in performance, earning 2560 points in total.

Thus, the first three places are taken by versions of the IDLV system pursuing the approaches
outlined in Section {f] The fourth place, with very positive results, is instead taken by ME-ASP
which pursues a portfolio approach, and was the winner of the last competition.

Going into the details of sub-tracks, the three top-performing systems overall take the first
places as well:

Sub-track #1 (Basic Decision): IDLV-CLASP-DLV and IDLV+-CLASP-DLV with 400 points;
Sub-track #2 (Advanced Decision): IDLV+-CLASP-DLV with 805 points;

Sub-track #3 (Optimization): IDLV+-CLASP-DLV with 1015,9 points;

Sub-track #4 (Unrestricted): IDLV+S with 450 points.

Considering Figure[3] which employs function S, for computing scores of Optimization prob-
lems, the situation is slightly different, i.e., ME-ASP now gets the third place. To sum up, the first
three places go to the systems:

1. IDLV+S, by the UNICAL team, with 2330 points;
2. IDLV+-CLASP-DLV, by the UNICAL team, with 2200 points;
3. ME-ASP, by the ME-ASP team, with 2185 points.

IDLV+-CLASP-DLV is now fourth with the same score of 2185 points but higher cumulative
CPU time: the difference is in Sub-track #3, where relative results are different with respect to

16

M. Gebser, M. Maratea and F. Ricca

idlv+-s] 385 ‘ 790 ‘ YOS —+—Aiﬂ_
idlv+-clasp-div] 400 { 805 { 560 +
me-asp 350 { 785 { 620{ +
idlv-clasp-dlv] 400 { 785 { 56% 433
Ip2normal+clasp Al—iif‘ l 590 l 590 ‘_I-'IA— a1
idlv+-wasp-dlv AHG ‘ 585 ‘ 580 T2
Ip2acycasp+clasp | 320 ‘ 620 ‘ 585 3
Ip2acycsat+clasp [.305 ‘ 510 ‘ 570 “Ta4
Ip2acycpb+clasp Hﬂ+ 455
Ip2sat+lingeling Hﬁﬁ+
Ip2normal+Ip2sts+sts Aﬂﬁi—’iﬁ—r’l&
Ip2mip Al-ui-iﬂ 375 .
0 500 1000 1500 2000 2500

1200
me-asp —<—

Time (s)

Fig. 3: Results of the SP category with computation .S, for Optimization problems.

Ip2sat+lingeling —«—
Ip2normal+lp2sts+sts —=—
Ip2normal+clasp

1000 Ip2acycsat+clasp
Ip2acycpb+clasp —a—
Ip2acycasp+clasp

idlv+-wasp-dlv. —=—
idlv+-s —v— g

800 idlv+-clasp-div. —s—
idlv-clasp-div. —e—

400 450 500

250 300

Number of solved instances

200

150

100

50

Fig. 4: Cactus plot of solver performances in the SP category.

using S, and with the new score computation ME-ASP earns 55 points more than IDLV+-CLASP-
DLV. In general, employing Ss function for computing scores of Optimization problems leads to
lower scores: indeed, .S, is more restrictive than .S; given that only optimal results are considered.

An overall view of the performances of all participant systems on all benchmarks is shown in

the cactus plot of Figure[d] Detailed results are reported in Appendix A.

Official results in Figures 2] and [3] are complemented by the data showed in Figures [5] and [6]
Figure |§| contains, for each solver, the number of (optimally) solved instances in each reason-
ing problem of the competition, i.e., Decision, Optimization and Query (denoted Dec, Opt, and
Query in the figure, respectively). From the figure, we can see that IDLV+-CLASP-DLV and IDLV-
CLASP-DLV are the solvers that perform best on Decision problems, while IDLV+-S is the best on
Optimization problems. For what concern Query answering, the first four solvers perform equally

The Seventh Answer Set Programming Competition: Design and Results 17

idlv+-s
idlv+-clasp-dlv
me-asp
idlv-clasp-dlv
Ip2normal+clasp

idlv+-wasp-dlv 1 Dec

Ip2acycasp+clasp “Opt

Ip2acycsat+clasp “ Query
Ip2acycpb+clasp
Ip2sat+lingeling

Ip2normal+Ip2sts+sts

Ip2mip

500

Fig. 5: Number of (optimally) solved instances in the SP category by task.

idlv+-s

idlv+-clasp-dlv

me-asp

idlv-clasp-div

Ip2normal+clasp

“T1

idlv+-wasp-dlv

uT2
Ip2acycasp+clasp

! ! o

Ip2acycsat+clasp | | wuT4

Ip2acycpb+clasp

Ip2sat+lingeling
Ip2normal+lp2sts+sts

Ip2mip

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Fig. 6: Percentage of solved instances in the SP category.

well on them. Figure|[f] instead, reports, for each solver, the percentage of solved instances (resp.
score) in the various sub-tracks out of the total number of (optimally) solved instances (resp.
global score), i.e., what is the “contribution” of tasks in each sub-track to the results of the re-
spective system.

5.2 Results in the MP category

Figure [7] shows results about the MP category. The bottom part of the figure reports the scores
acquired by the two participant systems, which cumulatively are: for

1. LP2SAT+PLINGELING-MT, by the Aalto team, 715 points;
2. LP2MIP-MT, by the Aalto team, 635 points.

Looking into details of the sub-tracks, we can note that LP2SAT+PLINGELING-MT is better
than LP2MIP-MT on Sub-track #1 and much better on Sub-track #2, while on Sub-track #3,

18 M. Gebser, M. Maratea and F. Ricca

“T1

uT2

Ip2mip-mt
T3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Ip2mip-mt Ip2sat+plingeling-mt
Tl 180 265
uT2 50 450
T3 405

Fig. 7: Results of the MP category.

where LP2SAT+PLINGELING-MT does not compete, LP2MIP-MT earns a consistent number of
points, but not enough to globally reach the score of LP2SAT+PLINGELING-MT in the first two
sub-tracks.

The top part of Figure [7] instead, complements the results by showing the “contribution” of
solved instances in each sub-track out of the score of the respective system.

5.3 Analysis of the results

There are some general observations that can be drawn out of the results presented in this sec-
tion. First, the best overall solver implements algorithm selection techniques, and continues the
“tradition” of the efficiency of portfolio-based solvers in ASP competitions, given that CLASP-
FoLIO (Gebser et al. 2011)) and ME-AsP (Maratea et al. 2014)) were the overall winners of the
2011 and 2015 competitions, respectively. At the same time, the result outlines the importance
of the introduction of new evaluation techniques and implementations. Indeed, although IDLV +-
S applies a strategy similar to the one of ME-ASP, IDLV+-S exploited a new component (i.e.,
the grounder (Calimeri et al. 2016))) that was not present in ME-Asp (which is based on solvers
from the previous competition). Second, the approach implemented by LP2NORMAL using CLASP
confirms its very good behavior in all sub-tracks, and thus overall. Third, specific istantiations
of the translation-based approach perform particularly well in some sub-tracks: this is the case
for the LP2ACYCASP solver using cLASP in Sub-track #3, especially when considering scoring
scheme S, but also for Lp2MIPp, that compiles to a general purpose solver, in the same sub-track,
especially when considering scoring scheme S» (even if to a less extent). As far as the compari-
son between solvers in the MP category and their counter-part in the SP category is concerned,
we can see that globally the score of LP2SAT+PLINGELING-MT and LP2SAT+PLINGELING is
the same, with the small advantage of LP2SAT+PLINGELING-MT in Sub-track #1 being compen-
sated in Sub-track #2. Instead, LP2MIP+MT earns a consistent number of points more than LP2MIP,

The Seventh Answer Set Programming Competition: Design and Results 19

especially in Sub-track #1 and #3. In general, more specific research is probably needed on ASP
solvers exploiting multi-threading to take real advantage from this setting.

6 Conclusion and Final Remarks

We have presented design and results of the Seventh ASP Competition, with particular focus on
new problem domains, revised benchmark selection process, systems registered for the event,
and results.

In the following, we draw some recommendations for future editions. These resemble the ones
of the past event: for some of them some steps have been already made in this seventh’s event,
but they may be considered, with the aim of widening the number of participant systems and ap-
plication domains that can be analyzed, starting from the next (Eighth) ASP competition that will
take place in 2019 in affiliation with the 15th International Conference on Logic Programming
and Non-Monotonic Reasoning (LPNMR 2019), in Philadelphia, US:

e We also tried to re-introduce a Model&Solve track at the competition. But, given the short
call for contributions and the low number of expressions of interest received, we decided
not to run the track. Despite this, we still think that a (restricted form of a) Model&Solve
track should be re-introduced in the ASP competition series.

e Our aim with the re-introduction of a Model&Solve track was at solving domains involv-
ing, e.g., discrete as well as continuous dynamics (Balduccini et al. 2017), so that exten-
sions like Constraint Answer Set Programming (Mellarkod et al. 2008) and incremental
ASP solving (Gebser et al. 2008)) may be exploited. The mentioned extensions could be
added as tracks of the competition, but for CASP the first step that would be needed is a
standardization of its language.

e Given that still basically all participant systems rely on grounding, the availability of more
grounders is crucial. In this event the I-DLV grounder came into play, but there is also the
need for more diverse techniques. This may also help improving portfolio solvers, by ex-
ploiting machine learning techniques at non-ground level (for a preliminary investigation,
see (Maratea et al. 2013 Maratea et al. 2015))).

e Portfolio solvers showed good performance in the editions where they participated. How-
ever, no such system in the various editions has exploited a parallel portfolio approach.
Exploring such techniques in conjunction could be an interesting topic of future research
for further improving the efficiency.

e Another option for attracting (young) researchers from neighboring areas to the develop-
ment of ASP solvers may be a track dedicated to modifications of a common reference
system, in the spirit of the Minisat hack track of the SAT Competition series. This would
lower the entrance barrier by keeping the effort of a participation affordable, even for small
teams.

Acknowledgments. The organizers of the Seventh ASP Competition would like to thank the
LPNMR 2017 officials for the co-location of the event. We also acknowledge the Department
of Mathematics and Computer Science at the University of Calabria for supplying the computa-
tional resources to run the competition. Finally, we thank all solver and benchmark contributors,
and participants, who worked hard to make this competition possible.

20 M. Gebser, M. Maratea and F. Ricca

References

ALVIANO, M., CALIMERI, F., DODARO, C., FUSCA, D., LEONE, N., PERRI, S., RiCcCA, F., VELTRI, P,
AND ZANGARI, J. 2017. The ASP system DLV2. In Proceedings of the Fourteenth International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR’17), M. Balduccini and T. Jan-
hunen, Eds. Lecture Notes in AI (LNAI), vol. 10377. Springer-Verlag, 215-221.

ALVIANO, M., DODARO, C., LEONE, N., AND RICCA, F. 2015. Advances in WASP. In Proceedings
of the Thirteenth International Conference on Logic Programming and Nonmonotonic Reasoning (LP-
NMR’15), F. Calimeri, G. Ianni, and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol.
9345. Springer-Verlag, 40-54.

AMENDOLA, G., DODARO, C., FABER, W., LEONE, N., AND RiccCA, F. 2017. On the computation of
paracoherent answer sets. In Proceedings of the Thirty-First AAAI Conference on Artificial Intelligence
(AAAI’'17), S. P. Singh and S. Markovitch, Eds. AAAI Press, 1034-1040.

AMENDOLA, G., DODARO, C., FABER, W., AND RiIcCCA, F. 2018. Externally supported models for effi-
cient computation of paracoherent answer sets. In Proceedings of the Thirty-Second AAAI Conference on
Artificial Intelligence (AAAI’18), S. A. Mcllraith and K. Q. Weinberger, Eds. AAAI Press, 1720-1727.

AMENDOLA, G., EITER, T., FINK, M., LEONE, N., AND MOURA, J. 2016. Semi-equilibrium models for
paracoherent answer set programs. Artificial Intelligence 234,219-271.

AMENDOLA, G., RICCA, F., AND TRUSZCZYNSKI, M. 2017. Generating hard random Boolean formulas
and disjunctive logic programs. In Proceedings of the Twenty-Sixth International Joint Conference on
Artificial Intelligence (IJCAI’17), C. Sierra, Ed. ijcai.org, 532-538.

APPLEGATE, D., BIXBY, R., CHVATAL, V., AND COOK, W. 2007. The Traveling Salesman Problem: A
Computational Study. Princeton University Press.

BALDUCCINI, M., MAGAZZENI, D., MARATEA, M., AND LEBLANC, E. 2017. CASP solutions for plan-
ning in hybrid domains. Theory and Practice of Logic Programming 17, 4, 591-633.

BARAL, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press.

BEN-ELIYAHU, R. AND DECHTER, R. 1994. Propositional semantics for disjunctive logic programs.
Annals of Mathematics and Artificial Intelligence 12, 53-87.

BOGAERTS, B., JANHUNEN, T., AND TASHARROFI, S. 2016. Stable-unstable semantics: Beyond NP with
normal logic programs. Theory and Practice of Logic Programming 16, 5-6, 570-586.

BOMANSON, J., GEBSER, M., AND JANHUNEN, T. 2014. Improving the normalization of weight rules
in answer set programs. In Proceedings of the Fourteenth European Conference on Logics in Artificial
Intelligence (JELIA’14), E. Fermé and J. Leite, Eds. Lecture Notes in Artificial Intelligence, vol. 8761.
Springer-Verlag, 166—180.

BOMANSON, J., GEBSER, M., AND JANHUNEN, T. 2016. Rewriting optimization statements in answer-
set programs. In Technical Communications of the Thirty-second International Conference on Logic
Programming (ICLP’16), M. Carro and A. King, Eds. Open Access Series in Informatics, vol. 52. Schloss
Dagstuhl, 5:1-5:15.

BOMANSON, J., GEBSER, M., JANHUNEN, T., KAUFMANN, B., AND SCHAUB, T. 2016. Answer set
programming modulo acyclicity. Fundamenta Informaticae 147, 1, 63-91.

BREWKA, G., EITER, T., AND TRUSZCZYNSKI, M. 2011. Answer set programming at a glance. Commu-
nications of the ACM 54, 12, 92—-103.

BRUYNOOGHE, M., BLOCKEEL, H., BOGAERTS, B., DE CAT, B., DE POOTER, S., JANSEN, J.,
LABARRE, A., RAMON, J., DENECKER, M., AND VERWER, S. 2015. Predicate logic as a modeling
language: Modeling and solving some machine learning and data mining problems with IDP3. Theory
and Practice of Logic Programming 15, 6, 783-817.

CALIMERI, F., DODARO, C., FUSCA, D., PERRI, S., AND ZANGARI, J. 2019. Efficiently coupling the
I-DLV grounder with ASP solvers. Theory and Practice of Logic Programming. To appear.

CALIMERI, F., FUSCA, D., PERRI, S., AND ZANGARI, J. 2016. [-DLV: The new intelligent grounder
of dlv. In Proceedings of AI*IA 2016: Advances in Artificial Intelligence - Fifteenth International

The Seventh Answer Set Programming Competition: Design and Results 21

Conference of the Italian Association for Artificial Intelligence, G. Adorni, S. Cagnoni, M. Gori, and
M. Maratea, Eds. Lecture Notes in Computer Science, vol. 10037. Springer, 192-207.

CALIMERI, F., FUSCA, D., PERRI, S., AND ZANGARI, J. 2017. I-DLV: The new intelligent grounder of
DLV. Intelligenza Artificiale 11, 1, 5-20.

CALIMERI, F., FUSCA, D., PERRI, S., AND ZANGARI, J. 2018. Optimizing answer set computation via
heuristic-based decomposition. In Proceedings of the Twentieth International Symposium on Practical
Aspects of Declarative Languages (PADL’18), F. Calimeri, K. W. Hamlen, and N. Leone, Eds. Lecture
Notes in Computer Science, vol. 10702. Springer, 135-151.

CALIMERI, F., GEBSER, M., MARATEA, M., AND RICCA, F. 2016. Design and results of the fifth answer
set programming competition. Artificial Intelligence 231, 151-181.

CALIMERI, F., IANNI, G., AND RICCA, F. 2014. The third open answer set programming competition.
Theory and Practice of Logic Programming 14, 1, 117-135.

CUSSENS, J. 2011. Bayesian network learning with cutting planes. In Proceedings of the Twenty-seventh
International Conference on Uncertainty in Artificial Intelligence (UAI’11), F. Cozman and A. Pfeffer,
Eds. AUAI Press, 153-160.

EITER, T. AND GOTTLOB, G. 1995. On the computational cost of disjunctive logic programming: Propo-
sitional case. Annals of Mathematics and Artificial Intelligence 15, 3-4, 289-323.

EITER, T., IANNI, G., AND KRENNWALLNER, T. 2009. Answer Set Programming: A Primer. In Rea-
soning Web. Semantic Technologies for Information Systems, 5th International Summer School - Tutorial
Lectures. Brixen-Bressanone, Italy, 40—110.

FAGES, F. 1994. Consistency of Clark’s Completion and Existence of Stable Models. Journal of Methods
of Logic in Computer Science 1, 1, 51-60.

FuscA, D., CALIMERI, F., ZANGARI, J., AND PERRI, S. 2017. I-DLV+MS: Preliminary report on an
automatic ASP solver selector. In Proceedings of the Twenty-fourth RCRA International Workshop on
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion (RCRA’17),
M. Maratea and I. Serina, Eds. CEUR Workshop Proceedings, vol. 2011. CEUR-WS.org, 26-32.

GEBSER, M., JANHUNEN, T., AND RINTANEN, J. 2014. Answer set programming as SAT modulo
acyclicity. In Proceedings of the Twenty-first European Conference on Artificial Intelligence (ECAI’14),
T. Schaub, G. Friedrich, and B. O’Sullivan, Eds. Frontiers in Artificial Intelligence and Applications, vol.
263. 10S Press, 351-356.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB, T., AND THIELE, S. 2008.
Engineering an incremental ASP solver. In Proceedings of the Twenty-fourth International Conference on
Logic Programming (ICLP’08), M. Garcia de la Banda and E. Pontelli, Eds. Lecture Notes in Computer
Science, vol. 5366. Springer-Verlag, 190-205.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., ROMERO, J., AND SCHAUB, T. 2015. Progress in clasp
series 3. In Proceedings of the Thirteenth International Conference on Logic Programming and Non-
monotonic Reasoning (LPNMR’15), F. Calimeri, G. lanni, and M. Truszczynski, Eds. Lecture Notes in
Computer Science, vol. 9345. Springer-Verlag, 368-383.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., SCHAUB, T., SCHNEIDER, M. T., AND ZILLER, S. 2011.
A portfolio solver for answer set programming: Preliminary report. In Proceedings of the Eleventh
International Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11). Lecture
Notes in Computer Science, vol. 6645. Springer, Vancouver, Canada, 352-357.

GEBSER, M., LEONE, N., MARATEA, M., PERRI, S., RicCA, F., AND SCHAUB, T. 2018. Evaluation
techniques and systems for answer set programming: a survey. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence (IJCAI 2018), J. Lang, Ed. ijcai.org, 5450-5456.

GEBSER, M., MARATEA, M., AND RICCA, F. 2016. What’s hot in the answer set programming competi-
tion. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI 2016), D. Schu-
urmans and M. P. Wellman, Eds. AAAI Press, 4327-4329.

GEBSER, M., MARATEA, M., AND RICCA, F. 2017a. The design of the seventh answer set program-
ming competition. In Proceedings of the Fourteenth International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR’17), M. Balduccini and T. Janhunen, Eds. Lecture Notes in Al
(LNAI), vol. 10377. Springer-Verlag, 3-9.

22 M. Gebser, M. Maratea and F. Ricca

GEBSER, M., MARATEA, M., AND RiIcCA, F. 2017b. The sixth answer set programming competition.
Journal of Artificial Intelligence Research 60, 41-95.

GELFOND, M. AND LEONE, N. 2002. Logic Programming and Knowledge Representation — the A-Prolog
perspective. Artificial Intelligence 138, 1-2, 3-38.

GUERINIK, N. AND CANEGHEM, M. V. 1995. Solving crew scheduling problems by constraint program-
ming. In Proceedings of the First International Conference on Principles and Practice of Constraint
Programming (CP’95), U. Montanari and F. Rossi, Eds. Lecture Notes in Computer Science, vol. 976.
Springer, 481-498.

HAVUR, G., CABANILLAS, C., MENDLING, J., AND POLLERES, A. 2016. Resource allocation with de-
pendencies in business process management systems. In Proceedings of the Business Process Manage-
ment Forum (BPM’16), M. L. Rosa, P. Loos, and O. Pastor, Eds. Lecture Notes in Business Information
Processing, vol. 260. Springer, 3-19.

INOUE, K. AND SAKAMA, C. 1996. A Fixpoint Characterization of Abductive Logic Programs. Journal
of Logic Programming 27, 2, 107-136.

JANHUNEN, T., GEBSER, M., RINTANEN, J., NYMAN, H., PENSAR, J., AND CORANDER, J. 2017. Learn-
ing discrete decomposable graphical models via constraint optimization. Statistics and Computing 27, 1,
115-130.

JANHUNEN, T. AND NIEMELA, I. 2011. Compact translations of non-disjunctive answer set programs
to propositional clauses. In Proceedings of the Symposium on Constructive Mathematics and Computer
Science in Honour of Michael Gelfonds 65th Anniversary. Lecture Notes in Computer Science, vol. 6565.
Springer, 111-130.

KOPONEN, L., OIKARINEN, E., JANHUNEN, T., AND SAILA, L. 2015. Optimizing phylogenetic supertrees
using answer set programming. Theory and Practice of Logic Programming 15, 4-5, 604-619.

LEFEVRE, C., BEATRIX, C., STEPHAN, 1., AND GARCIA, L. 2017. ASPeRiX, a first-order forward chain-
ing approach for answer set computing. Theory and Practice of Logic Programming 17, 3, 266-310.

LEONE, N., PFEIFER, G., FABER, W., EITER, T., GOTTLOB, G., PERRI, S., AND SCARCELLO, F. 2006.
The DLV system for knowledge representation and reasoning. ACM Trans. Comput. Log. 7, 3, 499-562.

LIERLER, Y., MARATEA, M., AND RICCA, F. 2016. Systems, engineering environments, and competitions.
Al Magazine 37, 3, 45-52.

LIFSCHITZ, V. 2002. Answer Set Programming and Plan Generation. Artificial Intelligence 138, 39-54.

LIFSCHITZ, V. 2008. Twelve definitions of a stable model. In Proceedings of the Twenty-fourth Interna-
tional Conference on Logic Programming (ICLP’08), M. Garcia de la Banda and E. Pontelli, Eds. Lecture
Notes in Computer Science, vol. 5366. Springer-Verlag, 37-51.

Liu, G., JANHUNEN, T., AND NIEMELA, I. 2012. Answer set programming via mixed integer program-
ming. In Proceedings of the Thirteenth International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’12), G. Brewka, T. Eiter, and S. A. Mcllraith, Eds. AAAI Press, 32—42.

MARATEA, M., PULINA, L., AND RICCA, F. 2012. The multi-engine ASP solver me-asp. In Proceedings
of the 13th European Conference on Logics in Artificial Intelligence (JELIA 2012), L. F. del Cerro,
A. Herzig, and J. Mengin, Eds. Lecture Notes in Computer Science, vol. 7519. Springer, 484-487.

MARATEA, M., PULINA, L., AND RICCA, F. 2013. Automated selection of grounding algorithm in an-
swer set programming. In Advances in Artificial Intelligence - Proceedings of the 13th International
Conference of the Italian Association for Artificial Intelligence (AI*IA 2013),, M. Baldoni, C. Baroglio,
G. Boella, and R. Micalizio, Eds. Lecture Notes in Computer Science, vol. 8249. Springer, 73-84.

MARATEA, M., PULINA, L., AND RICCA, F. 2014. A multi-engine approach to answer-set programming.
Theory and Practice of Logic Programming 14, 6, 841-868.

MARATEA, M., PULINA, L., AND RICCA, F. 2015. Multi-level algorithm selection for ASP. In Proceed-
ings of the Thirteenth International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’15), F. Calimeri, G. Ianni, and M. Truszczynski, Eds. Lecture Notes in Computer Science, vol.
9345. Springer-Verlag, 439-445.

MARATEA, M., RIccA, F., FABER, W., AND LEONE, N. 2008. Look-back techniques and heuristics in
dlv: Implementation, evaluation and comparison to gbf solvers. Journal of Algorithms in Cognition,
Informatics and Logics 63, 1-3, 70-89.

The Seventh Answer Set Programming Competition: Design and Results 23

MAREK, V. W. AND TRUSZCZYNSKI, M. 1999. Stable Models and an Alternative Logic Programming
Paradigm. In The Logic Programming Paradigm — A 25-Year Perspective, K. R. Apt, V. W. Marek,
M. Truszczynski, and D. S. Warren, Eds. Springer Verlag, 375-398.

MARPLE, K. AND GUPTA, G. 2014. Dynamic consistency checking in goal-directed answer set program-
ming. Theory and Practice of Logic Programming 14, 4-5, 415-427.

MELLARKOD, V., GELFOND, M., AND ZHANG, Y. 2008. Integrating answer set programming and con-
straint logic programming. Annals of Mathematics and Artificial Intelligence 53, 1-4, 251-287.

NIEMELA, I. 1999. Logic Programming with Stable Model Semantics as Constraint Programming
Paradigm. Annals of Mathematics and Artificial Intelligence 25, 3—4, 241-273.

24 M. Gebser, M. Maratea and F. Ricca

Appendix A Detailed Results

We report in this appendix the detailed results aggregated by solver. In particular, Figures[A THA 4]
report for each solver and for each domain the score with computation S; for Optimization prob-
lems (ScoreASP2015), with computation score .So for Optimization problems (ScoreSolved), the
sum of the execution times for all instances (Sum(Time)), the average memory usage on solved
instances (Avg(Mem)), the number of solved instances (#Sol), the number of timed out execu-
tions (#TO), the number of execution terminated because the solver exceeded the memory limit
(#MO) and the number of execution with abnormal execution (#OE), this last counting the in-
stances that could not be solved by a solver, thus including output errors, abnormal terminations,
give-ups as well as instances that cannot be solved by a solver when it did not participate to a
domain. An “*” near to a score of 0 indicates that the solver was disqualified from a domain
because it terminated normally but produced a wrong witness in some instance of the domain.

25

Design and Results

The Seventh Answer Set Programming Competition

ov [0 [v6T [99v [00°06€0€ [00°0StZ6Z [0EET 6992 ov_Jo Tfozz Jovr Joo‘Tzo6z [00°890SZE [00ZZ 8592 ov [z otz Jeev Joo'vezee [o0‘zvvoze [s8rz 9€9z le20)

o Jo [o Joz [se’es €V'ETES [00T 00001 o o [t [61 [osvs 90'0LES |56 00'S6 o o [t [t [uo'ss v9vS6 _ [S6 00'S6 e-UsIA|
o Jo [z et [8z'69 215698 |59 16'56 o o Jz et Jos%sz 107298 |59 16'S6 o fo fz fer [eo%8z 002198 |59 16'S6 uiweass 0apiA|
o Jo [r ot [e9T1z [e9¥8Ss [os 6076 o o v ot [eo'e6T [e6ZvSs |os 6076 o o [v ot [sv'8eT__ [e0zo1s |os 1716 uonedo] SaAleA
o [0 [cr | [ooTor [svzvvor|sT Sv'SL o Jo [zt [ev'skt Jos'zwvoz [sT 16°SL o Jo [zt [es'stt Joo'9vvoz [sT 00°5L uosJadsajes Bujjane. |
0 Jo foz Jo [so0'8e9 [s8z00vz [0 9€'T9 o [0 oz o [sv'909 [z€'otovz |0 9€TL o [o oz o [e8z0s [ev'otovz |0 9€TL 15343uAs warshs|
o Jo [er |z [8976 £9'9699T _|SE €48 o o fer [¢ stz 08'27L9T _|SE SSv8 o o fer [[ivv9 ST'96791 |0t 60'6L uonANU0Y da.1adns|
oz Jo fo Jo [z691 €€°927 0 000 oz o Jo [0 [ve'ot 99712 o 000 oz o Jo [0 [ve'ot €512 0 000 sajuedwoddiFatens|
o o [9 [vT [98%L 01789, oL 7896 o o fo [vr [eze 50899 0L 7896 o o fo [vr [18%e S€'sivL|oL 7896 921 1aua3s|
o [0 [o [vT [18%s09 [v8z1z9T |oL 00’0, o Jo [z 8T [es’6s09 [89T6SET |06 0006 0 Jo [z I8t [e9zvo9 |os'zceer |06 0006 a8elLie |\ 3|qeis|
o [0 ot Jor [s670v [61'9€6ZT [0S 00'0S o Jo [8 fer [sz’ezr [ez’'9691T [09 0009 o Jo [8 Jer [sz’ézr [z0'68.1T [09 0009 ueqoyog|
0 [0 [v [or [e9z€se |[stTz8c |08 0008 o [o [v [or [te'sese [s€'zo6c |08 0008 o fo v f[or [t9%8z1T [ve'soec |og 0008 5135 Jamsuy JuaJayode.ed
o Jo for Jor [sozc TI'VS9ET [0S 0005 o o ot for [erz9 207L9ET_|0S 0005 o o [8 [er Jcg9 €9°EELZT |09 0009 $10G0Y 134201y
oz Jo fo o [sovosy 1916z [0 000 oz o Jo [0 Joreosy [vs'sesz o 000 oz o Jo [o [ev'eosy [t0'98cz_ |0 000 Kuiqeyoesy
o [0 9 |vT [88T¢ SE'9ELOT [0L 00°0L o o 6 |1t |t 8S'Z9TET [SS 00°sS o o 6 |1t |zt 80'99TET |55 00°sS dSV 2AdUNfsig wopuey
o Jo fo oz [szTer [se'sz£T [ooT 00001 o o Jo oz [s1'96 [oc'6T£T__ |ooT 00'00T o o Jo oz [vo'e6r [z9%0cT |oot 00°00T ujuoseay [eneds aAneljenp)|
o Jo fo Joz [es’e9e [s0Tiv 00T 00001 o Jo fo oz [s9Tee [o8zve 00T 00'00T o [z Jo et [ev'ovor [vz'0c19 |s9 009 BUIY2IeIN UJaled UOHRINULIR]
0 [0 ot Jor [8s'ser [zz'zzizr |os 0005 o [0 for for [e9'stt [es'8sizr [0S 0005 o [o ot for [ss'stt [tozoter |os 0005 SHuN Jauyed
o Jo [[t [so'ozz szl [ss 00'5S o o]6 [rr Joo'ste _ [es'9tzzr |ss 00'sS o o] [rr Joo'ste _ [s1'9vTZr |ss 00'SS AizysAwon
o [0 fo oz [e9z0e [evuz 00T 00'00T o Jo fo oz Jeozte [sv'eez 001 00001 o Jo fo oz rsTrE [s6'sez 00T 00007 sIsougelq [ewuIN;
o o T [61 [e6'z6E oT'zLer |6 16'S6 o o 6 |tT |/s%eST ¥9'€96TT _[SS 789L o o 6 |tT [ev'sstT 66'TL6TT |SS 789L LVSXew
o [0 ot Jor [v6vz8 [6v'6T6YT [0S €19 o Jo foz Jo [scovs [sT'otovz [0 81°8L o Jo foz Jo [we'ovs [vT0TOVZ [0 81°8L anbi|) [ewixey
0 [0 [s st [oz'esT [szT8/8 |st 79'86 0 Jo [s st Jtzost |e6vve8 [st v9'86 o Jo [s st [ve'svT |607TSL8 [St 7986 3UjuJea] JJOMIAN AN
o [0 |6 [rr [s9'tvz __ [or¥89zT |ss 00'ss o Jo [6 [ir [ez'vvz covsozr [ss 00°SS o Jo [6 [rr Jog'sez [ez'6Lozr[ss 00SS YiuAqe]
o [0 [s st [seseT _ [11'0059 |st 00'sL o Jo [s st [evTez |c0'8v9 [st 00°SL o Jo [s st [ev'ozz |sv'zeve [t 00°5L S3|0H YUIM Ino1 3ySiuy
o [0 [9 [vT [69'S€0T [€0'9018 oL 0002 o Jo fo vt Jov'ecor [wvTr08 [or 000L o Jo [s st [svTzor 998289 [st 0052 BulINpayds [e3uaWa.dU]
o o [et _[e9%89 6L'SPLS_|S8 00's8 o Jo [fer Joser 657ELS S8 0058 o Jo [e e Jeser €5'5745 S8 0058 3u1unoj0) ydeus)
o o [8 [zt _[907T6 LVELVTT |09 0009 o Jo [[zt Jeos9 0r'0LvTT |09 0009 o Jo [8 [zt [sr'69 TEVLYIT |09 0009 syde.g |njadel9
o Jo [t et [z6's TLYSTT|S6 00001 o o f6 [rr [s8%T 85'98L1T |55 5569 o o [6 [rr [s8%BT TZ'68LTT|SS 16'0L uoneziwiui Buisso.))|
o o [v ot [os's9 18'8799 |08 00’08 o Jo [e [Jweex 659559 S8 0058 o Jo [e fer Joszx 6£'6vS9 |S8 0058 uo11e0||y MLD)|
o Jo fo oz [vr'6zv8 |68zSy [00T 00001 o o Jo oz [vo'6zv8 [es'6vor |ooT 00'00T o o Jo oz Jor'6zys [s1'919%¥ |00T 00001 Bupiamsuy A1anp 1ua1sisuo)
0 [0 ot Jor [t¥'8er [sz'ovezT [0S €L1L 0 Jo fer [z T[sse6r /8'VS8LT |SE 8182 o Jo fer [z T[ss®T T1'G88/T |S€E 818/ 3J11 (IS Pa123uuo))|
o Jo fo oz [rozor [eT'ozve [ooT 00001 o o Jo oz [eesor _ [ss'6ose |oot 00'00T o o Jo oz [sotor [se'8yve |ooT 00°00T uonezjundo xa|dwo))|
o [0 [s st _[er’sto [€97Te9 |st 00'sL 0 Jo [st Josz89 oe'6vL9 [sL 00°5L 0 Jo [st [rz'sgs es'stzo [st 00°5L uoReINd}u0) pauIquIod
o o S [sT [oz'99 v8'8€59 [SL €L°L6 o o S [sT_[ov'sT 9.T259 |sL €L°16 o o S [st_[re'st €2°€2S9 |sL €L°16 Bujuseat yuomiaN ueisaheg
o [0 Jo oz [scz9 8SELT 00T 00'00T 0 Jo fo oz Jor'eT 89'9vT 00T 00001 0 Jo fo oz [e9'st 79°0ST 00T 00001 SIoMawel [ed1123[eld 1eNsqy|
30#| ow#[oL#] 1os#] (wa)3ay| (dwiL)wns| 30#| ow#| oLk 10s# (awiL)wns| S10Z 30#| ow#| oLk 10s# (wiir)wing ST0Z urewoq

S-+AIpI AIp-dsopp—+A|p! AIp-ds0>-AjpI

Detailed results for IDLV-CLASP-DLV, IDLV+-CLASP-DLV, IDLV+-S.

Fig. A1

M. Gebser, M. Maratea and F. Ricca

26

141 [bs [z€z [vz [00°€SLLS [00°TBSYE [STZT 9zsT [est [s€ [0z [so€ Joo‘oszze [o0‘0L6S6Z [szST v961 ov T6 [e8z [z9¢ [ooT61Er [00‘0z8%0¥ [018T 111z le20)

o Jo [z et [or'ose [ez'8zsor [s9 00'59 o o [[er [ev'sor [e6'e89S [s8 00's8 o o [z et [esi8y [ez'zies [s9 00's9 e-usIA|
o o [8 Jer [arsy 9€'8810T |09 (718 o o fo [vT Jog¥e 09°T2L oL 7896 o o f6 [T [vuve 880801 |5 Sv's9 ujweais oapiA|
8T o [z o [u9w91 [er'er9e [0 000 o [o [v ot [svzss [ovzess |os SSV6 o [0 [s [st [oo'ese [98'66vL |St 00's8 uoNed0T SAAIRA
o [0 for |v [e9%69 [ez’6T66T |0z €L78 0 Jo for [v 99'6ss [98'6T66T [0z 0008 0 Jo for [v [soeTezst |[es'scveT [0z 8188 uosJadsajes Bujjane. |
o [v1 |5 [t [/€vesTT [ST6v9 |S 00°s o o oz Jo |oo'zze SETIONZ [0 LTLL o o oz [0 [sto'ses |v'0tovz |o 9€T9 2auAs waishg
o Jo [sT |5 [so'eee [sz'€9rsT [z €Ly o o vt _[o Jor'or 7L'8T69T _|0€ €L18 o [0 fst [s [ses'oez [9s’zsest |st St'SS uoRANAU0Y 22.14adns|
oz Jo fo o [e89 v8T 0 000 oz o Jo fo ez 98T o 000 oz o Jo fo [sse'or [t1%Eee 0 000 sajuedwoddiFatens|
o [0 8 [er [6L've €v'5802T |09 16'08 o o 9 v [zsTe 05'99s. oL 16'S6 o o vT |9 |s8s’sty [16%679LT o€ 16'SS 9311 Jaudg
o [or Jo v [ec'99zzr [6S'6€29 |0z 00’0z o ot [o [v [s9zoczr [vszsvs [oz 0002 0 Jo [er [z [sc'essT |s6'z0soz [s€ 00°SE a8el.ie | 3|qeis|
o [0 [rt [6 [10TOv [SL'666ST |st 00'sY o Jo [[rr Jeo'ser [s8'9s/TT [SS 0055 0 Jofor Jor [st'eov |68's68zT [0S 0005 ueqoyog|
€1 | [o o [e970e9 [os'e60z [0 000 €T [Jo [0 [ez'z6z9 [15'09zz |0 000 o [o |6 [rr [sezvese [sov8zrT |ss 00'SS 5195 Jamsuy Juaiayodeled
o Jo [zt [8 [or'e0z [sv'esssT [ov 00°0% o o Jz et [s9%8s 7€'601ZT |59 0059 o [o ot for [soTve [e6zzLsT |os 0005 $10G0Y 1342021y
oz Jo fo o [sezzsT o9'sser [0 000 oz o Jo fo [ezzzst [sczwer o 000 oz o Jo fo [e6vosy [e9'8v8z |0 000 Aungeyoeay
oz o [0 Jo [ez0 000 o 000 oz Jo fo Jo Jooo 000 0 000 o Jo [rr J6 [sos'sc [ri8svr [st 00y punfsig wopuey
o Jo [6 [tr [ts’zzoz |96z£1sT[SS 00'5S o [o] [rr_Jorbzer [897700€T |sS 00'sS o o [z [t [st6've8z [cv'6909 |06 0006 Sujuoseay [eneds aAney[enp)|
o Jer fo |8 [e8'682z 196192 [ov 00°0% o Jex fo [8 [st'vesz oszvoe [ov 0001 o fo fo foz [towpz [sozie 00T 00001 3uIy2IeIN UJaled UOHEINULIRG
o Jo for Jor [sszee Jecvieer [os 0005 o [o |6 [rr [ez’eor _ [tT€ETOTT |SS 00'sS o [o fer [8 [vv'90s [ss'Toct Jov 000t sHun Jauded
o [t [tT |8 [90'€rtz [z9'sovsT [ov 00°0% o [o [8 [er [ve'osz _ [er'8zorT |09 0009 o o for for [ez'ovs [8c'sgevT |os 0005 AKizysAwon
oz o [0 Jo [s9%sT [p98TT o 000 oz o fo fo Jes8sT [ov'6lr 0 000 o fo fo foz [v8'8osT [00'98t 00T 00001 sisouSe|q [eWIUIN;
o [0 |6 [rT [or'0e [ezboerT |sS 00'sL o [o |6 [rr [se'8zz__ [8e'6TtTT |sS T6'SL o [o [t [6r [sse'szy [orvesz |s6 9£'96 LySxeiy
o [0 Joz Jo [scees [ocziovz o 16'0L o Jo foz Jo Jer'ees [tz'otovz [0 81°8L o Jo [[rr [st89zor [60'0z9vT [sS 000L anbi) [ewixey
o Jo [8 et [er'szs ozTerer [os €478 o fo [z [8r [96%2£5 [z€'09cv |06 00'00T o [o oz o [st'seor [9z'8oovz |0 0001 3ujuJea] JOMIAN AOHEN
o [0 fer |8 [1£%s6 [96'sev9r ot 00’0y o Jo [8 fer [eczse [es'svyir |09 0009 0 Jo [z fer [sev'svy [86z96 [s9 0059 YiunAge
o [0 [o v [s6%6L5 [0z'9zo8 oL 00’0, o Jo [s st JorToz [erozye [sc 00°5L o Jo [z Jer Jco'sge |sv'Te€6 |59 0059 S3|0H YuIM Ino1 3ySiuy
0 [0 ot Jor [007Tz9z [8vz96ET [0S 0005 o [o [z [er [eozzoz [857Ts06 |s9 0059 o fo [rr [6 [so'seer [s9'869ST |st 00°st Bulnpays [euawaIy|
o o[£ et [ozze TE6TIZT |59 00’59 0 Jo [v ot [soeT €6'€89 |08 0008 o Jo [zt [8 [sez’e9 [90'svzor [ov 000% 3uinoj0) ydeus)
o o [« et [v18s 78'9€0ZT |59 00’59 o Jo [z [er Jz0'09 6£'5980T |59 0059 o Jo [er [z [se'e6z |ez¥8LLT [SE 00°SE syde.g |nyadei9
o o [8 et [es%T €0'7850T |09 9€'9L o o f6 [rr Jov7zt 6979021 |5 9L o fo [v [er |sezze [ovzver |s6 00001 uoneziwiui Buisso.))|
o Jo [v ot [s97TT 798988 |08 0008 (O I I A T 867595 |s8 00's8 o o st _[s [es'o 6557861 _|ST 00'sT U013e0||y MLD)|
oz Jo fo o [es9otz [v8'eSz 0 000 oz o Jo [o ootz [ovT9z o 000 o [6 Jo [rr [sts's0syT [9z'0T8E |SS 00'SS aMsuy A1anD Jua3sisuo))|
o [0 fer [z [se%e 0171987 _|SE 8185 o o fer [TJerze 0826141 |SE v9'89 o [0 ot for [stzerT [vz'sseer |os Sv'SL 34171135 Pajpauuo))|
oz Jo fo Jo Joser 61TT 0 000 oz o Jo [0 Jeczw 180T o 000 o o Jo oz [ses'6cz_ [86'009z |00t 00°00T uonezjundo xa|dwo))|
o [v |6 [« [ovTzee [z8'689vT |s€ 00'sE o o |5 [st [e8¥er [eeTrec |st 00'SL o Jo [rr J6 [eseotz [z9'ss091T [sv 00°Sy uoReINBlU0) pauIquIo)
o o [s st [s0%e 6872689 S 6076 o Jo [vr ot [es0z 867875 |08 €L°6 o Jo v ot [6'scT 80'€TZ9 |08 1718 Bujuleat y1omiaN ueisakeg
oz o Jo Jo [s6%T Lv'SE o 000 oz Jo o Jo TJrovt TL'SE 0 000 o Jo [s st [see’e6T [se'8v€9 [SL £8'SL SoMaWeL [e1123[elq eNsqy|
30#] OW#[OL#] 1os#] (wan)3ay| (dwiL)wns] 30#] OW#[OLK[1os# (3witL)wns] S10Z 30#] OW#[OLK[1o5# (wiy)wing ST0Z urewoq

dsp+qdoAoDZd] dspjp+dsnoAo0Zd] Ap-dsom-+A[p]

Detailed results for IDLV-WASP-DLV, LP2ZACYCASP+CLASP, LP2ACYCPB+CLASP.

Fig. A2

27

Design and Results

The Seventh Answer Set Programming Competition

09 [s€ [6Tz [98€ [00°9TETY [00°'S0Z6ZE 06T [2243 [6sT 96 [6ze [9TT [00'85506 [00°€950Sw 08 085 [est o9 [voz [zzz Joo'sgz99 [00°zo0ste [s8ET 665T le20)

o Jo [t [er [se'sor [1zTyes [s6 00'56 o o [z [st [osyzy [sv'eezy |06 0006 o o [[er [s8'scz [ve'z6€9 [s8 00's8 e-usIA|
o [0 ot [v [8979¢ [r97Twzez |oz 9€'9€ o [o [er [[v8'06zz [veZE80Z |ST 00'sT o [0 fst [s [rz'over [sTvp8TC |Se v9'Ey 3ujwea.s 0apIA
o Jo [v ot [z077z9 9s89s [os €46 o foz Jo [0 [so’seezr [18'9st9 o 000 o for [[e [sozavs [sz'90eTt |st 00'ST uoNed0T SAAIRA
o [0 [cr | [oozevT [s1's9soz [T Sv'st o Jt [o fer Jee'eser |e9tess [s9 0059 o [t for [[w'z09z [tsviver [sT LTLE uosJadsajes Bujjane. |
0 [0 oz Jo [s0%889T [o1TTOVZ |0 00'0€ o [tT [6 [o [sT'0€%0r [o€’z€€ST |0 000 o [o oz o [pzzros [sv'etovz |0 000 9y3uAs wasAs|
o Jo [v1 o Jec'eL £9'v¥69T _|O€ St'SL o [0 Joz o [essov [c0TTOVZ O 000 o o bt [9 JosTir [s8riLT |oOE 9€TL uoRANAU0Y 22.14adns|
oz Jo fo o [eo9 €47 0 000 oz o Jo [o s 18T o 000 oz o Jo [o [s€9 8T 0 000 sajuedwoddiFatens|
o o 8 [er [e€vie TO'STIIT |09 00°SL o o £ |eT |z6'08L 1/8/98 |59 0059 o It 8 |tT |9z’soot [zo'szotT [sS T6°0L 9311 Jaudg
o [or Jo v [18'0zzzr_[evzers oz 00’0z 0 Joz fo Jo Jor'svezt [pp'ss99 [0 000 o Jor [o [v [or'eszzr [v0'zzz9 [oz 0002 a8el.ie | 3|qeis|
o [0 [6 [tr [v£¥pT [89'S6zZT |SS 00'sS 0 Jo foz Jo e9'908 [eT’0TOVZ [0 000 o Jo [6 [rr Jes'ész [so'0zser [sS 0055 ueqoyog|
o Jo fo et [t9'8zz9 [v8vezz [s9 00'59 €T [Jo fo [ss'96z9 [oo'9z6z o 000 T [¢ Jo fo Jez'ozzs [st'zezz o 000 5195 Jamsuy Juaiayodeled
o Jo [8 et [ec'9s €ETPYOT |09 0009 o [0 Joz o [ec’sss [eLzrovz o 000 o o]s st Je€zs 018016 |SL 00°SL $10G0Y 1342021y
oz Jo fo o [te'zzst 90829 [0 000 oz o Jo fo [rzzzst [oozesy o 000 oz o fo fo [szzzsT [61'808v |0 000 Aungeyoeay
o o [8 et [ss'ot 797882109 0009 oz Jo fo Jo Jooo 000 0 000 oz Jo fo Jo Jooo 000 0 000 punfsig wopuey
o Jo [[T [99'sTET |/6'€SOET [SS 00'5S o [0 [st [¢ [ec'eory [19'0zszz ot 0001 o o]6 [rr [sr'8tsT [e€'6ecer |ss 00'SS Sujuoseay [eneds aAney[enp)|
o Jer fo |8 forz8zz e9'0zre [ov 00°0% o Jex [t Jz es’ever [s6'sv8y [SE 00'sE o [er Jo [8 [erz8cz [v8%et0E |ov 0001 3uIy2IeIN UJaled UOHEINULIRG
o Jo for Jor [or'vzr [v9'e88vT [0S 0005 o [0 Joz o [es'ssTT [8v'0TOVZ |0 000 o o] [rr Jerorr [06'9€9€T |sS 00'SS sHun Jauded
o Jo [6 [t [v8'8sz [8TZS9TT [SS 00'5S o [t let [0 [evbssz [e0'zL9€z_|o 000 o o] [rr [ervee [tv'iveer |ss 00'SS AKizysAwon
o [0 fo oz [z670e [z9%TE 00T 00'00T oz o fo fo Jezest [c€7TwT 0 000 oz fo fo fo Jez'est [e€zT 0 000 sisouSe|q [eWIUIN;
o [0 [s st [s€Zz9e [6zTT69 |SL 1658 T o [8 [rr [zs'esz_ [e6'18z0T |sS 00'sS o [o [s [st_[ee'zev [e1zzec |st Sv'sg LySxeiy
o [0 fer [« [ozbsy _ [os'sstoz|s€ Sv'S6 o Jo [zt [8 er'9as z0'6LeLT [ov 000¥ o Jo [rr J6 [s9'ssv [95'999/T st 7986 anbi) [ewixey
o Jo [st |5 [vr'oss [trvvieT |[St 1605 T [0 [6r o o988 [s17ZvTEC |O 000 o fo [rr [6 [oe66s [or'69zST |st v9'EL 3ujuJea] JOMIAN AOHEN
o [0 [8 et [es‘osz_ [ez’evszr |09 0009 o Jo foz Jo JesvesT [vETTONZ [0 000 o Jo [zt [8 [esTez [erTesyr [ov 00'0% YiunAge
o [0 [s st _[or'zeT _ [68'S09L |st 00'sL o Jo [zt [8 [se’sor [z0TvovT [ov 000v o Jo [s st [vtvev |9's089 [t 00°5L S3|0H YuIM Ino1 3ySiuy
o [0 [8 [er [tT'szz [vS'esszr 09 0009 0 foz Jo fo [oeveezr [es'8e8s o 000 o [61 Jo [t [ezosozt [ov'96vS |s 00°S Bulnpays [euawaIy|
o o [v ot [so%T 9.'€6L9 |08 00'08 0 Jo far [Jez'ws €6'06EEC_|ST 00'ST 0 Jo [e far Jor'et v6'0z85 |S8 0058 3uinoj0) ydeus)
o [0 [z er [eg%9 TY'EE66 |59 00’59 o Jo [zt [Jzz'ses egzerer st 00°5T o Jo [¥t [8Z'99 £6'0810T _|0Z 000L syde.g |nyadei9
o o [r et [e0%8T 99's€ez|s6 00'00T o o [v et Joezr €19v2Z__|s6 00'S6 o o [v fer [ee0z v9'€80C__|S6 7986 uoneziwiui Buisso.))|
o Jo [s st [oceT L£7269 |SL 00'5L o [0 oz o [ev'06 9€'600v |0 000 o o v ot [ss¥T 096089 |08 0008 U013e0||y MLD)|
oz Jo fo o fooztz oo9vz 0 000 oz o fo [0 [ieBtz_ [1€7TST o 000 oz o Jo [o [rsztz_ [es’est 0 000 aMsuy A1anD Jua3sisuo))|
o o [v Jor [167Te Tv'82€8 |08 6066 0 [0 oz o [esTer [ss'60ovz |0 000 o o [z st [z9%e v0'EZT9 |06 00001 311 (IS Pa123uuo)|
o Jo [t et [z87TL OE'ES6E [S6 00'S6 oz o Jo fo Juz 6€TT o 000 oz o Jo fo [sozv 1STT 0 000 uonezjundo xa|dwo))|
o [o |5 [st [90%T9 [8789 |st 00'sZ o [v for o [vovver [cL'eEzzz o 000 0 Jo for [v Joo'seor [ss’ees6T [0z 0002 uoReINBlU0) pauIquIo)
0 Jo [s [st_[sz'se 106979 |SL Sv'06 v Jo [8 [8 [19.€s |ev'68L0T |ov 000% 0 Jo v ot [s8%r S6'9/85 |08 5568 BujuIea] YJoM}aN ueisaheg
o o Jo Joz [zs%T SE0LT 00T 00'00T oz Jo o Jo TJeeer 78'vE 0 000 oz Jo o Jo TJorvt ST'SE 0 000 SoMaWeL [e1123[elq eNsqy|
30#] OW#[OL#] 10s#] (wa)3ay| (dwiL)wns] 30#] OW#[OLK[1os# (awit1)wng] S10Z 30#] OW#[OLK[1o5# (w1)wing ST0Z urewoq

dspjo+/DWI0UZd] diuizd] dspj>+1052A00Zd]

Detailed results for LP2ACYCSAT+CLASP, LP2MIP, LP2NORMAL+CLASP.

Fig. A3

M. Gebser, M. Maratea and F. Ricca

28

Sv_[9 etz [iev [00'09Z€e_|o0'0zvELE |S8IT 295z [e8€ [s9_ [ott [evt [00'95009 [00°8L6€8T [STL STL o€t [e8 [19€ [0zt [00'65608 [00°vTvi6y 009 109 =N

0 [0 J& [t _|eees 087165 S8 00's8 o o Jo Joz [cvsvr__ Joviziee Joor 00001 o o [6 [ir [e990e [8S'svzTz_[ss 00'5S e-JSIA
0 [0 [o [vT Joozv 997TL€8_ |oL 5568 oz o Jo [0 [zzt89 |900zy o 000 TT [0 [6 |0 [6r06ec_ |so'sevTr |0 000 BUIWiEa3S 0PI
0 [0 |s_|st_|vves |stws9 st v9'e6 ot Jor_Jo_ |0 [ss0ezz_ |vv'zsvz__|o 000 T _[cr_[¢ |0 [1s'0zz0T [c6'66ITT_ O 000 U030 SBAIEA|
I I A G 2 STLSYOT_|ST Syov oz o _Jo_Jo_[1870sT_ |eew09 |0 000 ¢ |t¢__[ot |0 |ss'sezz__|vT08€0z_ o 000 U0SI3d53|eS BUljaneIL
0 [0 Joz |0 [everz |zstovz Jo 1606 oz o Jo [0 [vo9z8z_ [sv'ssor |o 000 0 [vT |9 |0 [6vzosor Jototss |0 000 53UAS Wayshs|
0 [0 [et_|¢_Jov's vv'6v99T _|SE €6 oz o _Jo_Jo_[wov 91T o 000 T [0 [et_|o_ [isz9T _ [so'sisez_|o 000 U0RONIIUG) Sa.34dng)
oz 0 [0 o [evwe vivze o 000 oz o _Jo_Jo_[s6s viT o 000 oz o _Jo_Jo_[scs €T 0 000 saluedwio)d15a3eis
0 [0 [t |6 Jorue €9'LESET_|S¥ 1729 6T [T [0 [0 [creos [19%1s [0 000 € [t ot [0 |eester [ve's996T o 000 591 13U1R1S
0 [0 [er |8 |89°269T |oc'20S6T_|ov 0007 o fot_Jo_|v_[vs'69zer_|v0vS599 oz 000 o for_[r_|o[seTieer Jor'see Jo 000 S8elLIeIN J|gelg)
0 [t |8 [t [isvv8 [9cwserr |ss 00'SS 0 o |z [ev |zzeor |sseezot |59 00’59 0 o [er [z [wz7Tse Joezvosr |se 00'5E UeqOOS|
0 S 0 ST |96'8Z6S 22'€88C SL 00'SL €T [L 0 0 £6'7629 SL'TE0T 0 000 0 L 0 €T [ST'¥8T9 91'660C S9 00's9 S13S Jamsuy juaiayode.ed
0 [0 |6 |tr |/8€0T__ |/T06TvT_|SS 00'SS o o Jo [T _[9%9 8509901 _|0L 00'0Z 0 o Jer |z [99%6LT_ |estesst_|se 00'5E 51040y 3942001y
0z [0 Jo o [wots [1zT09e |0 000 oz o Jo |0 [veezst [sszsoy Jo 000 0z o Jo |0 [ozezst |ve'gszy Jo 000 Rijiqeyoesy
0 0 4 91 |66'VC S9'¥890T |08 0008 oz [0 0 0 000 000 0 000 0 0 6 TT [0€'0S 8Y'T6VET [SS 00'SS pbunfsiq wopuey!
0 [0 [0 oz |sT'666 _ |ev'S09e _Joor 00001 O O I A XA - 00'5S 0 o |8 [ev_[s9'9zvs_ |vsvTz0T |09 0009 Bujuoseay [eneds sAREI[eND)
0 [0 [t er |08zt |svvs9E |s6 0056 o [ecv_Jo [8 [8096zL |[zswesz ov 0001 0 [ect_Jo [8 [eeeseL |sceove ov 0001 BUIGIIEN UIaTied UOREINWIDg
0 0 6 1T |€2'80T T1'9L02T |SS 00SS 0 0 €T |L 70'SCT $1'9569T |SE 00'SE 0 0 T |8 8EEST €0°€9S6T |O 00°0Y Syun Jauped
0 [0 [t |6 |eseos [seeievl |sv 00'sY o o |6 [ir [eszee |or'swoct_|ss 00'SS 0 o Jet_|¢ [s9'9sw _ [ioEste st 00'ST KizysAuioN
0 [0 Jo oz [evesc |svevt oot 00001 oz o Jo |0 [z009T |eveer |0 000 0z o Jo [0 [s€w69 |ovzsy 0 Sisougelq [eWiuIN
0 [0 |8 |ev_|wziic_ |099566 |09 Sv'SL oz o _Jo_Jo_[veove Jeswor o 000 € [0 [t Jo |z908s |zzovz o 160 LVS¥En,
0 [0 |t |e_ |evere [se'siecz ST 9£'98 oz o _Jo_Jo_[ss9sv [0S Jo 000 o o Joz o [ev'osy__ |9ettove |0 000 anbij3 [eWIXeN
0 [0 |z er |0Ssv__ |evestit |59 5568 oz o Jo [0 [sezzs |eveee |0 000 0 o oz |0 [ez'SoL _[t9'600vZ |0 000 SUjUIEST IOMIGN AOYIEN
0 [0 |r_|or |seetc_ |voeses o8 0008 o o Jer_|¢_ [we'sov__ |se'6wvsT_|se 00'SE o o Joc o [6r'9te__ |os'600v_|o 000 GiupAgel
0 [0 |£_ [ev_|9e9eT _ |vies98 |s9 0059 o o [t [¢ [v9'8e9_ |ev'9ssoz st 00'ST o o Jex_[g [svize |voeovor st 00'ST S3[0H Y3IM N0 JyBIuY
0 [0 |z er |es6lsc |ov'svz6 |59 0059 0 [61 Jo [1_[c09s6TT |oo9vss s 00'S 0 [6t Jo [t [ertirer |sseeto s 00'S BUIINPaLPS [E3UBWRIUT
0 [0 [r_ ot |w'se 990606 |08 0008 o o |r_Jot [er4t STvels_ |08 0008 o o |z [ev [seue v62281_|S9 00’59 Bulnojo) ydein
I I A G A T9°0880T_ |59 0059 o o6 [iT_|res 8’88611 |SS 00'5S o o[t _[o_[s6cs 09'9€88T_|0E 00'0€ sydeio |nyaoeio)|
0 [0 ¢ st lotoe 996vE_ |06 16'56 oz o Jo Jo_[sso v0'0 0 000 et o [8 JoJovis v9'sz62T [0 000 UOREZIWIUI BUISSOMD)|
0 [0 |5 |st_|eove €'¥806__|SL 00'sL o o |5 [st_[vo%e 6TvEEL |SL 00'SZ o o |r_Jor [ss%¢ 597989 |08 0008 UORE20|lY Ma1D)|
0 [0 [0 oz |e€'6186 |161059v |00 00001 oz o _Jo_Jo_ [zt |ce6vc |0 000 oz o _Jo_Jo_[e691c__|e0tSC__ |0 000 BMSUY AIaND JUB3SISU0)
0 [0 [s st l|iree 7’0628 |t 1716 oz o Jo Jo_[es% 70 o 000 R O A O S 0LTLTLT_[0 000 417 IS Pa193UL0D)
0 [0 Jo_ oz |z8%s Z0Z1zT__|o0T 00001 oz o _Jo_Jo_[ster 8STT o 000 o o Jet [t [ez'6er__ |ivizzee s 00'S uoneziuRdo Xe[duwo))|
0 [0 |s_|sT_|800€6 |60 |SL 00'SL o o _[sT |z [se’st8T_ |98tz ot 0001 o Jo Joz Jo_[6c0tic__ |oz’0TOVT |0 000 UOIeIN3JUO) PaUIqUIo))
0 0 S ST [90°LE 659789 SL €478 oz [0 0 0 £0'8T 87's 0 000 9 0 vT |0 £SL0T 6L'L8T1C [0 000 Buiuiea] }10MIaN ueisakeg
s [0 Jo [st_[miee vSL S. 00's. oz o Jo Jo [e0%T vT'SE o 000 6 o [it o [vo%er _ Jocezozr_Jo 000 SHIOMaWEI [e2393[E10 12EISqY]
30#] OW#[OL#] [05#] (WaW)BAY[(uirL)uwing] 304] OW#[OL#] 054 (PuirL)uwing] ST0Z 304] OW#[OL#[054 (suii1)uing ST0Z ujewog

dso-ow Buiabuif+10s7d] SI5+5157d[H/DWIOUZT]

Detailed results for LP2ZNORMAL+LP2STS+STS, LP2SAT+LINGELING, ME-ASP.

Fig. A4

	1 Introduction
	2 Competition Format
	3 Benchmark Suite and Selection
	3.1 New Domains
	3.2 Benchmark Selection

	4 Participant Systems
	5 Results
	5.1 Results in the SP Category
	5.2 Results in the MP category
	5.3 Analysis of the results

	6 Conclusion and Final Remarks
	References
	Appendix A Detailed Results

