
Under consideration for publication in Theory and Practice of Logic Programming 1

Monitoring and Visualizing Answer Set Solving

Arne König and Torsten Schaub
Institut für Informatik, Universität Potsdam

submitted [n/a]; revised [n/a]; accepted [n/a]

Abstract

A distinguishing feature of Answer Set Programming (ASP) is its declarativity, decoupling problem rep-
resentations from problem solving algorithms. However, this strict separation should not lead to viewing
the solving process as a magic black box refusing any insights into how the problem is solved. We address
this issue and propose a two-fold approach for enhancing the transparency of the solving process. At first,
we provide a flexible data logger protocoling relevant events occurring during ASP solving. This module
is system-specific and realized with the ASP solver clasp. The recorded information can subsequently be
used in various ways by back-ends of choice. With such data at hand, we then furnish a visualization back-
end offering various views on the underlying problem structure as well as the solving process over time.
Together both tools allow us to re-connect the solving process with the original problem specification and
thus to reveal how the original problem is actually solved.

1 Introduction

Answer Set Programming (ASP; (Baral 2003)) is an approach to declarative problem solving
that combines a rich yet simple modeling language with high-performance solving capacities. A
distinguishing feature of ASP lies in its high declarativity, strictly separating a problem’s rep-
resentation from the algorithms used for solving it. As a matter of fact, this brings about new
challenges given that traditional software engineering techniques relying on the connection be-
tween program specification and execution are inapplicable. A prominent example is the failure
of procedural techniques like tracing. This separation is even enlarged during ASP’s solving pro-
cess transforming first-order programs into a propositional format. In this way, the combination
of a few first-order rules with a large set of facts may lead to a vast set of propositional rules. Fur-
thermore, modern conflict-driven ASP solvers turn the resulting set of rules into an even larger
set of Boolean constraints being subject to solving.

However, this strict separation should not lead to viewing the solving process as a magic black
box refusing any insights into how the problem is solved. We address this by greatly enhancing
the transparency of the solving process. We accomplish this by a two-fold approach. At first,
we provide a flexible data logger protocoling relevant events occurring during ASP solving. The
recorded information can subsequently be used in various ways by back-ends of choice. With
such data at hand, we then furnish a visualization back-end offering various views on the under-
lying problem structure as well as the solving process over time. Together both tools allow us to
re-connect the solving process with the original problem specification and thus to reveal how the
original problem is actually solved. We have implemented our data logger as an extension to the
conflict-driven constraint learning ASP solver clasp (Gebser et al. 2012). The resulting system,
called clavis, is easily configurable and allows for monitoring all (single-threaded) configurations
of clasp. The issuing data is provided as an event series reflecting the solving process, and stored



2 Arne König and Torsten Schaub

as a queryable database. This event series serves as input to our solver-independent visualiza-
tion tool insight, providing various structural and temporal perspectives on the solving process.
The structural views rely on graphs for projecting different forms of variable dependencies, like
occurrences in the same program or conflict constraint. To provide enriched node information,
insight exploits the ASP solver’s symbol table to link solver variables to ground atoms of the
original problem specification. This is accompanied with a simple query language that allows us
to restrict the projection to variables satisfying a given query. While the structural perspectives
come with alternative variable-specific values aggregated over the solving process, the differ-
ent temporal views aim at capturing the dynamics of the solving process. Hence, they focus on
indicative algorithmic figures, like the development of the conflict or decision level over time.
Such developments are provided as two-dimensional plots. Within these plots particular event
segments can be selected to induce in turn structural perspectives restricted to the aggregated
values of the period in focus.

Our data logger clavis and our visualizer insight are both freely available at (clavis).

2 Background

We assume some familiarity with ASP, its semantics as well as its basic language constructs. A
comprehensive treatment of ASP can be found in (Baral 2003).

Once a problem is modeled as a (first-order) logic program, ASP solving proceeds in two steps.
First, a grounder generates a finite propositional representation of the input program. After that,
a solver computes the stable models of the propositional program. The resulting stable models
represent the solutions to the original problem.

For computing the stable models of a logic program by means of modern Boolean constraint
technology, the problem must be expressed in terms of Boolean constraints. For this, we rely
on nogoods (Dechter 2003) representing invalid partial assignments. A solution for a set of
nogoods is then a total (Boolean) assignment excluding all nogoods. While clauses can be di-
rectly mapped into nogoods, logic programs are subject to a more complex translation, often
involving the introduction of auxiliary (propositional) variables. For instance, by abbreviating
elementary Boolean assignments x 7→ T and x 7→ F by signed literals of form Tx and Fx,
respectively, an atom a defined by two rules ‘a ← b,∼c’ and ‘a ← d’ gives rise to three no-
goods: {T a,Fx{b,∼c},Fx{d}}, {F a,Tx{b,∼c}}, and {F a,Tx{d}}, where x{b,∼c} and x{d} are
auxiliary variables for the bodies of the two previous rules. Similarly, the body {b,∼c} leads to
nogoods {Fx{b,∼c},T b,F c}, {Tx{b,∼c},F b}, and {Tx{b,∼c},T c}. The last nogood precludes
solutions assigning true to both variables x{b,∼c} and c. See (Gebser et al. 2012) for full details.

Once a logic program is translated, we can take advantage of Conflict-Driven Constraint
Learning (CDCL; (Marques-Silva and Sakallah 1999; Zhang et al. 2001)) for computing the
solutions of the obtained set of nogoods. The basic algorithm is outlined in Fig. 1. The CDCL
algorithm first extends a given (partial) assignment via deterministic (unit) propagation. Impor-
tantly, every derived literal is “forced” by some nogood (seen as a set of signed literals that must
not jointly be assigned), which would be violated if the literal’s complement were assigned. Al-
though propagation aims at forgoing nogood violations, assigning a literal forced by one nogood
may lead to the violation of another nogood; this situation is called conflict. If the conflict can be
resolved (the violated nogood contains backtrackable literals), it is analyzed to identify a conflict
constraint. The latter represents a “hidden” conflict reason that is recorded and guides backjump-
ing to an earlier stage such that the complement of some formerly assigned literal is forced by the



Monitoring and Visualizing Answer Set Solving 3

loop
propagate // compute deterministic consequences
if no conflict then

if all variables assigned then return variable assignment

else decide // non-deterministically assign some literal

else
if top-level conflict then return unsatisfiable

else
analyze // analyze conflict and add a conflict constraint

backjump // undo assignments until conflict constraint is unit

Fig. 1. Basic algorithm for conflict-driven Boolean constraint learning (CDCL)

conflict constraint, thus triggering propagation. Only when propagation finishes without conflict,
a (heuristically chosen) literal can be assigned at a new decision level, provided that the assign-
ment at hand is partial, while a solution (total assignment not violating any nogood) has been
found otherwise. The eventual termination of CDCL is guaranteed, by either returning a solution
or encountering an unresolvable conflict (independent of unforced decision literals). In practice,
CDCL employs further operations promoting the search process. One such operation consists in
occasionally restarting the search process in order to escape from unfruitful search spaces while
keeping gathered information. This could be added to Fig. 1 by replacing “decide” by “decide
or restart”. Another crucial operation is nogood deletion given that an exponential number of
nogoods is learnable. Conceptually, this is commonly performed after propagate in Fig. 1.

3 Data logging and visualization

As sketched in the introductory section, our overall approach is two-fold, consisting of an online
data logging phase along with an offline (visual) analysis phase.

Online data logging. The data logger protocols events relevant to CDCL-based solving during
an actual run of an ASP solver.

To begin with, it records all deterministic consequences derived in propagate and non-
deterministic assignments done by decide along with the respective decision levels. These events
can already be used to extract various interesting figures, like how often did a variable change its
truth value, how often is a variable implied or chosen, how many propagations follow a particular
choice, at which decision level was a variable implied or chosen, etc.

An operation crucial to CDCL is conflict analysis, accomplished by analyze. Central to this is
a resolution derivation, resolving conflict constraints with constraints used in unit propagation.
All such derivations are recorded during data logging. This also provides the resulting conflict
constraint, which is learned by CDCL. Moreover this allows us to track how often variables
(jointly) occur in conflict resolutions and the resulting conflict constraints. In fact, conflict infor-
mation is central to CDCL because it is used for various heuristics, as for instance in decide and
constraint deletion. Notably, the generality of our approach allows for monitoring and comparing
different decision heuristics in a uniform setting. For example, heuristics like berkmin (Goldberg
and Novikov 2002) or vsids (Moskewicz et al. 2001) rely on different ways of scoring variables
according to their conflict involvement.



4 Arne König and Torsten Schaub

Similarly, the data logger records all backjump and restart operations along with the respec-
tive decision levels. This involves the skipped decision levels as well as data on backtracked
assignments. Similar to the above, this can moreover be combined with data on the subsequent
propagate operation for determining the resulting deterministic consequences.

Finally, the data logger also keeps track of constraint deletion and incorporates static data, like
program constraints, resulting stable models, and symbol tables, one mapping original atoms
to grounder identifiers and another mapping original and auxiliary atoms to solver identifiers.
Although the logger’s implementation is necessarily solver-specific, our design was driven by the
desire to extract only information pertinent to the CDCL-based solving process and to exclude
any implementation-specific data. As a result, our data logger produces a database comprising
an event series reflecting the ASP solving process along with some static data. The obtained
information can then be used in various ways by different back-ends.

Offline visual analysis. Our primary back-end aims at visualizing the gathered information to
provide insights into the ASP solving process. To this end, we (currently) focus on structural and
temporal perspectives.

Structural aspects. For capturing structural aspects, we concentrate on interaction graphs1 be-
ing undirected graphs providing a uniform abstraction of often richer yet dedicated structures.
While the set of vertices is fixed to (a subset of) the solver’s propositional variables, the set of
edges varies in view of the type of interaction to be displayed. In its original definition, the in-
teraction graph connects two variables whenever they are contained in the same program clause.
Extending this concept, we provide graphs displaying interactions indicating containment in the
same program constraint (cf. Fig. 2), learned nogood, resolution derivation, or conflict nogood.
Unlike these, the choice tree graph contains only variables that have been non-deterministically
assigned (in decide); it links two variables whenever one was decided after the other (without
intermediate backjump or restart).

Given that interaction graphs have no predefined layout, we follow (Sinz and Dieringer 2005)
in using a force-directed graph drawing algorithm (Hachul and Jünger 2004) for rendering. These
algorithms assign forces among nodes for obtaining edges of balanced length (and as few cross-
ings as possible). We refine the graphical layout by weighting the force between nodes through
interaction-dependent factors. For instance, when laying out the program interaction graph, we
amplify the force among two variables according to their number of joint occurrences in program
constraints. Hence, roughly speaking, variables connected by a short edge have more such joint
occurrences than variable connected by longer edges. These weights are calculated via a scoring
similar to the MOMs heuristic (Pretolani 1996). Analogous weights are used for displaying the
other aforementioned graph structures. This option does not provoke a complete re-structuring
but helps exposing certain structures. For illustration, consider the program interaction graph in
Fig. 2 where our graph layout leads to a state-wise clustering of variables.

Apart from furnishing different structural views, the purpose of interaction graphs is to offer
projection surfaces for complementary information. A simple yet instructive such combination is
graph overlay. The idea is to display the edges of one graph with the node layout of another. For
instance, this allows us to study the interaction in learned nogoods in the context of the original
problem structure. Another simple yet very effective combination is obtained by graph coloring.

1 These graphs were used in (Sinz and Dieringer 2005) for visualizing SAT; cf. (Rish and Dechter 2000; Sinz 2007).



Monitoring and Visualizing Answer Set Solving 5

In fact, the data logger gathers several figures for each node during the solving process. Among
these aggregated values on variables, we consider the number of decisions, number of conflict
analyses, or the number of flipped values. These values can be aggregated over the whole solving
process (by default) or any user-defined period of events (see temporal aspects below). The result
is then projected through node colors on the interaction graph at hand. For this purpose, we use
the color sequence from red to green. For instance in Fig. 2, we color variable nodes according
to how often their values have been flipped. Accordingly, the variable having been flipped most
often is colored in deep red, while 11 of 467 variables have been assigned only once and are thus
in deep green. Notably, graph overlay and coloring can be freely combined. As mentioned, the
coloring may reflect data collected during the entire or just a selected fragment of the solving
process.

The inspection of node-specific information is supported by two complementary means. First,
we integrate the aggregated values into the symbol table. Second, we offer a simple query lan-
guage for filtering the displayed set of variable nodes. Finally, both capacities are dynamically
linked to graph coloring and seamlessly adapt to changes triggered by the user in either of the
three contexts.

A symbol table consists of four types of entries: a variable’s solver identifier, its type, value,
and symbolic representation. Each variable has a unique integer as solver identifier and may have
one of three types: atom, body, or atom/body. The symbolic representation is type-specific:
While a variable of type atom is associated with a unique ground atom, no representation is
available for type body. The type atom/body represents multiple equivalent variables (eg. ob-
tained through pre-processing) and gives all ground atoms associated with the solver identifier.
The variable’s value is mode-dependent and corresponds to the aggregated value used for color-
ing. Also, the (visible entries of the) symbol table can be sorted according to any attribute. For
instance in Fig. 2, the node with the deepest red corresponds to the following entry.

id type value symbol
26 atom/body 23 move(4,c,5)

Given that the coloring in Fig. 2 reflects the number of times that the value of the variable was
flipped, the entry tells us that the atom move(4,c,5) was flipped 23 times.

The elements shown in the symbol table as well as the colored graph can be controlled via
a simple query language. The language uses keywords id:, type:, and val: to refer to an
entry’s attributes; simple expressions (including wild card ∗) are used for matching symbolic
representations. The keywords are followed by values of the respective type, except that val:
additionally allows for simple range specifications of form > i or < i for some integer i. A con-
junction is simply a blank; a disjunction is expressed by ‘;’. For instance in the context of Fig. 2,
the query ‘type:atom move(*) val:>4 val:<12’ selects all atoms formed from pred-
icate move that have been flipped more than four and less than twelve times.

The interplay between the colored graph, the symbol table, and the query engine is designed to
be highly dynamic. For instance, hovering over nodes in the graph centers the symbol table and
highlights the corresponding entry. Selecting a cell in the symbol table produces the correspond-
ing query and restricts coloring to the selected variables. And finally, posing a query selects the
corresponding entries in the symbol table and restricts coloring accordingly. See Section 4 for
more detailed information.

Temporal aspects. We capture temporal aspects by means of two-dimensional plots. While our
interaction graphs provide views on the internal problem structure using aggregated node infor-



6 Arne König and Torsten Schaub

mation, we use plots to provide insights into the dynamics of the solving process by exposing
the development of its key figures. Instead of time, however, we use the sequence of conflicts,
choices, or other events depending on the respective displayed aspect.2

The respective plots are enriched with the absolute and central moving average (over neigh-
boring data points) as well as the median value. As an example, consider the left plot in Fig. 3,
showing the length of each nogood in recording order. Accordingly, the x-axis is organized along
conflicts (rather than choices). (The y-axis can be arranged in linear or logarithmic scale.) Al-
ternatively, a frequency distribution can be provided, as done in the right plot in Fig. 3. The
design of the interface was done to support the user in exploring the solving process. To this
end, one may interactively select fragments of the plot and navigate through these fragments.
Importantly, the selected solving spans may be used to build graphs reflecting the structural view
and/or aggregated variable values collected in these segments.

4 The clavis and insight systems

In what follows, we describe the usage along with some implementation details of our data
logger clavis and our visualization tool insight. Both systems are freely available as open source
packages at (clavis). We illustrate the usage of clavis and insight through a small use-case. For
this purpose, we consider the Towers of Hanoi problem from (Gebser et al. 2012).

clavis is a full-fledged ASP solver corresponding to clasp (2.1; (Gebser et al. 2012)) yet
enhanced by data logging capacities. In fact, clavis is distributed as a patch to clasp, which
facilitates its maintenance over progressing clasp versions. Apart from the obligatory name
of the resulting database file, clavis allows for supplying a configuration file delineating the
logged events along with the full set of (single-threaded) options of clasp. clavis also toler-
ates partial runs obtained either by clasp’s option ’--time-limit’ or user interrupts through
SIGINT. For example, we may produce the event database toh.h5 by the command (where
--heuristics=vsids is an example clasp option):

gringo tohI.lp tohE.lp | clavis --heuristics=vsids toh

The resulting data is stored in an HDF53 database; it includes separate tables for each event
type and a global index along with static data such as symbol tables. This approach allows for fast
iteration of single event types as well as flexibility in logging. For instance, excluding some event
types like propagations can significantly reduce the log size. Also, the logfile can be extended by
additional events or meta data without breaking existing back-ends. The full documentation of
the log format can be found at (clavis).

Different back-ends can be used for analyzing the logged information. Although it is possible
to read the logfile directly via a library like pytables, we furnish an interface for sequential access
and analysis through clavis’ library libclavis. The benefits of this approach compared to direct
access are much shorter read times due to caching and a simplified interface abstracting from the
complexity of HDF5.

As an example, Listing 1 gives a simple python script extracting all learned nogoods from our
example database toh.h5. This script relies on the Listener and Player interfaces of libclavis.
The Listener supports data generation by implementing event handlers that process required

2 For example, 2 on the x-axis refers to the second event.
3 http://www.hdfgroup.org/HDF5



Monitoring and Visualizing Answer Set Solving 7

Listing 1. Extracting learned nogoods with libclavis (eLib.py)
from libclavis.logfile import Player, Listener

class LearnedPrinter(Listener):
def event_learned(self, player):

print ’ ’.join(map(str, player.event().lits()))

LearnedPrinter(Player(’toh.h5’))

events. For instance, it allows for partial parsing of logfiles (by giving first and last index to
read). The Player is able to test whether a logfile contains the events requested by the listener.
For instance, these interfaces are used by insight to define several listeners that generate the
data to be visualized. All generated data is stored using widely-used libraries such as networkx
for graphs and numpy for sequential data. This allows for simple generation of derived data like
centrality measures for graphs or frequency distribution for sequential data as well as the addition
of more listeners.

insight is written in python and relies on open source graphics packages like matplotlib and
PyOpenGL to visualize the data provided by clavis. It is launched either directly or by passing
the event database, viz. insight toh.h5. After loading a logfile, insight displays the list of
open views (and the problem view).

Let us explain some distinguished features of insight by looking at some screenshots in Fig. 2
to 4. On the left of all three, we see the view list giving all currently active (white on blue)

Fig. 2. insight showing a program interaction graph with flipped assignments

and inactive (black on white) views; they can be (de)activated by mouse selection. The problem
view in the middle of Fig. 2 is the default view after loading the logfile. At its top, it summa-
rizes the key figures of the solving process at hand. Below, the actual visualization is configured
and engaged, distinguishing the aforementioned structural (‘Graph’) and temporal views (‘Plot’).



8 Arne König and Torsten Schaub

The displayed setting allows for generating the program interaction graph. The resulting view is
given on the right of Fig. 2. The graph nicely reflects the temporal structure of the Towers of
Hanoi problem by grouping variables in a state-wise fashion. That is, variables with the same
time stamp form clusters along the graph. The structure can be explored with zooming and pan-
ning functionalities (including reset button) and the visualization can be focused (while all other
views are hidden). Note that the orientation of the graph is subject to random factors within the
force-directed layout (eg. the graph might be mirrored for slightly varying data). However, the
layout algorithm is seeded to assure that the same input leads to the same layout. Different layout
engines can be used; currently, insight offers the choice between the FMMMLayout from OGDF
and sfdp from Graphviz. The position of a variable can be inferred from the highlighting of the
symbol table while hovering with the mouse over the node in the graph, or simply by searching
for symbols via pattern matching (eg. for move(*,1)). The variable coloring in Fig. 2 reflects
the number of flipped truth assignments. Inspecting the graph in conjunction with the symbol
table reveals that the “hot-spot” of the problem concerns action and fluent variables with time
stamps 3-6, changing their truth values more than twenty times (as shown in the symbol table).
While these variables are in deeper red, the ones in the upper left part of the graph are colored
in deeper green indicating that their truth value was rarely changed. This tells us that the goal
conditions4 are strong enough to fix the truth values of variables close to the final state. In fact,
this can be made precise by posing a simple query like ‘val:<5’ (similar to the left view in
Fig. 4).

To complement this, let us look at the development of the conflict level5 during the solving
process in the left view in Fig. 3. To support this, we show on the right the frequency distribution

Fig. 3. insight showing conflict levels during the last two parts of the solving process and decisions per
conflict

4 That is, the goal state defined by goal on/2.
5 That is, the decision levels at which conflicts occur.



Monitoring and Visualizing Answer Set Solving 9

of the number of decisions per conflict;6 this provides an idea on the progress made during the
155 conflicts on the x-axis on the left. For instance, 52 times no decision was made between
two conflicts; here, the learned nogoods caused an(other) immediate conflict. 36 conflicts were
obtained after a single decision. Now, following the (green) central moving average in the left
view,7 we observe two peaks dividing the solving process into three parts. Our hypothesis is
that a part of the problem has been solved during the first solving phase. To explore this further,
we take advantage of insight’s zooming and panning capacities. That is, via mouse control,8 we
select the last two segments of the solving process and generate (i) the program interaction graph
colored according to the numbers of flipped assignments during this span along with (ii) the
learned nogoods interaction yet projected on the program interaction graph colored in the same
way (for comparability). The result is shown in Fig. 4. In fact, the coloring on the left is further

Fig. 4. insight showing last two parts of the solving process

constrained by restricting the view to variables whose truth values remain unchanged during
the last two parts of the solving process. This selection is accomplished via the simple query
‘val:0’. The resulting cloud of green nodes supports our conjecture that the truth value of the
obtained variables has been fixed in the first part of the solving process. More evidence for this
is provided by conflict learning because nothing has been learned about this program part during
the considered span of events. This can be visualized by the projection of the learned nogood
interactions onto the program interaction graph9 on the right of Fig. 4: The green nodes in the
left view do not appear in the right one. Hence, they do not appear in any nogoods learned in the
last two phases of the solving process.

Important for the analysis of the ASP solving process is the consideration of larger problem

6 That is, the number of decisions made since the previous conflict (or restart).
7 This average considers the respective neighborhood of 1/20 of the whole dataset.
8 Our manual selection picked the segment of events 3403 to 6430, as can be seen at the top of Fig. 4.
9 That is, by keeping the layout of the variable nodes in the program interaction graph.



10 Arne König and Torsten Schaub

sizes. With only 1200 variables and 1800 constraints, the presented Towers of Hanoi example is
a small problem compared to many real world examples. We employ a variety of techniques to
handle larger problems by raising both the efficiency and flexibility of our tools. clavis stores the
recorded data in a database designed to handle high volumes of data efficiently and in a format
that is configurable to select the logged events. libclavis and insight are built upon libraries for
efficient processing and presentation of information. This allows us to handle larger problems
in the range of around 30,000 variables and 100,000 constraints for which the generation times
of the different visualizations lie between a few seconds to two minutes on an Intel Core i7
processor. However, the specific runtimes are highly dependent on each specific problem.

5 Related work

There are several works using similar techniques in the area of SAT. Most influential to our work
are dpvis and 3dvis (Sinz and Dieringer 2005; Sinz 2007) as they also use interaction graphs to
visualize the structure of SAT problems. Additionally, dpvis features online visualization through
integration with a SAT solver for updating both the graph structure (e.g. for learned clauses) and
colors (for assigned values) to reflect the current solving state. As mentioned above, our approach
adapts the concept of representing program structure via interaction graphs and extends it to
various types of interactions. Similarly, we also allow for the combination of program interaction
graphs and learned nogoods but as part of a more general scheme involving multiple structural
aspects of the solving process. Our offline visualization approach loses the interaction with the
solver shown in dpvis but allows for much more freedom in combining and aggregating data
from different parts of the solving process enabling the analysis of larger problems for which
the approach of dpvis is impracticable. Furthermore, by including the symbol table of the ASP
solver, we obtain a much deeper understanding of the problem’s structure.

The SAT solver CryptoMiniSat (CryptoMiniSat) contains a logging feature and visualization
that displays a variety of information similar to the temporal aspects shown in insight. The ASP
solver DLV contains a tracer presented in (Calimeri et al. 2009).

6 Conclusion

We presented the design and implementation of a two-step approach for exploring ASP solving
processes. Our data logger clavis provides a configurable tool for collecting data during ASP
solving. Although clavis is necessarily system-specific, it relies on the state-of-the-art ASP solver
clasp, which itself offers numerous configurations covering many different strategies to ASP
solving. The data gathered by clavis is put in an easily accessible database format, viz. HDF5, that
allows for an easy reuse by post-processing units. The most direct way to access this information
is via scripting, as shown in Section 4. A more sophisticated way is furnished by our visualization
tool insight. Apart from providing various structural and temporal views on the ASP solving
process, insight is designed to foster the exploration of the solving process by providing the
user with interactive means for changing the perspective on selected structures. Unlike previous
approaches in SAT, ours greatly benefits from the availability of symbolic information in ASP.
This allows us to provide a semantic link to the original problem representation. Clearly, there
is yet much room for improvement and the modularity of our approach opens up many new
possibilities for further analysis, profiling, and/or software engineering tools.

Acknowledgments. This work was partially funded by DFG grant GRK 1539/1.



Monitoring and Visualizing Answer Set Solving 11

References

BARAL, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cambridge
University Press.

CALIMERI, F., LEONE, N., RICCA, F., AND VELTRI, P. 2009. A visual tracer for DLV. In Proceedings of
the Second Workshop on Software Engineering for Answer Set Programming, M. D. Vos and T. Schaub,
Eds. Vol. 546. CEUR Workshop Proceedings (CEUR-WS.org), 79–93.

CLAVIS. http://www.cs.uni-potsdam.de/clavis.
CRYPTOMINISAT. http://www.msoos.org/2013/04/cryptominisat-3-0-released.
DECHTER, R. 2003. Constraint Processing. Morgan Kaufmann Publishers.
GEBSER, M., KAMINSKI, R., KAUFMANN, B., AND SCHAUB, T. 2012. Answer Set Solving in Practice.

Synthesis Lectures on Artificial Intelligence and Machine Learning. Morgan and Claypool Publishers.
GEBSER, M., KAUFMANN, B., AND SCHAUB, T. 2012. Multi-threaded ASP solving with clasp. Theory

and Practice of Logic Programming 12, 4-5, 525–545.
GOLDBERG, E. AND NOVIKOV, Y. 2002. BerkMin: A fast and robust SAT solver. In Proceedings of the

Fifth Conference on Design, Automation and Test in Europe (DATE’02). IEEE Computer Society Press,
142–149.

HACHUL, S. AND JÜNGER, M. 2004. Drawing large graphs with a potential-field-based multilevel algo-
rithm. In Proceedings of the Twelfth International Symposium on Graph Drawing (GD’04), J. Pach, Ed.
Lecture Notes in Computer Science, vol. 3383. Springer-Verlag, 285–295.

MARQUES-SILVA, J. AND SAKALLAH, K. 1999. GRASP: A search algorithm for propositional satisfia-
bility. IEEE Transactions on Computers 48, 5, 506–521.

MOSKEWICZ, M., MADIGAN, C., ZHAO, Y., ZHANG, L., AND MALIK, S. 2001. Chaff: Engineering an
efficient SAT solver. In Proceedings of the Thirty-eighth Conference on Design Automation (DAC’01).
ACM Press, 530–535.

PRETOLANI, D. 1996. Efficiency and stability of hypergraph SAT algorithms. In DIMACS Series in Dis-
crete Mathematics and Theoretical Computer Science, D. Johnson and M. Trick, Eds. Vol. 26. American
Mathematical Society, 479–498.

RISH, I. AND DECHTER, R. 2000. Resolution versus search: Two strategies for SAT. Journal of Automated
Reasoning 24, 1-2, 225–275.

SINZ, C. 2007. Visualizing SAT instances and runs of the DPLL algorithm. Journal of Automated Reason-
ing 39, 2, 219–243.

SINZ, C. AND DIERINGER, E. 2005. DPvis - a tool to visualize the structure of SAT instances. In Proceed-
ings of the Eighth International Conference on Theory and Applications of Satisfiability Testing (SAT’05),
F. Bacchus and T. Walsh, Eds. Lecture Notes in Computer Science, vol. 3569. Springer-Verlag, 257–268.

ZHANG, L., MADIGAN, C., MOSKEWICZ, M., AND MALIK, S. 2001. Efficient conflict driven learning
in a Boolean satisfiability solver. In Proceedings of the International Conference on Computer-Aided
Design (ICCAD’01). ACM Press, 279–285.


