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Abstract

We provide a comprehensive elaboration of the theoretical foundations of variable instantia-
tion, or grounding, in Answer Set Programming (ASP). Building on the semantics of ASP’s
modeling language, we introduce a formal characterization of grounding algorithms in terms
of (fixed point) operators. A major role is played by dedicated well-founded operators whose
associated models provide semantic guidance for delineating the result of grounding along with
on-the-fly simplifications. We address an expressive class of logic programs that incorporates
recursive aggregates and thus amounts to the scope of existing ASP modeling languages. This is
accompanied with a plain algorithmic framework detailing the grounding of recursive aggregates.
The given algorithms correspond essentially to the ones used in the ASP grounder gringo.
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1 Introduction

Answer Set Programming (ASP; Lifschitz 2002) allows us to address knowledge-intense

search and optimization problems in a greatly declarative way due to its integrated

modeling, grounding, and solving workflow (Gebser and Schaub 2016; Kaufmann et al.

2016). Problems are modeled in a rule-based logical language featuring variables, function

symbols, recursion, and aggregates, among others. Moreover, the underlying semantics

allows us to express defaults and reachability in an easy way. A corresponding logic program

is then turned into a propositional format by systematically replacing all variables by

variable-free terms. This process is called grounding. Finally, the actual ASP solver takes

the resulting propositional version of the original program and computes its answer sets.

Given that both grounding and solving constitute the computational cornerstones of

ASP, it is surprising that the importance of grounding has somehow been eclipsed by that

of solving. This is nicely reflected by the unbalanced number of implementations. With

lparse (Syrjänen 2001b), (the grounder in) dlv (Faber et al. 2012), and gringo (Gebser et al.

2011), three grounder implementations face dozens of solver implementations, among them

smodels (Simons et al. 2002), (the solver in) dlv (Leone et al. 2006), assat (Lin and Zhao

2004), cmodels (Giunchiglia et al. 2006), clasp (Gebser et al. 2012), wasp (Alviano et al.

2015) just to name the major ones. What caused this imbalance? One reason may consist

in the high expressiveness of ASP’s modeling language and the resulting algorithmic

intricacy (Gebser et al. 2011). Another may lie in the popular viewpoint that grounding
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amounts to database materialization, and thus that most fundamental research questions

have been settled. And finally the semantic foundations of full-featured ASP modeling

languages have been established only recently (Harrison et al. 2014; Gebser et al. 2015),

revealing the semantic gap to the just mentioned idealized understanding of grounding. In

view of this, research on grounding focused on algorithm and system design (Faber et al.

2012; Gebser et al. 2011) and the characterization of language fragments guaranteeing

finite propositional representations (Syrjänen 2001b; Gebser et al. 2007; Lierler and

Lifschitz 2009; Calimeri et al. 2008).

As a consequence, the theoretical foundations of grounding are much less explored than

those of solving. While there are several alternative ways to characterize the answer sets

of a logic program (Lifschitz 2008), and thus the behavior of a solver, we still lack indepth

formal characterizations of the input-output behavior of ASP grounders. Although we

can describe the resulting propositional program up to semantic equivalence, we have no

formal means to delineate the actual set of rules.

To this end, grounding involves some challenging intricacies. First of all, the entire set

of systematically instantiated rules is infinite in the worst — yet not uncommon — case.

For a simple example, consider the program:

p(a)

p(X)← p(f(X))

This program induces an infinite set of variable-free terms, viz. a, f(a), f(f(a)), . . . , that

leads to an infinite propositional program by systematically replacing variable X by all

these terms in the second rule, viz.

p(a), p(a)← p(f(a)), p(f(a))← p(f(f(a))), p(f(f(a)))← p(f(f(f(a)))), . . .

On the other hand, modern grounders only produce the fact p(a) and no instances of

the second rule, which is semantically equivalent to the infinite program. As well, ASP’s

modeling language comprises (possibly recursive) aggregates, whose systematic grounding

may be infinite in itself. To illustrate this, let us extend the above program with the rule

q ← #count{X : p(X)} = 1 (1)

deriving q when the number of satisfied instances of p is one. Analogous to above, the

systematic instantiation of the aggregate’s element results in an infinite set, viz.

{a : p(a), f(a) : p(f(a)), f(f(a)) : p(f(f(a))), . . . }.

Again, a grounder is able to reduce the rule in (1) to the fact q since only p(a) is obtained

in our example. That is, it detects that the set amounts to the singleton {a : p(a)}, which

satisfies the aggregate. After removing the rule’s (satisfied) antecedent, it produces the

fact q. In fact, a solver expects a finite set of propositional rules including aggregates

over finitely many objects only. Hence, in practice, the characterization of the grounding

result boils down to identifying a finite yet semantically equivalent set of rules (whenever

possible). Finally, in practice, grounding involves simplifications whose application depends

on the ordering of rules in the input. In fact, shuffling a list of propositional rules only

affects the order in which a solver enumerates answer sets, whereas shuffling a logic

program before grounding may lead to different though semantically equivalent sets of
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rules. To see this, consider the program:

p(X)← ¬q(X) ∧ u(X) u(1) u(2)

q(X)← ¬p(X) ∧ v(X) v(2) v(3)

This program has two answer sets; both contain p(1) and q(3), while one contains q(2)

and the other p(2). Systematically grounding the program yields the obvious four rules.

However, depending upon the order, in which the rules are passed to a grounder, it already

produces either the fact p(1) or q(3) via simplification. Clearly, all three programs are

distinct but semantically equivalent in sharing the above two answer sets.

Our elaboration of the foundations of ASP grounding rests upon the semantics of

ASP’s modeling language (Harrison et al. 2014; Gebser et al. 2015), which captures the

two aforementioned sources of infinity by associating non-ground logic programs with

infinitary propositional formulas (Truszczyński 2012). Our main result shows that the

stable models of a non-ground input program coincide with the ones of the ground output

program returned by our grounding algorithm upon termination. In formal terms, this

means that the stable models of the infinitary formula associated with the input program

coincide with the ones of the resulting ground program. Clearly, the resulting program

must be finite and consist of finitary subformulas only. A major part of our work is

thus dedicated to equivalence preserving transformations between ground programs. In

more detail, we introduce a formal characterization of grounding algorithms in terms of

(fixed point) operators. A major role is played by specific well-founded operators whose

associated models provide semantic guidance for delineating the result of grounding. More

precisely, we show how to obtain a finitary propositional formula capturing a logic program

whenever the corresponding well-founded model is finite, and notably how this transfers

to building a finite propositional program from an input program during grounding. The

two key instruments accomplishing this are dedicated forms of program simplification

and aggregate translation, each addressing one of the two sources of infinity in the above

example. In practice, however, all these concepts are subject to approximation, which

leads to the order-dependence observed in the last example.

We address an expressive class of logic programs that incorporates recursive aggregates

and thus amounts to the scope of existing ASP modeling languages (Gebser et al. 2015).

This is accompanied with an algorithmic framework detailing the grounding of recursive

aggregates. The given grounding algorithms correspond essentially to the ones used in

the ASP grounder gringo (Gebser et al. 2011). In this way, our framework provides a

formal characterization of one of the most widespread grounding systems. In fact, modern

grounders like (the one in) dlv (Faber et al. 2012) or gringo (Gebser et al. 2011) are based

on database evaluation techniques (Ullman 1988; Abiteboul et al. 1995). The instantiation

of a program is seen as an iterative bottom-up process starting from the program’s facts

while being guided by the accumulation of variable-free atoms possibly derivable from

the rules seen so far. During this process, a ground rule is produced if its positive body

atoms belong to the accumulated atoms, in which case its head atom is added as well.

This process is repeated until no further such atoms can be added. From an algorithmic

perspective, we show how a grounding framework (relying upon database evaluation

techniques) can be extended to incorporate recursive aggregates.

Our paper is organized as follows.
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Section 2 lays the basic foundations of our approach. We start in Section 2.1 by recalling

definitions of (monotonic) operators on lattices; they constitute the basic building blocks

of our characterization of grounding algorithms. We then review infinitary formulas along

with their stable and well-founded semantics in Sections 2.2, 2.3 and 2.4, respectively. In

this context, we explore several operators and define a class of infinitary logic programs

that allows us to capture full-featured ASP languages with (recursive) aggregates. Inter-

estingly, we have to resort to concepts borrowed from id-logic (Bruynooghe et al. 2016;

Truszczyński 2012) to obtain monotonic operators that are indispensable for capturing

iterative algorithms. Notably, the id-well-founded model can be used for approximating

regular stable models. Finally, we define in Section 2.5 our concept of program simplifica-

tion and elaborate upon its semantic properties. The importance of program simplification

can be read off two salient properties. First, it results in a finite program whenever the

interpretation used for simplification is finite. And second, it preserves all stable models

when simplified with the id-well-founded model of the program.

Section 3 is dedicated to the formal foundations of component-wise grounding. As

mentioned, each rule is instantiated in the context of all atoms being possibly derivable

up to this point. In addition, grounding has to take subsequent atom definitions into

account. To this end, we extend well-known operators and resulting semantic concepts

with contextual information, usually captured by two- and four-valued interpretations,

respectively, and elaborate upon their formal properties that are relevant to grounding.

In turn, we generalize the contextual operators and semantic concepts to sequences of

programs in order to reflect component-wise grounding. The major emerging concept is

essentially a well-founded model for program sequences that takes backward and forward

contextual information into account. We can then iteratively compute this model to

approximate the well-founded model of the entire program. This model-theoretic concept

can be used for governing an ideal grounding process.

Section 4 turns to logic programs with variables and aggregates. We align the semantics

of such aggregate programs with the one of Ferraris (2011) but consider infinitary

formulas (Harrison et al. 2014). In view of grounding aggregates, however, we introduce

an alternative translation of aggregates that is strongly equivalent to that of Ferraris but

provides more precise well-founded models. In turn, we refine this translation to be bound

by an interpretation so that it produces finitary formulas whenever this interpretation

is finite. Together, the program simplification introduced in Section 2.5 and aggregate

translation provide the basis for turning programs with aggregates into semantically

equivalent finite programs with finitary subformulas.

Section 5 further refines our semantic approach to reflect actual grounding processes.

To this end, we define the concept of an instantiation sequence based on rule dependencies.

We then use the contextual operators of Section 3 to define approximate models of

instantiation sequences. While approximate models are in general less precise than well-

founded ones, they are better suited for on-the-fly grounding along an instantiation

sequence. Nonetheless, they are strong enough to allow for completely evaluating stratified

programs.

Section 6 lays out the basic algorithms for grounding rules, components, and entire

programs and characterizes their output in terms of the semantic concepts developed in

the previous sections. Of particular interest is the treatment of aggregates, which are

decomposed into dedicated normal rules before grounding, and reassembled afterward.
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This allows us to ground rules with aggregates by means of grounding algorithms for

normal rules. Finally, we show that our grounding algorithm guarantees that an obtained

finite ground program is equivalent to the original non-ground program.

The previous sections focus on the theoretical and algorithmic cornerstones of grounding.

Section 7 refines these concepts by further detailing aggregate propagation, algorithm

specifics, and the treatment of language constructs from gringo’s input language.

We relate our contributions to the state of the art in Section 8 and summarize it in

Section 9.

Although the developed approach is implemented in gringo series 4 and 5, their high

degree of sophistication make it hard to retrace the algorithms from Section 6. Hence,

to ease comprehensibility, we have moreover implemented the presented approach in

µ-gringo1 in a transparent way and equipped it with means for retracing the developed

concepts during grounding. This can thus be seen as the practical counterpart to the

formal elaboration given below. Also, this system may enable some readers to construct

and to experiment with own grounder extensions.

This paper draws on material presented during an invited talk at the third workshop on

grounding, transforming, and modularizing theories with variables (Gebser et al. 2015).

2 Foundations

2.1 Operators on lattices

This section recalls basic concepts on operators on complete lattices.

A complete lattice is a partially ordered set (L,≤) in which every subset S ⊆ L has a

greatest lower bound and a least upper bound in (L,≤).

An operator O on lattice (L,≤) is a function from L to L. It is monotone if x ≤ y implies

O(x) ≤ O(y) for each x, y ∈ L; and it is antimonotone if x ≤ y implies O(y) ≤ O(x) for

each x, y ∈ L.

Let O be an operator on lattice (L,≤). A prefixed point of O is an x ∈ L such that

O(x) ≤ x. A postfixed point of O is an x ∈ L such that x ≤ O(x). A fixed point of O is

an x ∈ L such that x = O(x), i.e., it is both a prefixed and a postfixed point.

Theorem 1 (Knaster-Tarski; Tarski 1955). Let O be a monotone operator on complete

lattice (L,≤). Then, we have the following properties:

(a) Operator O has a least fixed and prefixed point which are identical.

(b) Operator O has a greatest fixed and postfixed point which are identical.

(c) The fixed points of O form a complete lattice.

2.2 Formulas and interpretations

We begin with a propositional signature Σ consisting of a set of atoms. Following Truszczyński

(2012), we define the sets F0,F1, . . . of formulas as follows:

• F0 is the set of all propositional atoms in Σ,

1 The µ-gringo system is available at https://github.com/potassco/mu-gringo.

https://github.com/potassco/mu-gringo
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• Fi+1 is the set of all elements of Fi, all expressions H∧ and H∨ with H ⊆ Fi, and

all expressions F → G with F,G ∈ Fi.

The set F =
⋃∞
i=0 Fi contains all (infinitary propositional) formulas over Σ.

In the following, we use the shortcuts

• > = ∅∧ and ⊥ = ∅∨,

• ¬F = F → ⊥ where F is a formula, and

• F ∧G = {F,G}∧ and F ∨G = {F,G}∨ where F and G are formulas.

We say that a formula is finitary, if it has a finite number of subformulas.

An occurrence of a subformula in a formula is called positive, if the number of implica-

tions containing that occurrence in the antecedent is even, and strictly positive if that

number is zero; if that number is odd the occurrence is negative. The sets F+ and F−

gather all atoms occurring positively or negatively in formula F , respectively; if applied

to a set of formulas, both expressions stand for the union of the respective atoms in the

formulas. Also, we define F± = F+ ∪ F− as the set of all atoms occurring in F .

A two-valued interpretation over signature Σ is a set I of propositional atoms such that

I ⊆ Σ. Atoms in an interpretation I are considered true and atoms in Σ \ I as false. The

set of all interpretations together with the ⊆ relation forms a complete lattice.

The satisfaction relation between interpretations and formulas is defined as follows:

• I |= a for atoms a if a ∈ I,

• I |= H∧ if I |= F for all F ∈ H,

• I |= H∨ if I |= F for some F ∈ H, and

• I |= F → G if I 6|= F or I |= G.

An interpretation I is a model of a set H of formulas, written I |= H, if it satisfies each

formula in the set.

In the following, all atoms, formulas, and interpretations operate on the same (implicit)

signature, unless mentioned otherwise.

2.3 Logic programs and stable models

Our terminology in this section keeps following the one of Truszczyński (2012).

The reduct F I of a formula F w.r.t. an interpretation I is defined as:

• ⊥ if I 6|= F ,

• a if I |= F and F = a ∈ F0,

• {GI | G ∈ H}∧ if I |= F and F = H∧,

• {GI | G ∈ H}∨ if I |= F and F = H∨, and

• GI → HI if I |= F and F = G→ H.

An interpretation I is a stable model of a formula F if it is among the (set inclusion)

minimal models of F I .

Note that the reduct removes (among other unsatisfied subformulas) all occurrences of

atoms that are false in I. Thus, the satisfiability of the reduct does not depend on such

atoms, and all minimal models of F I are subsets of I. Hence, if I is a stable model of F ,

then it is the only minimal model of F I .
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Sets H1 and H2 of infinitary formulas are equivalent if they have the same stable models

and classically equivalent if they have the same models; they are strongly equivalent if, for

any set H of infinitary formulas, H1∪H and H2∪H are equivalent. As shown by Harrison

et al. (2017), this also allows for replacing a part of any formula with a strongly equivalent

formula without changing the set of stable models.

In the following, we consider implications with atoms as consequent and formulas as

antecedent. As common in logic programming, they are referred to as rules, heads, and

bodies, respectively, and denoted by reversing the implication symbol. More precisely, an

F-program is set of rules of form h← F where h ∈ F0 and F ∈ F . We use H(h← F ) = h

to refer to rule heads and B(h← F ) = F to refer to rule bodies. We extend this by letting

H(P ) = {H(r) | r ∈ P} and B(P ) = {B(r) | r ∈ P} for any program P .

An interpretation I is a model of an F -program P , written I |= P , if I |= B(r)→ H(r)

for all r ∈ P . The latter is also written as I |= r. We define the reduct of P w.r.t. I as

P I = {rI | r ∈ P} where rI = H(r)← B(r)I . As above, an interpretation I is a stable

model of P if I is among the minimal models of P I . Just like the original definition

of Gelfond and Lifschitz (1988), the reduct of such programs leaves rule heads intact and

only reduces rule bodies. (This feature fits well with the various operators defined in the

sequel.)

This program-oriented reduct yields the same stable models as obtained by applying

the full reduct to the corresponding infinitary formula.

Proposition 2. Let P be an F-program.

Then, the stable models of formula {B(r)→ H(r) | r ∈ P}∧ are the same as the stable

models of program P .

For programs, Truszczyński (2012) introduces in an alternative reduct, replacing each

negatively occurring atom with ⊥, if it is falsified, and with >, otherwise. More precisely,

the so-called id-reduct FI of a formula F w.r.t. an interpretation I is defined as

aI = a aI = > if a ∈ I
aI = ⊥ if a /∈ I

H∧I = {FI | F ∈ H}∧ H∧
I

= {FI | F ∈ H}
∧

H∨I = {FI | F ∈ H}∨ H∨
I

= {FI | F ∈ H}
∨

(F → G)I = FI → GI (F → G)I = FI → GI

where a is an atom, H a set of formulas, and F and G are formulas.

The id-reduct of an F -program P w.r.t. an interpretation I is PI = {rI | r ∈ P} where

rI = H(r) ← B(r)I . As with rI , the transformation of r into rI leaves the head of r

unaffected.

Example 1. Consider the program containing the single rule

p← ¬¬p.
We get the following reduced programs w.r.t. interpretations ∅ and {p}:

{p← ¬¬p}∅ = {p← ⊥} {p← ¬¬p}{p} = {p← ¬⊥}
{p← ¬¬p}∅ = {p← ¬¬p} = {p← ¬¬p}{p} = {p← ¬¬p}

Note that both reducts leave the rule’s head intact.
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Extending the definition of positive occurrences, we define a formula as (strictly) positive

if all its atoms occur (strictly) positively in the formula. We define an F-program as

(strictly) positive if all its rule bodies are (strictly) positive.

For example, the program in Example 1 is positive but not strictly positive because

the only body atom p appears in the scope of two antecedents within the rule body ¬¬p.
As put forward by van Emden and Kowalski (1976), we may associate with each

program P its one-step provability operator TP , defined for any interpretation X as

TP (X) = {H(r) | r ∈ P,X |= B(r)}.
Proposition 3 (Truszczyński 2012). Let P be a positive F-program.

Then, the operator TP is monotone.

Fixed points of TP are models of P guaranteeing that each contained atom is supported

by some rule in P ; prefixed points of TP correspond to the models of P . According

to Theorem 1 (a), the TP operator has a least fixed point for positive F-programs. We

refer to this fixed point as the least model of P , and write it as LM (P ).

Observing that the id-reduct replaces all negative occurrences of atoms, any id-reduct

PI of a program w.r.t. an interpretation I is positive and thus possesses a least model

LM (PI). This gives rise to the following definition of a stable operator (Truszczyński

2012): Given an F -program P , its id-stable operator is defined for any interpretation I as

SP (I) = LM (PI).

The fixed points of SP are the id-stable models of P .

Note that neither the program reduct P I nor the formula reduct F I guarantee (least)

models. Also, stable models and id-stable models do not coincide in general.

Example 2. Reconsider the program from Example 1, comprising rule

p← ¬¬p.
This program has the two stable models ∅ and {p}, but the empty model is the only

id-stable model.

Proposition 4 (Truszczyński 2012). Let P be an F-program.

Then, the id-stable operator SP is antimonotone.

No analogous antimonotone operator is obtainable for F -programs by using the program

reduct P I (and for general theories with the formula reduct F I). To see this, reconsider

Example 2 along with its two stable models ∅ and {p}. Given that both had to be fixed

points of such an operator, it would behave monotonically on ∅ and {p}.
In view of this, we henceforth consider exclusively id-stable operators and drop the

prefix ‘id’. However, we keep the distinction between stable and id-stable models.

Truszczyński (2012) identifies in a class of programs for which stable models and id-

stable models coincide. The set N consists of all formulas F such that any implication in F

has ⊥ as consequent and no occurrences of implications in its antecedent. An N -program

consists of rules of form h← F where h ∈ F0 and F ∈ N .

Proposition 5 (Truszczyński 2012). Let P be an N -program.

Then, the stable and id-stable models of P coincide.

Note that a positive N -program is also strictly positive.
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2.4 Well-founded models

Our terminology in this section follows the one of Truszczyński (2018) and traces back to

the early work of Belnap (1977) and Fitting (2002).2

We deal with pairs of sets and extend the basic set relations and operations accordingly.

Given sets I ′, I, J ′, J , and X, we define:

• (I ′, J ′) ≺̄ (I, J) if I ′ ≺ I and J ′ ≺ J for (≺̄,≺) ∈ {(@,⊂), (v,⊆)}
• (I ′, J ′) ◦̄ (I, J) = (I ′ ◦ I, J ′ ◦ J) for (◦̄, ◦) ∈ {(t,∪), (u,∩), (r, \)}
• (I, J) ◦̄ X = (I, J) ◦̄ (X,X) for ◦̄ ∈ {t,u,r}

A four-valued interpretation over signature Σ is represented by a pair (I, J) v (Σ,Σ)

where I stands for certain and J for possible atoms. Intuitively, an atom that is

• certain and possible is true,

• certain but not possible is inconsistent,

• not certain but possible is unknown, and

• not certain and not possible is false.

A four-valued interpretation (I ′, J ′) is more precise than a four-valued interpretation

(I, J), written (I, J) ≤p (I ′, J ′), if I ⊆ I ′ and J ′ ⊆ J . The precision ordering also has

an intuitive reading: the more atoms are certain or the fewer atoms are possible, the

more precise is an interpretation. The least precise four-valued interpretation over Σ

is (∅,Σ). As with two-valued interpretations, the set of all four-valued interpretations

over a signature Σ together with the relation ≤p forms a complete lattice. A four-valued

interpretation is called inconsistent if it contains an inconsistent atom; otherwise, it is

called consistent. It is total whenever it makes all atoms either true or false. Finally, (I, J)

is called finite whenever both I and J are finite.

Following Truszczyński (2018), we define the id-well-founded operator of an F -program

P for any four-valued interpretation (I, J) as

WP (I, J) = (SP (J), SP (I)).

This operator is monotone w.r.t. the precision ordering ≤p. Hence, by Theorem 1 (a),

WP has a least fixed point, which defines the id-well-founded model of P , also written as

WM (P ). In what follows, we drop the prefix ‘id’ and simply refer to the id-well-founded

model of a program as its well-founded model. (We keep the distinction between stable

and id-stable models.)

Any well-founded model (I, J) of an F-program P satisfies I ⊆ J .

Lemma 6. Let P be an F-Program.

Then, the well-founded model WM (P ) of P is consistent.

2 The interested reader is referred to the tutorial by Truszczyński (2018) for further details.
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Example 3. Consider program P3 consisting of the following rules:

a

b← a

c← ¬b
d← c

e← ¬d

We compute the well-founded model of P3 in four iterations starting from (∅,Σ):

SP (Σ) = {a, b} SP (∅) = {a, b, c, d, e}1.

SP ({a, b, c, d, e}) = {a, b} SP ({a, b}) = {a, b, e}2.

SP ({a, b, e}) = {a, b, e} SP ({a, b}) = {a, b, e}3.

SP ({a, b, e}) = {a, b, e} SP ({a, b, e}) = {a, b, e}4.

The left and right column reflect the certain and possible atoms computed at each iteration,

respectively. We reach a fixed point at Step 4. Accordingly, the well-founded model of P3

is ({a, b, e}, {a, b, e}).

Unlike general F-programs, the class of N -programs warrants the same stable and

id-stable models for each of its programs. Unfortunately, N -programs are too restricted

for our purpose (for instance, for capturing aggregates in rule bodies3). To this end, we

define a more general class of programs and refer to them as R-programs. Although

id-stable models of R-programs may differ from their stable models (see below), their

well-founded models encompass both stable and id-stable models. Thus, well-founded

models can be used for characterizing stable model-preserving program transformations.

In fact, we see in Section 2.5 that the restriction of F - to R-programs allows us to provide

tighter semantic characterizations of program simplifications.

We define R to be the set of all formulas F such that implications in F have no further

occurrences of implications in their antecedents. Then, an R-program consists of rules of

form h ← F where h ∈ F0 and F ∈ R. As with N -programs, a positive R-program is

also strictly positive.

Our next result shows that (id-)well-founded models can be used for approximating

(regular) stable models of R-programs.

Theorem 7. Let P be an R-program and (I, J) be the well-founded model of P .

If X is a stable model of P , then I ⊆ X ⊆ J .

Example 4. Consider the R-program P4:4

c← (b→ a) a← b

a← c b← a

Observe that {a, b, c} is the only stable model of P4, the program does not have any

3 Ferraris’ semantics (Ferraris 2011) of aggregates introduces implications, which results in rules beyond
the class of N -programs.

4 The choice of the body b → a is not arbitrary since it can be seen as representing the aggregate
#sum{1 : a,−1 : b} ≥ 0.
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id-stable models, and the well-founded model of P4 is (∅, {a, b, c}). In accordance with

Theorem 7, the stable model of P4 is enclosed in the well-founded model.

Note that the id-reduct handles b→ a the same way as ¬b ∨ a. In fact, the program

obtained by replacing

c← (b→ a)

with

c← ¬b ∨ a

is an N -program and has neither stable nor id-stable models.

Further, note that the program in Example 2 is not an R-program, whereas the one in

Example 3 is an R-program.

2.5 Program simplification

In this section, we define a concept of program simplification relative to a four-valued

interpretation and show how its result can be characterized by the semantic means from

above. This concept has two important properties. First, it results in a finite program

whenever the interpretation used for simplification is finite. And second, it preserves all

(regular) stable models of R-programs when simplified with their well-founded models.

Definition 1. Let P be an F-program, and (I, J) be a four-valued interpretation.

We define the simplification of P w.r.t. (I, J) as

P (I,J) = {r ∈ P | J |= B(r)I}.

For simplicity, we drop parentheses and we write P I,J instead of P (I,J) whenever clear

from context.

The program simplification P I,J acts as a filter eliminating inapplicable rules that

fail to satisfy the condition J |= B(r)I . That is, first, all negatively occurring atoms in

B(r) are evaluated w.r.t. the certain atoms in I and replaced accordingly by ⊥ and >,

respectively. Then, it is checked whether the reduced body B(r)I is satisfiable by the

possible atoms in J . Only in this case, the rule is kept in P I,J . No simplifications are

applied to the remaining rules. This is illustrated in Example 5 below.

Note that P I,J is finite whenever (I, J) is finite.

Observe that for an F-program P the head atoms in P I,J correspond to the result

of applying the provability operator of program PI to the possible atoms in J , i.e.,

H(P I,J) = TPI (J).

Our next result shows that programs simplified with their well-founded model maintain

this model.

Theorem 8. Let P be an F-program and (I, J) be the well-founded model of P .

Then, P and P I,J have the same well-founded model.

Example 5. In Example 3, we computed the well-founded model ({a, b, e}, {a, b, e})
of P3. With this, we obtain the simplified program P ′3 = P

{a,b,e},{a,b,e}
3 after dropping
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c← ¬b and d← c:

a

b← a

e← ¬d

Next, we check that the well-founded model of P ′3 corresponds to the well-founded

model of P3:

SP ′3(Σ) = {a, b} SP ′3(∅) = {a, b, e}1.

SP ′3({a, b, e}) = {a, b, e} SP ′3({a, b}) = {a, b, e}2.

SP ′3({a, b, e}) = {a, b, e} SP ′3({a, b, e}) = {a, b, e}3.

We observe that it takes two applications of the well-founded operator to obtain the

well-founded model. This could be reduced to one step if atoms false in the well-founded

model would be removed from the negative bodies by the program simplification. Keeping

them is a design decision with the goal to simplify notation in the following.

The next series of results further elaborates on semantic invariants guaranteed by our

concept of program simplification. The first result shows that it preserves all stable models

between the sets used for simplification.

Theorem 9. Let P be an F-program, and I, J and X be two-valued interpretations.

If I ⊆ X ⊆ J , then X is a stable model of P iff X is a stable model of P I,J .

As a consequence, we obtain that R-programs simplified with their well-founded model

also maintain stable models.

Corollary 10. Let P be an R-program and (I, J) be the well-founded model of P .

Then, P and P I,J have the same stable models.

For instance, the R-program in Example 3 and its simplification in Example 5 have the

same stable model. Unlike this, the program from Example 2 consisting of rule p← ¬¬p
induces two stable models, while its simplification w.r.t. its well-founded model (∅, ∅)
yields an empty program admitting the empty stable model only.

Note that given anR-program with a finite well-founded model, we obtain a semantically

equivalent finite program via simplification. As detailed in the following sections, grounding

algorithms only compute approximations of the well-founded model. However, as long as

the approximation is finite, we still obtain semantically equivalent finite programs. This

is made precise by the next two results showing that any program between the original

and its simplification relative to its well-founded model preserves the well-founded model,

and that this extends to all stable models for R-programs.

Theorem 11. Let P and Q be F-programs, and (I, J) be the well-founded model of P .

If P I,J ⊆ Q ⊆ P , then P and Q have the same well-founded models.

Corollary 12. Let P and Q be R-programs, and (I, J) be the well-founded model of P .

If P I,J ⊆ Q ⊆ P , then P and Q are equivalent.
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3 Splitting

One of the first steps during grounding is to group rules into components suitable for

successive instantiation. This amounts to splitting a logic program into a sequence of

subprograms. The rules in each such component are then instantiated with respect to

the atoms possibly derivable from previous components, starting with some component

consisting of facts only. In other words, grounding is always performed relative to a set of

atoms that provide a context. Moreover, atoms found to be true or false can be used for

on-the-fly simplifications.

Accordingly, this section parallels the above presentation by extending the respective

formal concepts with contextual information provided by atoms in a two- and four-valued

setting. We then assemble the resulting concepts to enable their consecutive application to

sequences of subprograms. Interestingly, the resulting notion of splitting allows for more

fine-grained splitting than the traditional concept (Lifschitz and Turner 1994) since it

allows us to partition rules in an arbitrary way. In view of grounding, we show that once a

program is split into a sequence of programs, we can iteratively compute an approximation

of the well-founded model by considering in turn each element in the sequence.

In what follows, we append letter ‘C’ to names of interpretations having a contextual

nature.

To begin with, we extend the one-step provability operator accordingly.

Definition 2. Let P be an F-program and IC be a two-valued interpretation.

For any two-valued interpretation I, we define the one-step provability operator of P

relative to IC as

T IC
P (I) = TP (IC ∪ I).

A prefixed point of T IC
P is a also a prefixed point of TP . Thus, each prefixed point of

T IC
P is a model of P but not vice versa.

To see this, consider program P = {a ← b}. We have TP (∅) = ∅ and T
{b}
P (∅) = {a}.

Hence, ∅ is a (pre)fixed point of TP but not of T
{b}
P since {a} 6⊆ ∅. The set {a} is a

prefixed point of both operators.

Proposition 13. Let P be a positive program, and IC and J be two valued interpretations.

Then, the operators T IC
P and T ·

P (J) are both monotone.

We use Theorem 1 and Proposition 13 to define a contextual stable operator.

Definition 3. Let P be an F-program and IC be a two-valued interpretation.

For any two-valued interpretation J , we define the stable operator relative to IC , written

SIC
P (J), as the least fixed point of T IC

PJ
.

While the operator is antimonotone w.r.t. its argument J , it is monotone regarding its

parameter IC .

Proposition 14. Let P be an F-program, and IC and J be two-valued interpretations.

Then, the operators SIC
P and S ·

P (J) are antimonotone and monotone, respectively.

By building on the relative stable operator, we next define its well-founded counterpart.

Unlike above, the context is now captured by a four-valued interpretation.
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Definition 4. Let P be an F-program and (IC , JC ) be a four-valued interpretation.

For any four-valued interpretation (I, J), we define the well-founded operator relative

to (IC , JC ) as

W
(IC ,JC )
P (I, J) = (SIC

P (J ∪ JC ), SJC
P (I ∪ IC )).

As above, we drop parentheses and simply write W I,J
P instead of W

(I,J)
P . Also, we keep

refraining from prepending the prefix ‘id’ to the well-founded operator along with all

concepts derived from it below.

Unlike the stable operator, the relative well-founded one is monotone on both its

argument and parameter.

Proposition 15. Let P be an F-program, and (I, J) and (IC , JC ) be four-valued inter-

pretations.

Then, the operators W IC ,JC
P and W ·

P (I, J) are both monotone w.r.t. the precision

ordering.

From Theorem 1 and Proposition 15, we get that the relative well-founded operator

has a least fixed point.

Definition 5. Let P be an F-program and (IC , JC ) be a four-valued interpretation.

We define the well-founded model of P relative to (IC , JC ), written WM (IC ,JC )(P ), as

the least fixed point of W IC ,JC
P .

Whenever clear from context, we keep dropping parentheses and simply write WM I,J (P )

instead of WM (I,J)(P ).

In what follows, we use the relativized concepts defined above to delineate the semantics

and resulting simplifications of the sequence of subprograms resulting from a grounder’s

decomposition of the original program. For simplicity, we first present a theorem capturing

the composition under the well-founded operation, before we give the general case involving

a sequence of programs.

Just like suffix C, we use the suffix E (and similarly letter E further below) to indicate

atoms whose defining rules are yet to come.

As in traditional splitting, we begin by differentiating a bottom and a top program. In

addition to the input atoms (I, J) and context atoms in (IC , JC ), we moreover distinguish

a set of external atoms, (IE , JE ), which occur in the bottom program but are defined

in the top program. Accordingly, the bottom program has to be evaluated relative to

(IC , JC )t (IE , JE ) (and not just (IC , JC ) as above) to consider what could be derived by

the top program. Also, observe that our notion of splitting aims at computing well-founded

models rather than stable models.

Theorem 16. Let PB and PT be F-programs, (IC , JC ) be a four-valued interpretation,

(I, J) = WM IC ,JC (PB ∪ PT ), (IE , JE ) = (I, J) u (B(PB)
± ∩ H(PT )), (IB , JB) =

WM (IC ,JC )t(IE ,JE)(PB), and (IT , JT ) = WM (IC ,JC )t(IB,JB)(PT ).

Then, we have (I, J) = (IB , JB) t (IT , JT ).

Partially expanding the statements of the two previous result nicely reflects the decom-

position of the application of the well-founded founded model of a program:

WM IC ,JC (PB ∪ PT ) = WM (IC ,JC )t(IE ,JE)(PB) tWM (IC ,JC )t(IB,JB)(PT ).
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Note that the formulation of the theorem forms the external interpretation (IE , JE ),

by selecting atoms from the overarching well-founded model (I, J). This warrants the

correspondence of the overall interpretations to the union of the bottom and top well-

founded model. This global approach is dropped below (after the next example) and leads

to less precise composed models.

Example 6. Let us illustrate the above approach via the following program:

a (PB)

b (PB)

c← a (PT )

d← ¬b (PT )

The well-founded model of this program relative to (IC , JC ) = (∅, ∅) is

(I, J) = ({a, b, c}, {a, b, c}).

First, we partition the four rules of the program into PB and PT as given above. We

get (IE , JE ) = (∅, ∅) since B(PB)
± ∩H(PT ) = ∅. Let us evaluate PB before PT . The

well-founded model of PB relative to (IC , JC ) t (IE , JE ) is

(IB , JB) = ({a, b}, {a, b}).

With this, we calculate the well-founded model of PT relative to (IC , JC ) t (IB , JB):

(IT , JT ) = ({c}, {c}).

We see that the union of (IB , JB) t (IT , JT ) is the same as the well-founded model of

PB ∪ PT relative to (IC , JC ).

This corresponds to standard splitting in the sense that {a, b} is a splitting set for

PB ∪ PT and PB is the “bottom” and PT is the “top” (Lifschitz and Turner 1994).

Example 7. For a complement, let us reverse the roles of programs PB and PT in

Example 6. Unlike above, body atoms in PB now occur in rule heads of PT , i.e., B(PB)
±∩

H(PT ) = {a, b}. We thus get (IE , JE ) = ({a, b}, {a, b}). The well-founded model of PB

relative to (IC , JC ) t (IE , JE ) is

(IB , JB) = ({c}, {c}).

And the well-founded model of PT relative to (IC , JC ) t (IB , JB) is

(IT , JT ) = ({a, b}, {a, b}).

Again, we see that the union of both models is identical to (I, J).

This decomposition has no direct correspondence to standard splitting (Lifschitz and

Turner 1994) since there is no splitting set.

Next, we generalize the previous results from two programs to sequences of programs.

For this, we let I be a well-ordered index set and direct our attention to sequences (Pi)i∈I
of F-programs.

Definition 6. Let (Pi)i∈I be a sequence of F-programs.
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We define the well-founded model of (Pi)i∈I as

WM ((Pi)i∈I) =
⊔
i∈I

(Ii, Ji) (2)

where

Ei = B(Pi)
± ∩

⋃
i<j

H(Pj), (3)

(IC i, JC i) =
⊔
j<i

(Ij , Jj), and (4)

(Ii, Ji) = WM (IC i,JC i)t(∅,Ei)(Pi). (5)

The well-founded model of a program sequence is itself assembled in (2) from a sequence

of well-founded models of the individual subprograms in (5). This provides us with semantic

guidance for successive program simplification, as shown below. In fact, proceeding along

the sequence of subprograms reflects the iterative approach of a grounding algorithm, one

component is grounded at a time. At each stage i ∈ I, this takes into account the truth

values of atoms instantiated in previous iterations, viz. (IC i, JC i), as well as dependencies

to upcoming components in Ei. Note that unlike Theorem 16, the external atoms in Ei
are identified purely syntactically, and the interpretation (∅, Ei) treats them as unknown.

Grounding is thus performed under incomplete information and each well-founded model

in (5) can be regarded as an over-approximation of the actual one. This is enabled by

the monotonicity of the well-founded operator in Proposition 15 that only leads to a less

precise result when overestimating its parameter.

Accordingly, the next theorem shows that once we split a program into a sequence of

F -programs, we can iteratively compute an approximation of the well-founded model by

considering in turn each element in the sequence.

Theorem 17. Let (Pi)i∈I be a sequence of F-programs.

Then, WM ((Pi)i∈I) ≤p WM (
⋃
i∈I Pi).

The next two results transfer Theorem 17 to program simplification by successively

simplifying programs with the respective well-founded models of the previous programs.

Theorem 18. Let (Pi)i∈I be a sequence of F-programs, (I, J) = WM ((Pi)i∈I), and Ei,

(IC i, JC i), and (Ii, Ji) be defined as in (3) to (5).

Then, P I,Jk ⊆ P (ICk,JCk)t(Ik,Jk)t(∅,Ek)
k ⊆ Pk for all k ∈ I.

Corollary 19. Let (Pi)i∈I be a sequence of R-programs, and Ei, (IC i, JC i), and (Ii, Ji)

be defined as in (3) to (5).

Then,
⋃
i∈I Pi and

⋃
i∈I P

(IC i,JC i)t(Ii,Ji)t(∅,Ei)
i have the same well-founded and stable

models.

Let us mention that the previous result extends to sequences of F -programs and their

well-founded models but not their stable models.

Example 8. To illustrate Theorem 17, let us consider the following programs, P1 and
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P2:

a← ¬c (P1)

b← ¬d (P1)

c← ¬b (P2)

d← e (P2)

The well-founded model of P1 ∪ P2 is

(I, J) = ({a, b}, {a, b}).

Let us evaluate P1 before P2. While no head literals of P2 occur positively in P1, the

head literals c and d of P2 occur negatively in rule bodies of P1. Hence, we get E1 = {c, d}
and treat both atoms as unknown while calculating the well-founded model of P1 relative

to (∅, {c, d}):
(I1, J1) = (∅, {a, b}).

We obtain that both a and b are unknown. With this and E2 = ∅, we can calculate the

well-founded model of P2 relative to (I1, J1):

(I2, J2) = (∅, {c}).

We see that because a is unknown, we have to derive c as unknown, too. And because

there is no rule defining e, we cannot derive d. Hence, (I1, J1) t (I2, J2) is less precise

than (I, J) because, when evaluating P1, it is not yet known that c is true and d is false.

Next, we illustrate the simplified programs according to Theorem 18:

a← ¬c a← ¬c (P1)

b← ¬d b← ¬d (P1)

c← ¬b (P2)

The left column contains the simplification of P1 ∪ P2 w.r.t. (I, J) and the right column

the simplification of P1 w.r.t. (I1, J1) and P2 w.r.t. (I1, J1) t (I2, J2). Note that d ← e

has been removed in both columns because e is false in both (I, J) and (I1, J1) t (I2, J2).

But we can only remove c← ¬b from the left column because, while b is false in (I, J), it

is unknown in (I1, J1) t (I2, J2).

Finally, observe that in accordance with Theorem 9 and Corollaries 10 and 19, the

program P1 ∪ P2 and the two simplified programs have the same stable and well-founded

models.

Clearly, the best simplifications are obtained when simplifying with the actual well-

founded model of the overall program. This can be achieved for a sequence as well

whenever Ei is empty, that is, if there is no need to approximate the impact of upcoming

atoms.

Corollary 20. Let (Pi)i∈I be a sequence of F-programs and Ei be defined as in (3).

If Ei = ∅ for all i ∈ I then WM ((Pi)i∈I) = WM (
⋃
i∈I Pi).

Corollary 21. Let (Pi)i∈I be a sequence of F-programs, (I, J) = WM ((Pi)i∈I), and Ei,

(IC i, JC i), and (Ii, Ji) be defined as in (3) to (5).

If Ei = ∅ for all i ∈ I, then P I,Jk = P
(ICk,JCk)t(Ik,Jk)
k for all k ∈ I.
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Example 9. Next, let us illustrate Corollary 20 on an example. We take the same rules

as in Example 8 but use a different sequence:

d← e (P1)

b← ¬d (P1)

c← ¬b (P2)

a← ¬c (P2)

Observe that the head literals of P2 do not occur in the bodies of P1, i.e., E1 =

B(P1)
± ∩H(P2) = ∅. The well-founded model of P1 is

(I1, J1) = ({b}, {b}).

And the well-founded model of P2 relative to ({b}, {b}) is

(I2, J2) = ({a}, {a}).

Hence, the union of both models is identical to the well-founded model of P1 ∪ P2.

Next, we investigate the simplified program according to Corollary 21:

b← ¬d (P1)

a← ¬c (P2)

As in Example 8, we delete rule d← e because e is false in (I1, J1). But this time, we can

also remove rule c← ¬b because b is true in (I1, J1) t (I2, J2).

4 Aggregate programs

We now turn to programs with aggregates and, at the same time, to programs with

variables. That is, we now deal with finite nonground programs whose instantiation may

lead to infinite ground programs including infinitary subformulas. This is made precise

by Harrison et al. (2014) and Gebser et al. (2015) where aggregate programs are associated

with infinitary propositional formulas (Truszczyński 2012). However, the primary goal of

grounding is to produce a finite set of ground rules with finitary subformulas only. In fact,

the program simplification introduced in Section 2.5 allows us to produce an equivalent

finite ground program whenever the well-founded model is finite. The source of infinitary

subformulas lies in the instantiation of aggregates. We address this below by introducing

an aggregate translation bound by an interpretation that produces finitary formulas

whenever this interpretation is finite. Together, our concepts of program simplification

and aggregate translation provide the backbone for turning programs with aggregates

into semantically equivalent finite programs with finitary subformulas.

Our concepts follow the ones of Gebser et al. (2015); the semantics of aggregates is

aligned with that of Ferraris (2011) yet lifted to infinitary formulas (Truszczyński 2012;

Harrison et al. 2014).

We consider a signature Σ = (F ,P,V) consisting of sets of function, predicate, and

variable symbols. The sets of variable and function symbols are disjoint. Function and

predicate symbols are associated with non-negative arities. For short, a predicate symbol

p of arity n is also written as p/n. In the following, we use lower case strings for function
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and predicate symbols, and upper case strings for variable symbols. Also, we often drop

the term ‘symbol’ and simply speak of functions, predicates, and variables.

As usual, terms over Σ are defined inductively as follows:

• v ∈ V is a term and

• f(t1, . . . , tn) is a term if f ∈ F is a function symbol of arity n and each ti is a term

over Σ.

Parentheses for terms over function symbols of arity 0 are omitted.

Unless stated otherwise, we assume that the set of (zero-ary) functions includes a set

of numeral symbols being in a one-to-one correspondence to the integers. For simplicity,

we drop this distinction and identify numerals with the respective integers.

An atom over signature Σ has form p(t1, . . . , tn) where p ∈ P is a predicate symbol

of arity n and each ti is a term over Σ. As above, parentheses for atoms over predicate

symbols of arity 0 are omitted. Given an atom a over Σ, a literal over Σ is either the

atom itself or its negation ¬a. A literal without negation is called positive, and negative

otherwise.

A comparison over Σ has form

t1 ≺ t2 (6)

where t1 and t2 are terms over Σ and ≺ is a relation symbol among <, ≤, >, ≥, =, and

6=.

An aggregate element over Σ has form

t1, . . . , tm : a1 ∧ · · · ∧ an (7)

where ti is a term and aj is an atom, both over Σ for 0 ≤ i ≤ m and 0 ≤ j ≤ n.

The terms t1, . . . , tm are seen as a tuple, which is empty for m = 0; the conjunction

a1 ∧ · · · ∧ an is called the condition of the aggregate element. For an aggregate element e

of form (7), we use H(e) = (t1, . . . , tm) and B(e) = {a1, . . . , an}. We extend both to sets

of aggregate elements in the straightforward way, that is, H(E) = {H(e) | e ∈ E} and

B(E) = {B(e) | e ∈ E}.
An aggregate atom over Σ has form

f{e1, . . . , en} ≺ s (8)

where n ≥ 0, f is an aggregate name among #count, #sum, #sum+, and #sum−, each

ei is an aggregate element, ≺ is a relation symbol among <, ≤, >, ≥, =, and 6= (as above),

and s is a term representing the aggregate’s bound.

Without loss of generality, we refrain from introducing negated aggregate atoms.5 We

often refer to aggregate atoms simply as aggregates.

An aggregate program over Σ is a finite set of aggregate rules of form

h← b1 ∧ · · · ∧ bn

5 Grounders like lparse and gringo replace aggregates systematically by auxiliary atoms and place them
in the body of new rules implying the respective auxiliary atom. This results in programs without
occurrences of negated aggregates.
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where n ≥ 0, h is an atom over Σ and each bi is either a literal, a comparison, or an

aggregate over Σ. We refer to b1, . . . , bn as body literals, and extend functions H(r) and

B(r) to any aggregate rule r.

Example 10. An example for an aggregate program is shown below, giving an encoding

of the Company Controls Problem (Mumick et al. 1990): A company X controls a company

Y if X directly or indirectly controls more than 50% of the shares of Y .

controls(X,Y )← #sum+{S : owns(X,Y, S);

S,Z : controls(X,Z) ∧ owns(Z, Y, S)} > 50

∧ company(X) ∧ company(Y ) ∧X 6= Y

The aggregate #sum+ implements summation over positive integers. Notably, it takes

part in the recursive definition of predicate controls. In the following, we use an instance

with ownership relations between four companies:

company(c1) company(c2) company(c3) company(c4)

owns(c1, c2, 60) owns(c1, c3, 20) owns(c2, c3, 35) owns(c3, c4, 51)

We say that an aggregate rule r is normal if its body does not contain aggregates. An

aggregate program is normal if all its rules are normal.

A term, literal, aggregate element, aggregate, rule, or program is ground whenever it

does not contain any variables.

We assume that all ground terms are totally ordered by a relation ≤, which is used to

define the relations <, >, ≥, =, and 6= in the standard way. For ground terms t1, t2 and

a corresponding relation symbol ≺, we say that ≺ holds between t1 and t2 whenever the

corresponding relation holds between t1 and t2. Furthermore, >, ≥, and 6= hold between

∞ and any other term, and <, ≤, and 6= hold between −∞ and any other term. Finally,

we require that integers are ordered as usual.

For defining sum-based aggregates, we define for a tuple t = t1, . . . , tm of ground terms

the following weight functions:

w(t) =

{
t1 if m > 0 and t1 is an integer

0 otherwise,

w+(t) = max{w(t), 0}, and

w−(t) = min{w(t), 0}.

With this at hand, we now define how to apply aggregate functions to sets of tuples of

ground terms in analogy to Gebser et al. (2015).

Definition 7. Let T be a set of tuples of ground terms.
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We define

#count(T ) =

{
|T | if T is finite,

∞ otherwise,

#sum(T ) =

{
Σt∈Tw(t) if {t ∈ T | w(t) 6= 0} is finite,

0 otherwise,

#sum+(T ) =

{
Σt∈Tw

+(t) if {t ∈ T | w(t) > 0} is finite,

∞ otherwise, and

#sum−(T ) =

{
Σt∈Tw

−(t) if {t ∈ T | w(t) < 0} is finite,

−∞ otherwise.

Note that in our setting the application of aggregate functions to infinite sets of ground

terms is of theoretical relevance only, since we aim at reducing them to their finite

equivalents so that they can be evaluated by a grounder.

A variable is global in

• a literal if it occurs in the literal,

• a comparison if it occurs in the comparison,

• an aggregate if it occurs in its bound, and

• a rule if it is global in its head atom or in one of its body literals.

For example, the variables X and Y are global in the aggregate rule in Example 10,

while Z and S are neither global in the rule nor the aggregate.

Definition 8. Let r be an aggregate rule.

We define r to be safe

• if all its global variables occur in some positive literal in the body of r and

• if all its non-global variables occurring in an aggregate element e of an aggregate in

the body of r, also occur in some positive literal in the condition of e.

For instance, the aggregate rule in Example 10 is safe.

Note that comparisons are disregarded in the definition of safety. That is, variables in

comparisons have to occur in positive body literals.6

An aggregate program is safe if all its rules are safe.

An instance of an aggregate rule r is obtained by substituting ground terms for all

its global variables. We use Inst(r) to denote the set of all instances of r and Inst(P ) to

denote the set of all ground instances of rules in aggregate program P . An instance of

an aggregate element e is obtained by substituting ground terms for all its variables. We

let Inst(E) stand for all instances of aggregate elements in a set E. Note that Inst(E)

consists of ground expressions, which is not necessarily the case for Inst(r). As seen from

the first example in the introductory section, both Inst(r) and Inst(E) can be infinite.

A literal, aggregate element, aggregate, or rule is closed if it does not contain any global

variables.

6 In fact, gringo allows for variables in some comparisons to guarantee safety, as detailed in Section 7.3.
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For example, the following rule is an instance of the aggregate rule in Example 10.

controls(c1, c2)← #sum+{S : owns(c1, c2, S);

S,Z : controls(c1, Z), owns(Z, c2, S)} > 50

∧ company(c1) ∧ company(c2) ∧ c1 6= c2

Note that both the rule and its aggregate are closed. It is also noteworthy to realize that

the two elements of the aggregate induce an infinite set of instances, among them

20 : owns(c1, c2, 20) and

35, c2 : controls(c1, c2), owns(c2, c3, 35).

We now turn to the semantics of aggregates as introduced by Ferraris (2011) but follow

its adaptation to closed aggregates by Gebser et al. (2015): Let a be a closed aggregate of

form (8) and E be its set of aggregate elements. We say that a set D ⊆ Inst(E) of its

elements’ instances justifies a, written D . a, if f(H(D)) ≺ s holds.

An aggregate a is monotone whenever D1 . a implies D2 . a for all D1 ⊆ D2 ⊆ Inst(E),

and accordingly a is antimonotone if D2 . a implies D1 . a for all D1 ⊆ D2 ⊆ Inst(E).

We observe the following monotonicity properties.

Proposition 22 (Harrison et al. 2014).

• Aggregates over functions #sum+ and #count together with relations > and ≥ are

monotone.

• Aggregates over functions #sum+ and #count together with relations < and ≤ are

antimonotone.

• Aggregates over function #sum− have the same monotonicity properties as #sum+

aggregates with the complementary relation.

Next, we give the translation τ from aggregate programs to R-programs, derived from

the ones of Ferraris (2011) and Harrison et al. (2014):

For a closed literal l, we have

τ(l) = l,

for a closed comparison l of form (6), we have

τ(l) =

{
> if ≺ holds between t1 and t2

⊥ otherwise

and for a set L of closed literals, comparisons and aggregates, we have

τ(L) = {τ(l) | l ∈ L}.

For a closed aggregate a of form (8) and its set E of aggregate elements, we have

τ(a) = {τ(D)∧ → τa(D)∨ | D ⊆ Inst(E), D 6 . a}∧ (9)
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where

τa(D) = τ(Inst(E) \D) for D ⊆ Inst(E),

τ(D) = {τ(e) | e ∈ D} for D ⊆ Inst(E), and

τ(e) = τ(B(e))
∧

for e ∈ Inst(E).

For a closed aggregate rule r, we have

τ(r) = τ(H(r))← τ(B(r))∧.

For an aggregate program P , we have

τ(P ) = {τ(r) | r ∈ Inst(P )}. (10)

While aggregate programs like P are finite sets of (non-ground) rules, τ(P ) can be

infinite and contain (ground) infinitary expressions. Observe that τ(P ) is an R-program.

In fact, only the translation of aggregates introduces R-formulas; rules without aggregates

form N -programs.

Example 11. To illustrate Ferraris’ approach to the semantics of aggregates, consider a

count aggregate a of form

#count{X : p(X)} ≥ n.

Since the aggregate is non-ground, the set G of its element’s instances consists of all

t : p(t) for each ground term t.

The count aggregate cannot be justified by any subset D of G satisfying |{t | t : p(t) ∈
D}| < n, or D 6 . a for short. Accordingly, we have that τ(a) is the conjunction of all

formulas

{p(t) | t : p(t) ∈ D}∧ → {p(t) | t : p(t) ∈ (G \D)}∨ (11)

such that D ⊆ G and D 6 . a. Restricting the set of ground terms to the numerals 1, 2, 3

and letting n = 2 results in the formulas

> → p(1) ∨ p(2) ∨ p(3),

p(1)→ p(2) ∨ p(3),

p(2)→ p(1) ∨ p(3), and

p(3)→ p(1) ∨ p(2).

Note that a smaller number of ground terms than n yields an unsatisfiable set of formulas.

However, it turns out that a Ferraris-style translation of aggregates (Ferraris 2011;

Harrison et al. 2014) is too weak for propagating monotone aggregates in our id-based

setting. That is, when propagating possible atoms (i.e., the second component of the

well-founded model), an id-reduct may become satisfiable although the original formula

is not. So, we might end up with too many possible atoms and a well-founded model that

is not as precise as it could be. To see this, consider the following example.
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Example 12. For some m,n ≥ 0, the program Pm,n consists of the following rules:

p(i)← ¬q(i) for 1 ≤ i ≤ m
q(i)← ¬p(i) for 1 ≤ i ≤ m
r ← #count{X : p(X)} ≥ n

Given the ground instances G of the aggregate’s elements and some two-valued inter-

pretation I, observe that

τ(#count{X : p(X)} ≥ n)I

is classically equivalent to

τ(#count{X : p(X)} ≥ n)I ∨ {p(t) ∈ B(G) | p(t) /∈ I}∨. (12)

To see this, observe that the formula obtained via τ for the aggregate in the last rule’s

body consists of positive occurrences of implications of the form G∧ → H∨ where either

p(t) ∈ G or p(t) ∈ H. The id-reduct makes all such implications with some p(t) ∈ G such

that p(t) /∈ I true because their antecedent is false. All of the remaining implications in

the id-reduct are equivalent to H∨ where H contains all p(t) /∈ I. Thus, we can factor

out the formula on the right-hand side of (12).

Next, observe that for 1 ≤ m < n, the four-valued interpretation (I, J) = (∅, H(τ(Pm,n)))

is the well-founded model of Pm,n:

Sτ(Pm,n)(J) = I and

Sτ(Pm,n)(I) = J.

Ideally, atom r should not be among the possible atoms because it can never be in a

stable model. Nonetheless, it is due to the second disjunct in (12).

Note that not just monotone aggregates exhibit this problem. In general, we get for a

closed aggregate a with elements E and an interpretation I that

τ(a)I is classically equivalent to τ(a)I ∨ {c ∈ B(Inst(E)) | I 6|= c}∨.
The second disjunct is undesirable when propagating possible atoms.

To address this shortcoming, we augment the aggregate translation so that it provides

stronger propagation. The result of the augmented translation is strongly equivalent to

that of the original translation (cf. Proposition 23). Thus, even though we get more precise

well-founded models, the stable models are still contained in them.

Definition 9. We define π as the translation obtained from τ by replacing the case of

closed aggregates in (9) by the following:

For a closed aggregate a of form (8) and its set E of aggregate elements, we have

π(a) = {τ(D)
∧ → πa(D)∨ | D ⊆ Inst(E), D 6 . a}∧

where

πa(D) = {τ(C)
∧ | C ⊆ Inst(E) \D,C ∪D . a} for D ⊆ Inst(E).

Note that just as τ also π is recursively applied to the whole program.

Let us illustrate the modified translation by revisiting Example 11.
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Example 13. Let us reconsider the count aggregate a:

#count{X : p(X)} ≥ n
As with τ(a) in Example 11, π(a) yields a conjunction of formulas, one conjunct for each

set D ⊆ Inst(E) satisfying D 6 . a of the form:

{B(e) | e ∈ D}∧ →
{
{B(e) | e ∈ (C \D)}∧ | C . a,D ⊆ C ⊆ Inst(E)

}∨
(13)

Restricting again the set of ground terms to the numerals 1, 2, 3 and letting n = 2 results

now in the formulas

> → (p(1) ∧ p(2)) ∨ (p(1) ∧ p(3)) ∨ (p(2) ∧ p(3)) ∨ (p(1) ∧ p(2) ∧ p(3)),

p(1)→ p(2) ∨ p(3) ∨ (p(2) ∧ p(3)),

p(2)→ p(1) ∨ p(3) ∨ (p(1) ∧ p(3)), and

p(3)→ p(1) ∨ p(2) ∨ (p(1) ∧ p(2)).

Note that the last disjunct can be dropped from each rule’s consequent. And as above, a

smaller number of ground terms than n yields an unsatisfiable set of formulas.

The next result ensures that τ(P ) and π(P ) have the same stable models for any

aggregate program P .

Proposition 23. Let a be a closed aggregate.

Then, τ(a) and π(a) are strongly equivalent.

The next example illustrates that we get more precise well-founded models using the

strongly equivalent refined translation.

Example 14. Reconsider Program Pm,n from Example 12.

As above, we apply the well-founded operator to program Pm,n for m < n and four-

valued interpretation (I, J) = (∅, H(π(Pm,n))):

Sπ(Pm,n)(J) = I and

Sπ(Pm,n)(I) = J \ {r}.
Unlike before, r is now found to be false since it does not belong to Sπ(Pm,n)(∅).

To see this, we can take advantage of the following proposition.

Proposition 24. Let a be a closed aggregate.

If a is monotone, then π(a)I is classically equivalent to π(a) for any two-valued inter-

pretation I.

Note that π(a) is a negative formula whenever a is antimonotone; cf. Proposition 36.

Let us briefly return to Example 14. We now observe that π(a)I = π(a) for a =

#count{X : p(X)} ≥ n and any interpretation I in view of the last proposition. Hence, our

refined translation π avoids the problematic disjunct in (12) on the right. By Proposition 23,

we can use π(Pm,n) instead of τ(Pm,n); both formulas have the same stable models.

Using Proposition 24, we augment the translation π to replace monotone aggregates a

by the strictly positive formula π(a)∅. That is, we only keep the implication with the

trivially true antecedent in the aggregate translation (cf. Section 5).

While π improves on propagation, it may still produce infinitary R-formulas when
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applied to aggregates. This issue is addressed by restricting the translation to a set of

(possible) atoms.

Definition 10. Let J be a two-valued interpretation. We define the translation πJ as

the one obtained from τ by replacing the case of closed aggregates in (9) by the following:

For a closed aggregate a of form (8) and its set E of aggregate elements, we have

πJ(a) = {τ(D)∧ → πa,J(D)∨ | D ⊆ Inst(E)|J , D 6 . a}∧

where

πa,J(D) = {τ(C)∧ | C ⊆ Inst(E)|J \D,C ∪D . a} and

Inst(E)|J = {e ∈ Inst(E) | B(e) ⊆ J}.

Note that πJ(a) is a finitary formula whenever J is finite.

Clearly, πJ also conforms to π except for the restricted translation for aggregates

defined above. The next proposition elaborates this by showing that πJ and π behave

alike whenever J limits the set of possible atoms.

Theorem 25. Let a be a closed aggregate, and I ⊆ J and X ⊆ J be two-valued interpre-

tations.

Then,

(a) X |= π(a) iff X |= πJ(a),

(b) X |= π(a)I iff X |= πJ(a)I , and

(c) X |= π(a)I iff X |= πJ(a)I .

In view of Proposition 23, this result extends to Ferraris’ original aggregate transla-

tion (Ferraris 2011; Harrison et al. 2014).

The next example illustrates how a finitary formula can be obtained for an aggregate,

despite a possibly infinite set of terms in the signature.

Example 15. Let Pm,n be the program from Example 12. The well-founded model (I, J)

of π(Pm,n) is (∅, H(π(Pm,n))) if n ≤ m.

The translation πJ(P3,2) consists of the rules

p(1)← ¬q(1), q(1)← ¬p(1),

p(2)← ¬q(2), q(2)← ¬p(2),

p(3)← ¬q(3), q(3)← ¬p(3), and

r ← πJ(#count{X : p(X)} ≥ 2)

where the aggregate translation corresponds to the conjunction of the formulas in Exam-

ple 13. Note that the translation π(P3,2) depends on the signature whereas the translation

πJ(P3,2) is fixed by the atoms in J .

Importantly, Theorem 25 shows that given a finite (approximation of the) well-founded

model of an R-program, we can replace aggregates with finitary formulas. Moreover,

in this case, Theorem 9 and Proposition 23 together indicate how to turn a program

with aggregates into a semantically equivalent finite R-program with finitary formulas

as bodies. That is, given a finite well-founded model of an R-program, the program



Foundations of Grounding in ASP 27

simplification from Definition 1 results in a finite program and the aggregate translation

from Definition 10 produces finitary formulas only.

This puts us in a position to outline how and when (safe non-ground) aggregate programs

can be turned into equivalent finite ground programs consisting of finitary subformulas

only. To this end, consider an aggregate program P along with the well-founded model

(I, J) of π(P ). We have already seen in Corollary 10 that π(P ) and its simplification

π(P )I,J have the same stable models, just like π(P )I,J and its counterpart πJ(P )I,J in

view of Theorem 25.

Now, if (I, J) is finite, then π(P )I,J is finite, too. Seen from the perspective of grounding,

the safety of all rules in P implies that all global variables appear in positive body literals.

Thus, the number of ground instances of each rule in π(P )I,J is determined by the

number of possible substitutions for its global variables. Clearly, there are only finitely

many possible substitutions such that all positive body literals are satisfied by a finite

interpretation J (cf. Definition 1). Furthermore, if J is finite, aggregate translations in

πJ(P )I,J introduce finitary subformulas only. Thus, in this case, we obtain from P a

finite set of rules with finitary propositional formulas as bodies, viz. πJ(P )I,J , that has

the same stable models as π(P ) (as well as τ(P ), the traditional Ferraris-style semantics

of P (Ferraris 2011; Harrison et al. 2014)).

An example of a class of aggregate programs inducing finite well-founded models as

above consists of programs over a signature with nullary function symbols only. Any such

program can be turned into an equivalent finite set of propositional rules with finitary

bodies.

5 Dependency analysis

We now further refine our semantic approach to reflect actual grounding processes. In

fact, modern grounders process programs on-the-fly by grounding one rule after another

without storing any rules. At the same time, they try to determine certain, possible, and

false atoms. Unfortunately, well-founded models cannot be computed on-the-fly, which

is why we introduce below the concept of an approximate model. More precisely, we

start by defining instantiation sequences of (non-ground) aggregate programs based on

their rule dependencies. We show that approximate models of instantiation sequences are

underapproximations of the well-founded model of the corresponding sequence of (ground)

R-programs, as defined in Section 3. The precision of both types of models coincides on

stratified programs. We illustrate our concepts comprehensively at the end of this section

in Examples 19 and 20.

To begin with, we extend the notion of positive and negative literals to aggregate

programs. For atoms a, we define a+ = (¬a)
−

= {a} and a− = (¬a)
+

= ∅. For

comparisons a, we define a+ = a− = ∅. For aggregates a with elements E, we define

positive and negative atom occurrences, using Proposition 24 to refine the case for

monotone aggregates:

• a+ =
⋃
e∈E B(e),

• a− = ∅ if a is monotone, and

• a− =
⋃
e∈E B(e) if a is not monotone.
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For a set of body literals B, we define B+ =
⋃
b∈B b

+ and B− =
⋃
b∈B b

−, as well as

B± = B+ ∪B−.

We see in the following, that a special treatment of monotone aggregates yields better

approximations of well-founded models. A similar case could be made for antimonotone

aggregates but had led to a more involved algorithmic treatment.

Inter-rule dependencies are determined via the predicates appearing in their heads

and bodies. We define pred(a) to be the predicate symbol associated with atom a

and pred(A) = {pred(a) | a ∈ A} for a set A of atoms. An aggregate rule r1 depends

on another aggregate rule r2 if pred(H(r2)) ∈ pred(B(r1)
±

). Rule r1 depends positively

or negatively on r2 if pred(H(r2)) ∈ pred(B(r1)+) or pred(H(r2)) ∈ pred(B(r2)
−

),

respectively.

For simplicity, we first focus on programs without aggregates in examples and delay a

full example with aggregates until the end of the section.

Example 16. Let us consider the following rules from the introductory example:

u(1) (r1)

p(X)← ¬q(X) ∧ u(X) (r2)

q(X)← ¬p(X) ∧ v(X) (r3)

We first determine the rule heads and positive and negative atom occurrences in rule

bodies:

H(r1) = u(1) B(r1)+ = ∅ B(r1)− = ∅
H(r2) = p(X) B(r2)+ = {u(X)} B(r2)− = {q(X)}
H(r3) = q(X) B(r3)+ = {v(X)} B(r3)− = {p(X)}

With this, we infer the corresponding predicates:

pred(H(r1)) = u/1 pred(B(r1)+) = ∅ pred(B(r1)−) = ∅
pred(H(r2)) = p/1 pred(B(r2)+) = {u/1} pred(B(r2)−) = {q/1}
pred(H(r3)) = q/1 pred(B(r3)+) = {v/1} pred(B(r3)−) = {p/1}

We see that r2 depends positively on r1 and that r2 and r3 depend negatively on each

other. View Figure 1 in Example 17 for a graphical representation of these inter-rule

dependencies.

The strongly connected components of an aggregate program P are the equivalence

classes under the transitive closure of the dependency relation between all rules in P . A

strongly connected component P1 depends on another strongly connected component P2

if there is a rule in P1 that depends on some rule in P2. The transitive closure of this

relation is antisymmetric.

A strongly connected component of an aggregate program is unstratified if it depends

negatively on itself or if it depends on an unstratified component. A component is stratified

if it is not unstratified.

A topological ordering of the strongly connected components is then used to guide

grounding.

For example, the sets {r1} and {r2, r3} of rules from Example 16 are strongly connected

components in a topological order. There is only one topological order because r2 depends
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u(1) u(2) v(2) v(3)

1 2 3 4

p(X)← ¬q(X) ∧ u(X) q(X)← ¬p(X) ∧ v(X)

(5, 1) (5, 2)

5

x← ¬p(1) y ← ¬q(3)

6 7

Fig. 1: Rule dependencies for Example 19.

on r1. While the first component is stratified, the second component is unstratified because

r2 and r3 depend negatively on each other.

Definition 11. We define an instantiation sequence for P as a sequence (Pi)i∈I of its

strongly connected components such that i < j if Pj depends on Pi.

Note that the components can always be well ordered because aggregate programs

consist of finitely many rules.

The consecutive construction of the well-founded model along an instantiation sequence

results in the well-founded model of the entire program.

Theorem 26. Let (Pi)i∈I be an instantiation sequence for aggregate program P .

Then, WM ((π(Pi))i∈I) = WM (π(P )).

Example 17. The following example shows how to split an aggregate program into an

instantiation sequence and gives its well-founded model. Let P be the following aggregate

program, extending the one from the introductory section:

u(1) u(2)

v(2) v(3)

p(X)← ¬q(X) ∧ u(X) q(X)← ¬p(X) ∧ v(X)

x← ¬p(1) y ← ¬q(3)

We have already seen how to determine inter-rule dependencies in Example 16. A

possible instantiation sequence for program P is given in Figure 1. Rules are depicted

in solid boxes. Solid and dotted edges between such boxes depict positive and negative

dependencies between the corresponding rules, respectively. Dashed and dashed/dotted

boxes represent components in the instantiation sequence (we ignore dotted boxes for

now but turn to them in Example 18). The number in the corner of a component box

indicates the index in the corresponding instantiation sequence.
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For F = {u(1), u(2), v(2), v(3)}, the well-founded model of π(P ) is

WM (π(P )) = ({p(1), q(3)}, {p(1), p(2), q(2), q(3)}) t F.

By Theorem 26, the ground sequence (τ(Pi))i∈I has the same well-founded model as

π(P ):

WM ((π(P ))i∈I) = ({p(1), q(3)}, {p(1), p(2), q(2), q(3)}) t F.

Note that the set F comprises the facts derived from stratified components. In fact, for

stratified components, the set of external atoms (3) is empty. We can use Corollary 20

to confirm that the well founded model (F, F ) of sequence (π(Pi))1≤i≤4 is total. In fact,

each of the intermediate interpretations (5) is total and can be computed with just one

application of the stable operator. For example, I1 = J1 = {u(1)} for component P1.

We further refine instantiation sequences by partitioning each component along its

positive dependencies.

Definition 12. Let P be an aggregate program and (Pi)i∈I be an instantiation sequence

for P . Furthermore, for each i ∈ I, let (Pi,j)j∈Ii be an instantiation sequence of Pi
considering positive dependencies only.

A refined instantiation sequence for P is a sequence (Pi,j)(i,j)∈J where the index

set J = {(i, j) | i ∈ I, j ∈ Ii} is ordered lexicographically.

We call (Pi,j)(i,j)∈J a refinement of (Pi)i∈I.

We define a component Pi,j to be stratified or unstratified if the encompassing component

Pi is stratified or unstratified, respectively.

Examples of refined instantiation sequences are given in Figures 1 and 2.

The advantage of such refinements is that they yield better or equal approximations

(cf. Theorem 28 and Example 19). On the downside, we do not obtain that WM ((Pi)i∈J)

equals WM (π(P )) for refined instantiation sequences in general.

Example 18. The refined instantiation sequence for program P from Example 17 is

given in Figure 1. A dotted box indicates a component in a refined instantiation sequence.

Components that cannot be refined further are depicted with a dashed/dotted box. The

number or pair in the corner of a component box indicates the index in the corresponding

refined instantiation sequence.

Unlike in Example 17, the well-founded model of the refined sequence of ground

programs (τ(Pi,j))(i,j)∈J is

WM ((τ(Pi,j))(i,j)∈J) = ({q(3)}, {p(1), p(2), q(2), q(3), x}) t F,

which is actually less precise than the well-founded model of P . This is because literals

over ¬q(X) are unconditionally assumed to be true because their instantiation is not

yet available when P5,1 is considered. Thus, we get (I5,1, J5,1) = (∅, {p(1), p(2)}) for

the intermediate interpretation (5). Unlike this, the atom p(3) is false when considering

component P5,2 and q(3) becomes true. In fact, we get (I5,2, J5,2) = ({q(3)}, {q(2), q(3)}).
Observe that (I5, J5) from above is less precise than (I5,1, J5,1) t (I5,2, J5,2).

We continue with this example below and show in Example 19 that refined instantiation

sequences can still be advantageous to get better approximations of well-founded models.
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We have already seen in Section 3 that external atoms may lead to less precise

semantic characterizations. This is just the same in the non-ground case, whenever a

component comprises predicates that are defined in a following component of a refined

instantiation sequence. This leads us to the concept of an approximate model obtained

by overapproximating the extension of such externally defined predicates.

Definition 13. Let P be an aggregate program, (IC , JC ) be a four-valued interpretation,

E be a set of predicates, and P ′ be the program obtained from P by removing all rules r

with pred(B(r)−) ∩ E 6= ∅.
We define the approximate model of P relative to (IC , JC ) as

AM
(IC ,JC )
E (P ) = (I, J)

where

I = SIC
π(P ′)(JC ) and

J = SJC
π(P )(IC ∪ I)

We keep dropping parentheses and simply write AM IC ,JC
E (P ) instead of AM

(IC ,JC )
E (P ).

The approximate model amounts to an immediate consequence operator, similar to the

relative well-founded operator in Definition 4; it refrains from any iterative applications,

as used for defining a well-founded model. More precisely, the relative stable operator is

applied twice to obtain the approximate model. This is similar to Van Gelder’s alternating

transformation (Van Gelder 1993). The certain atoms in I are determined by applying the

operator to the ground program obtained after removing all rules whose negative body

literals comprise externally defined predicates, while the possible atoms J are computed

from the entire program by taking the already computed certain atoms in I into account.

In this way, the approximate model may result in fewer unknown atoms than the relative

well-founded operator when applied to the least precise interpretation (as an easy point

of reference). How well we can approximate the certain atoms with the approximate

operator depends on the set of external predicates E . When approximating the model of

a program P in a sequence, the set E comprises all negative predicates occurring in P for

which possible atoms have not yet been fully computed. This leads to fewer certain atoms

obtained from the reduced program, P ′ = {r ∈ P | pred(B(r)−) ∩ E = ∅}, stripped of all

rules from P that have negative body literals whose predicates occur in E .

The next theorem identifies an essential prerequisite for an approximate model of a

non-ground program to be an underapproximation of the well-founded model of the

corresponding ground program.

Theorem 27. Let P be an aggregate program, E be a set of predicates, and (IC , JC ) be

a four-valued interpretation.

If pred(H(P )) ∩ pred(B(P )−) ⊆ E then AM IC ,JC
E (P ) ≤p WM IC ,JC∪EC (π(P )) where

EC is the set of all ground atoms over predicates in E.

In general, a grounder cannot calculate on-the-fly a well-founded model. Implementing

this task efficiently requires an algorithm storing the grounded program, as, for example,

implemented in an ASP solver. But modern grounders are able to calculate the stable

operator on-the-fly. Thus, an approximation of the well-founded model is calculated. This
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is where we use the approximate model, which might be less precise than the well-founded

model but can be computed more easily.

With the condition of Theorem 27 in mind, we define the approximate model for an

instantiation sequence. We proceed similar to Definition 6 but treat in (14) all atoms over

negative predicates that have not been completely defined as external.

Definition 14. Let (Pi)i∈I be a (refined) instantiation sequence for P .

Then, the approximate model of (Pi)i∈I is

AM ((Pi)i∈I) =
⊔
i∈I

(Ii, Ji).

where

Ei = pred(B(Pi)
−

) ∩ pred(
⋃
i≤j

H(Pj)), (14)

(IC i, JC i) =
⊔
j<i

(Ij , Jj), and (15)

(Ii, Ji) = AM IC i,JC i

Ei (Pi). (16)

Note that the underlying approximate model removes rules containing negative literals

over predicates in Ei when calculating certain atoms. This amounts to assuming all ground

instances of atoms over Ei to be possible.7 Compared to (3), however, this additionally

includes recursive predicates in (14). The set Ei is empty for stratified components.

The next result relies on Theorem 17 to show that an approximate model of an

instantiation sequence constitutes an underapproximation of the well-founded model of

the translated entire program. In other words, the approximate model of a sequence of

aggregate programs (as computed by a grounder) is less precise than the well-founded

model of the whole ground program.

Theorem 28. Let (Pi)i∈I be an instantiation sequence for aggregate program P and

(Pj)j∈J be a refinement of (Pi)i∈I.

Then, AM ((Pi)i∈I) ≤p AM ((Pj)j∈J) ≤p WM (π(P )).

The finer granularity of refined instantiation sequences leads to more precise models.

Intuitively, this is because a refinement of a component may result in a series of approximate

models, which yield a more precise result than the approximate model of the entire

component because in some cases fewer predicates are considered external in (14).

We remark that all instantiation sequences of a program have the same approximate

model. However, this does not carry over to refined instantiation sequences because their

evaluation is order dependent.

The two former issues are illustrated in Example 19.

The actual value of approximate models for grounding lies in their underlying series of

consecutive interpretations delineating each ground program in a (refined) instantiation

sequence. In fact, as outlined after Theorem 25, whenever all interpretations (Ii, Ji) in (16)

7 To be precise, rules involving aggregates that could in principle derive certain atoms might be removed,
too. Here, we are interested in a syntactic criteria that allows us to underapproximate the set of certain
atoms.
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are finite so are the R-programs πJC i∪Ji(Pi)
(IC i,JC i)t(Ii,Ji) obtained from each Pi in the

instantiation sequence.

Theorem 29. Let (Pi)i∈I be a (refined) instantiation sequence of an aggregate program P ,

and let (IC i, JC i) and (Ii, Ji) be defined as in (15) and (16).

Then,
⋃
i∈I πJC i∪Ji(Pi)

(IC i,JC i)t(Ii,Ji) and π(P ) have the same well-founded and stable

models.

Notably, this union of R-programs is exactly the one obtained by the grounding

algorithm proposed in the next section (cf. Theorem 34).

Example 19. We continue Example 18.

The approximate model of the instantiation sequence (Pi)i∈I, defined in Definition 14,

is less precise than the well-founded model of the sequence, viz.

AM ((Pi)i∈I) = (∅, {p(1), p(2), q(2), q(3), x, y}) t F.

This is because we have to use AM F,F
E (P5) to approximate the well-founded model of

component P5. Here, the set E = {a/1, b/1} determined by (14) forces us to uncon-

ditionally assume instances of ¬q(X) and ¬p(X) to be true. Thus, we get (I5, J5) =

(∅, {p(1), p(2), q(2), q(3)}) for the intermediate interpretation in (16). This is also reflected

in Definition 13, which makes us drop all rules containing negative literals over predicates

in E when calculating true atoms.

In accord with Theorem 28, we approximate the well-founded model w.r.t. the refined

instantiation sequence (Pi,j)(i,j)∈J and obtain

AM ((Pi,j)(i,j)∈J) = ({q(3)}, {p(1), p(2), q(2), q(3), x}) t F,

which, for this example, is equivalent to the well-founded model of the corresponding

ground refined instantiation sequence and more precise than the approximate model of

the instantiation sequence.

In an actual grounder implementation the approximate model is only a byproduct,

instead, it outputs a program equivalent to the one in Theorem 29:

u(1) u(2)

v(2) v(3)

p(1)← ¬q(1) ∧ u(1) p(2)← ¬q(2) ∧ u(2)

q(2)← ¬p(2) ∧ v(2) q(3)← ¬p(3) ∧ v(3)

x← ¬p(1)

Note that the rule y ← ¬q(3) is not part of the simplification because q(3) is certain.

Remark 1. The reason why we use the refined grounding is that we cannot expect a

grounding algorithm to calculate the well-founded model for a component without further

processing. But at least some consequences should be considered. Gringo is designed

to ground on-the-fly without storing any rules, so it cannot be expected to compute

all possible consequences but it should at least take all consequences from preceding

interpretations into account. With the help of a solver, we could calculate the exact

well-founded model of a component after it has been grounded.
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Whenever an aggregate program is stratified, the approximate model of its instantiation

sequence is total (and coincides with the well-founded model of the entire ground program).

Theorem 30. Let (Pi)i∈I be an instantiation sequence of an aggregate program P such

that Ei = ∅ for each i ∈ I as defined in (14).

Then, AM ((Pi)i∈I) is total.

Example 20. The dependency graph of the company controls encoding is given in

Figure 2 and follows the conventions in Example 19. Because the encoding only uses

positive literals and monotone aggregates, grounding sequences cannot be refined further.

Since the program is positive, we can apply Theorem 30. Thus, the approximate model

of the grounding sequence is total and corresponds to the well-founded model of the

program. We use the same abbreviations for predicates as in Figure 2. The well-founded

model is (F ∪ I, F ∪ I) where

F = {c(c1), c(c2), c(c3), c(c4),

o(c1, c2, 60), o(c1, c3, 20), o(c2, c3, 35), o(c3, c4, 51)} and

I = {s(c1, c2), s(c3, c4), s(c1, c3), s(c1, c4)}.

o(c1, c2, 60) c(c1) c(c3) o(c2, c3, 35)

o(c1, c3, 20) c(c2) c(c4) o(c3, c4, 51)

s(X,Y )← #sum+{S : o(X,Y, S);

S,Z : s(X,Z) ∧ o(Z, Y, S)} > 50

∧ c(X) ∧ c(Y ) ∧X 6= Y

1

2

3

4

5

6

7

8

9

Fig. 2: Rule dependencies for the company controls encoding and instance in Example 10

where c = company , o = owns, and s = controls.

6 Algorithms

This section lays out the basic algorithms for grounding rules, components, and entire

programs and characterizes their output in terms of the semantic concepts developed in

the previous sections. Of particular interest is the treatment of aggregates, which are

decomposed into dedicated normal rules before grounding and reassembled afterward.

This allows us to ground rules with aggregates by means of grounding algorithms for
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normal rules. Finally, we show that our grounding algorithm guarantees that an obtained

finite ground program is equivalent to the original non-ground program.

In the following, we refer to terms, atoms, comparisons, literals, aggregate elements,

aggregates, or rules as expressions. As in the preceding sections, all expressions, interpre-

tations, and concepts introduced below operate on the same (implicit) signature Σ unless

mentioned otherwise.

A substitution is a mapping from the variables in Σ to terms over Σ. We use ι to denote

the identity substitution mapping each variable to itself. A ground substitution maps all

variables to ground terms or themselves. The result of applying a substitution σ to an

expression e, written eσ, is the expression obtained by replacing each variable v in e by

σ(v). This directly extends to sets E of expressions, that is, Eσ = {eσ | e ∈ E}.
The composition of substitutions σ and θ is the substitution σ ◦ θ where (σ ◦ θ)(v) =

θ(σ(v)) for each variable v.

A substitution σ is a unifier of a set E of expressions if e1σ = e2σ for all e1, e2 ∈ E. In

what follows, we are interested in one-sided unification, also called matching. A substitution

σ matches a non-ground expression e to a ground expression g, if eσ = g and σ maps all

variables not occurring in e to themselves. We call such a substitution the matcher of e

to g. Note that a matcher is a unique ground substitution unifying e and g, if it exists.

This motivates the following definition.

For a (non-ground) expression e and a ground expression g, we define:

match(e, g) =

{
{σ} if there is a matcher σ from e to g

∅ otherwise

When grounding rules, we look for matches of non-ground body literals in the possibly

derivable atoms accumulated so far. The latter is captured by a four-valued interpretation

to distinguish certain atoms among the possible ones. This is made precise in the next

definition.

Definition 15. Let σ be a substitution, l be a literal or comparison, and (I, J) be a

four-valued interpretation.

We define the set of matches for l in (I, J) w.r.t. σ, written Matches
I,J
l (σ),

for an atom l = a as

MatchesI,Ja (σ) = {σ ◦ σ′ | a′ ∈ J, σ′ ∈ match(aσ, a′)},

for a ground literal l = ¬a as

MatchesI,J¬a (σ) = {σ | aσ 6∈ I}, and

for a ground comparison l = t1 ≺ t2 as in (6) as

Matches
I,J
t1≺t2(σ) = {σ | ≺ holds between t1σ and t2σ}.

In this way, positive body literals yield a (possibly empty) set of substitutions, refining

the one at hand, while negative and comparison literals are only considered when ground

and then act as a test on the given substitution.

Our function for rule instantiation is given in Algorithm 1. It takes a substitution σ
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1 function GroundRule
I,J
r,f,J′(σ, L)

2 if L 6= ∅ then // match next

3 (G, l)← (∅, Selectσ(L));

4 foreach σ′ ∈ Matches
I,J
l (σ) do

5 G← G ∪ GroundRuleI,Jr,f,J′(σ′, L \ {l});
6 return G;

7 else if f = t or B(rσ)
+ * J ′ then // rule instance

8 return {rσ};
9 else // rule seen

10 return ∅;

Algorithm 1: Grounding Rules

and a set L of literals and yields a set of ground instances of a safe normal rule r, passed

as a parameter; if called with the identity substitution and the body literals B(r) of

r, it yields ground instances of the rule. The other parameters consist of a four-valued

interpretation (I, J) comprising the set of possibly derivable atoms along with the certain

ones, a two-valued interpretation J ′ reflecting the previous value of J , and a Boolean

flag f used to avoid duplicate ground rules in consecutive calls to Algorithm 1. The idea is

to extend the current substitution in Lines 4 to 5 until we obtain a ground substitution σ

that induces a ground instance rσ of rule r. To this end, Selectσ(L) picks for each

call some literal l ∈ L such that l ∈ L+ or lσ is ground. That is, it yields either a

positive body literal or a ground negative or ground comparison literal, as needed for

computing Matches
I,J
l (σ). Whenever an application of Matches for the selected literal in

B(r) results in a non-empty set of substitutions, the function is called recursively for each

such substitution. The recursion terminates if at least one match is found for each body

literal and an instance rσ of r is obtained in Line 8. The set of all such ground instances

is returned in Line 6. (Note that we refrain from applying any simplifications to the

ground rules and rather leave them intact to obtain more direct formal characterizations

of the results of our grounding algorithms.) The test B(rσ)
+ * J ′ in Line 7 makes sure

that no ground rules are generated that were already obtained by previous invocations of

Algorithm 1. This is relevant for recursive rules and reflects the approach of semi-naive

database evaluation (Abiteboul et al. 1995).

For characterizing the result of Algorithm 1 in terms of aggregate programs, we need

the following definition.

Definition 16. Let P be an aggregate program and (I, J) be a four-valued interpretation.

We define InstI,J(P ) ⊆ Inst(P ) as the set of all instances g of rules in P satisfying

J |= π(B(g))∧I .

In terms of the program simplification in Definition 1, an instance g belongs to InstI,J (P )

iff H(g)← π(B(g))∧ ∈ π(r)I,J . Note that the members of InstI,J(P ) are not necessarily

ground, since non-global variables may remain within aggregates; though they are ground

for normal rules.

We use Algorithm 1 to iteratively compute ground instances of a rule w.r.t. an increasing

set of atoms. The Boolean flag f and the set of atoms J ′ are used to avoid duplicating
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ground instances in successive iterations. The flag f is initially set to true to not filter any

rule instances. In subsequent iterations, duplicates are omitted by setting the flag to false

and filtering rules whose positive bodies are a subset of the atoms J ′ used in previous

iterations. This is made precise in the next result.

Proposition 31. Let r be a safe normal rule and (I, J) be a finite four-valued interpre-

tation.

Then,

(a) InstI,J({r}) = GroundRule
I,J
r,t,∅(ι, B(r)) and

(b) InstI,J({r}) = InstI,J
′
({r}) ∪ GroundRuleI,Jr,f ,J′(ι, B(r)) for all J ′ ⊆ J .

Now, let us turn to the treatment of aggregates. To this end, we define the following

translation of aggregate programs to normal programs.

Definition 17. Let P be a safe aggregate program over signature Σ.

Let Σ′ be the signature obtained by extending Σ with fresh predicates

αa,r/n, and (17)

εa,r/n (18)

for each aggregate a occurring in a rule r ∈ P where n is the number of global variables

in a, and fresh predicates

ηe,a,r/(m+ n) (19)

for each aggregate element e occurring in aggregate a in rule r where m is the size of the

tuple H(e).

We define Pα, P ε, and P η as normal programs over Σ′ as follows.

• Program Pα is obtained from P by replacing each aggregate occurrence a in P with

αa,r(X1, . . . , Xn) (20)

where αa,r/n is defined as in (17) and X1, . . . , Xn are the global variables in a.

• Program P ε consists of rules

εa,r(X1, . . . , Xn)← t ≺ b ∧ b1 ∧ · · · ∧ bl (21)

for each predicate εa,r/n as in (18) where X1, . . . , Xn are the global variables in

a, a is an aggregate of form f{E} ≺ b occurring in r, t = f(∅) is the value of the

aggregate function applied to the empty set, and b1, . . . , bl are the body literals of r

excluding aggregates.

• Program P η consists of rules

ηe,a,r(t1, . . . , tm, X1, . . . , Xn)← c1 ∧ · · · ∧ ck ∧ b1 ∧ · · · ∧ bl (22)

for each predicate ηe,a,r/m+ n as in (19) where (t1, . . . , tm) = H(e), X1, . . . , Xn

are the global variables in a, {c1, . . . , ck} = B(e), and b1, . . . , bl are the body literals

of r excluding aggregates.

Summarizing the above, we translate an aggregate program P over Σ into a normal

program Pα along with auxiliary normal rules in P ε and P η, all over a signature extend-

ing Σ by the special-purpose predicates in (17) to (19). In fact, there is a one-to-one



38 R. Kaminski and T. Schaub

correspondence between the rules in P and Pα, so that we get P = Pα and P ε = P η = ∅
whenever P is normal.

Example 21. We illustrate the translation of aggregate programs on the company

controls example in Example 10. We rewrite the rule

controls(X,Y )←
a︷ ︸︸ ︷

#sum+{S : owns(X,Y, S)︸ ︷︷ ︸
e1

;

S,Z : controls(X,Z) ∧ owns(Z, Y, S)︸ ︷︷ ︸
e2

} > 50

∧ company(X) ∧ company(Y ) ∧X 6= Y

(r)

containing aggregate a with elements e1 and e2, into rules r1 to r4:

controls(X,Y )← αa,r(X,Y )

∧ company(X) ∧ company(Y ) ∧X 6= Y,
(r1)

εa,r(X,Y )← 0 > 50

∧ company(X) ∧ company(Y ) ∧X 6= Y,
(r2)

ηe1,a,r(S,X, Y )← owns(X,Y, S)

∧ company(X) ∧ company(Y ) ∧X 6= Y, and
(r3)

ηe2,a,r(S,Z,X, Y )← controls(X,Z) ∧ owns(Z, Y, S)

∧ company(X) ∧ company(Y ) ∧X 6= Y.
(r4)

We have Pα = {r1}, P ε = {r2}, and P η = {r3, r4}.
This example illustrates how possible instantiations of aggregate elements are gathered

via the rules in P η. Similarly, the rules in P ε collect instantiations warranting that the

result of applying aggregate functions to the empty set is in accord with the respective

bound. In both cases, the relevant variable bindings are captured by the special head

atoms of the rules. In turn, groups of corresponding instances of aggregate elements are

used in Definition 20 to sanction the derivation of ground atoms of form (20). These

atoms are ultimately replaced in Pα with the original aggregate contents.

We next define two functions gathering information from instances of rules in P ε and

P η. In particular, we make precise how groups of aggregate element instances are obtained

from ground rules in P η.

Definition 18. Let P be an aggregate program, and Gε and Gη be subsets of ground

instances of rules in P ε and P η, respectively. Furthermore, let a be an aggregate occurring

in some rule r ∈ P and σ be a substitution mapping the global variables in a to ground

terms.

We define

εr,a(Gε, σ) =
⋃
g∈Gε

match(raσ, g)

where ra is a rule of form (21) for aggregate occurrence a, and

ηr,a(Gη, σ) = {eσθ | g ∈ Gη, e ∈ E, θ ∈ match(reσ, g)}
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where E are the aggregate elements of a and re is a rule of form (22) for aggregate element

occurrence e in a.

Given that σ maps the global variables in a to ground terms, raσ is ground whereas

reσ may still contain local variables from a. The set εr,a(Gε, σ) has an indicative nature:

For an aggregate aσ, it contains the identity substitution when the result of applying

its aggregate function to the empty set is in accord with its bound, and it is empty

otherwise. The construction of ηr,a(G
η, σ) goes one step further and reconstitutes all

ground aggregate elements of aσ from variable bindings obtained by rules in Gη. Both

functions play a central role below in defining the function Propagate for deriving ground

aggregate placeholders of form (20) from ground rules in Gε and Gη.

Example 22. We show how to extract aggregate elements from ground instances of

rules (r3) and (r4) in Example 21.

Let Gε be empty and Gη be the program consisting of the following rules:

ηe1,a,r(60, c1, c2)← owns(c1, c2, 60)

∧ company(c1) ∧ company(c2) ∧ c1 6= c2,

ηe1,a,r(20, c1, c3)← owns(c1, c3, 20)

∧ company(c1) ∧ company(c3) ∧ c1 6= c3,

ηe1,a,r(35, c2, c3)← owns(c2, c3, 35)

∧ company(c2) ∧ company(c3) ∧ c2 6= c3,

ηe1,a,r(51, c3, c4)← owns(c3, c4, 51)

∧ company(c3) ∧ company(c4) ∧ c3 6= c4, and

ηe2,a,r(35, c2, c1, c3)← controls(c1, c2) ∧ owns(c2, c3, 35)

∧ company(c1) ∧ company(c3) ∧ c1 6= c3.

Clearly, we have εr,a(Gε, σ) = ∅ for any substitution σ because Gε = ∅. This means that

aggregate a can only be satisfied if at least one of its elements is satisfiable. In fact, we

obtain non-empty sets ηr,a(Gη, σ) of ground aggregate elements for four substitutions σ:

ηr,a(Gη, σ1) = {60 : owns(c1, c2, 60)} for σ1 : X 7→ c1, Y 7→ c2,

ηr,a(Gη, σ2) = {51 : owns(c3, c4, 51)} for σ2 : X 7→ c3, Y 7→ c4,

ηr,a(Gη, σ3) = {35, c2 : controls(c1, c2) ∧ owns(c2, c3, 35);

20 : owns(c1, c3, 20)} for σ3 : X 7→ c1, Y 7→ c3, and

ηr,a(Gη, σ4) = {35 : owns(c2, c3, 35)} for σ4 : X 7→ c2, Y 7→ c3.

For capturing the result of grounding aggregates relative to groups of aggregate elements

gathered via P η, we restrict their original translation to subsets of their ground elements.

That is, while π(a) and πa(·) draw in Definition 9 on all instances of aggregate elements

in a, their counterparts πG(a) and πa,G(·) are restricted to a subset of such aggregate

element instances:8

8 Note that the restriction to sets of ground aggregate elements is similar to the one to two-valued
interpretations in Definition 10.
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Definition 19. Let a be a closed aggregate and of form (8), E be the set of its aggregate

elements, and G ⊆ Inst(E) be a set of aggregate element instances.

We define the translation πG(a) of a w.r.t. G as follows:

πG(a) = {τ(D)
∧ → πa,G(D)

∨ | D ⊆ G,D 6 . a}∧

where

πa,G(D) = {τ(C)
∧ | C ⊆ G \D,C ∪D . a}.

As before, this translation maps aggregates, possibly including non-global variables, to

a conjunction of (ground) R-rules. The resulting R-formula is used below in the definition

of functions Propagate and Assemble.

Example 23. We consider the four substitutions σ1 to σ4 together with the sets G1 =

ηr,a(Gη, σ1) to G4 = ηr,a(Gη, σ4) from Example 22 for aggregate a.

Following the discussion after Proposition 24, we get the formulas

πG1
(aσ1) = owns(c1, c2, 60),

πG2
(aσ2) = owns(c3, c4, 51),

πG3
(aσ3) = controls(c1, c2) ∧ owns(c2, c3, 35) ∧ owns(c1, c3, 20), and

πG4(aσ4) = ⊥.
The function Propagate yields a set of ground atoms of form (20) that are used in

Algorithm 2 to ground rules having such placeholders among their body literals. Each

such special atom is supported by a group of ground instances of its aggregate elements.

Definition 20. Let P be an aggregate program, (I, J) be a four-valued interpretation,

and Gε and Gη be subsets of ground instances of rules in P ε and P η, respectively.

We define PropagateI,JP (Gε, Gη) as the set of all atoms of form ασ such that εr,a(Gε, σ)∪
G 6= ∅ and J |= πG(aσ)I with G = ηr,a(G

η, σ) where α is an atom of form (20) for

aggregate a in rule r and σ is a ground substitution for r mapping all global variables in

a to ground terms.

An atom ασ is only considered if σ warrants ground rules in Gε or Gη, signaling that

the application of α to the empty set is feasible when applying σ or that there is a

non-empty set of ground aggregate elements of α obtained after applying σ, respectively.

If this is the case, it is checked whether the set G of aggregate element instances warrants

that πG(aσ) admits stable models between I and J .

Example 24. We show how to propagate aggregates using the sets G1 to G4 and their

associated formulas from Example 23. Suppose that I = J = F ∪ {controls(c1, c2)} using

F from Example 20.

Observe that J |= πG1(aσ1)I , J |= πG2(aσ2)I , J |= πG3(aσ3)I , and J 6|= πG4(aσ4)I .

Thus, we get PropagateI,JP (Gε, Gη) = {αa,r(c1, c2), αa,r(c1, c3), αa,r(c3, c4)}.
The function Assemble yields an R-program in which aggregate placeholder atoms of

form (20) have been replaced by their corresponding R-formulas.

Definition 21. Let P be an aggregate program, and Gα and Gη be subsets of ground

instances of rules in Pα and P η, respectively.

We define Assemble(Gα, Gη) as the R-program obtained from Gα by replacing
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• all comparisons by > and

• all atoms of form ασ by the corresponding formulas πG(aσ) with G = ηr,a(G
η, σ)

where α is an atom of form (20) for aggregate a in rule r and σ is a ground

substitution for r mapping all global variables in a to ground terms.

Example 25. We show how to assemble aggregates using the sets G1 to G3 for aggregate

atoms that have been propagated in Example 24. Therefore, let Gα be the program

consisting of the following rules:

controls(c1, c2)← αa,r(c1, c2) ∧ company(c1) ∧ company(c2) ∧ c1 6= c2,

controls(c3, c4)← αa,r(c3, c4) ∧ company(c3) ∧ company(c4) ∧ c3 6= c4, and

controls(c1, c3)← αa,r(c1, c3) ∧ company(c1) ∧ company(c3) ∧ c1 6= c3.

Then, program Assemble(Gα, Gη) consists of the following rules:

controls(c1, c2)← πG1(aσ1) ∧ company(c1) ∧ company(c2) ∧ >,
controls(c3, c4)← πG2

(aσ2) ∧ company(c3) ∧ company(c4) ∧ >, and

controls(c1, c3)← πG3
(aσ3) ∧ company(c1) ∧ company(c3) ∧ >.

The next result shows how a (non-ground) aggregate program P is transformed into

a (ground) R-program πJ(P )I,J in the context of certain and possible atoms (I, J) via

the interplay of grounding P ε and P η, deriving aggregate placeholders from their ground

instances Gε and Gη, and finally replacing them in Gα by the original aggregates’ contents.

Proposition 32. Let P be an aggregate program, (I, J) be a finite four-valued in-

terpretation, Gε = InstI,J(P ε), Gη = InstI,J(P η), JA = Propagate
I,J
P (Gε, Gη), and

Gα = InstI,J∪JA(Pα).

Then,

(a) Assemble(Gα, Gη) = πJ(P )I,J and

(b) H(Gα) = Tπ(P )I (J).

Property (b) highlights the relation of the possible atoms contributed by Gα to a

corresponding application of the immediate consequence operator. In fact, this is the first

of three such relationships between grounding algorithms and consequence operators.

Let us now turn to grounding components of instantiation sequences in Algorithm 2.

The function GroundComponent takes an aggregate program P along with two sets I and

J of ground atoms. Intuitively, P is a component in a (refined) instantiation sequence

and I and J form a four-valued interpretation (I, J) comprising the certain and possible

atoms gathered while grounding previous components (although their roles get reversed in

Algorithm 3). After variable initialization, GroundComponent loops over consecutive rule

instantiations in Pα, P ε, and P η until no more possible atoms are obtained. In this case,

it returns in Line 10 the R-program obtained from Gα by replacing all ground aggregate

placeholders of form (20) with the R-formula corresponding to the respective ground

aggregate. The body of the loop can be divided into two parts: Lines 4 to 6 deal with

aggregates and Lines 7 and 8 care about grounding the actual program. In more detail,

Lines 4 and 5 instantiate programs P ε and P η, whose ground instances, Gε and Gη, are

then used in Line 6 to derive ground instances of aggregate placeholders of form (20).

The grounded placeholders are then added via variable JA to the possible atoms J when
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1 function GroundComponent(P, I, J)

2 (Gα, Gε, Gη, f, JA, JA′, J ′)← (∅, ∅, ∅, t, ∅, ∅, ∅);
3 repeat

// ground aggregate elements

4 Gε ← Gε ∪⋃r∈P ε GroundRuleI,Jr,f,J′(ι, B(r));

5 Gη ← Gη ∪⋃r∈Pη GroundRuleI,Jr,f,J′(ι, B(r));

// propagate aggregates

6 JA← Propagate
I,J
P (Gε, Gη);

// ground remaining rules

7 Gα ← Gα ∪⋃r∈Pα GroundRuleI,J∪JAr,f,J′∪JA′(ι, B(r));

8 (f, JA′, J ′, J)← (f , JA, J, J ∪H(Gα));

9 until J ′ = J ;

10 return Assemble(Gα, Gη);

Algorithm 2: Grounding Components

grounding the actual program Pα in Line 7, where J ′ and JA′ hold the previous value

of J and JA, respectively. For the next iteration, J is augmented in Line 8 with all rule

heads in Gα and the flag f is set to false. Recall that the purpose of f is to ensure that

initially all rules are grounded. In subsequent iterations, duplicates are omitted by setting

the flag to false and filtering rules whose positive bodies are a subset of the atoms J ′∪JA′

used in previous iterations.

While the inner workings of Algorithm 2 follow the blueprint given by Proposition 32.

its outer functionality boils down to applying the stable operator of the corresponding

ground program in the context of the certain and possible atoms gathered so far.

Proposition 33. Let P be an aggregate program, (IC , JC ) be a finite four-valued inter-

pretation, and J = SJC
π(P )(IC ).

Then,

(a) GroundComponent(P, IC , JC ) terminates iff J is finite.

If J is finite, then

(b) GroundComponent(P, IC , JC ) = πJC∪J(P )IC ,JC∪J and

(c) H(GroundComponent(P, IC , JC )) = J .

1 function Ground(P )

2 let (Pi)i∈I be a refined instantiation sequence for P ;

3 (F,G)← (∅, ∅);
4 foreach i ∈ I do

5 let P ′i be the program obtained from Pi as in Definition 13;

6 F ← F ∪ GroundComponent(P ′i , H(G), H(F ));

7 G← G ∪ GroundComponent(Pi, H(F ), H(G));

8 return G;

Algorithm 3: Grounding Programs
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Finally, Algorithm 3 grounds an aggregate program by iterating over the components

of one of its refined instantiation sequences. Just as Algorithm 2 reflects the application

of a stable operator, function Ground follows the definition of an approximate model

when grounding a component (cf. Definition 13). At first, facts are computed in Line 6

by using the program stripped from rules being involved in a negative cycle overlapping

with the present or subsequent components. The obtained head atoms are then used in

Line 7 as certain context atoms when computing the ground version of the component at

hand. The possible atoms are provided by the head atoms of the ground program built so

far, and with roles reversed in Line 6. Accordingly, the whole iteration aligns with the

approximate model of the chosen refined instantiation sequence (cf. Definition 14), as

made precise next.

Our grounding algorithm computes implicitly the approximate model of the chosen

instantiation sequence and outputs the corresponding ground program; it terminates

whenever the approximate model is finite.

Theorem 34. Let P be an aggregate program, (Pi)i∈I be a refined instantiation sequence

for P , and (IC i, JC i) and (Ii, Ji) be defined as in (15) and (16).

If (Pi)i∈I is selected by Algorithm 3 in Line 2, then we have that

(a) the call Ground(P ) terminates iff AM ((Pi)i∈I) is finite, and

(b) if AM ((Pi)i∈I) is finite, then Ground(P ) =
⋃
i∈I πJC i∪Ji(Pi)

(IC i,JC i)t(Ii,Ji).

As already indicated by Theorem 29, grounding is governed by the series of consecutive

approximate models (Ii, Ji) in (16) delineating the stable models of each ground program

in a (refined) instantiation sequence. Whenever each of them is finite, we also obtain a

finite grounding of the original program. Note that the entire ground program is composed

of the ground programs of each component in the chosen instantiation sequence. Hence,

different sequences may result in different overall ground programs.

Most importantly, our grounding machinery guarantees that an obtained finite ground

program has the same stable models as the original non-ground program.

Corollary 35 (Main result). Let P be an aggregate program.

If Ground(P ) terminates, then P and Ground(P ) have the same well-founded and stable

models.

Example 26. The execution of the grounding algorithms on Example 19 is illustrated

in Table 1. Each individual table depicts a call to GroundComponent where the header

above the double line contains the (literals of the) rules to be grounded and the rows

below trace how nested calls to GroundRule proceed. The rules in the header contain the

body literals in the order as they are selected by GroundRule with the rule head as the

last literal. Calls to GroundRule are depicted with vertical lines and horizontal arrows.

A vertical line represents the iteration of the loop in Lines 4 to 5. A horizontal arrow

represents a recursive call to GroundRule in Line 5. Each row in the table not marked with

× corresponds to a ground instance as returned by GroundRule. Furthermore, because

all components are stratified, we only show the first iteration of the loop in Lines 3 to 9

of Algorithm 2 as the second iteration does not produce any new ground instances.

Grounding components P1 to P4 results in the programs F = G = {u(1)← >, u(2)←
>, v(2) ← >, v(3) ← >}. Since grounding is driven by the sets of true and possible
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P ′
5,1 = ∅

(a) I5,1 = I4 ∪H(GC(P ′
5,1, J4, I4))

1u(X) ¬q(X) p(X)

1.1u(1) ¬q(1) p(1)

u(2) ¬q(2) p(2)

(b) J5,1 = J4 ∪H(GC(P5,1, I5,1, J4))

1v(X) ¬p(X) q(X)

1.1v(2) ×
v(3) ¬p(3) q(3)

(c) I5,2 = I5,1 ∪H(GC(P ′
5,2, J5,1, I5,1))

1v(X) ¬p(X) q(X)

1.1v(2) ¬p(2) q(2)

v(3) ¬p(3) q(3)

(d) J5,2 = J5,1 ∪H(GC(P5,2, I5,2, J5,1))

1¬p(1) x

1.1×
(e) I6 = I5,2 ∪H(GC(P ′

6, J5,2, I5,2))

1¬p(1) x

1.1¬p(1) x

(f) J6 = J5,2 ∪H(GC(P6, I6, J5,2))

1¬q(3) y

1.1×
(g) I7 = I6 ∪H(GC(P ′

7, J6, I6))

1¬q(3) y

1.1×
(h) J7 = J6 ∪H(GC(P7, I7, J6))

Table 1: Grounding of components P5,1, P5,2, P6, and P7 from Example 19 where GC =

GroundComponent.

atoms, we focus on the interpretations Ii and Ji where i is a component index in the

refined instantiation sequence. We start tracing the grounding starting with I4 = J4 =

{u(1), u(2), v(2), v(3)}.
The grounding of P5,1 is depicted in Tables 1a and 1b. We have E = {b/1} because

predicate b/1 is used in the head of the rule in P5,2. Thus, GroundComponent(∅, J4, I4) in

Line 6 returns the empty set because P ′5,1 = ∅. We get I5,1 = I4. In the next line, the

algorithm calls GroundComponent(P5,1, I5,1, J4) and we get J5,1 = {p(1), p(2)}. Note that

at this point, it is not known that q(1) is not derivable and so the algorithm does not

derive p(1) as a fact.

The grounding of P5,2 is given in Tables 1c and 1d. This time, we have E = ∅ and

P5,2 = P ′5,2. Thus, the first call to GroundRule determines q(3) to be true while the second

call additionally determines the possible atom q(2).

The grounding of P6 is illustrated in Tables 1e and 1f. Note that we obtain that x is

possible because p(1) was not determined to be true.

The grounding of P7 is depicted in Tables 1g and 1h. Note that, unlike before, we

obtain that y is false because q(3) was determined to be true.

Furthermore, observe that the choice of the refined instantiation sequence determines

the output of the algorithm. In fact, swapping P5,1 and P5,2 in the sequence would result

in x being false and y being possible.

To conclude, we give the grounding of the program as output by gringo in Table 2. The

grounder furthermore omits the true body literals marked in green.

Example 27. We illustrate the grounding of aggregates on the company controls example

in Example 10 using the grounding sequence (Pi)1≤i≤9 and the set of facts F from

Example 20. Observe that the grounding of components P1 to P8 produces the program
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u(1) u(2)

v(2) v(3)

p(1)← ¬q(1) ∧ u(1) p(2)← ¬q(2) ∧ u(2)

q(2)← ¬p(2) ∧ v(2) q(3)← ¬p(3) ∧ v(3)

x← ¬p(1)

Table 2: Grounding of Example 19 as output by gringo.

{a ← > | a ∈ F}. We focus on how component P9 is grounded. Because there are no

negative dependencies, the components P9 and P ′9 in Line 5 of Algorithm 3 are equal. To

ground component P9, we use the rewriting from Example 21.

The grounding of component P9 is illustrated in Table 3, which follows the same

conventions as in Example 26. Because the program is positive, the calls in Lines 6 and 7

in Algorithm 3 proceed in the same way and we depict only one of them. Furthermore,

because this example involves a recursive rule with an aggregate, the header consists of

five rows separated by dashed lines processed by Algorithm 2. The first row corresponds

to P ε9 grounded in Line 4, the second and third to P η9 grounded in Line 5, the fourth to

aggregate propagation in Line 6, and the fifth to Pα9 grounded in Line 7. After the header

follow the iterations of the loop in Lines 3 to 9. Because the component is recursive,

processing the component requires four iterations, which are separated by solid lines

in the table. The right-hand side column of the table contains the iteration number

and a number indicating which row in the header is processed. The row for aggregate

propagation lists the aggregate atoms that have been propagated.

The grounding of rule r2 in Row 1.1 does not produce any rule instances in any iteration

because the comparison 0 > 50 is false. By first selecting this literal when grounding

the rule, the remaining rule body can be completely ignored. Actual systems implement

heuristics to prioritize such literals. Next, in the grounding of rule r3 in Row 1.2, direct

shares given by facts over owns/3 are accumulated. Because the rule does not contain

any recursive predicates, it only produces ground instances in the first iteration. Unlike

this, rule r4 contains the recursive predicate controls/2 . It does not produce instances

in the first iteration in Row 1.3 because there are no corresponding atoms yet. Next,

aggregate propagation is triggered in Row 1.4, resulting in aggregate atoms αa,r(c1, c2)

and αa,r(c3, c4), for which enough shares have been accumulated in Row 1.2. Note that

this corresponds to the propagation of the sets G1 and G2 in Example 24. With these

atoms, rule r1 is instantiated in Row 1.5, leading to new atoms over controls/2. Observe

that, by selecting atom αa,r(X,Y ) first, GroundRule can instantiate the rule without

backtracking.

In the second iteration, the newly obtained atoms over predicate controls/2 yield atom

ηe1,a,r(35, c2, c1, c3) in Row 2.3, which in turn leads to the aggregate atom αa,r(c1, c3)

resulting in further instances of r4. Note that this corresponds to the propagation of the

set G3 in Example 24.

The following iterations proceed in a similar fashion until no new atoms are accumulated

and the grounding loop terminates. Note that the utilized selection strategy affects the

amount of backtracking in rule instantiation. One particular strategy used in gringo is to
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10 > 50 c(X) c(Y ) X 6= Y εa,r(X,Y )

2o(X,Y, S) c(X) c(Y ) X 6= Y ηe1,a,r(S,X, Y )

3s(X,Z) o(Z, Y, S) c(X) c(Y ) X 6= Y ηe2,a,r(S,Z,X, Y )

4Propagate

5αa,r(X,Y ) c(X) c(Y ) X 6= Y s(X,Y )

1.1×
1.2o(c1, c2, 60) c(c1) c(c2) c1 6= c2 ηe1,a,r(60, c1, c2)

o(c1, c3, 20) c(c1) c(c3) c1 6= c3 ηe1,a,r(20, c1, c3)

o(c2, c3, 35) c(c2) c(c3) c2 6= c3 ηe1,a,r(35, c2, c3)

o(c3, c4, 51) c(c3) c(c4) c3 6= c4 ηe1,a,r(51, c3, c4)

1.3×
1.4{αa,r(c1, c2), αa,r(c3, c4)}
1.5αa,r(c1, c2) c(c1) c(c2) c1 6= c2 s(c1, c2)

αa,r(c3, c4) c(c3) c(c4) c3 6= c4 s(c3, c4)

2.1×
2.2×
2.3s(c1, c2) o(c2, c3, 35) c(c1) c(c3) c1 6= c3 ηe1,a,r(35, c2, c1, c3)

s(c3, c4) ×
2.4{αa,r(c1, c3)}
2.5αa,r(c1, c3) c(c1) c(c3) c1 6= c3 s(c1, c3)

3.1×
3.2×
3.3s(c1, c3) o(c3, c4, 51) c(c1) c(c4) c1 6= c4 ηe1,a,r(51, c3, c1, c4)

3.4{αa,r(c1, c4)}
3.5αa,r(c1, c4) c(c1) c(c4) c1 6= c4 s(c1, c4)

4.1×
4.2×
4.3s(c1, c4) ×
4.4∅
4.5×

Table 3: Tracing grounding of component P9 where c = company , o = owns, and

s = controls.

prefer atoms over recursive predicates. If there is only one such atom, GroundRule can

select this atom first and only has to consider newly derived atoms for instantiation. The

table is made more compact by applying this strategy. Further techniques are available

in the database literature (Ullman 1988) that also work in case of multiple atoms over

recursive predicates.

To conclude, we give the ground rules as output by a grounder like gringo in Table 4.

We omit the translation of aggregates because its main objective is to show correctness

of the algorithms. Solvers like clasp implement translations or even native handling of

aggregates geared toward efficient solving (Gebser et al. 2009). Since our example program
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controls(c1, c2)← #sum+{60 : owns(c1, c2, 60)} > 50

∧ company(c1) ∧ company(c2) ∧ c1 6= c2

controls(c3, c4)← #sum+{51 : owns(c3, c4, 51)} > 50

∧ company(c3) ∧ company(c4) ∧ c3 6= c4

controls(c1, c3)← #sum+{20 : owns(c1, c3, 20);

35, c2 : controls(c1, c2) ∧ owns(c2, c3, 35)} > 50

∧ company(c1) ∧ company(c3) ∧ c1 6= c3

controls(c1, c4)← #sum+{51, c3 : controls(c1, c3) ∧ owns(c3, c4, 51)} > 50

∧ company(c1) ∧ company(c4) ∧ c1 6= c4

Table 4: Grounding of the company controls problem from Example 10 as output by

gringo.

is positive, gringo is even able to completely evaluate the rules to facts omitting true

literals from rule bodies marked in green.

7 Refinements

Up to now, we were primarily concerned by characterizing the theoretical and algorithmic

cornerstones of grounding. This section refines these concepts by further detailing aggregate

propagation, algorithm specifics, and the treatment of language constructs from gringo’s

input language.

7.1 Aggregate propagation

We used in Section 6 the relative translation of aggregates for propagation, namely,

formula πG(aσ) in Definition 20, to check whether an aggregate is satisfiable. In this

section, we identify several aggregate specific properties that allow us to implement more

efficient algorithms to perform this check.

To begin with, we establish some properties that greatly simplify the treatment of

(arbitrary) monotone or antimonotone aggregates.

We have already seen in Proposition 24 that π(a)I is classically equivalent to π(a)

for any closed aggregate a and two-valued interpretation I. Here is its counterpart for

antimonotone aggregates.

Proposition 36. Let a be a closed aggregate.

If a is antimonotone, then π(a)I is classically equivalent to > if I |= π(a) and ⊥
otherwise for any two-valued interpretation I.

Example 28. In Example 24, we check whether the interpretation J satisfies the formu-

las πG1
(aσ1)I to πG4

(aσ4)I .

Using Proposition 24, this boils down to checking
∑
e∈Gi,J|=B(e)H(e) > 50 for each

1 ≤ i ≤ 4. We get 60 > 50, 51 > 50, 55 > 50, and 35 6> 50 for each Gi, which agrees with

checking J |= πGi(aσi)I .
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An actual implementation can maintain a counter for the current value of the sum for

each closed aggregate instance, which can be updated incrementally and compared with

the bound as new instances of aggregate elements are grounded.

Next, we see that such counter based implementations are also possible #sum aggregates

using the <, ≤, >, or ≥ relations. We restrict our attention to finite interpretations

because Proposition 37 is intended to give an idea on how to implement an actual

propagation algorithm for aggregates (infinite interpretations would add more special

cases). Furthermore, we just consider the case that the bound is an integer here; the

aggregate is constant for any other ground term.

Proposition 37. Let I be a finite two-valued interpretation, E be a set of aggregate

elements, and b be an integer.

For T = H({e ∈ Inst(E) | I |= B(e)}), we get

(a) π(#sum{E} � b)I is classically equivalent to π(#sum+{E} � b′)
with � ∈ {≥, >} and b′ = b−#sum−(T ), and

(b) π(#sum{E} ≺ b)I is classically equivalent to π(#sum−{E} ≺ b′)
with ≺ ∈ {≤, <} and b′ = b−#sum+(T ).

The remaining propositions identify properties that can be exploited when propagating

aggregates over the = and 6= relations.

Proposition 38. Let I be a two-valued interpretation, E be a set of aggregate elements,

and b be a ground term.

We get the following properties:

(a) π(f{E} < b)I ∨ π(f{E} > b)I implies π(f{E} 6= b)I , and

(b) π(f{E} = b)I implies π(f{E} ≤ b)I ∧ π(f{E} ≥ b)I .

The following proposition identifies special cases when the implications in Proposition 38

are equivalences. Another interesting aspect of this proposition is that we can actually

replace #sum aggregates over = and 6= with a conjunction or disjunction, respectively,

at the expense of calculating a less precise approximate model. The conjunction is

even strongly equivalent to the original aggregate under Ferraris’ semantics but not the

disjunction.

Proposition 39. Let I and J be two-valued interpretations, f be an aggregate function

among #count, #sum+, #sum− or #sum, E be a set of aggregate elements, and b be an

integer.

We get the following properties:

(a) for I ⊆ J , we have J |= π(f{E} < b)I ∨ π(f{E} > b)I iff J |= π(f{E} 6= b)I , and

(b) for J ⊆ I, we have J |= π(f{E} = b)I iff J |= π(f{E} ≤ b)I ∧ π(f{E} ≥ b)I .

The following proposition shows that full propagation of #sum, #sum+, or #sum−

aggregates over relations = and 6= involves solving the subset sum problem (Martello and

Toth 1990). We assume that we propagate w.r.t. some polynomial number of aggregate

elements. Propagating possible atoms when using the = relation, i.e., when I ⊆ J , involves

deciding an NP problem and propagating certain atoms when using the 6= relation, i.e.,
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when J ⊆ I, involves deciding a co-NP problem.9 Note that the decision problem for

#count aggregates is polynomial, though.

Proposition 40. Let I and J be finite two-valued interpretations, f be an aggregate

function, E be a set of aggregate elements, and b be a ground term.

For TI = {H(e) | e ∈ Inst(E), I |= B(e)} and TJ = {H(e) | e ∈ Inst(E), J |= B(e)},
we get the following properties:

(a) for J ⊆ I, we have J |= π(f{E} 6= b)I iff there is no set X ⊆ TI such that

f(X ∪ TJ) = b, and

(b) for I ⊆ J , we have J |= π(f{E} = b)I and iff there is a set X ⊆ TJ such that

f(X ∪ TI) = b.

7.2 Algorithmic refinements

The calls in Lines 6 and 7 in Algorithm 3 can sometimes be combined to calculate certain

and possible atoms simultaneously. This can be done whenever a component does not

contain recursive predicates. In this case, it is sufficient to just calculate possible atoms

along with rule instances in Line 7 augmenting Algorithm 1 with an additional check

to detect whether a rule instance produces a certain atom. Observe that this condition

applies to all stratified components but can also apply to components depending on

unstratified components. In fact, typical programs following the generate, define, and test

methodology (Lifschitz 2002; Niemelä 2008) of ASP, where the generate part uses choice

rules (Simons et al. 2002) (see below), do not contain unstratified negation at all. When

a grounder is combined with a solver built to store rules and perform inferences, one can

optimize for the case that there are no negative recursive predicates in a component. In

this case, it is sufficient to compute possible atoms along with their rule instances and leave

the computation of certain atoms to the solver. Finally, note that gringo currently does

not separate the calculation of certain and possible atoms at the expense of computing a

less precise approximate model and possibly additional rule instances.

Example 29. For the following example, gringo computes atom p(4) as unknown but

the algorithms in Section 6 identify it as true.

r(1, 4) p(1)← ¬q(1)

r(2, 3) q(1)← ¬p(1)

r(3, 1) p(2)

p(Y )← p(X) ∧ r(X,Y ).

When grounding the last rule, gringo determines p(4) to be possible in the first iteration

because p(1) is unknown at this point. In the second iteration, it detects that p(1) is a fact

but does not use it for grounding again. If there were further rules depending negatively

on predicate p/1, inapplicable rules might appear in gringo’s output.

Another observation is that the loop in Algorithm 2 does not produce further rule

9 Note that clingo’s grounding algorithm does not attempt to solve these problems in all cases. It simply
over- or underapproximates the satisfiability using Proposition 38.
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instances in a second iteration for components without recursive predicates. Gringo

maintains an index (Garcia-Molina et al. 2009) for each positive body literal to speed up

matching of literals; whenever none of these indexes, used in rules of the component at

hand, are updated, further iterations can be skipped.

Just like dlv ’s grounder, gringo adapts algorithms for semi-naive evaluation from the

field of databases. In particular, it works best on linear programs (Abiteboul et al. 1995),

having at most one positive literal occurrence over a recursive predicate in a rule body.

The program in Example 10 for the company controls problem is such a linear program

because controls/2 is the only recursive predicate. Algorithm 1 can easily be adapted to

efficiently ground linear programs by making sure that the recursive positive literal is

selected first. We then only have to consider matches that induce atoms not already used

for instantiations in previous iterations of the loop in Algorithm 2 to reduce the amount

of backtracking to find rule instances. In fact, the order in which literals are selected in

Line 3 is crucial for the performance of Algorithm 1. Gringo uses an adaptation of the

selection heuristics presented by Leone et al. (2001) that additionally takes into account

recursive predicates and terms with function symbols.

To avoid unnecessary backtracking when grounding general logic programs, gringo

instantiates rules using an algorithm similar to the improved semi-naive evaluation with

optimizations for linear rules (Abiteboul et al. 1995).

7.3 Capturing gringo’s input language

We presented aggregate programs where rule heads are simple atoms. Beyond that,

gringo’s input language offers more elaborate language constructs to ease modeling.

A prominent such construct are so-called choice rules (Simons et al. 2002). Syntactically,

one-element choice rules have the form {a} ← B, where a is an atom and B a body.

Semantically, such a rule amounts to a ∨ ¬a ← B or equivalently a ← ¬¬a ∧ B. We

can easily add support for grounding choice rules, that is, rules where the head is not a

plain atom but an atom marked as a choice, by discarding choice rules when calculating

certain atoms and treating them like normal rules when grounding possible atoms. A

translation that allows for supporting head aggregates using a translation to aggregate

rules and choice rules is given by Gebser et al. (2015). Note that gringo implements

further refinements to omit deriving head atoms if a head aggregate cannot be satisfied.

Another language feature that can be instantiated in a similar fashion as body aggregates

are conditional literals. Gringo adapts the rewriting and propagation of body aggregates

to also support grounding of conditional literals.

Yet another important language feature are disjunctions in the head of rules (Gelfond

and Lifschitz 1991). As disjunctive logic programs, aggregate programs allow us to solve

problems from the second level of the polynomial hierarchy. In fact, using  Lukasiewicz’

theorem (Lukasiewicz 1941), we can write a disjunctive rule of form

a ∨ b← B

as the shifted strongly equivalent R-program:

a← (b→ a) ∧B
b← (a→ b) ∧B.
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We can use this as a template to design grounding algorithms for disjunctive programs.

In fact, gringo calculates the same approximate model for the disjunctive rule and the

shifted program.

The usage of negation as failure is restricted in R-programs. Note that any occurrence

of a negated literal l in a rule body can be replaced by an auxiliary atom a adding rule

a ← l to the program. The resulting program preserves the stable models modulo the

auxiliary atoms. This translation can serve as a template for double negation or negation

in aggregate elements as supported by gringo.

Integrity constraints are a straightforward extension of logic programs. They can be

grounded just like normal rules deriving an auxiliary atom that stands for ⊥. Grounding

can be stopped whenever the auxiliary atom is derived as certain. Integrity constraints also

allow for supporting negated head atoms, which can be shifted to rule bodies (Janhunen

2001) resulting in integrity constraints, and then treated like negation in rule bodies.

A frequently used convenience feature of gringo are term pools (Gebser et al. 2015;

Gebser et al. 2015). The grounder handles them by removing them in a rewriting step.

For example, a rule of form

h(X;Y, Z)← p(X;Y ), q(Z)

is factored out into the following rules:

h(X,Z)← p(X), q(Z)

h(X,Z)← p(Y ), q(Z)

h(Y, Z)← p(X), q(Z)

h(Y, Z)← p(Y ), q(Z)

We can then apply the grounding algorithms developed in Section 6.

To deal with variables ranging over integers, gringo supports interval terms (Gebser

et al. 2015; Gebser et al. 2015). Such terms are handled by a translation to inbuilt range

predicates. For example the program

h(l..u)

for terms l and u is rewritten into

h(A)← rng(A, l, u)

by introducing auxiliary variable A and range atom rng(A, l, u). The range atom provides

matches including all substitutions that assign integer values between l and u to A. Special

care has to be taken regarding rule safety, the range atom can only provide bindings for

variable A but needs variables in the terms l and u to be provided elsewhere.

A common feature used when writing logic programs are terms involving arithmetic

expressions and assignments. Both influence which rules are considered safe by the

grounder. For example, the rule

h(X,Y )← p(X + Y, Y ) ∧X = Y + Y
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is rewritten into

h(X,Y )← p(A, Y ) ∧X = Y + Y ∧A = X + Y

by introducing auxiliary variable A. The rule is safe because we can match the literals

in the order as given in the rewritten rule. The comparison X = Y + Y extends the

substitution with an assignment for X and the last comparison serves as a test. Gringo

does not try to solve complicated equations but supports simple forms like the one given

above.

Last but not least, gringo does not just support terms in assignments but it also

supports aggregates in assignments. To handle such kind of aggregates, the rewriting and

propagation of aggregates has to be extended. This is achieved by adding an additional

variable to aggregate replacement atoms (20), which is assigned by propagation. For

example, the rule

h(X,Y )← q(X) ∧
a︷ ︸︸ ︷

Y = #sum{Z : p(X,Z)}︸ ︷︷ ︸
r

is rewritten into

εa,r(X)← q(X)

ηe,a,r(Z,X)← p(X,Z) ∧ q(X)

h(X,Y )← αa,r(X,Y )

Aggregate elements are grounded as before but values for variable Y are computed during

aggregate propagation. In case of multiple assignment aggregates, additional care has to

to be taken during the rewriting to ensure that the rewritten rules are safe.

8 Related work

This section aims at inserting our contributions into the literature, starting with theoretical

aspects over algorithmic ones to implementations.

Splitting for infinitary formulas has been introduced by Harrison and Lifschitz (2016)

generalizing results of Janhunen et al. (2007) and Ferraris et al. (2009). To this end, the

concept of an A-stable model is introduced (Harrison and Lifschitz 2016). We obtain

the following relationship between our definition of a stable model relative to a set IC

and A-stable models: For an N -program P , we have that if X is a stable model of P

relative to IC , then X ∪ IC is an (A \ IC )-stable model of P . Similarly, we get that if

X is an A-stable model of P , then S
X\A
P (X) is a stable model of P relative to X \ A.

The difference between the two concepts is that we fix atoms IC in our definition while

A-stable models allow for assigning arbitrary truth values to atoms in A \A (Harrison

and Lifschitz 2016, Proposition 1). With this, let us compare our handling of program

sequences to symmetric splitting (Harrison and Lifschitz 2016). Let (Pi)i∈I be a refined

instantiation sequence of aggregate program P , and F =
⋃
i<j π(Pi) and G =

⋃
i≥j π(Pi)

for some j ∈ I such that H(F ) 6= H(G). We can use the infinitary splitting theorem

of Harrison and Lifschitz (2016) to calculate the stable model of F∧ ∧G∧ through the

H(F )- and A \H(F )-stable models of F∧ ∧G∧. Observe that instantiation sequences do
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not permit positive recursion between their components and infinite walks are impossible

because an aggregate program consists of finitely many rules inducing a finite dependency

graph. Note that we additionally require the condition H(F ) 6= H(G) because components

can be split even if their head atoms overlap. Such a split can only occur if overlapping

head atoms in preceding components are not involved in positive recursion.

Next, let us relate our operators to the ones defined by Truszczyński (2012). First of

all, it is worthwhile to realize that the motivation of Truszczyński (2012) is to conceive

operators mimicking model expansion in id-logic by adding certain atoms. More precisely,

let Φ, St , and Wf stand for the versions of the Fitting, stable, and well-founded operators

defined by Truszczyński (2012). Then, we get the following relations to the operators

defined in the previous sections:

StP,IC (J) = lfp(ΦP,IC (·, J))

= lfp(T IC
PJ ) ∪ IC

= SIC
P (J) ∪ IC .

For the well-founded operator we obtain

Wf P,IC (I, J) = W IC ,IC
P (I, J) t IC .

Our operators allow us to directly calculate the atoms derived by a program. The versions

of Truszczyński (2012) always include the input facts in their output and the well-founded

operator only takes certain but not possible atoms as input.

In fact, we use operators as Denecker et al. (2000) to approximate the well-founded

model and to obtain a ground program. While we apply operators to infinitary formulas

(resulting from a translation of aggregates) as introduced by Truszczyński (2012), there

has also been work on applying operators directly to aggregates. Vanbesien et al. (2021)

provide an overview. Interestingly, the high complexity of approximating the aggregates

pointed out in Proposition 40 has already been identified by Pelov et al. (2007).

Simplification can be understood as a combination of unfolding (dropping rules if a

literal in the positive body is not among the head atoms of a program, i.e., not among

the possible atoms) and negative reduction (dropping rules if an atom in the negative

body is a fact, i.e., the literal is among the certain atoms) (Brass and Dix 1999; Brass

et al. 2001). Even the process of grounding can be seen as a directed way of applying

unfolding (when matching positive body literals) and negative reduction (when matching

negative body literals). When computing facts, only rules whose negative body can be

removed using positive reduction are considered.

The algorithms of Kemp et al. (1991) to calculate well-founded models perform a

computation inspired by the alternating sequence to define the well-founded model as Van

Gelder (1993). Our work is different in so far as we are not primarily interested in

computing the well-founded model but the grounding of a program. Hence, our algorithms

stop after the second application of the stable operator (the first to compute certain and

the second to compute possible atoms). At this point, a grounder can use algorithms

specialized for propositional programs to simplify the logic program at hand. Algorithmic

refinements for normal logic programs as proposed by Kemp et al. (1991) also apply in

our setting.
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Last but not least, let us outline the evolution of grounding systems over the last two

decades.

The lparse (Syrjänen 2001a) grounder introduced domain- or omega-restricted pro-

grams (Syrjänen 2001b). Unlike safety, omega-restrictedness is not modular. That is, the

union of two omega-restricted programs is not necessarily omega-restricted while the

union of two safe programs is safe. Apart from this, lparse supports recursive monotone

and antimonotone aggregates. However, our company controls encoding in Example 10 is

not accepted because it is not omega-restricted. For example, variable X in the second

aggregate element needs a domain predicate. Even if we supplied such a domain predicate,

lparse would instantiate variable X with all terms provided by the domain predicate

resulting in a large grounding. As noted by Ferraris and Lifschitz (2005), recursive non-

monotone aggregates (sum aggregates with negative weights) are not supported correctly

by lparse.

Gringo 1 and 2 add support for lambda-restricted programs (Gebser et al. 2007)

extending omega-restricted programs. This augments the set of predicates that can be

used for instantiation but is still restricted as compared to safe programs. That is, lambda-

restrictedness is also not modular and our company controls program is still not accepted.

At the time, the development goal was to be compatible to lparse but extend the class of

accepted programs. Notably, gringo 2 adds support for additional aggregates (Gebser et al.

2009). Given its origin, gringo up to version 4 handles recursive nonmonotone aggregates

in the same incorrect way as lparse.

The grounder of the dlv system has been the first one to implement grounding algorithms

based on semi-naive evaluation (Eiter et al. 1997). Furthermore, it implements various

techniques to efficiently ground logic programs (Leone et al. 2001; Faber et al. 2001;

Perri et al. 2007). The dlvA system is the first dlv -based system to support recursive

aggregates (Dell’Armi et al. 2003), which is nowadays also available in recent versions of

idlv (Calimeri et al. 2017).

Gringo 3 closed up to dlv being the first gringo version to implement grounding

algorithms based on semi-naive evaluation (Gebser et al. 2011). The system accepts safe

rules but still requires lambda-restrictedness for predicates within aggregates. Hence, our

company controls encoding is still not accepted.

Gringo 4 implements grounding of aggregates with algorithms similar to the ones

presented in Section 6 (Gebser et al. 2015). Hence, it is the first version that accepts our

company controls encoding.

Finally, gringo 5 refines the translation of aggregates as proposed by Alviano et al.

(2015) to properly support nonmonotone recursive aggregates and refines the semantics

of pools and undefined arithmetics (Gebser et al. 2015).

Another system with a grounding component is the idp system (De Cat et al. 2014).

Its grounder instantiates a theory by assigning sorts to variables. Even though it supports

inductive definitions, it relies solely on the sorts of variables (Wittocx et al. 2010) to

instantiate a theory. In case of inductive definitions, this can lead to instances of definitions

that can never be applied. We believe that the algorithms presented in Section 6 can also

be implemented in an idp system decreasing the instantiation size of some problems (e.g.,

the company controls problem presented in Example 10).

Last but not least, we mention that not all ASP systems follow a two-phase approach
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of grounding and solving but rather adapt a lazy approach by grounding on-the-fly during

solving (Palù et al. 2009; Lefèvre et al. 2017; Weinzierl et al. 2020).

9 Conclusion

We have provided a first comprehensive elaboration of the theoretical foundations of

grounding in ASP. This was enabled by the establishment of semantic underpinnings of

ASP’s modeling language in terms of infinitary (ground) formulas (Harrison et al. 2014;

Gebser et al. 2015). Accordingly, we start by identifying a restricted class of infinitary

programs, namely, R-programs, by limiting the usage of implications. Such programs allow

for tighter semantic characterizations than general F-programs, while being expressive

enough to capture logic programs with aggregates. Interestingly, we rely on well-founded

models (Bruynooghe et al. 2016; Truszczyński 2018) to approximate the stable models of

R-programs (and simplify them in a stable-models preserving way). This is due do the

fact that the (id-)well-founded-operator enjoys monotonicity, which lends itself to the

characterization of iterative grounding procedures. The actual semantics of non-ground

aggregate programs is then defined via a translation to R-programs. This setup allows us

to characterize the inner workings of our grounding algorithms for aggregate programs in

terms of the operators introduced for R-programs. It turns out that grounding amounts to

calculating an approximation of the well-founded model together with a ground program

simplified with that model. This does not only allow us to prove the correctness of our

grounding algorithms but moreover to characterize the output of a grounder like gringo

in terms of established formal means. To this end, we have shown how to split aggregate

programs into components and to compute their approximate models (and corresponding

simplified ground programs). The key instruments for obtaining finite ground programs

with finitary subformulas have been dedicated forms of program simplification and

aggregate translation. Even though, we limit ourselves to R-programs, we capture the

core aspects of grounding: a monotonically increasing set of possibly derivable atoms

and on-the-fly (ground) rule generation. Additional language features of gringo’s input

language are relatively straightforward to accommodate by extending the algorithms

presented in this paper.

For reference, we implemented the presented algorithms in a prototypical grounder,

µ-gringo, supporting aggregate programs (see Footnote 1). While it is written to be as

concise as possible and not with efficiency in mind, it may serve as a basis for experiments

with custom grounder implementations. The actual gringo system supports a much larger

language fragment. There are some differences compared to the algorithms presented here.

First, certain atoms are removed from rule bodies if not explicitly disabled via a command

line option. Second, translation π is only used to characterize aggregate propagation.

In practice, gringo translates ground aggregates to monotone aggregates (Alviano et al.

2015). Further translation (Bomanson et al. 2014) or even native handling (Gebser et al.

2009) of them is left to the solver. Finally, in some cases, gringo might produce more

rules than the algorithms presented above. This should not affect typical programs. A

tighter integration of grounder and solver to further reduce the number of ground rules is

an interesting topic of future research.
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Appendix A Proofs

We use the following reduct-based characterization of strong equivalence (Turner 2003).

Lemma 41. Sets H1 and H2 of infinitary formulas are strongly equivalent iff HI1 and

HI2 are classically equivalent for all two-valued interpretations I.

Proof. Let I and J be two-valued interpretations, and H be an infinitary formula. Clearly,

I |= HJ iff I ∩ J |= HJ . Thus, we only need to consider interpretations such that I ⊆ J .

By Lemma 1 due to Harrison et al. (2017), we have that I |= HJ iff (I, J) is an HT-model

of H. The proposition holds because by Theorem 3 Item (iii) due to Harrison et al. (2017),

we have that H1 and H2 are strongly equivalent iff they have the same HT models.

Proof of Proposition 2. Let F = {B(r)→ H(r) | r ∈ P}∧.

First, we consider the case I |= F . By Lemma 1 due to Truszczyński (2012), this implies

that P I and F I are classically equivalent and thus have the same minimal models.10

Thus, I is a stable model of P iff I is a stable model of F .

Second, we consider the case I 6|= F and show that I is neither a stable model of F nor

P . Proposition 1 by Truszczyński (2012) states that I is a model of F iff I is a model of

F I . Thus, I is not a stable model of F . Furthermore, because I 6|= F , there is a rule r ∈ P
such that I 6|= B(r)→ H(r). Consequently, we have I |= B(r) and I 6|= H(r). Using the

above proposition again, we get I |= B(r)I . Because I |= B(r)I and I 6|= H(r), we get

I 6|= rI and in turn I 6|= P I . Thus, I is not a stable model of P either.

Lemma 42. Let F be a formula, and I and J be interpretations.

If F is positive and I ⊆ J , then I |= F implies J |= F .

Proof. This property can be shown by induction over the rank of the formula.

The following two propositions shed some light on the two types of reducts.

Lemma 43. Let F be a formula, and I and J be interpretations.

Then,

(a) if F is positive then F I is positive,

(b) I |= F iff I |= F I ,

(c) if F is strictly positive and I ⊆ J then I |= F iff I |= F J .

Proof.

Property (a). Because the reduct only replaces subformulas by ⊥, the resulting formula is

still positive.

Property (b). Corresponds to Proposition 1 by Truszczyński (2012).

Property (c). This property can be shown by induction over the rank of the formula.

Lemma 44. Let F be a formula, and I, J , and X be interpretations.

Then,

(a) FI is positive,

10 To be precise, Lemma 1 by Truszczyński (2012) is stated for a set of formulas, which can be understood
as an infinitary conjunction.
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(b) I |= F iff I |= FI ,
(c) if F is positive then F = FI , and
(d) if I ⊆ J then X |= FJ implies X |= FI .

Proof.

Property (a). Because the id-reduct replaces all negative occurrences of atoms, the resulting

formula is positive.

Property (b). This property holds because when the reduct replaces an atom a, it is

replaced by either > or ⊥ depending on whether I |= a or I 6|= a. This does not change

the satisfaction of the subformula w.r.t. I.

Property (c). Because a positive formula does not contain negative occurrences of atoms,

it is not changed by the id-reduct.

Property (d). We prove by induction over the rank of formula F that

X |= FJ implies X |= FI and (A1)

X |= FI implies X |= FJ . (A2)

Base. We consider the case that F is a formula of rank 0.

F is a formula of rank 0 implies F is an atom.

First, we show (A1). We assume X |= FJ :

F is an atom implies FI = FJ = F.

FI = FJ and X |= FJ implies X |= FI .

Second, we show (A2). We assume X |= FI :

F is an atom and X |= FI implies FI = >.
FI = > implies F ∈ I.

F ∈ I and I ⊆ J implies F ∈ J.
F is an atom and F ∈ J implies FJ = >.

FJ = > implies X |= FJ .

Hypothesis. We assume that (A1) and (A2) hold for formulas F of ranks smaller than i.

Step. We only show (A1) because (A2) can be shown in a similar way. We consider

formulas F of rank i.

First, we consider the case that F is a conjunction of form H∧.

X |= H∧J implies X |= GJ for all G ∈ H.
X |= GJ implies X |= GI by hypothesis.

X |= GI implies X |= H∧I .

The case for disjunctions can be proven in a similar way.

Last, we consider the case that F is an implication of form G→ H. Observe that

FI = GI → HI and

FJ = GJ → HJ .
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First, we consider the case X 6|= GJ :

X 6|= GJ implies X 6|= GI by hypothesis.

X 6|= GI implies X |= FI .

Second, we consider the case X |= HJ :

X |= HJ implies X |= HI by hypothesis.

X |= HI implies X |= FI .

Proof of Lemma 6. This lemma follows from Proposition 14 by Denecker et al. (2000) ob-

serving that the well-founded operator is a monotone symmetric operator. The proposition

is actually a bit more general stating that the operator maps any consistent four-valued

interpretation to a consistent four-valued interpretation.

Lemma 45. Let O and O′ be monotone operators over complete lattice (L,≤) with

O′(x) ≤ O(x) for each x ∈ L.

Then, we get x′ ≤ x where x′ and x are the least fixed points of O′ and O, respectively.

Proof. Let y be a prefixed point of O. We have O(y) ≤ y. Because O′(y) ≤ O(y), we get

O′(y) ≤ y. So each prefixed point of O is also a prefixed point of O′.

Let S′ and S be the set of all prefixed points of O′ and O, respectively. We obtain

S ⊆ S′. By Theorem 1 (a), we get that x′ is the greatest lower bound of S′. Observe that

x′ is a lower bound for S. By construction of S, we have x ∈ S. Hence, we get x′ ≤ x.

Lemma 46. Let P and P ′ be F-programs and I be an interpretation.

Then, P ′ ⊆ P implies SP ′(I) ⊆ SP (I).

Proof. This lemma is a direct consequence of Lemma 45 observing that the one-step

provability operator derives fewer consequences for P ′.

Lemma 47. Let P be an R-program, I be a two-valued interpretation, and J = SP (I).

Then, X is a stable model of P , I ⊆ X, and I ⊆ J implies X ⊆ J .

Proof. Because X is a stable model of P , it is the only minimal model of PX . Furthermore,

we have that J is a model of PI . To show that X ⊆ J , we show that J is also a model of

PX . For this, it is enough to show that for each rule r ∈ P we have J 6|= B(r)I implies

J 6|= B(r)X . We prove inductively over the rank of the formula F = B(r) that J 6|= FI
implies J 6|= FX .

Base. We consider the case that F is a formula of rank 0.

If X 6|= F , we get J 6|= FX because FX = ⊥. Thus, we only have to consider the case

X |= F :

F is a formula of rank 0 implies F is an atom.

F is an atom implies FI = F .

X |= F and F is an atom implies FX = F.

FI = F and FX = F implies FI = FX .

J 6|= FI and FI = FX implies J 6|= FX .
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Hypothesis. We assume that J 6|= FI implies J 6|= FX holds for formulas F of ranks

smaller than i.

Step. We consider the case that F is a formula of rank i.

As in the base case, we only have to consider the case X |= F . Furthermore, we have

to distinguish the cases that F is a conjunction, disjunction, or implication.

We first consider the case that F is a conjunction of form F∧:

X |= F implies FX = {GX | G ∈ F}∧.
J 6|= FI and FI = {GI | G ∈ F}∧ implies J 6|= GI for some G ∈ F .

G ∈ F and F has rank i implies G has rank less than i.

J 6|= GI and G has rank less than i implies J 6|= GX by hypothesis.

J 6|= GX and FX = {GX | G ∈ F}∧ implies J 6|= FX .

The case that F is a disjunction can be shown in a similar way to the case that F is a

conjunction.

Last, we consider the case that F is an implication of form G→ H. Observe that G is

positive because F has no occurrences of implications in its antecedent and, furthermore,

given that F is a formula of rank i, H is a formula of rank less than i.

We show I |= G:

J 6|= FI and FI = GI → HI implies J |= GI

J |= GI and G is positive implies I |= G because GI ≡ >.

We show J |= GX :

G is positive, I ⊆ X, and I |= G implies X |= G by Lemma 42.

X |= F , X |= G, and F = G→ H implies X |= H.

G is positive, I ⊆ X, and I |= G implies I |= GX by Lemma 43 (c).

G is positive implies GX is positive by Lemma 43 (a).

GX is positive, I ⊆ J , and I |= GX implies J |= GX by Lemma 42.

We show J 6|= HX :

I |= G and FI = GI → HI implies FI ≡ HI because GI ≡ >.
FI ≡ HI and J 6|= FI implies J 6|= HI .

J 6|= HI and H has rank less than i implies J 6|= HX by hypothesis.

Because X |= F , we have FX = GX → HX . Using J |= GX and J 6|= HX , we get

J 6|= FX .

Proof of Theorem 7. Let X be a stable model of P .

We prove by transfinite induction over the sequence of postfixed points leading to the
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well-founded model:

(I0, J0) = (∅,Σ),

(Iα+1, Jα+1) = WP (Iα, Jα) for ordinals α, and

(Iβ , Jβ) = (
⋃
α<β

Iα,
⋂
α<β

Jα) for limit ordinals β.

We have that α < β implies (Iα, Jα) ≤p (Iβ , Jβ) for ordinals α and β, Iα ⊆ Jα for ordinals

α, and there is a least ordinal α such that (I, J) = (Iα, Jα).

Base. We have I0 ⊆ X ⊆ J0.

Hypothesis. We assume Iβ ⊆ X ⊆ Jβ for all ordinals β < α.

Step. If α = β + 1 is a successor ordinal we have

(Iα, Jα) = WP (Iβ , Jβ)

= (SP (Jβ), SP (Iβ)).

By the induction hypothesis we have Iβ ⊆ X ⊆ Jβ .

First, we show Iα ⊆ X:

X is a (stable) model implies SP (X) ⊆ X.
X ⊆ Jβ implies SP (Jβ) ⊆ SP (X).

SP (X) ⊆ X and SP (Jβ) ⊆ SP (X) implies SP (Jβ) ⊆ X.
Iα = SP (Jβ) and SP (Jβ) ⊆ X implies Iα ⊆ X.

Second, we show X ⊆ Jα:

β < α implies (Iβ , Jβ) ≤p (Iα, Jα)

(Iβ , Jβ) ≤p (Iα, Jα) and Iα ⊆ Jα implies Iβ ⊆ Jα
X is a stable model, Iβ ⊆ X,

Jα = SP (Iβ), and Iβ ⊆ Jα implies X ⊆ Jα by Lemma 47.

We have shown Iα ⊆ X ⊆ Jα for successor ordinals.

If α is a limit ordinal we have

(Iα, Jα) = (
⋃
β<α

Iβ ,
⋂
β<α

Jβ).

Let x ∈ Iα. There must be an ordinal β < α such that x ∈ Iβ . Since Iβ ⊆ X by the

hypothesis, we have x ∈ X. Thus, Iα ⊆ X.

Let x ∈ X. For each ordinal β < α we have x ∈ Jβ because X ⊆ Jβ by the hypothesis.

Thus, we get x ∈ Jα. It follows that X ⊆ Jα.

We have shown Iα ⊆ X ⊆ Jα for limit ordinals.

Lemma 48. Let P be an F-program and (I, J) be a four-valued interpretation.

Then, we have H(P I,J) = TPI (J).

Proof. The program P I,J contains all rules r ∈ P such that J |= B(r)I . This are exactly

the rules whose heads are gathered by the T operator.



Foundations of Grounding in ASP 65

Lemma 49. Let P be an F-program and (I, J) be the well-founded model of P .

Then, we have

(a) SP I,J (I ′) = J for all I ′ ⊆ I, and

(b) SP I,J (J ′) = SP (J ′) for all J ⊆ J ′.

Proof. Throughout the proof we use

SP (J) = I,

SP (I) = J,

P I,J ⊆ P , and

I ⊆ J because the well-founded model is consistent.

Property (a). We show J = SP I,J (I). Let Ĵ = SP I,J (I) and r ∈ P \ P I,J :

P I,J ⊆ P and

Ĵ = SP I,J (I) and

J = SP (I) implies Ĵ ⊆ J by Lemma 46.

r /∈ P I,J implies J 6|= B(r)I .

Ĵ ⊆ J and J 6|= B(r)I implies Ĵ 6|= B(r)I by Lemma 42.

Ĵ = SP I,J (I) and Ĵ 6|= B(r)I implies Ĵ |= PI .

Ĵ |= PI and J = SP (I) implies J ⊆ Ĵ .
J ⊆ Ĵ and Ĵ ⊆ J implies J = Ĵ .

Thus, we get that SP I,J (I) = J .

With this we can continue to prove SP I,J (I ′) = J . Let r ∈ P I,J :

r ∈ P I,J implies J |= B(r)I .

r ∈ P I,J and P I,J ⊆ P implies r ∈ P.
J |= B(r)I , r ∈ P, and SP (I) = J implies H(r) ∈ J.

J |= B(r)I and I ′ ⊆ I implies J |= B(r)I′ by Lemma 44 (d).

H(r) ∈ J and J |= B(r)I′ implies SP I,J (I ′) ⊆ J.
I ′ ⊆ I and J = SP I,J (I) implies J ⊆ SP I,J (I ′).

Thus, we get SP I,J (I ′) = J .

Property (b). Let I ′ = SP I,J (J ′) and r ∈ P \ P I,J :

r /∈ P I,J implies J 6|= B(r)I .

I ⊆ J , J ⊆ J ′, and J 6|= B(r)I implies J 6|= B(r)J′ . by Lemma 44 (d)..

I ′ ⊆ I, I ⊆ J , and J 6|= B(r)J′ implies I ′ 6|= B(r)J′ . by Lemma 42.

I ′ = SP I,J (J ′) and I ′ 6|= B(r)J′ implies SP (J ′) ⊆ SP I,J (J ′).

P I,J ⊆ P implies SP I,J (J ′) ⊆ SP (J ′) by Lemma 46.

Thus, we get SP I,J (J ′) = SP (J ′).
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Proof of Theorem 8. By Lemma 49, we have (I, J) = WP I,J (I, J). Furthermore, we let

(Î , Ĵ) = WM (P I,J):

(Î , Ĵ) = WM (P I,J) and (I, J) = WP I,J (I, J) implies (Î , Ĵ) ≤p (I, J).

by Theorem 1 (c).

Î ⊆ I implies SP I,J (Î) = SP I,J (I)

by Lemma 49 (a).

Ĵ = SP I,J (Î) = SP I,J (I) = J implies Ĵ = J.

Î = SP I,J (Ĵ), SP I,J (J) = I, and Ĵ = J implies Î = I.

We obtain (I, J) = (Î , Ĵ).

Proof of Theorem 9. We first show that all rule bodies removed by the simplification are

falsified by X. Let r ∈ P \ P I,J and assume X |= B(r):

X |= B(r) implies X |= B(r)X by Lemma 44 (b).

X |= B(r)X and I ⊆ X implies X |= B(r)I by Lemma 44 (d).

X |= B(r)I and X ⊆ J implies J |= B(r)I by Lemma 42.

This is a contradiction and, thus, X 6|= B(r). We use the following consequence in the

proof below:

X 6|= B(r) implies (P \ P I,J)
X ≡ ∅.

To show the theorem, we show that PX and (P I,J)
X

have the same minimal models.

Clearly, we have PX = (P I,J)
X ∪(P \ P I,J)

X
. Using this and (P \ P I,J)

X ≡ ∅, we obtain

that PX and (P I,J)
X

have the same minimal models.

Proof of Corollary 10. The result follows from Theorems 7 to 9.

Proof of Theorem 11. By Lemma 46, we have SP I,J (X) ⊆ SQ(X) ⊆ SP (X) for any

two-valued interpretation X. Thus, by Theorem 8, we get (I, J) = WQ(I, J).

Let (Î , Ĵ) be a prefixed point of WQ with (Î , Ĵ) ≤p (I, J). We have (SQ(Ĵ), SQ(Î)) ≤p
(Î , Ĵ) ≤p (I, J).

J ⊆ Ĵ implies SP I,J (Ĵ) = SQ(Ĵ) = SP (Ĵ)

by Lemma 49 (b).

SQ(Ĵ) = SP (Ĵ) and SQ(Ĵ) ⊆ Î implies SP (Ĵ) ⊆ Î .
Ĵ ⊆ SQ(Î) and SQ(Î) ⊆ SP (Î) implies Ĵ ⊆ SP (Î).

SP (Ĵ) ⊆ Î and Ĵ ⊆ SP (Î) implies WP (Î , Ĵ) ≤p (Î , Ĵ).

WP (Î , Ĵ) ≤p (Î , Ĵ) implies (I, J) ≤p (Î , Ĵ)

by Theorem 1 (a).

(I, J) ≤p (Î , Ĵ) and (Î , Ĵ) ≤p (I, J) implies (I, J) = (Î , Ĵ).

By Theorem 1 (a), we obtain that WM (Q) = (I, J).
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Proof of Corollary 12. Observe that P I,J = QI,J . With this, the corollary follows from

Corollary 10 and Theorem 11.

Alternatively, the incorporation of context atoms can also be seen as a form of partial

evaluation applied to the underlying program.

Definition 22. Let IC be a two-valued interpretation.

We define the partial evaluation of an F-formula w.r.t. IC as follows:

peIC (a) = > if a ∈ IC peIC (a) = a

peIC (a) = a if a /∈ IC

peIC (H∧) = {peIC (F ) | F ∈ H}∧ peIC (H∧) = {peIC (F ) | F ∈ H}∧

peIC (H∨) = {peIC (F ) | F ∈ H}∨ peIC (H∨) = {peIC (F ) | F ∈ H}∨

peIC (F → G) = peIC (F )→ peIC (G) peIC (F → G) = peIC (F )→ peIC (G)

where a is an atom, H a set of formulas, and F and G are formulas.

The partial evaluation of an F-program P w.r.t. a two-valued interpretation IC is

peIC (P ) = {peIC (r) | r ∈ P} where peIC (r) = H(h) ← peIC (B(r)). Accordingly, the

partial evaluation of rules boils down to replacing satisfied positive occurrences of atoms

in rule bodies by >.

We observe the following relationship between the relative one-step operators and

partial evaluations.

Observation 50. Let P be a positive F-program and IC be a two-valued interpretation.

Then, we have for any two-valued interpretation I that

T IC
P (I) = TpeIC (P )(I).

Note that peIC (P )J = peIC (PJ).

Proof of Proposition 13. Clearly, peIC (P ) is positive whenever P is positive. Using Ob-

servation 50, we obtain that T IC
P is monotone.

The second property directly follows from the monotonicity of the one-step provability

operator.

Lemma 51. Let P be an F-program and IC be a two-valued interpretation.

For any two-valued interpretation J , we get

SIC
P (J) = LM (peIC (P )J).

Proof. This lemma immediately follows from Observation 50.

Proof of Proposition 14. Both properties can be shown by inspecting the reduced pro-

grams.

Property J ′ ⊆ J implies SIC
P (J) ⊆ SIC

P (J ′). Observe that we can use Lemma 51 to

equivalently write SIC
P (J) = SpeIC (P )(J) and SIC

P (J ′) = SpeIC (P )(J
′). With this and

Proposition 4, we see that the relative stable operator is antimonotone just as the stable

operator.
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Property IC ′ ⊆ IC implies SIC ′

P (J) ⊆ SIC
P (J). Observe that SIC

P (J) is equal to the least

fixed point of T IC
PJ

and SIC ′

P (J) is equal to the least fixed point of T IC ′

PJ
. Furthermore,

observe that T IC ′

PJ
(X) ⊆ T IC

PJ
(X) for any two-valued interpretation X because IC ′ ⊆ IC

and the underlying T operator is monotone. With this and Lemma 45, we have shown

the property.

Observation 52. Let P be an F-program, and IC and J be two-valued interpretations.

We get the following properties:

(a) S∅P (J) = SP (J),

(b) SIC
P (J) ⊆ H(P ), and

(c) SIC
P (J) = S

IC∩B(P )+

P (J ∩B(P )
−

).

Proof of Proposition 15. Both properties can be shown by using the monotonicity of the

underlying relative stable operator:

Property (I ′, J ′) ≤p (I, J) implies W IC ,JC
P (I ′, J ′) ≤p W IC ,JC

P (I, J). Given that SIC
P is

antimonotone and J ′ ∪ JC ⊆ J ∪ JC , we have SIC
P (J ∪ JC ) ⊆ SIC

P (J ′ ∪ JC ). Analogously,

we can show SJC
P (I ′ ∪ IC ) ⊆ SJC

P (I ∪ IC ). We get (SIC
P (J ∪ JC ), SJC

P (I ∪ IC )) ≤p
(SIC
P (J ′ ∪ JC ), SJC

P (I ′ ∪ IC )).

Hence, W IC ,JC
P is monotone.

Property (IC ′, JC ′) ≤p (IC , JC ) implies W IC ′,JC ′

P (I, J) ≤p W IC ,JC
P (I, J). We have to

show (SIC ′

P (J ∪ JC ′), SJC ′

P (I ∪ IC ′)) ≤p (SIC
P (J ∪ JC ), SJC

P (I ∪ IC )).

Given that IC ′ ⊆ IC and J ∪ JC ⊆ J ∪ JC ′, we obtain SIC ′

P (J ∪ JC ′) ⊆ SIC
P (J ∪ JC )

using Proposition 14. The same argument can be used for the possible atoms of the

four-valued interpretations. Given that JC ⊆ JC ′ and I ∪ IC ′ ⊆ I ∪ IC , we obtain

SJC
P (I ∪ IC ) ⊆ SJC ′

P (I ∪ IC ′) using Proposition 14.

Hence, we have shown W IC ′,JC ′

P (I, J) ≤p W IC ,JC
P (I, J).

Observation 53. Let P be an F-program, and I, I ′ and IC be two-valued interpretations.

We get the following properties:

(a) I |= P and IC ⊆ I implies I |= peIC (P ),

(b) I |= peIC (P ) and I ′ ∩B(P )+ ⊆ IC implies I ∪ I ′ |= peIC (P ), and

(c) I |= peIC (P ) implies I |= P .

Lemma 54. Let PB and PT be F-programs, IC and J be two-valued interpretations,

I = SIC
PB∪PT (J), IE = I ∩ (B(PB)

+ ∩H(PT )), IB = SIC∪IE
PB (J), and IT = SIC∪IB

PT (J).

Then, we have I = IB ∪ IT .

Proof. Let Ĩ = IB ∪ IT . Furthermore, we use the following programs:

P̂B = peIC (PBJ) P̃B = peIC∪IE (PBJ) = peIE (P̂B)

P̂T = peIC (PT J) P̃T = peIC∪IB (PT J) = peIB (P̂T )

Observe that

I = SIC
PB∪PT (J) = LM (P̂B ∪ P̂T ),

IB = SIC∪IE
PB (J) = LM (P̃B), and

IT = SIC∪IB
PT (J) = LM (P̃T ).
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To show that Ĩ ⊆ I, we show that I is a model of both P̃B and P̃T . To show that I ⊆ Ĩ,

we show that Ĩ is a model of both P̂B and P̂T .

Property I |= P̃B.

I = LM (P̂B ∪ P̂T ) implies I |= P̂B .

I |= P̂B and IE ⊆ I implies I |= P̃B

by Observation 53 (a).

Property I |= P̃T .

I = LM (P̂B ∪ P̂T ) implies I |= P̂T .

I |= P̃B and IB = LM (P̃B) implies IB ⊆ I.
I |= P̂T and IB ⊆ I implies I |= P̃T .

by Observation 53 (a).

Property Ĩ |= P̂B. Let E = B(PB)
+ ∩H(PT ):

Ĩ ⊆ I and IE = I ∩ E implies IT ∩ E ⊆ IE .

IT = LM (P̃T ) implies IT ⊆ H(P̃T ).

IT ∩ E ⊆ IE and IT ⊆ H(P̃T ) implies IT ∩B(PB)
+ ⊆ IE .

IT ∩B(PB)
+ ⊆ IE implies IT ∩B(P̂B)

+ ⊆ IE .

IT ∩B(P̂B)
+ ⊆ IE and IB = LM (P̃B) implies Ĩ |= P̃B

by Observation 53 (b).

Ĩ |= P̃B implies Ĩ |= P̂B

by Observation 53 (c).

Property Ĩ |= P̂T .

IT = LM (P̃T ) implies Ĩ |= P̃T

by Observation 53 (b).

Ĩ |= P̃T implies Ĩ |= P̂T

by Observation 53 (c).

Proof of Theorem 16. Let P = PB ∪ PT and E = B(PB)
± ∩ H(PT ). We begin by

evaluating P , PB and PT w.r.t. (I, J) and obtain

(I, J) = W IC ,JC
P (I, J)

= (SIC
P (JC ∪ J), SJC

P (IC ∪ I)),

(ÎB , ĴB) = W
(IC ,JC )t(IE ,JE)
PB (I, J)

= (SIC∪IE
PB (JC ∪ JE ∪ J), SJC∪JE

PB (IC ∪ IE ∪ I)), and

(ÎT , ĴT ) = W
(IC ,JC )t(ÎB,ĴB)
PT (I, J)

= (SIC∪ÎB
PT (JC ∪ ĴB ∪ J), SJC∪ĴB

PT (IC ∪ ÎB ∪ I)).
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Using (IE , JE ) v (I, J), we get

(ÎB , ĴB) = (SIC∪IE
PB (JC ∪ J), SJC∪JE

PB (IC ∪ I)).

By Lemma 54 and Observation 52 (c), we get

(ÎB , ĴB) v (I, J),

(ÎT , ĴT ) = (SIC∪IE
PT (JC ∪ J), SJC∪JE

PT (IC ∪ I)), and

(I, J) = (ÎB , ĴB) t (ÎT , ĴT ).

We first show (IB , JB) = (ÎB , ĴB) and then (IT , JT ) = (ÎT , ĴT ).

Property (IB , JB) ≤p (ÎB , ĴB).

(ÎB , ĴB) v (I, J) and

(IE , JE ) = (I, J) u E implies (ÎB , ĴB) t (IE , JE ) v (I, J).

(I, J) = (ÎB , ĴB) t (ÎT , ĴT ) implies (ÎT , ĴT ) v (I, J).

(ÎT , ĴT ) v H(PT ) implies (ÎT , ĴT ) uB(PB)
± v (ÎT , ĴT ) u E.

(ÎT , ĴT ) uB(PB)
± v (ÎT , ĴT ) u E and

(ÎT , ĴT ) v (I, J) implies (ÎT , ĴT ) uB(PB)
± v (IE , JE ).

(ÎT , ĴT ) uB(PB)
± v (IE , JE ) and

(I, J) = (ÎB , ĴB) t (ÎT , ĴT ) implies (I, J) uB(PB)
± v (ÎB , ĴB) t (IE , JE ).

With the above, we use Observation 52 (c) to show that (ÎB , ĴB) is a fixed point of

W
(IC ,JC )t(JC ,JE)
PB :

(ÎB , ĴB) = W
(IC ,JC )t(IE ,JE)
PB (I, J)

= W
(IC ,JC )t(IE ,JE)
PB ((I, J) uB(PB)

±
)

= W
(IC ,JC )t(IE ,JE)
PB ((ÎB , ĴB) t (IE , JE ))

= W
(IC ,JC )t(IE ,JE)
PB (ÎB , ĴB)

Thus, by Theorem 1 (c), (IB , JB) ≤p (ÎB , ĴB).

Property (IB , JB) = (ÎB , ĴB). To show the property, let

(Ĩ , J̃) = (IB , JB) t (IE , JE ) t (ÎT , ĴT ),

(ĨE , J̃E ) = W IC ,JC
P (Ĩ , J̃) u E,

(ĨB , J̃B) = (SIC∪ĨE
PB (JC ∪ J̃), SJC∪J̃E

PB (IC ∪ Ĩ)),

(ĨT , J̃T ) = (SIC∪ĨB
PT (JC ∪ J̃), SJC∪J̃B

PT (IC ∪ Ĩ)), and

W IC ,JC
P (Ĩ , J̃) = (ĨB , J̃B) t (ĨT , J̃T ) by Lemma 54.

We get:

(IB , JB) ≤p (ÎB , ĴB) implies (Ĩ , J̃) ≤p (I, J).

(Ĩ , J̃) ≤p (I, J) implies W IC ,JC
P (Ĩ , J̃) ≤p (I, J).
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W IC ,JC
P (Ĩ , J̃) ≤p (I, J) implies (ĨE , J̃E ) ≤p (IE , JE ).

(ÎT , ĴT ) uB(PB)
± v (IE , JE ) implies (Ĩ , J̃) uB(PB)

± v (ÎB , ĴB) t (IE , JE ).

(Ĩ , J̃) uB(PB)
± v (ÎB , ĴB) t (IE , JE ) implies ĨB = SIC∪ĨE

PB (JC ∪ JE ∪ JB)

and J̃B = SJC∪J̃E
PB (IC ∪ IE ∪ IB).

by Observation 52 (c).

ĨB = SIC∪ĨE
PB (JC ∪ JE ∪ JB) and

J̃B = SJC∪J̃E
PB (IC ∪ IE ∪ IB) and

IB = SIC∪IE
PB (JC ∪ JE ∪ JB) and

JB = SJC∪JE
PB (IC ∪ IE ∪ IB) and

(ĨE , J̃E ) ≤p (IE , JE ) implies (ĨB , J̃B) ≤p (IB , JB)

by Proposition 15.

(ĨB , J̃B) ≤p (IB , JB) and

(IB , JB) ≤p (ÎB , ĴB) implies (ĨB , J̃B) ≤p (ÎB , ĴB).

ÎT = SIC∪ÎB
PT (JC ∪ J) and

ĴT = SJC∪ĴB
PT (IC ∪ I) and

ĨT = SIC∪ĨB
PT (JC ∪ J̃) and

J̃T = SJC∪J̃B
PT (IC ∪ Ĩ) and

(ĨB , J̃B) ≤p (ÎB , ĴB) and

(Ĩ , J̃) ≤p (I, J) implies (ĨT , J̃T ) ≤p (ÎT , ĴT )

by Proposition 14.

W IC ,JC
P (Ĩ , J̃) = (ĨB , J̃B) t (ĨT , J̃T ) and

(ĨB , J̃B) ≤p (IB , JB) and

(ĨT , J̃T ) ≤p (ÎT , ĴT ) implies W IC ,JC
P (Ĩ , J̃) ≤p (IB , JB) t (ÎT , ĴT ).

(ĨE , J̃E ) ≤p (IE , JE ) and

(ĨE , J̃E ) vW IC ,JC
P (Ĩ , J̃) and

W IC ,JC
P (Ĩ , J̃) ≤p (IB , JB) t (ÎT , ĴT ) and

(Ĩ , J̃) = (IB , JB) t (IE , JE ) t (ÎT , ĴT ) implies W IC ,JC
P (Ĩ , J̃) ≤p (Ĩ , J̃).

WM IC ,JC (P ) = (I, J) and

W IC ,JC
P (Ĩ , J̃) ≤p (Ĩ , J̃) implies (I, J) ≤p (Ĩ , J̃)

by Theorem 1 (a).

(Ĩ , J̃) ≤p (I, J) and (I, J) ≤p (Ĩ , J̃) implies (I, J) = (Ĩ , J̃).

(Ĩ , J̃) = (IB , JB) t (IE , JE ) t (ÎT , ĴT ) implies (IB , JB) t (IE , JE ) v (Ĩ , J̃).

(Ĩ , J̃) = (IB , JB) t (IE , JE ) t (ÎT , ĴT ) and
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(ÎT , ĴT ) uB(PB)
± v (IE , JE ) implies (Ĩ , J̃) uB(PB)

± v (IB , JB) t (IE , JE ).

(I, J) = (Ĩ , J̃) and

(IB , JB) t (IE , JE ) v (Ĩ , J̃) and

(Ĩ , J̃) uB(PB)
± v (IB , JB) t (IE , JE ) and

(IB , JB) = W
(IC ,JC )t(IE ,JE)
PB (IB , JB) and

(ÎB , ĴB) = W
(IC ,JC )t(IE ,JE)
PB (I, J) implies (IB , JB) = (ÎB , ĴB)

by Observation 52 (c).

Property (ÎT , ĴT ) = (IT , JT ). Observe that the lemma can be applied with PB and PT

exchanged. Let

Ẽ = B(PT )
± ∩H(PB),

(ĨE , J̃E ) = (I, J) ∩ Ẽ,

(ĨT , J̃T ) = WM (IC ,JC )t(ĨE ,J̃E)(PT ), and

(ĨB , J̃B) = W
(IC ,JC )t(ĨT ,J̃T)
PB (I, J).

Using the properties shown so far, we obtain

(I, J) = (ĨT , J̃T ) t (ĨB , J̃B).

With this we get:

(IB , JB) = (ÎB , ĴB) and

(I, J) = (ÎB , ĴB) t (ÎT , ĴT ) and

(IB , JB) v H(PB) and

(ĨE , J̃E ) = (I, J) u Ẽ implies (IB , JB) uB(PT )
± v (ĨE , J̃E ).

(I, J) = (ĨT , J̃T ) t (ĨB , J̃B) and

(ĨB , J̃B) v H(PB) and

(ĨE , J̃E ) = (I, J) u Ẽ implies (ĨB , J̃B) uB(PT )
± v (ĨE , J̃E ).

(ĨB , J̃B) uB(PT )
± v (ĨE , J̃E ) and

(I, J) = (ĨT , J̃T ) t (ĨB , J̃B) implies (I, J) uB(PB)
± v (ĨT , J̃T ) t (ĨE , J̃E ).

(IB , JB) uB(PT )
± v (ĨE , J̃E ) and

(I, J) uB(PB)
± v (ĨT , J̃T ) t (ĨE , J̃E ) and

(ĨT , J̃T ) = W
(IC ,JC )t(ĨE ,J̃E)
PT (ĨT , J̃T ) and

(ÎT , ĴT ) = W
(IC ,JC )t(IB,JB)
PT (I, J) implies (ĨT , J̃T ) = (ÎT , ĴT )

by Observation 52 (c).

(IB , JB) uB(PT )
± v (ĨE , J̃E ) and

(ĨT , J̃T ) = WM (IC ,JC )t(ĨE ,J̃E)(PT ) and

(IT , JT ) = WM (IC ,JC )t(IB,JB)(PT ) implies (ĨT , J̃T ) = (IT , JT )



Foundations of Grounding in ASP 73

by Observation 52 (c).

Thus, we get (ÎT , ĴT ) = (IT , JT ).

Proof of Theorem 17. The theorem can be shown by transfinite induction over the se-

quence indices. We do not give the full induction proof here but focus on the key idea. Let

(I ′i, J
′
i) be the intermediate interpretations as in (5) when computing the well-founded

model of the sequence. Furthermore, let

(Ii, Ji) = WM (IC i,JC i)t(IEi,JEi)(Pi)

be the intermediate interpretations where (IC i, JC i) is the union of the intermediate

interpretations as in (4) and

(IE i, JE i) = (I, J) ∩ Ei
with Ei as in (3).

Observe that with Theorem 16, we have WM (
⋃
i∈I Pi) =

⋃
i∈I(Ii, Ji). By Proposition 15,

we have (I ′i, J
′
i) ≤p (Ii, Ji) and, thus, we obtain that WM ((Pi)i∈I) ≤p WM (

⋃
i∈I Pi).

Proof of Theorem 18. By Theorem 17, we have⊔
i∈I

(Ii, Ji) ≤p (I, J).

We get
⋃
i∈I Ii ⊆ I and, thus,⋃

i≤k

Ii = IC k ∪ Ik ⊆ I.

Using J ⊆ ⋃i∈I Ji and Ji ⊆ H(Pi), we get

J ∩B(Pk)
± ⊆ (

⋃
i≤k

Ji ∪
⋃
k<i

H(Pi)) ∩B(Pk)
±

⊆ (
⋃
i≤k

Ji ∪ Ek) ∩B(Pk)
±

⊆ (JC k ∪ Jk ∪ Ek) ∩B(Pk)
±
.

Using both results, we obtain

((IC k, JC k) t (∅, Ek) t (Ik, Jk)) uB(Pk)
± ≤p (I, J) uB(Pk)

±
.

Because the body literals determine the simplification, we get

P I,Jk ⊆ P (ICk,JCk)t(∅,Ek)t(Ik,Jk)
k .

Lemma 55. Let (Pi)i∈I be a sequence of R-programs, and (I, J) be the well-founded

model of
⋃
i∈I Pi.

Then,
⋃
i∈I Pi and

⋃
i∈IQi with P I,Ji ⊆ Qi ⊆ Pi have the same well-founded and stable

models.

Proof. This lemma is a direct consequence of Theorems 11 and 18 and Corollary 12.
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Proof of Corollary 19. This corollary is a direct consequence of Theorem 18 and Lemma 55.

Proof of Corollary 20. This can be proven in the same way as Theorem 17 but note that

because Ei is empty, we get (I ′i, J
′
i) = (Ii, Ji).

Proof of Corollary 21. This can be proven in the same way as Theorem 18 but note that

because Ei is empty, all ≤p and most ⊆ relations can be replaced with equivalences.

Whenever head atoms do not interfere with negative body literals, the relative well

founded-model of a program can be calculated with just two applications of the relative

stable operator.

Lemma 56. Let P be an F-program such that B(P )
− ∩H(P ) = ∅ and (IC , JC ) be a

four-valued interpretation.

Then, WM IC ,JC (P ) = (SIC
P (JC ), SJC

P (IC )).

Proof. Let (I, J) = WM IC ,JC (P ).

We have J = SJC
P (IC ∪ I). By Observation 52 (b), we get J ⊆ H(P ). With this

and B(P )
− ∩ H(P ) = ∅, we get B(P )

− ∩ J = ∅. Thus, SIC
P (JC ∪ J) = SIC

P (JC ) by

Observation 52 (c).

The same arguments apply to show SJC
P (IC ∪ I) = SJC

P (IC ).

Any sequence as in Corollary 20 in which each Pi additionally satisfies the precondition

of Lemma 56 has a total well-founded model. Furthermore, the well-founded model of

such a sequence can be calculated with just two (independent) applications of the relative

stable operator per program Pi in the sequence.

Proof of Proposition 23. We use Lemma 41 to show that both formulas are strongly

equivalent.

Property I |= π(a)J implies I |= τ(a)J for arbitrary interpretations I. The formulas π(a)

and τ(a) only differ in the consequents of their implications. Observe that the consequents

in π(a) are stronger than the ones in τ(a). Thus, it follows that π(a) is stronger than

τ(a). Furthermore, observe that the same holds for their reducts.

Property I 6|= π(a)J implies I 6|= τ(a)J for arbitrary interpretations I. Let G be the set

of all instance of the aggregate elements of a. Because I 6|= π(a)J , there must be a set

D ⊆ G such that D 6 . a, I |= (τ(D)∧)
J

, and I 6|= (πa(D)∨)
J

. With this, we construct the

set

D̂ = D ∪ {e ∈ G \D | I |= τ(e)J}.
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The construction of D̂ and

D 6 . a and

I 6|= (πa(D)∨)
J

implies D̂ 6 . a and I 6|= (τa(D̂)∨)
J
.

The construction of D̂ and

I |= (τ(D)∧)
J

implies I |= (τ(D̂)∧)
J
.

D̂ 6 . a and

I 6|= (τa(D̂)∨)
J

and

I |= (τ(D̂)∧)
J

implies I 6|= τ(a)J .

Proof of Proposition 24. Let G be the set of ground instances of the aggregate elements

of a. Furthermore, observe that a monotone aggregate a is either constantly true or not

justified by the empty set.

In case that π(a) ≡ >, we get π(a)I ≡ > and the lemma holds.

Next, we consider the case that the empty set does not justify the aggregate. Observe

that πa(∅) is stronger than πa(D) for any D ⊆ G. And, we have that π(a) contains

the implication > → πa(∅). Because of this, we have π(a) ≡ πa(∅). Furthermore, all

consequents in π(a) are positive formulas and, thus, not modified by the reduct. Thus,

the reduct (> → πa(∅))I is equal to > → πa(∅). And as before, it is stronger than all

other implications in π(a)I . Hence, we get π(a)I ≡ πa(∅).

Proof of Theorem 25. Remember that the translation π(a) is a conjunction of implications.

The antecedents of the implications are conjunctions of aggregate elements and the

consequents are disjunctions of conjunctions of aggregate elements.

Property (a). If the conjunction in an antecedent contains an element not in J , then the

conjunction is not satisfied by X and the implication does not affect the satisfiability of

π(a). If a conjunction in a consequent contains an element not in J , then X does not satisfy

the conjunction and the conjunction does not affect the satisfiability of the encompassing

disjunction. Observe that both cases correspond exactly to those subformulas omitted

in πJ(a).

The remaining two properties follow for similar reasons.

The next observation summarizes how dependencies transfer from non-ground aggregate

programs to the corresponding ground R-programs.

Observation 57. Let P1 and P2 be aggregate programs, and G1 = π(P1) and G2 = π(P2).

Then,

(a) P1 does not depend on P2 implies B(G1)
± ∩H(G2) = ∅,

(b) P1 does not positively depend on P2 implies B(G1)
+ ∩H(G2) = ∅,

(c) P1 does not negatively depend on P2 implies B(G1)
− ∩H(G2) = ∅.

The next two lemmas pin down important properties of instantiation sequences. First

of all, there are no external atoms in the components of instantiation sequences.



76 R. Kaminski and T. Schaub

Lemma 58. Let P be an aggregate program and (Pi)i∈I be an instantiation sequence for

P .

Then, for the sequence (Gi)i∈I with Gi = π(Pi), we have Ei = ∅ for each i ∈ I where

Ei is defined as in (3).

Proof. This lemma is a direct consequence of Observation 57 (a) and the anti-symmetry

of the dependency relation between components.

Proof of Theorem 26. This theorem is a direct consequence of Lemma 58 and Corollary 20.

Moreover, for each stratified component in an instantiation sequence, we obtain a total

well-founded model.

Lemma 59. Let P be an aggregate program and (Pi)i∈I be an instantiation sequence for

P .

Then, for the sequence (Gi)i∈I with Gi = π(Pi), we have Ii = Ji = SIC i

Gi
(IC i) for each

stratified component Pi where (IC i, JC i) and (Ii, Ji) are defined as in (4) and (5) in the

construction of the well-founded model of (Gi)i∈I in Definition 6.

Proof. In the following, we use Ei and (IC i, JC i) for the sequence (Gi)i∈I as defined in

(3) and (4). Note that, by Lemma 58, we have Ei = ∅.
We prove by induction.

Base. Let Pi be a stratified component that does not depend on any other component.

Because Pi does not depend on any other component, we have
⋃
j<iH(Gj)∩B(Gi)

±
= ∅.

Thus, by Observation 52 (b), we get IC i ∩ B(Gi)
±

= JC i ∩ B(Gi)
±

= ∅. By Observa-

tion 52 (c), we get (Ii, Ji) = WM IC i,JC i(Gi) = WM IC i,IC i(Gi). Because Pi is stratified,

we have B(Gi)
− ∩H(Gi) = ∅. We then use Lemma 56 to obtain Ii = Ji = SIC i

Gi
(IC i).

Hypothesis. We assume that the theorem holds for any component Pj with j < i.

Step. Let Pi be a stratified component. For any j < i, component Pi either depends on

Pj or not. If Pi depends on Pj , then Pj is stratified and we get Ij = Jj by the induction

hypothesis. If Pi does not depend on Pj , then Ij ∩ B(Gi)
±

= Jj ∩ B(Gi)
±

= ∅. By

Observation 52 (c), we get (Ii, Ji) = WM IC i,JC i(Gi) = WM IC i,IC i(Gi). Just as in the

base case, by Lemma 56, we get Ii = Ji = SIC i

Gi
(IC i).

Lemma 60. Let P be an aggregate program and (Pi,j)(i,j)∈J be a refined instantiation

sequence for P .

Then, for the sequence (Gi,j)(i,j)∈J with Gi,j = π(Pi,j), we have Ei,j ∩ B(Gi,j)
+

= ∅
for each (i, j) ∈ J where Ei,j is defined as in (3).

Proof. The same arguments as in the proof of Lemma 58 can be used but using Observa-

tion 57 (b) instead.

Proof of Theorem 27. Let G = π(P ), G′ = π(P ′) with P ′ as in Definition 13, (I, J) =

AM IC ,JC
E (P ), and (I ′, J ′) = WM IC ,JC∪EC (G).

We first show I ⊆ I ′, or equivalently

SIC
G′ (JC ) ⊆ SIC

G (JC ∪ EC ∪ J ′).
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Because G′ ⊆ G, we get

SIC
G′ (JC ∪ EC ∪ J ′) ⊆ SIC

G (JC ∪ EC ∪ J ′).

Because pred(B(P ′)−) ∩ E = ∅, all rules r ∈ G′ satisfy B(r)− ∩ EC 6= ∅ and we obtain

SIC
G′ (JC ∪ J ′) ⊆ SIC

G′ (JC ∪ EC ∪ J ′).

Because pred(H(P )) ∩ pred(B(P )−) ⊆ E and pred(B(P ′)−) ∩ E = ∅, all rules r ∈ G′
satisfy B(r)− ∩ J ′ = ∅ and we obtain

SIC
G′ (JC ) = SIC

G′ (JC ∪ J ′)
⊆ SIC

G (JC ∪ EC ∪ J ′).

To show J ′ ⊆ J , we use I ⊆ I ′ and Proposition 14:

SJC
G (IC ∪ I ′) ⊆ SJC

G (IC ∪ I).

Proof of Theorem 28. We begin by showing AM ((Pj)j∈J) ≤p WM (π(P )) and then show

AM ((Pi)i∈I) ≤p AM ((Pj)j∈J).

Property (AM ((Pj)j∈J) ≤p WM (π(P ))). Let Ej , (IC j , JC j), and (Ij , Jj) be defined as in

(14) to (16) for the sequence (Pj)j∈J. Similarly, let E′j , (IC ′j , JC ′j), and (I ′j , J
′
j) be defined

as in (3) to (5) for the sequence (Gj)j∈J with Gj = π(Pj). Furthermore, let EC j be the

set of all ground atoms over atoms in Ej .
We first show E′j ⊆ EC j for each j ∈ J by showing that E′j ⊆ EC j . By Lemma 60, only

negative body literals have to be taken into account:

E′j = B(Gj)
± ∩

⋃
j<k

H(Gk)

= B(Gj)
− ∩

⋃
j<k

H(Gk).

Observe that pred(B(Gj)
− ⊆ pred(B(Pj)

−
)) and pred(H(Gj)) ⊆ pred(H(Pj)). Thus, we

get

pred(E′j) = pred(B(Gj)
− ∩

⋃
j<k

H(Gk))

⊆ pred(B(Pj)
−

) ∩ pred(
⋃
j<k

H(Pk))

⊆ pred(B(Pj)
−

) ∩ pred(
⋃
j≤k

H(Pk))

= Ej .

It follows that E′j ⊆ EC j .

By Theorem 17, we have
⊔
j∈J(I

′
j , J
′
j) ≤p WM (π(G)). To show the theorem, we show

(Ij , Jj) ≤p (I ′j , J
′
j). We omit the full induction proof and focus on the key idea: Using
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Theorem 27, whose precondition holds by construction of Ej , and Proposition 15, we get

AM
IC j ,JC j

Ej (Pj) ≤p WM (IC j ,JC j)t(∅,EC j)(Gj)

≤p WM (IC ′j ,JC
′
j)t(∅,E′j)(Gj).

Property (AM ((Pi)i∈I) ≤p AM ((Pi,j)(i,j)∈J)). We omit a full induction proof for this

property because it would be very technical. Instead, we focus on the key idea why the

approximate model of a refined instantiation sequence is at least as precise as the one of

an instantiation sequence.

Let Ei and Ei,j be defined as in (14) for the instantiation and refined instantiation

sequence, respectively. Clearly, we have Ei,j ⊆ Ei for each (i, j) ∈ J. Observe, that (due

to rule dependencies and Observation 52 (c)) calculating the approximate model of the

refined sequence, using Ei instead of Ei,j in (16), would result in the same approximate

model as for the instantiation sequence. With this, the property simply follows from the

monotonicity of the stable operator.

Proof of Theorem 29. Let Ei, (IC i, JC i), and (Ii, Ji) be defined as in (14) to (16) for the

sequence (Pi)i∈I. Similarly, let E′i, (IC ′i, JC ′i), and (I ′i, J
′
i) be defined as in (3) to (5) for the

sequence (Gi)i∈I with Gi = π(Pi). Furthermore, we assume w.l.o.g. that I = {1, . . . , n}.
We have already seen in the proof of Theorem 28 that the atoms E′i are a subset

of the ground atoms over predicates Ei and that (Ii, Ji) ≤p (I ′i, J
′
i). Observing that

ground atoms over predicates Ei can only appear negatively in rule bodies, we obtain that

G
(IC ′i,JC

′
i)∪(I′i,J

′
i)∪(∅,E′i)

i = G
(IC ′i,JC

′
i)∪(I′i,J

′
i)

i . By Theorem 18 and Lemma 55, we obtain

that
⋃
i∈IG

(IC i,JC i)t(Ii,Ji)
i and π(P ) have the same well-founded and stable models. To

shorten the notation, we let

Fi = π(Pi)
(IC i,JC i)t(Ii,Ji), Hi = πJC i∪Ji(Pi)

(IC i,JC i)t(Ii,Ji),

F =
⋃
i∈I
Fi, and H =

⋃
i∈I
Hi.

With this, it remains to show that programs F and H have the same well-founded and

stable models.

We let J =
⋃
i∈I Ji. Furthermore, we let π(a) be a subformula in Fi and πJC i∪Ji(a) be

a subformula in Hi where both subformulas originate from the translation of the closed

aggregate a. (We see below that existence of one implies the existence of the other because

both formulas are identical in their context.)

Because an aggregate always depends positively on the predicates occurring in its

elements, the intersection between
⋃
i<kH(Fk) =

⋃
i<k Jk and the atoms occurring in

π(a) is empty. Thus the two formulas πJC i∪Ji(a) and πJ(a) are identical. Observe that

each stable model of either F and H is a subset of J . By Theorem 25, satisfiability of

the aggregates formulas as well as their reducts is the same for subsets of J . Thus, both

formulas have the same stable models. Similarly, the well-founded model of both formulas

must be more-precise than (∅, J). By Theorem 25, satisfiability of the aggregate formulas

as well as their id-reducts is the same. Thus, both formulas have the same well-founded

model.

Proof of Theorem 30. Clearly, we have Ei = ∅ if all components are stratified. With this,

the theorem follows from Lemma 59.
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We can characterize the result of Algorithm 1 as follows.

Lemma 61. Let r be a safe normal rule, (I, J) be a finite four-valued interpretation,

f ∈ {t, f}, and J ′ be a finite two-valued interpretation.

Then, a call to GroundRule
I,J
r,f,J′(ι, B(r)) returns the finite set of instances g of r

satisfying

J |= τ(B(g))∧I and (f = t or B(g)
+ * J ′). (A3)

Proof. Observe that the algorithm does not modify f , r, (I, J), and J ′. To shorten the

notation below, let Gσ,L = GroundRule
I,J
r,f,J′(σ, L).

CallingGι,B(r), the algorithm maintains the following invariants in subsequent callsGσ,L:

(B(r) \ L)σ+ ⊆ J, (I1)

(B(r) \ L)σ− ∩ I = ∅, and (I2)

each comparison in (B(r) \ L)σ holds. (I3)

We only prove the first invariant because the latter two can be shown in a similar way.

We prove by induction.

Base. For the call Gι,B(r), the invariant holds because the set difference B(r) \L is empty

for L = B(r).

Hypothesis. We assume the invariant holds for call Gσ,L and show that it is maintained

in subsequent calls.

Step. Observe that there are only further calls if L is non-empty. In Line 3, a body literal l

is selected from L. Observe that it is always possible to select such a literal. In case that

there are positive literals in L, we can select any one of them. In case that there are no

positive literals in L, σ replaces all variables in the positive body of r. Because r is safe,

all literals in Lσ are ground and we can select any one of them.

In case that l is a positive literal, all substitutions σ′, obtained by calling Matches
I,J
l (σ)

in the following line, ensure

lσ′ ∈ J.

Furthermore, σ is more general than σ′. Thus, we have

(B(r) \ L)σ′
+

= (B(r) \ L)σ
+

⊆ J.

In Line 5, the algorithm calls Gσ′,L′ with L′ = L \ {l}. We obtain

(B(r) \ L′)σ′+ = (B(r) \ L)σ′
+ ∪ {lσ′}

⊆ J.

In case that l is a comparison or negative literal, we get (B(r) \ L)
+

= (B(r) \ L \ {l})+
.

Furthermore, the substitution σ is either not changed or is discarded altogether. Thus,

the invariant is maintained in subsequent calls to GroundRule.

We prove by induction over subsets L of B(r) with corresponding substitution σ

satisfying invariants (I1)–(I3) that GL,σ is finite and that g ∈ GL,σ iff g is a ground

instance of rσ that satisfies (A3).
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Base. We show the base case for L = ∅. Using invariant (I1), we only have to consider

substitutions σ with B(r)
+
σ ⊆ J . Because r is safe and σ replaces all variables in its

positive body, σ also replaces all variables in its head and negative body. Thus, rσ is ground

and the remainder of the algorithm just filters the set {rσ} while the invariants (I1)–(I3)

ensure that J |= τ(B(rσ))∧I . The condition in Line 2 cannot apply because L = ∅. The

condition in Line 9 discards rules rσ not satisfying f = t or B(rσ)
+ * J ′.

Hypothesis. We show that the property holds for L 6= ∅ assuming that it holds for subsets

L′ ⊂ L with corresponding substitutions σ′.

Step. Because L 6= ∅ we only have to consider the case in Line 2.

First, the algorithm selects an element l ∈ L. We have already seen that it is always

possible to select such an element. Let L′ = L \ {l}. The algorithm then loops over the set

Σ = Matches
I,J
l (σ)

and, in Lines 4 to 5, computes the union

Gσ,L =
⋃
σ′∈Σ

Gσ′,L′ .

First, we show that the set Gσ,L is finite. In case l is not a positive literal, the set Σ

has at most one element. In case l is a positive literal, observe that there is a one-to-one

correspondence between Σ and the set {lσ′ | σ′ ∈ Σ}. We obtain that Σ is finite because

{lσ′ | σ′ ∈ Σ} ⊆ J and J is finite. Furthermore, using the induction hypothesis, each set

Gσ′,L′ in the union Gσ,L is finite. Hence, the set Gσ,L returned by the algorithm is finite.

Second, we show g ∈ Gσ,L implies that g is a ground instance of rσ satisfying (A3).

We have that g is a member of some Gσ′,L′ . By the induction hypothesis, g is a ground

instance of rσ′ satisfying (A3). Observe that g is also a ground instance of rσ because σ

is more general than σ′.

Third, we show that each ground instance g of rσ satisfying (A3) is also contained in

Gσ,L. Because g is a ground instance of rσ, there is a substitution θ more specific than

σ such that g = rθ. In case that the selected literal l ∈ L is a positive literal, we have

lθ ∈ J . Then, there is also a substitution θ′ such that θ′ ∈ match(lσ, lθ). Let σ′ = σ ◦ θ′.
By Definition 15, we have σ′ ∈ Σ. It follows that g ∈ Gσ,L because g ∈ Gσ′,L′ by the

induction hypothesis and Gσ′,L′ ⊆ Gσ,L. In the case that l is not a positive literal, we

have σ ∈ Σ and can apply a similar argument.

Hence, we have shown that the proposition holds for Gι,B(r).

In terms of the program simplification in Definition 1, the first condition in Lemma 61

amounts to checking whether H(g)← τ(B(g))∧ is in τ(P )I,J , which is the simplification

of the (ground) R-program τ(P ) preserving all stable models between I and J . The two

last conditions are meant to avoid duplicates from a previous invocation. Since r is a

normal rule, translation τ is sufficient.

Proof of Proposition 31. The first property directly follows from Lemma 61 and the

definition of InstI,J({r}).
It remains to show the second property. Let G be the set of all ground instances of r
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and

GX,Yf = {g ∈ G | Y |= τ(B(g))∧I , (f = t or B(g)
+ * X)}.

By Lemma 61 and the first property, we can reformulate the second property of the

proposition as G∅,Jt = G∅,J
′

t ∪GJ
′,J

f . We have

G∅,Jt = {g ∈ G | J |= τ(B(g))∧I }
G∅,J

′

t = {g ∈ G | J ′ |= τ(B(g))∧I }, and

GJ
′,J

f = {g ∈ G | J |= τ(B(g))∧I , B(g)
+ * J ′}.

Observe that, given J ′ ⊆ J , we can equivalently write G∅,J
′

t as

G∅,J
′

t = {g ∈ G | J |= τ(B(g))∧I , B(g)
+ ⊆ J ′}.

Because B(g)
+ ⊆ J ′ and B(g)

+ * J ′ cancel each other, we get

G∅,J = G∅,J′ ∪GJ′,J .

Proof of Proposition 32. We first show Property (a) and then (b).

Property (a). For a rule r ∈ P , we use rα to refer to the corresponding rule with replaced

aggregate occurrences in Pα. Similarly, for a ground instance g of r, we use gα to to refer

to the corresponding instance of rα. Observe that πJ(P )I,J = πJ(InstI,J(P )). We show

that g ∈ InstI,J (P ) iff gα ∈ InstI,J∪JA(Pα). In the following, because the rule bodies of g

and gα only differ regarding aggregates and their replacement atoms, we only consider

rules with aggregates in their bodies.

Case g ∈ InstI,J(P ). Let r be a rule in P containing aggregate a, α be the replacement

atom of form (20) for a, and σ be a ground substitution such that rσ = g. We show that

for each aggregate aσ ∈ B(g), we have εr,a(G
ε, σ) ∪G 6= ∅ and J |= πG(aσ)I with G =

ηr,a(Gη, σ) and in turn JA |= ασ. Because J |= π(B(g))∧I , we get J |= πJ (aσ)I . It remains

to show that εr,a(G
ε, σ) ∪G 6= ∅ and πJ(aσ) = πG(aσ). Observe that πJ(aσ) = πG(aσ)

because the set G obtained from rules in Gη contains all instances of elements of aσ whose

conditions are satisfied by J while the remaining literals of these rules are contained in

the body of g. Furthermore, observe that if no aggregate element is satisfied by J , we get

εr,a(Gε, σ) 6= ∅ because the corresponding ground instance of (21) is satisfied.

Case gα ∈ InstI,J∪JA(Pα). Let rα be a rule in Pα containing replacement atom α

of form (20) for aggregate a and σ be a ground substitution such that rασ = gα.

Because J ∪ JA |= τ(B(gα))∧I , we have ασ ∈ JA. Thus, we get that J |= πG(aσ)I with

G = ηr,a(Gη, σ). We have already seen in the previous case that πJ (aσ) = πG(aσ). Thus,

J |= πJ(aσ)I . Observing that g = rσ and aσ ∈ B(g), we get g ∈ InstI,J(P ).

Property (b). This property follows from Property (a), Theorem 25, and Lemma 48.

Proof of Proposition 33. We prove Properties (a) and (b) by showing that the function

calculates the stable model by iteratively calling the T operator until a fixed-point is

reached.
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Property (a) and (b). At each iteration i of the loop starting with 1, let JAi be the value

of PropagateI,JP (Gε, Gη) in Line 6, Gεi , G
η
i , and Gαi be the values on the right-hand-side

of the assignments in Lines 4, 5 and 7, and Ji = H(Gαi ). Furthermore, let J0 = ∅.
By Proposition 31, we get

Gεi = InstIC ,JC∪Ji−1(P ε),

Gηi = InstIC ,JC∪Ji−1(P η),

JAi = Propagate
I,J
P (Gεi , G

η
i ), and

Gαi = InstIC ,JC∪JAi∪Ji−1(Pα).

Using Proposition 32 (b) and observing the one-to-one correspondence between Gαi and

π(P )IC ,JC∪JC i , we get

Ji = H(Gαi )

= Tπ(P )IC (JC ∪ Ji−1).

Observe that, if the loop exits, then the algorithm computes the fixed point of

T JC
π(P )IC

, i.e., J = SIC
π(P )(JC ). Furthermore, observe that this fixed point calculation termi-

nates whenever SIC
π(P )(JC ) is finite. Finally, we obtain GroundComponent(P, IC , JC ) =

πJC∪J(P )IC ,JC∪J using Proposition 32 (a).

Property (c). We have seen above that the interpretation J is a fixed point of T JC
π(P )IC

. By

Proposition 32 (b) and observing that function Assemble only modifies rule bodies, we

get H(GroundComponent(P, IC , JC )) = J .

Proof of Theorem 34. Since the program is finite, its instantiation sequences are finite,

too. We assume w.l.o.g. that I = {1, . . . , n} for some n ≥ 0. We let FC i and GC i be the

values of variables F and G at iteration i at the beginning of the loop in Lines 4 to 7, and

Fi and Gi be the results of the calls to GroundComponent in Lines 6 and 7 at iteration i.

By Proposition 33, we get that Lines 5 to 7 correspond to an application of the

approximate model operator as given in Definition 13. For each iteration i, we get

(FC i,GC i) =
⊔
j<i

(Fi, Gi),

(IC i, JC i) = (H(FC i), H(GC i)),

(Ii, Ji) = (H(Fi), H(Gi)), and

Gi = πJC i∪Ji(Pi)
(IC i,JC i)t(Ii,Ji)

whenever (Ii, Ji) is finite. In case that each (Ii, Ji) is finite, the algorithm returns in

Line 8 the program

GCn ∪Gn =
⋃
i∈I
Gi

=
⋃
i∈I
πJC i∪Ji(Pi)

(IC i,JC i)t(Ii,Ji).

Thus, the algorithm terminates iff each call to GroundComponent is finite, which is exactly

the case when AM ((Pi)i∈I) is finite.
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Proof of Corollary 35. This is a direct consequence of Theorems 29 and 34.

Proof of Proposition 36. Let G be the set of ground instances of the aggregate elements

of a and D ⊆ G be a set such that D 6 . a.

Due to the antimonotonicity of the aggregate, we get πa(D) = ⊥. Thus, the reduct

is constant because all consequents in π(a) as well as π(a)I are equal to ⊥ and the

antecedents in π(a) are completely evaluated by the reduct. Hence, the lemma follows by

Lemma 44 (b).

Proof of Proposition 37. We only show Property (a) because the proof of Property (b) is

symmetric.

Let a = #sum{E} � b and a+ = #sum+{E} � b′. Given an arbitrary two-valued

interpretation J , we consider the following two cases:

Case J 6|= π(a)I . There is a set D ⊆ G such that D 6 . a, I |= τ(D)∧, and J 6|= πa(D)∨.

Let D̂ = D ∪ {e ∈ G | I |= τ(e), w(H(e)) < 0}.
Clearly, D̂ 6 . a and I |= τ(D̂)∧. Furthermore, J 6|= πa(D̂)∨ because we constructed D̂

so that πa(D̂)∨ is stronger than πa(D)∨ because more elements with negative weights

have to be taken into considerations.

Next, observe that D̂ 6 . a+ holds because we have #sum+(H(D̂)) = #sum+(H(D))

and #sum−(H(D̂)) = #sum−(T ), which corresponds to the value subtracted from the

bound of a+. To show that J 6|= πa+(D̂)∨, we show πa+(D̂)∨ is stronger than πa(D̂)∨.

Let C ⊆ G \ D̂ be a set of elements such that D̂ ∪ C . a+. Because the justification of

a+ is independent of elements with negative weights, each clause in πa+(D̂)∨ involving

an element with a negative weight is subsumed by another clause without that element.

Thus, we only consider sets C containing elements with positive weights. Observe that

D̂ ∪ C . a holds because we have #sum(H(D̂ ∪ C)) = #sum+(H(D̂ ∪ C)) + #sum−(T ).

Hence, we get J 6|= πa+(D̂)∨.

Case J 6|= π(a+)I . There is a set D ⊆ G such that D 6 . a+, I |= τ(D)∧, and J 6|= πa+(D)∨.

Let D̂ = D ∪ {e ∈ G | I |= τ(e), w(H(e)) < 0}.
Observe that D̂ 6 . a+, I |= τ(D̂)∧, and J 6|= πa+(D̂)∨. As in the previous case, we can

show that πa(D̂)∨ is stronger than πa+(D̂)∨ because clauses in πa(D̂)∨ involving elements

with negative weights are subsumed. Hence, we get J 6|= πa(D̂)∨.

Proof of Proposition 38. Let G be the set of ground instances of E, a≺ = f{E} ≺ b for

aggregate relation ≺, and J be a two-valued interpretation.

Property (a). We show that J |= π(a<)I ∨ π(a>)I implies J |= π(a6=)I .

Case J |= π(a<)I . Observe that π(a6=) is conjunction of implications of form τ(D)
∧ →

πa6=(D)∨ with D ⊆ G and D 6 . a 6=. Furthermore, note that D 6 . a 6= implies D 6 . a<.

Thus, π(a<) contains the implication τ(D)
∧ → πa<(D)∨. Because J |= π(a<)I , we get

I 6|= τ(D)
∧

or J |= πa<(D)∨. Hence, the property holds in this case because J |= πa<(D)∨

implies J |= πa6=(D)∨.

Case J |= π(a>)I . The property can be shown analogously for this case.

Property (a). This property can be shown in a similar way as the previous one. We show

by contraposition that J |= π(a=)I implies J |= π(a≤)I ∧ π(a≥)I .
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Case J 6|= π(a≤)I . Observe that π(a≤) is conjunction of implications of form τ(D)
∧ →

πa≤(D)∨ with D ⊆ G and D 6 . a≤. Furthermore, note that D 6 . a≤ implies D 6 . a=.

Thus, π(a=) contains the implication τ(D)
∧ → πa=(D)∨. Because J 6|= π(a≤)I , we get

I |= τ(D)
∧

and J 6|= πa<(D)∨ for some D ⊆ G with D 6 . a≤. Hence, the property holds

in this case because J 6|= πa≤(D)∨ implies J 6|= πa=(D)∨.

Case J 6|= π(a≥)I . The property can be shown analogously for this case.

Proof of Proposition 39. We only consider the case that f is the #sum function because

the other ones are special cases of this function. Furthermore, we only consider the only

if directions because we have already established the other directions in Proposition 38.

Let G be the set of ground instances of E, TI = H({g ∈ G | I |= B(g)}), and

TJ = H({g ∈ G | J |= B(g)}).

Property (a). Because I ⊆ J , we get #sum+(TI) ≤ #sum+(TJ) and #sum−(TJ) ≤
#sum−(TI). We prove by contraposition.

Case J 6|= π(a<)I and J 6|= π(a>)I . We use Propositions 24 and 37 to get the following

two inequalities:

#sum−(TJ) ≥ b−#sum+(TI) because J 6|= π(a<)I and

#sum+(TJ) ≤ b−#sum−(TI) because J 6|= π(a>)I .

Using #sum−(TJ) ≤ #sum−(TI), we can rearrange as

b−#sum+(TI) ≤ #sum−(TJ)

≤ #sum−(TI)

≤ b−#sum+(TJ).

Using #sum+(TI) ≤ #sum+(TJ), we obtain

#sum+(TI) = #sum+(TJ).

Using #sum+(TI) = #sum+(TJ), we get

b−#sum+(TI) ≤ #sum−(TJ)

≤ #sum−(TI)

≤ b−#sum+(TI)

and, thus, obtain

#sum−(TI) = #sum−(TJ) and

b = #sum(TI)

= #sum(TJ).

Observe that this gives rise to an implication in π(a 6=)I that is not satisfied by J . Hence,

we get J 6|= π(a6=)I .

Property (b). Because J ⊆ I, we get #sum+(TJ) ≤ #sum+(TI) and #sum−(TI) ≤
#sum−(TJ).
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Case J |= π(a≤)I and J |= π(a≥)I . Using Propositions 24 and 37, we get

#sum+(TJ) ≥ b−#sum−(TI) because J |= π(a≥)I and

#sum−(TJ) ≤ b−#sum+(TI) because J |= π(a≤)I .

Observe that we can proceed as in the proof of the previous property because the relation

symbols are just flipped. We obtain

#sum−(TI) = #sum−(TJ) and

b = #sum(TI)

= #sum(TJ).

We get J |= π(a=)I because for any subset of tuples in TI that do not satisfy the aggregate,

we have additional tuples in TJ that satisfy the aggregate.

Proof of Proposition 40. Let a≺ = f{E} ≺ b for ≺ ∈ {=, 6=}.

Property (a). We prove by contraposition that J |= π(a6=)I implies that there is no set

X ⊆ TI such that f(X ∪ TJ) = b.

Case there is a set X ⊆ TI such that f(X ∪ TJ ) = b. Let D = {e ∈ G | I |= B(e), H(e) ∈
X ∪ TJ}. Because TJ ⊆ TI D 6 . a6=. Furthermore, we have I |= τ(D)∧. Observe that D

contains all elements with conditions satisfied by J . Hence, we get J 6|= πa6=(D)∨ and, in

turn, J 6|= π(a6=)I .

We prove the remaining direction, again, by contraposition.

Case J 6|= π(a6=)I . There is a set D ⊆ G such that I |= τ(D)∧ and J 6|= πa 6=(D)∨. Let

X = H(D). Because J 6|= πa6=(D)∨, we get f(X ∪ TJ) = b.

Property (b). This property can be shown in a similar way as the previous one.
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