
Under consideration for publication in Theory and Practice of Logic Programming 1

claspfolio 2: Advances in Algorithm Selection for
Answer Set Programming

Holger Hoos1 and Marius Lindauer2,3 and Torsten Schaub3

1University of British Columbia, Canada 2University of Freiburg, Germany 3University of Potsdam, Germany

submitted [n/a]; revised [n/a]; accepted [n/a]

Abstract

Building on the award-winning, portfolio-based ASP solver claspfolio, we present claspfolio 2, a
modular and open solver architecture that integrates several different portfolio-based algorithm selection ap-
proaches and techniques. The claspfolio 2 solver framework supports various feature generators, solver
selection approaches, solver portfolios, as well as solver-schedule-based pre-solving techniques. The default
configuration of claspfolio 2 relies on a light-weight version of the ASP solver clasp to generate static
and dynamic instance features. The flexible open design of claspfolio 2 is a distinguishing factor even be-
yond ASP. As such, it provides a unique framework for comparing and combining existing portfolio-based
algorithm selection approaches and techniques in a single, unified framework. Taking advantage of this,
we conducted an extensive experimental study to assess the impact of different feature sets, selection ap-
proaches and base solver portfolios. In addition to gaining substantial insights into the utility of the various
approaches and techniques, we identified a default configuration of claspfolio 2 that achieves substantial
performance gains not only over clasp’s default configuration and the earlier version of claspfolio, but
also over manually tuned configurations of clasp.

1 Introduction

Answer Set Programming (ASP; (Baral 2003)) has become a popular approach to declarative
problem solving. This is mainly due its combination of a rich and simple modeling language
with high performance solving technology. ASP decouples problem specifications from solving
algorithms; however, modern ASP solvers are known to be sensitive to search configurations –
a phenomenon that is common to advanced Boolean constraint processing techniques. To avoid
the necessity of manual solver configuration, a substantial amount of research was thus devoted
to automated algorithm configuration and selection approaches, as we detail in Section 2; in
ASP, we find works by Gebser et al. (2011), Maratea et al. (2012), Silverthorn et al. (2012),
Maratea et al. (2013) and Hoos et al. (2014), and in particular the two portfolio-based systems
claspfolio (Gebser et al. 2011) and ME-ASP (Maratea et al. 2013). The idea of such portfolio-
based systems is to train classifiers on features of benchmark instances in order to predict the
putatively best solver from a given solver portfolio. The portfolio of solvers used in this approach
may consist of distinct configurations of the same solver or contain different solvers.

In what follows, we describe the new portfolio-based ASP system claspfolio, whose ear-
lier version 1.0 won first, second, and third places at various ASP competitions. Version 0.8 of
claspfolio was briefly described in a short paper by Gebser et al. (2011) and is conceptu-
ally identical to the first stable release of version 1.0. The key design features of this prototype
were (i) feature generation using a light-weight version of the ASP solver clasp, the original

2 H. Hoos and M. Lindauer and T. Schaub

claspre system, (ii) performance estimation of portfolio solvers via support vector regression,
and (iii) a portfolio consisting of different clasp configurations only. In contrast to this rigid
original design, the new version 2 of claspfolio provides a modular and open architecture
(Section 3) that allows for integrating several different approaches and techniques. This includes
(i) different feature generators, (ii) different approaches to solver selection, (iii) variable solver
portfolios, as well as (iv) solver-schedule-based pre-solving techniques. The default setting of
claspfolio 2 relies on an advanced version of claspre (Section 4), a light-weight version of
clasp that produces statistics based on which numerous static and dynamic instance features are
generated.

The flexible and open design of claspfolio 2 is a distinguishing factor even beyond ASP.
As such, it provides a unique framework for comparing and combining existing approaches and
techniques in a uniform setting. We take advantage of this and conduct an extensive experimental
study comparing the influence of different options regarding (i), (ii), and (iii). In addition to gain-
ing insights into the impact of the various approaches and techniques, we identify distinguished
options showing substantial performance gains not only over clasp’s default configuration but
moreover over manually tuned configurations of clasp. claspfolio 2 is 19-51% faster than the
best known static clasp configuration and also 14-37% faster than claspfolio 1.0, as shown in
Table 7 at the end of the paper. To facilitate reproducibility of our results and to promote the use
of high-performance ASP solving technology, we have made claspfolio 2 publicly available
as open-source software at http://potassco.sourceforge.net/#claspfolio.

2 Related Work

Our work continues a long line of research that can be traced back to John Rice’s seminal work on
algorithm selection (Rice 1976) on one side, and to work by Huberman et al. (1997) on parallel al-
gorithm portfolios on the other side. Especially on SAT problems, automatic algorithm selectors
have achieved impressive performance improvements in the last decade. SATzilla (Xu et al.
2008; 2007; 2009; 2011; 2012) predicted algorithm performance by means of ridge regression
until 2009 and nowadays uses a pairwise voting scheme based on random forests; ISAC (Ka-
dioglu et al. 2010) clusters instances in the instance feature space and uses a nearest neighbour
approach on cluster centers for algorithm selection; 3S (Kadioglu et al. 2011; Malitsky et al.
2013) uses k-NN in the feature space and introduces pre-solving schedules computed by Integer
Linear Programming and cost-sensitive clustering; SNAPP (Collautti et al. 2013) predicts algo-
rithm performance based on instance features and chooses an algorithm based on the similarity
of the predicted performances. All these systems are specialized on a single approach. They
are highly efficient but do not provide a uniform setting, that is, different inputs and different
performance metrics.

Apart from SAT, there exist several algorithm selectors for other problems. Following the orig-
inal claspfolio of Gebser et al. (2011) approach, Maratea et al. (2012) presented ME-ASP, a
multi-engine algorithm selector for ASP with an instance feature generator for syntactic features.
Similarly, AQME (Pulina and Tacchella 2007) is a multi-engine selector for QSAT. CP-Hydra (O’Mahony
et al. 2008) selects a set of CSP solvers based on case-based reasoning and schedules them
heuristically. Stone Soup (Seipp et al. 2012; Helmert et al. 2011) uses greedy hill climbing to
find algorithm schedules for planning problems. aspeed (Hoos et al. 2014) also computes al-
gorithm schedules, but takes advantage of the modeling and solving capabilities of ASP to find
timeout-minimal schedules.

Advances in Algorithm Selection for ASP 3

Resources

Data Collection

Prediction Scheduling

Training

Solving

Training Instances Algorithms

Assess PerformanceCompute Featuresclaspre

Feature Preprocessing Performance
Preprocessing

Train Scoring Model

Performance Estimation

Pre-Solving Schedule
by aspeed

Run Pre-Solving
Schedule

Run Best Scored
Algorithm

I

if not successful

Score AlgorithmsCompute Features(New) Instance

Run Backup
Algorithm

failed

II

Fig. 1. General workflow of claspfolio 2. Objects such as algorithms and instances are shown as rectan-
gles, and activities are depicted as rectangles with rounded corners. Activities related to algorithm are tinted
red and activities related to algorithm schedules yellow.

Related to our work on a more general level, Hutter et al. (2012) gave an overview over run-
time prediction techniques, which is also used in some algorithm selection approaches, e.g.,
SATzilla09. A comparison of different machine learning algorithms for algorithm selection was
presented by Kotthoff et al. (2012). Based on these results, Kotthoff (2013) introduced LLAMA,
Leveraging Learning to Automatically Manage Algorithms, a flexible framework that provides
functionality to train and assess the performance of different algorithm selection techniques.

3 Generalized Algorithm Selection Framework

claspfolio 2’s new algorithm framework combines the flexibility of LLAMA with additional
state-of-the-art techniques and produces an executable algorithm selection solver. As such, it
provides a unique framework for comparing and combining existing approaches and techniques
in a uniform setting. Furthermore, the new design of claspfolio 2 follows the idea of Level
4 of programming by optimisation (Hoos 2012): “The software-development process is centered
on the idea of providing design choices and alternatives in all parts of a project that might benefit
from them; design choices that cannot be justified convincingly are not made prematurely.”

A further distinguishing feature of the claspfolio 2 framework is the efficient and deep in-
tegration of an algorithm scheduling system, viz. aspeed (Hoos et al. 2014), into an algorithm
selection framework to compute a static pre-solving schedule. claspfolio 2 uses aspeed to
determine the running times used within pre-solving schedules. Thereby, it considers the esti-
mated quality of the algorithm selector to determine the running time of the complete pre-solving
schedule. This also allows us to integrate the pre-solving strategies of SATzilla and 3S.

The general workflow underlying claspfolio 2 consists of collecting training data, learning

4 H. Hoos and M. Lindauer and T. Schaub

a prediction model and training a pre-solving schedule; the portfolio-based ASP solver thus ob-
tained solves a given problem instance with the pre-solving schedule and a solver selected by the
prediction model. In what follows, we describe how this workflow is implemented efficiently in
claspfolio 2; see Figure 1.

1. Resources. To train an algorithm selector, training instances and a portfolio of algorithms are
required. Algorithm selection is based on the assumption that the given training instances are
representative for the instances to be solved using the trained algorithm selection solver. In addi-
tion, a portfolio, i.e., a set of algorithms with complementary strengths (e.g., high-performance
solvers used in a competition), provides the basis for algorithm selectors to efficiently solve a
large variety of instances.

2. Data Collection. An algorithm selection task is defined based on the performance of all algo-
rithms on all training instances (Assess Performance), instance features for each instance (Com-
pute Features) and the costs for feature computation define an algorithm selection task.claspfolio 2
supports several feature generators, of which claspre is used by default.

3. Training. The training phase of claspfolio 2 makes use of two distinct components: Pre-
diction and Scheduling. Both components can also be used separately in claspfolio 2.

The Prediction component of claspfolio 2 involves feature pre-processing, e.g., feature nor-
malization and feature selection, and performance pre-processing, e.g., performance score trans-
formation and algorithm filtering1. Based on the preprocessed data, a scoring model is learned,
which maps the feature vector for a given problem instance to scores for all algorithms such that
algorithms expected to perform well on the given instances are assigned better scores.

The Scheduling component of claspfolio 2 computes a timeout-minimal pre-solving sched-
ule using aspeed (Hoos et al. 2014), where each algorithm gets a (potentially zero) time slice
of the overall runtime budget available for solving a given problem instance. If the prediction
component is not used, the schedule consists only of the given algorithms. If the prediction com-
ponent is used, cross validation is used to obtain an unbiased estimate of the performance (Perfor-
mance Estimation) of the prediction component (Arrow I). The resulting performance estimate
of the prediction component is used as an additional simulated algorithm in the schedule gen-
eration process. All components of the schedule except the simulated one form the pre-solving
schedule used in claspfolio 2. If the prediction performs well, the pre-solving schedule may
be empty because the pre-solving schedule cannot perform better than a perfect predictor, i.e.,
the selection of the best solver. In contrast, if prediction performs very poorly (e.g., as a result of
non-informative instance features), the simulated algorithm may be assigned a time slice of zero
seconds and the prediction component is de facto ignored in the solving step.

Like SATzilla (Xu et al. 2008), claspfolio 2 allows to ignore instances solved by the pre-
solving schedule (Arrow II) when learning the scoring model, such that the resulting model is
focused on the harder instances not solved by the pre-solvers that are actually subject to algorithm
selecting during the solving phase.

4. Solving a (new) instance starts with the computation of its features. If feature computation
fails, e.g., because it requires too much time, a backup solver is used to solve the instance. Oth-

1 Algorithm filtering removes components of the portfolio given some strategy, e.g., algorithms with a marginal contri-
bution on virtual best solver performance of 0 can be removed. In (Xu et al. 2008), this is called solver subset selection
and in (Maratea et al. 2012), solver selection.

Advances in Algorithm Selection for ASP 5

Tight
Problem Variables

Free problem Variables
Assigned problem Variable

Constraints
Constraints / #Variables

Created Bodies
Program Atoms

SCCs
Nodes in positive BADG

Rules
#,% Normal Rules

#,% Cardinality Rules
#,% Choice Rules
#,% Weight Rules

% Negative body Rules
% Positive body Rules

% Unary Rules
% Binary Rules
% Ternary Rules

% Integrity Constraints
Equivalences

#,% Atom-Atom Equivalences
#,% Body-Body Equivalences

#,% Other Equivalences
#,% Binary Constraints
#,% Ternary Constraints
#,% Other Constraints

Table 1. 38 static features computed by claspre (# = number, % = fraction, SCCs = Strongly
Connected Components, BADG = Body-Atom-Dependency Graph)

Choices
Conflicts / #Choices

∅ conflict level
∅ LBD level

#,% Learnt conflict nogoods
#,% Learnt loop nogoods

#,% Literals conflict nogoods
#,% Literals loop nogoods

#,% Removed nogoods
#,% Learnt binary nogoods
#,% Learnt ternary nogoods
#,% Learnt other nogoods

Longest backjump (bj)
#,∅ Skipped levels while bj

running average Conflict level
running average LBD level

Table 2. 25 dynamic features computed (at each restart) by claspre
(# = number, % = fraction, ∅ = average, LBD = Literal Blocking Distance)

erwise, the scoring model is used to score each algorithm of the portfolio based on the computed
feature vector. If the algorithm with the best score is part of the pre-solving schedule, it is re-
moved from the schedule, because running the same algorithm twice does not increase the solv-
ing probability (when using deterministic algorithms like clasp). Next, the pre-solving schedule
is executed.2 If at the end of executing the pre-solving schedule, the instance has not been solved,
the algorithm with the highest score is run for the remainder of the overall time budget.

4 claspre: Instance Features for ASP

The entire concept of algorithm selection is based on instance features which characterize bench-
mark instances and allow for predicting the putatively best solver from a given portfolio. These
instance features should be cheap-to-compute to save as much time as possible for the actual
solving process, but should also provide sufficient information to distinguish between (classes
of) instances for which different solvers or solver configurations work best.

For feature generation, claspfolio 2 uses claspre in its default configuration. claspre is
a light-weight version of clasp (Gebser et al. 2011) that extracts instance features of ground
ASP instances in smodels format (Syrjänen), using clasp’s internal statistics. The features
determined by claspre can be grouped into static and dynamic ones. The former are listed in

2 Unlike this, SATzilla runs the pre-solving schedule first and then computes the instance features, because the feature
computation can be costly in SAT and the pre-solving schedule can solve the instance without incurring this cost.
However, this does not permit removal of the selected solver from the pre-solving schedule.

6 H. Hoos and M. Lindauer and T. Schaub

Table 1 and include 38 properties, such as number of constraints. Beyond that, claspre per-
forms a limited amount of search to collect dynamic information about solving characteristics.
These dynamic features are computed after each restart of the search process, where restarts are
performed after a fixed number of conflicts. Thereby, 25 dynamic features (Table 2) are extracted
after each restart, such as the average number of conflict levels skipped while back-jumping.

The number of restarts performed is a parameter of claspre. More restarts lead to longer fea-
ture vectors that may contain more information. The number of restarts and number of conflicts
between restarts determine the time used by claspre for feature computation We note that the
pre-processing and search performed by claspre can actually solve a given ASP instance. The
probability of this happening increases with the length of the search performed within claspre;
however, at the same time, long runs of claspre reduce the time available for running solvers
from the portfolio.

5 Empirical Performance Analysis

As previously described, claspfolio 2’s modular and open architecture (Section 3) allows for
integrating several different approaches and techniques, including (i) different feature generators,
(ii) different approaches to solver selection, as well as (iii) variable solver portfolios. Taking
advantages of this flexibility, we conducted an extensive experimental study to assess the efficacy
of the various choices on large and representative sets of ASP instances.

Training data of claspfolio 2 is stored in the algorithm selection data format developed by
the COSEAL Group,3 an international group of experts in the field of algorithm selection and
configuration. Detailed experimental results and the source code of claspfolio 2 are avail-
able at http://www.cs.uni-potsdam.de/claspfolio. Our empirical analysis makes use of
commonly used techniques from statistics and machine learning (see, e.g., (Bishop 2007)).

5.1 Setup

All our experiments were performed on a computer cluster with dual Intel Xeon E5520 quad-
core processors (2.26 GHz, 8192 KB cache) and 48 GB RAM per node, running Scientific Linux
(2.6.18-308.4.1.el5). Each algorithm run was limited to a runtime cutoff of 600 CPU seconds
and to a memory cutoff of 6 GB. Furthermore, we used permutation tests with 100 000 permu-
tations and significance level α = 0.05 to our performance metrics, the (0/1) timeout scores, the
PAR10 scores and the PAR1 scores,4 to asses the statistical significance of observed performance
differences.

5.2 Instance Sets

We used all instances submitted to the 2013 ASP Competition in the NP category that could
be grounded with gringo (3.0.5) within 600 CPU seconds and 6 GB memory. The resulting
instance set consists of 2214 instances from 17 problem classes; we call it Comp-13-Set. As
an even more heterogeneous instance set, we used the ASP Potassco-Set introduced by Hoos
et al. (2013); it consists of 2589 instances from 105 problem classes and includes instances

3 https://code.google.com/p/coseal
4 PARX is the penalized average runtime penalizing timeouts by X times the runtime cutoff.

Advances in Algorithm Selection for ASP 7

from the ASP competitions organized in 2007 (SLparse track), 2009 (with the encodings of the
Potassco group) and 2011 (decision NP-problems from the system track), as well as several
instances from the ASP benchmark collection platform asparagus.5 All instances were grounded
with gringo, and the grounding time was not counted towards solving the instances.

Each instance set was randomly split into equally sized, disjoint training and test set; only the
training sets were used in the process of building algorithm portfolios. The resulting claspfolio 2
solvers were evaluated on the hold-out test sets. We also used the training instances to de-
termine the best claspfolio 2 configuration (Subsection 5.3). To assess the performance of
claspfolio 2 (Subsection 5.6), we used a 10-fold cross validation on the test set. Notice that
we cannot use the training set for claspfolio 2 to obtain an unbiased learned model, because
the algorithm portfolios have an optimistic performance estimation on the training set on which
they were build.

5.3 Building Algorithm Portfolios

In addition to a set of training instances, a portfolio (i.e., a set) of algorithms is required to
construct a portfolio solver. claspfolio 2 can handle portfolios containing different solvers
as well as different configurations of a given solver, all of which are viewed as individual ASP
solvers. We investigated the following portfolios of ASP solvers:

• Expert-portfolio of four clasp (2.1.3) configurations designed by Benjamin Kauf-
mann (configurations: frumpy (default), jumpy, handy and crafty)

• SOTA-portfolio (Maratea et al. 2012): non-portfolio solvers participating in the 2013
ASP Competition6 and in addition, the well-established solvers cmodels and smodels;
in detail: clasp (Gebser et al. 2011), cmodels (Giunchiglia et al. 2006), lp2bv (Nguyen
et al. 2013), lp2mip (Liu et al. 2012), lp2sat (Janhunen 2006), smodels (Simons et al.
2002), and wasp (Alviano et al. 2013)

• Hydra-like-portfolio (Xu et al. 2010; Xu et al. 2011) of clasp (2.1.3) configurations
• ISAC-like-portfolio (Kadioglu et al. 2010) of clasp (2.1.3) configurations

Expert-portfolio and SOTA-portfolio are portfolios manually constructed by experts.
In contrast, Hydra and ISAC are automatic methods for constructing portfolios using algorithm
configurators, e.g., ParamILS (Hutter et al. 2007), GGA (Ansótegui et al. 2009) or SMAC (Hutter
et al. 2011). They generate a portfolio of configurations of a given solver by determining config-
urations that complement each other well on a given set of training instances, with the goal of
optimizing the performance of the portfolio under the idealized assumption of perfect selection;
this performance is also called the virtual best solver (vbs) or oracle performance of the portfolio.

An implementation of Hydra that can be applied to solvers for arbitrary problems has not
yet been published by Xu et al.; therefore, we have implemented our own version of Hydra
(in consultation with the authors), which we refer to as Hydra-like-portfolio in the fol-
lowing. Also, since the only published version of ISAC (2.0) does not include algorithm con-
figuration, we reimplemented the part of ISAC responsible for portfolio generation, dubbed
ISAC-like-portfolio. In contrast to the original ISAC, which performs g-means clustering,
ISAC-like-portfolio uses k-means clustering, where the number of clusters is determined

5 http://asparagus.cs.uni-potsdam.de
6 IDP3 was removed from the portfolio because it was strongly dominated by all other solvers.

8 H. Hoos and M. Lindauer and T. Schaub

Comp-13-Set Potassco-Set

#TOs PAR10 PAR1 #TOs PAR10 PAR1

Expert-portfolio 360 2169 255 100 491 74
SOTA-portfolio 335 1866 231 111 538 75
Hydra-like-portfolio 326 1798 207 82 400 58
ISAC-like-portfolio 313 1724 196 99 476 63

Table 3. Virtual best solver (VBS) performance of portfolio building approaches on test sets. Re-
sults shown in boldface were statistically significantly better than all others within the respective
column (according to a permutation test with 100 000 permutations and α = 0.05).

by using cross-validation to optimize the scoring function of the k-means procedure (following
Hoos et al. (2013)).

Using this approach, ISAC-like-portfolio found 15 clusters for Comp-13-Set and 11
clusters for Potassco-Set, inducing 15 and 11 configuration tasks, respectively. To obtain a
fair comparison, we allocated the same time budget to Hydra-like-portfolio and allowed
it to perform 15 and 11 iterations, respectively (each consisting of one configuration task). The
configuration process performed by SMAC (2.06.01; Hutter et al. 2011) on each cluster and in
each Hydra iteration, respectively, was allocated 120 000 CPU seconds, i.e., 200 times the target
algorithm cutoff time, and 10 independent repetitions, from which the result with the best PAR10
score on the given training set was selected. SMAC optimized PAR10.

Table 3 shows the performance of the virtual best solvers (i.e., the performance of a per-
fect algorithm selector) for the different considered portfolios. Interestingly, the results dif-
fer qualitatively between two benchmark sets. While SOTA-portfolio performs better than
Expert-portfolio on Comp-13-Set, Expert-portfolio is better on Potassco-Set. Fur-
thermore, while for both sets, the automatic generation methods found better performing portfo-
lios than the the manual selected methods, on the Comp-13-Set, ISAC-like-portfolio pro-
duced a better results than Hydra-like-portfolio, and the opposite holds for Potassco-Set.
Furthermore, unlike conjectured by Maratea et al. (2012), a set of configurations of the same,
highly parameterized solver (Expert-portfolio, ISAC-like-portfolio and Hydra-like-portfolio)
generally did not yield worse performance than a mixed portfolio, such as SOTA-portfolio.

While we gave Hydra the same time budget as ISAC to find portfolios, the components
added by Hydra-like-portfolio in its final three iterations decreased the number of time-
outs only by one on our training and test sets. Following Xu et al. (2010), Hydra would be
terminated when the performance does not improve on the training set after an iteration. Hence,
Hydra-like-portfolio not only produced a better portfolio on Potassco-Set than ISAC,
but also does so using less configuration time than ISAC.

5.4 Feature Sets

In addition to the claspre feature set presented in Section 4, we considered a set of ASP fea-
tures introduced by Maratea et al. (2013) that is focussed on very efficiently computable syn-
tactic features, such as number of variables. The published version of their feature generator
supports only the ASPCore 1.0 (Calimeri et al. 2011) language of the 2011 ASP Competition.

Advances in Algorithm Selection for ASP 9

Comp-13-Set Potassco-Set
Min Q0.25 Median Q0.75 %TOs Min Q0.25 Median Q0.75 %TOs

claspre(s) 0.04 1.43 1.72 8.83 16.2 0.13 0.91 1.38 1.72 1.0
claspre(s+d) 0.07 1.36 1.72 13.94 16.2 0.18 0.87 1.48 1.81 1.1
ME-ASP 0.04 1.18 1.97 15.97 3.2 0.06 0.83 1.10 1.79 0.1
lp2sat 0.08 24.88 484.85 600 49.4 0.04 3.81 21.82 91.13 14.6

Table 4. Time required for computing the features of a single ASP instance in CPU seconds, with
a 600 seconds runtime cutoff. We report minimum (Min), 25% quantile (Q0.25), median and 75%
quantile (Q0.75) of the distribution over the respective instance set, as well as the percentage of
timeouts (%TOs).

Our Comp-13-Set consists of instances of the 2013 ASP Competition in ASPCore 2.0, which
introduced further language constructs. Therefore, we re-implemented this feature generator with
the help of Maratea et al. to be compatible with ASPCore 2.0.7

One of the most established and investigated feature generators for SAT is provided as part of
SATzilla (Xu et al. 2008). ASP instances can be translated to SAT with techniques by Janhunen
(2006), using his tool lp2sat. We use a combination of lp2sat8 with the feature generator of
SATzilla to generate a set of instance features for ASP instances; this is the first time, these
features are studied in the context of ASP. Since the full set of SATzilla features is very expen-
sive to compute and our SAT encodings can get quite large, we decided to only use the efficiently
computable base features.

Table 4 shows the runtime statistics for claspre with static features, claspre(s), claspre
with static and dynamic features, claspre(s+d), with 4 restarts and 32 conflicts between the
restarts, the (re-implemented) feature generator of ME-ASP and the combination of lp2sat and
SATzilla’s feature generator on our full benchmark sets (training + test instances). claspre(s)
is only slightly faster than claspre with additional dynamic features, since its search was lim-
ited to 128 conflicts. To solve typical ASP instances, searches well beyond 100000 conflicts
are often required; nevertheless, claspre(s) solved 51 instances through pre-processing, and
claspre(s+d) solved 123 instances on Comp-13-Set, 9 and 400 instances on Potassco-Set,
respectively. The feature generation of ME-ASP was faster, but (unsurprisingly, considering the
nature of these features) did not solve any instance. Because of the substantial overhead of gen-
erating translations from ASP to SAT, the combination of lp2sat and SATzilla’s feature gen-
erator turned out to be substantially slower than the other approaches and failed to compute the
feature vectors of 1094 instances on Comp-13-Set and 377 instances on Potassco-Set within
the given cutoff time.

5.5 Algorithm Selection Approaches

As previously mentioned, claspfolio 2 was explicitly designed to easily integrate several state-
of-the-art algorithm selection approaches. This not only permits us to optimize the performance
of claspfolio 2, but also to compare the considered algorithm selection approaches within a

7 The new feature generator is implement in Python, whereas the original generator was implemented in C++, which
induced an overhead of a factor 2 in terms of running time on average on ASPCore 1.0 instances from the 2011 ASP
Competition.

8 lp2sat was used as submitted at the 2013 ASP Competition.

10 H. Hoos and M. Lindauer and T. Schaub

Approach Feat. Norm. Pre-Solver Pre-Solver Time [sec]
aspeed static schedule none ≤ ∞ ≤ ∞

claspfolio-1.0-like support vector
regression

z-score 0 0

ME-ASP-like nearest neighbor none 0 0
ISAC-like k-means clustering linear 0 0
3S-like k-NN linear ≤ ∞ ≤ cutoff/10
SATzilla’09-like ridge regression z-score ≤ 2 ≤ 20
SATzilla’11-like voting with random

forest
z-score ≤ 3 ≤ 30

Table 5. Algorithm selection mechanism supported by claspfolio 2.

controlled environment. Although our re-implementations may not reproduce the original imple-
mentations in all details (something that would be difficult to achieve, considering that sources
are not available for some published approaches), they provide the only freely available, open-
source implementations of some of these systems and thus provide a basis for further analysis
and improvements.9

Table 5 gives an overview of the approaches available within claspfolio 2. These differ
with respect to (i) the algorithm selection method, (ii) the feature normalization technique, (iii)
the maximal number of pre-solvers used and (iv) the maximal running time allocated to the
pre-solving schedule. In all cases, the pre-solving schedules were computed by aspeed, and
hyperparameters of the machine learning techniques were set using grid search on training data.

5.6 Results

We have assessed the performance of claspfolio 2 on all 112 combinations of our 4 feature
sets, 4 portfolios and 7 algorithm selection approaches, using a cross validation on both test
sets. To study the effect of each design choice, we collected statistics over the distribution of
results by keeping one choice fixed and varying all remaining components; the results are shown
in Table 6. The top part of the table shows results obtained for using each of the feature sets, in
terms of average PAR10 performance, standard deviation in PAR10 performance and best PAR10
performance over all 28 combinations of portfolios and selection approaches. The subsequent
parts of Table 6 show analogous results for different portfolios and selection approaches.

On average, the best feature set was claspre(s) (the static claspre features) on Comp-13-Set,
followed by claspre(s+d) (the static + dynamic claspre features), the feature sets of ME-ASP
and lp2sat. However, the best claspfolio 2 configuration on Comp-13-Set used ME-ASP. The
fact that claspre(s+d) gave worse results than claspre(s), although the former is superset of
the latter, indicates that not all features were useful and that feature selection should be used to
identify a subset of features with highest information content. On Potassco-Set, the best aver-
age performance and the best performance of any claspfolio 2 configuration was consistently
obtained by using claspre(s+d). We believe that the additional dynamic features are necessary
to distinguish between the larger number of different problem classes in Potassco-Set.

9 As with Hydra and ISAC above, published and trainable, general-purpose implementations of 3S and ME-ASP are not
available.

Advances in Algorithm Selection for ASP 11

Impact of feature set

Comp-13-Set Potassco-Set

µPAR10±σPAR10 minPAR10 µPAR10±σPAR10 minPAR10
claspre(s) 2116.3±128.7 1927.0 638.9±81.1 490.6
claspre(s+d) 2127.6±122.6 1931.3 630.8±78.1 480.0
ME-ASP 2138.4±127.7 1919.4 661.0±108.8 486.0
lp2sat 2240.3±81.3 2056.9 688.3±45.6 610.3

Impact of portfolio

Comp-13-Set Potassco-Set

µPAR10±σPAR10 minPAR10 µPAR10±σPAR10 minPAR10
Expert-portfolio 2251.8±55.0 2165.0 679.1±47.7 621.6
SOTA-portfolio 2172.4±60.6 2072.9 691.9±55.3 614.7
Hydra-like-portfolio 2141.5±160.4 1943.7 609.6±103.5 480.0
ISAC-like-portfolio 2056.9±111.3 1919.4 638.3±90.9 526.7

Impact of selection mechanism

Comp-13-Set Potassco-Set

µPAR10±σPAR10 minPAR10 µPAR10±σPAR10 minPAR10
aspeed 2292.8±66.1 2222.0 731.2±40.8 672.6
claspfolio-1.0-like 2152.7±108.0 1978.6 650.3±58.3 519.3
ME-ASP-like 2245.3±77.3 2091.8 753.3±76.7 656.8
ISAC-like 2100.1±113.5 1939.5 608.4±65.7 490.6
3S-like 2092.0±109.2 1927.0 596.0±57.6 489.1
SATzilla’09-like 2120.3±99.4 1932.6 652.7±48.2 544.0
SATzilla’11-like 2086.4±125.9 1919.4 591.1±62.5 480.0

Table 6. Statistics (µ = average, σ = standard deviation, min = minimum) of PAR10
performance over all combinations except for the one kept fixed to assess its impact.

The results on the impact of the portfolio of algorithms used as a basis for algorithm selec-
tion confirm our assumption that the best potential performance, i.e., best VBS performance,
is a good indicator of the actual performance achieved by a high-performance selection ap-
proach. On Comp-13-Set, ISAC-like-portfolio achieved the best performance, while on
Potassco-Set, Hydra-like-portfolio yielded even better results. Furthermore, the portfo-
lios obtained using the two automatic portfolio generation methods, ISAC and Hydra, yielded
better results than the manually created ones, Expert-portfolio and SOTA-portfolio.

As shown in the lower part of Table 6, the SATzilla’11-like approach performed best
on both benchmark sets, followed closely by 3S-like and ISAC-like. SATzilla’09-like
and claspfolio-1.0-like showed similar, but weaker performance results, followed by the
ME-ASP-like approach and the pure algorithm schedules of aspeed.

Overall, the best combination both on the training and test sets of Comp-13-Set was the
ME-ASP features, ISAC-like-portfolio and SATzilla’11-like selection approach, and claspre(s+d)
features, Hydra-like-portfolio and SATzilla’11-like selection approach for Potassco-Set.

12 H. Hoos and M. Lindauer and T. Schaub

Comp-13-Set Potassco-Set

#TOs PAR10 PAR1 #TOs PAR10 PAR1

clasp (default) 577 3168 351 287 1347 176
clasp (ASP Comp 13) 421 2329 273 150 723 97
Single Best 414 2333 268 150 723 97
claspfolio 1.0 403 2237 269 134 658 99
claspfolio 2 353 1960 237 97 480 75
best known VBS 313 1724 196 82 400 58

Table 7. Comparison of two clasp configurations, the Single Best solver in all portfo-
lios (cf. Subsection 5.3), claspfolio 1.0, the claspfolio 2 with claspre(s+d) features,
Hydra-like-portfolio and SATzilla’11-like approach. The significantly best perfor-
mances (except VBS) are shown in boldface (according to a permutation test with 100 000 per-
mutations and significance level α = 0.05).

6 Conclusions and Future Work

Our new, modular claspfolio 2 ASP solver architecture comprises a diverse set of portfolio-
based algorithm selection techniques, including feature extractors, manually and automatically
constructed base algorithm portfolios, algorithm selection mechanisms and solver-schedule-based
pre-solving techniques. As seen from the high-level overview of empirical performance results in
Table 7, on standard, diverse and heterogeneous sets of ASP benchmarks, claspfolio 2 is sub-
stantially more robust than the default configuration of clasp, the manual tuned configuration
of clasp of the 2013 ASP Competition, and than all other assessed individual solvers; in fact, its
performance in terms of PAR10-score lies only about 20% and 15% above that of the best known
oracle on Potassco-Set and Comp-13-Set benchmark sets, respectively. The reimplementa-
tion of claspfolio 1.0 in claspfolio 2, which had a similar performance in preliminary ex-
periments than the original implementation, achieves also about 14− 37% higher PAR10-score
than claspfolio 2. While the best configuration of claspfolio 2 varies between these two
benchmark sets, the performance differences are relatively minor: on Comp-13-Set, the best
configuration of claspfolio 2 for Potassco-Set – which we also chose as the default config-
uration for claspfolio 2 – achieves a PAR10-score only about 2.1% lower than the best con-
figuration for Comp-13-Set, and on Potassco-Set, its PAR10-score is about 9.6% higher. This
configuration uses the claspre(s+d) feature set in combination with the Hydra-like-portfolio
base algorithm portfolio construction approach and the SATzilla’11-like algorithm selection
mechanism, but other feature sets, base algorithm portfolios and algorithm selection mechanisms
also achieve very strong performance.

Acknowledgments

T. Schaub and M. Lindauer were supported by the DFG projects under SCHA 550/8-3. H. Hoos
was supported by an NSERC Discovery Grant.

Advances in Algorithm Selection for ASP 13

References

ALVIANO, M., DODARO, C., FABER, W., LEONE, N., AND RICCA, F. 2013. WASP: A native asp solver
based on constraint learning. In Proceedings of the Twelfth International Conference on Logic Program-
ming and Nonmonotonic Reasoning (LPNMR’13), P. Cabalar and T. Son, Eds. Lecture Notes in Artificial
Intelligence, vol. 8148. Springer-Verlag, 54–66.

ANSÓTEGUI, C., SELLMANN, M., AND TIERNEY, K. 2009. A gender-based genetic algorithm for the
automatic configuration of algorithms. In Proceedings of the Fifteenth International Conference on
Principles and Practice of Constraint Programming (CP’09), I. Gent, Ed. Lecture Notes in Computer
Science, vol. 5732. Springer-Verlag, 142–157.

BARAL, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press.

BESSIERE, C., Ed. 2007. Proceedings of the Thirteenth International Conference on Principles and
Practice of Constraint Programming (CP’07). Lecture Notes in Computer Science, vol. 4741. Springer-
Verlag.

BISHOP, C. 2007. Pattern Recognition and Machine Learning (Information Science and Statistics), 1st ed.
2006. Corr. 2nd printing ed. Springer.

CALIMERI, F., IANNI, G., AND RICCA, F. 2011. Third ASP competition - file and language formats. Tech.
rep., Università della Calabria.

COLLAUTTI, M., MALITSKY, Y., MEHTA, D., AND O’SULLIVAN, B. 2013. SNAPP: Solver-based nearest
neighbor for algorithm portfolios. In Proceedings of the Twenty-Fourth European Conference on Machine
Learning (ECML’13), F. Zelezny, Ed. Lecture Notes in Computer Science. Springer-Verlag.

DOVIER, A. AND SANTOS COSTA, V., Eds. 2012. Technical Communications of the Twenty-eighth In-
ternational Conference on Logic Programming (ICLP’12). Vol. 17. Leibniz International Proceedings in
Informatics (LIPIcs).

GEBSER, M., KAMINSKI, R., KAUFMANN, B., OSTROWSKI, M., SCHAUB, T., AND SCHNEIDER, M.
2011. Potassco: The Potsdam answer set solving collection. AI Communications 24, 2, 107–124.

GEBSER, M., KAMINSKI, R., KAUFMANN, B., SCHAUB, T., SCHNEIDER, M., AND ZILLER, S. 2011. A
portfolio solver for answer set programming: Preliminary report. In Proceedings of the Eleventh Inter-
national Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11), J. Delgrande
and W. Faber, Eds. Lecture Notes in Artificial Intelligence, vol. 6645. Springer-Verlag, 352–357.

GIUNCHIGLIA, E., LIERLER, Y., AND MARATEA, M. 2006. Answer set programming based on proposi-
tional satisfiability. Journal of Automated Reasoning 36, 4, 345–377.

HELMERT, M., RÖGER, G., AND KARPAS, E. 2011. Fast downward stone soup: A baseline for building
planner portfolios. In ICAPS 2011 Workshop on Planning and Learning. 28–35.

HOOS, H. 2012. Programming by optimisation. Communications of the ACM 55, 70–80.

HOOS, H., KAMINSKI, R., LINDAUER, M., AND SCHAUB, T. 2014. aspeed: Solver scheduling via answer
set programming. Theory and Practice of Logic Programming First View, 1–26. Available at http:
//arxiv.org/abs/1401.1024.

HOOS, H., KAUFMANN, B., SCHAUB, T., AND SCHNEIDER, M. 2013. Robust benchmark set selection
for boolean constraint solvers. See Pardalos and Nicosia (2013), 138–152.

HUBERMAN, B., LUKOSE, R., AND HOGG, T. 1997. An economic approach to hard computational prob-
lems. Science 275, 51–54.

HUTTER, F., HOOS, H., AND LEYTON-BROWN, K. 2011. Sequential model-based optimization for gen-
eral algorithm configuration. In Proceedings of the Fifth International Conference on Learning and
Intelligent Optimization (LION’11). Lecture Notes in Computer Science, vol. 6683. Springer-Verlag,
507–523.

HUTTER, F., HOOS, H., AND STÜTZLE, T. 2007. Automatic algorithm configuration based on local search.
In Proceedings of the Twenty-second National Conference on Artificial Intelligence (AAAI’07). AAAI
Press, 1152–1157.

14 H. Hoos and M. Lindauer and T. Schaub

HUTTER, F., XU, L., HOOS, H. H., AND LEYTON-BROWN, K. 2012. Algorithm runtime prediction: The
state of the art. Artificial Intelligence.

JANHUNEN, T. 2006. Some (in)translatability results for normal logic programs and propositional theories.
Journal of Applied Non-Classical Logics 16, 1-2, 35–86.

KADIOGLU, S., MALITSKY, Y., SABHARWAL, A., SAMULOWITZ, H., AND SELLMANN, M. 2011. Algo-
rithm selection and scheduling. In Proceedings of the Seventeenth International Conference on Principles
and Practice of Constraint Programming (CP’11), J. Lee, Ed. Lecture Notes in Computer Science, vol.
6876. Springer-Verlag, 454–469.

KADIOGLU, S., MALITSKY, Y., SELLMANN, M., AND TIERNEY, K. 2010. ISAC – instance-specific
algorithm configuration. In Proceedings of the Nineteenth European Conference on Artificial Intelligence
(ECAI’10), H. Coelho, R. Studer, and M. Wooldridge, Eds. IOS Press, 751–756.

KOTTHOFF, L. 2013. LLAMA: leveraging learning to automatically manage algorithms. Tech. rep., Cork
Constraint Computation Centre. published at arXiv.

KOTTHOFF, L., GENT, I. P., AND MIGUEL, I. 2012. An evaluation of machine learning in algorithm
selection for search problems. AI Communications 25, 3, 257–270.

LIU, G., JANHUNEN, T., AND NIEMELÄ, I. 2012. Answer set programming via mixed integer program-
ming. In Proceedings of the Thirteenth International Conference on Principles of Knowledge Represen-
tation and Reasoning (KR’12), G. Brewka, T. Eiter, and S. McIlraith, Eds. AAAI Press, 32–42.

MALITSKY, Y., SABHARWAL, A., SAMULOWITZ, H., AND SELLMANN, M. 2013. Boosting sequential
solver portfolios: Knowledge sharing and accuracy prediction. See Pardalos and Nicosia (2013), 153–
167.

MARATEA, M., PULINA, L., AND RICCA, F. 2012. Applying machine learning techniques to ASP solving.
See Dovier and Santos Costa (2012), 37–48.

MARATEA, M., PULINA, L., AND RICCA, F. 2013. A multi-engine approach to answer-set programming.
Theory and Practice of Logic Programming First View, 1–28.

NGUYEN, M., JANHUNEN, T., AND NIEMELÄ, I. 2013. Translating answer-set programs into bit-vector
logic. In Proceedings of the Nineteenth International Conference on Applications of Declarative Pro-
gramming and Knowledge Management (INAP’11) and the Twenty-fifth Workshop on Logic Program-
ming (WLP’11), H. Tompits, S. Abreu, J. Oetsch, J. Pührer, D. Seipel, M. Umeda, and A. Wolf, Eds.
Lecture Notes in Computer Science, vol. 7773. Springer-Verlag, 105–116.

O’MAHONY, E., HEBRARD, E., HOLLAND, A., NUGENT, C., AND O’SULLIVAN, B. 2008. Using
case-based reasoning in an algorithm portfolio for constraint solving. In Proceedings of the Nine-
teenth Irish Conference on Artificial Intelligence and Cognitive Science (AICS’08), D. Bridge, K. Brown,
B. O’Sullivan, and H. Sorensen, Eds.

PARDALOS, P. AND NICOSIA, G., Eds. 2013. Proceedings of the Seventh International Conference
on Learning and Intelligent Optimization (LION’13). Lecture Notes in Computer Science, vol. 7997.
Springer-Verlag.

PULINA, L. AND TACCHELLA, A. 2007. A multi-engine solver for quantified boolean formulas. See
Bessiere (2007), 574–589.

RICE, J. 1976. The algorithm selection problem. Advances in Computers 15, 65–118.
SEIPP, J., BRAUN, M., GARIMORT, J., AND HELMERT, M. 2012. Learning portfolios of automatically

tuned planners. In Proceedings of the Twenty-Second International Conference on Automated Planning
and Scheduling (ICAPS’12), L. McCluskey, B. Williams, J. R. Silva, and B. Bonet, Eds. AAAI.

SILVERTHORN, B., LIERLER, Y., AND SCHNEIDER, M. 2012. Surviving solver sensitivity: An ASP prac-
titioner’s guide. See Dovier and Santos Costa (2012), 164–175.

SIMONS, P., NIEMELÄ, I., AND SOININEN, T. 2002. Extending and implementing the stable model se-
mantics. Artificial Intelligence 138, 1-2, 181–234.

SYRJÄNEN, T. Lparse 1.0 user’s manual.
XU, L., HOOS, H., AND LEYTON-BROWN, K. 2007. Hierarchical hardness models for SAT. See Bessiere

(2007), 696–711.

Advances in Algorithm Selection for ASP 15

XU, L., HOOS, H., AND LEYTON-BROWN, K. 2010. Hydra: Automatically configuring algorithms for
portfolio-based selection. In Proceedings of the Twenty-fourth National Conference on Artificial Intelli-
gence (AAAI’10), M. Fox and D. Poole, Eds. AAAI Press, 210–216.

XU, L., HUTTER, F., HOOS, H., AND LEYTON-BROWN, K. 2008. SATzilla: Portfolio-based algorithm
selection for SAT. Journal of Artificial Intelligence Research 32, 565–606.

XU, L., HUTTER, F., HOOS, H., AND LEYTON-BROWN, K. 2009. SATzilla2009: An automatic algorithm
portfolio for SAT. In SAT 2009 competitive events booklet: preliminary version, D. Le Berre, O. Roussel,
L. Simon, V. Manquinho, J. Argelich, C. Li, F. Manyà, and J. Planes, Eds. 53–55. Available at http:
//www.cril.univ-artois.fr/SAT09/solvers/booklet.pdf.

XU, L., HUTTER, F., HOOS, H., AND LEYTON-BROWN, K. 2011. Hydra-MIP: Automated algorithm con-
figuration and selection for mixed integer programming. In RCRA workshop on Experimental Evaluation
of Algorithms for Solving Problems with Combinatorial Explosion at the International Joint Conference
on Artificial Intelligence (IJCAI’11).

XU, L., HUTTER, F., HOOS, H., AND LEYTON-BROWN, K. 2012. Evaluating component solver contri-
butions to portfolio-based algorithm selectors. In Proceedings of the Fifteenth International Conference
on Theory and Applications of Satisfiability Testing (SAT’12), A. Cimatti and R. Sebastiani, Eds. Lecture
Notes in Computer Science, vol. 7317. Springer-Verlag, 228–241.

16 H. Hoos and M. Lindauer and T. Schaub

Appendix

The material in the appendix does not belong to the actual paper and is added for the review-
ers’ convenience only. The same material can be found at http://www.cs.uni-potsdam.de/
claspfolio/.

Appendix A Response Letter to ICLP Reviews

Dear Reviewers,
thank you four your appreciation to this work. We have considered your suggestion for im-

proving the paper.
As proposed by Reviewer 1, we shortened the introduction of Section 3 so that it does not

repeat material on Related Work. However, we have not moved Subsections 5.2 and 5.4 because
our approach (presented in Section 3 and 4) is independent of the concrete used instance sets and
the corresponding results. Therefore, we believe the description of the instance sets (5.2) and the
empirical evaluation of the features (5.4) is better placed in the benchmark section.

Unfortunately, we were not able to compare against the original ME-ASP implementation
since it is not available from its authors, such that we can train it with the same data.

We have added that the algorithm runs were also limited with 6GB memory; we now also use
“cheap-to-compute” features; we added a more detailed description of the training-test-split and
the used cross validation; and we fixed the typos and reference issue.

We agree with Reviewer 2 that the introduction tries to sell our ideas and to arouse interest.
Nevertheless, the introduction is now more moderate. As suggested, we have also added some
numbers about the comparison of the best clasp configuration in comparison to claspfolio. As al-
ready mentioned, we shortened the first part of Section 3 to give a stronger focus on the important
aspect in the second part of the section.

As proposed by Reviewer 3, we have unified the usage of the term “pre-solving schedule”
and other undefined terms. However, claspfolio picks up many techniques from other algorithm
selectors and stronger background knowledge about the literature is necessary. Because of the
space limitations, we are unfortunately not able to explain all terms in detail.

We have not considered to apply lp2sat to create more ASP instances from SAT instances be-
cause claspfolio is able to deal also with other Boolean constraint paradigms as long as runtimes
of the algorithms and instance features are given. Therefore, claspfolio can be directly applied to
select algorithms also for SAT problems and a translation from SAT to ASP is not necessary.

Appendix B Statistical Tests

We applied a statistical test on the VBS performance of the portfolios (according to a permutation
test with 100 000 permutations and significance level α = 0.05).; see Figures B 1, B 2 and B 3 for
Comp-13-Set and B 10, B 11 and B 12. If A→ B, B is significantly better than A. The p-values
are attached to the arrows.

Advances in Algorithm Selection for ASP 17

hydra

clustering

0 . 0 1 4

e x p e r t

0 . 0

s o t a

0 . 0 0 3

0 . 0 0 6

Fig. B 1. VBS performance of portfolio techniques - TOs - Comp-13-Set

hydra

clustering

0 . 0 1 4

e x p e r t

0 . 0

s o t a

0 . 0 0 5

0 . 0 0 1

Fig. B 2. VBS performance of portfolio techniques - PAR10 - Comp-13-Set

hydra

clustering

0 . 0

e x p e r t

0 . 0

s o t a

0 . 0

Fig. B 3. VBS performance of portfolio techniques - PAR1 - Comp-13-Set

hydra

isac

0 . 0

s o t a

0 . 0 4 7

e x p e r t

0 . 0 0 5

Fig. B 4. VBS performance of portfolio techniques - TOs - Potassco-Set

18 H. Hoos and M. Lindauer and T. Schaub

hydra

isac

0 . 0

s o t a

0 . 0 4 4

e x p e r t

0 . 0 0 2

Fig. B 5. VBS performance of portfolio techniques - PAR10 - Potassco-Set

hydra

isac

0 . 0

s o t a

0 . 0

e x p e r t

0 . 0

Fig. B 6. VBS performance of portfolio techniques - PAR1 - Potassco-Set

Clasp-default

Clasp-comp13

0 . 0

SBS

0 . 0

claspfolio08

0 . 0 1 3

claspfolio20

0 . 0

0 . 0

Fig. B 7. Statistical Test for Table 7 - TOs Comp-13-Set

Advances in Algorithm Selection for ASP 19

Clasp-default

Clasp-comp13

0 . 0

SBS

0 . 0

claspfolio08

0 . 0 2 5

claspfolio20

0 . 0

0 . 0

Fig. B 8. Statistical Test for Table 7 - PAR10 - Comp-13-Set

Clasp-default

Clasp-comp13

0 . 0

SBS

0 . 0

claspfolio08

0 . 0

claspfolio20

0 . 0 0 . 0 0 . 0

Fig. B 9. Statistical Test for Table 7 - PAR1 - Comp-13-Set

Clasp-default

Clasp-comp13

0 . 0

claspfolio08

0 . 0 2 3

claspfolio20

0 . 0

Fig. B 10. Statistical Test for Table 7 - TOs Potassco-Set

20 H. Hoos and M. Lindauer and T. Schaub

Clasp-default

Clasp-comp13

0 . 0

claspfolio08

0 . 0 4 1

claspfolio20

0 . 0

Fig. B 11. Statistical Test for Table 7 - PAR10 - Potassco-Set

Clasp-default

Clasp-comp13

0 . 0

claspfolio08

0 . 0

claspfolio20

0 . 0 0 . 0

Fig. B 12. Statistical Test for Table 7 - PAR1 - Potassco-Set

Advances in Algorithm Selection for ASP 21

Appendix C Hydra-like-portfolio performance over configuration time

Figure C 1 and C 2 show the performance of Hydra-like-portfolio after each iteration.

0 2 4 6 8 10 12 14 16
#iterations

320

340

360

380

400

420

440

460

480

#
tim

eo
ut

s

200

220

240

260

280

300

av
er

ag
e

tim
e

(s
ec

on
ds

)

Fig. C 1. VBS performance of Hydra-like-portfolio after each iteration on Comp-13-Set.

0 2 4 6 8 10 12
#iterations

80

100

120

140

160

180

200

#
tim

eo
ut

s

50

60

70

80

90

100

110

120

av
er

ag
e

tim
e

(s
ec

on
ds

)

Fig. C 2. VBS performance of Hydra-like-portfolio after each iteration on Potassco-Set.

22 H. Hoos and M. Lindauer and T. Schaub

Appendix D Detailed Results of Selection Experiments

µTOs±σTOs µPAR10±σPAR10 µPAR1±σPAR1 minTOs minPAR10 minPAR1
claspre(s) 380.0±21.7 2116.3±128.7 261.0±28.5 347 1927.0 232.8
claspre(s+d) 381.9±20.6 2127.6±122.6 262.9±27.8 349 1931.3 227.3
lp2sat 399.2±14.7 2240.3±81.3 291.0±17.2 367 2056.9 265.1
ME-ASP 383.8±21.8 2138.4±127.7 264.7±28.0 346 1919.4 230.1

Table D 1. Statistics (µ = average, σ = standard deviation, min = minimum) of number of
Timouts (TOs), PAR10 and PAR1 performance over all combinations except for the one kept
fixed to assess its impact on Comp-13-Set.

µTOs±σTOs µPAR10±σPAR10 µPAR1±σPAR1 minTOs minPAR10 minPAR1
Hydra-like-portfolio 383.2±25.9 2141.5±160.4 270.5±37.6 350 1943.7 234.8
ISAC-like-portfolio 368.3±16.7 2056.9±111.3 258.5±35.7 346 1919.4 230.1
Expert-portfolio 404.6±9.6 2251.8±55.0 276.4±10.6 389 2165.0 265.8
SOTA-portfolio 388.8±10.0 2172.4±60.6 274.2±16.4 372 2072.9 256.7

Table D 2. Statistics (µ = average, σ = standard deviation, min = minimum) of number of
Timouts (TOs), PAR10 and PAR1 performance over all combinations except for the one kept
fixed to assess its impact on Comp-13-Set.

µTOs±σTOs µPAR10±σPAR10 µPAR1±σPAR1 minTOs minPAR10 minPAR1
SATzilla’11-like 374.9±21.6 2086.4±125.9 256.1±21.0 346 1919.4 230.1
ME-ASP-like 403.9±13.0 2245.3±77.3 273.0±15.3 378 2091.8 246.2
3S-like 374.9±18.8 2092.0±109.2 261.4±19.6 347 1927.0 232.8
SATzilla’09-like 380.8±16.8 2120.3±99.4 261.0±18.8 349 1932.6 228.6
ISAC-like 377.3±19.4 2100.1±113.5 257.9±19.6 350 1939.5 230.7
claspfolio-1.0-like 387.2±18.3 2152.7±108.0 261.9±19.5 357 1978.6 235.5
aspeed 404.5±13.7 2292.8±66.1 317.8±25.9 387 2222.0 332.5

Table D 3. Statistics (µ = average, σ = standard deviation, min = minimum) of number of
Timouts (TOs), PAR10 and PAR1 performance over all combinations except for the one kept
fixed to assess its impact on Comp-13-Set.

µTOs±σTOs µPAR10±σPAR10 µPAR1±σPAR1 minTOs minPAR10 minPAR1
claspre(s) 130.3±16.5 638.9±81.1 95.0±16.6 99 490.6 77.5
claspre(s+d) 128.5±15.7 630.8±78.1 94.4±16.5 97 480.0 75.2
lp2sat 136.4±9.8 688.3±45.6 119.0±8.2 120 610.3 109.5
ME-ASP 134.8±23.0 661.0±108.8 98.4±17.1 98 486.0 77.1

Table D 4. Statistics (µ = average, σ = standard deviation, min = minimum) of number of
Timouts (TOs), PAR10 and PAR1 performance over all combinations except for the one kept
fixed to assess its impact on Potassco-Set.

Advances in Algorithm Selection for ASP 23

µTOs±σTOs µPAR10±σPAR10 µPAR1±σPAR1 minTOs minPAR10 minPAR1
Hydra-like-portfolio 122.1±19.3 609.6±103.5 100.2±26.3 97 480.0 75.2
ISAC-like-portfolio 129.6±19.1 638.3±90.9 97.6±18.1 108 526.7 76.0
Expert-portfolio 137.6±10.2 679.1±47.7 105.0±10.0 126 621.6 95.8
SOTA-portfolio 140.9±11.5 691.9±55.3 104.0±12.5 126 614.7 88.9

Table D 5. Statistics (µ = average, σ = standard deviation, min = minimum) of number of
Timouts (TOs), PAR10 and PAR1 performance over all combinations except for the one kept
fixed to assess its impact on Potassco-Set.

µTOs±σTOs µPAR10±σPAR10 µPAR1±σPAR1 minTOs minPAR10 minPAR1
SATzilla’11-like 119.7±12.2 591.1±62.5 91.7±14.8 97 480.0 75.2
ME-ASP-like 154.6±17.1 753.3±76.7 108.2±11.8 135 656.8 93.4
3S-like 119.8±11.3 596.0±57.6 96.0±13.7 99 489.1 76.0
SATzilla’09-like 132.8±9.2 652.7±48.2 98.8±12.6 111 544.0 80.8
ISAC-like 123.4±12.8 608.4±65.7 93.6±15.3 99 490.6 77.5
claspfolio-1.0-like 132.5±11.8 650.3±58.3 97.4±13.9 105 519.3 81.1
aspeed 145.0±8.2 731.2±40.8 126.1±17.4 132 672.6 121.8

Table D 6. Statistics (µ = average, σ = standard deviation, min = minimum) of number of
Timouts (TOs), PAR10 and PAR1 performance over all combinations except for the one kept
fixed to assess its impact on Potassco-Set.

