
Under consideration for publication in Theory and Practice of Logic Programming 1

Experimenting with robotic intra-logistics domains

Martin Gebser, Philipp Obermeier, Thomas Otto, Torsten Schaub

University of Potsdam, Germany

Orkunt Sabuncu

TED University, Ankara, Turkey

Van Nguyen, Tran Cao Son

New Mexico State University, Las Cruces, USA

submitted [n/a]; revised [n/a]; accepted [n/a]

Abstract

We introduce the asprilo1 framework to facilitate experimental studies of approaches addressing
complex dynamic applications. For this purpose, we have chosen the domain of robotic intra-
logistics. This domain is not only highly relevant in the context of today’s fourth industrial
revolution but it moreover combines a multitude of challenging issues within a single uniform
framework. This includes multi-agent planning, reasoning about action, change, resources,
strategies, etc. In return, asprilo allows users to study alternative solutions as regards effectiveness
and scalability. Although asprilo relies on Answer Set Programming and Python, it is readily
usable by any system complying with its fact-oriented interface format. This makes it attractive
for benchmarking and teaching well beyond logic programming. More precisely, asprilo consists
of a versatile benchmark generator, solution checker and visualizer as well as a bunch of reference
encodings featuring various ASP techniques. Importantly, the visualizer’s animation capabilities
are indispensable for complex scenarios like intra-logistics in order to inspect valid as well as
invalid solution candidates. Also, it allows for graphically editing benchmark layouts that can be
used as a basis for generating benchmark suites.

Under consideration for publication in Theory and Practice of Logic Programming (TPLP)

1 Introduction

Answer Set Programming (ASP; Lifschitz 1999) has come a long way, starting as a

semantics for logic programming, over having increasingly performant systems, to a

growing number of significant applications in academia and industry. However, this

development is threatened by a lack of complex benchmark scenarios mimicking the needs

of real-world applications. In contrast to many available benchmark suites, often supplied

by automatic instance generators, real-world applications are rarely disseminated, either

because they are classified or come only with a handful of instances. Another commonality

of existing benchmark suites is that they are kept simple, stick to basic ASP, and usually

feature at most a single specifics, so that they can be processed by as many systems

as possible. However, this is in contrast to many real-world applications whose solution

requires the integration of multiple types of knowledge and forms of reasoning. Last but

1 asprilo stands for Answer Set Programming for robotic intra-logistics.

ar
X

iv
:1

80
4.

10
24

7v
1

 [
cs

.A
I]

 2
6

A
pr

 2
01

8

2 Gebser et al.

not least, a feature distinguishing ASP from all other solving paradigms is its versatility,

which is best put in perspective by solving multi-faceted problems.

We fear that the lack of complex benchmark scenarios becomes a major bottleneck

in ASP’s progression towards real-world applications, and hence that more and more

should be made available to our community. As a first step to overcome this problem, we

have identified the domain of robotic intra-logistics, a key domain in the context of the

fourth industrial revolution, as witnessed by Amazon’s Kiva, GreyOrange’s Butler, and

Swisslog’s CarryPick systems.2 All of them aim at automatizing warehouse operations by

using robot vehicles that drive underneath mobile shelves and deliver them to picking

stations. From there, workers pick and place the requested items in shipping boxes. Apart

from the great significance of this real-world domain, our choice is motivated by several

aspects. First of all, the warehouse layout is grid-based and thus provides a suitable

abstraction for modeling robot movements in ASP. Moreover, the domain offers a great

variety of manifold problem scenarios that can be put together in an increasingly complex

way. For instance, one may start with single or multi-robot path-finding scenarios induced

by a set of orders that are accomplished by using robots for transporting shelves to picking

stations. This can be extended in various ways, for example, by adding shelf handling

and delivery actions, considering order lines with multiple product items, keeping track

of the number of ordered and/or stored product items, modeling energy consumption and

charging actions, taking into account order frequencies, supplies, and priorities, striving

for effective layouts featuring dedicated locations, like highways or storage areas, and so on.

Finally, the domain is extremely well-suited for producing scalable benchmarks by varying

layouts, robots, shelves, orders, product items, etc. Inspired by this, we have developed

the benchmark environment asprilo consisting of four parts (i) a benchmark generator, (ii)

a solution checker, (iii) a benchmark and solution visualizer, and (iv) a variety of reference

encodings. The design of asprilo was driven by the desire to create an easily configurable

and extensible framework that allows for generating scalable, standardized benchmark

suites that can be visualized with and without a corresponding solution. Correctness can

be established via a modular solution checker. The accompanying reference encodings

may serve as exemplary bases for extended encodings addressing more complex scenarios.

We use them in Section 5 to illustrate asprilo’s usage and value for benchmarking. In

particular, we show how asprilo may allow us to understand the virtues of different ASP

techniques. The asprilo framework is freely available at https://potassco.org/asprilo.

2 asprilo’s benchmark generation component

2.1 Problem domains

All asprilo domains aim at capturing abstractions of intra-logistics systems involving

multiple robots, shelves, and stations, placed in a warehouse environment, along with a

set of orders. We begin with a description of the common setting.

Given a set of orders, the idea is to have robots bring shelves containing requested

products to picking stations until all orders are satisfied. The warehouse floor is laid

out as a two-dimensional grid of squares. A square can be declared as highway, picking

2 www.amazonrobotics.com, www.greyorange.com/products/butler, www.swisslog.com/carrypick

https://potassco.org/asprilo
www.amazonrobotics.com
www.greyorange.com/products/butler
www.swisslog.com/carrypick

Experimenting with robotic intra-logistics domains 3

station,3 or storage location. Only the latter can be occupied by shelves without being

carried by robots. A shelf stores products in certain quantities, and a picking station

accepts product units requested by orders. Both occupy a single grid square. A square

may be occupied by at most one robot and one shelf, no matter whether the robot carries

the shelf or not. Hence, robots may pass or park underneath shelves, unless they carry

one. Highways are used to declare transit areas for shelf carrying robots; they are neither

shelf storage locations nor parking lots for idle robots.4

Per time step, a robot can perform at most one action, either5 move to an adjacent

square, pick up or put down a shelf, or deliver (products on) a shelf to a picking station.

Robots must not swap squares at a time step. A robot may pick up a shelf, provided that

both are on the same square and it does not yet carry a shelf; it may put down a shelf, if

it carries the shelf. Thus, a robot can pick up a shelf, carry it while moving, and put it

down eventually. However, a robot may never put down a shelf outside the storage area.

A robot carrying a shelf may deliver product units from the shelf at a picking station,6

provided it occupies the corresponding square and the product units are part of an order

line processed at this station. The specific arrangement of deliveries distinguishes several

asprilo domains and is made precise below.

An order is a non-empty set of order lines, which are requests for products in certain

quantities to be delivered to a given picking station. For simplicity,7 all requested products

are available in sufficient quantity on the shelves in the warehouse. An order line is fulfilled

if the requested amount of product units has been delivered to the designated picking

station. An order is fulfilled if all its order lines are fulfilled. In the current setting, all

orders are provided initially (instead of arriving over time). In these terms, the overall

goal can be rephrased to find a parallel plan of robot actions that fulfills all orders.

In what follows, we introduce selected problem domains of asprilo. We begin with the

(currently) most general setting and gradually refine it afterwards to obtain simplified

variants. In the general asprilo domain A, deliveries fully account for the quantities

of product units taken off a shelf. A delivery action deals with a single order line; the

number of transferred units can neither exceed the quantity available on the shelf nor the

requested amount of units. Thus, multiple order lines require multiple deliveries, and one

order line may require units from several shelves.

The asprilo domain B simplifies A by ignoring product quantities. A delivery action

still deals with a single order line but only the requested product must be on the shelf

(and remains after delivery), no matter how many units are available or requested. The

asprilo domain C further simplifies A and B by making one delivery action deal at once

with all pending order lines matching products on the shelf. Thus, in this setting, one

deliver action may fulfill several orders at a picking station all at once.

The asprilo domain M is a drastic simplification designed to resemble multi-agent path

finding scenarios known from the literature (cf. Section 6). This domain features only

move actions and the only concern is to find a parallel plan that positions each robot

3 Other dedicated stations, like charging or supplying stations, are foreseen in future editions of asprilo.
4 We are currently not distinguishing parking areas for robots and use storage locations for simplicity.
5 More actions, like battery charging or restocking, are planned but not yet part of asprilo.
6 In reality, this is usually a passive action since a person or a robot picks items from the shelf.
7 Supply management is another possible future extension of asprilo.

4 Gebser et al.

under a specific shelf. Hence, shelves remain on the spot and no products are delivered.

To accommodate this scenario in the asprilo framework, we begin by equipping each shelf

with a unique product. The number of robots and orders is aligned, and each order lines

up a unique product. All ordered products are stocked, at most one per shelf. An order

(line) is fulfilled if some robot is located under the shelf holding a requested product. Note

that robots are not pre-assigned to shelves in M, as common in certain multi-agent path

finding scenarios. The addition of such an assignment constitutes yet another variant,

and corresponds to the traditional MAPF problem, as detailed in Section 6.

To bridge the gap between scenarios A, B, C and M, we also consider the restriction

of the former to the specific shelf and order alignment used in the latter. The resulting

scenarios AM, BM, and CM thus deal with full-fledged delivery scenarios but only

singleton orders and shelves with unique product units. This allows us to experiment with

the general functionality of A, B, and C in the rather restricted warehouse setting of M.

Clearly further constraints can be imposed, leading to a wide variety of asprilo scenarios.

2.2 Instance format

Our instance format follows the well-known object-attribute-value scheme that provides

a generic and extensible knowledge representation format. More precisely, we represent

each initial item as a fact of binary predicate init/2 of form

init(object(T ,I),value(A,V)).

where T is an object type, I a (relative) object identifier, A an attribute, and V its value.

The current object types along with their admissible attributes are as follows:

node at/2

highway at/2

robot at/2, carries/1

shelf at/2

pickingStation at/2

product on/2

order line/2, pickingStation/1

The trailing number indicates the number of arguments of each attribute. For instance,

the fact ‘init(object(robot,34),value(at,(2,3))).’ represents that robot 34 is at

position (2,3). Note that all but the last type in the above list are part of the initial

layout of a warehouse and its inventory. Each node has a unique identifier as well as a

two-dimensional position. Optionally, a position can be declared as a highway. The major

entities, namely, robots, shelves, and picking stations, have (initial) positions. Also, a

robot may carry a shelf. The type product gives the inventory by listing how many

product items are stored on a shelf. Finally, each order consists of one or more order

lines, each fixing how many product items are requested, and its destination, namely, the

picking station where the order is put together.

2.3 Instance generator

The instance generator of asprilo allows for generating benchmark sets with variable

features and degrees of difficulty. Each instance is expressed in the format described

above; its name is standardized to reflect its major characteristics, viz. the grid dimension

Experimenting with robotic intra-logistics domains 5

and the numbers of nodes, robots, shelves, picking stations, products, their quantities,

and orders. To guarantee reproducibility the header of each benchmark file gives the

generator’s version and instruction used to generate it.

The generator currently supports three types of layouts. A structured one, resembling

real-world editions, a randomized one, and customized ones. In the structured layout,

picking stations and robots are initially placed in the upper and lower row, respectively.

Shelves are placed in rectangular clusters reachable via surrounding highways. An example

is shown in Figure 1. No such structure is foreseen in a randomized layout. Finally, layouts

can be handcrafted with asprilo’s graphical editor (and afterwards populated with the

instance generator). Moreover, the instance generator warrants that picking stations are

not placed on highways and optionally that all admissible shelf positions are directly

reachable from highway positions.

The instance generator is implemented via ASP. However, to handle the huge space of

warehouse configurations and incoming orders, its implementation relies on multi-shot

ASP solving and is controlled by the Python API of clingo (Gebser et al. 2018).

Although instances can be generated in a single solving step, benchmark sets are much

more effectively generated incrementally by separating different sources of combinatorics.

To this end, the generator relies upon an ASP encoding that is compartmentalized by

means of clingo’s #program directive (cf. (Gebser et al. 2018)). Each such subprogram

encapsulates a dimension of our scenario. Exemplary dimensions are the type of layout,

the placement of shelves on admissible positions, and the one of products units on

shelves (while respecting their global distribution). At first, the compartmentalization

into subprograms allows us to configure the ultimate logic program according to the

user’s input. A typical example is the selection among layout alternatives. Moreover, the

incremental approach takes advantage of compartmentalization by successively building

benchmark instances in order to reduce combinatorics. At first, the grid is fixed, and robots

and picking stations are placed. Alternatively, a handcrafted layout may be used (see

below). Then, in turn, shelves, product units, and finally orders are generated. The overall

process is controlled via clingo’s Python API that successively grounds and solves the

subprograms in focus. The incremental approach reduces combinatorics in two interesting

ways. First, previous steps allow us to delineate the variability of objects in later steps.

For instance, only admissible positions must be considered when placing shelves; similarly

products must only be distributed among placed shelves. Second, we use configurable

threshold-based domain splitting. To illustrate this, consider shelf placement and suppose

we need to place 55 shelves on 100 positions. A splitting threshold of 20 makes the

generator first choose 20 among 100 possible shelf positions. Then, the generator places

40 shelves on the 100 positions, but fixes the ones determined previously (by adding

the corresponding facts); hence only 20 are effectively placed. And finally 55 shelves

are placed, among which 40 are already fixed. Note that the selection of the respective

threshold is a trade-off. Using the full set of objects is often infeasible, and although very

small sets are easily treated, they produce many repetitive grounding and solving calls.

Finally, we mention that the generator features several ways of producing varied

benchmark instances for the same configuration.

Now to accommodate the variety of its benchmark scenarios, asprilo’s instance generator

is highly configurable through a plethora of 68 options for specifying output instances,

6 Gebser et al.

most notably the grid size, layout style, and object quantities. For example, the instance

depicted in Fig. 1 is created with the command

gen -x 19 -y 9 -X 5 -Y 2 -p 3 -s 45 -r 6 -P 180 -u 540 -o 12 -H

where parameter -x and -y fix the dimensions of the grid, -X and -Y the dimensions

of the storage zones, -p the number of picking stations, -s the number of shelves, -r

the number of robots, -P the number of products, -u the number of product units,

-o the number of orders, and -H invokes the structured layout common in industrial

settings, involving highways and rectangular storage zones (along with the aforementioned

systematic placement of robots and picking stations).

To produce more than one instance at a time, the desired number of instances can

be given with -N. Further, option -I generates instances incrementally via multi-shot

solving, as detailed above. For example, to incrementally generate 10 instances with our

previous call, we just append -N 10 and -I to the command line above.

Besides single invocations, asprilo also offers batch processing to generate multiple

instance sets based on a list of configurations.8 Moreover, the batch file syntax not only

allows us to process several configurations consecutively but also combinations thereof.

That is, we can first stipulate a common (partial) preset of configuration parameters and

afterwards derive more specialized sub-configurations from it by stating further parameter

settings. For instance, we can initially pre-define the grid size, number of picking stations,

shelves, products, and orders for all instances. Based on that preset, we can then define

sub-configurations that state different amounts of robots. With it, the creation of complex

instance sets can be fully defined (in a reproducible way) by a single batch file without

the need for auxiliary scripts or manual curation.

2.4 Solution checker

A solution to an asprilo scenario is a parallel plan represented by facts of the form

occurs(object(T ,I),action(A,V)).

where T is an object type, I an object identifier, A an action name, and V a tuple of

terms capturing the action’s arguments. A move action takes cardinal points represented

by (0,1), (1,0), (0,-1), and (-1,0). Actions pickup and putdown have no arguments,

expressed by (). In general, deliver takes a triple (O,A,N), where O is an order, A

the delivered product, and N its quantity. The latter is ignored in scenarios B and C.

To verify the correctness of such plans, asprilo features a modular solution checker

written in ASP. Depending on the scenario, the corresponding constraints are put together

to form the appropriate checker. Apart from being modular, this offers an easily extensible

approach for accommodating future extensions of asprilo.

Moreover, the checker’s encoding offers diagnostic support indicating the respective

violation. For this, it captures plan inconsistencies by returning atoms of the form

err(F,C,P) where F gives the name of the file defining the error, C holds the name of

the violated constraint, and P specifies the parameters involved in its violation.

For example, suppose the checker returns the atom

err(goal ,unfilledOrder ,(3,3,1 ,11))

8 The YAML vocabulary of batch files is described at http://potassco.org/asprilo.

http://potassco.org/asprilo

Experimenting with robotic intra-logistics domains 7

Fig. 1. Exemplary asprilo screenshot: The main window gives a warehouse layout; no

plan is loaded. Picking stations are represented by striped yellow squares, shelves by

solid circles, and robots by solid squares. Highways are brought out in purple. The side

windows provide controls for plan animation, and give details about the current orders

and the warehouse inventory.

This indicates that there is still an unfulfilled order at the end of the plan at step 11,

namely, that order 3 still requires 1 unit of product 3. Further details are obtained by

inspecting the rule in file goal.lp, which defines this specific instance of err/3.

3 asprilo’s visualization component

The visualization component of asprilo serves two major purposes, the animation of

solution candidates and the editing of benchmark templates. Such a template ranges from

an empty scenario, over partial ones, to fully detailed warehouse environments. The latter

can be accompanied by a (possibly invalid) parallel plan that can be animated in the

supplied environment. Both are given in the previously described formats and can be

passed to asprilo’s visualizer either through files given on the command line, read from

standard input, or loaded via a menu entry.

To begin with, let us sketch asprilo’s animation capabilities. First of all, note that it

is not coupled with the aforementioned solution checker. This is important to allow for

debugging invalid solution candidates.

The states of an asprilo scenario are captured in a multi-modal way. First, the main

window captures the position of objects as shown in Fig. 1. (In addition, robots carrying

and being under shelves are indicated by distinct overlays of the respective icons.) Second,

a side window gives a table reflecting the current status of all orders (reflecting closed and

open order lines along with the delivered and missing product units). Finally, another

side window lists the warehouse’s inventory by displaying the product units from the

shelves. The latter is also obtained when hovering with the mouse over the icon of a shelf

in the main window. Similarly, information is obtainable on robots and picking stations.

8 Gebser et al.

State transitions are animated to simulate smooth robot movements. They can be

traced via yet another side window holding the plan and highlighting all upcoming actions.

The exploration of the plan at hand is done via common media controls (viz. play, pause,

fast forward, etc.) to enact and change the animation. It comes without saying that the

aforementioned state descriptions are updated accordingly.

Finally, we mention that scenarios and plans can be discharged and reloaded; also their

textual representation can be edited.

The second major feature of asprilo’s visualizer is its graphical scenario editor. With it,

one may start from scratch with designing benchmark instances or templates, or modify

existing designs. Templates can be further enriched by means of the above benchmark

generator, leading to entire benchmark series. The functionality of asprilo’s graphical

editor allows for changing the grid dimensions, adding and removing robots, shelves, and

stations, changing product units on shelves, declaring squares as highway or storage, and

even entirely removing squares from the grid. The latter is of particular interest when

designing non-uniform layouts, featuring obstacles such as corridors or pillars. Apart from

the change of dimensions, all above functionalities are accomplished by mouse control.

Also, objects can be moved by drag and drop. Similarly, orders can be edited textually in

the corresponding side window.

A third feature, skipped for brevity, allows for connecting asprilo’s visualizer with

solving components over the network.

4 Exemplary encodings

We provide reference encodings for the various asprilo scenarios at https://potassco.

org/asprilo. For brevity, we illustrate here only our basic approach, viz. M, and

merely sketch its extensions to more complex settings afterwards. Common to all our

encodings is a mapping from asprilo’s input format to a more comprehensible format.

This is addressed with rules like ‘robot(R) :- init(object(robot,R),_).’ gathered

in input.lp (cf. Line 1 in Listing 1). Another commonality of our encodings concerns the

separation of the action theory from its goal specification, reflected by Listing 1 and 2.

Listing 1 gives a bounded encoding for generating plans in asprilo scenario M.

1 #include "../ input.lp".

3 time (1.. horizon).

5 direction ((X,Y)) :- X=-1..1, Y=-1..1, |X+Y|=1.
6 nextto ((X,Y),(X’,Y’),(X+X’,Y+Y’)) :- position ((X,Y)), direction ((X’,Y’)), position ((X+X’,Y+Y’)).

8 { move(R,D,T) : direction(D) } 1 :- isRobot(R), time(T).

10 position(R,C,T) :- move(R,D,T), position(R,C’,T-1), nextto(C’,D,C).
11 :- move(R,D,T), position(R,C ,T-1), not nextto(C ,D,_).

13 position(R,C,T) :- position(R,C,T-1), not move(R,_,T), isRobot(R), time(T).

15 moveto(C’,C,T) :- nextto(C’,D,C), position(R,C’,T-1), move(R,D,T).
16 :- moveto(C’,C,T), moveto(C,C’,T).

18 :- { position(R,C,T) : isRobot(R) } > 1, position(C), time(T).

Listing 1. Encoding for asprilo domain M.

The plan length is fixed by horizon in Line 3. Line 5 gives the four cardinal directions, used

https://potassco.org/asprilo
https://potassco.org/asprilo

Experimenting with robotic intra-logistics domains 9

in Line 6 to represent all transitions on the warehouse grid. Predicate position/1 provides

all grid coordinates, gathered in input.lp in analogy to the above. Line 8 generates

all possible robot moves per time step. The corresponding effects and preconditions

are expressed in Line 10 and 11, respectively. The inertia of robot positions, captured

by position/3, is given in Line 13. The remaining rules express state constraints. Lines 15

and 16 stipulate that robots must not swap positions, and Line 18 forbids more than one

robot per square.

The drastically simplified concept of order fulfillment in M is encoded in Listing 2.

1 processed(A) :- ordered(O,A), shelved(S,A), isRobot(R), position(S,C,0), position(R,C,horizon).

3 :- ordered(O,A), not processed(A).

Listing 2. Encoding for order fulfillment in asprilo domain M.

An (ordered) product is processed according to Line 1, if some robot is parked at the

last time step under a shelf holding the product. And the goal is fulfilled, if all ordered

products have been processed.

We provide several alternative encodings for asprilo scenario M, which mainly differ

in how positions are represented. At first, we propose an encoding featuring a separate

representation of coordinates. That is, rather than using predicate position/3 whose

second argument is a pair (X,Y), we use two predicates positionX/3 and positionY/3

in which the second argument contains only one coordinate, namely X or Y, respec-

tively. This representation is similar to the one used for Constrained ASP (with cling-

con (Banbara et al. 2017)), where both coordinates are represented functionally via integer

variables positionX/2 and positionY/2 whose values give the X and Y coordinate, re-

spectively. The same conceptualization is used for the fourth variant relying upon ASP

enhanced with difference constraints (with clingo[dl] (Janhunen et al. 2017)) Also, we

provide incremental versions of all but the last variant (since it is not multi-shot capable).

An even greater variety of encodings is made available for scenarios A, B, C. Their

common action theory deals with robot moves and pick up and put down actions. However,

in addition to alternative representations of robots and shelves, we consider alternative

representations of product units along with their combinations. The difference between A,

B, and C is handled separately via different concepts of order fulfillment and thus different

forms of delivery actions. Hence, as above, each setting boils down to two files, a specific

encoding of the common action theory and another accounting for order fulfillment.

5 Experimental evaluation

To showcase asprilo’s utility for experimenting with challenges emerging from robotic

intra-logistics, we conducted some initial case studies using asprilo domains M and

CM, BM, AM (in increasing difficulty). We give a detailed account of our experiments,

including encodings, instance sets, and results at http://potassco.org/asprilo.

Our experimental analysis focuses on the following three questions:

1. What is the impact of different representations of grid positions?

2. What is the impact of increasingly complex domains?

3. What is the impact of decoupling sources of combinatorics?

We investigate the first question by comparing the four alternative encodings of positions

http://potassco.org/asprilo

10 Gebser et al.

discussed in Section 4. This is carried out in asprilo domain M, since positions only

change by movement. For the second question, we study the addition of actions and more

complex goal conditions, and focus on domains CM, BM, AM as direct extensions of M.

The outcome of this question also reflects on the difference between traditionally studied,

sparse multi-agent path finding (MAPF) scenarios (cf. Section 6) and richer warehouse

scenarios as provided by asprilo. For the third question, we focus on separating task

assignment and planning. To this end, we proceed in two steps. First, robots are assigned

to transport certain shelves and to deliver at certain picking stations. This assignment is

done subject to several optimization criteria that aim at selecting economic plans. Then,

the resulting assignment is added to the original action theory along with constraints

enforcing that actions are executed according to the given assignment. The use of explicit

task assignments is related to the difference between anonymous and non-anonymous

MAPF (cf. Section 6).

To minimize the degrees of freedom, we consider instances of M sharing a structured

layout and storage zones fully covered by shelves. We divide the instance set into three

groups, namely, small, medium, and large, according to their increasing complexity. To

be more precise, their layout sizes are 11 × 6, 19 × 9, 46 × 15 with 16, 60, 320 storage

locations, respectively.9 Besides layout size, we categorize instances by number of robots:

• for small instances: increments of 2, 5, 8 and 11 robots,

• for medium instances: increments of 5, 10, 15 and 19 robots, and

• for large instances: increments of 12, 23, 35 and 46 robots.

We consider 30 instances per robot increment, and hence 120 per size and 360 in total.

Our experiments ran under Linux on an AMD Opteron 6278 with 32 cores and 256 GB,

using clingo 5.3 and clingcon 3.3 in their standard configurations. Each run was limited

to one thread on one physical core, 1800s, and 8 GB. Notably, each instance is bound

by its smallest pre-calculated makespan, which makes the instances particularly hard to

solve. This makespan is calculated by the incremental encodings mentioned in Section 4

subject to a timeout of 8h. Whenever the smallest makespan cannot be determined within

this time limit, we also consider the instance as unsolvable in the domain at hand. Also,

assignments are pre-computed and the same assignment is used for all encodings in the

same domain. The computation of feasible assignments is more or less instantaneous;

their optimization was cut after 300s (but this only happens with large instances).

Our results are summarized in Table 1. The first column gives the respective asprilo

domain; experiments with prior task assignments are indicated by adding subscript a. The

second column gives the average makespan of each size. For instance, for Ma the average

makespans are 6, 10, and 25 for small, medium and large instances; ‘-’ tells us that the

pre-computation of the makespan timed out for all instances in the domain. The third

column reflects the respective approach by giving the target system of the encoding. As

detailed in Section 4, clingo stands for the encoding in Listing 1 and 2 (and its extensions),

clingoxy for the ASP encoding splitting coordinates, clingo[dl] for the encoding mapping

coordinates on two integer variables subject to difference constraints, and analogously

clingcon but using linear constraints. Notably, clingcon’s constraint processing is extended

in A to product units. The last three columns give average run time in seconds followed

9 For the reader’s convenience, we give the corresponding generator calls and layouts in Table A 1.

Experimenting with robotic intra-logistics domains 11

domain makespan encoding small medium large

M 6/10/25

clingo 0(0) 0(0) 73(4)
clingoxy 0(0) 16(1) 591(14)
clingcon 0(0) 37(0) 1168(52)

clingo[dl] 0(0) 193(1) 1648(96)

Ma 6/10/25

clingo 0(0) 0(0) 41(2)
clingoxy 0(0) 0(0) 763(27)
clingcon 0(0) 36(0) 1163(49)

clingo[dl] 0(0) 86(1) 1679(102)

CM 20/-/-
clingo 805(40) 1800(120) 1800(120)

clingcon 695(30) 1800(120) 1800(120)

CM
a 21/35/-

clingo 23(1) 370(5) 1800(120)
clingcon 38(2) 459(15) 1800(120)

BM 26/-/-
clingo 970(53) 1800(120) 1800(120)

clingcon 807(37) 1800(120) 1800(120)

BM
a 26/39/-

clingo 12(0) 566(19) 1800(120)
clingcon 29(0) 623(25) 1800(120)

AM 26/-/-
clingo 984(55) 1800(120) 1800(120)

clingcon 856(41) 1800(120) 1800(120)

AM
a 26/39/-

clingo 12(0) 577(18) 1800(120)
clingcon 49(1) 625(22) 1800(120)

Table 1. Summary of experimental results in average run time and number of timeouts.

by the number of timeouts in parenthesis obtained for task planning; the best one in terms

of timeouts (and secondarily time) is bold faced. Timeouts account for 1800s; run-times

less than 5s are marked as 0.10

All encodings, except for the one related to clingo, split positional coordinates. While

this is necessary with clingcon and clingo[dl] due to their use of integer variables, clingoxy

allows us to examine the effect of splitting in plain ASP. Contrary to our expectations,

this technique hardly led to performance improvements in our experiments. Specifically,

for M and Ma, the clingo encoding beats all others by a notable margin. Although the

other encodings produce smaller ground programs in these domains, in case of clingcon

and clingo[dl] even by an order of magnitude, the resulting number of constraints seems

to increase.11 This changes for AM, BM, and CM, where clingcon takes the lead; and

roles switch again when prior task assignments are used as in AM
a , BM

a , and CM
a . We

conjecture that this change is due to the reduction in problem size caused by the added

task assignment (see below), and that clingcon’s solving techniques gain more effect on

larger instances. However, the catch-up effect of clingcon in this context cannot clearly be

traced back to coordinate splitting only. Interestingly, the small integer domains disable

clingcon’s lazy propagation, so that all constraints are compiled out by using the order

encoding (Tamura et al. 2009). In fact, this offers a higher propagation strength than the

direct encoding used in the clingo encoding.

In the simplistic M domain, all instance sizes are almost completely solvable. Timeouts

only occur for larger instances with 23 or more robots. The transition to CM severely

increases the average minimal makespan and therefore the run time. In particular, only

10 For the reader’s convenience, we give more fine-grained results in Table B 1, B 2 and B 3 in the appendix.
As mentioned, the full details of our experiments are given at http://potassco.org/asprilo.

11 This data was not available for clingo[dl].

http://potassco.org/asprilo

12 Gebser et al.

small instances for robot increments 2, 5 and 8 are solvable in time for the most part,

whereas all medium and large instances time out. This limitation carries over to BM and

AM. The more time-consuming delivery action in BM (and AM) further increases the

average minimal makespan in comparison to CM. Conversely, the addition of product

quantities by AM has no further impact on the average plan lengths. Likewise, there is a

notable linear increase of run times between CM and BM whereas the difference between

BM and AM is relatively small. This to be expected since only singleton product units

are considered in AM.12 So, units are taken into account but not extensively manipulated.

Our analysis has already made it apparent that a “one-encoding-fits-all” approach fails

to scale on industrial size instances. On the other hand, the design of the instance generator

has revealed how the compartmentalization of sources of combinatorics allows for effectively

reducing the overall difficulty of a problem. This is confirmed by our experiments on the

decoupling of task assignment and planning. The provision of assignments improved scal-

ability in each domain. Especially for CM
a , BM

a , and AM
a , the average run times decrease

by at least an order of magnitude and almost all small and medium instances up to robot

increment 15 become solvable within the time limit.13 Let us detail this by examining the

path finding in instance x11_y6_n66_r8_s16_ps1_pr16_u16_o8_N001.lp in domain AM

with and without decoupling. Although the added assignment slightly increases the incom-

ing program size from 774584 rules and 65294 atoms to 818321 rules and 68284 atoms, the

internal representation obtained after preprocessing is much smaller, namely, 1400191 con-

straints over 295835 atoms versus 389874 constraints over 102316 atoms. That is, here,

the assignment makes the number of constraints shrink by an order of magnitude and

halves the number of variables. This reduction is less pronounced with clingcon, where the

number of rules/atoms and constraints/atoms drops from 143137/70127, 677131/95934 to

130064/59957, 292149/70666. Likewise, the difficulty of search in clingo is decreased by

several orders of magnitude from 10807510 choices and 562464 conflicts to 107732 choices

and 28330 conflicts. Finally, our efforts to obtain economic plans pay off, and the pre-

determined task assignments lead to no increase of the smallest makespans, except for

CM where it increases from 20 to 21. Obviously, the makespans’ stability is due to the

optimized task assignments. However, the problem reduction as such is obtained with any

assignment. Considering the large performance gain, optimized assignments constitute an

interesting trade-off for solution quality. Moreover, this trade-off is easy to control since

optimization can be done in an anytime manner.

6 Related work

Our motivation is very similar to the early work on TheoryBase (Cholewiński et al. 1995),

which provided our community with a systematic way of creating logic programs from

graph-based combinatorial problems. Recently, for instance, more application-oriented

combinatorial problems were proposed in (Abseher et al. 2016; Banbara et al. 2016;

Alviano et al. 2017), dealing with shift planning, course timetabling, and nurse scheduling,

respectively. Unlike these static problems, the decision support system for the space

shuttle (Nogueira et al. 2001) and the Ricochet Robots board game (Gebser et al.

12 Increasing product units need intensive experimentation and are thus left to future research.
13 We have no explanation why encoding clingoxy deteriorates when adding task assignments.

Experimenting with robotic intra-logistics domains 13

2013) were both put forward as dynamic benchmark problems, also involving multiple,

collaboratively controlled robots. And many more can be found in the repositories of last

years’ ASP competitions. What distinguishes robotic intra-logistics is its multidimensional

nature that necessitates the integration of a great many of aspects.

At the core of many path finding problems lies the search for a route for an agent from

an initial to a final location. The multi-agent path finding (MAPF) problem asks for a

collision-free route for each agent such that the total makespan is minimal. MAPF is

related to many real-world applications but already computationally intractable (Surynek

2010). While in MAPF each agent is assigned a unique destination, its anonymous variant

requires no assignment of agents to destinations (Yu and LaValle 2012). The problem

domains of asprilo are obviously related to multi-agent path finding. More specifically, the

asprilo domain M corresponds to anonymous MAPF. Each order is uniquely associated

with a destination shelf and there is no pre-assignment of a robot to an order. Robots can

freely reach any destination shelf. Clearly, M is easily extended to cover non-anonymous

MAPF by relating robots and orders.

Task assignment and path finding (TAPF; Ma and Koenig 2016) is a generalization of

MAPF. TAPF groups agents into teams. Although teams are (non-anonymously) pre-

assigned to groups of destinations, any robot in the team can be (anonymously) selected

for a destination in the assigned group. G-TAPF (Nguyen et al. 2017) is a generalization

of TAPF aiming at more realistic settings by allowing the number of tasks to be greater

than the number of agents and considering deadlines, orderings, and checkpoints. That is,

deadlines are associated with order lines, orders are completed in a pre-defined ordering

and all lines in a single order need to be fulfilled before any line of another order is

completed, and while fulfilling an order, a robot is required to go through a sequence of

locations, called checkpoints. Note that asprilo’s generic instance format can be easily

extended to handle key concepts of TAPF and G-TAPF (like robot teams, deadlines, or

checkpoints) and we plan to offer corresponding scenarios in the near future. Regarding

previous uses of ASP, (Erdem et al. 2013) address several aspects of multi-agent path

finding problems. The asprilo framework is obviously beneficial for boosting such work.

Ma et al. (2017) address an online version of path finding, where not all destination

tasks14 are given initially but may arrive over time. In view of the availability of multi-shot

ASP solving, the treatment of online versions of asprilo’s problem domains constitutes

an important future line of research for us. Several emerging requirements of online

intra-logistic problems have already been taken into account in the design of asprilo.

7 Conclusion

The current asprilo system provides a basic infrastructure for experimental studies

of dynamic systems. As is, it already presents a number of challenges to ASP-based

approaches for solving intra-logistics problems, whenever scalability and efficiency are at

stake. Abstraction and distribution appear to be promising avenues of future research

towards scalability. Thanks to its open design, it can be extended in various ways. Dealing

with preferences, different types of orders, and uncertainty provide additional significant

14 Actually, this work also uses pick-up and delivery tasks to simulate a warehouse system.

14 Gebser et al.

challenges that might require new insights or approaches. Last but not least, online

approaches to solving intra-logistics problems are interesting and might even be necessary.

To sum up, we have presented asprilo, a framework for experimental studies of dynamic

systems, specifically in the intra-logistics domains. We discussed our design decisions

and detailed the different components of asprilo: its benchmark generator, solution

checker, visualizer, and sample encodings. We illustrated asprilo’s utility of providing an

experimental platform for solving various problems in robotic intra-logistics and revealed

significant challenges to our community in closing the gap to industrial-scale applications.

Videos illustrating asprilo in domains A and M can be found https://youtu.be/

ifYKHIvdnjw and https://youtu.be/GHRwpWzL0j8, respectively.

Acknowledgments. This work was partially supported by The Scientific and Technological

Research Council of Turkey (TUBITAK) under project 117C044 and DFG grant SCHA

550/9.

References

Abseher, M., Gebser, M., Musliu, N., Schaub, T., and Woltran, S. 2016. Shift design
with answer set programming. Fundamenta Informaticae 147, 1, 1–25.

Alviano, M., Dodaro, C., and Maratea, M. 2017. An advanced answer set programming
encoding for nurse scheduling. In Proceedings of the Sixteenth International Conference of the
Italian Association for Artificial Intelligence, F. Esposito, R. Basili, S. Ferilli, and F. Lisi, Eds.
Lecture Notes in Computer Science, vol. 10640. Springer-Verlag, 468–482.

Banbara, M., Inoue, K., Kaufmann, B., Schaub, T., Soh, T., Tamura, N., and Wanko,
P. 2016. teaspoon: Solving the curriculum-based course timetabling problems with answer
set programming. In Proceedings of the Eleventh International Conference of the Practice
and Theory of Automated Timetabling (PATAT’16), E. Burke, L. D. Gaspero, B. McCollum,
A. Schaerf, and E. Özcan, Eds. 13–32.

Banbara, M., Kaufmann, B., Ostrowski, M., and Schaub, T. 2017. Clingcon: The next
generation. Theory and Practice of Logic Programming 17, 4, 408–461.

Cholewiński, P., Marek, V., Mikitiuk, A., and Truszczyński, M. 1995. Experimenting with
nonmonotonic reasoning. In Proceedings of the International Conference on Logic Programming,
L. Sterling, Ed. MIT Press, 267–281.

Erdem, E., Kisa, D., Öztok, U., and Schüller, P. 2013. A general formal framework for
pathfinding problems with multiple agents. In Proceedings of the Twenty-Seventh National
Conference on Artificial Intelligence (AAAI’13), M. desJardins and M. Littman, Eds. AAAI
Press, 290–296.

Gebser, M., Jost, H., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T., and
Schneider, M. 2013. Ricochet robots: A transverse ASP benchmark. In Proceedings of
the Twelfth International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’13), P. Cabalar and T. Son, Eds. Lecture Notes in Artificial Intelligence, vol. 8148.
Springer-Verlag, 348–360.

Gebser, M., Kaminski, R., Kaufmann, B., and Schaub, T. 2018. Multi-shot ASP solving
with clingo. Theory and Practice of Logic Programming . To appear.

Janhunen, T., Kaminski, R., Ostrowski, M., Schaub, T., Schellhorn, S., and Wanko,
P. 2017. Clingo goes linear constraints over reals and integers. Theory and Practice of Logic
Programming 17, 5-6, 872–888.

Lifschitz, V. 1999. Answer set planning. In Proceedings of the International Conference on
Logic Programming (ICLP’99), D. de Schreye, Ed. MIT Press, 23–37.

https://youtu.be/ifYKHIvdnjw
https://youtu.be/ifYKHIvdnjw
https://youtu.be/GHRwpWzL0j8

Experimenting with robotic intra-logistics domains 15

Ma, H. and Koenig, S. 2016. Optimal target assignment and path finding for teams of agents.
In Proceedings of the Fifteenth International Conference on Autonomous Agents and Multiagent
Systems (AAMAS’16), C. Jonker, S. Marsella, J. Thangarajah, and K. Tuyls, Eds. ACM Press,
1144–1152.

Ma, H., Li, J., Kumar, T., and Koenig, S. 2017. Lifelong multi-agent path finding for online
pickup and delivery tasks. In Proceedings of the Sixteenth Conference on Autonomous Agents
and MultiAgent Systems (AAMAS’17). ACM Press, 837–845.

Nguyen, V., Obermeier, P., Son, T., Schaub, T., and Yeoh, W. 2017. Generalized target
assignment and path finding using answer set programming. In Proceedings of the Twenty-
sixth International Joint Conference on Artificial Intelligence (IJCAI’17), C. Sierra, Ed.
IJCAI/AAAI Press, 1216–1223.

Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., and Barry, M. 2001. An A-
prolog decision support system for the space shuttle. In Proceedings of the Third International
Symposium on Practical Aspects of Declarative Languages (PADL’01), I. Ramakrishnan, Ed.
Lecture Notes in Computer Science, vol. 1990. Springer-Verlag, 169–183.

Surynek, P. 2010. An optimization variant of multi-robot path planning is intractable. In
Proceedings of the Twenty-fourth National Conference on Artificial Intelligence (AAAI’10),
M. Fox and D. Poole, Eds. AAAI Press, 1261–1263.

Tamura, N., Taga, A., Kitagawa, S., and Banbara, M. 2009. Compiling finite linear CSP
into SAT. Constraints 14, 2, 254–272.

Yu, J. and LaValle, S. 2012. Multi-agent path planning and network flow. In Proceedings
of the Tenth Workshop on the Algorithmic Foundations of Robotics (WAFR’12), E. Frazzoli,
T. Lozano-Pérez, N. Roy, and D. Rus, Eds. Springer Tracts in Advanced Robotics, vol. 86.
Springer-Verlag, 157–173.

16 Gebser et al.

Appendix A Benchmark instance layout

Name Generator Call and Resulting Layout

small:
gen -x 11 -y 6 -X 4 -Y 2 -p 1 -s 16 -P 16 -u 16 -H --prs 1 -r 2 -o 2

medium:
gen -x 19 -y 9 -X 5 -Y 2 -p 3 -s 60 -P 60 -u 60 -H --prs 1 -r 5 -o 5

large:
gen -x 46 -y 15 -X 8 -Y 2 -p 10 -s 320 -P 320 -u 320 -H --prs 1 -r 12 -o 12

Table A 1. Instance layout sizes specified by generator calls and resulting layouts; partic-

ularly, the depicted calls show the first robot increment per layout size with the related

parameters for robots and orders colored in blue.

Experimenting with robotic intra-logistics domains 17

Appendix B Detailed evaluation results

domain makespan encoding 2 robots 5 robots 8 robots 11 robots

M 6

clingo 0(0) 0(0) 0(0) 0(0)
clingoxy 0(0) 0(0) 0(0) 0(0)
clingcon 0(0) 0(0) 0(0) 0(0)
clingo[dl] 0(0) 0(0) 0(0) 0(0)

Ma 6

clingo 0(0) 0(0) 0(0) 0(0)
clingoxy 0(0) 0(0) 0(0) 0(0)
clingcon 0(0) 0(0) 0(0) 0(0)
clingo[dl] 0(0) 0(0) 0(0) 0(0)

CM 20
clingo 46(0) 751(9) 623(1) 1800(30)

clingcon 17(0) 580(5) 411(0) 1772(25)

CM
a 21

clingo 0(0) 4(0) 67(1) 21(0)
clingcon 61(1) 4(0) 9(0) 80(1)

BM 26
clingo 37(0) 398(1) 1647(22) 1800(30)

clingcon 15(0) 254(0) 1159(7) 1800(30)

BM
a 26

clingo 0(0) 5(0) 23(0) 22(0)
clingcon 0(0) 6(0) 15(0) 94(0)

AM 26
clingo 52(0) 422(2) 1662(23) 1800(30)

clingcon 18(0) 303(1) 1304(10) 1800(30)

AM
a 26

clingo 0(0) 0(0) 25(0) 20(0)
clingcon 0(0) 0(0) 16(0) 175(1)

Table B 1. Average run time and number of time outs for small instances.

domain makespan encoding 5 robots 10 robots 15 robots 19 robots

M 10

clingo 0(0) 0(0) 0(0) 0(0)
clingoxy 0(0) 0(0) 61(1) 3(0)
clingcon 0(0) 0(0) 11(0) 135(0)
clingo[dl] 5(0) 120(1) 180(0) 467(0)

Ma 10

clingo 0(0) 0(0) 0(0) 0(0)
clingoxy 0(0) 0(0) 0(0) 0(0)
clingcon 0(0) 0(0) 16(0) 128(0)
clingo[dl] 18(0) 150(1) 76(0) 103(0)

CM -
clingo 1800(30) 1800(30) 1800(30) 1800(30)

clingcon 1800(30) 1800(30) 1800(30) 1800(30)

CM
a 35

clingo 50(0) 106(0) 310(0) 1015(5)
clingcon 41(0) 116(0) 512(2) 1169(13)

BM -
clingo 1800(30) 1800(30) 1800(30) 1800(30)

clingcon 1800(30) 1800(30) 1800(30) 1800(30)

BM
a 39

clingo 53(0) 151(0) 569(1) 1492(18)
clingcon 47(0) 159(0) 709(3) 1579(22)

AM -
clingo 1800(30) 1800(30) 1800(30) 1800(30)

clingcon 1800(30) 1800(30) 1800(30) 1800(30)

AM
a 39

clingo 59(0) 159(0) 594(1) 1497(17)
clingcon 48(0) 143(0) 701(0) 1608(22)

Table B 2. Average run time and number of timeouts for medium-sized instances.

18 Gebser et al.

domain makespan encoding 12 robots 23 robots 35 robots 46 robots

M 25

clingo 15(0) 79(1) 15(0) 186(3)
clingoxy 205(0) 1007(7) 808(4) 347(3)
clingcon 119(0) 1108(3) 1748(27) 1700(22)
clingo[dl] 1193(6) 1800(30) 1800(30) 1800(30)

Ma 25

clingo 13(0) 18(0) 10(0) 125(2)
clingoxy 249(1) 1282(15) 1096(7) 427(4)
clingcon 162(1) 1053(0) 1734(25) 1706(23)
clingo[dl] 1316(12) 1800(30) 1800(30) 1800(30)

CM -
clingo 1800(30) 1800(30) 1800(30) 1800(30)

clingcon 1800(30) 1800(30) 1800(30) 1800(30)

CM
a -

clingo 1800(30) 1800(30) 1800(30) 1800(30)
clingcon 1800(30) 1800(30) 1800(30) 1800(30)

BM -
clingo 1800(30) 1800(30) 1800(30) 1800(30)

clingcon 1800(30) 1800(30) 1800(30) 1800(30)

BM
a -

clingo 1800(30) 1800(30) 1800(30) 1800(30)
clingcon 1800(30) 1800(30) 1800(30) 1800(30)

AM -
clingo 1800(30) 1800(30) 1800(30) 1800(30)

clingcon 1800(30) 1800(30) 1800(30) 1800(30)

AM
a -

clingo 1800(30) 1800(30) 1800(30) 1800(30)
clingcon 1800(30) 1800(30) 1800(30) 1800(30)

Table B 3. Average run time and number of timeouts for large instances.

	1 Introduction
	2 asprilo's benchmark generation component
	2.1 Problem domains
	2.2 Instance format
	2.3 Instance generator
	2.4 Solution checker

	3 asprilo's visualization component
	4 Exemplary encodings
	5 Experimental evaluation
	6 Related work
	7 Conclusion
	References
	Appendix A Benchmark instance layout
	Appendix B Detailed evaluation results

