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Abstract

We provide a semantic framework for preference handling in answer set programming. To this end,
we introduce preference preserving consequence operators. The resulting fixpoint characterizations
provide us with a uniform semantic framework for characterizing preference handling in existing ap-
proaches. Although our approach is extensible to other semantics by means of an alternating fixpoint
theory, we focus here on the elaboration of preferences under answer set semantics. Alternatively, we
show how these approaches can be characterized by the concept of order preservation. These uniform
semantic characterizations provide us with new insights about interrelationships and moreover about
ways of implementation.

1 Introduction

Preferences constitute a very natural and effective way of resolving indeterminate situa-
tions. For example, in scheduling not all deadlines may be simultaneously satisfiable, and
in configuration various goals may not be simultaneously met. In legal reasoning, laws may
apply in different situations, but laws may also conflict with each other. In fact, while logi-
cal preference handling constitutes already an indispensable means for legal reasoning sys-
tems (cf. (Gordon 1993; Prakken 1997)), it is also advancing in other application areas such
as intelligent agents and e-commerce (Grosof 1999) and the resolution of grammatical am-
biguities (Cui and Swift 2002). The growing interest in preferences is also reflected by the
large number of proposals in logic programming (Sakama and Inoue 1996; Brewka 1996;
Gelfond and Son 1997; Zhang and Foo 1997; Grosof 1997; Brewka and Eiter 1999; Del-
grande et al. 2000b; Wang et al. 2000). A common approach is to employ meta-formalisms
for characterizing “preferred answer sets”. This has led to a diversity of approaches that are
hardly comparable due to considerably different ways of formal characterization. Hence,
there is no homogeneous account of preference.

We address this shortcoming by proposing a uniform semantical framework for extended
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logic programming with preferences. To be precise, we develop an (alternating) fixpoint
theory for so-calledordered logic programs(also, prioritized logic programs). An ordered
logic program is an extended logic program whose rules are subject to a strict partial order.
In analogy to standard logic programming, such a program is then interpreted by means of
an associated fixpoint operator. We start by elaborating upon a specific approach to pref-
erence handling that avoids some problems of related approaches. We also show how the
approaches of Brewka and Eiter (2000) and Delgrande et al. (2000b) can be captured within
our framework. As a result, we obtain that the investigated approaches yield an increasing
number of answer sets depending on how “tight” they integrate preferences. For obtaining
a complementary perspective, we also provide characterizations in terms of the property of
order preservation, originally defined in (Delgrande et al. 2000b) for distinguishing “pre-
ferred” from “non-preferred” answer sets. Moreover, we show how these approaches can
be implemented by the compilation techniques developed in (Delgrande et al. 2000b). As
well, we show that all these different preferred answer set semantics correspond to the
perfect model semantics on stratified programs. We deal with approaches whose preferred
answer sets semantics amounts to a selection function on the standard answer sets of an
ordered logic program. In view of our interest in compiling these approaches into ordi-
nary logic programs, we moreover limit our investigation to those guaranteeing polyno-
mial translations. This excludes approach like the ones in (Rintanen 1995; Zhang and Foo
1997) that step outside the complexity class of the underlying logic programming frame-
work. This applies also to the approach in (Sakama and Inoue 1996), where preferences
on literals are investigated. While the approach of (Gelfond and Son 1997) remains within
NP, it advocates strategies that are non-selective (as discussed in Section 5). Approaches
that can be addressed within this framework include those in (Baader and Hollunder 1993;
Brewka 1994) that were originally proposed for default logic.

The paper is organized as follows. Once Section 2 has provided formal preliminaries, we
begin in Section 3 by elaborating upon our initial semantics for ordered logic programs.
Afterwards, we show in Section 4 how this semantics has to be modified in order to account
for the two other aforementioned approaches.

2 Definitions and notation

We assume a basic familiarity with alternative semantics of logic programming (Lifschitz
1996). Anextended logic programis a finite set of rules of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln, (1)

wheren ≥ m ≥ 0, and eachLi (0 ≤ i ≤ n) is aliteral, ie. either an atomA or the negation
¬A of A. The set of all literals is denoted byLit . Given a ruler as in (1), we lethead(r)
denote thehead, L0, of r andbody(r) thebody, {L1, . . . , Lm, not Lm+1, . . . ,not Ln}, of
r. Further, letbody+(r) = {L1, , . . . , Lm} andbody−(r) = {Lm+1, . . . , Ln}. A program
is calledbasicif body−(r) = ∅ for all its rules; it is callednormalif it contains no classical
negation symbol¬. The reduct of a ruler is defined asr+ = head(r) ← body+(r); the
reduct, ΠX , of a programΠ relative toa setX of literals is defined by

ΠX = {r+ | r ∈ Π andbody−(r) ∩X = ∅}.
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A set of literalsX is closed undera basic programΠ iff for any r ∈ Π, head(r) ∈ X

wheneverbody+(r) ⊆ X. We say thatX is logically closediff it is either consistent (ie.
it does not contain both a literalA and its negation¬A) or equalsLit . The smallest set of
literals which is both logically closed and closed under a basic programΠ is denoted by
Cn(Π). With these formalities at hand, we can defineanswer set semanticsfor extended
logic programs: A setX of literals is ananswer setof a programΠ iff Cn(ΠX) = X.
For the rest of this paper, we concentrate onconsistentanswer sets. For capturing other
semantics,Cn(ΠX) is sometimes regarded as an operatorCΠ(X). The anti-monotonicity
of CΠ implies thatC2

Π is monotonic. As shown in (van Gelder 1993), different semantics
are obtained by distinguishing different groups of (alternating) fixpoints ofC2

Π(X).
Alternative inductive characterizations for the operatorsCn andCΠ can be obtained by

appeal toimmediate consequence operators(Lloyd 1987). LetΠ be a basic program and
X a set of literals. Theimmediate consequence operatorTΠ is defined as follows:

TΠX = {head(r) | r ∈ Π andbody(r) ⊆ X}

if X is consistent, andTΠX = Lit otherwise. Iterated applications ofTΠ are written as
T j

Π for j ≥ 0, whereT 0
ΠX = X andT i

ΠX = TΠT i−1
Π X for i ≥ 1. It is well-known that

Cn(Π) =
⋃

i≥0 T i
Π∅, for any basic programΠ. Also, for any answer setX of programΠ,

it holds thatX =
⋃

i≥0 T i
ΠX∅. A reduction from extended to basic programs is avoidable

with an extended operator: LetΠ be an extended program andX andY be sets of literals.
Theextended immediate consequence operatorTΠ,Y is defined as follows:

TΠ,Y X = {head(r) | r ∈ Π, body+(r) ⊆ X, andbody−(r) ∩ Y = ∅} (2)

if X is consistent, andTΠ,Y X = Lit otherwise. Iterated applications ofTΠ,Y are writ-
ten as those ofTΠ. Clearly, we haveTΠ,∅X = TΠX for any basic programΠ and
TΠ,Y X = TΠY X for any extended programΠ. Accordingly, we have for any answer setX

of programΠ thatX =
⋃

i≥0 T i
Π,X∅. Finally, for dealing with the individual rules in (2),

we rely on the notion ofactiveness: Let X, Y ⊆ Lit be two sets of literals in a program
Π. A rule r in Π is activewrt the pair(X, Y ), if body+(r) ⊆ X andbody−(r) ∩ Y = ∅.
Alternatively, we thus have thatTΠ,Y X = {head(r) | r ∈ Π is active wrt(X, Y )}.

Lastly, anordered logic programis simply a pair(Π, <), whereΠ is an extended logic
program and< ⊆ Π×Π is an irreflexive and transitive relation. Given,r1, r2 ∈ Π, the
relationr1 < r2 is meant to express thatr2 hashigher priority thanr1. Programs asso-
ciated with such an external ordering are also referred to asstatically ordered programs,
as opposed todynamicallyordered programs whose order relation is expressed through a
special-purpose predicate within the program.

3 Preferred fixpoints

We elaborate upon a semantics for ordered logic program that allows us to distinguish the
“preferred” answer sets of a program(Π, <) by means of fixpoint equations. That is, a set
of literalsX is a preferred answer set of(Π, <), if it satisfies the equationC(Π,<)(X) = X

for some operatorC(Π,<). In view of the classical approach described above, this makes us
investigate semantics that interpret preferences as inducing selection functions on the set
of standard answer sets of the underlying non-ordered programΠ.
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Answer sets are defined via a reduction of extended logic programs to basic programs.
Controlling such a reduction by means of preferences is difficult since all conflicts are
simultaneously resolved when turningΠ into ΠX . Furthermore, we argue that conflict
resolution must be addressed among the original rules in order to account for blockage
between rules. In fact, once the negative bodybody−(r) is eliminated there is no way to
detect whetherhead(r′) ∈ body−(r) holds in case ofr < r′. Our idea is thus to character-
ize preferred answer sets by an inductive development that agrees with the given ordering.
In terms of a standard answer setX, this means that we favor its formal characterization
asX =

⋃
i≥0 T i

Π,X∅ overX = Cn(ΠX). This leads us to the following definition.

Definition 1
Let (Π, <) be an ordered logic program and letX andY be sets of literals.

We define the set of immediate consequences ofX with respect to(Π, <) andY as

T(Π,<),Y X =

head(r)

∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt(X, Y ) and
II . there is no ruler′ ∈ Π with r < r′

such that
(a) r′ is active wrt(Y, X) and
(b) head(r′) 6∈ X


if X is consistent, andT(Π,<),Y X = Lit otherwise.

Note thatT(Π,<),Y is a refinement of its classical counterpartTΠ,Y in (2). The idea behind
ConditionII is to apply a ruler only if the “question of applicability” has been settled for
all higher-ranked rulesr′. Let us illustrate this in terms of iterated applications ofT(Π,<),Y .
In this case,X accumulates conclusions, whileY comprises the putative answer set. Then,
the “question of applicability” is considered to be settled for a higher ranked ruler′

• if the prerequisites ofr′ will never be derivable, viz.body+(r′) 6⊆ Y , or
• if r′ is defeated by what has been derived so far, viz.body−(r) ∩X 6= ∅, or
• if r′ or another rule with the same head have already applied, viz.head(r′) ∈ X.

The first two conditions show why activeness ofr′ is stipulated wrt(Y,X), as opposed to
(X, Y ) in ConditionI. The last condition serves two purposes: First, it detects whether the
higher ranked ruler′ has applied and, second, it suspends the preferencer < r′ whenever
the head of the higher ranked has already been derived by another rule. This suspension of
preference constitutes a distinguishing feature of the approach at hand.

As with TΠ,Y , iterated applications ofT(Π,<),Y are written asT j
(Π,<),Y for j ≥ 0, where

T 0
(Π,<),Y X = X andT i

(Π,<),Y X = T(Π,<),Y T i−1
(Π,<),Y X for i ≥ 1. The counterpart of

operatorCΠ for ordered programs is then defined as follows.

Definition 2
Let (Π, <) be an ordered logic program and letX be a set of literals.

We defineC(Π,<)(X) =
⋃

i≥0 T i
(Π,<),X∅.

Clearly,C(Π,<) is a refinement ofCΠ. The difference is thatC(Π,<) obtains consequences
directly fromΠ andY , whileCΠ (normally) draws them by appeal toCn after reducingΠ
to ΠY . All this allows us to define preferred answer sets as fixpoints ofC(Π,<).
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Definition 3
Let (Π, <) be an ordered logic program and letX be a set of literals.

We defineX as a preferred answer set of(Π, <) iff C(Π,<)(X) = X.

For illustration, consider the following ordered logic program(Π3, <):

r1 : ¬f ← p,not f

r2 : w ← b,not ¬w

r3 : f ← w,not ¬f

r4 : b ← p

r5 : p ←
r2 < r1 (3)

Observe thatΠ3 admits two answer sets:X = {p, b,¬f, w} andX ′ = {p, b, f, w}. As
argued in (Baader and Hollunder 1993),X is preferred toX ′. To see this, observe that

T 0
(Π3,<),X∅ = ∅ T 0

(Π3,<),X′∅ = ∅
T 1

(Π3,<),X∅ = {p} T 1
(Π3,<),X′∅ = {p}

T 2
(Π3,<),X∅ = {p, b,¬f} T 2

(Π3,<),X′∅ = {p, b}
T 3

(Π3,<),X∅ = {p, b,¬f, w} T 3
(Π3,<),X′∅ = T 2

(Π3,<),X′∅
T 4

(Π3,<),X∅ = T 3
(Π3,<),X∅ = X 6= X ′

(4)

We thus getC(Π3,<)(X) = X, while C(Π3,<)(X ′) = {p, b} 6= X ′. Note thatw cannot be
included intoT 3

(Π3,<),X′∅ sincer1 is active wrt(X ′, T 2
(Π3,<),X′∅) andr1 is preferred tor2.

It is important to see that preferences may sometimes be too strong and deny the ex-
istence of preferred answer sets although standard ones exist. This is because preferences
impose additional dependencies among rules that must be respected by the resulting answer
sets. This is nicely illustrated by programsΠ5 = {r1, r2} andΠ′5 = {r′1, r′2}, respectively:

r1 = a ← b

r2 = b ←
r′1 = a ← not b

r′2 = b ← (5)

Observe that inΠ5 rule r1 dependsr2, while in Π′5 rule r′1 is defeated byr′2. But despite
the fact thatΠ5 has answer setX = {a, b} andΠ′5 has answer setX ′ = {b}, we obtain
no preferred answer set after imposing preferencesr2 < r1 andr′2 <′ r′1, respectively.
To see this, observe thatT 0

(Π5,<),X∅ = T 1
(Π5,<),X∅ = ∅ 6= X and T 0

(Π′
5,<′),X′∅ =

T 1
(Π′

5,<′),X′∅ = ∅ 6= X ′. In both cases, the preferred rulesr1 and r′1, respectively, are
(initially) inapplicable:a← b is not active wrt(∅, {a, b}) anda← not b is not active wrt
(∅, {b}). And the application of the second ruleb← is inhibited by Condition II: In the case
of T 1

(Π5,<),X∅, rulea← b is active wrt({a, b}, ∅); informally, X puts the construction on

the false front thatb will eventually be derivable. In the case ofT 1
(Π5,<),X∅, rulea← not b

is active wrt({b}, ∅). This is due to the conception that a higher-ranked rule can never be
defeated by a lower-ranked one.

Formal elaboration.We start with the basic properties of our consequence operator:

Theorem 1
Let (Π, <) be an ordered program and letX andY be sets of literals. Then, we have:

1. T(Π,<),Y X ⊆ TΠ,Y X.
2. T(Π,∅),Y X = TΠ,Y X.

For i = 1, 2, let Xi andYi be sets of literals and<i ⊆ Π×Π be strict partial orders.
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3. If X1 ⊆ X2, thenT(Π,<),Y X1 ⊆ T(Π,<),Y X2.

4. If Y1 ⊆ Y2, thenT(Π,<),Y2X ⊆ T(Π,<),Y1X.

5. If <1 ⊆ <2, thenT(Π,<2),Y X ⊆ T(Π,<1),Y X.

The next results show how our fixpoint operator relates to its classical counterpart.

Theorem 2

Let (Π, <) be an ordered program and letX be a set of literals. Then, we have:

1. C(Π,<)(X) ⊆ CΠ(X).
2. C(Π,<)(X) = CΠ(X), if X ⊆ C(Π,<)(X).
3. C(Π,∅)(X) = CΠ(X).

We obtain the following two corollaries.

Corollary 3

Let (Π, <) be an ordered logic program andX a set of literals.
If X is a preferred answer set of(Π, <), thenX is an answer set ofΠ.

Our strategy thus implements a selection function among the standard answer sets of the
underlying program. This selection is neutral in the absence of preferences, as shown next.

Corollary 4

Let Π be a logic program andX a set of literals.
Then,X is a preferred answer set of(Π, ∅) iff X is an answer set ofΠ.

Of interest in view of an alternating fixpoint theory is thatC(Π,<) enjoysanti-monotonicity:

Theorem 5

Let (Π, <) be an ordered logic program andX1, X2 sets of literals.
If X1 ⊆ X2, thenC(Π,<)(X2) ⊆ C(Π,<)(X1).

We next show that for any answer setX of a programΠ, there is an ordering< on the
rules ofΠ such thatX is the unique preferred answer set of(Π, <).

Theorem 6

Let Π be a logic program andX an answer set ofΠ. Then, there is a strict partial order<

such thatX is the unique preferred answer set of the ordered program(Π, <).

Our last result shows that a total order selects at most one standard answer set.

Theorem 7

Let (Π,�) be an ordered logic program and� be a total order.
Then,(Π,�) has zero or one preferred answer set.
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Relationship to perfect model semantics.Any sensible semantics for logic programming
should yield, in one fashion or other, the smallest Herbrand modelCn(Π) wheneverΠ is
a basic program. A similar consensus seems to exist regarding theperfect model semantics
of stratifiednormal programs (Apt et al. 1987; Przymusinski 1988). Interestingly, stratified
programs can be associated with a rule ordering in a canonical way. We now show that our
semantics corresponds to the perfect model semantics on stratified normal programs.

A normal logic programΠ is stratified, if Π has a partition, calledstratification, Π =
Π1 ∪ . . . ∪Πn such that the following conditions are satisfied fori, j ∈ {1, . . . , n}:

1. Πi ∩Πj = ∅ for i 6= j;
2. body+(r)∩ (

⋃n
k=i+1 head(Πk)) = ∅ andbody−(r)∩ (

⋃n
k=i head(Πk)) = ∅ for all

r ∈ Πi.

That is, whenever a ruler belongs toΠi, the atoms inbody+(r) can only appear in the
heads of

⋃i
k=1 Πk, while the atoms inbody−(r) can only appear in the heads of

⋃i−1
k=1 Πk.

A stratification somehow reflects an intrinsic order among the rules of a program. In a
certain sense, rules in lower levels are preferred over rules in higher levels, insofar as rules
in lower levels should be considered before rules in higher levels. Accordingly, the intuition
behind the perfect model of a stratified program is to gradually derive atoms, starting from
the most preferred rules. Specifically, one first applies the rules inΠ1, resulting in a set of
atomsX1; then one applies the rules inΠ2 relative to the atoms inX1; and so on.

Formally, theperfect model semanticsof a stratified logic programΠ = Π1 ∪ . . . ∪ Πn

is recursively defined for0 < i < n as follows (Apt et al. 1987; Przymusinski 1988).

1. X0 = ∅
2. Xi+1 =

⋃
j≥0 T j

Πi+1,Xi
Xi

Theperfect modelX? of Π is then defined asX? = Xn.
Let Π be a stratified logic program andΠ = Π1 ∪ . . . ∪ Πn be a stratification ofΠ. A

natural priority relation<s onΠ can be defined as follows:

For anyr1, r2 ∈ Π, we definer1 <s r2 iff r1 ∈ Πi andr2 ∈ Πj such thatj < i .

That is,r2 is preferred tor1 if the level ofr2 is lower than that ofr1. We obtain thus an
ordered logic program(Π, <s) for any stratified logic programΠ with a fixed stratification.

Theorem 8
Let X? be the perfect model of stratified logic programΠ and let<s be an order induced
by some stratification ofΠ. Then, we have

1. X? = C(Π,<s)(X?),
2. If X ⊆ C(Π,<s)(X), thenX? = X.

These results imply the following theorem.

Corollary 9
Let X? be the perfect model of stratified logic programΠ and let<s be an order induced
by some stratification ofΠ. Then ,(Π, <s) has the unique preferred answer setX?.

Interestingly, both programsΠ5 as well asΠ′5 are stratifiable. None of the induced or-
derings, however, contains the respective preference ordering imposed in (5). In fact, this
provides an easy criterion for the existence of (unique) preferred answer sets.
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Corollary 10

Let X? be the perfect model of stratified logic programΠ and let<s be an order induced
by some stratification ofΠ. Let (Π, <) be an ordered logic program such that< ⊆ <s.

Then ,(Π, <) has the unique preferred answer setX?.

Implementation through compilation.A translation of ordered logic programs to standard
programs is developed in (Delgrande et al. 2000b). Although the employed strategy (cf.
Section 4) differs from the one put forward in the previous section, it turns out that the
computation of preferred answer sets can be accomplished by means of this translation
technique in a rather straightforward way. In the framework of (Delgrande et al. 2000b),
preferences are expressed within the program via a predicate symbol≺. A logic program
over a propositional languageL is said to bedynamicallyordered iffL contains the fol-
lowing pairwise disjoint categories: (i) a setN of terms serving asnamesfor rules; (ii) a
setAt of atoms; and (iii) a setAt≺ of preference atomss ≺ t, wheres, t ∈ N are names.
For a programΠ, we need a bijective functionn(·) assigning a namen(r) ∈ N to each
ruler ∈ Π . We sometimes writenr instead ofn(r). An atomnr ≺ nr′ ∈ At≺ amounts to
asserting thatr < r′ holds. A (statically) ordered program(Π, <) can thus be captured by
programs containing preference atoms only among their facts; it is then expressed by the
programΠ ∪ {(nr ≺ nr′)← | r < r′}.

Given r < r′, one wants to ensure thatr′ is considered beforer (cf. Condition II in
Definition 2). For this purpose, one needs to be able to detect when a rule has been applied
or when a rule is defeated. For detecting blockage, a new atombl(nr) is introduced for each
r in Π. Similarly, an atomap(nr) is introduced to indicate that a rule has been applied. For
controlling application of ruler the atomok(nr) is introduced. Informally, one concludes
that it isok to apply a rule just if it isok with respect to every<-greater rule; for such a
<-greater ruler′, this will be the case just whenr′ is known to be blocked or applied.

More formally, given a dynamically ordered programΠ overL, letL+ be the language
obtained fromL by adding, for eachr, r′ ∈ Π, new pairwise distinct propositional atoms
ap(nr), bl(nr), ok(nr), andrdy(nr,nr′). Then, the translationT maps an ordered program
Π overL into a standard programT(Π) overL+ in the following way.

Definition 4

Let Π = {r1, . . . , rk} be a dynamically ordered logic program overL.

Then, the logic programT(Π) overL+ is defined asT(Π) =
⋃

r∈Πτ(r) , whereτ(r)
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consists of the following rules, forL+ ∈ body+(r), L− ∈ body−(r), andr′, r′′ ∈ Π :

a1(r) = head(r) ← ap(nr)
a2(r) = ap(nr) ← ok(nr), body(r)

b1(r, L+) = bl(nr) ← ok(nr),not L+

b2(r, L−) = bl(nr) ← ok(nr), L−

c1(r) = ok(nr) ← rdy(nr,nr1), . . . , rdy(nr,nrk
)

c2(r, r′) = rdy(nr,nr′) ← not (nr ≺ nr′)
c3(r, r′) = rdy(nr,nr′) ← (nr ≺ nr′), ap(nr′)
c4(r, r′) = rdy(nr,nr′) ← (nr ≺ nr′), bl(nr′)
c5(r, r′) = rdy(nr,nr′) ← (nr ≺ nr′), head(r′)

t(r, r′, r′′) = nr ≺ nr′′ ← nr ≺ nr′ ,nr′ ≺ nr′′

as(r, r′) = ¬(nr′ ≺ nr) ← nr ≺ nr′

We write T(Π, <) rather thanT(Π′), wheneverΠ′ is the dynamically ordered program
capturing(Π, <). The first four rules ofτ(r) express applicability and blocking conditions
of the original rules. For each ruler ∈ Π, we obtain two rules,a1(r) anda2(r), along with
n rules of the formb1(r, L+) andm rules of the formb2(r, L−), wheren andm are the
numbers of the literals inbody+(r) andbody−(r), respectively. The second group of rules
encodes the strategy for handling preferences. The first of these rules,c1(r), “quantifies”
over the rules inΠ. This is necessary when dealing with dynamic preferences since pref-
erences may vary depending on the corresponding answer set. The four rulesci(r, r′) for
i = 2..5 specify the pairwise dependency of rules in view of the given preference order-
ing: For any pair of rulesr, r′, we deriverdy(nr,nr′) whenevernr ≺ nr′ fails to hold,
or otherwise whenever eitherap(nr′) or bl(nr′) is true, or wheneverhead(r′) has already
been derived. This allows us to deriveok(nr), indicating thatr may potentially be applied
whenever we have for allr′ with nr ≺ nr′ thatr′ has been applied or cannot be applied.

It is instructive to observe how close this specification ofok(·) andrdy(·, ·) is to Condi-
tion II in Definition 1. In fact, given a fixedr ∈ Π, Condition II can be read as follows.

II . for everyr′ ∈ Π with r < r′ either
(a) r′ is not active wrt(Y, X) or
(b) head(r′) ∈ X

The quantification over all rulesr′ ∈ Π with r < r′ is accomplished by means ofc1(r)
(along withc2(r, r′)). By definition,r′ is not active wrt(Y, X)1 if eitherbody+(r) 6⊆ Y or
body−(r)∩X 6= ∅, both of which are detected by rulec4(r, r′). The conditionhead(r′) ∈
X is reflected byc3(r, r′) andc5(r, r′). While the former captures the case wherehead(r′)
was supplied byr′ itself,2 the latter accounts additionally for the case wherehead(r′) was
supplied by another rule thanr′.

The next result shows that translationT is a realization of operatorC.

1 Recall thatX is supposed to contain the set of conclusions that have been derived so far, whileY provides the
putative answer set.

2 Strictly speaking rulec3(r, r′) is subsumed byc5(r, r′); nonetheless we keep both for conceptual clarity in
view of similar translations presented in Section 4.
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Theorem 11
Let (Π, <) be an ordered logic program overL and letX ⊆ {head(r) | r ∈ Π} be a
consistent set of literals. Then, there is some set of literalsY overL+ whereX = Y ∩ L
such thatC(Π,<)(X) = CT(Π,<)(Y ) ∩ L.

Note that the fixpoints ofC(Π,<) constitute a special case the previous theorem.

Theorem 12
Let (Π, <) be an ordered logic program overL and letX andY be consistent sets of
literals. Then, we have that

1. if C(Π,<)(X) = X, then there is an answer setY of T(Π, <) such thatX =
Y ∩ L;

2. if Y is an answer set ofT(Π, <), thenC(Π,<)(Y ∩ L) = Y ∩ L.

4 Other strategies (and characterizations)

We now show how the approaches of Delgrande et al. (2000b) and Brewka/Eiter (1999;
2000) can be captured within our framework. Also, we take up a complementary characteri-
zation provided in (Delgrande et al. 2000b) in order to obtain another insightful perspective
on the three approaches. For clarity, we add the letter “W” to all concepts from Section 3.
Accordingly we add “D” and “B”, respectively, when dealing with the two aforementioned
approaches.

CharacterizingD-preference.In (Delgrande et al. 2000b), the selection of preferred an-
swer sets is characterized in terms of the underlying set of generating rules: The setΓΠX

of all generating rulesof a(n answer) setX of literals from programΠ is given by

ΓΠX = {r ∈ Π | body+(r) ⊆ X andbody−(r) ∩X = ∅} .

The property distinguishing preferred answer sets from ordinary ones is referred to as
order preservationand defined in the following way.

Definition 5
Let (Π, <) be an ordered program and letX be an answer set ofΠ.

Then,X is called<D-preserving, if there exists an enumeration〈ri〉i∈I of ΓΠX such
that for everyi, j ∈ I we have that:

1. body+(ri) ⊆ {head(rj) | j < i}; and
2. if ri < rj , thenj < i; and
3. if ri < r′ andr′ ∈ Π \ ΓΠX, then

(a) body+(r′) 6⊆ X or
(b) body−(r′) ∩ {head(rj) | j < i} 6= ∅.

We often refer to<D-preserving answer sets asD-preferred answer sets.
Condition 1 makes the property ofgroundedness3 explicit. Although any standard an-

swer set enjoys this property, we will see that its interaction with preferences varies with

3 This term is borrowed from the literature on default logic (cf. (Konolige 1988; Schwind 1990)).
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the strategy. Condition 2 stipulates that〈ri〉i∈I is compatiblewith <, a property invariant
to all of the considered approaches. Lastly, Condition 3 is comparable with Condition II in
Definition 1; it guarantees that rules can never be blocked by lower-ranked rules.

Roughly speaking, an order preserving enumeration of the set of generating rules reflects
the sequence of successive rule applications leading to some preferred answer set. For
instance, the preferred answer setX = {p, b,¬f, w} of Example (3) can be generated
by the two order preserving sequences〈r5, r4, r1, r2〉 and〈r5, r1, r4, r2〉. Intuitively, both
enumerations are order preserving since they reflect the fact thatr1 is treated beforer2. 4

Although there is another grounded enumeration generatingX, namely〈r5, r4, r2, r1〉, it
is not order preserving since it violates Condition 2. The same applies to the only grounded
enumeration〈r5, r4, r2, r3〉 that allows to generate the second standard answer set ofΠ3; it
violates Condition 3b. Consequently,X is the only<D-preserving answer set of(Π3, <).

We are now ready to provide a fixpoint definition forD-preference. For this purpose, we
assume a bijective mappingrule(·) among rule heads and rules, that is,rule(head(r)) = r;
accordingly,rule({head(r) | r ∈ R}) = R. Such mappings can be defined in a bijective
way by distinguishing different occurrences of literals.

Definition 6

Let (Π, <) be an ordered logic program and letX andY be sets of literals.
We define the set of immediateD-consequences ofX with respect to(Π, <) andY as

T D
(Π,<),Y X =

head(r)

∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt(X, Y ) and
II . there is no ruler′ ∈ Π with r < r′

such that
(a) r′ is active wrt(Y, X) and
(b) r′ 6∈ rule(X)


if X is consistent, andT D

(Π,<),Y X = Lit otherwise.

The distinguishing feature between this definition and Definition 1 manifests itself in IIb.
While D-preference requires that a higher-ranked rule has effectively applied,W-preference
contents itself with the presence of the head of the rule, no matter whether this was supplied
by the rule itself.

Defining iterated applications ofT D
(Π,<),Y in analogy to those ofT(Π,<),Y , we may cap-

tureD-preference by means of a fixpoint operator in the following way.

Definition 7

Let (Π, <) be an ordered logic program and letX be a set of literals.
We defineCD

(Π,<)(X) =
⋃

i≥0(T D)i
(Π,<),X∅.

A similar elaboration ofCD
(Π,<) as done withCW

(Π,<) in Section 3 yields identical formal
properties; in particular,CD

(Π,<) also enjoys anti-monotonicity.
The aforementioned difference is nicely illustrated by extending the programs in (5) by

4 Note that both enumerations are compatible with the iteration throughT i
(Π3,<),X

∅ for i = 0..4.
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rulea← , yielding(Π6, <) and(Π′6, <
′), respectively:

r1 = a ← b

r2 = b ←
r3 = a ←

r2 < r1

r′1 = a ← not b

r′2 = b ←
r′3 = a ←

r′2 <′ r′1

(6)

While in both cases the single standard answer set isW-preferred, neither of them is
D-preferred. Let us illustrate this in terms of the iterated applications ofT W

(Π6,<),X and
T D

(Π6,<),X , whereX = {a, b} is the standard answer set ofΠ6: At first, both operators
allow for applying rulea ← , resulting in{a}. As with T W

(Π5,<),X in (5), however, oper-
atorT D

(Π6,<),X does not allow for applyingr2 at the next stage, unlessr1 is inactive. This
requirement is now dropped byT W

(Π6,<),X , since the head ofr1 has already been derived
throughr3. In such a case, the original preference is ignored, which enables the applica-
tion of r2. In this way, we obtain theW-preferred answer setX = {a, b}. The analogous
behavior is observed on(Π′6, <

′).
As W-preferred answer sets,D-preferred ones coincide with the perfect model on strati-

fied programs.

Theorem 13

Let X? be the perfect model of stratified logic programΠ and let<s be an order induced
by some stratification ofΠ. Then ,(Π, <s) has the uniqueD-preferred answer setX?.

The subtle difference betweenD- andW-preference is also reflected in the resulting com-
pilation. Given the same prerequisites as in Definition 4, the logic programTD(Π) overL+

is defined asTD(Π) = TW(Π) \ {c5(r, r′) | r, r′ ∈ Π}. Hence, in terms of this compi-
lation technique, the distinguishing feature betweenD- andW-preference manifests itself
in the usage of rulec5(r, r′) : rdy(nr,nr′) ← (nr ≺ nr′), head(r′). While W-preference
allows for suspending a preference whenever the head of the preferred rule was derived,
D-preference stipulates the application of the preferred rule itself. This is reflected by the
fact that the translationTD merely uses rulec3(r, r′) : rdy(nr,nr′)← (nr ≺ nr′), ap(nr′)
to enforce that the preferred rule itself has been applied. This demonstrates once more how
closely the compilation technique follows the specification given in the fixpoint operation.

As shown in (Delgrande et al. 2000b), a set of literalsX is a<D-preserving answer set
of a programΠ iff X = Y ∩ L for some answer setY of TD(Π, <). This result naturally
extends to the fixpoint operatorCD

(Π,<), as shown in the following result.

Theorem 14

Let (Π, <) be an ordered logic program overL and letX be a consistent set of literals.
Then, the following propositions are equivalent.

1. CD
(Π,<)(X) = X;

2. X = Y ∩ L for some answer setY of TD(Π, <);
3. X is a<D-preserving answer set ofΠ.

While the last result dealt with effective answer sets, the next one shows that applying
CD
(Π,<) is equivalent to the application ofCΠ′ to the translated programΠ′ = TD(Π, <) .
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Theorem 15
Let (Π, <) be an ordered logic program overL and letX ⊆ {head(r) | r ∈ Π} be a
consistent set of literals. Then, there is some set of literalsY overL+ whereX = Y ∩ L
such thatCD

(Π,<)(X) = CTD(Π,<)(Y ) ∩ L.

CharacterizingW-preference (alternatively).We now briefly elaborate upon a character-
ization of W-preference in terms of order preservation. This is interesting because order
preservation provides an alternative perspective on the formation of answer sets. In con-
trast to the previous fixpoint characterizations, order preservation furnishes an account of
preferred answer sets in terms of the underlying generating rules. While an immediate
consequence operator provides a rather rule-centered and thus local characterization, or-
der preservation gives a more global and less procedural view on an entire construction.
In particular, the underlying sequence nicely reflects the interaction of its properties. In
fact, we see below that different approaches distinguish themselves by a different degree
of interaction between groundedness and preferences.

Definition 8
Let (Π, <) be an ordered program and letX be an answer set ofΠ.

Then,X is called<W-preserving, if there exists an enumeration〈ri〉i∈I of ΓΠX such
that for everyi, j ∈ I we have that:

1. (a) body+(ri) ⊆ {head(rj) | j < i} or
(b) head(ri) ∈ {head(rj) | j < i}; and

2. if ri < rj , thenj < i; and
3. if ri < r′ andr′ ∈ Π \ ΓΠX, then

(a) body+(r′) 6⊆ X or
(b) body−(r′) ∩ {head(rj) | j < i} 6= ∅ or
(c) head(r′) ∈ {head(rj) | j < i}.

The primary difference between this concept of order preservation and the one forD-
preference is clearly the weaker notion of groundedness. WhileD-preference makes
no compromise when enforcing rule dependencies induced by preference,W-preference
“smoothes” their integration with those induced by groundedness and defeat relationships:
First, regarding rules inΓΠX (via Condition 1b) and second concerning rules inΠ \ ΓΠX

(via Condition 3c). The rest of the definition is identical to Definition 5.
This “smoothed” integration of preferences with groundedness and defeat dependencies

is nicely illustrated by programs(Π6, <) and(Π′6, <). RegardingΠ6, we observe that there
is no enumeration ofΓΠX satisfying both Condition 1a and 2. Rather it is Condition 1b that
weakens the interaction between both conditions by tolerating enumeration〈r3, r2, r1〉. A
similar observation can be made regardingΠ′6, where, in contrast toΠ6, the preferred rule
r′1 does not belong toΓΠX. We observe that there is no enumeration ofΓΠX satisfying
both Condition 2 and 3a/b. Now, it is Condition 3c that weakens the interaction between
both conditions by tolerating enumeration〈r′3, r′2〉. In fact, the two examples show that both
Condition 1b as well as 3c function as exceptions to conditions 1a and 3a/b, respectively.
In this way,W-preference imposes the same requirements asD-preference,unlessthe head
of the rule in focus has already been derived by other means.

Finally, we have the following summarizing result.
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Theorem 16
Let (Π, <) be an ordered logic program overL and letX be a consistent set of literals.
Then, the following propositions are equivalent.

1. CW
(Π,<)(X) = X;

2. X = Y ∩ L for some answer setY of TW(Π, <);
3. X is a<W-preserving answer set ofΠ.

CharacterizingB-preference.Another approach to preference is proposed in (Brewka and
Eiter 1999). This approach differs in two ways from the previous ones. First, the construc-
tion of answer sets is separated from verifying preferences. Interestingly, this verification
is done on the basis of the prerequisite-free program obtained from the original one by
“evaluating” body+(r) for each ruler wrt the separately constructed (standard) answer
set. Second, rules that may lead to counter-intuitive results are explicitly removed. This is
spelled out in (Brewka and Eiter 2000), where the following filter is defined:

EX(Π) = Π \ {r ∈ Π | head(r) ∈ X, body−(r) ∩X 6= ∅} (7)

Accordingly, we defineEX(Π, <) = (EX(Π), < ∩ (EX(Π)× EX(Π)) ).
We begin with a formal account ofB-preferred answer sets. In this approach, partially

ordered programs are reduced to totally ordered ones: Afully ordered logic programis an
ordered logic program(Π,�) where� is a total ordering. The case of arbitrarily ordered
programs is reduced to this restricted case: Let(Π, <) be an ordered logic program and let
X be a set of literals. Then,X is aB-preferred answer set of(Π, <) iff X is aB-preferred
answer set of some fully ordered logic program(Π,�) such that< ⊆ �.

The construction ofB-preferred answer sets relies on an operator, defined for
prerequisite-free programs, comprising only rulesr with body+(r) = ∅.

Definition 9
Let (Π,�) be a fully ordered prerequisite-free logic program, let〈ri〉i∈I be an enumera-
tion of Π according to�, and letX be a set of literals. Then,B(Π,�)(X) is the smallest
logically closed set of literals containing

⋃
i∈I Xi, whereXj = ∅ for j 6∈ I and

Xi =
{

Xi−1 if body−(ri) ∩Xi−1 6= ∅
Xi−1 ∪ {head(ri)} otherwise.

This construction is unique insofar that for any such program(Π,�), there is at most one
standard answer setX of Π such thatBEX(Π,�)(X) = X. Accordingly, this set is used for
defining theB-preferred answer setof a prerequisite-free logic program:

Definition 10
Let (Π,�) be a fully ordered prerequisite-free logic program and letX be a set of literals.
Then,X is theB-preferred answer set of(Π,�) iff BEX(Π,�)(X) = X.

The reduction of(Π,�) to EX(Π,�) removes from the above construction all rules
whose heads are inX but which are defeated byX. This is illustrated in (Brewka and Eiter
2000) through the following example:

r1 = a ← not b,

r2 = ¬a ← not a,

r3 = a ← not ¬a,

r4 = b ← not ¬b,

{rj < ri | i < j} . (8)
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ProgramΠ8 = {r1, . . . , r4} has two answer sets,{a, b} and {¬a, b}. The application
of operatorB relies on sequence〈r1, r2, r3, r4〉. Now, consider the processes induced by
BEX(Π8,<)(X) andB(Π8,<)(X) for X = {a, b}, respectively:

BEX(Π8,<)(X) : X1 = {} X2 = {¬a} X3 = {¬a} X4 = {¬a, b}
B(Π8,<)(X) : X ′

1 = {a} X ′
2 = {a} X ′

3 = {a} X ′
4 = {a, b}

Thus, without filtering byEX , we get{a, b} as a B-preferred answer set. As argued
in (Brewka and Eiter 2000), such an answer set does not preserve priorities becauser2

is defeated in{a, b} by applying a rule which is less preferred thanr2, namelyr3. The
above program has therefore noB-preferred answer set.

The next definition accounts for the general case by reducing it to the prerequisite-free
one. For checking whether an answer setX is B-preferred, the prerequisites of the rules
are evaluated wrtX. For this purpose, we definer− = head(r)← body−(r) for a ruler.

Definition 11
Let (Π,�) be a fully ordered logic program andX a set of literals.

The logic program(ΠX ,�X) is obtained from(Π,�) as follows:

1. ΠX = {r− | r ∈ Π andbody+(r) ⊆ X};
2. for anyr′1, r

′
2 ∈ ΠX , r′1 �X r′2 iff r1 � r2 whereri = max�{r ∈ Π | r− =

r′i}.

In other words,ΠX is obtained fromΠ by first eliminating every ruler ∈ Π such that
body+(r) 6⊆ X, and then substituting all remaining rulesr by r−.

In general,B-preferred answer sets are then defined as follows.

Definition 12
Let (Π,�) be a fully ordered logic program andX a set of literals.

Then,X is aB-preferred answer set of(Π,�), if

1. X is a (standard) answer set ofΠ, and
2. X is aB-preferred answer set of(ΠX ,�X).

The distinguishing example of this approach is given by program(Π9, <):

r1 = b ← a,not ¬b

r2 = ¬b ← not b

r3 = a ← not ¬a

with {rj < ri | i < j} . (9)

ProgramΠ9 = {r1, r2, r3} has two standard answer sets:X1 = {a, b} andX2 = {a,¬b}.
Both (Π9)X1 as well as(Π9)X2 turn r1 into b ← not ¬b while leavingr2 andr3 unaf-
fected. Clearly,EXi(Π9, <) = (Π9, <) for i = 1, 2. Also, we obtain thatB(Π9,<)(X1) =
X1, that is,X1 is a B-preferred answer set. In contrast to this,X2 is not B-preferred. To
to see this, observe thatB(Π9,<)(X2) = X1 6= X2. That is,B(Π9,<)(X2) reproducesX1

rather thanX2. In fact, whileX1 is the onlyB-preferred set, neitherX1 nor X2 is W- or
D-preferred (see below).

We note thatB-preference disagrees withW- andD-preference on Example (3). In fact,
both answer sets of program(Π3, <) areB-preferred, while only{p, b,¬f, w} is W- andD-
preferred. In order to shed some light on these differences, we start by providing a fixpoint
characterization ofB-preference:
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Definition 13
Let (Π, <) be an ordered logic program and letX andY be sets of literals.

We define the set of immediate consequences ofX with respect to(Π, <) andY as

T B
(Π,<),Y X =

head(r)

∣∣∣∣∣∣∣∣∣∣

I . r ∈ Π is active wrt(Y, Y ) and
II . there is no ruler′ ∈ Π with r < r′

such that
(a) r′ is active wrt(Y, X) and
(b) head(r′) 6∈ X


if X is consistent, andT B

(Π,<),Y X = Lit otherwise.

The difference between this operator5 and its predecessors manifests itself in Condition I,
where activeness is tested wrt(Y, Y ) instead of(X, Y ), as in Definition 1 and 4. In fact,
in Example (9) it is the (unprovability of the) prerequisitea of the highest-ranked ruler1

that makes the construction ofW- or D-preferred answer sets break down (cf. Definition 1
and 4). This is avoided withB-preference because once answer set{a, b} is provided,
preferences are enforced wrt the program obtained by replacingr1 with b← not ¬b.

With an analogous definition of iterated applications ofT B
(Π,<),Y X as above, we obtain

the following characterization ofB-preference:

Definition 14
Let (Π, <) be an ordered logic program and letX be a set of literals.

We defineCB
(Π,<)(X) =

⋃
i≥0(T B)i

(Π,<),X∅.

Unlike above,CB
(Π,<) is not anti-monotonic. This is related to the fact that the “answer set

property” of a set is verified separately (cf. Definition 12). We have the following result.

Theorem 17
Let (Π, <) be an ordered logic program overL and letX be an answer set ofΠ.

Then, we have thatX is B-preferred iffCB
EX(Π,<)(X) = X.

As with D- andW-preference,B-preference gives the perfect model on stratified programs.

Theorem 18
Let X? be the perfect model of stratified logic programΠ and let<s be an order induced
by some stratification ofΠ. Then ,(Π, <s) has the uniqueB-preferred answer setX?.

Alternatively,B-preference can also be captured by appeal to order preservation:

Definition 15
Let (Π, <) be an ordered program and letX be an answer set ofΠ.

Then,X is called<B-preserving, if there exists an enumeration〈ri〉i∈I of ΓΠX such
that, for everyi, j ∈ I, we have that:

1. if ri < rj , thenj < i; and
2. if ri < r′ andr′ ∈ Π \ ΓΠX, then

5 We have refrained from integrating (7) in order to keep the fixpoint operator comparable to its predecessors.
This is taken care of in Theorem 19. We note however that an integration of (7) would only affect Condition II.
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(a) body+(r′) 6⊆ X or
(b) body−(r′) ∩ {head(rj) | j < i} 6= ∅ or
(c) head(r′) ∈ X.

This definition differs in two ways from its predecessors. First, it drops any requirement on
groundedness. This corresponds to using(Y, Y ) instead of(X, Y ) in Definition 13. Hence,
groundedness is fully disconnected from order preservation. For example, theB-preferred
answer set{a, b} of (Π9, <) is associated with the<B-preserving sequence〈r1, r2〉, while
the standard answer set is generated by the grounded sequence〈r2, r1〉. Second, Condi-
tion 2c is more relaxed than in Definition 8. That is, any ruler′ whose head is inX (as
opposed to{head(rj) | j < i}) is taken as “applied”. Also, Condition 2c integrates the
filter in (7).6 For illustration, consider Example (6) extended byr3 < r2:

r1 = a ← not b

r2 = b ←
r3 = a ←

r3 < r2 < r1 (10)

While this program has noD- or W-preferred answer set, it has aB-preferred one:{a, b}
generated by〈r2, r3〉. The critical ruler1 is handled by 2c. As a net result, Condition 2 is
weaker than its counterpart in Definition 8. We have the following summarizing result.

Theorem 19
Let (Π, <) be an ordered logic program overL and letX be a consistent answer set ofΠ.
Then, the following propositions are equivalent.

1. X is B-preferred;
2. CB

EX(Π,<)(X) = X;
3. X is a<B-preserving answer set ofΠ;
4. X = Y ∩ L for some answer setY of TB(Π, <)

(whereTB is defined in (Delgrande et al. 2000a)).

Unlike theorems 14 and 16, the last result stipulates thatX must be an answer set ofΠ.
This requirement can only be dropped in case 4, while all other cases rely on this property.

Relationships.First of all, we observe that all three approaches treat the blockage of
(higher-ranked) rules in the same way. That is, a ruler′ is found to be blocked if either
its prerequisites inbody+(r′) are neverderivable or if some member ofbody−(r′) has
been derived by higher-ranked or unrelated rules. This is reflected by the identity of condi-
tions IIa and 2a/b in all three approaches, respectively. Although this is arguably a sensible
strategy, it leads to the loss of preferred answer sets on programs like(Π′5, <

′).
The difference betweenD- andW-preference can be directly read off Definition 1 and 4;

it manifests itself in Condition IIb and leads to the following relationships.

Theorem 20
Let (Π, <) be an ordered logic program such that forr, r′ ∈ Π we have thatr 6= r′ implies
head(r) 6= head(r′). Let X be a set of literals. Then,X is a D-preferred answer set of
(Π, <) iff X is aW-preferred answer set of(Π, <).

6 Conditionbody−(r′) ∩ X 6= ∅ in (7) is obsolete becauser′ 6∈ ΓΠX.
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The considered programs deny the suspension of preferences underW-preference, because
all rule heads are derivable in a unique way. We have the following general result.

Theorem 21
EveryD-preferred answer set isW-preferred.

Example (6) shows that the converse does not hold.
Interestingly, a similar relationship is obtained betweenW- and B-preference. In fact,

Definition 15 can be interpreted as a weakening of Definition 8 by dropping the condition
on groundedness and weakening Condition 2 (via 2c). We thus obtain the following result.

Theorem 22
EveryW-preferred answer set isB-preferred.

Example (9) shows that the converse does not hold.
Let AS(Π) = {X | CΠ(X) = X} and ASP (Π, <) = {X ∈ AS(Π) |

X is P -preferred} for P = W, D, B. Then, we obtain the following summarizing result.

Theorem 23
Let (Π, <) be an ordered logic program. Then, we have

ASD(Π, <) ⊆ ASW(Π, <) ⊆ ASB(Π, <) ⊆ AS(Π)

This hierarchy is primarily induced by a decreasing interaction between groundedness and
preference. WhileD-preference requires the full compatibility of both concepts, this inter-
action is already weakened inW-preference, before it is fully abandoned inB-preference.
This is nicely reflected by the evolution of the condition on groundedness in definitions 5, 8,
and 15. Notably, groundedness as such is not the ultimate distinguishing factor, as demon-
strated by the fact that prerequisite-free programs do not necessarily lead to the same pre-
ferred answer sets, as witnessed in (6) and (10). Rather it is the degree of integration of
preferences within the standard reasoning process that makes the difference.

Taking together theorems 9, 13, and 18, we obtain the following result.

Theorem 24
Let X? be the perfect model of stratified logic programΠ and let<s be an order induced
by some stratification ofΠ. Let (Π, <) be an ordered logic program such that< ⊆ <s.

Then, we haveASD(Π, <) = ASW(Π, <) = ASB(Π, <) = AS(Π) = {X?}.

5 Discussion and related work

Up to now, we have been dealing with static preferences only. In fact, all fixpoint charac-
terizations are also amenable to dynamically ordered programs, as introduced in Section 4.
To see this, consider Definition 1 along with a dynamically ordered programΠ and sets of
literalsX, Y over a language extended by preference atomsAt≺. Then, the corresponding
preferred answer sets are definable by substituting “r < r′” by “ (r ≺ r′) ∈ Y ” in defi-
nitions 1, 6, and 13, respectively. That is, instead of drawing preference information from
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the external order<, we simply consult the initial context, expressed byY . In this way, the
preferred answer sets ofΠ can be given by the fixpoints of an operatorCΠ.

Also, we have concentrated so far on preferred answer sets semantics that amount to se-
lection functions on the standard answer sets of the underlying program. Another strategy
is advocated in (Gelfond and Son 1997), where the preferenced1 < d2 “stops the appli-
cation of defaultd2 if defaultsd1 andd2 are in conflict with each other and the defaultd1

is applicable” (Gelfond and Son 1997). In contrast toB-, D-, andW-preference this allows
for exclusively concluding¬p from program({r1, r2}, <):

r1 = p ← r2 = ¬p ← r1 < r2

This approach amounts toB-preference on certain “hierarchically” structured pro-
grams (Gelfond and Son 1997). A modification of the previous compilation techniques
for this strategy is discussed in (Delgrande and Schaub 2000). Although conceptually dif-
ferent, one finds similar strategies when dealing with inheritance, update and/or dynamic
logic programs (Buccafurri et al. 1999; Eiter et al. 2000; Alferes et al. 1998), respectively.

While all of the aformentioned approaches remain within the same complexity class,
other approaches step up in the polynomial hierarchy (Rintanen 1995; Sakama and In-
oue 1996; Zhang and Foo 1997). Among them, preferences on literals are investigated
in (Sakama and Inoue 1996). In contrast to these approaches, so-called courteous logic
programs (Grosof 1997) step down the polynomial hierarchy intoP . Due to the restriction
to acyclic positive logic programs a courteous answer set can be computed inO(n2) time.
Other preference-based approaches that exclude negation as failure include (Dimopoulos
and Kakas 1995; Pradhan and Minker 1996; You et al. 2001) as well as the framework
of defeasible logics (Nute 1987; Nute 1994). A comparision of the latter with preferred
well-founded semantics (as defined in (Brewka 1996)) can be found in (Brewka 2001).

In a companion paper, we exploit our fixpoint operators for defining regular and well-
founded semantics for ordered logic programs within an alternating fixpoint theory.7 This
yields a surprising yet negative result insofar as these operators turn out to be too weak
in the setting of well-founded semantics. We address this by defining a parameterizable
framework for preferred well-founded semantics, summarized in (Schaub and Wang 2002).

6 Conclusion

The notion of preference seems to be pervasive in logic programming when it comes to
knowledge representation. This is reflected by numerous approaches that aim at enhanc-
ing logic programming with preferences in order to improve knowledge representation
capacities. Despite the large variety of approaches, however, only very little attention has
been paid to their structural differences and sameness, finally leading to solid semantical
underpinnings. In particular, there were up to now only few attempts to characterize one
approach in terms of another one. The lack of this kind of investigation is clearly due to
the high diversity of existing approaches.

This work is a first step towards a systematic account to logic programming with prefer-
ences. To this end, we employ fixpoint operators following the tradition of logic program-

7 This material was removed from this paper due to space restrictions.
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ming. We elaborated upon three different approaches that were originally defined in rather
heterogenous ways. We obtained three alternative yet uniform ways of characterizing pre-
ferred answer sets (in terms of fixpoints, order preservation, and an axiomatic account).
The underlying uniformity provided us with a deeper understanding of how and which an-
swer sets are preferred in each approach. This has led to a clarification of their relationships
and subtle differences. On the one hand, we revealed that the investigated approaches yield
an increasing number of answer sets depending on how tight they connect preference to
groundedness. On the other hand, we demonstrated how closely the compilation technique
developed in (Delgrande et al. 2000b) follows the specification given in the fixpoint op-
eration. Also, we have shown that all considered answer sets semantics correspond to the
perfect models semantics whenever the underlying ordering stratifies the program.

We started by formally developing a specific approach to preferred answer sets semantics
that is situated “between” the approaches of Delgrande et al. (2000b) and that of Brewka
and Eiter (1999). This approach can be seen as a refinement of the former approach in that it
allows to suspend preferences whenever the result of applying a preferred rule has already
been derived. This feature avoids the overly strict prescriptive approach to preferences
pursued in (Delgrande et al. 2000b), which may lead to the loss of answer sets.
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under grant FOR 375/1-1, TP C. We are grateful to the anonymous referees, although we
were unable to follow all suggestions due to severe space restrictions.

7 Proofs

Proof 1 It can be directly verified from the definition ofT(Π,<),Y .

Proof 2
1. C(Π,<)(X) ⊆ CP (X): SinceC(Π,<)(X) =

⋃
i≥0 T i

(Π,<),X∅ andCΠ(X) = T i
ΠX∅,

we need only to prove thatT i
(Π,<),X∅ ⊆ T i

Π,X∅ for i ≥ 0 by using induction oni.

Base For i = 0, it is obvious thatT 0
(Π,<),X∅ = ∅ ⊆ T 0

Π,X∅.
Step Assume thatT i

(Π,<),X∅ ⊆ T i
Π,X∅, we want to show thatT i+1

(Π,<),X∅ ⊆ T i+1
Π,X∅.

In fact, if L ∈ T i+1
(Π,<),X∅, then, by Definition 1, there is a ruler in Π such that

L = head(r), body+(r) ⊆ T i
(Π,<),X∅ and body−(r) ∩ X = ∅. By induction

assumption,body+(r) ⊆ T i
Π,X∅. Since the ruleL ← body+(r) is in the reduct

programPX , L ∈ T i+1
Π,X∅.

2. CP (X) ⊆ C(Π,<)(X) if X ⊆ C(Π,<)(X): For simplicity, we denoteTi = T i
Π,X∅

andXi = T Π
(<,X),∅ for i ≥ 0. It suffices to proveT i

Π,X∅ ⊆ C(Π,<)(X) for k ≥ 0 by
using induction onk. That is, for eachi ≥ 0, there isni ≥ 0 such thatTi ⊆ Xni

Base If k = 1, it is obvious thatT 0
Π,X∅ = ∅ ⊆ X0.

Step Assume thatTi ⊆ Xni
. We want to showTi+1 ⊆ Xni+1 . Let a ∈ Ti+1, then

there is a ruler ∈ Γ with head(r) = a, body+(r) ⊆ Ti andbody−(r) ∩X = ∅.
By the induction assumption,r is active wrt(Xni

, X). We claim that there will
be no ruler′ such that both of Condition I and II hold wrt(Xni

, X). Otherwise,
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suppose that there is a ruler′ such thathead(r′) 6∈ Xni
, r < r′ andr′ is active

wrt (X, Xni). Without loss of generality, there is no ruler′′ such thathead(r′′) 6∈
Xni

, r < r′′ < r′ andr′′ is active wrt(X, Xni
). SinceX ⊆ C(Π,<)(X), there be

a numbern ≥ ni such thatr′ is active wrt(Xn, X). By the assumption ofr′′, it
should be thathead(r′′) ∈ Xn. A contradiction. Therefore,head(r) ∈ Xni+1.

3. If < is empty, then the conditionII in Definition 1 is automatically satisfied be-
cause, for any ruler ∈ Π, there is no ruler′ that is preferred tor. This implies that
T i

(Π,<),X∅ = T i
Π,X∅ for anyi ≥ 0. Therefore,C(Π,<)(X) = CP (X).

Proof 5 If X ⊆ X ′, it is a direct induction oni to show thatT i
(Π,<),X′∅ ⊆ T i

(Π,<),X∅.

Proof 6
If Π has no consistent answer set, the conclusion is obvious. Thus, we assume thatX is
consistent. First, we can easily generalize the notion of generating rules as follows: For
any two setsY1 andY2 of literals, setΓ(Y1, Y2) = {head(r) ← body+(r) | body+(r) ⊆
Y1, body−(r) ∩ Y2 = ∅}.

SinceX is an answer set ofΠ, we haveX = CΠ(X) =
⋃

i≥0 T i
Π,X∅. Let Γ0 =

Γ(TΠX∅, X) andΓk+1 = Γ(T k
ΠX∅, X) − Γk for k ≥ 1. Define a total order�X on Π

such that the following requirements are satisfied:

1. r′ �X r for anyr ∈ Γk andr′ ∈ Γk+1, k = 0, 1, . . . .

2. If r ∈ ∪n≥0Γn andr′ 6∈ ∪n≥0Γn, thenr′ �X r.

SinceΓk ∩ Γk′ 6= ∅ for n 6= n′, such an ordering exists. DenoteXi = T i
(Π,�X),X∅. We

need only to prove the following two propositions P1 and P2:

P1 X is a prioritized answer set of(Π,�X): SinceCP (X) = X, it suffices to prove
thatC(Π,<)(X) = CP (X). Firstly, by Theorem 2,C(Π,<)(X) ⊆ CP (X). For the op-
posite inclusion, we note thatCP (X) = head(∪k≥0Γk)), wherehead(∪k≥0Γk)) =
{head(r) | r ∈ ∪k≥0Γk}. Hence, we need only to prove thathead(Γk) ⊆ C(Π,<)(X)
for anyk ≥ 0 by using induction onk.

Base Fork = 0, without loss of generality, suppose thatΓ0 = {r1, . . . , rt} andrt �X

· · · �X r1. We use second induction to show thathead(ri) ∈ CP (X) for 1 ≤ i ≤ t.

Base For i = 1, since there is no ruler′ with r1 �X r′, head(r1) ∈ X1.

Step Assume thathead(ri) ∈ Xi, thenhead(ri+1) ∈ Xi+1. Thushead(Γ0) ⊆ Xt.

Step Assume thathead(Γk) ⊆ C(Π,<)(X). Thenhead(Γk) ∈ Xmk
for somemk > 0.

Let Γk+1 = {r1, . . . , ru} andru �X · · · �X r1. Then, similar to the case ofk = 0,
we have thathead(ri) ∈ Xmk+i for i = 1, . . . , u.
Thus,head(Γk) ⊆ C(Π,<)(X) for anyk ≥ 0.

This implies thatCP (X) ⊆ C(Π,<)(X). Therefore,C(Π,<)(X) = X.
P2 If X ′ is an answer set ofΠ such thatX ′ 6= X, thenX ′ is not a prioritized answer

set of(Π,�X): First note thatX \ X ′ 6= ∅ andX ′ \ X 6= ∅. We assert that there is
literal l ∈ X \X ′ such thatl 6∈ C(Π,<)(X ′): otherwise,X \X ′ ⊆ C(Π,<)(X ′). We can
chooset ≥ 0 and a literall0 ∈ X \ X ′ such thatX ′

t ⊆ X ∩ X ′ andl0 ∈ X ′
t+1. Then

there is a ruler such thathead(r) = l0, body+(r) ⊆ X ′
t andbody−(r) ∩X ′ = ∅. This

will implies that l ∈ CΠX′ (X ′), i. e. l ∈ X ′, contradiction. Therefore, we have shown
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that there is a ruler in Π such thathead(r) ∈ X andhead(r) 6∈ C(Π,<)(X ′). For each
l′ ∈ X ′ \X and each ruler′ such thathead(r′) = l′, we haver′ �X r. Thus, we know
thatl′ 6∈ C(Π,<)(X ′). This means thatX ′ 6= C(Π,<)(X ′) and thus,X ′ is not a prioritized
answer set of(Π,�X).

Proof 7

On the contrary, suppose that(Π, <) has two distinct prioritized answer setsX andX ′.
SinceX \ X ′ 6= ∅ andX ′ \ X 6= ∅, there are literalsl andl′ such thatl ∈ X \ X ′ and
l′ ∈ X ′ \X. Without loss of generality, assume thatT i

(Π,<),X∅ = T i
(Π,<),X′∅ for i ≤ n but

l ∈ T n+1
(Π,<),X∅ andl′ ∈ T n+1

(Π,<),X′∅. This means that there are two rulesr andr′ such that
head(r) = l, head(r′) = l′, r andr′ satisfy the two conditionsI andII in Definition 1
at stagen with respect toX andX ′, respectively. We observe two obvious facts: F1.r′

is active wrt(X, T n
(Π,<),X∅); and F2.r is active wrt(X ′, T n

(Π,<),X′∅). By F1, we have
r′ � r. Similarly, by F2, it should ber � r′, contradiction. Therefore,(Π,�) has the
unique prioritized answer sets.

Proof 8

1. X? = Mt is a prioritized answer set of(Π, <s): X? = C(Π,<s)(X?).

(a) C(Π,<s)(X?) ⊆ X?: we show thatT i
(Π,<s),X?∅ ⊆ X? by using induction oni.

Base For i = 0, T 0
(Π,<s),X?∅ = ∅ ⊆ X? is obvious.

Step Assume thatT i
(Π,<s),X?∅ ⊆ X?. If p ∈ T i+1

(Π,<s),X?∅, then there is a ruler

in Π such thatp = head(r), body+(r) ⊆ T i
(Π,<s),X?∅ andbody−(r) ∩X? =

∅. By induction assumption,body+(r) ⊆ X?. If r ∈ Πj , thenbody+(r) ⊆Mj

andbody−(r) ∩Mj−1 = ∅. Therefore,p ∈ X?. That is,T i+1
(Π,<s),X?∅ ⊆ X?.

(b) X? ⊆ C(Π,<s)(X?): we show thatMi ⊆ C(Π,<s)(X?) for 0 ≤ i ≤ t.

Base For i = 1, it is obvious sinceM0 = ∅.
Step If we have shownMi ⊆ C(Π,<s)(X?), we want to show thatMi+1 ⊆
C(Π,<s)(X?). We again use second induction onk to prove that ifp ∈
T k

Πi+1,Mi
Mi, thenp ∈ C(Π,<s)(X?):

Base For k = 1, i. e. p ∈ T 1
Πi+1,Mi

Mi, if p 6∈ Mi, then there is a ruler in

Πi+1 such thatp = head(r), body+(r) = ∅ andbody−(r)∩Mi = ∅. Then
body−(r) ∩X? = ∅.
By the first induction assumption,Mi ⊆ T j0

(Π,<s),X?∅ for somej0. If there
arej > 0 and a ruler′ such thatr <s r′ andr′ is active with respect to
(X?, T j

(Π,<s),X?∅) andhead(r′) 6∈ T j
(Π,<s),X?∅. Then,body+(r′) ⊆ X?

andbody−(r′) ∩ T j
(Π,<s),X?∅ = ∅. We assert thatj ≤ j0. Otherwise, if

j > j0, body−(r′) ∩ T j
(Π,<s),X?∅ = ∅ ⇒ body−(r′) ∩ T j0

(Π,<s),X?∅ = ∅ ⇒
body−(r′)∩Mi = ∅⇒ body−(r′)∩X? = ∅. Therefore,head(r′) ∈Mi ⊆
T j

(Π,<s),X?∅, a contradiction. Thus, whenj > j0, there will be no rule inΠ

that preventsr to be included inT j
(Π,<s),X?∅. Thus,p ∈ C(Π,<s)(X?).
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Step Assume thatp ∈ C(Π,<s)(X?) if p ∈ T k
Πi+1,Mi

Mi. Suppose thatp ∈
T k+1

Πi+1,Mi
Mi butp 6∈Mi, then there is a ruler in Πi+1 such thatp = head(r),

body+(r) ⊆ T k
Πi+1,Mi

∅ andbody−(r) ∩Mi = ∅. Thenbody+(r) ⊆ Mi ⊆
T j0

(Π,<s),X?∅ for somej0 andbody−(r) ∩X? = ∅. Similar to the proof of the
casek = 1, we can also prove thatp ∈ C(Π,<s)(X?).

2. If X = C(Π,<s)(X), thenX is a preferred answer set of(Π, <s). By Corollary 3,
X is also an answer set ofΠ. However,Π has the unique answer setX? and thus
X = X?.

Proof 9
By Theorem 8 (1), the perfect modelX? is a preferred answer set. On the other hand, since
each preferred answer setX is also a standard answer set. In particular, for the stratified
programΠ, it has the unique answer setX?. Therefore,X = X?.

Proof 11
Let (Π, <) be an ordered logic program overL andX a consistent set of literals overL.

“⊆”-part Define8

Y = {head(r) | r ∈ rule(CT(Π,<)(Y ))}
∪ {ap(nr) | r ∈ rule(CT(Π,<)(Y ))} ∪ {bl(nr) | r 6∈ rule(CT(Π,<)(Y ))}
∪ {ok(nr) | r ∈ Π} ∪ {rdy(nr,nr′) | r, r′ ∈ Π}

Clearly, we haveX = Y ∩ L. By definition, we haveC(Π,<)(X) =
⋃

i≥0 T i
(Π,<),X∅ and

CT(Π,<)(Y ) = Cn(T(Π, <)Y ).
In view of this, we show by induction thatT i

(Π,<),X∅ ⊆ Cn(T(Π, <)Y ) for i ≥ 0. To

be precise, we show for everyr ∈ Π by nested induction thathead(r) ∈ T i
(Π,<),X∅

implies head(r) ∈ Cn(T(Π, <)Y ) and moreover, for everyr′ ∈ Π, that if r < r′ then
bl(nr′) ∈ Cn(T(Π, <)Y ) or ap(nr′) ∈ Cn(T(Π, <)Y ) or head(nr′) ∈ Cn(T(Π, <)Y ).

i = 0 By definition,T 0
(Π,<),X∅ = ∅ ⊆ Cn(T(Π, <)Y ).

i > 0 Considerr ∈ Π such thathead(r) ∈ T i+1
(Π,<),X∅. By definition, we have thatr is

active wrt(T i
(Π,<),X∅, X). That is,

1. body+(r) ⊆ T i
(Π,<),X∅. By the induction hypothesis, we getbody+(r) ⊆

Cn(T(Π, <)Y ).
2. body−(r) ∩X = ∅. By definition ofY , this impliesbody−(r) ∩ Y = ∅.

Furthermore, this implies thata2(r)
+ = ap(nr)← ok(nr), body+(r) ∈ T(Π, <)Y .

We proceed by induction on<.

Base Supposer is maximal with respect to<. We can show the following lemma.

8 As defined in Section 4,rule(·) is a bijective mapping between rule heads and rules.
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Lemma 7.1
If r ∈ Π is maximal with respect to<, thenok(nr) ∈ Cn(T(Π, <)Y ).

Given that we have just shown in 1 and 2 thatbody+(r) ⊆ Cn(T(Π, <)Y ) anda2(r)
+ ∈

T(Π, <)Y , Lemma 7.1 and the fact thatCn(T(Π, <)Y ) is closed underT(Π, <)Y imply
thatap(nr) ∈ Cn(T(Π, <)Y ). Analogously, we gethead(r) ∈ Cn(T(Π, <)Y ) due to
a1(r)

+ ∈ T(Π, <)Y . We have thus shown that{head(r), ap(nr)} ⊆ Cn(T(Π, <)Y ).
Step We start by showing the following auxiliary result.

Lemma 7.2
Given the induction hypothesis, we haveok(nr′) ∈ Cn(T(Π, <)Y ).

Proof 7.2
Considerr′′ ∈ Π such thatr′ < r′′. By the induction hypothesis, we have ei-
ther bl(nr′′) ∈ Cn(T(Π, <)Y ) or ap(nr′′) ∈ Cn(T(Π, <)Y ) or head(nr′′) ∈
Cn(T(Π, <)Y ). Clearly, we have(nr′ ≺ nr′′) ∈ Cn(T(Π, <)Y ) iff r′ < r′′.
Hence, wheneverr′ < r′′, we obtainrdy(nr′ ,nr′′) ∈ Cn(T(Π, <)Y ) by means of
c3(r′, r′′)

+, c4(r′, r′′)
+, or c5(r′, r′′)

+ (all of which belong toT(Π, <)Y ). Similarly,
we getrdy(nr′ ,nr′′) ∈ Cn(T(Π, <)Y ), wheneverr′ 6< r′′ from c2(r′, r′′)

+. Lastly, we
obtainok(nr′) ∈ Cn(T(Π, <)Y ) via c1(r′)+ ∈ T(Π, <)Y .

For all rulesr′ with r < r′, we have that either

1. r′ is not active wrt(X, T i
(Π,<),X∅). That is, we have that either

(a) body+(r) 6⊆ X. By definition ofY , this impliesbody+(r) 6⊆ Y .
By definition, b1(r′, L+)+ = bl(nr′) ← ok(nr′) ∈ T(Π, <)Y for some
L+ ∈ body+(r) such thatL+ 6∈ Y . By Lemma 7.2, we haveok(nr′) ∈
Cn(T(Π, <)Y ). Given thatCn(T(Π, <)Y ) is closed underT(Π, <)Y , we get
thatbl(nr′) ∈ Cn(T(Π, <)Y ).

(b) body−(r) ∩ T i
(Π,<),X∅ 6= ∅. By the induction hypothesis, this implies that

body−(r) ∩ Cn(T(Π, <)Y ) 6= ∅.
Therefore,b2(r, L−)+ = bl(nr) ← ok(nr), L− ∈ T(Π, <)Y for someL− ∈
body−(r) ∩ Cn(T(Π, <)Y ). In analogy to 1a, this allows us to conclude that
bl(nr′) ∈ Cn(T(Π, <)Y ).

In both cases, we concludebl(nr′) ∈ Cn(T(Π, <)Y ). By the induction assumption,
head(r′) ∈ Cn(T(Π, <)Y ).

We have thus shown that eitherbl(nr′) ∈ Cn(T(Π, <)Y ) orhead(r′) ∈ Cn(T(Π, <)Y )
for all r′ such thatr < r′.
In analogy to what we have shown in the proof of Lemma 7.2, we can now show that
ok(nr) ∈ Cn(T(Π, <)Y ).
In analogy to the base case, we may then conclude{head(r), ap(nr)} ⊆
Cn(T(Π, <)Y ).

“⊇”-part We haveX = Y ∩ L. By definition, we haveCT(Π,<)(Y ) = Cn(T(Π, <)Y )
and moreover thatCn(T(Π, <)Y ) =

⋃
i≥0 T i

T(Π,<)Y ∅. Given this, we show by induction

that(T i
T(Π,<)Y ∅ ∩ L) ⊆ C(Π,<)(X) for i ≥ 0.
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i = 0 By definition,T 0
T(Π,<)Y ∅ = ∅ ⊆ C(Π,<)(X).

i > 0 Considerr ∈ Π such thathead(r) ∈ (T i+1
T(Π,<)Y ∅ ∩ L). In view of T(Π, <)Y , this

implies thatap(nr) ∈ (T i
T(Π,<)Y ∅ ∩ L) and thusa2(r)

+ ∈ T(Π, <)Y . The latter implies

thatbody−(r) ∩ Y = ∅, whencebody−(r) ∩X = ∅ because ofX = Y ∩ L. The former
implies thatbody+(r) ∪ {ok(nr)} ⊆ T i−1

T(Π,<)Y ∅. By the induction hypothesis, we obtain

thatbody+(r) ⊆ C(Π,<)(X). Consequently,r is active wrt(C(Π,<)(X), X).
Suppose there is somer′ ∈ Π with r < r′ such that

1. r′ is active wrt(X, C(Π,<)(X)). That is,

(a) body+(r) ⊆ X and
(b) body−(r) ∩ C(Π,<)(X) = ∅.

2. head(r′) 6∈ C(Π,<)(X).

By the induction hypothesis, we obtain from 2 thathead(r′) 6∈ T j

T(Π,<)Y ∅ for j ≤ i.

Clearly, we have(nr′ ≺ nr′′) ∈ T i
T(Π,<)Y ∅ for i ≥ 1 iff r′ < r′′. Moreover,ok(nr) ∈

T i−1
T(Π,<)Y ∅ implies (see above)rdy(nr,nr′′) ∈ T i−2

T(Π,<)Y ∅ for all r′′ ∈ Π. This and the fact

thathead(r′) 6∈ T j

T(Π,<)Y ∅ for j ≤ i implies thatbl(nr′) ∈ T i−3
T(Π,<)Y ∅.

This makes us distinguish the following two cases.

1. If bl(nr′) is provided byb1(r′, L+), then there is someL+ ∈ body+(r′) such that
L+ 6∈ Y . Given thatX = Y ∩ L, this contradicts 1a.

2. If bl(nr′) is provided byb2(r′, L−), then there is someL− ∈ body−(r′) such that
L− ∈ T i−4

T(Π,<)Y ∅. By the induction hypothesis, we obtain thatL− ∈ C(Π,<)(X). A
contradiction to 1b.

So, given thatr is active wrt(C(Π,<)(X), X) and that there is nor′ ∈ Π such thatr < r′

satisfying 1a, 1b, and 2, we have thathead(r) ∈ T(Π,<),X(C(Π,<)(X)). That is,head(r) ∈
C(Π,<)(X).

Proof 12 It follows from Lemma 7.7 and Lemma 7.8.

Proof 13 Similar to the proof of Theorem 8.

By Theorem 4.8 in (Delgrande et al. 2003), it suffices to show the following Lemma 7.4.
Before doing this, we first present a definition. Given a statically ordered logic program
(Π, <) and a setX of literals, set Xi = (T D)i

(Π,<),X∅ for i ≥ 0.

Definition 16
Let (Π, <) be a statically ordered logic program andr be a rule inΠ. X andXi(i ≥ 1) are
as above. We say another ruler′ is a D-preventerof r in the context(X, Xi) if (1) r < r′

and (2)r′ is active wrt(X, Xi) andr′ 6∈ rule(Xi).

Lemma 7.3
Let (Π, <) be a statically ordered logic program andX a set of literals withCD

(Π,<)(X) =
X. Then, for anyr ∈ ΓΠX, there exists a numberi such thatr ∈ rule(Xi).

The intuition behind this lemma is that eachD-preventer of a rule inΓΠX is a “temporary”
one ifCD

(Π,<)(X) = X.
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Proof 7.3
On the contrary, suppose that there is a ruler ∈ ΓΠX such thatr 6∈ rule(Xi) for any i.
Without loss of generality, assume that there is no such rule that is preferred thanr.

Sincer ∈ ΓΠX andX = ∪∞i=1Xi, r will become active wrt(Xt, X) at some stage
t ≥ 0. Therefore, it must be the case that there is aD-preventerr′ satisfyingr′ ∈ ΓΠX.
This implies thatr < r′ andr′ ∈ ΓΠX but r′ 6∈ rule(Xi) for any i, contradiction to our
assumption onr. Thus, the lemma is proven.

Lemma 7.4
Let (Π, <) be a statically ordered logic program andX a set of literals. ThenX is a<D-
preserving answer set ofΠ if and only if X is a set of literals withCD

(Π,<)(X) = X.

Proof 7.4
Without loss of generality, assume thatrule(Xi) = {ri1, . . . , rini

} for i ≥ 1.

if part Let CD
(Π,<)(X) = X. By Lemma 7.3,ΓΠX = ∪∞i=1rule(Xi). This means that the

sequence∆: 〈r11, . . . , r1n1 , r21, . . . , r2n2 , . . .〉 is an enumeration ofΓΠX.
It suffices to prove that this sequence of rules in∆ is <D-preserving with respect toX.
We need to justify the two conditions of<D-sequence are satisfied by∆:

C1 For eachri ∈ rule(Xt) wheret > 0, thenri is active wrt(Xt−1, X). This implies
thatbody+(ri) ⊆ {head(rj) | j < i}.

C2 if r < r′, thenr′ is prior tor in ∆: notice that, sinceX = ∪∞i=1Xi, if a rule is active
wrt (Xi, X) then it is also active wrt(X, Xi). Thus, by Definition 1,r andr′ can not be
in the same sectionrule(Xs). If C2 is not satisfied by∆, then there are two rules, sayr

andr′, such thatr < r′ but r is prior tor′ in ∆. Without loss of generality, assume that
r ∈ rule(Xi) andr′ ∈ rule(Xj) but i < j. Thenr′ should preventr to be included in
rule(Xi), which meansr 6∈ rule(Xi), contradiction. Therefore, C2 holds.

C3 if ri < r′ and r′ ∈ Π \ ΓΠX, thenbody+(r′) 6⊆ X or r′ is defeated by the set
{head(rj) | j < i}: Assume thatri ∈ rule(Xt), thenr′ 6∈ rule(Xt). On the contrary,
assume thatbody+(r′) ⊆ X andr′ is not defeated by the set{head(rj) | j < i}, then
r′ is not defeated byXt−1 becauseXt−1 ⊆ {head(rj) | j < i}. Thus,r′ is active
wrt (X, Xt−1) andr′ 6∈ rule(Xt−1). This means thatr′ is a D-preventer ofri in the
context(X, Xt−1) and thus,ri 6∈ rule(Xt), contradiction. That is,body+(r′) 6⊆ X or
r′ is defeated by the set{head(rj) | j < i}.

only-if part Assume thatX is a<D-preserving answer set ofΠ, then there is a grounded
enumeration〈ri〉i∈I of ΓΠX such that, for everyi, j ∈ I, we have that:

1. if ri < rj , thenj < i; and
2. if ri < r′ andr′ ∈ Π \ ΓΠX, then either (a)body+(r′) 6⊆ X or (b) body−(r′) ∩
{head(rj) | j < i} 6= ∅.

A set∆̄ of rules isdiscreteif there is no pair of rulesr andr′ in ∆̄ s. t.r < r′.
We define recursively a sequence of sets of rules as follows.
Define∆̄1 as the largest section of〈ri〉i∈I satisfying the following conditions:
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1. ∆̄1 is discrete;
2. r1 ∈ ∆̄1;
3. body(r) = ∅ for anyr ∈ ∆̄1.

Suppose that̄∆i is well-defined andrmi
is the last rule of∆̄i, we define∆̄i+1 as the

largest section of〈ri〉i∈I satisfying the following conditions:

1. ∆̄i+1 is discrete;
2. rmi+1 ∈ ∆̄i+1;
3. body(r) ⊆ {head(r′) | r′ ∈ ∪i

j=0∆̄j} for anyr ∈ ∆̄i+1.
4. disjoint with∪i

j=0∆̄j .

DenoteX̄i = {head(r) | r ∈ ∪i
j=0∆̄j}. Then we have the following fact:

if r ∈ ∆̄i+1 such thatX̄i−1 |= body+(r) and no ruler′ ∈ ∆̄i with r < r′, then we can
mover from ∆̄i+1 to ∆̄i, the resulting sequence of rules still is<D-preserving.

Without loss of generality, assume that our sequence〈∆̄i〉 is fully transformed by the
above transformation. Since∪∞i=0X̄i = X, we can prove∪∞i=0Xi = X by provingX̄i =
Xi for every i ∈ I. Thus, it suffices to provē∆i = rule(Xi) for every i ∈ I. We use
induction oni:

Base ∆̄0 = rule(X0) = ∅.
Step Assume that̄∆i = rule(Xi), we want to provē∆i+1 = rule(Xi+1).

∆̄i+1 ⊆ rule(Xi+1): For anyrt ∈ ∆̄i+1, by the condition 3 in the construction of∆̄i+1,
rt is active wrt(Xi, X). And for anyr′ such thatrt < r′ andr′ is active wrt(X, Xi) then
body+(r′) ⊆ X andr′ is not defeated byXi. By induction,∪k<thead(rk) ⊆ Xi = X̄i,
thus r′ is not defeated by∪k<thead(rk). By Definition 5, it should be the case that
r′ ∈ ΓΠX, which implies thatr′ ∈ ∆̄i = rule(Xi). Therefore,r′ is not aD-preventer
of rt. That is,rt ∈ rule(Xi+1).
rule(Xi+1) ⊆ ∆̄i+1: For r ∈ rule(Xi+1), we claim thatr ∈ ∆̄i+1. Otherwise,
there would existt > i + 1 such thatr ∈ ∆̄t. Notice that, by induction assump-
tion, body+(r) ⊆ Xi. Thus, it must be the case that there is at least one ruler′ ∈
∪t−1

j=i+1rule(Xj) such thatr′ < r. But r′ is active wrt(X, Xi+1), which contradicts to
r ∈ rule(Xi+1). Therefore,rule(Xi+1) ⊆ ∆̄i+1.

Proof 15 Similar to the proof of Theorem 11.

Proof 16 It follows from the following Lemma 7.7 and Theorem 12.

Lemma 7.5
Let (Π, <) be an ordered logic program overL and letY be a consistent answer set of
T W

((,Π),, <). DenoteX = Y ∩ L. Then, we have for anyr ∈ Π:

1. ok(nr) ∈ Y ; and
2. ap(nr) ∈ Y iff bl(nr) 6∈ Y .

Proof 7.5
We prove the two propositions by parallel induction on ordering<.
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Base Let r be a maximal element of<.

1. By assumption,r 6< r′ for anyr′ ∈ Π. This implies thatrdy(nr, nr′) ∈ Y for any
r′ ∈ Π. Thus,ok(nr) ∈ Y .

2. There are two possible cases:

• body(r) is satisfied byX: Sincea2(r) ∈ T(Π, <)Y , we haveap(nr) ∈ Y .
• body(r) is not satisfied byX: The body of at least one ofb1(r, L+) andb2(r, L−)

is satisfied byY , thusbl(nr) ∈ T(Π, <)Y .

Step

1. Considerr ∈ Π. Assume thatok(nr′) ∈ Y and eitherap(nr′) ∈ Y or bl(nr′) ∈ Y

for all r′ with r < r′. In analogy to the base case, we haverdy(nr, nr′) ∈ Y for all
r′ ∈ Π with r 6< r′.
For r′ with r < r′, by the induction assumption, we have eitherap(nr′) ∈ Y or
bl(nr′) ∈ Y . Hence the body of at least one ofc3(r, r′) andc4(r, r′) is satisfied by
Y . This impliesrdy(nr, nr′) ∈ Y .
So, we have proved thatrdy(nr, nr′) ∈ Y for anyr′ ∈ Π. Thus,ok(nr) ∈ Y .

2. Analogous to the base case.

Given a statically ordered logic program(Π, <) and a set X of literals, set
Xi = (T W)i

(Π,<),X∅ for i ≥ 0 and ugr(Xi) = {r ∈ ΓΠX \ ugr(Xi−1) |
eitherr applied in producingXi \Xi−1 or head(r) ∈ Xi−1} for i > 0. Intuitively,
ugr(Xi) is the set of the generating rules that are used at stagei.

Definition 17
Let (Π, <) be a statically ordered logic program andr be a rule inΠ. X andXi(i ≥ 0)
are as above. We say another ruler′ is a W-preventerof r in the context(X, Xi) if the
following conditions are satisfied:

1. r < r′ and
2. r′ is active wrt(X, Xi) andhead(r′) 6∈ Xi.

Lemma 7.6
Let (Π, <) be a statically ordered logic program andX a set of literals withCW

(Π,<)(X) =
X. Then, for anyr ∈ ΓΠX, there exists a numberi such thatr ∈ ugr(Xi).

The intuition behind this lemma is that eachW-preventer of a rule inΓΠX is a “temporary”
one ifCW

(Π,<)(X) = X.

Proof 7.6
On the contrary, suppose that there is a ruler ∈ ΓΠX such thatr 6∈ ugr(Xi) for any i.
Without loss of generality, assume that there is no such rule that is preferred thanr. Since
r ∈ ΓΠX andX = ∪∞i=1Xi, r will become active wrt(Xt, X) at some staget ≥ 0.
Therefore, it must be the case that there is aW-preventerr′ satisfyingr′ ∈ ΓΠX. This
implies thatr < r′ and r′ ∈ ΓΠX but r′ 6∈ ugr(Xi) for any i, contradiction to our
assumption onr. Thus, the lemma is proven.
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Lemma 7.7
Let (Π, <) be a statically ordered logic program andX a set of literals. ThenX is a<W-
preserving answer set ofΠ if and only if X is a set of literals withCW

(Π,<)(X) = X.

Proof 7.7
Without loss of generality, assume thatugr(Xi) = {ri1, . . . , rini

} for i ≥ 1.

if part Let CW
(Π,<)(X) = X. By Lemma 7.6,ΓΠX = ∪∞i=1ugr(Xi). This means that the

sequence∆: 〈r11, . . . , r1n1 , r21, . . . , r2n2 , . . .〉 is an enumeration ofΓΠX. It suffices to
prove that this sequence is<W-preserving with respect toX.

We need to justify that the three conditions of<W-sequence are satisfied by∆:

C1 For eachri ∈ ∆, eitherri is active wrt(Xt, X) or head(ri) ∈ Xt for somet > 0.
Thus, Condition 1 in Definition 8 is satisfied.

C2 If r < r′, thenr′ is prior tor in ∆: Notice thatX = ∪∞i=1Xi, if a rule is active wrt
(Xi, X) then it is also active wrt(X, Xi). Thus, by Definition 1,r andr′ can not be in
the same sectionugr(Xs).
If C2 is not satisfied by∆, then there are two rules, sayr and r′, such thatr < r′

but r is prior to r′ in ∆. Without loss of generality, assume thatr ∈ ugr(Xi) and
r′ ∈ ugr(Xj) but i < j. Thenr′ should preventr to be included inugr(Xi), which
meansr 6∈ ugr(Xi), contradiction. Therefore, C2 holds.

C3 On the contrary, suppose that Condition 3 in Definition 8 is not satisfied. That is, there
are two rulesri andr′ such thatri < r′, r′ ∈ Π \ ΓΠX and the following items hold:

1. body+(r′) ⊆ X,
2. r′ is not defeated by the set{head(rj) | j < i},
3. head(r′) 6∈ {head(rj) | j < i}.
Without loss of generality, assume thatri ∈ ugr(Xt), then r′ is not defeated by
Xt−1 becauseXt−1 ⊆ {head(rj) | j < i}. Thus,r′ is active wrt(X, Xt−1) and
r′ 6∈ ugr(Xt−1). This means thatr′ is aW-preventer ofri in the context(X, Xt−1) and
thus,ri 6∈ ugr(Xt), contradiction.

only-if part Assume thatX is a<W-preserving answer set ofΠ, then there is a grounded
enumeration〈ri〉i∈I of ΓΠX such that the three conditions in Definition 8 are all satisfied.

A set∆̄ of rules isdiscreteif there is no pair of rulesr andr′ in ∆̄ such thatr < r′. We
define recursively a sequence of sets of rules as follows.

Define∆̄1 as the largest section of〈ri〉i∈I satisfying the following conditions:

1. ∆̄1 is discrete;
2. r1 ∈ ∆̄1;
3. body(r) = ∅ for anyr ∈ ∆̄1.

Suppose that̄∆i is well-defined andrmi
is the last rule of∆̄i, we define∆̄i+1 as the

largest section of〈ri〉i∈I satisfying the following conditions:

1. ∆̄i+1 is discrete;
2. rmi+1 ∈ ∆̄i+1;
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3. Eitherbody(r) ⊆ {head(r′) | r′ ∈ ∪i
j=0∆̄j} or head(r) ∈ {head(r′) | r′ ∈

∪i
j=0∆̄j} for anyr ∈ ∆̄i+1.

4. Disjoint with∪i
j=0∆̄j .

DenoteX̄i = {head(r) | r ∈ ∪i
j=0∆̄j}. Then we observe the following fact:

If r ∈ ∆̄i+1 such thatbody+(r) is satisfied byX̄i−1 and no ruler′ ∈ ∆̄i with r < r′,
then we can mover from∆̄i+1 to ∆̄i, the resulting sequence of rules is still<W-preserving.

Without loss of generality, assume that our sequence〈∆̄i〉 is fully transformed by the
above transformation. Since∪∞i=0X̄i = X, we can prove∪∞i=0Xi = X by provingX̄i =
Xi for every i ∈ I. Thus, it suffices to provē∆i = ugr(Xi) for every i ∈ I. We use
induction oni:

Base ∆̄0 = ugr(X0) = ∅.

Step Assume that̄∆i = ugr(Xi), we want to provē∆i+1 = ugr(Xi+1).

1. ∆̄i+1 ⊆ ugr(Xi+1): For anyrt ∈ ∆̄i+1, by the condition 3 in the construction of
∆̄i+1, eitherrt is active wrt(Xi, X) or head(rt) ∈ Xi. If head(rt) ∈ Xi, it is
obvious thatr ∈ ugr(Xi+1). Thus, we assume thatrt is active wrt(Xi, X). For any
r′ such thatrt < r′ andr′ is active wrt(X, Xi) thenbody+(r′) ⊆ X andr′ is not
defeated byXi. By induction,∪k<thead(rk) ⊆ Xi = X̄i, thusr′ is not defeated by
∪k<thead(rk). By Definition 8, it should be the case thatr′ ∈ ΓΠX, which implies
thatr′ ∈ ∆̄i = ugr(Xi). Therefore,r′ is not aW-preventer ofrt in the context of
(Xi, X). That is,rt ∈ ugr(Xi+1).

2. ugr(Xi+1) ⊆ ∆̄i+1: For r ∈ ugr(Xi+1), we claim thatr ∈ ∆̄i+1. Otherwise,
there would existt > i + 1 such thatr ∈ ∆̄t. Notice that, by induction assumption,
body+(r) ⊆ Xi (Note thathead(r) ∈ Xi is impossible because we assume that
r ∈ ∆̄t andt > i + 1). Thus, it must be the case that there is at least one ruler′ ∈
∪t−1

j=i+1ugr(Xj) such thatr′ < r. But r′ is active wrt(X, Xi+1), which contradicts
to r ∈ ugr(Xi+1). Therefore,ugr(Xi+1) ⊆ ∆̄i+1.

Lemma 7.8
Let (Π, <) be an ordered logic program overL and letX andY be consistent sets of
literals. Then, we have that

1. if X is a<W-preserving answer set ofΠ, then there is some answer setY of
TW(Π, <) such thatX = Y ∩ L;

2. if Y is an answer set ofTW(Π, <), thenX is a<W-preserving.

Proof 7.8

1 Let X be a<W-preserving answer set ofΠ. Define

Y = {head(r) | r ∈ ΓΠX}
∪ {ap(nr) | r ∈ ΓΠX} ∪ {bl(nr) | r 6∈ ΓΠX}
∪ {ok(nr) | r ∈ Π} ∪ {rdy(nr, nr′) | r, r′ ∈ Π}
∪ {nr ≺ nr′ | r < r′} ∪ {¬(nr ≺ nr′) | r 6< r′}

Notice thatL ∈ X iff L ∈ Y . We want to show thatY = Cn(T(Π, <)Y ) by two steps:
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“⊇”-part For anys ∈ TW(Π, <), if s+ ∈ T(Π, <)Y andbody+(s) ⊆ Y , we need to
provehead(s) ∈ Y by cases.
Case 1 a1(r) : head(r) ← ap(nr). Sincea1(r) = a1(r)

+, a1(r) ∈ T(Π, <)Y . If
ap(nr) ∈ Y , thenr ∈ ΓΠX. This implieshead(r) ∈ Y .

Case 2 a2(r) : ap(nr) ← ok(nr), body(r). If ok(nr) ∈ Y , body+(r) ⊆ Y and
body−(r) ∩ Y = ∅, thenbody+(r) ⊆ X andbody−(r) ∩ X = ∅. This implies that
r ∈ ΓΠX and thusap(nr) ∈ Y .

Case 3 b1(r, L+) : bl(nr) ← ok(nr),not L+. If ok(nr) ∈ Y and L+ 6∈ Y , then
L+ 6∈ X. That is,r 6∈ ΓΠX and thusbl(r) ∈ Y .

Case 4 b2(r, L−) : bl(nr) ← ok(nr), L−. If ok(nr) ∈ Y andL− ∈ Y , thenL− ∈ X.
That is,r 6∈ ΓΠX and thusbl(r) ∈ Y .

Case 5 For the rest of rules inTW(Π, <), we trivially have thathead(s) ∈ Y whenever
s+ ∈ T(Π, <)Y andbody+(s) ⊆ Y .

“⊆”-part SinceX is a <W-preserving answer set ofΠ, there is an enumeration〈ri〉i∈I

of ΓΠX satisfying all conditions in Definition 8. This enumeration can be extended to an
enumeration ofΠ as follows:

For anyr 6∈ ΓΠX, let ri be the first rule that blocksr andrj be the last rule s. t.r < rj .
Then we insertr immediately afterrmax{i,j}. For simplicity, the extended enumeration
is still denoted〈ri〉i∈I . Obviously, this enumeration has the following property by Defini-
tion 8.

Lemma 7.9
Let 〈ri〉i∈I be the enumeration forΠ defined as above. Ifri < rj , thenj < i.

For eachri ∈ Π, we defineYi as follows:

{head(ri), ap(nri) | ri ∈ ΓΠX, i ∈ I} ∪ {bl(nri) | ri 6∈ ΓΠX, i ∈ I}
∪ {ok(nri

) | i ∈ I} ∪ {rdy(nri
,nrj

) | i, j ∈ I}
∪ {nr ≺ nr′ | r < r′} ∪ {¬(nr ≺ nr′) | r 6< r′}.

We proveYi ⊆ Cn(T (Π)Y ) by using induction oni.

Base Considerr0 ∈ Π. Given thatX is consistent, we haver0 6< r for all r ∈ Π by
Definition 8(3). Thus,¬(nr0 ≺ nr) ∈ Y for all r ∈ Π. Consequently,

c2(r0, r)
+ : rdy(nr0 ,nr)←∈ T(Π, <)Y for all r ∈ Π.

This impliesrdy(nr0 ,nr) ∈ Cn(T(Π, <)Y ) for all r ∈ Π.
Let Π = {r0, r1, . . . , rk}. Since

c1(r0) = c1(r0)+ : ok(nr0)← rdy(nr0 ,nr1), . . . , rdy(nr0 ,nrk
) ∈ T(Π, <)Y

, (11)

thusok(nr0) ∈ Cn(T(Π, <)Y ). We distinguish two cases.

Case 1 If r0 ∈ ΓΠX, we havebody+(r0) = ∅ by Definition 8(1), andbody−(r0)∩X =
∅ which also impliesbody−(r0) ∩ Y = ∅. Thus

a2(r0) = a2(r0)
+ : ap(nr0)← ok(nr0) ∈ T(Π, <)Y

. (12)

Accordingly, we obtainap(nr0) ∈ Cn(T(Π, <)Y ) by ok(nr0) ∈ Cn(T(Π, <)Y ).
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Furthermore, from

a1(r0) = a1(r0)
+ : head(nr0)← ap(nr0) ∈ T(Π, <)Y

, (13)

we obtainhead(r0) ∈ Cn(T(Π, <)Y ).
Case 2 If r0 ∈ Π \ ΓΠX, we must havebody+(r0) 6⊆ X by Definition 8. That is,

body+(r0) 6⊆ Y . Then, there is someL+ ∈ body+(r0) with L+ 6∈ X. We also have
L+ 6∈ Y . Therefore,

b1(r0, L
+) = b1(r0, L

+)+ : bl(nr0)← ok(nr0) ∈ T(Π, <)Y
. (14)

Since we have shown above thatok(nr0) ∈ Cn(T(Π, <)Y ), we obtain

bl(nr0) ∈ Cn(T(Π, <)Y ).

Step Assume thatYj ⊆ T(Π, <)Y for all j < i, we showYi ⊆ T(Π, <)Y by cases.

• rdy(nri
,nrj

) ∈ Cn(T(Π, <)Y ):
If ri < rj , thennri ≺ nrj ∈ Y andj < i by Lemma 7.9.

By the induction assumption, eitherap(nrj ) ∈ Cn(T(Π, <)Y ) or bl(nrj ) ∈
Cn(T(Π, <)Y ). Sincec3(ri, rj), c4(ri, rj) are inT(Π, <)Y , we have

rdy(nri
,nrj

) ∈ Cn(T(Π, <)Y ) wheneverri < rj .

If ri 6< rj , then¬(nri ≺ nrj ) ∈ Y and thus

c2(ri, rj)
+ : rdy(nri ,nrj )←∈ T(Π, <)Y

.

Consequently, for allj ∈ I, rdy(nri ,nrj ) ∈ Cn(T(Π, <)Y ).
• ok(nri) ∈ Cn(T(Π, <)Y ): It is obtained directly byc1(ri)+ = c1(ri) ∈

Cn(T(Π, <)Y ).
• If ri ∈ ΓΠX, then{ap(ri), head(ri)} ⊆ Cn(T(Π, <)Y ).

By Definition 8,body+(ri) ⊆ {head(rj) | rj ∈ ΓΠX, j < i}
or head(ri) ∈ {head(rj) | rj ∈ ΓΠX, j < i}. By the induction assumption,
body+(ri) ⊆ Cn(T(Π, <)Y ). Also, ri ∈ ΓΠX impliesbody−(ri) ∩ X = ∅. Thus
body−(ri) ∩ Y = ∅.
This means that

a2(ri) = a2(ri)
+ : ap(nri

)← ok(nri
), body+(ri) ∈ T(Π, <)Y

. (15)

As shown above,ok(nri) ∈ Cn(T(Π, <)Y ). Therefore,ap(nri
) ∈ Cn(T(Π, <)Y ).

Accordingly, we obtainhead(ri) ∈ Cn(T(Π, <)Y ) due toa1(ri)
+ ∈ T(Π, <)Y .

• If ri ∈ Π \ ΓΠX, bl(nri) ∈ Cn(T(Π, <)Y ): We consider three possibilities.

1. body+(ri) 6⊆ X: then there is someL+ ∈ body+(ri) with L+ 6∈ X.
Also, L+ 6∈ Y . Thus,

b1(ri, L
+) = b1(ri, L

+)+ : bl(nri
)← ok(nri

) ∈ T(Π, <)Y
. (16)

By ok(nri) ∈ Cn(T(Π, <)Y ), we havebl(nri) ∈ Cn(T(Π, <)Y ).

2. body−(r) ∩ {head(rj) | rj ∈ ΓΠX, j < i} 6= ∅: then there is someL− ∈
body−(ri) with L− ∈ {head(rj) | rj ∈ ΓΠX, j < i}. That is,L− = head(rj)
for somerj ∈ ΓΠX with j < i. With the induction hypothesis, we then obtain
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L− ∈ Cn(T(Π, <)Y ). Sinceok(nri
) ∈ Cn(T(Π, <)Y ), we obtainbl(nri

) ∈
Cn(T(Π, <)Y ).

3. head(ri) ∈ {head(rj) | rj ∈ ΓΠX, j < i}: this is obtained directly by the
induction assumption.

2 Let Y be a consistent answer set ofTW(Π, <) andX = Y ∩ L. To prove thatX is a
<W-preserving answer set ofΠ, it suffices to prove that the following two propositionsP1
andP2:

P1 X is an answer set ofΠ: that is,Cn(ΠX) = X.

1. Cn(ΠX) ⊆ X: Let r ∈ Π s. t.body+(r) ⊆ X andbody−(r) ∩X = ∅.
Thenbody+(r) ⊆ Y andbody−(r) ∩ Y = ∅. By Lemma 7.5,ok(nr) ∈ Y and
thusa2(r)

+ ∈ T(Π, <)Y . SinceY is closed underT(Π, <)Y , ap(nr) ∈ Y and thus
head(r) ∈ Y . This meanshead(r) ∈ X.

2. X ⊆ Cn(ΠX): SinceX = Y ∩ L = (∪i≥0T
i
T(Π,<)Y ∅ ∩ L, we need only to show

by induction oni that, fori ≥ 0,

(T i
T(Π,<)Y ∅ ∩ L) ⊆ Cn(ΠX). (17)

Base It is obvious thatT 0
T(Π,<)Y ∅ = ∅.

Step Assume that (17) holds fori, we want to prove (17) holds fori + 1.
If L ∈ T i+1

T(Π,<)Y ∅, then there is a ruler ∈ Π s. t.head(r) = L, a1(r)
+
, a2(r)

+ ∈
T(Π, <)Y and {ap(nr), ok(nr)} ∪ body+(r) ⊆ T i

T(Π,<)Y ∅. This also means

body−(r) ∩ Y = ∅. By the induction assumption,body+(r) ∈ Cn(ΠX). Together
with body−(r) ∩X = ∅, we haver ∈ ΠX and thushead(r) ∈ Cn(ΠX). Therefore,
X = Cn(ΠX).

P2 X is<W-preserving: SinceY is a standard answer set ofTW(Π, <), there is a grounded
enumeration〈sk〉k∈K Induction ofΓTW(Π)Y . Define〈ri〉i∈I as the enumeration obtained
from 〈sk〉k∈K by

• deleting all rules apart from those of forma2(r), b1(r, L+), b2(r, L−);
• replacing each rule of forma2(r), b1(r, L+), b2(r, L−) by r;
• removing duplicates9 by increasingi.

for r ∈ Π andL+ ∈ body+(r), L− ∈ body−(r).
We justify that the sequence〈ri〉i∈I satisfies the conditions in Definition 8:

1. Since〈sk〉k∈K is grounded, Condition 1 is satisfied.
2. If ri < rj , we want to showj < i. Sincerdy(ni, nj) ∈ Y , at least one ofa2(rj),

b1(rj , L
+), b2(rj , L

−) appears before any ofa2(ri), b1(ri, L
+), b2(ri, L

−). Thus,
j < i.

3. Let ri < r′ and r′ ∈ Π \ ΓΠX. Suppose thatbody+(r) ⊆ X and head(r) 6∈
{head(rk) | k < i}. Sincebody−(r) ∩ X 6= ∅, there is someL− ∈ body−(r)
s. t. L− ∈ X. ThenL− ∈ Y . Without loss of generality, letL− is included inY

through rulesk0 . Furthermore, we can assume that there is nok′ < k0 such thatsk′

9 Duplicates can only occur if a rule is blocked in multiple ways.
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is beforesk0 , head(sk′) ∈ body−(r) andhead(sk′) ∈ X. Sinceok(ri) ∈ Y , we
haverdy(ni, nr′). This implies,bl(nr′) ∈ Y andb2(ri, L

−) appears beforea2(r) in
〈sk〉k∈K . Thus,L− ∈ {head(rk) | k < i}.

Proof 17 See the proof of Theorem 19.

Proof 18 Similar to Proof 8.

Proof 19
Throughout the proofs for Theorem 19, the setXi for any i ≥ 0 is defined as in Defini-
tion 9. By the definition ofEX(Π, <), we observe the following facts:

F1 X is a standard answer set of(Π, <) iff X is a standard answer set ofEX(Π, <).
F2 X is a <B-preserving answer set of(Π, <) iff X is a <B-preserving answer set of
EX(Π, <).

F3 X is a standard answer set ofTB(Π, <) iff X is a standard answer set ofT(EX(Π, <)).

Having the above facts, we can assume that(Π, <) = EX(Π, <). Thus, we need only to
prove the following Lemma 7.10 and Lemma 7.14.

Given a statically ordered logic program(Π, <) and a setX of literals, set Xi =
(T B)i

(Π,<),X∅ for i ≥ 0.

Lemma 7.10
Let (Π, <) be a statically ordered logic program overL and letX be an answer set ofΠ.
Then, the following propositions are equivalent.

1. X is aB-preferred answer set of(Π, <);
2. C′′(ΠX ,<X)(X) = X.

To prove Lemma 7.10, some preparations are in order.

Definition 18
Let (Π, <) = 〈r1, r2, . . . , rn〉 be a totally ordered logic program, whereri+1 < ri for each
i, and letX be a set of literals.

We define

X̄0 = ∅ and fori ≥ 0

X̄i+1 = X̄i ∪

head(ri+1)

∣∣∣∣∣∣∣∣∣∣

(1) ri+1 is active wrt(X, X) and
(2) there is no ruler′ ∈ Π with ri+1 < r′

such that
(a) r′ is active wrt(X, X̄i) and
(b) head(r′) 6∈ X̄


Then,D(Π,<)(X) =

⋃
i≥0 X̄i if

⋃
i≥0 X̄i is consistent. Otherwise,D(Π,<)(X) = Lit.

If we want to stress that̄Xi is for ordering<, we will also write it asX̄<
i . We assume the

same notation forXi.

Lemma 7.11
Let (Π, <) be an ordered logic program.̄Xi for i ≥ 0 is given as above andΠ is
prerequisite-free. ThenXi = X̄ki

for some non-decreasing sequence{ki}i≥0 with
0 ≤ k1 ≤ · · · ≤ ki ≤ · · ·.
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Proof 7.11
Without loss of generality, assume thatX̄0 = · · · = X̄k1 , X̄k1+1 = · · · = X̄k2 , . . . . Then
by a simple induction oni, we can directly prove that

X0 = X̄0, X1 = X̄k1+1, . . . , Xi = X̄ki+1, . . . .

Lemma 7.12
The conclusion of Lemma 7.10 is correct for ordered logic program(Π, <) if Π is
prerequisite-free and< is total.

Proof 7.12
SinceΠ is prerequisite-free, we have thatΠX = Π. By Lemma 7.11, it is enough to prove
thatX = ∪X̄i iff X = ∪Xi (see Definition 9). For simplicity, we say a ruler is applicable
wrt (X, X̄i) (only in this proof) ifr satisfies the conditions in the definition ofX̄i+1.

if part If X = ∪X̄i, we want to prove thatX = ∪Xi. It suffices to show that̄Xi = Xi

hold for all i ≥ 0. We use induction oni ≥ 0:

Base X̄0 = X0 = ∅.
Step Assume thatX̄i−1 = Xi−1, we need to show that̄Xi = Xi.

1. X̄i ⊆ Xi:
If X̄i = X̄i−1, the inclusion follows from the induction assumption;
If X̄i 6= X̄i−1, thenri is applicable wrt(X, X̄i−1).
Thus,ri is not defeated byX by Definition 18.

2. Xi ⊆ X̄i: If Xi = Xi−1, the inclusion follows from the induction assumption; Let
Xi 6= Xi−1, that is,head(ri) ∈ Xi. Then we can assert thathead(ri) ∈ X̄i.
Otherwise, if head(ri) 6∈ X̄i, there will be two possible cases becauseΠ is
prerequisite-free:

• ri is not active wrt(X, X): then there exists a literall ∈ body−(ri) such that
l ∈ X. On the other hand, sincehead(ri) ∈ Xi, ri is not defeated byXi−1 =
X̄i−1, so we havel 6∈ X̄i−1. This implies that there existst ≤ i such that
l ∈ X̄t \ X̄i−1. Thus,l = head(rt) andrt < ri. Notice thatri is active wrt
(X, Xi−1) = (X, X̄i−1) andhead(ri) 6∈ X, thusri is active wrt(X, X̄t−1) and
head(ri) 6∈ X̄t−1. This implies thatri is a preventer ofrt. Therefore,head(rt) 6∈
X̄t and so byX = ∪X̄i, head(rt) 6∈ X̄, contradiction.

• There is a ruler′ ∈ Π with ri < r′ such thatr′ is active wrt(X, X̄i−1) and
head(r′) 6∈ X. Since there are only a finite number of rules inΠ which are
preferred overri, so this case is impossible.

Combining the two cases, we haveXi+1 ⊆ X̄i+1. Thus,Xi = X̄i for all i ≥ 0.

only-if part Suppose thatX = ∪Xi andX is an answer set ofΠ, we want to prove that

X = ∪X̄i :

1. We proveX̄i ⊆ X by using induction oni.

Base X̄0 = ∅ ⊆ X.
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Step Assume thatX̄i ⊆ X. If head(ri+1) ∈ X̄i+1, thenri+1 is not defeated byX
and thus not defeated byXi. Thushead(ri+1) ∈ Xi+1.

2. X ⊆ ∪X̄i: it is sufficient to show thatXi ⊆ X̄i by using induction oni.

Base X0 = ∅ = X̄0.
Step Assume thatXk ⊆ X̄k for k ≤ i, then we claim thatX̄i = Xi. On the

contrary, assume thathead(ri+1) ∈ Xi+1 \ X̄i+1. From X = ∪Xi, we have
head(ri+1) ∈ X. Notice thatX is an answer set ofΠ, so we can further assume
thatri+1 is active wrt(X, X). Therefore,head(ri+1) 6∈ X̄i+1 implies that there
is a numbert ≤ i such thatrt is active wrt(X, X̄i) but head(rt) 6∈ X̄i. Thus,
rt is active wrt(X, Xt−1) by induction. This forceshead(rt) ∈ X andrt is not
active wrt(X, X), contradiction.

Lemma 7.13

The conclusion of Lemma 7.10 is correct for ordered logic program(Π, <) if Π is
prerequisite-free and< is a partial ordering.

Proof 7.13

if part Suppose thatX is an answer set ofΠ andX = ∪X̄<
i .

Let <t be any total ordering onΠ satisfying the following three conditions:
1. If r < r′ thenr <t r′; and

2. If r andr′ are unrelated wrt< two rules and they are applied in producinḡXi and
X̄j respectively (i < j), thenr′ <t r.

3. If

• r is active wrt(X, X) and
• r′ is active wrt(X, X̄i) with head(r′) 6∈ X̄i for somei and
• r andr′ are unrelated wrt<,

thenr′ <t r.
Notice that the above total ordering<t exists. We want to prove thatX = ∪X̄<t

i . By the
condition (3) above, there will be no new preventer in(Π, <t) for any ruler though there
may be more rules that are preferred thanr. Thus,∪X̄<t

i = ∪X̄<
i . That is,X = ∪X̄<t

i .
Since<t is a total ordering,X = ∪X<t

i . Therefore,X is a BE-preferred answer set
of(Π, <).

only-if part Suppose thatX is a BE-preferred answer set of(Π, <), then there is a total
ordering<t such thatX = ∪X<t

i . By Lemma 15,X = ∪X̄<t
i . We want to prove that

∪X̄<t
i = ∪X̄<

i : On the contrary, assume that this is not true. Then∪X̄<t
i ⊂ ∪X̄<

i . That
is, there is a ruler ∈ Π such thathead(r) 6∈ ∪X̄<t

i = X but r is active wrt(X, X). On
the other hand, sinceX is an answer set ofΠ, head(r) ∈ X, contradiction. Therefore,
X = ∪X̄<

i .
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Proof 7.10
If Π is transformed intoEX(Π), thenΠ may be performed two kinds of transformations:

1. Deleting every rule having prerequisitel such thatl ∈ X: this kind of rule can be
neither active wrt(X, X) nor a preventer of another rule because it is not active wrt
(X, X̄i) for anyi ≥ 0.

2. Removing from each remaining ruler all prerequisites.

Suppose thatr is changed intor′ by this transformation. Then

• r is active wrt(X, X) iff r′ is active wrt(X, X);
• r is a preventer in(Π, <) iff r′ is a preventer inEX(Π), <).

By Lemma 7.13, Lemma 7.10 is proven.

Lemma 7.14
Let (Π, <) be a statically ordered logic program overL and letX be an answer set ofΠ.
ThenX satisfies the Brewka/Eiter criterion forΠ (or equivalently forEX(Π)) according
to (Brewka and Eiter 1999) if and only ifX is a<B-preserving answer set ofΠ.

To prove this theorem, the following result given in (Brewka and Eiter 1999) is required.

Lemma 7.15
Let (Π, <) be a statically ordered logic program overL and letX be an answer set ofΠ.
ThenX is aB-preferred answer set if and only if, for each ruler ∈ Π with body+(r) ⊆ X

andhead(r) 6∈ X, there is a ruler′ ∈ ΓΠX such thatr < r′ andhead(r′) ∈ body−(r).

Proof 7.14

if part Let X be a<B-preserving answer set ofΠ.
Assume thatX is not aB-preferred answer set, by Lemma 7.15, then there is a rule

r ∈ Π such that the followings hold:
1. body+(r) ⊆ X;
2. head(r) 6∈ X and
3. For any ruler′ ∈ ΓΠX with r < r′, head(r′) does not defeatr.
Then,head(r′) 6∈ body−(r). Thusr′ ∈ Π \ ΓΠX. This contradict to the Condition 2 in

Definition 15. Therefore,X is aB-preferred answer set ofΠ.

only-if part Suppose thatX is aB-preferred answer set ofΠ. ThenX is also aB-preferred
answer set of(Π, <′) where<′ is a total ordering and compatible with<. Notice that
the ordering<′ actually determines an enumeration〈ri〉i∈I of ΓΠX such thatri <′ rj if
j < i. Thus, this enumeration ofΓΠX obviously satisfies the condition 1 in Definition 15.

We prove the Condition 2 is also be satisfied. Letri < r′ andr′ ∈ Π \ ΓΠX. Suppose
thatbody+(r′) ⊆ X andhead(r′) 6∈ X. By Lemma 7.15, there is a rulerj ∈ ΓΠX such
thatr′ < rj andhead(rj) ∈ body−(r′). Thus, the Condition 2 is satisfied.
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Proof 20
Under the assumption of the theorem, we can see thatT D

(Π,<),Y X = T W
(Π,<),Y X for any

setsX andY of literals, which impliesCD
(Π,<)(X) = CW

(Π,<)(X) for any setX of literals.
Thus, the conclusion is obtained by Theorem 14.

Proof 21
By comparing Condition II(b) in Definition 1 and 6, we get

T D
(Π,<),Y X ⊆ (T B)(Π,<),Y X.

This meansCD
(Π,<)(X) ⊆ C(Π,<)(X). If X is aD-preferred answer set of(Π, <), it follows

from Theorem 14 thatCD
(Π,<)(X) = X. Thus,X ⊆ C(Π,<)(X). On the other hand, since

a D-preferred answer set is also a standard answer set, we haveC(Π,<)(X) ⊆ CΠX = X.

Therefore,X = C(Π,<)(X).

Proof 22
By comparing Condition I in Definition 1 and 13, we get

(T B)(Π,<),Y X ⊆ T B
(Π,<),Y X.

This meansC(Π,<)(X) ⊆ CB
(Π,<)(X). If X is a W-preferred answer set of(Π, <), then

X = C(Π,<)(X). Thus,X ⊆ CB
(Π,<)(X). On the other hand, sinceX is also a standard

answer set, we haveCB
(Π,<)(X) ⊆ CΠX = X. Therefore,X = C(Π,<)(X).

Proof 23 It follows directly from Theorem 21 and 22.

Proof 24
By Theorem 13, the ordered program(Π, <s) has the uniqueD-preferred answer setX?.
Since< ⊆ <s, X? is also aD-preferred answer set of(Π, <). On the other hand, each
stratified logic program has the unique answer set (the perfect model), ie.AS(Π) = {X?}.
By Theorem 23, we arrive at the conclusion of Theorem 24.
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