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Abstract

We introduce an approach to detecting inconsistencies in large biological networks by using Answer
Set Programming (ASP). To this end, we build upon a recently proposed notion of consistency be-
tween biochemical/genetic reactions and high-throughput profiles of cell activity. We then present an
approach based on ASP to check the consistency of large-scale data sets. Moreover, we extend this
methodology to provide explanations for inconsistencies by determining minimal representations of
conflicts. In practice, this can be used to identify unreliable data or to indicate missing reactions.
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1 Introduction

Molecular biology has seen a technological revolution with the establishment of high-
throughput methods in the last years. These methods allow for gathering multiple orders
of magnitude more measured data than was procurable before. Furthermore, there is an
increasing number of biological repositories on the web, such as KEGG, Biomodels, Re-
actome, MetaCyc, and others, incorporating thousands of biochemical reactions and ge-
netic regulations. However, both measurements as well as biological networks are prone
to considerable incompleteness, heterogeneity, and mutual inconsistency, which makes it
highly non-trivial to draw biologically meaningful conclusions in an automated way. As a
consequence, appropriate representation and powerful reasoning tools are needed to model
complex biological systems, in the face of incompleteness and inconsistency.

In this paper, we deal with the analysis of high-throughput measurements in molecular
biology, like microarray data or metabolic profiles. Up to now, it is still common practice
to use expression profiles merely for detecting over- or under-expressed genes under spe-
cific conditions, leaving the task of making biological sense out of a multitude of gene
identifiers to human experts. However, many efforts have also been made to better utilize
high-throughput data, in particular, by integrating them into large-scale models of tran-
scriptional regulations or metabolic processes (Friedman et al. 2000; Klamt and Stelling
2006).

One possible approach consists of investigating the compatibility between experimental
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measurements and knowledge available in reaction databases. This can be done by using
formal frameworks, for instance, the ones developed in (Gutierrez-Rios et al. 2003) and
(Siegel et al. 2006). A crucial feature of this methodology is its ability to cope with qual-
itative knowledge (for instance, reactions lacking kinetic details) and noisy data. In what
follows, we rely upon the so-called Sign Consistency Model (SCM) due to (Siegel et al.
2006). SCM imposes constraints between experimental measurements and a graph rep-
resentation of cellular interactions, called an influence graph (Soulé 2003). Such a graph
provides an over-approximation of the actual biological model, where an “influence” is
modeled by a disjunctive causal rule. This is particularly well-suited for dealing with in-
complete (missing reactions) or unreliable (noisy data) information.

Building on the SCM framework, we develop declarative techniques based on Answer
Set Programming (ASP) (Baral 2003; Gelfond 2008) to detect and explain inconsistencies
in large data sets. This approach has several advantages. First, it allows us to formulate
biological problems in a declarative way, thus easing the communication with biologi-
cal experts. Second, although we do not detail it here, the rich modeling language facili-
tates integrating different knowledge representation and reasoning techniques, like abduc-
tion, explanation, planning, prediction, etc., in a uniform and transparent way (cf. (Gebser
et al. 2010) for such extensions). And finally, modern ASP solvers are based on advanced
Boolean constraint solving technology and thus provide us with highly efficient inference
engines. Apart from modeling the aforementioned biological problems in ASP, our major
concern lies with the scalability of the approach. To this end, we apply our methods to
the gene-regulatory network of yeast (Guelzim et al. 2002; Sudarsanam et al. 2000) and,
moreover, design an artificial yet biologically meaningful benchmark suite indicating that
an ASP-based approach scales well on the considered class of applications. Notably, to
the best of our knowledge, the functionalities we provide go beyond the ones of the only
comparable approach (Guziolowski et al. 2009).

To begin with, we introduce SCM in Section 2. Section 3 gives the syntax and semantics
of ASP used in our application. In Section 4, we develop an ASP formulation of check-
ing the consistency between experimental profiles and influence graphs. We further extend
this approach in Section 5 to identifying minimal representations of conflicts if the exper-
imental data is inconsistent with an influence graph. In Section 6, we describe simple yet
effective techniques for input reduction along with a connectivity property that is used to
refine the encoding presented in Section 5. Section 7 is dedicated to an empirical evaluation
of our approach along with an exemplary case study on yeast. For making our methods eas-
ily accessible, an available web service is presented in Section 8. Section 9 concludes the
paper with a discussion and outlook on future work. Finally, Appendix A and Appendix B
contain proofs of soundness and completeness for our problem formulations in ASP.

2 Influence Graphs and Sign Consistency Constraints

Influence graphs (Soulé 2003) are a common representation for a wide range of dynamical
systems. In the field of genetic networks, they have been investigated for various classes of
systems, ranging from ordinary differential equations (Soulé 2006) to synchronous (Remy
et al. 2008) and asynchronous (Richard et al. 2004) Boolean networks. Influence graphs
have also been introduced in the field of qualitative reasoning (Kuipers 1994) to describe
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Figure 1. Simplified model of operon lactose in E. coli, represented as an influence graph. The
vertices represent either genes, metabolites, or proteins, while the edges indicate the regulations
among them. Edges with an arrow stand for positive regulations (activations), while edges with a tee
head stand for negative regulations (inhibitions). Vertices G and Le are considered to be inputs of the
system, that is, their signs are not constrained via their incoming edges.

physical systems where a detailed quantitative description is unavailable. In fact, this has
been the main motivation for using influence graphs for knowledge representation in the
context of biological systems.

An influence graph is a directed graph whose vertices are the input and state variables
of a system and whose edges express the effects of variables on each other.

Definition 2.1 (Influence Graph)
An influence graph is a directed graph (V,E, σ), where V is a set of vertices, E a set of
edges, and σ : E → {+, –} a (partial) labeling of the edges.

An edge j→ i means that the variation of j in time influences the level of i. Every edge
j→ i of an influence graph can be labeled with a sign, either + or –, denoted by σ(j, i),
where + (–) indicates that j tends to increase (decrease) i. An example influence graph is
given in Figure 1; it represents a simplified model of the operon lactose in E. coli.

In SCM, experimental profiles are supposed to come from steady state shift experiments
where, initially, the system is at steady state, then perturbed using control parameters, and
eventually, it settles into another steady state. It is assumed that the data measures the
differences between the initial and the final state. Thus, for genes, proteins, or metabolites,
we know whether the concentration has increased or decreased, while quantitative values
are unavailable, unessential, or unreliable. By µ(i), we denote the sign, again either + or –,
of the variation of a species i between the initial and the final condition. One can easily
enhance this setting to also considering null (or more precisely, non-significant) variations,
by exploiting the concept of sign algebra (Kuipers 1994).

Given an influence graph (as a representation of cellular interactions) and a labeling
of its vertices with signs (as a representation of experimental profiles), we now describe
the constraints that relate both. Informally, for every non-input vertex i, its variation µ(i)
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Species Le Li G LacY LacZ LacI A cAMP-CRP
µ1 – – – – – + – +
µ2 + + – + – + – –
µ3 + ? – ? ? + ? ?
µ4 ? ? ? – + ? ? +

Table 1. Some vertex labelings (reflecting measurements of two steady states) for the
influence graph depicted in Figure 1; unobserved values indicated by question mark ‘?’.

ought to be explained by the influence of at least one predecessor j of i in the influence
graph. Thereby, the influence of j on i is given by the sign µ(j)σ(j, i) ∈ {+, –}, where the
multiplication of signs is derived from that of numbers. Sign consistency constraints can
then be formalized as follows.

Definition 2.2 (Sign Consistency Constraints)
Let (V,E, σ) be an influence graph and µ : V → {+, –} a (partial) vertex labeling.

Then, (V,E, σ) and µ are consistent, if there are some total extensions σ′ : E → {+, –}
of σ and µ′ : V → {+, –} of µ such that µ′(i) is consistent for each non-input vertex i ∈ V ,
where µ′(i) is consistent, if there is some edge j→ i in E such that µ′(i) = µ′(j)σ′(j, i).

Note that labelings σ and µ of vertices and edges, respectively, are admitted to be partial.
This occurs frequently in practice where the kind of an influence may depend on environ-
mental factors or experimental data may not include all elements of a biological system.
In order to decide whether a partially labeled influence graph and a partial experimental
profile are mutually consistent, we thus consider the possible totalizations of them. If at
least one total edge and one total vertex labeling (extending the given labelings) are such
that the signs of all non-input vertices are explained, it is sufficient for mutual consistency.

Table 1 gives four vertex labelings for the influence graph in Figure 1. Total labeling
µ1 is consistent with the influence graph: the variation of each vertex (except for input
vertex Le) can be explained by the effect of one of its regulators. For instance, in µ1, LacY
receives a positive influence from cAMP-CRP as well as a negative influence from LacI,
the latter accounting for the decrease of LacY. The second labeling, µ2, is not consistent:
LacY receives only negative influences from cAMP-CRP and LacI, and its increase cannot
be explained. Partial vertex labeling µ3 is consistent with the influence graph in Figure 1,
as setting the signs of Li, LacY, LacZ, A, and cAMP-CRP to +, –, –, –, and +, respectively,
extends µ3 to a consistent total labeling. In contrast, µ4 cannot be extended consistently.

3 Answer Set Programming

This section provides a brief introduction to ASP, a declarative problem solving paradigm
offering a rich modeling language (Lparse Manual; Gebser et al. 2009a) along with highly
efficient inference engines based on Boolean constraint solving technology (Giunchiglia
et al. 2006; Gebser et al. 2009c; Drescher et al. 2008). The basic idea of ASP is to encode
a problem as a logic program such that its answer sets represent solutions.

In view of our application, we take advantage of the elevated expressiveness of disjunc-
tive programs, capturing problems at the second level of the polynomial hierarchy (Eiter
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and Gottlob 1995). A disjunctive logic program P is a finite set of rules of the form

a1; . . . ; al ← al+1, . . . , am,not am+1, . . . ,not an , (1)

where ai is an atom for 1 ≤ i ≤ n. A rule r as in (1) is called a fact if l = m =
n = 1, and an integrity constraint if l = 0. Let head(r) = {a1, . . . , al} be the head
of r, body(r) = {al+1, . . . , am,not am+1, . . . ,not an} be the body of r, as well let
body(r)+ = {al+1, . . . , am} and body(r)− = {am+1, . . . , an}.

An interpretation is represented by the set of atoms that are true in it. A model of a
program P is an interpretation in which all rules of P are true according to the standard
definition of truth in propositional logic. Apart from letting ‘;’ and ’,’ stand for disjunc-
tion and conjunction, respectively, this implies treating rules and default negation ‘not’
as implications and classical negation, respectively. Note that the (empty) head of an in-
tegrity constraint is false in every interpretation, while the empty body is true in every
interpretation. Answer sets of P are particular models of P satisfying an additional stabil-
ity criterion. Roughly, a set X of atoms is an answer set, if for every rule of form (1), X
contains a minimum of atoms among a1, . . . , al whenever al+1, . . . , am belong to X and
no am+1, . . . , an belongs to X . However, the disjunction in heads of rules, in general, is
not exclusive. Formally, an answer set X of a program P is a ⊆-minimal model of

{head(r)← body(r)+ | r ∈ P, body(r)− ∩X = ∅} .

For example, program {a; b←. c; d← a,not b. ← b.} has answer sets {a, c} and {a, d}.
Although answer sets are usually defined on ground (i.e., variable-free) programs, ASP

allows for non-ground problem encodings, where schematic rules stand for their ground
instantiations. Grounders, such as gringo (Gebser et al. 2009a) and lparse (Lparse Manual),
are capable of combining a problem encoding and an instance (typically a set of ground
facts) into an equivalent ground program, which is then processed by an ASP solver. We
follow this methodology and provide encodings for the problems considered below.

4 Checking Consistency

We now come to the first main question addressed in this paper, namely, how to check
whether an experimental profile is consistent with a given influence graph. Note that, if
the profile provides us with a sign for each vertex of the influence graph, the task can be
accomplished simply by checking whether each non-input vertex receives at least one in-
fluence matching its variation. However, as soon as the experimental profile has missing
values (which is very likely in practice), the problem becomes NP-hard (Veber et al. 2004).
In fact, a Boolean satisfiability problem over clauses C1, . . . , Cm and variables x1, . . . , xn

can be reduced as follows: introduce unlabeled input vertices x1, . . . , xn, non-input ver-
tices C1, . . . , Cm labeled +, and edges xj→Ci labeled + (–) if xj occurs positively (nega-
tively) in Ci. It is not hard to check that the labeling of C1, . . . , Cm by + is consistent with
the obtained influence graph iff the conjunction of C1, . . . , Cm is satisfiable.

We next provide a logic program such that each of its answer sets matches a consistent
extension of vertex and edge labelings. Our encodings as well as instances are available
at (BioASP Tools). The program for consistency checking is composed of three parts,
described in the following subsections.
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4.1 Problem Instance

An influence graph as well as an experimental profile are given by ground facts. For each
species i, we introduce a fact vertex(i), and for each edge j→ i, a fact edge(j, i). If s ∈
{+, –} is known to be the variation of a species i or the sign of an edge j→ i, it is expressed
by a fact observedV(i, s) or observedE(j, i, s), respectively. Finally, a vertex i is declared
to be input via a fact input(i).

For example, the negative regulation LacI→LacY in the influence graph shown in Fig-
ure 1 and observation + for LacI (as with µ3 in Table 1) give rise to the following facts:

vertex(LacI).
vertex(LacY).

edge(LacI,LacY).

observedV(LacI,+).
observedE(LacI,LacY, –).

(2)

Note that the absence of a fact of form observedV(LacY, s) means that the variation of
LacY is unobserved (as with µ3). In (2), we use LacI and LacY as names for constants
associated with the species in Figure 1, but not as first-order variables. Similarly, for uni-
formity of notations, + and – are written in (2) for constants identifying signs.

4.2 Generating Solution Candidates

As mentioned above, our goal is to check whether an experimental profile is consistent
with an influence graph. If so, it is witnessed by total labelings of the vertices and edges,
which are generated via the following rules:

labelV(V,+); labelV(V, –)← vertex(V ).
labelE(U, V,+); labelE(U, V, –)← edge(U, V ).

(3)

Moreover, the following rules ensure that known labels are respected by total labelings:

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S).

(4)

Note that the stability criterion for answer sets demands that a known label derived
via a rule in (4) is also derived via (3), thus, excluding the opposite label. In fact, the
disjunctive rules used in this section could actually be replaced with non-disjunctive rules
via “shifting” (Gelfond et al. 1991),1 given that our first encoding results in a so-called
head-cycle-free (HCF) (Ben-Eliyahu and Dechter 1994) ground program. However, similar
disjunctive rules are also used in Section 5 where they cannot be compiled away. Also note
that HCF programs, for which deciding answer set existence stays in NP, are recognized
as such by disjunctive ASP solvers (Leone et al. 2006; Drescher et al. 2008). Hence, the
purely syntactic use of disjunction, as done here, is not harmful to efficiency.

The following ground rules are obtained by combining the schematic rules in (3) and (4)

1 Alternatively, one could also use cardinality constraints (cf. (Lparse Manual)), which would however preclude
a comparison with dlv in Section 7.
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with the facts in (2):

labelV(LacI,+); labelV(LacI, –)← vertex(LacI).
labelV(LacY,+); labelV(LacY, –)← vertex(LacY).

labelE(LacI,LacY,+); labelE(LacI,LacY, –)← edge(LacI,LacY).

labelV(LacI,+)← observedV(LacI,+).
labelE(LacI,LacY, –)← observedE(LacI,LacY, –).

(5)

One can check that the program consisting of the facts in (2) and the rules in (5) admits
two answer sets, the first one including labelV(LacY,+) and the second one including
labelV(LacY, –). On the remaining atoms, both answer sets coincide by containing the
atoms in (2) along with labelV(LacI,+) and labelE(LacI,LacY, –).

4.3 Testing Solution Candidates

We now check whether generated total labelings satisfy the sign consistency constraints
stated in Definition 2.2, requiring an influence of sign s for each non-input vertex i with
variation s. We thus define receive(i, s) to indicate that i receives an influence of sign s:

receive(V,+)← labelE(U, V, S), labelV(U, S).
receive(V, –)← labelE(U, V, S), labelV(U, T ), S 6= T.

(6)

Inconsistent labelings, where a non-input vertex does not receive any influence matching
its variation, are then ruled out by integrity constraints of the following form:

← labelV(V, S),not receive(V, S),not input(V ). (7)

Note that the schematic rules in (6) and (7) are given in the input language of grounder
gringo (Gebser et al. 2009a). This allows us to omit an explicit listing of some “domain
predicates” in the bodies of rules, which would be necessary when using lparse (Lparse
Manual). At (BioASP Tools), we provide encodings for gringo and also (more verbose
ones) for lparse.

Starting from the answer sets described in the previous subsection, the included atoms
labelE(LacI,LacY, –) and labelV(LacI,+) allow us to derive receive(LacY, –) via a ground
instance of the second rule in (6), while receive(LacY,+) is not derivable. After adding
receive(LacY, –), the solution candidate containing labelV(LacY, –) satisfies the ground
instance of the integrity constraint in (7) obtained by substituting LacY for V and – for S.
Assuming LacI to be an input, as it can be declared via fact input(LacI), we thus obtain an
answer set containing labelV(LacY, –), expressing a decrease of LacY. In contrast, since
receive(LacY,+) is underivable, the solution candidate containing labelV(LacY,+) vio-
lates the following ground instance of (7):

← labelV(LacY,+),not receive(LacY,+),not input(LacY).

That is, the solution candidate with labelV(LacY,+) does not pass the consistency test.

4.4 Soundness and Completeness

By letting τ((V,E, σ), µ) denote the set of facts representing the problem instance induced
by an influence graph (V,E, σ) and a vertex labeling µ, and PC the logic program con-
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sisting of the rules given in (3), (4), (6), and (7), respectively, we can show the following
soundness and completeness results.

Theorem 4.1 (Soundness)
Let (V,E, σ) be an influence graph and µ : V → {+, –} a (partial) vertex labeling.

If there is an answer set of PC ∪ τ((V,E, σ), µ), then (V,E, σ) and µ are consistent.

Theorem 4.2 (Completeness)
Let (V,E, σ) be an influence graph and µ : V → {+, –} a (partial) vertex labeling.

If (V,E, σ) and µ are consistent, then there is an answer set of PC ∪ τ((V,E, σ), µ).

The following correspondence result is immediately obtained from Theorem 4.1 and 4.2.

Corollary 4.3 (Soundness and Completeness)
Let (V,E, σ) be an influence graph and µ : V → {+, –} a (partial) vertex labeling.

Then, (V,E, σ) and µ are consistent iff there is an answer set of PC ∪ τ((V,E, σ), µ).

5 Identifying Minimal Inconsistent Cores

In view of the usually large amount of data, it is crucial to provide concise explanations
whenever an experimental profile is inconsistent with an influence graph (i.e., if the logic
program given in the previous section has no answer set). To this end, we adopt a strat-
egy that was successfully applied on real biological data (Guziolowski et al. 2007). The
basic idea is to isolate minimal subgraphs of an influence graph such that the vertices and
edges cannot be labeled consistently. This task is closely related to extracting Minimal Un-
satisfiable Cores (MUCs) (Dershowitz et al. 2006) in the context of Boolean satisfiability
(SAT). In allusion, we call a minimal subgraph of an influence graph whose vertices and
edges cannot be labeled consistently a Minimal Inconsistent Core (MIC), whose formal
definition is as follows.2

Definition 5.1 (Minimal Inconsistent Core)
Let (V,E, σ) be an influence graph and µ : V → {+, –} a (partial) vertex labeling.

Then, a subset W of V is a Minimal Inconsistent Core (MIC), if

1. for all total extensions σ′ : E → {+, –} of σ and µ′ : V → {+, –} of µ, there is
some non-input vertex i ∈W such that µ′(i) is inconsistent, and

2. for every W ′ ⊂ W , there are some total extensions σ′ : E → {+, –} of σ and
µ′ : V → {+, –} of µ such that µ′(i) is consistent for each non-input vertex i ∈W ′.

To encode MICs, we make use of three important observations made on Definition 5.1.
First, the inherent inconsistency of a MIC’s vertices stipulated in the first condition must
be implied by the MIC and its external regulators, while vertices not connected to the MIC
cannot contribute anything. Moreover, the second condition on proper subsets prohibits

2 We note that verifying a MUC is DP-complete (Dershowitz et al. 2006; Papadimitriou and Yannakakis 1982),
and the same applies to MICs in view of the reduction of SAT described in Section 4. However, solving a
decision problem is not sufficient for our application because we also need to provide MIC candidates to
verify. As regards checking inconsistency of an (a priori unknown) MIC candidate, we are unaware of ways to
accomplish such a co-NP test in non-disjunctive ASP without destroying the candidate at hand.
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Figure 2. A partially labeled influence graph and a MIC consisting of A and D.

the inclusion of an input vertex in a MIC, as it could always be removed without affect-
ing inherent (in)consistency of the remaining vertices’ variations. Finally, for establishing
consistency of all proper subsets of a MIC, it is sufficient to consider subsets excluding a
single vertex of the MIC, given that their consistency carries forward to all smaller subsets.

For illustration, consider the influence graph and the MIC in Figure 2. One can check
that the observed simultaneous increase of B and D is not consistent with the influence
graph, but the reason for this might not be apparent at first glance. However, once the MIC
consisting of A and D is extracted, we see that the increase of B implies an increase of A, so
that the observed increase of D cannot be explained. Note that the elucidation of inherent
inconsistency provided by a MIC takes its vertices along with their regulators into account,
the latter being incapable of jointly explaining the variations of all vertices in the MIC.

We next provide an encoding for identifying MICs, where a problem instance, that is, an
influence graph along with an experimental profile, is represented by facts as specified in
Section 4.1. The encoding then consists of three parts: the first generating MIC candidates,
the second asserting inconsistency, and the third verifying minimality.

5.1 Generating MIC Candidates

The generating part comprises rules in (4) for deriving known vertex and edge labels. In
addition, it includes the following rules:

active(V ); inactive(V )← vertex(V ),not input(V ).

edgeMIC(U, V )← edge(U, V ), active(V ).
vertexMIC(U)← edgeMIC(U, V ).
vertexMIC(V )← active(V ).

labelV(V,+); labelV(V, –)← vertexMIC(V ).
labelE(U, V,+); labelE(U, V, –)← edgeMIC(U, V ).

(8)

The first rule permits guessing non-input vertices forming a MIC candidate. Such vertices
are marked as active. The subgraph of the influence graph consisting of the active vertices,
their regulators, and the connecting edges provides the context of the MIC candidate.3 The

3 In Definition 5.1, (in)consistency is checked only for the (non-input) vertices in a MIC, while other vertices’
variations do not need to be explained. Hence, guessing unobserved vertex (and edge) labels can be restricted
to vertices belonging to or connected to the MIC, which reduces combinatorics.
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vertices and edges contributing to this subgraph are identified via vertexMIC and edgeMIC.
The guessing of (unobserved) vertex and edge labels is restricted to them in the last two
rules of (8). Finally, note that the rules in (4) propagate known labels also for vertices and
edges not correlated to the MIC candidate, viz., to the active vertices. This does not incur
additional combinatorics; rather, it reduces derivations depending on MIC candidates.

5.2 Testing for Inconsistency

By adapting the methodology used in (Eiter and Gottlob 1995), the following subprogram
makes sure that the active vertices cannot be labeled consistently, taking (implicitly) into
account all possible labelings for them, their regulators, and connecting edges:4

opposite(U, V )← labelE(U, V, –), labelV(U, S), labelV(V, S).
opposite(U, V )← labelE(U, V,+), labelV(U, S), labelV(V, T ), S 6= T.

bottom← active(V ), opposite(U, V ) : edge(U, V ).
← not bottom.

labelV(V,+)← bottom, vertex(V ).
labelV(V, –)← bottom, vertex(V ).

labelE(U, V,+)← bottom, edge(U, V ).
labelE(U, V, –)← bottom, edge(U, V ).

(9)

In this (part of the) encoding, opposite(U, V ) indicates that the influence of regulator U
on V is opposite to the variation of V . If all regulators of an active vertex V have such an
opposite influence, the sign consistency constraint for V is violated, in which case atom
bottom along with all labels for vertices and edges are derived. Note that the stability
criterion for an answer set X imposes that bottom and all labels belong to X only if the
active vertices cannot be labeled consistently. Finally, integrity constraint ←not bottom
necessitates the inclusion of bottom in any answer set, thus, stipulating an inevitable sign
consistency constraint violation for some active vertex.

Reconsidering our example in Figure 2, the ground instances of (8) permit guessing
active(A) and active(D). When labeling A with + (or assuming labelV(A,+) to be true), we
derive opposite(A,D) and bottom, producing in turn all labels for vertices and edges. Fur-
thermore, setting the sign of A to – (or labelV(A, –) to true) makes us derive opposite(B,A),
which again gives bottom and all labels for vertices and edges. We have thus verified that
the sign consistency constraints for A and D cannot jointly be satisfied, given the observed
increases of B and D. That is, active vertices A and D are sufficient to explain the incon-
sistency between the observations and the influence graph.

5.3 Testing for Minimality

It remains to be verified whether the sign consistency constraints for all active vertices are
necessary to identify an inherent inconsistency. This test is based on the idea that, excluding

4 In the language of gringo (and lparse), the expression opposite(U, V ) : edge(U, V ) used below refers to the
conjunction of all ground atoms opposite(j, i) for which edge(j, i) holds.
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any single active vertex, the sign consistency constraints for the other active vertices should
be satisfied by appropriate labelings, which can be implemented as follows:

labelV’(W,V,+); labelV’(W,V, –)← active(W ), vertexMIC(V ).
labelE’(W,U, V,+); labelE’(W,U, V, –)← active(W ), edgeMIC(U, V ).

labelV’(W,V, S)← active(W ), observedV(V, S).
labelE’(W,U, V, S)← active(W ), observedE(U, V, S).

receive’(W,V,+)← labelE’(W,U, V, S), labelV’(W,U, S), V 6= W.

receive’(W,V, –)← labelE’(W,U, V, S), labelV’(W,U, T ), V 6= W,S 6= T.

← labelV’(W,V, S), active(V ), V 6= W,not receive’(W,V, S).

(10)

This subprogram is similar to the consistency check encoded via the rules in (3), (4), (6),
and (7). However, sign consistency constraints are only checked for active vertices, and
they must be satisfiable for all but one arbitrary active vertexW . In fact, labelings such that
the variations of all active vertices but W are explained witness the fact that W cannot be
removed from a MIC candidate without re-establishing consistency. As W ranges over all
(non-input) vertices of an influence graph, each active vertex is taken into consideration.
Regarding computational complexity, recall from Section 4 that checking consistency is
NP-complete. As a consequence, one cannot easily identify conditions to select a particular
witness for consistency of a MIC candidate minus some vertexW , and so we do not encode
any such conditions. This leads to the potential of multiple answer sets comprising the same
MIC but different witnesses, in particular, if many vertices and edges belong to the context
of the MIC.

For the influence graph in Figure 2, it is easy to see that the sign consistency constraint
for A is satisfied by setting the sign of A to +, expressed by atom labelV’(D,A,+) in the
ground rules obtained from the above encoding part. In turn, the sign consistency constraint
for D is satisfied by setting the sign of A to –. This is reflected by atom labelV’(A,A, –),
allowing us to derive receive’(A,D,+). That is, the ground instance of the above integrity
constraint containing labelV’(A,D,+) is satisfied. The fact that atoms labelV’(D,A,+) and
labelV’(A,A, –), used for explaining the variation of either A or D, respectively, disagree
on the sign of A also shows that jointly considering A and D yields an inconsistency.

5.4 Soundness and Completeness

Similar to Section 4.4, we can show the soundness and completeness for our MIC extrac-
tion encoding PD, consisting of the rules in (4), (8), (9), and (10), respectively.

Theorem 5.1 (Soundness)
Let (V,E, σ) be an influence graph and µ : V → {+, –} a (partial) vertex labeling.

If X is an answer set of PD ∪ τ((V,E, σ), µ), then {i | active(i) ∈ X} is a MIC.

Theorem 5.2 (Completeness)
Let (V,E, σ) be an influence graph and µ : V → {+, –} a (partial) vertex labeling.

If W ⊆ V is a MIC, then there is an answer set X of PD ∪ τ((V,E, σ), µ) such that
{i | active(i) ∈ X} = W .

The following correspondence result is immediately obtained from Theorem 5.1 and 5.2.
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Corollary 5.3 (Soundness and Completeness)
Let (V,E, σ) be an influence graph and µ : V → {+, –} a (partial) vertex labeling.

Then, W ⊆ V is a MIC iff there is an answer set X of PD ∪ τ((V,E, σ), µ) such that
{i | active(i) ∈ X} = W .

As mentioned above, several answer sets may represent the same MIC because witnesses
needed for minimality testing are not necessarily unique.

6 Refinements

In this section, we detail two encoding extensions aiming at the improvement of grounding
and solving efficiency. First, input reduction checks for some simple cases to identify and
distinguish uncritical vertices. Second, background knowledge about MICs’ connectivity
can be exploited to more precisely render potential MIC candidates.

6.1 Input Reduction

It is not unlikely in practice that biological networks include simple tractable substructures
or that parts of experimental observations are easily explained. Dealing with such particular
cases before doing complex computations (like checking consistency or finding MICs) is
therefore advisable. Given an influence graph (V,E, σ) and a partial vertex labeling µ

capturing experimental data, we below describe conditions to identify vertices that can
always be labeled consistently. Such vertices can then be marked as (additional) inputs to
exclude their sign consistency constraints from consistency checking and to make explicit
that they cannot belong to any MIC. Any of the following conditions is sufficient to identify
a vertex i as effectively unconstrained:

1. There is a regulation i→ i in E such that σ(i, i) = +, that is, i supports its variation.
2. There is a regulation j→ i in E such that σ(j, i) is undefined. In fact, undetermined

regulations are used in practice to model influences that vary, e.g., relative to en-
vironmental conditions. Any variation of the target i of such a regulation can be
explained by assigning the appropriate label to j→ i (w.r.t. the label of j).

3. There are regulations j→ i, k→ i inE such that µ(j)σ(j, i)=+ and µ(k)σ(k, i)=–.
That is, any variation of i is already explained by the given observations.

4. An observed variation µ(i) of i is explained if there is some regulation j→ i in E
such that µ(j)σ(j, i) = µ(i). Any further regulations targeting i can be ignored.

5. If for all regulations i→ k in E, we have that k is an input, then the variation of i
is insignificant for its targets. In this case, if i is unobserved (µ(i) is undefined) and
target of at least one regulation j→ i in E, we can assign an appropriate label to i
(w.r.t. the labels of j and j→ i) without any further conditions.

6. There is a regulation j→ i in E such that j is unobserved (µ(j) is undefined), an
input, and all targets k 6= i of j (j→ k belongs to E) are inputs. Without any further
conditions, we can assign an appropriate label to j for explaining the variation of i.

The reduction idea is to mark a vertex i as additional input, if it meets one of the above
conditions. Since the two last conditions inspect inputs, they may become applicable to
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Figure 3. A partially labeled influence graph with uncritical vertices surrounded by dots.

further vertices once inputs are added. Hence, checking the conditions and adding inputs
needs to be done exhaustively. As we see below, this can easily be encoded in ASP.

Reconsidering the influence graph and partial observations in Figure 2, we see that ver-
tex B receives an influence from D matching its observed increase. Thus, the fourth con-
dition applies to already explained vertex B. Moreover, vertex E is unobserved and does
not regulate anything. That is, the fifth condition applies to E, and its variation can simply
be picked from influences it receives from A, C, and D. After establishing that E can be
labeled consistently, we find that C does not regulate any critically constrained vertex. Ap-
plying again the fifth condition, we notice that the variation of C is actually insignificant.

Figure 3 shows the situation resulting from the identification of uncritical vertices by
iteratively applying the above conditions. The fact that only A and D are critically con-
strained tells us that only they can belong to a MIC. As a consequence, the MIC contain-
ing A and D, shown on the right-hand side of Figure 2, is the only one in this example.

The aforementioned idea to mark uncritical vertices as input can be encoded as follows:

obs(V )← observedV(V, S).
get(V,+)← observedE(U, V, S), observedV(U, S).
get(V, –)← observedE(U, V, S), observedV(U, T ), S 6= T.

input(V )← observedE(V, V,+).
input(V )← edge(U, V ),not observedE(U, V,+),not observedE(U, V, –).
input(V )← get(V,+), get(V, –).
input(V )← observedV(V, S), get(V, S).
input(V )← edge(U, V ), input(W ) : edge(V,W ),not obs(V ).
input(V )← edge(U, V ), input(W ) : edge(U,W ) : W 6= V, input(U),not obs(U).

Auxiliary predicates obs and get are used to exhibit whether either variation has been
observed for a vertex and whether a particular influence is received for certain, respectively.
The last six rules check the described conditions (in the same order) and mark a vertex as
input if one of them applies. Importantly, the above rules are stratified and thus yield a
unique set of derived input vertices. This allows us to perform the reduction efficiently
within grounding, without deferring to any procedural implementation external to ASP.

The situation shown in Figure 3 is reflected by the reduction encoding deriving atoms
input(B), input(C), and input(E) from an instance (cf. Section 4.1) corresponding to the
depicted influence graph and observed variations. Consistency checking and MIC identifi-
cation (cf. Section 4 and 5) can then focus on the remaining non-input vertices A and D.
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Figure 4. A partially labeled influence graph and the graph (V [{A,D}], E[{A,D}]).

6.2 Exploiting Strongly Connected Components for MIC Extraction

In what follows, we introduce a connectivity property of MICs that can be used to further
refine the encoding presented in Section 5. Incorporating additional background knowledge
into the problem encoding is straightforward (as soon as such knowledge is established). In
practice, ancillary (and actually redundant) conditions may significantly narrow and thus
speed up both the grounding and the solving process.

MIC Connectivity Property. For analyzing interactions within a MIC, we make use of a
graph described in the following. Let (V,E, σ) be an influence graph and µ : V → {+, –}
be a (partial) vertex labeling, and let D(µ) denote the set of vertices labeled by µ. For a
set W ⊆ V of vertices, we define a graph (V [W ], E[W ]) by:

V [W ] = W ∪ {j | (j→ i) ∈ E, i ∈W}
E[W ] = {(j→ i) | (j→ i) ∈ E, i ∈W} ∪ {(i→ j) | (j→ i) ∈ E, i ∈W, j /∈ D(µ)} .

The construction of (V [W ], E[W ]) is based on the idea that a regulator j of some i ∈W is
connected to i via its sign consistency constraint, and a connection in the opposite direction
applies if j is unlabeled by µ. In fact, given some total extensions σ′ : E → {+, –} of σ and
µ′ : V → {+, –} of µ, we can check a matching influence of j on i by µ′(i) = µ′(j)σ′(j, i)
or equivalently by µ′(j) = µ′(i)σ′(j, i). That is, provided that µ(j) is undefined, µ′(i)
constrains µ′(j) by contraposition whenever i does not receive a matching influence from
any other regulator than j. This observation motivates the inclusion of inverse edges from
vertices in W to regulators unlabeled by µ in E[W ].

For illustration, the right-hand side of Figure 4 shows graph (V [{A,D}], E[{A,D}])
resulting from the partially labeled influence graph on the left-hand side. The single reg-
ulator B of A is labeled, and thus there is no inverse edge from A to B in E[{A,D}]. On
the other hand, A is an unlabeled regulator of D, and so E[{A,D}] includes an inverse
edge from D to A. The addition of this edge turns the subgraph of (V [{A,D}], E[{A,D}])
induced by A and D into a strongly connected component. In view that A and D belong to
a MIC (as discussed in Section 5), we below show that this connectivity is not by chance.

Theorem 6.1 (MIC Connectivity)
Let (V,E, σ) be an influence graph and µ : V → {+, –} a (partial) vertex labeling.

If W ⊆ V is a MIC, then all vertices in W belong to the same strongly connected
component in (V [W ], E[W ]).
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The proof is omitted in view of space limitations and can be obtained from the authors.

Optimized MIC Encoding. We now apply Theorem 6.1 to improve the basic MIC extrac-
tion encoding (cf. Section 5) in two aspects: adding (redundant) constraints for search
space pruning and adding positive body literals for reducing grounding efforts. The fol-
lowing rules pave the way by determining the (non-trivial) strongly connected components
in (V,E[V ]) as an over-approximation of the ones in (V [W ], E[W ]) for any W ⊆ V :

edges(U, V )← edge(U, V ),not input(V ).
edges(V,U)← edge(U, V ),not input(V ),not observedV(U,+),not observedV(U, –).

reach(U, V )← edges(U, V ).
reach(U, V )← edges(U,W ), reach(W,V ), vertex(V ).

cycle(U, V )← reach(U, V ), reach(V,U), U 6= V.

(11)

The first rule simply collects edges whose targets are not input, while the second rule adds
edges in the inverse direction for unobserved regulators. Reachability w.r.t. the so obtained
graph is determined via the third and the fourth rule. Finally, predicate cycle indicates
whether two (distinct) vertices reach each other in (V,E[V ]) relative to an influence graph
(V,E, σ) and a (partial) vertex labeling µ. In fact, if two vertices belong to a MICW ⊆ V ,
then mutual reachability in (V [W ], E[W ]) implies the same in (V,E[V ]), in view that
V [W ] ⊆ V and E[W ] ⊆ E[V ]. Conversely, if two vertices do not reach each other in
(V,E[V ]), then they cannot jointly belong to any MIC.

The over-approximation of potential MICs provides an easy means to prune the search
space by adding the following integrity constraint:

← active(U), active(V ), U < V,not cycle(U, V ). (12)

The constraint makes the fact explicit that distinct vertices of a MIC must reach each other
in (V,E[V ]), and it immediately refutes MIC candidates that do not satisfy this condition.

After making use of Theorem 6.1 to narrow search, we now shift the focus to grounding.
As a matter of fact, the quadratic space complexity of the minimality test’s ground instan-
tiation, as encoded in (10), is a major bottleneck in scaling. The knowledge about potential
pairwisely connected vertices in MICs, represented by integrity constraint (12), also allows
us to include positive body literals in order to restrict the scope of minimality tests:

labelV’(W,V,+); labelV’(W,V, –)← active(W ), active(V ), cycle(V,W ).
labelV’(W,U,+); labelV’(W,U, –)← active(W ), edgeMIC(U, V ), cycle(V,W ).

labelE’(W,U, V,+); labelE’(W,U, V, –)← active(W ), edgeMIC(U, V ), cycle(V,W ).

labelV’(W,V, S)← active(W ), observedV(V, S), cycle(V,W ).
labelV’(W,U, S)← active(W ), observedV(U, S), edge(U, V ), cycle(V,W ).

labelE’(W,U, V, S)← active(W ), observedE(U, V, S), cycle(V,W ).

receive’(W,V,+)← labelE’(W,U, V, S), labelV’(W,U, S).
receive’(W,V, –)← labelE’(W,U, V, S), labelV’(W,U, T ), S 6= T.

← labelV’(W,V, S), active(V ), cycle(V,W ),not receive’(W,V, S).

(13)

In comparison to (10), the extra condition cycle(V,W ) in the bodies of the first three rules
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establishes that labels used for testing minimality are guessed only for pairs W and V of
vertices that can potentially jointly belong to a MIC. The same restriction is used in the next
three rules forwarding observed vertex and edge labels, but now limited to vertices that can
jointly belong to a MIC and to their respective regulators. Finally, the last two rules and the
integrity constraint perform the same test as in (10) for a restricted set of pairs W and V .
(The fact that cycle(V,W ) implies V 6= W in labelE’(W,U, V, S) also allows us to drop
this condition, used in (10), from the bodies of the rules defining receive’.)

The complete optimized MIC encoding consists of the original rules in (4), (8), and (9),
(11) and (12) as add-ons, and (13) as a replacement for (10). As regards the computational
impact, we note that the optimized encoding needs less than two seconds for grounding
and finding all MICs on the case study in Section 7.3, which took more than a minute with
the unoptimized encoding.

A second version of the optimized encoding is obtained by tightening the considera-
tion of connected vertices in (V [W ], E[W ]) relative to a MIC candidate W . This can be
achieved by adding condition active(V ) to the rules in (11) defining the edges predicate.
In this way, the static reachability information encoded in (11), which is completely eval-
uated by grounder gringo, is turned into a dynamic relation computed during search. As
it turns out, there is no significant performance difference between these two versions of
the optimized MIC extraction encoding on the case study in Section 7.3. Hence, more real
examples are needed to reliably compare their grounding and solving efficiency.

7 Empirical Evaluation and Application

For assessing the scalability of our approach, we start by conceiving a parameterizable
suite of artificial yet biologically meaningful benchmarks. After that, we present a typical
application stemming from real biological data, illustrating the exertion in practice. All
experiments were performed using input reduction as explained in Section 6.1.

7.1 Checking Consistency

We first evaluate our approach on randomly generated instances, aiming at structures simi-
lar to those found in biological applications. Instances are composed of an influence graph,
a complete labeling of its edges, and a partial labeling of its vertices. Our random generator
takes three parameters: (i) the number α of vertices in the influence graph, (ii) the average
degree β of the graph, and (iii) the proportion γ of observed variations for vertices. To
generate an instance, we compute a random graph with α vertices (the value of α vary-
ing from 500 to 4000) under the model by Erdős-Rényi (1959). Each pair of vertices has
equal probability to be connected via an edge, whose label is chosen independently with
probability 0.5 for both signs. We fix the average degree β to 2.5, which is considered to
be a typical value for biological networks (Jeong et al. 2000). Finally, bγαc vertices are
chosen with uniform probability and assigned a label with probability 0.5 for both signs.
For each number α of vertices, we generated 50 instances using five different values for γ,
viz., 0.01, 0.02, 0.033, 0.05, and 0.1. All instances are available at (BioASP Tools).

We used gringo (2.0.0) (Gebser et al. 2009a) for combining the generated instances and
the encoding given in Section 4 into equivalent ground programs. For checking consistency
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claspD claspD claspD cmodels dlv gnt
α Berkmin VMTF VSIDS

500 0.14 0.11 0.11 0.16 0.46 0.71
1000 0.41 0.25 0.25 0.35 1.92 3.34
1500 0.79 0.38 0.38 0.53 4.35 7.50
2000 1.33 0.51 0.51 0.71 8.15 13.23
2500 2.10 0.66 0.66 0.89 13.51 21.88
3000 3.03 0.80 0.79 1.07 20.37 31.77
3500 3.22 0.93 0.92 1.15 21.54 34.39
4000 4.35 1.06 1.06 1.36 30.06 46.14

Table 2. Run-times for consistency checking with claspD, cmodels, dlv, and gnt.

by computing an answer set (if it exists), we ran disjunctive ASP solvers claspD (1.1)
(Drescher et al. 2008) with “Berkmin”, “VMTF”, and “VSIDS” heuristics, cmodels (3.75)
(Giunchiglia et al. 2006) using zchaff, dlv (BEN/Oct 11) (Leone et al. 2006), and gnt (2.1)
(Janhunen et al. 2006). All runs were performed on a Linux machine equipped with an
AMD Opteron 2 GHz processor and a memory limit of 2GB RAM.

Table 2 shows average run-times in seconds over 50 instances per number α of vertices,
including grounding times of gringo and solving times. We checked that grounding times
of gringo increase linearly with the number α of vertices, and they do not vary significantly
over γ. For all solvers, run-times also increase linearly in α.5 For fixed α values, we found
two clusters of instances: consistent ones where total labelings were easy to compute, and
inconsistent ones where inconsistency was detected from preassigned labels. This tells
us that the influence graphs generated as described above are usually (too) easy to label
consistently, and inconsistency only occurs if it is explicitly introduced via fixed labels.
However, such constellations are not unlikely in practice (cf. Section 7.3), and isolating
MICs from them, as done in the next subsection, turned out to be hard for most solvers. Fi-
nally, greater values for γ led to an increased proportion of inconsistent instances, without
making them much harder.

7.2 Identifying Minimal Inconsistent Cores

We now investigate the problem of finding a MIC within the same setting as in the previous
subsection. Because of the elevated size of ground instantiations and problem difficulty, we
varied the number α of vertices from 50 to 300, thus, using considerably smaller influence
graphs than before. We again use gringo for grounding, now taking the encoding given in
Section 5. As regards solving, we restrict our attention to claspD because all three of the
other solvers showed drastic performance declines.

Table 3 shows average run-times in seconds over 50 instances per number α of ver-
tices. Timeouts, indicated in parentheses, are taken as maximum time of 1800 seconds.
We observe a quadratic increase in grounding times of gringo, which is in line with the
fact that ground instantiations for our MIC encoding grow quadratically with the size of

5 Longer run-times of claspD with “Berkmin” in comparison to the other heuristics are due to a more expen-
sive computation of heuristic values in the absence of conflict information. Furthermore, the time needed for
performing “Lookahead” slows down dlv as well as gnt.
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gringo claspD claspD claspD
α Berkmin VMTF VSIDS

50 0.24 1.16 (0) 0.65 (0) 0.97 (0)
75 0.55 39.11 (1) 1.65 (0) 3.99 (0)

100 0.87 41.98 (1) 3.40 (0) 4.80 (0)
125 1.37 15.47 (0) 47.56 (1) 10.73 (0)
150 2.02 54.13 (0) 48.05 (0) 15.89 (0)
175 2.77 30.98 (0) 116.37 (2) 23.07 (0)
200 3.82 42.81 (0) 52.28 (1) 24.03 (0)
225 4.94 99.64 (1) 30.71 (0) 41.17 (0)
250 5.98 194.29 (3) 228.42 (5) 110.90 (1)
275 7.62 178.28 (2) 193.03 (4) 51.11 (0)
300 9.45 241.81 (2) 307.15 (7) 124.31 (0)

Table 3. Run-times for grounding with gringo and solving with claspD.

influence graphs. In fact, the schematic rules in Section 5.3 give rise to α copies of an
influence graph. Considering solving times spent by claspD for finding one MIC (if it ex-
ists), we observe that they are relatively stable, in the sense that they are tightly correlated
to grounding times. This regularity again confirms that, though it is random, the applied
generation pattern tends to produce rather uniform influence graphs. Finally, we observed
that unsatisfiable instances, i.e., consistent instances without any MIC, were easier to solve
than the ones admitting answer sets. We conjecture that this is because consistent total
labelings provide a disproof of inconsistency as encoded in Section 5.2.

As our experimental results demonstrate, computing MICs is computationally harder
than just checking consistency. This is not surprising because the related (yet simpler) de-
cision problem of verifying a MUC is DP-complete (Dershowitz et al. 2006; Papadimitriou
and Yannakakis 1982) and thus more complex than just deciding satisfiability. With our
declarative technique, we spot the quadratic space blow-up incurred by the MIC encod-
ing in Section 5 as a bottleneck. However, there are approaches aiming at a reduction of
grounding efforts, and some of them have been presented in Section 6.

7.3 Biological Case Study

In the following, we present the results of applying our approach to real-world data of
genetic regulations in yeast. We tested the gene-regulatory network of yeast provided in
(Guelzim et al. 2002) against genetic profile data of snf2 knock-outs (Sudarsanam et al.
2000) from the Saccharomyces Genome Database6. The regulatory network of yeast con-
tains 909 genetic or biochemical regulations, all of which have been established experi-
mentally, among 491 genes.

Comparing the yeast regulatory network with the genetic profile of snf2, we found the
data to be inconsistent with the network, which was easily detected using the approach
of Section 4. Applying our diagnosis technique from Section 5, we obtained a total of 19
MICs. While computing the first MIC took less than a second using gringo and claspD (re-
gardless of the heuristic used), the computation of all MICs was considerably harder. Us-

6 http://www.yeastgenome.org
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Figure 5. Some MICs obtained by comparing the regulatory network of yeast with a genetic profile.

ing “VMTF” as search heuristic on top of the enumeration algorithm (Gebser et al. 2007)
inherited from clasp (Gebser et al. 2009c), claspD had found all 19 MICs in about 30 sec-
onds, while another 40 seconds were needed to decide that there is no further MIC. With
“VSIDS”, finding the 19 MICs took about the same time as with “VMTF”, but another
80 seconds were used to verify that all MICs had been found. Finally, using “Berkmin”
heuristic, 12 MICs had been found before aborting after 30 minutes. The observation that
search heuristics matter tells us that investigations into the structure of biological problems
and particular methods to solve them efficiently can earn considerable benefits.7 Further-
more, we note that the potential existence of multiple answer sets encompassing the same
MIC did not emerge on the yeast network and snf2 knock-out data. That is, we obtained 19
answer sets, each one corresponding one-to-one to a MIC.

Six of the computed MICs are exemplarily shown in Figure 5. While the first three of
them are pretty obvious, we also identified more complex topologies. However, our exam-
ple demonstrates that the MICs obtained in practice are still small enough to be understood
easily. For finding suitable corrections to the inconsistencies, it is often even more helpful
to display the connections between several overlapping MICs. Observe that all six MICs
in Figure 5 are related to gene ume6. Connecting them yields the subgraph of the yeast
regulatory network in Figure 6.

The most obvious problem in Figure 6 is that the observed increase of ume6 is incompat-
ible with its four targets. This suggests that either the observation on ume6 is incorrect or
that some regulations are missing or wrongly modeled. In the first hypothesis though, one
should note that the current model cannot explain a decrease of ume6: this would imply an
increase of sin3 and in turn an increase of reb1, but then there would be no explanation left
for the variation of hsc82 and rap1. So, in either case, our model should be revised. This is

7 Notably, by exploiting additional background knowledge, the optimized encoding presented in Section 6.2
requires less than two seconds (regardless of heuristics) for grounding and finding all 19 MICs. In fact, its
ground instantiation contains only 8481 atoms and 10843 rules, compared to 47260 atoms and 56522 rules
with the basic encoding in Section 5. In addition to problem size, also the difficulty drops dramatically: from
23345 conflicts down to 270 conflicts, encountered with “VMTF” heuristic during search for all answer sets.
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Figure 6. Subgraph obtained by connecting the six MICs given in Figure 5.

not a great surprise: our literature-based network, although very reliable, was presumably
far from being complete.

Regarding the biological background, note that ume6 is a known regulator of sporulation
in yeast: in case of nutritional stress, yeast cells stop dividing and produce spores by meio-
sis. These spores are reproductive structures better adapted to extreme conditions. ume6
is known as a key inhibitor of early meiotic genes: upon entry in meiosis, this inhibitory
effect is released and the target genes are expressed. Notably, a knock-out of ume6 causes
the expression of meiotic genes during vegetative growth (hence its name, Unscheduled
Meiotic Expression) as well as almost complete failure of sporulation (Washburn and Es-
posito 2006). ume6 seems to have activation capabilities as well, though in that case the
effect is believed to be indirect (Chen et al. 2007).

In the current view, ume6 switches from inhibitor to (indirect) activator at the beginning
of meiosis: Ume6p (the protein corresponding to the gene ume6) has a repressive effect
when it forms a complex with Sin3p (note that sin3 is in our network) and Rdp3p, which
is degraded upon entry in meiosis (Mallory et al. 2007). This molecular mechanism can be
interpreted in our model and one possible result is given in Figure 7. At least for negative
targets, we now have a plausible explanation: the real effector of the inhibition on hsf1,
spo12, top1, and ume6 itself is the complex Ume6p-Sin3p, whose variation is unobserved
but depends on the variation of ume6 and sin3. The variation of the targets can be explained
if the protein complex decreases, which is in turn possible if sin3 decreases. Regretfully
sin3 is not observed in our data, but we note that a decrease of this gene is fully compatible
with the rest of the network, that is, if we suppose a decrease of reb1. Now concerning
ino2, our network should be updated with more recent evidence: as reviewed in (Chen
et al. 2007), ino2 has several additional regulators, such as opi1 and pah1 (see Figure 7).
The observed variation of pah1 is not useful to explain that of ino2, but opi1 is definitely a
plausible candidate.

Here we illustrated one main usage of our diagnosis technique: identifying poorly mod-
eled regions of a regulatory network that are incompatible with a given data set. This is
definitely a key asset if one wants to build a large-scale regulatory database and check
its coherence with newly produced data on a regular basis. Given new data, our diagnosis
method produces human-understandable representations of possible incompatibilities with
the current model, which serve as the basis for a targeted literature research. With this data-
driven approach, a network can then be improved with considerably less effort than with a
random traversal of publications, for a much more coherent result.
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Figure 7. Local correction of the network based on our diagnosis method and literature research.

8 Web Service

To make our methods easily accessible to a biological audience, we built a web service8

not requiring any locally installed software on the user side except for a web browser. It
provides the possibility to upload textual representations of biological networks as well as
experimental profiles. Also, a number of predefined examples allows a user to instantly
experience the functionalities of the web service. These include consistency checking and
diagnosis, i.e., finding MICs, whose implementation has been detailed in Section 4 and 5.

Influence graphs representing biological networks usually contain vertices that are not
subject to any regulation. Such entities are understood as controlled by external factors,
like environmental or particular experimental conditions. To avoid trivial inconsistencies
due to such unregulated and thus unexplainable vertices, the web interface provides an
option “Guess input nodes” for automatically declaring all vertices without any predeces-
sor as inputs. While consistency checking simply results in a positive or negative answer,
we offer three diagnosis modes: “find one inconsistency”, “find all inconsistencies”, and
“approximate all inconsistencies”. The first mode aims at finding a single MIC, and the
second at finding all of them. For the latter, we currently use an encapsulating script that
repeatedly calls claspD while feeding already identified MICs back as integrity constraints,
until no further answer set exists. This makes sure that each answer set corresponds to a
new MIC and thus avoids potential repetitions. The problem of enumerating answer sets
that differ on a set of “relevant” atoms (in our case, on instances of predicate active) is
addressed in (Gebser et al. 2009b). The integration of this technique into claspD, in order
to make the wrapper script obsolete, is subject to future work. Once MICs have been com-
puted, they can be represented either textually or graphically, as shown in Figure 8. If the
result consists of several MICs, it is possible to view overlapping ones in a combined way,
thus highlighting regions of inconsistency. Finally, the third diagnosis mode, “approximate
all inconsistencies”, works by marking the vertices of a computed MIC as inputs before
proceeding to look for further MICs. This approach has been used in previous work (Guzi-
olowski et al. 2009) and has been integrated into our framework for comparison. However,
the results obtained with the third mode depend on the order in which MICs are found

8 http://data.haiti.cs.uni-potsdam.de/wsgi/app
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Figure 8. Representation of identified MICs in textual (left) and graphical (right) mode.

and their vertices declared to be inputs in future computations. Further functionalities, like
prediction under consistency (Guziolowski et al. 2007) and inconsistency (Gebser et al.
2010), are also featured by the web service but are outside the scope of this paper.

9 Discussion

We have provided an approach based on ASP to investigate the consistency between exper-
imental profiles and influence graphs. In case of inconsistency, the concept of a MIC can be
exploited for identifying concise explanations, pointing to unreliable data and/or missing
reactions. The problem of finding MICs is closely related to the extraction of MUCs in the
context of SAT. From a knowledge representation point of view, however, we argue for our
ASP-based technique, as it provides an easy way to model a problem in terms of a uniform
encoding and specific instances.

The BioQuali system (Guziolowski et al. 2009) provides functionalities parallel to our
approach. It also works on influence graphs and applies the same consistency notion. In
preprocessing, BioQuali reduces an influence graph by iteratively marking unobserved ver-
tices that have no successors as uncritical. This technique is also realized by input reduc-
tion, described in Section 6.1. After that, BioQuali transforms the reduced subgraph into a
Binary Decision Diagram, used for further computations. While consistency checking with
BioQuali yields the same results as our technique, its diagnosis functionality works like the
“approximate all inconsistencies” mode, described in the previous section. In contrast to
our method, this does in general not admit finding all MICs.

By now, a variety of efficient ASP tools are available, both for grounding and for solving
logic programs. Our empirical assessment of them (on random as well as real data) has in
principle demonstrated the scalability of the approach. The web service implementation of
finding all MICs, which is genuine to our method and not available in any other existing
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tool, is still based on some workarounds for avoiding redundant answer sets. It is a subject
of future work to address this with answer set projection (Gebser et al. 2009b).

As elegance and flexibility in modeling are major advantages of ASP, our current appli-
cation makes it attractive also for related biological questions, beyond the ones addressed
in this paper. For instance, ongoing work deals with repair and prediction under consis-
tency as well as inconsistency (Gebser et al. 2010). In future, it will also be interesting
to explore how far the performance of ASP tools can be tuned by varying and optimizing
encodings for particular tasks. In turn, challenging applications like the one presented here
might contribute to the further improvement of ASP tools, as they might be geared towards
efficiency in such domains.

Appendix A Proof of Theorem 4.1 and 4.2

We formalize the representation of instances, as described in Section 4.1, by defining a
mapping τ of an influence graph (V,E, σ) and a (partial) vertex labeling µ : V → {+, –}:

τ((V,E, σ), µ) = {vertex(i). | i ∈ V }
∪ {edge(j, i). | (j→ i) ∈ E}
∪ {observedE(j, i, s). | (j→ i) ∈ E, σ(j, i) = s}
∪ {observedV(i, s). | i ∈ V, µ(i) = s}
∪ {input(i). | i ∈ V is an input} . (A1)

By PC , we denote the encoding containing the schematic rules in (3), (4), (6), and (7).

Proof of Theorem 4.1
Assume that X is an answer set of PC ∪ τ((V,E, σ), µ). Furthermore, let

PX = {(head(r)← body(r)+)θ |
r ∈ PC ∪ τ((V,E, σ), µ), (body(r)−θ) ∩X = ∅, θ : var(r)→ U}

where var(r) is the set of all variables that occur in a rule r, U is the set of all constants
appearing in PC ∪ τ((V,E, σ), µ), and θ is a ground substitution for the variables in r.
Then, by the definition of an answer set, we know that X is a ⊆-minimal model of PX .

Given X , we define σ′ and µ′ as follows:

σ′ = {(j→ i) 7→ s | (j→ i) ∈ E, labelE(j, i, s) ∈ X}
µ′ = {i 7→ s | i ∈ V, labelV(i, s) ∈ X} .

We show that σ′ and µ′ are total labelings of edges and vertices, respectively, such that
µ′(i) = µ′(j)σ′(j, i) holds for every non-input vertex i ∈ V and some edge j→ i in E.

Regarding the uniqueness of labels assigned by σ′ and µ′, consider the following rules
from (3) and (4) including predicates labelE and labelV in their heads:

labelV(V,+); labelV(V, –)← vertex(V ).
labelE(U, V,+); labelE(U, V, –)← edge(U, V ).

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S).

(A2)

Since the given (partial) labelings σ and µ assign unique labels to the elements of their
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domains, facts defining observedE and observedV are of the form observedE(j, i,+). or
observedE(j, i, –). and observedV(i,+). or observedV(i, –)., respectively, and at most one
of these facts is contained in τ((V,E, σ), µ) for an edge (j→ i) ∈ E or a vertex i ∈ V .
Because X is a ⊆-minimal model of PX , the atoms in the heads of facts are in X ,
and all atoms in X over predicates observedE and observedV are derived from facts in
τ((V,E, σ), µ), in view that these predicates do not occur in the head of any rule in PC .
Hence, at most one of the atoms labelE(j, i,+) and labelE(j, i, –) or labelV(i,+) and
labelV(i, –), respectively, is derivable for an edge (j→ i) ∈ E or vertex i ∈ V from a
ground instance of the fourth or third rule in (A2) and then included in X . Furthermore,
the second and first rule in (A2) impose that at least one of labelE(j, i,+) or labelE(j, i, –)
and labelV(i,+) or labelV(i, –) belongs to X for every edge (j→ i) ∈ E and vertex
i ∈ V , respectively, while the atom containing the opposite label cannot belong to a ⊆-
minimal model of PX . Hence, there is at most one term s such that labelE(j, i, s) ∈ X

or labelV(i, s) ∈ X for an edge (j→ i) ∈ E or vertex i ∈ V , respectively, and it holds
that s ∈ {+, –}, which allows us to conclude that σ′ and µ′ are total labelings.

As regards extending σ and µ, we have that fact observedE(j, i, s). or observedV(i, s).
belongs to τ((V,E, σ), µ) if σ(j, i) = s or µ(i) = s, respectively, is given. This implies
that labelE(j, i, s) ∈ X or labelV(i, s) ∈ X , respectively, as the fourth or third rule in (A2)
would be unsatisfied otherwise. Thus, σ′(j, i) = s if σ(j, i) = s, and µ′(i) = s if µ(i) = s.

It remains to be shown that µ′(i) is consistent for each non-input vertex i ∈ V . To this
end, we note that the integrity constraint

← labelV(V, S),not receive(V, S),not input(V ).

from (7) necessitates receive(i, r) ∈ X if µ′(i) = r (that is, if labelV(i, r) ∈ X) for a
non-input vertex i ∈ V . Otherwise, PX would contain an unsatisfied ground instance in
view that input(i) ∈ X exactly if fact input(i). is included in τ((V,E, σ), µ). However,
any ground instances of the integrity constraint contributing to PX do not contain atoms
over predicate receive. Such atoms can only be derived using the following rules from (6):

receive(V,+)← labelE(U, V, S), labelV(U, S).
receive(V, –)← labelE(U, V, S), labelV(U, T ), S 6= T.

Since X is a ⊆-minimal model of PX , receive(i,+) ∈ X or receive(i, –) ∈ X is possible
only if labelE(j, i, s) ∈ X and labelV(j, t) ∈ X such that s = t or s 6= t, that is, if
σ′(j, i) = s and µ′(j) = t such that µ′(j)σ′(j, i) = + or µ′(j)σ′(j, i) = –, respectively.
As labelV(i, r) is accompanied by receive(i, r) in X for each non-input vertex i ∈ V , this
allows us to conclude that µ′(i) = r implies µ′(j)σ′(j, i) = r for some regulator j of i.
Hence, we have that µ′(i) is consistent for each non-input vertex i ∈ V .

Proof of Theorem 4.2

Assume that (V,E, σ) and µ are consistent. Then, there are total extensions σ′ : E →
{+, –} of σ and µ′ : V → {+, –} of µ such that, for each non-input vertex i ∈ V , we have
µ′(i) = µ′(j)σ′(j, i) for some edge j→ i in E.
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We consider the following set X of atoms:

X = {vertex(i), labelV(i, s) | i ∈ V, µ′(i) = s}
∪ {edge(j, i), labelE(j, i, s) | (j→ i) ∈ E, σ′(j, i) = s}
∪ {receive(i, ts) | (j→ i) ∈ E, σ′(j, i) = s, µ′(j) = t}
∪ {observedE(j, i, s) | (j→ i) ∈ E, σ(j, i) = s}
∪ {observedV(i, s) | i ∈ V, µ(i) = s}
∪ {input(i) | i ∈ V is an input} .

For showing that X is an answer set of PC ∪ τ((V,E, σ), µ), we need to verify that X is
a ⊆-minimal model of

PX = {(head(r)← body(r)+)θ |
r ∈ PC ∪ τ((V,E, σ), µ), (body(r)−θ) ∩X = ∅, θ : var(r)→ U}

where var(r) is the set of all variables that occur in a rule r, U is the set of all constants
appearing in PC ∪ τ((V,E, σ), µ), and θ is a ground substitution for the variables in r.

To start with, we note that X includes an atom vertex(i), edge(j, i), observedE(j, i, s),
observedV(i, s), and input(i), respectively, exactly if there is a fact with the atom in the
head in τ((V,E, σ), µ). Each of these facts belongs also to PX , is satisfied by X , but not
by any set Y of atoms excluding at least one of the head atoms. Furthermore, since σ′

and µ′ are total mappings, we have that |{labelE(j, i,+), labelE(j, i, –)} ∩ X| = 1 and
|{labelV(i,+), labelV(i, –)} ∩ X| = 1 for every (j→ i) ∈ E and i ∈ V , respectively.
Hence, X , but no subset Y of X excluding at least one atom over predicates labelE and
labelV , satisfies all ground instances of the following rules from (3) in PX :

labelV(V,+); labelV(V, –)← vertex(V ).
labelE(U, V,+); labelE(U, V, –)← edge(U, V ).

In addition, since σ′ and µ′ extend σ and µ, respectively, all ground instances of the fol-
lowing rules from (4) in PX are satisfied by X:

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S).

Since labelE(j, i, s) ∈ X and labelV(j, t) ∈ X if σ′(j, i) = s and µ′(j) = t, respectively,
we have that receive(i, ts) ∈ X exactly if there is a ground instance of the rules

receive(V,+)← labelE(U, V, S), labelV(U, S).
receive(V, –)← labelE(U, V, S), labelV(U, T ), S 6= T.

from (6) inPX such that labelE(j, i, s), labelV(j, t) ∈ X occur in the body and receive(i, ts)
in the head. Hence, no subset Y ofX excluding any atom over predicate receive is a model
of PX . Finally, since µ′(i) = µ′(j)σ′(j, i) for each non-input vertex i ∈ V and some j→ i

in E, labelV(i, r) ∈ X implies that receive(i, r) ∈ X . That is, the ground instances of the
integrity constraint

← labelV(V, S),not receive(V, S),not input(V ).

from (7) that contribute to PX are satisfied by X .
We have now investigated all rules in PC ∪ τ((V,E, σ), µ) and shown that their ground
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instances in PX are satisfied by X . Furthermore, we have checked for all atoms in X that
they cannot be excluded in any model Y ⊂ X of PX . That is, X is indeed a ⊆-minimal
model of PX and thus an answer set of PC ∪ τ((V,E, σ), µ).

Appendix B Proof of Theorem 5.1 and 5.2

This appendix provides proofs for soundness and completeness of the MIC extraction en-
coding in Section 5. We use τ((V,E, σ), µ) as defined in (A1) to refer to the facts rep-
resenting an influence graph (V,E, σ) and a (partial) vertex labeling µ : V → {+, –}.
By PD, we denote the encoding consisting of the schematic rules in (4), (8), (9), and (10).

As an auxiliary concept, for any subset W ⊆ V , we say that σ′ : E → {+, –} and
µ′ : V → {+, –} are witnessing labelings for W if the following conditions hold:

1. σ′ and µ′ are total,
2. if σ(j, i) is defined, then σ′(j, i) = σ(j, i),
3. if µ(i) is defined, then µ′(i) = µ(i), and
4. µ′(i) is consistent (relative to σ′) for each non-input vertex i ∈W .

The above conditions make sure that σ′ and µ′ are total extensions of σ and µ, respectively,
such that the variations of vertices in W are explained. Comparing Definition 5.1, the first
condition requires the absence of witnessing labelings for a MIC W , while the second
condition stipulates the existence of witnessing labelings for each W ′ ⊂W .

Proof of Theorem 5.1
Assume that X is an answer set of PD ∪ τ((V,E, σ), µ). Furthermore, let

PX = {(head(r)← body(r)+)θ |
r ∈ PD ∪ τ((V,E, σ), µ), (body(r)−θ) ∩X = ∅, θ : var(r)→ U}

where var(r) is the set of all variables that occur in a rule r, U is the set of all constants
appearing in PD ∪ τ((V,E, σ), µ), and θ is a ground substitution for the variables in r.
Then, by the definition of an answer set, we know that X is a ⊆-minimal model of PX .

Let W = {i | active(i) ∈ X}. We have to show that the following conditions hold:

1. There are witnessing labelings for each W ′ ⊂W .
2. There are no witnessing labelings for W .

We below consider these conditions one after the other.

Condition 1. LetW ′ = W \{k} for any k ∈W . Furthermore, define σ′ and µ′ as follows:

σ′ = {(j→ i) 7→ s | (j→ i) ∈ E, labelE’(k, j, i, s) ∈ X}
∪ {(j→ i) 7→ + | (j→ i) ∈ E, labelE’(k, j, i,+) /∈ X, labelE’(k, j, i, –) /∈ X}

µ′ = {i 7→ s | i ∈ V, labelV’(k, i, s) ∈ X}
∪ {i 7→ + | i ∈ V, labelV’(k, i,+) /∈ X, labelV’(k, i, –) /∈ X} .

We show that σ′ and µ′ are witnessing labelings for W ′.
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Regarding the uniqueness of labels assigned by σ′ and µ′, consider the following rules
from (10) including predicates labelE’ and labelV’ in their heads:

labelV’(W,V,+); labelV’(W,V, –)← active(W ), vertexMIC(V ).
labelE’(W,U, V,+); labelE’(W,U, V, –)← active(W ), edgeMIC(U, V ).

labelV’(W,V, S)← active(W ), observedV(V, S).
labelE’(W,U, V, S)← active(W ), observedE(U, V, S).

(B1)

Since the given (partial) labelings σ and µ assign unique labels to the elements of their
domains, facts defining observedE and observedV are of the form observedE(j, i,+). or
observedE(j, i, –). and observedV(i,+). or observedV(i, –)., respectively, and at most one
of these facts is contained in τ((V,E, σ), µ) for an edge (j→ i) ∈ E or vertex i ∈ V .
Because X is a ⊆-minimal model of PX , the atoms in the heads of facts are in X ,
and all atoms in X over predicates observedE and observedV are derived from facts in
τ((V,E, σ), µ), in view that these predicates do not occur in the head of any rule in PD.
Hence, at most one of the atoms labelE’(k, j, i,+) and labelE’(k, j, i, –) or labelV’(k, i,+)
and labelV’(k, i, –), respectively, is derivable for an edge (j→ i) ∈ E or vertex i ∈ V

from a ground instance of the fourth or third rule in (B1) and then included in X . If either
of labelE’(k, j, i,+) and labelE’(k, j, i, –) or labelV’(k, i,+) and labelV’(k, i, –), respec-
tively, is included inX , then the ground instance of the second or first rule in (B1) for k and
an edge (j→ i) ∈ E or vertex i ∈ V is satisfied, so that the atom containing the opposite
label cannot belong to a ⊆-minimal model of PX . Hence, there is at most one term s such
that σ′(j, i) = s or µ′(i) = s for an edge (j→ i) ∈ E or vertex i ∈ V , respectively, and
it holds that s ∈ {+, –}. Furthermore, looking at the definitions of σ′ and µ′, it is obvious
that both are total, which allows us to conclude that σ′ and µ′ are total labelings.

As regards extending σ and µ, we have that fact observedE(j, i, s). or observedV(i, s).
belongs to τ((V,E, σ), µ) if σ(j, i) = s or µ(i) = s, respectively, is given. Along with the
premise that active(k) ∈ X , this implies that labelE’(k, j, i, s) ∈ X or labelV’(k, i, s) ∈ X ,
respectively, as the fourth or third rule in (B1) would be unsatisfied otherwise. Hence, we
have σ′(j, i) = s if σ(j, i) = s, and µ′(i) = s if µ(i) = s.

It remains to be shown that µ′(i) is consistent for each non-input vertex i ∈ W ′. To
establish this, we first consider the following rules from (8):

edgeMIC(U, V )← edge(U, V ), active(V ).
vertexMIC(U)← edgeMIC(U, V ).
vertexMIC(V )← active(V ).

(B2)

In view that fact edge(j, i). belongs to τ((V,E, σ), µ) for every (j→ i) ∈ E, we con-
clude that edge(j, i) ∈ X . Along with active(i) ∈ X for every i ∈ W , it follows that
edgeMIC(j, i) ∈ X for every (j→ i) ∈ E such that i ∈ W , and vertexMIC(i) ∈ X for
every i ∈W . The last observation and the first rule in (B1) imply that labelV’(k, i,+) ∈ X
or labelV’(k, i, –) ∈ X for every i ∈W . For i ∈W ′, i.e., i 6= k, the integrity constraint

← labelV’(W,V, S), active(V ), V 6= W,not receive’(W,V, S).

from (10) imposes receive’(k, i,+) ∈ X if labelV’(k, i,+) ∈ X , and receive’(k, i, –) ∈ X
if labelV’(k, i, –) ∈ X , while any ground instances of the integrity constraint contributing
to PX do not contain atoms over predicate receive’. Such atoms can only be derived using
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the following rules from (10):

receive’(W,V,+)← labelE’(W,U, V, S), labelV’(W,U, S), V 6= W.

receive’(W,V, –)← labelE’(W,U, V, S), labelV’(W,U, T ), V 6= W,S 6= T.

Since X is a ⊆-minimal model of PX , receive’(k, i,+) ∈ X or receive’(k, i, –) ∈ X

is possible only if labelE’(k, j, i, s) ∈ X and labelV’(k, j, t) ∈ X such that s = t

or s 6= t, respectively. Comparing τ((V,E, σ), µ) and the rules in (B1), (B2), as well
as (B3) reveals that (j→ i) ∈ E is a necessary condition for labelE’(k, j, i, s) ∈ X ,
and the same applies to j ∈ V and labelV’(k, j, t) ∈ X . By the construction of σ′ and µ′,
labelE’(k, j, i, s) ∈ X implies that σ′(j, i) = s and labelV’(k, j, t) ∈ X that µ′(j) = t. We
conclude that receive’(k, i,+) ∈ X or receive’(k, i, –) ∈ X necessitates µ′(j)σ′(j, i) = +
or µ′(j)σ′(j, i) = –, respectively, for some regulator j of i. Finally, we have µ′(i) = + if
labelV’(k, i,+) ∈ X (and receive’(k, i,+) ∈ X), and µ′(i) = – if labelV’(k, i, –) ∈ X

(and receive’(k, i, –) ∈ X). This shows that i receives some influence matching µ′(i), so
that µ′(i) is consistent. Since i ∈W ′ is arbitrary, σ′ and µ′ are witnessing labelings forW ′.

To conclude the proof of the first condition to verify, we note that witnessing labelings
for W ′ are also witnessing labelings for all subsets of W ′. Hence, it is sufficient to check
the existence of witnessing labelings for sets W ′ = W \ {k} for any k ∈ W . As shown
above, an answer set X of PD ∪ τ((V,E, σ), µ) yields witnessing labelings for them.
Hence, the second condition in Definition 5.1 holds for W = {i | active(i) ∈ X}.

Condition 2. We now show by contradiction that there cannot be witnessing labelings
for W . To establish this, we first note that vertices in W cannot be input because, if fact
input(i). belongs to τ((V,E, σ), µ), then input(i) must be included in X , so that the rule

active(V ); inactive(V )← vertex(V ),not input(V ). (B3)

from (8) does not contribute a ground instance for i to PX . Since active(i) cannot be
derived from any other ground rule in PX , the fact that X is a ⊆-minimal model of PX

implies that active(i) /∈ X for any input vertex i. Furthermore, the integrity constraint

← not bottom. (B4)

from (9) necessitates bottom ∈ X because X cannot be a model of PX otherwise. Then,
we get labelV(i,+), labelV(i, –) ∈ X and labelE(j, i,+), labelE(j, i, –) ∈ X for all ver-
tices i ∈ V and edges (j→ i) ∈ E, respectively, due to the following rules from (9):

labelV(V,+)← bottom, vertex(V ).
labelV(V, –)← bottom, vertex(V ).

labelE(U, V,+)← bottom, edge(U, V ).
labelE(U, V, –)← bottom, edge(U, V ).

(B5)

We now show that the existence of witnessing labelings for W yields a contradiction
to the fact that X is a ⊆-minimal model of PX . To this end, assume that σ′ and µ′ are
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witnessing labelings for W . Then, let

Y = (X \ ({bottom}
∪ {labelV(i, s) | labelV(i, s) ∈ X}
∪ {labelE(j, i, s) | labelE(j, i, s) ∈ X}
∪ {opposite(j, i) | opposite(j, i) ∈ X}))

∪ {labelV(i, s) | i ∈ V, µ′(i) = s}
∪ {labelE(j, i, s) | (j→ i) ∈ E, σ′(j, i) = s}
∪ {opposite(j, i) | (j→ i) ∈ E,µ′(i) 6= µ′(j)σ′(j, i)} .

Since bottom ∈ X\Y andX contains a maximum amount of atoms over predicates labelV ,
labelE, and opposite (the atoms over opposite are consequences of the inclusion of atoms
over labelV and labelE), we have that Y ⊂ X , and we show that Y is a model of PX .

Considering the contributions of the facts in τ((V,E, σ), µ) and the rules in (10) to PX ,
we observe that the atoms over predicates occurring in them are interpreted the same in X
and Y . Hence, such facts and rules stay satisfied by Y because they were already satisfied
by X . The same applies to the rules from (8) repeated in (B2) and (B3). Furthermore,
since σ′ and µ′ are total and extend σ and µ, respectively, the contributions of the following
rules from (4) and (8) to PX are satisfied by Y :

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S).

labelV(V,+); labelV(V, –)← vertexMIC(V ).
labelE(U, V,+); labelE(U, V, –)← edgeMIC(U, V ).

Since the integrity constraint in (B4) does not belong to PX and the rules in (B5) are
satisfied by Y in view of bottom /∈ Y , it remains to consider the following rules from (9):

opposite(U, V )← labelE(U, V, –), labelV(U, S), labelV(V, S).
opposite(U, V )← labelE(U, V,+), labelV(U, S), labelV(V, T ), S 6= T.

bottom← active(V ), opposite(U, V ) : edge(U, V ).

The rules defining predicate opposite are such that, in order to satisfy their ground instances
in PX , Y must contain opposite(j, i) if labelE(j, i, r), labelV(j, s), and labelV(i, t) be-
long to Y such that t 6= sr. This matches the definition of Y , including labelE(j, i, r)
if σ′(j, i) = r, labelV(j, s) if µ′(j) = s, labelV(i, t) if µ′(i) = t, and opposite(j, i) if
µ′(i) 6=µ′(j)σ′(j, i). Hence, rules defining opposite in PX are satisfied by Y . It remains to
be shown that bottom is not derivable from any ground instance of the last rule. In this re-
gard, recall that W = {i | active(i) ∈ X} = {i | active(i) ∈ Y }, and we have seen above
that active(i) can only belong toX if i is not an input. As σ′ and µ′ are witnessing labelings
for W , for every i ∈ W , there is an edge (j→ i) ∈ E such that µ′(i) = µ′(j)σ′(j, i). By
the definition of Y , this implies opposite(j, i) /∈ Y , while edge(j, i) belongs to X and Y
because X and Y are models of τ((V,E, σ), µ). As a consequence, for every i ∈ W , we
have {opposite(j, i) | edge(j, i) ∈ Y } 6⊆ Y , so that the ground instance for i in PX of
the rule with bottom in the head is satisfied by Y . We have thus established that Y ⊂ X

is indeed a model of PX , a contradiction to the assumption that X is a ⊆-minimal model
of PX and an answer set of PD ∪ τ((V,E, σ), µ).

The above contradiction shows that the second condition to verify, which is the first
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condition in Definition 5.1, holds for W = {i | active(i) ∈ X}. The fact that the second
condition in Definition 5.1 holds for W has been shown before. Hence, W is a MIC.

Proof of Theorem 5.2
Assume that W = {k1, . . . , kn} is a MIC. Then, the following conditions hold:

1. There are witnessing labelings σ1, µ1, . . . , σn, µn for W \ {k1}, . . . ,W \ {kn}.
2. There are no witnessing labelings for W .

We consider the following set X of atoms:

X = {vertex(i) | i ∈ V }
∪ {edge(j, i) | (j→ i) ∈ E}
∪ {observedE(j, i, s) | (j→ i) ∈ E, σ(j, i) = s}
∪ {observedV(i, s) | i ∈ V, µ(i) = s}
∪ {input(i) | i ∈ V is an input}
∪ {active(i) | i ∈W}
∪ {inactive(i) | i ∈ V \W is not an input}
∪ {edgeMIC(j, i) | (j→ i) ∈ E, i ∈W}
∪ {vertexMIC(j) | (j→ i) ∈ E, i ∈W}
∪ {vertexMIC(i) | i ∈W}
∪ {labelE’(km, j, i, r) | (j→ i) ∈ E, i ∈W,σm(j, i) = r, 1 ≤ m ≤ n}
∪ {labelE’(km, j, i, r) | (j→ i) ∈ E, σ(j, i) = r, 1 ≤ m ≤ n}
∪ {labelV’(km, j, s) | (j→ i) ∈ E, i ∈W,µm(j) = s, 1 ≤ m ≤ n}
∪ {labelV’(km, i, s) | i ∈W,µm(i) = s, 1 ≤ m ≤ n}
∪ {labelV’(km, i, s) | i ∈ V, µ(i) = s, 1 ≤ m ≤ n}
∪ {receive’(km, i, sr) | (j→ i) ∈ E, i ∈W,

σm(j, i) = r, µm(j) = s, i 6= km, 1 ≤ m ≤ n}
∪ {receive’(km, i, sr) | (j→ i) ∈ E, j ∈W or (j→ k) ∈ E for k ∈W,

σ(j, i) = r, µm(j) = s, i 6= km, 1 ≤ m ≤ n}
∪ {receive’(km, i, sr) | (j→ i) ∈ E,

σ(j, i) = r, µ(j) = s, i 6= km, 1 ≤ m ≤ n}
∪ {labelV(i,+), labelV(i, –) | i ∈ V }
∪ {labelE(j, i,+), labelE(j, i, –) | (j→ i) ∈ E}
∪ {opposite(j, i) | (j→ i) ∈ E}
∪ {bottom} .

For showing that X is an answer set of PD ∪ τ((V,E, σ), µ) (such that {i | active(i) ∈
X} = W ), we need to verify that X is a ⊆-minimal model of

PX = {(head(r)← body(r)+)θ |
r ∈ PD ∪ τ((V,E, σ), µ), (body(r)−θ) ∩X = ∅, θ : var(r)→ U}

where var(r) is the set of all variables that occur in a rule r, U is the set of all constants
appearing in PD ∪ τ((V,E, σ), µ), and θ is a ground substitution for the variables in r.

To start with, we note that X includes an atom vertex(i), edge(j, i), observedE(j, i, s),
observedV(i, s), and input(i), respectively, exactly if there is a fact with the atom in the
head in τ((V,E, σ), µ). Each of these facts belongs also to PX , is satisfied by X , but not
by any set Y of atoms excluding at least one of the head atoms.
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In view that W cannot contain any input (otherwise, satisfaction of the second condition
in Definition 5.1 would immediately imply violation of the first one), we have that either
active(i) or inactive(i) belongs to X for every non-input vertex i ∈ V . Hence, X satisfies
all ground instances of the rule

active(V ); inactive(V )← vertex(V ),not input(V ).

from (8) belonging to PX , while no set Y of atoms excluding both active(i) and inactive(i)
for any non-input vertex i ∈ V satisfies all of these ground instances.

Considering ground instances of the rules

edgeMIC(U, V )← edge(U, V ), active(V ).
vertexMIC(U)← edgeMIC(U, V ).
vertexMIC(V )← active(V ).

from (8), all of them belong to PX , are satisfied by X , but not by any set Y of atoms such
that {edgeMIC(j, i) | edgeMIC(j, i) ∈ X} ∪ {vertexMIC(i) | vertexMIC(i) ∈ X} 6⊆ Y

and {active(i) | active(i) ∈ X} ⊆ {active(i) | active(i) ∈ Y }, while it has been
shown above that {active(i) | active(i) ∈ X} 6⊆ {active(i) | active(i) ∈ Y } necessi-
tates {inactive(i) | inactive(i) ∈ Y } 6⊆ {inactive(i) | inactive(i) ∈ X} for Y being a
model of PX . Hence, there cannot be any model Y ⊂ X of PX excluding some atom
edgeMIC(j, i) or vertexMIC(i) that belongs to X .

Now turning our attention to atoms of form labelE’(km, j, i, r) and labelV’(km, j, s),
we note that they are included in X if edgeMIC(j, i) ∈ X and vertexMIC(j) ∈ X , respec-
tively, and σm(j, i) = r, µm(j) = s in witnessing labelings σm and µm for W \ {km},
where 1 ≤ m ≤ n, or if σ(j, i) = r, µ(j) = s. Then, the fact that active(km) ∈ X and
labels assigned by σm and µm are unique and respect those assigned by σ and µ implies
that none of the atoms can be removed from X without violating some ground instance of
the rules

labelV’(W,V,+); labelV’(W,V, –)← active(W ), vertexMIC(V ).
labelE’(W,U, V,+); labelE’(W,U, V, –)← active(W ), edgeMIC(U, V ).

labelV’(W,V, S)← active(W ), observedV(V, S).
labelE’(W,U, V, S)← active(W ), observedE(U, V, S).

from (10) that belongs to PX . However, X satisfies all of these ground instances by its
construction. We further consider the following rules from (10):

receive’(W,V,+)← labelE’(W,U, V, S), labelV’(W,U, S), V 6= W.

receive’(W,V, –)← labelE’(W,U, V, S), labelV’(W,U, T ), V 6= W,S 6= T.

As shown above, labelE’(km, j, i, r) belongs to X if i ∈ W and σm(j, i) = r, or if
σ(j, i) = σm(j, i) = r. Furthermore, labelV’(km, j, s) is included in X if j ∈ W or
(j→ k) ∈ E, k ∈ W and µm(j) = s, or if µ(j) = µm(j) = s. Comparing the cross
product of these conditions to the definition of X yields that an atom receive’(km, i, sr)
belongs to X exactly if labelE’(km, j, i, r) and labelV’(km, j, s) are in X and i 6= km.
Hence, when excluding any of the atoms receive’(km, i, sr) fromX , some ground instance
of the above two rules belonging to PX becomes unsatisfied, and so we have that such
atoms cannot be removed from X in order to construct a model Y ⊂ X of PX . Moreover,
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the fact that σm and µm are witnessing labelings for W ′ = W \ {km} implies that all
ground instances of the integrity constraint

← labelV’(W,V, S), active(V ), V 6= W,not receive’(W,V, S).

from (10) that belong to PX are satisfied by X . In fact, for every i ∈ W ′, there is some
(j→ i) ∈ E such that µm(i) = µm(j)σm(j, i). Since labelE’(km, j, i, σm(j, i)) and
labelV’(km, j, µm(j)) belong to X , this implies that each atom labelV’(km, i, µm(i)) for
i ∈W ′ is accompanied by receive’(km, i, µm(i)) = receive’(km, i, µm(j)σm(j, i)) in X ,
so that the ground instance for km, i, and µm(i) of the integrity constraint is not in PX .

Finally, we consider atoms of the form labelV(i, s), labelE(j, i, s), and opposite(j, i)
that belong to X for all i ∈ V and (j→ i) ∈ E, respectively, and s ∈ {+, –}. Since bottom
is also inX , it is clear that the ground instances of the following rules from (4), (8), and (9),
all of which belong to PX , are satisfied by X:

labelV(V, S)← observedV(V, S).
labelE(U, V, S)← observedE(U, V, S).

labelV(V,+); labelV(V, –)← vertexMIC(V ).
labelE(U, V,+); labelE(U, V, –)← edgeMIC(U, V ).

opposite(U, V )← labelE(U, V, –), labelV(U, S), labelV(V, S).
opposite(U, V )← labelE(U, V,+), labelV(U, S), labelV(V, T ), S 6= T.

bottom← active(V ), opposite(U, V ) : edge(U, V ).

labelV(V,+)← bottom, vertex(V ).
labelV(V, –)← bottom, vertex(V ).

labelE(U, V,+)← bottom, edge(U, V ).
labelE(U, V, –)← bottom, edge(U, V ).

As shown above, any model Y ⊆ X of PX must necessarily include observedV(i, s)
if µ(i) = s, observedE(j, i, s) if σ(j, i) = s, vertexMIC(i) if i ∈ W or (i→ k) ∈ E

for some k ∈ W , edgeMIC(j, i) if (j→ i) ∈ E for some i ∈ W , and active(i) if
i ∈ W . Proceeding by proof by contradiction, assume that there is a model Y ⊂ X

of PX such that labelV(i, s), labelE(j, i, s), or opposite(j, i) is not in Y for some i ∈ V
or (j→ i) ∈ E, respectively, and s ∈ {+, –}. From the previous considerations and the
first two rules repeated above, we know that labelV(i, s) and labelE(j, i, s) must belong
to Y if µ(i) = s or σ(j, i) = s, respectively. Furthermore, the third rule necessitates
{labelV(i,+), labelV(i, –)} ∩ Y 6= ∅ for every i ∈ W or i ∈ V such that (i→ k) ∈ E for
some k ∈W , and the fourth rule implies {labelE(j, i,+), labelE(j, i, –)}∩Y 6= ∅ for every
(j→ i) ∈ E such that i ∈W . In view of the last four rules, we immediately conclude that
bottom /∈ Y , which in turn implies that, for every i ∈ W , there is some (j→ i) ∈ E such
that opposite(j, i) does not belong to Y . Comparing the rules defining opposite, the ex-
clusion of opposite(j, i) is possible only if Y does not include labelE(j, i, r), labelV(j, s),
and labelV(i, t) such that t 6= sr. As we have shown above that some atoms labelE(j, i, r),
labelV(j, s), and labelV(i, t) for r, s, t ∈ {+, –} must belong to Y , we can now conclude
that t = sr holds and that the atoms over predicates labelE and labelV in Y define (partial)
labelings σ′ and µ′ by:

• For every i ∈ W , pick some edge (j→ i) ∈ E such that opposite(j, i) does not belong
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to Y , and let σ′(j, i) = r if labelE(j, i, r) ∈ Y , µ′(j) = s if labelV(j, s) ∈ Y , and
µ′(i) = t if labelV(i, t) ∈ Y .

As we have seen above, such an edge (j→ i) ∈ E exists for every i ∈W , and the fact that
t 6= sr is not obtained for atoms labelE(j, i, r), labelV(j, s), and labelV(i, t) in Y implies
that σ′ and µ′ assign unique labels to (j→ i), j, and i, respectively. When we totalize σ′

and µ′ by setting σ′(j, i) = σ(j, i) and µ′(i) = µ(i) if σ(j, i) or µ(i), respectively, is
defined, and σ′(j, i) = + as well as µ′(i) = + for all remaining edges in E and vertices
in V , we obtain witnessing labelings for W . But this is a contradiction to the fact that W
is a MIC, which allows us to conclude that there cannot be any model Y ⊂ X of PX

that omits labelV(i, s), labelE(j, i, s), or opposite(j, i) for some i ∈ V or (j→ i) ∈ E,
respectively, and s ∈ {+, –}.

To conclude the proof that X is a ⊆-minimal model of PX , note that the integrity con-
straint

← not bottom.

from (9) does not contribute any rule to PX because bottom ∈ X . We have now investi-
gated all rules in PD ∪ τ((V,E, σ), µ) and shown that their ground instances in PX are
satisfied by X . Furthermore, we have checked for all atoms in X that they cannot be ex-
cluded in any model Y ⊂ X of PX . That is, X is indeed a ⊆-minimal model of PX and
thus an answer set of PD ∪ τ((V,E, σ), µ).
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