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Abstract

We provide a semantic framework for preference handling in answer set programming. To this end,
we introduce preference preserving consequence operators. The resulting fixpoint characterizations
provide us with a uniform semantic framework for characterizing preference handling in existing ap-
proaches. Although our approach is extensible to other semantics by means of an alternating fixpoint
theory, we focus here on the elaboration of preferences under answer set semantics. Alternatively, we
show how these approaches can be characterized by the concept of order preservation. These uniform
semantic characterizations provide us with new insights about interrelationships and moreover about
ways of implementation.

1 Introduction

Preferences constitute a very natural and effective way of resolving indeterminate situa-
tions. For example, in scheduling not all deadlines may be simultaneously satisfiable, and
in configuration various goals may not be simultaneously met. In legal reasoning, laws may
apply in different situations, but laws may also conflict with each other. In fact, while logi-
cal preference handling constitutes already an indispensable means for legal reasoning sys-
tems (cf.[(Gordon 1993; Prakken 1997)), it is also advancing in other application areas such
as intelligent agents and e-commeice (Grosof 1999) and the resolution of grammatical am-
biguities (Cui and Swift 2002). The growing interest in preferences is also reflected by the
large number of proposals in logic programming (Sakama and Inoue [1996; Brewka 1996;
Gelfond and Son 1997; Zhang and Foo 1997; Grosof 11997; Brewka and Eiterf 1999; Del-
grande et al. 2000b; Wang et al. 2000). A common approach is to employ meta-formalisms
for characterizing “preferred answer sets”. This has led to a diversity of approaches that are
hardly comparable due to considerably different ways of formal characterization. Hence,
there is no homogeneous account of preference.

We address this shortcoming by proposing a uniform semantical framework for extended

+ Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada.
t This work was done while the second author was with the University of Potsdam.
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logic programming with preferences. To be precise, we develop an (alternating) fixpoint
theory for so-calleadrdered logic programgalso, prioritized logic programs). An ordered

logic program is an extended logic program whose rules are subject to a strict partial order.
In analogy to standard logic programming, such a program is then interpreted by means of
an associated fixpoint operator. We start by elaborating upon a specific approach to pref-
erence handling that avoids some problems of related approaches. We also show how the
approaches of Brewka and Eiter (2000) and Delgrande ét al. (2000b) can be captured within
our framework. As a result, we obtain that the investigated approaches yield an increasing
number of answer sets depending on how “tight” they integrate preferences. For obtaining
a complementary perspective, we also provide characterizations in terms of the property of
order preservation, originally defined {n (Delgrande et al. 2000b) for distinguishing “pre-
ferred” from “non-preferred” answer sets. Moreover, we show how these approaches can
be implemented by the compilation techniques developed in (Delgrande et al| 2000b). As
well, we show that all these different preferred answer set semantics correspond to the
perfect model semantics on stratified programs. We deal with approaches whose preferred
answer sets semantics amounts to a selection function on the standard answer sets of an
ordered logic program. In view of our interest in compiling these approaches into ordi-
nary logic programs, we moreover limit our investigation to those guaranteeing polyno-
mial translations. This excludes approach like the ones in (Rintanen 1995; Zhang and Foo
1997) that step outside the complexity class of the underlying logic programming frame-
work. This applies also to the approach|in (Sakama and Inou€ 1996), where preferences
on literals are investigated. While the approach of (Gelfond and Sor 1997) remains within
NP, it advocates strategies that are non-selective (as discussed in §gction 5). Approaches
that can be addressed within this framework include those in (Baader and Hollunder 1993;
Brewka 1994) that were originally proposed for default logic.

The paper is organized as follows. Once Sedtjon 2 has provided formal preliminaries, we
begin in Sectiof |3 by elaborating upon our initial semantics for ordered logic programs.
Afterwards, we show in Secti¢r 4 how this semantics has to be modified in order to account
for the two other aforementioned approaches.

2 Definitions and notation

We assume a basic familiarity with alternative semantics of logic programming (Lifschitz
1996). Anextended logic prograns a finite set of rules of the form

Lo« Li,...,Ly,not Lyyy1,...,n0t Ly, Q)

wheren > m > 0, and eactL; (0 < i < n) is aliteral, ie. either an atom or the negation
- A of A. The set of all literals is denoted Hjit. Given a ruler as in [1), we letiead(r)
denote thénead L, of r andbody (r) thebody, { L1, ..., L, not Ly41,...,not Ly}, of
r. Further, lethody™ (r) = {L1,,..., Ly, } andbody ™ (r) = {Lys1, ..., L, }. A program
is calledbasicif body ™~ (r) = 0 for all its rules; it is callechormalif it contains no classical
negation symbot. The reduct of a rule is defined agt = head(r) « body™ (r); the
reduct I1X, of a progranil relative toa setX of literals is defined by

0¥ = {r* | r e Mandbody ™ (r) N X = (}.
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A set of literalsX is closed undem basic progranil iff for any » € II, head(r) € X
wheneverbody™ (1) C X. We say thatX is logically closediff it is either consistent (ie.
it does not contain both a literal and its negatiomA) or equalsLit. The smallest set of
literals which is both logically closed and closed under a basic progfasndenoted by
Cn(II). With these formalities at hand, we can defareswer set semanti¢er extended
logic programs: A sefX of literals is ananswer sebf a programll iff Cn(I1X) = X.
For the rest of this paper, we concentratecomsistentanswer sets. For capturing other
semanticsCn(I1X) is sometimes regarded as an oper&tgf X ). The anti-monotonicity
of Cp; implies thatCZ is monotonic. As shown in (van Gelder 1993), different semantics
are obtained by distinguishing different groups of (alternating) fixpointG(EX ).
Alternative inductive characterizations for the operat@rsandCr; can be obtained by
appeal tammediate consequence operatfirioyd 1987). Letll be a basic program and
X a set of literals. Thénmediate consequence operaiGf is defined as follows:

TnX = {head(r) | r € T andbody(r) C X}

if X is consistent, and; X = Lit otherwise. Iterated applications @f; are written as
T for j > 0, whereT9X = X andTiX = TnTy ' X fori > 1. Itis well-known that
Cn(Il) = U, TH0, for any basic prograrfl. Also, for any answer seX of programil,

it holds thatX = | J;-, 7}« 0. A reduction from extended to basic programs is avoidable
with an extended operator: LEt be an extended program afdandY be sets of literals.
Theextended immediate consequence operatpy- is defined as follows:

Ty X = {head(r) | € I, body™ (r) C X, andbody (r)NY = 0} )

if X is consistent, andy y X = Lit otherwise. lterated applications ®f; y- are writ-
ten as those offy;. Clearly, we havelt X = Ty X for any basic progranil and
Ty X = Ty X for any extended prografii. Accordingly, we have for any answer set
of programlIl that X = | J,~, Tﬁ,X(Z). Finally, for dealing with the individual rules iﬂ(Z),
we rely on the notion ofictivenessLet X, Y C Lit be two sets of literals in a program
I1. A rule r in TT is activewrt the pair(X,Y), if body™ (r) C X andbody ™ (r)NY = {.
Alternatively, we thus have th&t; y X = {head(r) | r € IL is active wrt(X,Y)}.

Lastly, anordered logic programs simply a pair(II, <), wherell is an extended logic
program and< C II x IT is an irreflexive and transitive relation. Given, r» € II, the
relationr; < ry is meant to express that hashigher priority thanr;. Programs asso-
ciated with such an external ordering are also referred tagally ordered programs,
as opposed tdynamicallyordered programs whose order relation is expressed through a
special-purpose predicate within the program.

3 Preferred fixpoints

We elaborate upon a semantics for ordered logic program that allows us to distinguish the
“preferred” answer sets of a progrgi, <) by means of fixpoint equations. That is, a set

of literals X is a preferred answer set @i, <), if it satisfies the equatiofi <) (X) = X

for some operato€ (i1, ). In view of the classical approach described above, this makes us
investigate semantics that interpret preferences as inducing selection functions on the set
of standard answer sets of the underlying non-ordered profram



4 Torsten Schaub and Kewen Wang

Answer sets are defined via a reduction of extended logic programs to basic programs.
Controlling such a reduction by means of preferences is difficult since all conflicts are
simultaneously resolved when turnidgy into IIX. Furthermore, we argue that conflict
resolution must be addressed among the original rules in order to account for blockage
between rules. In fact, once the negative bédyy () is eliminated there is no way to
detect whethehead (r’) € body ™ (r) holds in case of < r’. Our idea is thus to character-
ize preferred answer sets by an inductive development that agrees with the given ordering.
In terms of a standard answer s€t this means that we favor its formal characterization
asX = ;> Ti; x0 over X = Cn(I1¥). This leads us to the following definition.

Definition 1
Let (T1, <) be an ordered logic program and étandY” be sets of literals.
We define the set of immediate consequencek ofith respect tIl, <) andY” as

I. rellisactivewrt(X,Y) and
II. thereisnorule’ € ITwithr </
T« yX = head(r) such that
(a) v’ is active wrt(Y, X) and
(b) head(r') & X

if X is consistent, and(1; <y X = Lit otherwise.

Note thatZ( <) v is a refinement of its classical counterpity- in (2). The idea behind
Conditionll is to apply a rule- only if the “question of applicability” has been settled for
all higher-ranked rules’. Let us illustrate this in terms of iterated applicationggf - y.

In this case X accumulates conclusions, whitecomprises the putative answer set. Then,
the “guestion of applicability” is considered to be settled for a higher ranked-tule

o if the prerequisites of’ will never be derivable, vizbody™* (') Z Y, or
o if 7’ is defeated by what has been derived so far,dddy () N X # 0, or
o if ' or another rule with the same head have already appliedh&iz(r') € X.

The first two conditions show why activeness-ofs stipulated wr{Y, X), as opposed to
(X,Y) in Conditionl. The last condition serves two purposes: First, it detects whether the
higher ranked rule’ has applied and, second, it suspends the prefererce’ whenever
the head of the higher ranked has already been derived by another rule. This suspension of
preference constitutes a distinguishing feature of the approach at hand.

As with T1y vy, iterated applications df 11 )y are written aST(]ﬁ,<),y for j > 0, where
Ty X = Xand T o) X = T <)y T Ly X fori > 1. The counterpart of
operatorCy for ordered programs is then defined as follows.

Definition 2

Let (TI, <) be an ordered logic program and Iétbe a set of literals.

We defineC <) (X) = Uizo T(Zﬁ,<),X®'

Clearly,C1, <) is a refinement o’r;. The difference is thaf ;- obtains consequences
directly fromII andY’, while C; (normally) draws them by appeal tn after reducingl
to ITY. All this allows us to define preferred answer sets as fixpoings et ).
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Definition 3
Let (TI, <) be an ordered logic program and Iétbe a set of literals.
We defineX as a preferred answer set(df, <) iff Ci;,«)(X) = X.

For illustration, consider the following ordered logic progrélg, <):

ri: —f «— pnotf rg: b «— p ro < 1T 3)
ro: w <« b not w rs: P —
r3: f «— w,not ~f

Observe thally admits two answer setX = {p,b,~f,w} and X’ = {p,b, f,w}. As
argued in|(Baader and Hollunder 1993),is preferred taX’. To see this, observe that

Tnond = ot = 8
T(g@«),xm : {P}b T(g@,<),X’® : {P}b y
1200 b, TR0 2 Tt
I I I
(M,<), X" = “(Ig<),X"
We thus get <) (X) = X, while C(yy < (X') = {p,b} # X'. Note thatw cannot be
included intoT(%m<)7X,® sincer; is active wrt(X’, 7'(%@7<)7X,(Z)) andr; is preferred to-s.

It is important to see that preferences may sometimes be too strong and deny the ex-
istence of preferred answer sets although standard ones exist. This is because preferences
impose additional dependencies among rules that must be respected by the resulting answer
sets. This is nicely illustrated by prograiig = {r, 72} andllg = {r{, 5}, respectively:

rn = a « b rhm = a «— notbd
ro = b « rh = b « ()
Observe that ifdlg rule 7, depends;, while in Il rule 7} is defeated by-,. But despite
the fact thaflly has answer seX = {a,b} andllg has answer seX’ = {b}, we obtain
no preferred answer set after imposing preferenges. v, andr}, <’ r}, respectively.
To see this, observe that7g,. ) 0 = Ty ) x0 = 0 # X andZg, ) 0 =
T(l /’<,)’X,® = () # X'. In both cases, the preferred rulesand ], respectively, are
(initially) inapplicable:a < b is not active wrt((, {a, b}) anda < not b is not active wrt
(0, {b}). And the application of the second rale— is inhibited by Condition II: In the case
of 7&1@,<),x®’ rulea < b is active wrt({a, b}, 0); informally, X puts the construction on
the false front thak will eventually be derivable. In the caseﬁf”qu(b, rulea « not b
is active wrt({b}, ?). This is due to the conception that a higher-ranked rule can never be

defeated by a lower-ranked one.

Formal elaboration. We start with the basic properties of our consequence operator:

Theorem 1
Let (II, <) be an ordered program and [EtandY be sets of literals. Then, we have:

1 Ty X C Ty X.
2. Ty X = Tny X.

Fori = 1,2, let X; andY; be sets of literals ang; C II x II be strict partial orders.



6 Torsten Schaub and Kewen Wang

3. If X7 C Xo, thenT(H,<)’yX1 - 'T(H’<)’yX2.
4. 1f Y1 C Yo, thenT (1 <) v, X € i1,y v, X
5. If <1 C <o, thenT(H,<2),yX - ,T(H,<1),YX-

The next results show how our fixpoint operator relates to its classical counterpart.

Theorem 2
Let (T, <) be an ordered program and IEtbe a set of literals. Then, we have:

We obtain the following two corollaries.

Corollary 3
Let (II, <) be an ordered logic program aida set of literals.
If X is a preferred answer set d, <), thenX is an answer set df..

Our strategy thus implements a selection function among the standard answer sets of the
underlying program. This selection is neutral in the absence of preferences, as shown next.

Corollary 4
LetII be a logic program and a set of literals.
Then, X is a preferred answer set @f, () iff X is an answer set df.

Of interest in view of an alternating fixpoint theory is tidag; ) enjoysanti-monotonicity

Theorem 5

Let (II, <) be an ordered logic program and , X, sets of literals.
If X7 C Xo, thenC(H,<)(X2) - C(H)<)(X1).

We next show that for any answer s€tof a programil, there is an ordering: on the
rules ofII such thatX is the unique preferred answer sef &, <).

Theorem 6

LetIT be a logic program and” an answer set dfi. Then, there is a strict partial order
such thatX is the unique preferred answer set of the ordered progfam).

Our last result shows that a total order selects at most one standard answer set.

Theorem 7

Let (I, <) be an ordered logic program ard be a total order.
Then,(II, <) has zero or one preferred answer set.
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Relationship to perfect model semantiémy sensible semantics for logic programming
should yield, in one fashion or other, the smallest Herbrand m6d¢ll) whenevedI is

a basic program. A similar consensus seems to exist regardipgtfeet model semantics

of stratifiednormal programs (Apt et al. 1987; Przymusinski 1988). Interestingly, stratified
programs can be associated with a rule ordering in a canonical way. We now show that our
semantics corresponds to the perfect model semantics on stratified normal programs.

A normal logic programl is stratified if IT has a partition, calledtratification II =
IT; U. .. UII, such that the following conditions are satisfiedfof € {1,...,n}:

1. I; N 11, = O for i # j;
2. body™ (r) N (Up—iyq head(Ty)) = 0 andbody~ (r) N (U, head(I11,)) = 0 for all
r e II;.
That is, whenever a rule belongs toll;, the atoms inbody ™t (r) can only appear in the
heads of J; _, I, while the atoms irbody ~ () can only appear in the heads|df_}, IT;.

A stratification somehow reflects an intrinsic order among the rules of a program. In a
certain sense, rules in lower levels are preferred over rules in higher levels, insofar as rules
in lower levels should be considered before rules in higher levels. Accordingly, the intuition
behind the perfect model of a stratified program is to gradually derive atoms, starting from
the most preferred rules. Specifically, one first applies the rulék jmesulting in a set of
atomsXy; then one applies the rulesih, relative to the atoms itX; ; and so on.

Formally, theperfect model semantics a stratified logic programl = 11, U ... U I,
is recursively defined fab < ¢ < n as follows (Apt et al. 1987; Przymusinski 1988).

1. Xo=10 |
2. Xip1 =Ujso T, x, Xi
Theperfect modelX* of I1 is then defined a&™* = X,,.

Let IT be a stratified logic program afdl = II; U ... U II,, be a stratification ofI. A
natural priority relation<,; onII can be defined as follows:

For anyry, o € II, we definer; <, 7o iff 71 € II; andry € II; such thatj < 4 .

That is,rs is preferred ta- if the level of 5 is lower than that of-;. We obtain thus an
ordered logic prograril, <) for any stratified logic prograri with a fixed stratification.

Theorem 8
Let X* be the perfect model of stratified logic prografrand let<, be an order induced
by some stratification dfl. Then, we have
1. X* = C(H7<5)(X*)l
2. If X CCm,<)(X), thenX* = X.
These results imply the following theorem.
Corollary 9

Let X* be the perfect model of stratified logic prografrand let< be an order induced
by some stratification dil. Then ,(II, <,) has the unique preferred answer et

Interestingly, both programidy as well aslly are stratifiable. None of the induced or-
derings, however, contains the respective preference ordering impo$éd in (5). In fact, this
provides an easy criterion for the existence of (unique) preferred answer sets.
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Corollary 10

Let X* be the perfect model of stratified logic prografrand let<, be an order induced
by some stratification dfl. Let (T, <) be an ordered logic program such tkatC <.

Then ,(I1, <) has the unique preferred answer &et

Implementation through compilatiorA translation of ordered logic programs to standard
programs is developed in (Delgrande et al. 2000b). Although the employed strategy (cf.
Sectior| #) differs from the one put forward in the previous section, it turns out that the
computation of preferred answer sets can be accomplished by means of this translation
technique in a rather straightforward way. In the framework of (Delgrande et al. 2000b),
preferences are expressed within the program via a predicate syymBologic program

over a propositional language is said to bedynamicallyordered iff £ contains the fol-
lowing pairwise disjoint categories: (i) a st of terms serving asamedor rules; (ii) a

setAt of atoms; and (iii) a setlt, of preference atoms < t, wheres,t € N are hames.

For a progranil, we need a bijective function(-) assigning a name(r) € N to each

ruler € I1 . We sometimes write,. instead ofn(r). An atomn,. < n,» € At amounts to
asserting that < r’ holds. A (statically) ordered prografil, <) can thus be captured by
programs containing preference atoms only among their facts; it is then expressed by the
programII U {(n, < n,/) «— |r <r'}.

Givenr < 7/, one wants to ensure that is considered before (cf. Condition Il in
Definition[3). For this purpose, one needs to be able to detect when a rule has been applied
or when arule is defeated. For detecting blockage, a new bitom) is introduced for each
rin II. Similarly, an atomap(n,.) is introduced to indicate that a rule has been applied. For
controlling application of rule the atomok(n,.) is introduced. Informally, one concludes
that it isok to apply a rule just if it isok with respect to every:-greater rule; for such a
<-greater rule”, this will be the case just wher is known to be blocked or applied.

More formally, given a dynamically ordered prografrover £, let LT be the language
obtained fromZ by adding, for each, v’ € II, new pairwise distinct propositional atoms
ap(n;), bl(n,.), ok(n,), andrdy(n,, n..). Then, the translatiofi maps an ordered program
IT over £ into a standard prografi(II) over LT in the following way.

Definition 4

LetIl = {ry,..., 7} be a dynamically ordered logic program ovkr

Then, the logic prograrff'(II) over LT is defined adl(IT) = |J, o 7(r) , wherer(r)
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consists of the following rules, fat ™ € body™ (r), L~ € body ™~ (r), andr’, " € 11 :

ai(r) = head(r) <« ap(n,)
as(r) = ap(n,) <« ok(n.), body(r)
bi(r,LT) = bl(n.) <« ok(n,),not LT
bo(r,L7) = bl(n.) <« ok(n.),L~
a(r) = ok(n,) «— rdy(ne,ne),...,rdy(n., n.)
ca(r,r’) = rdy(ne,ne) — not (n, < n)
e3(rr’) = rdy(ne ) — (e < ), ap(ny)
ca(r,r’) = rdy(n.,n.) «— (n < n),bl(n.)
es(r,r’) = rdy(ne,ne) — (ny <), head(r’)
t(r,r',r") = N = Ny = Ny < Nty Nyt < Nt
as(r,r) = =(ns <n.) — np<ne

We write T(II, <) rather tharT'(IT'), wheneverl’ is the dynamically ordered program
capturing(II, <). The first four rules of-(r) express applicability and blocking conditions
of the original rules. For each rutec II, we obtain two rulesy; (r) andaz(r), along with
n rules of the formb (r, L) andm rules of the formby(r, L™), wheren andm are the
numbers of the literals ihody ™ (r) andbody ~ (r), respectively. The second group of rules
encodes the strategy for handling preferences. The first of these ai(leks,“quantifies”
over the rules idl. This is necessary when dealing with dynamic preferences since pref-
erences may vary depending on the corresponding answer set. The four; fule§ for
1 = 2..5 specify the pairwise dependency of rules in view of the given preference order-
ing: For any pair of rules, r’, we deriverdy(n,, n,») whenever, < n, fails to hold,
or otherwise whenever eithep(n,) or bl(n,) is true, or whenevekead(r’) has already
been derived. This allows us to derivk(n,.), indicating that- may potentially be applied
whenever we have for alf with n,. < n,» thatr’ has been applied or cannot be applied.

It is instructive to observe how close this specificatiomkif) andrdy(-, -) is to Condi-
tion Il in Definition[]]. In fact, given a fixea < II, Condition Il can be read as follows.

II. foreveryr’ e Il withr < r’ either
(a) r" is not active wrt(Y, X') or
(b) head(r') € X

The quantification over all rules € II with » < r’ is accomplished by means of(r)
(along withey (r, 7). By definition,r’ is not active wrt(Y, Xif either body™ (r) Z Y or
body™~ (r) N X # 0, both of which are detected by rutg(r, r’). The conditionhead (r') €
X isreflected by:3(r, v') andes (r, ). While the former captures the case wheeed (')
was supplied by’ itseIfE]the latter accounts additionally for the case whiered (') was
supplied by another rule that.

The next result shows that translatiins a realization of operatdt.

1 Recall thatX is supposed to contain the set of conclusions that have been derived so fai/vnieides the
putative answer set.

2 Strictly speaking rules (r, ') is subsumed bys (r, r'); nonetheless we keep both for conceptual clarity in
view of similar translations presented in Sec@n 4.
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Theorem 11

Let (II, <) be an ordered logic program ovérand letX C {head(r) | r € II} be a
consistent set of literals. Then, there is some set of litdfatser L+ whereX =Y N L
such tha’C(n7<)(X) = C'[[*(H7<)(Y) NnL.

Note that the fixpoints of 1 ) constitute a special case the previous theorem.

Theorem 12
Let (IT, <) be an ordered logic program ovérand letX andY be consistent sets of
literals. Then, we have that

1. if Ci, <) (X) = X, then there is an answer sétof T(I1, <) such thatX =
YNL
2. if Y is an answer set Gf(I1, <), thenCr;, ) (Y N L) =Y N L.

4 Other strategies (and characterizations)

We now show how the approaches of Delgrande ef al. (2000b) and Brewkal/Eitef (1999;
2000) can be captured within our framework. Also, we take up a complementary characteri-
zation provided in[(Delgrande et al. 2000b) in order to obtain another insightful perspective
on the three approaches. For clarity, we add the lettértt all concepts from Sectidn 3.
Accordingly we add b” and “B”", respectively, when dealing with the two aforementioned
approaches.

Characterizingp-preference.In (Delgrande et al. 2000b), the selection of preferred an-
swer sets is characterized in terms of the underlying set of generating rules: TheXset
of all generating rule®f a(n answer) seX of literals from progranil is given by

I'nX = {r € 11| body™ (r) C X andbody ™ (r) N X = 0} .

The property distinguishing preferred answer sets from ordinary ones is referred to as
order preservatiorand defined in the following way.

Definition 5
Let (II, <) be an ordered program and [Etbe an answer set @f.

Then, X is called<P-preserving, if there exists an enumeratign),c; of I'y X such
that for everyi, j € I we have that:

1. body™ (r;) C {head(r;) | j < i}; and
2. ifry <rj, thenj < ; and
3. ifr; <’ andr’ e I\ I'n X, then
(@) body™(r') € X or
(b) body~ (") N {head(r;) | j < i} # 0.
We often refer to<P-preserving answer sets aspreferred answer sets.

Condition 1 makes the property gfoundedne@explicit. Although any standard an-
swer set enjoys this property, we will see that its interaction with preferences varies with

3 This term is borrowed from the literature on default logic (cf. (Konolige 1988; Schwind| 1990)).



A semantic framework for preference handling in answer set programmingd 1

the strategy. Condition 2 stipulates tHaf);c; is compatiblewith <, a property invariant
to all of the considered approaches. Lastly, Condition 3 is comparable with Condition Il in
Definition[]; it guarantees that rules can never be blocked by lower-ranked rules.

Roughly speaking, an order preserving enumeration of the set of generating rules reflects
the sequence of successive rule applications leading to some preferred answer set. For
instance, the preferred answer sét= {p,b,—~f,w} of Example ) can be generated
by the two order preserving sequenges 4,71, r2) and(rs, r1, 74, r2). Intuitively, both
enumerations are order preserving since they reflect the fact;thatreated before,. [7_5]
Although there is another grounded enumeration gener&ingamely(rs, rq, o, 71), it
is not order preserving since it violates Condition 2. The same applies to the only grounded
enumeratior{rs, r4, 2, 73) that allows to generate the second standard answer Bgj, @f
violates Condition 3b. Consequently, is the only<P-preserving answer set 0flg, <).

We are now ready to provide a fixpoint definition foipreference. For this purpose, we
assume a bijective mappingle(-) among rule heads and rules, thatigie (head (1)) = r;
accordingly,rule({head(r) | r € R}) = R. Such mappings can be defined in a bijective
way by distinguishing different occurrences of literals.

Definition 6

Let (II, <) be an ordered logic program and FétandY be sets of literals.
We define the set of immediateconsequences df with respect tqIl, <) andY” as

I. rellisactivewrt(X,Y)and
II. thereisnorule’ € T withr <7’
ThayX = head(r) such that
(a) r" is active wrt(Y, X') and
(b) ' & rule(X)

if X is consistent, andp; _, ;X = Lit otherwise.

The distinguishing feature between this definition and Defin[tion 1 manifests itself in Ilb.
While p-preference requires that a higher-ranked rule has effectively applipdeference
contents itself with the presence of the head of the rule, no matter whether this was supplied
by the rule itself.

Defining iterated applications dff(%,<_)7y in analogy to those (j.IZH)<)7y, we may cap-
ture D-preference by means of a fixpoint operator in the following way.

Definition 7

Let (TI, <) be an ordered logic program and I€tbe a set of literals.
We definerZ(DHK)(X) = UiZO(TD)an)’X@.

A similar elaboration o’f; _, as done withCy; _, in Sectiorﬂ% yields identical formal
properties; in particulaﬂ'ﬁn@ also enjoys anti-monotonicity.
The aforementioned difference is nicely illustrated by extending the prografnis in (5) by

4 Note that both enumerations are compatible with the iteration thrﬂ’\,ﬁqg 9 D fori=0.4.
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rulea — , yielding (I1g, <) and(Ilg, <’), respectively:

r1 a «— b N = a < notbd

rg = b «— Té = b

r3 a rh = a < ®)
ro < 11 Ty <"1l

While in both cases the single standard answer set-fgreferred, neither of them is
D-preferred. Let us illustrate this in terms of the iterated applicationir(%K)_X and
70 whereX = {a,b} is the standard answer set Ty At first, both operators

(g <), X"
allow for applying rulea — , resulting in{a}. As with 7?Vrvm,<),x in ﬁ) however, oper-
atorT(“;qu does not allow for applying, at the next stage, unless is inactive. This

requirement is now dropped bly‘("l%@’<)7X, since the head of; has already been derived
throughrs. In such a case, the original preference is ignored, which enables the applica-
tion of r5. In this way, we obtain thev-preferred answer sé&f = {a, b}. The analogous
behavior is observed dfilg, <).

As w-preferred answer sets;preferred ones coincide with the perfect model on strati-
fied programs.

Theorem 13
Let X* be the perfect model of stratified logic prografrand let<, be an order induced
by some stratification dfl. Then ,(II, <) has the unique-preferred answer sef*.

The subtle difference between andw-preference is also reflected in the resulting com-
pilation. Given the same prerequisites as in Definﬁbn 4, the logic profa(ii) over £+
is defined adr®(II) = TW(II) \ {cs(r,7’) | r,7’ € II}. Hence, in terms of this compi-
lation technique, the distinguishing feature betweemndw-preference manifests itself
in the usage of rules (r,7’) : rdy(n,, n.r) < (n, < ny), head(r’). While w-preference
allows for suspending a preference whenever the head of the preferred rule was derived,
D-preference stipulates the application of the preferred rule itself. This is reflected by the
fact that the translatiofi® merely uses rules(r, ') : rdy(n., ny) — (n, < ny),ap(n,)
to enforce that the preferred rule itself has been applied. This demonstrates once more how
closely the compilation technique follows the specification given in the fixpoint operation.
As shown in|(Delgrande et al. 2000b), a set of litet&l$s a <P-preserving answer set
of a programl iff X =Y N £ for some answer séf of T°(II, <). This result naturally
extends to the fixpoint operatdf’HK), as shown in the following result.

Theorem 14
Let (II, <) be an ordered logic program ov€rand letX be a consistent set of literals.
Then, the following propositions are equivalent.

L Chy o (X) = X;
2. X =Y n L for some answer sé&f of T°(II, <);
3. X is a<P-preserving answer set oF.

While the last result dealt with effective answer sets, the next one shows that applying
C(DH <) is equivalent to the application ¢ty to the translated prograii’ = T°(II, <) .
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Theorem 15

Let (II, <) be an ordered logic program ovérand letX C {head(r) | r € II} be a
consistent set of literals. Then, there is some set of litéfatsver L+ whereX =Y N L
such thatiyy ) (X) = Cro(rr,<)(Y) N L.

Characterizingw-preference (alternatively)We now briefly elaborate upon a character-
ization of w-preference in terms of order preservation. This is interesting because order
preservation provides an alternative perspective on the formation of answer sets. In con-
trast to the previous fixpoint characterizations, order preservation furnishes an account of
preferred answer sets in terms of the underlying generating rules. While an immediate
consequence operator provides a rather rule-centered and thus local characterization, or-
der preservation gives a more global and less procedural view on an entire construction.
In particular, the underlying sequence nicely reflects the interaction of its properties. In
fact, we see below that different approaches distinguish themselves by a different degree
of interaction between groundedness and preferences.

Definition 8
Let (TI, <) be an ordered program and IEtbe an answer set &f.

Then, X is called<%-preserving, if there exists an enumeratign);c; of 'y X such
that for everyi, j € I we have that:

1. (@) body™ (r;) C {head(r;) | j < i} or
(b) head(r;) € {head(r;)|j < i}; and
2. ifr; <rj, thenj < ; and
3. ifr; <’ andr’ e I\ I'nX, then
(@) body™(r') Z X or
(b) body ™ (') N{head(r;) | j <i} #0or
(¢) head(r’) € {head(r;)|j <i}.

The primary difference between this concept of order preservation and the ope for
preference is clearly the weaker notion of groundedness. Whibteeference makes
no compromise when enforcing rule dependencies induced by prefergrueference
“smoothes” their integration with those induced by groundedness and defeat relationships:
First, regarding rules ifip X (via Condition 1b) and second concerning ruleslif I'n X
(via Condition 3c). The rest of the definition is identical to Definifign 5.

This “smoothed” integration of preferences with groundedness and defeat dependencies
is nicely illustrated by program@lg, <) and(Il, <). Regardinglg, we observe that there
is no enumeration df; X satisfying both Condition 1a and 2. Rather itis Condition 1b that
weakens the interaction between both conditions by tolerating enumetagion, r1). A
similar observation can be made regardiifg where, in contrast tblg, the preferred rule
r; does not belong té';; X. We observe that there is no enumeratio'gfX satisfying
both Condition 2 and 3a/b. Now, it is Condition 3c that weakens the interaction between
both conditions by tolerating enumeratior, r5). In fact, the two examples show that both
Condition 1b as well as 3c function as exceptions to conditions 1a and 3a/b, respectively.
In this way,w-preference imposes the same requirementsaeferenceunlesshe head
of the rule in focus has already been derived by other means.

Finally, we have the following summarizing result.
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Theorem 16
Let (IT, <) be an ordered logic program ovérand letX be a consistent set of literals.
Then, the following propositions are equivalent.

1. C(V{TK)(X) =X,
2. X =Y n L for some answer séf of TV (II, <);

3. X is a<W-preserving answer set &f.

Characterizings-preference.Another approach to preference is proposed in (Brewka and
Eiter 1999). This approach differs in two ways from the previous ones. First, the construc-
tion of answer sets is separated from verifying preferences. Interestingly, this verification
is done on the basis of the prerequisite-free program obtained from the original one by
“evaluating” body ™ (r) for each ruler wrt the separately constructed (standard) answer
set. Second, rules that may lead to counter-intuitive results are explicitly removed. This is
spelled out in[(Brewka and Eiter 2000), where the following filter is defined:

Ex(IT) =TI\ {r € I1 | head(r) € X, body™ (r) N X # 0} @)

Accordingly, we defin€x (I, <) = (Ex(II), < N (Ex (IT) x Ex (II))).

We begin with a formal account @&-preferred answer sets. In this approach, partially
ordered programs are reduced to totally ordered ondslhAordered logic programs an
ordered logic progranll, <) where< is a total ordering. The case of arbitrarily ordered
programs is reduced to this restricted case:([Et<) be an ordered logic program and let
X be a set of literals. Thedy is aB-preferred answer set ¢f1, <) iff X is aB-preferred
answer set of some fully ordered logic progréih <) such thaik C <.

The construction ofs-preferred answer sets relies on an operator, defined for
prerequisite-free programs, comprising only rutesith body™ () = 0.

Definition 9

Let (I, <) be a fully ordered prerequisite-free logic program,(le};c; be an enumera-
tion of IT according to<, and letX be a set of literals. Thei§;; «)(X) is the smallest
logically closed set of literals containing, . ; X;, whereX; = () for j ¢ I and

X, — Xi,1 if bOdyi(’f’i) n Xz‘—l 7é @
" | X;_1U{head(r;)} otherwise.

This construction is unique insofar that for any such progfAin<), there is at most one
standard answer st of I such thaB3¢ (11, «)(X) = X. Accordingly, this set is used for
defining thes-preferred answer seif a prerequisite-free logic program:

Definition 10
Let (I, <) be a fully ordered prerequisite-free logic program and{die a set of literals.
Then, X is theB-preferred answer set 0f, <) iff Be, (1.« (X) = X.

The reduction ofII, <) to £x (II, <) removes from the above construction all rules
whose heads are i but which are defeated hy. This is illustrated in[(Brewka and Eiter
2000) through the following example:

rmn = a < notb, 3 = a «— not-a, {r;<ri|i<j}. (8)
ro = —-a <« mnota, T4 = b <« not b,
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Programllg = {ri,...,r4} has two answer setgq,b} and {—a,b}. The application
of operatorB3 relies on sequencg, 2,73, r4). Now, consider the processes induced by
B (rig, <) (X) andB(rig, <) (X) for X = {a, b}, respectively:

Be (g, <) (X) : Xi={} Xo={-a} Xz={-a} X4={ab}
B, <) (X) : Xi={a} Xo={a} Xz={a} Xj={a,b}
Thus, without filtering byEx, we get{a,b} as aB-preferred answer set. As argued
in (Brewka and Eiter 2000), such an answer set does not preserve priorities begcause
is defeated infa, b} by applying a rule which is less preferred than namelyr;. The
above program has therefore Bgpreferred answer set.
The next definition accounts for the general case by reducing it to the prerequisite-free
one. For checking whether an answer Zets B-preferred, the prerequisites of the rules
are evaluated wik . For this purpose, we define = head(r) < body ™ (r) for a ruler.

Definition 11
Let (I, <) be a fully ordered logic program arXi a set of literals.
The logic program{Il x, < x) is obtained from(II, <) as follows:
1L Ox={r |rell andbody ™ (r) C X}
2. foranyri,r, € Ix, ry <x rhiff r1 < rowherer; = maxe{r eIl | r~ =
ri}.
In other words ITx is obtained fromll by first eliminating every rule: € II such that
body™ (r) € X, and then substituting all remaining ruledy .
In general B-preferred answer sets are then defined as follows.

Definition 12
Let (I, <) be a fully ordered logic program arX a set of literals.
Then, X is aB-preferred answer set ¢fl, <), if

1. X is a (standard) answer setldf and
2. X is aB-preferred answer set 0fl x, < x).

The distinguishing example of this approach is given by progiim <):

rn = b < a,not—b with {rj <mri|i<j}. 9
rg9 = =b <« notb
ry = a <« not-a

Programllg = {ry, 2, 73} has two standard answer se¥s; = {a, b} and X, = {a, —b}.

Both (Ilg) x, as well as(Ilg) x, turnr; into b «— not —b while leavingr, andrs unaf-
fected. ClearlyEx, (Ilg, <) = (Ilg, <) for i = 1, 2. Also, we obtain tha3(r; <) (X1) =

X1, that is, X is aB-preferred answer set. In contrast to this, is notB-preferred. To
to see this, observe thBy ) (X2) = X1 # Xo. Thatis, By, <) (X2) reproducesX;

rather thanXs. In fact, while X; is the onlyB-preferred set, neitheX; nor X5 is w- or

D-preferred (see below).

We note thas-preference disagrees witt+ andp-preference on Examplg|(3). In fact,
both answer sets of prograffig, <) ares-preferred, while onlyf{p, b, - f, w} is w- andb-
preferred. In order to shed some light on these differences, we start by providing a fixpoint
characterization oé-preference:
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Definition 13
Let (II, <) be an ordered logic program and FétandY be sets of literals.
We define the set of immediate consequencek ofith respect tqII, <) andY” as

I. rellisactivewrt(Y,Y) and
II. thereisnorule’ e ITwith r < 7/
ThaoyX = head(r) such that
(a) v’ is active wrt(Y, X) and
(b) head(r') & X

if X is consistent, andy; _ X = Lit otherwise.

The difference between this oper@camd its predecessors manifests itself in Condition I,
where activeness is tested Wi, Y') instead of(X,Y'), as in Definitior] I anfl]4. In fact,
in Example [(9) it is the (unprovability of the) prerequisit®f the highest-ranked rule
that makes the construction of or b-preferred answer sets break down (cf. Definifibn 1
and[4). This is avoided witls-preference because once answer{geb} is provided,
preferences are enforced wrt the program obtained by replaciwith b — not —b.

With an analogous definition of iterated applicationﬁ’g{x)}yx as above, we obtain
the following characterization @&-preference:

Definition 14
Let (II, <) be an ordered logic program and I€tbe a set of literals.
We defineCf; ) (X) = U;»0(7®) (1 <) x?-

Unlike aboveCf; _, is not anti-monotonic. This is related to the fact that the “answer set
property” of a set is verified separately (cf. Definitjorj 12). We have the following result.

Theorem 17
Let (TI, <) be an ordered logic program ovérand letX be an answer set &f.

Then, we have thaX is B-preferred iﬁch(n,@(X) =X.

As with b- andw-preferenceg-preference gives the perfect model on stratified programs.

Theorem 18
Let X* be the perfect model of stratified logic prografrand let< be an order induced
by some stratification dfl. Then ,(II, <,) has the unique-preferred answer seéf*.

Alternatively, B-preference can also be captured by appeal to order preservation:

Definition 15
Let (II, <) be an ordered program and [Etbe an answer set &i.

Then, X is called<®-preserving, if there exists an enumeratief);c; of ' X such
that, for everyi, j € I, we have that:

1. ifr; <rj, thenj <+4; and
2. ifr; <7’ andr’ € I\ I'nX, then

5 We have refrained from integratin (7) in order to keep the fixpoint operator comparable to its predecessors.
This is taken care of in Theor19. We note however that an integratiE]] of (7) would only affect Condition II.
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(@) body™(r') € X or
(b) body~ (') N {head(r;) | j <i} #0or
(c) head(r') € X.

This definition differs in two ways from its predecessors. First, it drops any requirement on
groundedness. This corresponds to ugirig’) instead of X, V) in Definition[13. Hence,
groundedness is fully disconnected from order preservation. For exampke pitlederred
answer sefa, b} of (Ilg, <) is associated with the®-preserving sequende;, r2), while

the standard answer set is generated by the grounded sequence. Second, Condi-

tion 2c is more relaxed than in Definitipn 8. That is, any rflevhose head is iX (as
opposed td{head(r;) | j < i}) is taken as “applied”. Also, Condition 2c integrates the
filter in (@) [F] For illustration, consider ExamplE|(6) extendedigy< 7s:

71 not b r3 <719 < T1 (20)

T2

a <«
b
T3 a <
While this program has np- or w-preferred answer set, it hassapreferred one{a, b}

generated byro, r3). The critical ruler; is handled by 2c. As a net result, Condition 2 is
weaker than its counterpart in Definitiph 8. We have the following summarizing result.

Theorem 19
Let (II, <) be an ordered logic program ovérand letX be a consistent answer setlof
Then, the following propositions are equivalent.

1. X is B-preferred;

2. Cg)_((n,<)(X) = X

3. X is a<®-preserving answer set of;

4. X =Y n L for some answer séf of T®(II, <)
(whereT® is defined in|(Delgrande et al. 2000a)).

Unlike theorem$ 14 ar{d 116, the last result stipulates thahust be an answer set .
This requirement can only be dropped in case 4, while all other cases rely on this property.

Relationships.First of all, we observe that all three approaches treat the blockage of
(higher-ranked) rules in the same way. That is, a rilis found to be blocked if either
its prerequisites irbody ™ (r') are neverderivable or if some member dbdy~ (') has
been derived by higher-ranked or unrelated rules. This is reflected by the identity of condi-
tions lla and 2a/b in all three approaches, respectively. Although this is arguably a sensible
strategy, it leads to the loss of preferred answer sets on progrant$ifike:’).

The difference between- andw-preference can be directly read off Definitjdn 1 ahd 4;
it manifests itself in Condition IIb and leads to the following relationships.

Theorem 20

Let (I, <) be an ordered logic program such thatfor’ € IT we have that # ' implies
head(r) # head(r’). Let X be a set of literals. ThenX is a D-preferred answer set of
(I1, <) iff X is aw-preferred answer set 6fI, <).

6 Conditionbody =~ (r') N X # (B in @ is obsolete becausé ¢ I';; X.
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The considered programs deny the suspension of preferenceswhpdeference, because
all rule heads are derivable in a unique way. We have the following general result.

Theorem 21
EveryD-preferred answer set \g-preferred.

Example [(6) shows that the converse does not hold.

Interestingly, a similar relationship is obtained betw&enand B-preference. In fact,
Definition[I§ can be interpreted as a weakening of Definftjon 8 by dropping the condition
on groundedness and weakening Condition 2 (via 2c). We thus obtain the following result.

Theorem 22
Everyw-preferred answer set ispreferred.

Example [9) shows that the converse does not hold.
Let ASII) = {X | Cu(X) = X} and ASp(Il,<) = {X € AST) |
X is P-preferred for P = w, D, B. Then, we obtain the following summarizing result.

Theorem 23
Let (II, <) be an ordered logic program. Then, we have

ASp(I1, <) C ASw (11, <) C ASe(I1, <) C AS(TD)

This hierarchy is primarily induced by a decreasing interaction between groundedness and
preference. Whil®-preference requires the full compatibility of both concepts, this inter-
action is already weakened w-preference, before it is fully abandonedafpreference.
This is nicely reflected by the evolution of the condition on groundedness in defififions 5, 8,
and I5. Notably, groundedness as such is not the ultimate distinguishing factor, as demon-
strated by the fact that prerequisite-free programs do not necessarily lead to the same pre-
ferred answer sets, as witnessed[ih (6) andl (10). Rather it is the degree of integration of
preferences within the standard reasoning process that makes the difference.

Taking together theorem$[9,]13, dnd 18, we obtain the following result.

Theorem 24

Let X* be the perfect model of stratified logic prografrand let<; be an order induced

by some stratification dil. Let (I, <) be an ordered logic program such tkat- <.
Then, we havedS, (11, <) = ASw(I1, <) = ASs(I, <) = AS(IT) = {X*}.

5 Discussion and related work

Up to now, we have been dealing with static preferences only. In fact, all fixpoint charac-
terizations are also amenable to dynamically ordered programs, as introduced in[Jection 4.
To see this, consider Definitipn 1 along with a dynamically ordered progfamd sets of
literals X, Y over a language extended by preference atdmgs Then, the corresponding
preferred answer sets are definable by substituting:“r'” by “(r < ') € Y in defi-
nitions[1]®, anfl 113, respectively. That is, instead of drawing preference information from
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the external ordet, we simply consult the initial context, expressedibyin this way, the
preferred answer sets Of can be given by the fixpoints of an operathy.

Also, we have concentrated so far on preferred answer sets semantics that amount to se-
lection functions on the standard answer sets of the underlying program. Another strategy
is advocated in (Gelfond and Son 1997), where the preferénee d, “stops the appli-
cation of defaultd, if defaultsd; andds are in conflict with each other and the defadit
is applicable” (Gelfond and Son 1997). In contrastde D-, andw-preference this allows
for exclusively concluding-p from program({ry, 2}, <):

rn = p < rg = Tp < Ty < T2

This approach amounts te-preference on certain “hierarchically” structured pro-
grams [(Gelfond and Son 1997). A modification of the previous compilation techniques
for this strategy is discussed in (Delgrande and Schaub| 2000). Although conceptually dif-
ferent, one finds similar strategies when dealing with inheritance, update and/or dynamic
logic programs|(Buccafurri et al. 1999; Eiter et al. 2000; Alferes et al.|1998), respectively.
While all of the aformentioned approaches remain within the same complexity class,
other approaches step up in the polynomial hierarChy (Rintanen 1995; Sakamaland In-
oue 1996] Zhang and Foo 1997). Among them, preferences on literals are investigated
in (Sakama and Inoue 1996). In contrast to these approaches, so-called courteous logic
programs|(Grosof 1997) step down the polynomial hierarchy ihtDue to the restriction
to acyclic positive logic programs a courteous answer set can be compubédiintime.
Other preference-based approaches that exclude negation as failure include (Dimopoulos
and Kakas 1995; Pradhan and Minker 1996, You et al. 2001) as well as the framework
of defeasible logicg (Nute 198]7; Nute 1994). A comparision of the latter with preferred
well-founded semantics (as defined|in (Brewka 1996)) can be found in (Brewka 2001).
In a companion paper, we exploit our fixpoint operators for defining regular and well-
founded semantics for ordered logic programs within an alternating fixpoint dﬁ]é'm'bs
yields a surprising yet negative result insofar as these operators turn out to be too weak
in the setting of well-founded semantics. We address this by defining a parameterizable
framework for preferred well-founded semantics, summarized in (Schaub and Wang 2002).

6 Conclusion

The notion of preference seems to be pervasive in logic programming when it comes to
knowledge representation. This is reflected by numerous approaches that aim at enhanc-
ing logic programming with preferences in order to improve knowledge representation
capacities. Despite the large variety of approaches, however, only very little attention has
been paid to their structural differences and sameness, finally leading to solid semantical
underpinnings. In particular, there were up to now only few attempts to characterize one
approach in terms of another one. The lack of this kind of investigation is clearly due to
the high diversity of existing approaches.

This work is a first step towards a systematic account to logic programming with prefer-
ences. To this end, we employ fixpoint operators following the tradition of logic program-

7 This material was removed from this paper due to space restrictions.
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ming. We elaborated upon three different approaches that were originally defined in rather
heterogenous ways. We obtained three alternative yet uniform ways of characterizing pre-
ferred answer sets (in terms of fixpoints, order preservation, and an axiomatic account).
The underlying uniformity provided us with a deeper understanding of how and which an-
swer sets are preferred in each approach. This has led to a clarification of their relationships
and subtle differences. On the one hand, we revealed that the investigated approaches yield
an increasing number of answer sets depending on how tight they connect preference to
groundedness. On the other hand, we demonstrated how closely the compilation technique
developed in[(Delgrande et al. 2000b) follows the specification given in the fixpoint op-
eration. Also, we have shown that all considered answer sets semantics correspond to the
perfect models semantics whenever the underlying ordering stratifies the program.

We started by formally developing a specific approach to preferred answer sets semantics
that is situated “between” the approaches of Delgrande et al. (2000b) and that of Brewka
and Eiter|(1999). This approach can be seen as a refinement of the former approach in that it
allows to suspend preferences whenever the result of applying a preferred rule has already
been derived. This feature avoids the overly strict prescriptive approach to preferences
pursued in[(Delgrande et al. 2000b), which may lead to the loss of answer sets.
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7 Proofs
ProofE} It can be directly verified from the definition Gfr < v O

Proof[g

1. Ca1,<)(X) € Cp(X): SinceCir,«)(X) = U, T(ZH,<)7X® andCr(X) = T} 0,
we need only to prove thétg"'n)<)7X(Z) C T x 0 for i > 0 by using induction on.
Base Fori = 0, itis obvious thaZ g, _, 0 =0 C Tj x0.

Step Assume thay, ) 0 C T x0), we want to show thaf ;7L (0 C Ty 0.
In fact, if L € ngg) +0, then, by Definitiorﬂl, there is a rufein II such that
L = head(r), body™ (r) C T(ln o.xVandbody™ (r) N X = 0. By induction
assumptionpody ™ () C Tj; x0. Since the rulel. «— body™ (r) is in the reduct
programpP*, L € T{" 0.

2. Cp(X) C Car,«y(X) if X C Crrp,«y(X): For simplicity, we denotd; = T}; 0
andX; = T(llx),w fori > 0. It suffices to provely; x0 € Ci1,<)(X) for k > 0 by
using induction ork. That is, for eachi > 0, there isn; > 0 such thatl; C X,
Base If k = 1, itis obvious thafl}j x0 = 0 C Xj.

Step Assume thafl; C X,,,. We wantto showl’;;; C X,,,,,. Leta € T;; 4, then
there is a rule- € I" with head(r) = a, body™ (r) C T; andbody ™~ (r) N X = 0.
By the induction assumptiom, is active wrt(X,,,, X). We claim that there will
be no ruler’ such that both of Condition | and Il hold w{X,,,, X ). Otherwise,
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suppose that there is a rutesuch thathead (r') ¢ X,,,, r < r’ andr’ is active
wrt (X, X,,,). Without loss of generality, there is no rulé such thatiead (r") ¢

X, v <7’ <r"andr” is active wrt(X, X, ). SinceX C C,«)(X), there be
a numbem > n; such that is active wrt(X,,, X). By the assumption af”, it

should be thakead(r”) € X,,. A contradiction. Thereforéiead(r) € X,,,+1.

3. If < is empty, then the conditiof/ in Definition[] is automatically satisfied be-
cause, for any rule € II, there is no rule’ that is preferred te. This implies that
T,y xP = Ti; x0 for anyi > 0. ThereforeCy <y (X) = Cp(X). O

Proof(§ If X C X', itis a direct induction ori to show thatZ{; _, /0 C T, ) 0. O

Proof[§
If IT has no consistent answer set, the conclusion is obvious. Thus, we assumieishat
consistent. First, we can easily generalize the notion of generating rules as follows: For
any two set§; andY; of literals, sef(Y;,Ys) = {head(r) < body™ (r) | body™ (r) C
Y1, body ™ (r)NYe = 0}.

Since X is an answer set of, we haveX = Cp(X) = U, T} x0. LetTy =
[(Tyx0, X) andTy 1 = T(TEx0, X) — Ty, for k > 1. Define a total order< y on I
such that the following requirements are satisfied:

1. v <«xrforanyr e T'yandr’ € Ty1,k=0,1,....
2. Ifr € Up>oly, andr’ € U0, thenr’ < x r.

Sincel'y, NTw # B for n # n’, such an ordering exists. Denakg = T(l 0. We

_ ! I <x) X
need only to prove the following two propositions P1 and P2:

P1 X is a prioritized answer set dfI, < x): SinceCp(X) = X, it suffices to prove
thatC(ir, <) (X) = Cp(X). Firstly, by Theoren) PC1; «)(X) € Cp(X). For the op-
posite inclusion, we note tha@tp(X) = head(Ur>0I'x)), Wwherehead(Ug>oI'y)) =
{head(r) | € Up>ol'x}. Hence, we need only to prove thatad(I'y) C Ciy <) (X)
for anyk > 0 by using induction ork.

Base For k = 0, without loss of generality, suppose that= {ri,...,r:} andr; <x
-+ K x r1. We use second induction to show thatid (r;) € Cp(X) for1 <i <.
Base Fori = 1, since there is no rulg’ with ry <x 7/, head(r1) € X;.

Step Assume thatead(r;) € X;, thenhead(r;y+1) € X;11. Thushead(Ty) C X;.

Step Assume thatiead(I'y) C C1,<)(X). Thenhead(T'y) € X, for somem;, > 0.
LetTy1q = {r1,...,m.}andr, <x --- <x r1. Then, similar to the case &f= 0,
we have thatead(r;) € X, +ifori=1,... u.

Thus,head(Ty) C C(m,<)(X) foranyk > 0.

This implies thaC'p(X) C Cqr,<)(X). ThereforeC iy «)(X) = X.

P2 If X’ is an answer set dfl such thatX’ # X, thenX’ is not a prioritized answer
set of (I, < x ): First note thatX \ X’ # () and X’ \ X # (. We assert that there is
literal ! € X \ X’ suchthat ¢ Cqp «)(X'): otherwise, X \ X’ C Cqr <) (X'). We can
chooset > 0 and a literall, € X \ X’ such thatX; C X N X" andly € X/,,. Then
there is a rule- such thathead(r) = Iy, body™ (r) C X, andbody ~(r) N X’ = {. This
will implies that! € Cpyx/ (X’), i. e.l € X', contradiction. Therefore, we have shown
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that there is a rule in II such thatiead(r) € X andhead(r) ¢ Cm,<)(X'). For each
I € X'\ X and each rule’ such thatiead(r’) = I’, we haver’ < x r. Thus, we know
that!’ & C1,<)(X’). This means thak”” # Cr;, ) (X’) and thus X" is not a prioritized
answer set ofll, < x ). O

Proof[q

On the contrary, suppose thdl, <) has two distinct prioritized answer se¥sand X”.
SinceX \ X’ # 0 andX’ \ X # 0, there are literal$ and!’ such that € X \ X’ and
I € X"\ X. Without loss of generality, assume %, _, 0 = 7(f; _ /0 fori < nbut
l e T(Tl’{j) <Vandl’ € T(}”;j) 0. This means that there are two ruteandr’ such that
head(r) = 1, head(r') = U, r andr’ satisfy the two conditiong and I in Definition[]
at stagen with respect toX and X', respectively. We observe two obvious facts: F1.
is active wrt(X, 7}, _y 0); and F2.r is active wrt(X', 7}, _, «.0). By F1, we have
r’ < r. Similarly, by F2, it should be < ’, contradiction. Thereford]Il, <) has the

unique prioritized answer sets. []

Proof(§
1. X* = M, is a prioritized answer set ¢fl, <,): X* = Cqr <) (X™).

(@) Cim,<.)(X*) € X*:we show thaty; _ , .0 C X* by using induction on.

Base Fori =0, T _ , x.0 =0 C X* is obvious.

Step Assume thaf/(}; _ | .0 C X*. If pe 737 L | .0, then there is arule
in IT such thap = head(r), body™ (r) C Tj; _ ., x.0 andbody™ (r) N X* =
(. By induction assumptiorbody ™ (r) C X*. If r € T1;, thenbody ™ (r) C M;
andbody (1) N M;_; = (. Thereforep € X*. That is,Té{LS) <0 C X~

(b) X* C Crr,<.)(X™): we show thatVl; C Cyy < y(X*) for 0 <i <.
Base For: = 1, it is obvious sincel/y = 0.

Step If we have shown/; C Cp < )(X*), we want to show that/;, C
C(mr,<.)(X*). We again use second induction énto prove that ifp <
Tk, ., ar. Mi, thenp € Ci <y (X*):

BaseFork = 1,i.e.p € Tﬁ,;H,MiMiv if p & M;, then there is a rule in
I1;, 1 such thap = head(r), body™ (r) = O andbody ~ (r) N M; = (). Then
body ™ (r)N X* = . ‘

By the first induction assumptiod/; C T(Jﬁ.@).x*@ for somey. If there
arej > 0 and a ruler’ such that- <, r" andr’ is active with respect to
(X*, 77 0) andhead(r') & T _ ) «.0. Then, body™ (') C X*

P I(IL,<), X ™ )
and body ™~ (r') N T(%7<S)7X*(Z) = (. We assert thaf < jy. Otherwise, if

J > jo, body ™ (r') N 7—(%,<3),X*® =0 = body (') N 7—(%),<5),X*® =0=
body™ (r')NM; = 0 = body~ (r')N X* = (. Thereforehead(r’) € M; C

T(]H <s).x*@’ a contradiction. Thus, when> jo, there will be no rule il

that prevents to be included irﬂ’(ﬂg),x*(b. Thus,p € Cr1,< ) (X™).
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Step Assume thap € Ciy ) (X*) if p € Tﬁm,Ml‘Mi- Suppose thap €
Tﬁithi M; butp € M;, then there is arulein I1;; such thap = head(r),
body™ (r) C T§i+1,Mi® andbody ™ (r) N M; = 0. Thenbody™ (r) € M; C
T(ﬁ’ <.y.x- 0 for somejo andbody ™ (r) N X* = (). Similar to the proof of the
casek = 1, we can also prove thate Ciy < )(X*).

2. If X = Cqr,<,)(X), thenX is a preferred answer set @fl, <,). By Corollary@,
X is also an answer set ®f. However,II has the unique answer s&t* and thus
X =X~ O

Proof[9

By Theorenj B (1), the perfect mod&l* is a preferred answer set. On the other hand, since
each preferred answer s&tis also a standard answer set. In particular, for the stratified
programll, it has the unique answer s&t. Therefore X = X*. O

Proof[1]

Let (TI, <) be an ordered logic program ov€rand X a consistent set of literals oveér

“C-part Defing]
Yy = {head(r) | r € rule(Cr,<)(Y))}
U {ap(n,) | r € rule(Crr,<)(Y))} U {bl(n,) | 7 & rule(Crm,«)(Y))}
U {ok(n,) | r € TI} U {rdy(n,., n,) | r,r" € 11}
Clearly, we haveX =Y N L. By definition, we have 1 <) (X) = U, 7(i; < x¥ and
Crm ) (Y) = Cn(T(IT, <)").
In view of this, we show by induction tha; ) 0 C Cn(T(II,<)") for i > 0. To
be precise, we show for every € II by nested induction thatead(r) € ’T(%7<)7X®

implies head(r) € Cn(T(I1,<)") and moreover, for every’ e I, that if - < +/ then
bl(n,) € Cn(T(IL, <)¥) orap(n,) € Cn(T(1,<)") or head(n,/) € Cn(T(I,<)¥).

i =0 By definition, 7% _, 0 =0 C Cn(T(I1,<)").
i > 0 Considerr ¢ II such thathead(r) € Ti -, 0. By definition, we have that is
active wrt(Zy; _) 0, X). Thatis,

1. body™(r) C Tj ) x0. By the induction hypothesis, we geody™(r) C

Cn(T(IL, <)¥).
2. body™ (r) N X = (). By definition ofY", this impliesbody™ (r) N Y = (.
Furthermore, this implies that ()" = ap(n,.) < ok(n,.), body™ (r) € T(IL, <)" .

We proceed by induction o4.

Base Suppose is maximal with respect te.. We can show the following lemma.

8 As defined in SectioE]zb;ule(-) is a bijective mapping between rule heads and rules.
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Lemma?7.1
If 7 € IT is maximal with respect tec, thenok(n,.) € Cn(T(II, <) ).

Given that we have just shown|ih 1 drld 2 thady * (- ) C On(T(IL, <)¥) andag( )"te

T, <)* Lemmal and thefactthé’m( (I1,<)" ) is closed und (1T, <)” imply

thatap(n,) € Cn(T(II, <)"). Analogously, we gebead(r) € Cn(T(II,<)") due to

ar(r)T e TAL <) We have thus shown thébead (r),ap(n,)} C Cn(T(L,<)").
Step We start by showing the following auxiliary result.

Lemma 7.2
Given the induction hypothesis, we hase(n,.) € Cn(T(IL, <)").

Proof{7.2

Considerr” € 1II such thatr’ < r”. By the induction hypothesis, we have ei-
ther bl(n) € Cn(TL,<)") or ap(nw) € Cn(T(IL,<)") or head(n») €
Cn(T(IL, <)¥). Clearly, we have(n,, < n.) € Cn(TL<)") iff +' < +".
Hence, whenever’ < 1”, we obtainrdy(n,/, n) € Cn(T(I,<)") by means of
es(r',r")T, e’ )T, or es(r!, )T (all of which belong toT(IT, <)). Similarly,
we getrdy(n,/, n/) € Cn(T(IL, <)" ), whenever” ¢ " from c,(r',r") " . Lastly, we
obtainok(n,.) € Cn(T(I, <)) viae, ()T € TAL, <), O

For all rulesr’ with < 7/, we have that either
1. r'is not active wrilX, 75, _, (). Thatis, we have that either

(@) body™ (r) ¢ X. By definition ofY’, this impliesbody™ (r) Z Y.
By definition, b, (r/, L*)" = bl(n+) «— ok(n~) € T(II,<)* for some
Lt € body™(r) such thatL,+ ZY. By Lemma[ 7.2, we havek(n,.) €
Cn(T(I1,<)”). Given thatCn(T(II, <)) is closed undef(II, <)*, we get
thatbl(n,/) € Cn(T(IL, <)").
(b) body™ (r) N T(H <0 # 0. By the induction hypothesis, this implies that
body™ (r) N Cn(T (H <)Y) £
Therefore by (r, L=)* bI( ) — ok(nr) L~ € T(I,<)” for someL~ €
body™ (r) N Cn(T(IL, <)¥). In analogy td t , this allows us to conclude that
bl(n,s) € Cn(T(II, <) )
In both cases, we concludé(n,.) € Cn(T(IL, <)*). By the induction assumption,
head(r') € Cn(T(I,<)¥).
We have thus shown that eithlt n,.) € Cn(T(IL, <)*) or head (') € Cn(T(IL, <)¥)
for all »" such thatr < /.
In analogy to what we have shown in the proof of Lenjmg 7.2, we can now show that
ok(n,) € Cn(T(IL, <)¥).
In analogy to the base case, we may then conclddead(r),ap(n.)} C
Cn(T(IL, <)¥).

“D"-part We haveX = Y N L. By definition, we haveCr ) (Y) = Cn(T(II, M)
and moreover tha€'n(T(IL, <)") = Uiso T{f(n <)y®. Given this, we show by induction

that(T{r(H )YQ) NL) C Cr,«y(X) fori > 0.
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i = 0 By definition, T0 0 =0C C)(X).

i > 0 Consider € II such thathead(r) € (Tﬂ}} <)Y(Z) N £). In view of T(II, <)", this

implies thatap(n,.) € (quf(n,<)Y® N £) and thusay (r)™ € T(IL, <)”. The latter implies
thatbody ™ (r) N'Y = 0, whencebody ™ (r) N X = () because oX = Y N L. The former
implies thatbody™ () U {ok(n,)} C Tl 1<)Y® By the induction hypothesis, we obtain
thatbody ™ (r) C Cimr,<)(X). Consequentlw is active wrt(Cr,«)(X), X).

Suppose there is somé e II with » < 7’ such that

1. o' is active wrt(X, Cj, <y (X)). That s,
(@) body™(r) C X and
(b) body™ (1) N Crr,<)(X) = 0.
2. head(r") & Ciri,<)(X).
By the induction hypothesis, we obtain frﬁn 2 thatd(r') ¢ T T(H <)Y(Z) for 7 <.
Clearly, we havén,, < n,.») € T’(H <)Y(D for ¢ > 1iff v < 7. Moreover,ok(n,) €

T;f(_nl«)‘“@ implies (see abovelly(n,, n,») € Tq;(HQ <)y® for all " € II. This and the fact
0.

thathead(r') & T3 ;; _y» 0 for j < i implies thatbl(n,) € Tl(rf v
This makes us dlstmgwsh the following two cases.

. If bl(n,~) is provided byb; (', L"), then there is somé* € body™ (') such that
LJr ¢ Y. Given thatX =Y N £, this contradictp a.
. If bl(n,,) is provided byb, (', L™), then there is somé&~ € body~ (r') such that
L= e Ti* ,0.By the induction hypothesis, we obtain tHat € C(y <) (X). A

T(I1,<)
contradiction t¢_Tb.

So, given that is active wrt(C(i;,«)(X), X) and that there is ng’ € II such that < 7
satisfyind 1§ 1b, ar[d 2, we have thatd(r) € T(i1, <) x (Cr,<)(X)). Thatis,head(r) €
Cim, <) (X). O

Proof[12 It follows from Lemmg7.f and Lemnja7.8. [J

Proof[13 Similar to the proof of Theoref 8. [

By Theorem 4.8 in(Delgrande et al. 2003), it suffices to show the following Lemra 7.4.
Before doing this, we first present a definition. Given a statically ordered logic program
(I1, <) and a sefX of literals, set X; = (TD)€H,<),X® fori > 0.

Definition 16

Let (I, <) be a statically ordered logic program ante a rule inll. X andX;(: > 1) are
as above. We say another rufeis ap-preventerof r in the context{ X, X;) if (1) r < o/
and (2)r' is active wrt( X, X;) andr’ & rule(X;).

Lemma 7.3
Let (T1, <) be a statically ordered logic program aida set of literals withC?,
X. Then, for anyr € 'y X, there exists a numbeisuch that- € rule(X;).

(I, <)(X) =

The intuition behind this lemma is that eap¥preventer of a rule i’y X is a “temporary”
one ifCiy . (X) = X.



26 Torsten Schaub and Kewen Wang

Proof[7.3

On the contrary, suppose that there is a rule 'y X such that- ¢ rule(X;) for anys.
Without loss of generality, assume that there is no such rule that is preferred than

Sincer € I'nX and X = U2, X;, r will become active wr{(X,, X) at some stage
t > 0. Therefore, it must be the case that there is-preventen’ satisfyingr’ € 'y X.
This implies that < ' andr’ € T'nX butr’ & rule(X;) for anys, contradiction to our
assumption om. Thus, the lemma is proven. []

Lemma 7.4
Let (II, <) be a statically ordered logic program aida set of literals. TherX is a<°-

preserving answer setldfif and only if X is a set of literals withIZ(DHK)(X) =X.

Proof[7.4

Without loss of generality, assume thate(X,;) = {r1,..., 7, } fori > 1.

if part LetCfy; _(X) = X. By Lemm;FHX = U2, rule(X;). This means that the
SequencCeN: (111, ..., 1nys 721y -« - T2ny, - - -) IS @N €nUmMeration df; X
It suffices to prove that this sequence of rulefiis <P-preserving with respect t& .
We need to justify the two conditions ef°-sequence are satisfied By

C1 For eachr; € rule(X;) wheret > 0, thenr; is active wrt(X;_1, X). This implies
thatbody ™ (r;) C {head(r;) | j < i}.

C2 if r < ¢/, thenr’ is prior tor in A: notice that, sinceX = U2, X;, if arule is active
wrt (X;, X) then itis also active witX, X;). Thus, by Definitior Ly andz’ can not be
in the same sectiorule(X). If C2 is not satisfied by\, then there are two rules, say
andr’, such that < »’ butr is prior tor’ in A. Without loss of generality, assume that
r € rule(X;) andr’ € rule(X;) buti < j. Thens’ should prevent to be included in
rule(X;), which means ¢ rule(X;), contradiction. Therefore, C2 holds.

C3if r; < v andr’ € II\ I'nX, thenbody™ (r') € X or+' is defeated by the set
{head(r;) | j < i}: Assume that; € rule(X;), thenr’ & rule(X;). On the contrary,
assume thatody™ (r') C X andr’ is not defeated by the s¢tead(r;) | j < i}, then
r’ is not defeated byX,_; becauseX;,_; C {head(r;) | j < i}. Thus,r’ is active
wrt (X, X; 1) andr’ & rule(X:—1). This means that’ is a D-preventer ofr; in the
context(X, X; 1) and thusy; ¢ rule(X;), contradiction. That ishody ™ (r') Z X or
r’ is defeated by the s¢head(r;) | j < i}.

only-if part Assume thatX is a<P-preserving answer set of, then there is a grounded
enumeratior{r;);c; of 'n X such that, for every, j € I, we have that:

1. ifr; <rj, thenj < ¢; and

2. if r; < v andr’ € I\ Ty X, then either (@pody™ (') € X or (b) body ™~ (r') N
{head(r;) | j <i} #0.

A setA of rules isdiscreteif there is no pair of rules andr’ in A's. t.r < r’.

We define recursively a sequence of sets of rules as follows.
DefineA; as the largest section 6f;);<; satisfying the following conditions:
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1. A, is discrete;
2. r1 € Al;
3. body(r) = 0 for anyr € A;.

Suppose thaf\; is well-defined and-,,, is the last rule ofA;, we defineA;,; as the
largest section ofr;);c; satisfying the following conditions:

1. A,y is discrete;

2. Tm;+1 € Aﬂ_l;

3. body(r) C {head(r') | ' € U:_,A;} foranyr € A;yy.
4. disjoint withU%_oA;.

DenoteX; = {head(r) | r € Ui_yA;}. Then we have the following fact:

if € A;41 such thatX;_; |= body™ () and no ruler’ € A; with < 7/, then we can
mover from A, ;; to A;, the resulting sequence of rules still<€-preserving.

Without loss of generality, assume that our sequedcg is fully transformed by the
above transformation. Sinee® X, = X, we can prove)s®  X; = X by proving X; =
X; for everyi € I. Thus, it suffices to prové\; = rule(X;) for everyi € I. We use
induction or:

Base Ay = rule(Xy) = 0.

Step Assume thaf\; = rule(X;), we want to prove\; ,; = rule(X;1)-
A1 C rule(X;y1): Foranyr; € A; 41, by the condition 3 in the construction &f , ;,
¢ is active wrt(X;, X'). And for anyr’ such that; < " andr’ is active wrt( X, X;) then
body™ (") C X andr’ is not defeated by;. By induction,Uy«;head(ry,) € X; = X,
thusr’ is not defeated byJ,.head(ry). By Definition B it should be the case that
v’ € T'nX, which implies that’ € A; = rule(X;). Therefore;’ is not ap-preventer
of r;. Thatis,r; € rule(X;41).
rule(X;11) € Ajr1: Forr € rule(X,;41), we claim thatr € A;.;. Otherwise,
there would exist > i + 1 such thatr € A,. Notice that, by induction assump-
tion, body™(r) C X;. Thus, it must be the case that there is at least onerfule
u;;hrlrule(Xj) such that’ < r. But+’ is active wrt(X, X;11), which contradicts to
r € rule(X;+1). Thereforeyule(X;y1) C Ajtq. O

Proof[I§ Similar to the proof of Theorein 11. [J
Proof[1§ It follows from the following Lemm& 7]7 and Theor¢m|12. [

Lemma 7.5
Let (I, <) be an ordered logic program ové€rand letY be a consistent answer set of
T(‘EVH) <). DenoteX =Y N L. Then, we have for any € II:

1. ok(n,) € Y; and
2. ap(n,) € Y iff bl(n,) €Y.

Proof[7.%

We prove the two propositions by parallel induction on orderng



28 Torsten Schaub and Kewen Wang

Base Let r be a maximal element &f.

1. By assumptiony &£ ' for anyr’ € II. This implies thatdy(n,.,n,) € Y for any
r’ € II. Thus,ok(n,.) € Y.
2. There are two possible cases:
e body(r) is satisfied byX: Sincea,(r) € T(II, <), we haveap(n,) € Y.
e body(r) is not satisfied byX: The body of at least one &f (r, L™) andby(r, L ™)
is satisfied by, thusbl(n,.) € T(IT, <)" .

Step

1. Consider € II. Assume thabk(n, ) € Y and eithemp(n,.) € Y orbl(n,.) € Y
for all " with » < 7’. In analogy to the base case, we hadg(n,.,n,.) € Y for all
r’ e IMwithr £ 1.
For +’ with » < 7/, by the induction assumption, we have eithe(n,) € Y or
bl(n,/) € Y. Hence the body of at least one®f(r, ) andcy(r, r’) is satisfied by
Y. This impliesrdy(n,,n,.) € Y.
So, we have proved thady(n,,n,s) € Y for anyr’ € II. Thus,ok(n,) € Y.

2. Analogous to the base case. [J

Given a statically ordered logic prograril,<) and a setX of literals, set
X; = (TW)Z(-H,<),X® for i > 0 and ugr(X;) = {r € T'mX \ wyr(X;—1) |
eitherr applied in producingX; \ X;_; or head(r) € X,;_1} for ¢ > 0. Intuitively,
ugr(X;) is the set of the generating rules that are used at stage

Definition 17

Let (II, <) be a statically ordered logic program antbe a rule inll. X and X;(i > 0)
are as above. We say another rulés a w-preventerof r in the context( X, X;) if the
following conditions are satisfied:

1. r < and
2. r’is active wrt(X, X;) andhead(r') &€ X;.

Lemma 7.6
Let (I, <) be a statically ordered logic program ai{da set of literals wichE’Y1 o(X) =
X. Then, for anyr € I' X, there exists a numbeisuch that- € ugr(X;).

The intuition behind this lemma is that eaghpreventer of a rule i’ X is a “temporary”
oneifCly; ) (X) = X.

Proof[7.6

On the contrary, suppose that there is a nule 'y X such thatr ¢ ugr(X;) for anyi.
Without loss of generality, assume that there is no such rule that is preferred tBente
r € I'mX and X = U2, X;, r will become active wrt( X;, X) at some stagé > 0.
Therefore, it must be the case that there w-preventer’ satisfyingr’ € 'y X. This
implies thatr < " andr’ € I'nX butr’ ¢ wugr(X;) for any i, contradiction to our
assumption om. Thus, the lemma is proven. []
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Lemma 7.7
Let (II, <) be a statically ordered logic program akda set of literals. TherX is a<%-
preserving answer set of if and only if X is a set of literals with?(“I’IK)(X) =X.

Proof[7.7

Without loss of generality, assume thair(X;) = {ri1,...,7in, } fori > 1.

if part LetCl;; _\(X) = X. By Lemm;FHX = U2, ugr(X;). This means that the
Sequencel: (711, ..., 1ny, 721y« -sT2n,, - - -) IS @N enumeration of 1 X. It suffices to
prove that this sequence<s"-preserving with respect t&.

We need to justify that the three conditions<0f-sequence are satisfied By

C1 For eachr; € A, eitherr; is active wrt(X;, X) or head(r;) € X, for somet > 0.
Thus, Condition 1 in Definitiop]8 is satisfied.

C2 If r < ¢/, thens’ is prior tor in A: Notice thatX = U2, X, if a rule is active wrt

(X;, X) then it is also active wrtX, X;). Thus, by Definitimﬂlr andr’ can not be in
the same sectiongr(Xy).
If C2 is not satisfied byA, then there are two rules, sayandr’, such thatr < r/
but r is prior to 7’ in A. Without loss of generality, assume thate wugr(X;) and
r’ € ugr(X;) buti < j. Thenr’ should prevent to be included inugr(X;), which
means- ¢ ugr(X;), contradiction. Therefore, C2 holds.

C3 On the contrary, suppose that Condition 3 in Definifibn 8 is not satisfied. That is, there
are two rules; andr’ such that; < r/, 7’ € II \ 'y X and the following items hold:

1. body™ (') C X,

2. ' is not defeated by the s€bead(r;) | j < i},

3. head(r') & {head(r;) | j < i}.

Without loss of generality, assume that € ugr(X;), thens’ is not defeated by
X,—1 becauseX,_, C {head(r;) | j < i}. Thus,r’ is active wrt(X, X,_;) and
r’ & ugr(X;—1). This means that’ is aw-preventer of-; in the contex{ X, X;_;) and
thus,r; & ugr(X;), contradiction.

only-if part Assume thatX is a<%-preserving answer set of, then there is a grounded
enumeratior{r;);c; of 'y X such that the three conditions in Definit@n 8 are all satisfied.
A setA of rules isdiscreteif there is no pair of rules andr’ in A such that- < /. We
define recursively a sequence of sets of rules as follows.
DefineA; as the largest section 6f;) ;< satisfying the following conditions:

1. A, is discrete;
2. 1r € Al;
3. body(r) = 0 for anyr € A,.

Suppose thaf\; is well-defined and-,,, is the last rule ofA;, we defineA;,; as the
largest section ofr;);c; satisfying the following conditions:

1. A4, is discrete;
2. Tm;+1 S Ai—i—l;
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3. Eitherbody(r) C {head(r’) | r' € Ui_,A;} or head(r) € {head(r') | r' €
Ui_oA;} for anyr € A

4. Disjoint withU%_oA;.

DenoteX; = {head(r) | r € Uj_,A;}. Then we observe the following fact:

If r € A;;1 such thatbody ™ (r) is satisfied byX;_; and no ruler’ € A; withr < 7/,
then we can movefrom A, ; to A;, the resulting sequence of rules is still’-preserving.

Without loss of generality, assume that our sequedcg is fully transformed by the
above transformation. Sinece® X, = X, we can prove)® X; = X by provingX; =
X; for everyi € I. Thus, it suffices to prové\; = ugr(X;) for everyi € I. We use
induction or:

Base Ag = ugr(Xy) = 0.

Step Assume that\; = ugr(X;), we want to prove\;  ; = ugr(X; ;).

1. Aiy1 € ugr(X;,1): For anyr, € A;;1, by the condition 3 in the construction of
A, 41, eitherr; is active wrt(X;, X) or head(r;) € X;. If head(r;) € X;, itis
obvious that € ugr(X;41). Thus, we assume thatis active wrt(X;, X ). For any
' such that; < +" ands’ is active wrt(X, X;) thenbody™ (') C X andr’ is not
defeated byX;. By induction,Uy,«;head(ri,) € X; = X;, thusr’ is not defeated by
Uk<thead(ry). By Definition@, it should be the case thate I'i; X, which implies
thatr’ € A; = ugr(X;). Thereforey’ is not aw-preventer of-; in the context of
(Xi, X). Thatis,r; € ugr(X;+1).

2. ugr(Xity1) € A;qq1: Forr € ugr(X,4+1), we claim thatr € A, ;. Otherwise,
there would exist > i + 1 such that € A;. Notice that, by induction assumption,
body™ (r) C X, (Note thathead(r) € X; is impossible because we assume that
r € A; andt > i + 1). Thus, it must be the case that there is at least onerfute
Ué;iﬂugr(Xj) such that’ < r. Butr’ is active wrt(X, X;11), which contradicts
tor € ugr(X;+1). Thereforeugr(X;11) C Ajy1. O

Lemma 7.8
Let (II, <) be an ordered logic program ovérand letX andY be consistent sets of
literals. Then, we have that

1. if X is a<Y-preserving answer set of, then there is some answer §&bf
TY(II, <) such thatX =Y N £;
2. if Y is an answer set a&f" (I, <), thenX is a<"-preserving.

Proof[7.8

1 Let X be a<%-preserving answer set &f. Define
Yy = {head(r) | r € TnX}
U {ap(n,) |r € TunX} U {bl(n,) | r ¢ T'nX}
U {ok(n,) | r € I} U {rdy(n,,n,) | r,r" € I}
U{n. <n-|r<r'tu{=(n <n.)|r&£r'}
Notice thatZ € X iff L € Y. We want to show that’ = Cn(T(II, <)") by two steps:
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“D"part Foranys € TY(II, <), if st € T(I,<)" andbody™ (s) C Y, we need to

provehead(s) € Y by cases.

Casel ay(r) : head(r) < ap(n,). Sinceay(r) = ay(r)", a1(r) € TAL <)Y, If
ap(n,) € Y, thenr € 'y X. This implieshead(r) € Y.

Case2 ao(r) : ap(n,) « ok(n,),body(r). If ok(n,) € Y, body™(r) C Y and
body™ (r) NY = 0, thenbody™ (r) € X andbody™ (r) N X = (. This implies that
r € I'nX and thusp(n,) € Y.

Case3 by(r,LT) : bl(n,) < ok(n,),not LT.If ok(n,) € Y andL™ ¢ Y, then
Lt ¢ X. Thatis,r ¢ T'nX and thusbl(r) € Y.

Case4 by(r,L7) : bl(n,) < ok(n.),L~. If ok(n,) € Y andL™ € Y, thenL™ € X.
Thatis,r ¢ I'nX and thusbl(r) € Y.

Case 5 For the rest of rules if"(II, <), we trivially have thatead(s) € Y whenever
st e T(IL, <)* andbody™ (s) C Y.

“C"-part SinceX is a<W-preserving answer set of, there is an enumeratiofr;);cr
of I'mX satisfying all conditions in Definitiop|8. This enumeration can be extended to an
enumeration ofI as follows:

Foranyr ¢ I'nX, letr; be the first rule that blocksandr; be the last rule s. t: < r;.
Then we insert- immediately aften-,,,.; ;1. For simplicity, the extended enumeration
is still denoted(r;);c ;. Obviously, this enumeration has the following property by Defini-
tion[8.

Lemma 7.9
Let (r;);er be the enumeration fdil defined as above. H; < r;, thenj < 1.

For eachr; € II, we definey; as follows:

{head(r;),ap(n.,) | i €TnX,i eI} U {bl(n.,)|r; €TnX,i€ I}
U {ok(n.,)|iel} U A{rdy(ny,,n.,) 4,5 € 1}
U {n. <n-|r<r} U {=(n. <nw)|r£r'}

We proveY; C Cn(7 (I1)Y) by using induction ori.

Base Considerry € II. Given thatX is consistent, we havey, £ r for all » € II by
Definition@(?.). Thusi(n,, < n,) € Y forall » € II. Consequently,

ca(ro,7) T ¢ rdy(nyy, ) — € T(IL, <) forall r € IL.

This impliesrdy(n,,, n,.) € Cn(T(I1, <)) for all r € 1.
LetIl = {rg,r1,...,7%}. Since

c1(rg) = c1(ro)t : ok(ny,) «— rdy(ne,, nry ), ..., rdy(ng,, n.,.) € T(I, <)Y, (12)

thusok(n,,) € Cn(T(I1,<)"). We distinguish two cases.

Case 11f ry € I'nX, we havebody ™ (ro) = 0 by Definition8(1), andhody ™ (ro)N X =
() which also implieshody ~(ro) N Y = @. Thus

as(ro) = as(ro)t : ap(ny,) — ok(n,,) € T(II, <)Y . (12)
Accordingly, we obtairap(n,,,) € Cn(T(II, M) by ok(n,,) € Cn(T(II, M.
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Furthermore, from
a1(ro) = a1 (ro)* : head(ny,,) — ap(ny,) € T(IL, <)" (13)

we obtainkead (ro) € Cn(T(IL, <)¥).

Case 2If o € IT\ I'nX, we must havebody " (ry) ¢ X by Definition[8. That is,
body™ (ro) € Y. Then, there is som&™ € body™ (ry) with LT ¢ X. We also have
Lt ¢ Y. Therefore,

by (ro, L) = by (ro, L) : bl(ny,) — ok(ny,) € T(IT,<)" . (14)
Since we have shown above thé{n,,) € Cn(T(I1, <)¥), we obtain
bl(ny,) € Cn(T(IL, <)¥).
Step Assume that; C T(II, <) for all j < i, we showY; C T(II, <)* by cases.
e rdy(n,,, n,;) € Cn(T(II, <Y
If r; <rj,thenn,, <n. €Y andj <iby Lemmdzp.

By the induction assumption, eitheip(n,;) € Cn(T(IL, <)") or bl(n,,) €
Cn(T(IL, <)¥). Sincecs(r;,r;), ca(ri, ;) are inT(IL, <), we have

rdy(n,,, nr;) € Cn(T(I1, M) whenever; < r; .
If r; £ r;, then—(n,, < n,;) €Y and thus
02(7”7;,7”]')-"_ s rdy(ny,, ny,) € T(II, <)Y.

Consequently, foralj € I, rdy(n,,, n,.;) € Cn(T(II, M.

e ok(n,,) € Cn(T(IL<)¥): It is obtained directly byc(r;)* = ci(r;) €
Cn(T(1,<)").

e If r; € I X, then{ap(r;), head(r;)} C Cn(T(II, <)").
By Definition|[8, body ™ (r;) C {head(r;) | r; € TnX,j < i}
or head(r;) € {head(r;) | r; € I'nX,j < i}. By the induction assumption,
body™ (r;) € Cn(T(I, <)¥). Also, r; € T X implies body ™ (r;) N X = (). Thus
body ™ (r;) NY = 0.
This means that

as(r;) = as 7“1) s ap(n,,) « ok(n,,), body™ (r;) € T(II, <)Y. (15)

(
As shown aboveok(n,.,) € Cn(T(IL, <)¥). Thereforeap(nh) € On(T(L,<)¥).
Accordingly, we obtairhead(r;) € Cn(T ( <)) due toa; ()t € T(11, <)

e If r; e I\ 'y X, bl(n,,) € Cn(T(I, <)"): We consider three possibilities.

1. body™ (r;) € X: then there is som&™ € body™ (r;) with L+ ¢ X.
Also, LT € Y. Thus,
by(ri, LT) = by(rs, LY) 1 bl(n,,) — ok(n,,) € TAL, <)Y . (16)
By ok(n,,) € Cn(T(IL, <)¥), we havebl(n,,) € Cn(T(IL, <)¥).
2. body™ (r) N {head(r;) | r; € 'nX,j < i} # 0: then there is som&~ <
body ™ (r;) with L= € {head(r;) | r; € I'nX,j < i}. Thatis,L~ = head(r;)
for somer; € I'nX with j < <. With the induction hypothesis, we then obtain
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L~ € Cn(T(II, <)"). Sinceok(n,,) € Cn(T(IL,<)"), we obtainbl(n,,) €
Cn(T(L, <)M).

3. head(r;) € {head(r;) | r; € I'nX,j < i}: this is obtained directly by the
induction assumption.

2 LetY be a consistent answer setBf (II, <) and X = Y N L. To prove thatX is a
<Y-preserving answer set f, it suffices to prove that the following two propositioftd
and P2:

P1 X is an answer set dii: that is, Cn(ITY) = X.

1. On(I1X) C X: Letr € ITs. t.body™ (r) € X andbody ™ (r) N X = ().
Thenbody™ (r) C Y andbody™ (r) NY = (). By Lemm,ok(n,.) € Y and
thusa,(r)" € T(IT, <)¥ . SinceY is closed undef (11, <), ap(n,) € Y and thus
head(r) € Y. This meansiead(r) € X.

2. X C Cn(IT*): SinceX =Y NL = (UiZOTé(HK)Y@ N £, we need only to show
by induction oni that, fori > 0,

(Thp,y» 9N L) S On(ITY). 17)

Base Itis obvious that) . _,v0 = 0.
Step Assume that[(1]7) holds far we want to prove (17) holds far+ 1.

If L e T&*&K)y@, then there is a rule € II s. t. head(r) = L, ay ()", as(r

T(1,<)" and {ap(n,),ok(n,)} U body™*(r) C Ti .<yv - This also means
body~ (r) N'Y = (). By the induction assumptiorpdy™ (r) € Cn(ITX). Together
with body ™~ (r) N X = 0, we haver € TI* and thushead(r) € Cn(I1¥). Therefore,
X = COn(I1%).

P2 X is <"-preserving: Sinc# is a standard answer setBf (I, <), there is a grounded
enumeratior{sy ) xc x Induction of'rw (i) Y". Define(r;);cr as the enumeration obtained
from (si)rex by

¢ deleting all rules apart from those of forwa(r), b1 (r, L"), ba(r, L7);

e replacing each rule of formay(r), by (r, L), ba(r, L™ ) by r;

e removing duplicat@by increasing.

forr € TandL*t € body™ (r), L~ € body ™ (r).

We justify that the sequende;);<; satisfies the conditions in Definitiph 8:

1. Since(sk)rex is grounded, Condition 1 is satisfied.

2. If r; < rj, we want to showj < i. Sincerdy(n;,n;) € Y, at least one ofiy(r;),
bi(r;, L"), ba(r;, L) appears before any ah(r;), b1 (r;, L), ba(r;, L™). Thus,
7 <.

3. Letr; < 7" ands’ € I\ I'yX. Suppose thabody™ (r) € X and head(r) ¢
{head(ry) | k < i}. Sincebody™ (r) N X # 0, there is somd.~ € body ™ (r)
s.t.L~ € X. ThenL™ € Y. Without loss of generality, let.~ is included inY’
through rulesy,. Furthermore, we can assume that there ig¢'na ko such thats;

)he

9 Duplicates can only occur if a rule is blocked in multiple ways.



34 Torsten Schaub and Kewen Wang

is beforesy,, head(sy) € body™ (r) andhead(sy) € X. Sinceok(r;) € Y, we
haverdy(n;, n, ). This implies,bl(n,/) € Y andby(r;, L~) appears before,(r) in
(sk)rer- Thus,L~ € {head(ry) | k < i}. |

Proof[I7 See the proof of Theorem[19. [
Proof(1§ Similarto Proof8. [

Proof[19

Throughout the proofs for Theorgm]19, the &&tfor anyi > 0 is defined as in Defini-
tion@. By the definition o€ x (I, <), we observe the following facts:

F1 X is a standard answer set(@1, <) iff X is a standard answer set&f (II, <).

F2 X is a <B-preserving answer set ¢fl, <) iff X is a <®-preserving answer set of
Ex (H, <).

F3 X is a standard answer setBf (11, <) iff X is a standard answer setBfEx (11, <)).

Having the above facts, we can assume tlibt<) = Ex(II, <). Thus, we need only to
prove the following Lemmp 7.10 and Lemfna 7.14. [

Given a statically ordered logic prografiil, <) and a setX of literals, set X; =
(T®); () fori > 0.

Lemma 7.10
Let (II, <) be a statically ordered logic program ov&iand letX be an answer set df.
Then, the following propositions are equivalent.

I,<),X

1. X is aB-preferred answer set ¢fI, <);
2. C/ (X) = X.

(Ix,<x)
To prove Lemma@ 7.30, some preparations are in order.

Definition 18
Let(II, <) = (r1,r9,...,r,) be atotally ordered logic program, whete ; < r; for each
1, and letX be a set of literals.

We define

Xo = 0 and fori > 0
(1) 741 is active wrt(X, X) and
(2) thereisnorule’ € ITwith r;q <o’
X1 = XZ U head(riﬂ) such that
(a) ' is active wrt(X, X;) and
(b) head(r') & X

Uiso Xi if U;»( Xi is consistent. Otherwis@y;, <) (X) = Lit.

Then,D(H,<)(X)

If we want to stress thak; is for ordering<, we will also write it asf(f. We assume the
same notation foiX;.

Lemma 7.11
Let (II, <) be an ordered logic progranX; for i > 0 is given as above anil is
prerequisite-free. TheX; = X, for some non-decreasing sequengg };>o with

0<k < <k <.
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Proof[7.11

Without loss of generality, assume thég = --- = X, X, 41 = -+ = X,, .... Then
by a simple induction o, we can directly prove that

XO:XO»Xl:Xlirla--'»Xi:inJrlw--- ]

Lemma 7.12
The conclusion of Lemma 7.]10 is correct for ordered logic progfam<) if II is
prerequisite-free and is total.

Proof[7.12

Sincell is prerequisite-free, we have tHat = II. By Lemmg 7.1]L, it is enough to prove
thatX = UX; iff X = UX; (see Definitio@). For simplicity, we say a rulés applicable
wrt (X, X;) (only in this proof) ifr satisfies the conditions in the definition &t ; .

if part If X = UX;, we want to prove thak = UX;. It suffices to show thak; = X;
hold for allz > 0. We use induction on > 0:

Base X, = X, = 0.
Step Assume thafX;_; = X;_, we need to show that; = X;.

1. Xi C X;:

If X; = X,_1, the inclusion follows from the induction assumption;
If X; # X;_1, thenr; is applicable wr{ X, X; ;).
Thus,r; is not defeated byX' by Definition[18§.

2. X; C X;:If X; = X,_1, the inclusion follows from the induction assumption; Let
X; # X,;_1, thatis,head(r;) € X;. Then we can assert thatad(r;) € X;.
Otherwise, if head(r;) ¢ X;, there will be two possible cases becad$es
prerequisite-free:

e 7; is not active wrt(X, X): then there exists a literédl€ body~(r;) such that
[ € X. On the other hand, sindecad(r;) € X;, r; is not defeated by, _; =
X,_1, so we havd ¢ X;_;. This implies that there exists < 4 such that
I € X;\ X;_1. Thus,l = head(r;) andr; < r;. Notice thatr; is active wrt
(X, X;_1) = (X, X;_1) andhead(r;) ¢ X, thusr; is active wrt(X, X; ;) and
head(r;) € X;_1. Thisimplies that; is a preventer of,. Thereforehead(r;) ¢
X; and so byX = UX;, head(r;) ¢ X, contradiction.

e There is a rule’ € II with »; < »’ such that’ is active wrt(X, X; ;) and
head(r") ¢ X. Since there are only a finite number of ruleslInwhich are
preferred over;, so this case is impossible.

Combining the two cases, we ha¥g,; C X;,;. Thus,X; = X, foralli > 0.
only-if part Suppose thak = UX; andX is an answer set dfl, we want to prove that
X = UXi :

1. We proveX; C X by using induction or.
Base X, =0 C X.
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Step Assume that\; C X. If head(r;11) € X;11, thenr;,, is not defeated byx
and thus not defeated by;. Thushead(r; 1) € X;41.

2. X C UX;:itis sufficient to show thak’; C X; by using induction ori.

Base X, = () = X,.

Step Assume thatX;, C X, for k < 4, then we claim thatX; = X;. On the
contrary, assume thatead(r; 1) € X;11 \ Xi11. FromX = UX;, we have
head(r;+1) € X. Notice thatX is an answer set dfl, so we can further assume
thatr, , is active wrt(X, X). Therefore head(r; 1) ¢ X1 implies that there
is a numbert < i such that, is active wrt(X, X;) but head(r;) ¢ X;. Thus,
ry IS active wrt(X, X;_1) by induction. This forcedead(r;) € X andr, is not
active wrt(X, X), contradiction. [

Lemma 7.13

The conclusion of Lemmf 7.]10 is correct for ordered logic progfam<) if II is
prerequisite-free anet is a partial ordering.

Proof[7.13

if part Suppose thak is an answer set dfl andX = UX~.
Let <, be any total ordering oH satisfying the following three conditions:
1. Ifr < 7' thenr <; r’; and
2. If r ands’ are unrelated wrk two rules and they are applied in produciig and
X respectively{ < j), themr’ <, r.
3. If

e ris active wrt(X, X) and
e 7' is active wrt(X, X;) with head(r') ¢ X; for somei and
e 7 andr’ are unrelated wr,

thenr’ <; r.

Notice that the above total orderirg exists. We want to prove thaf = UX~*. By the
condition (3) above, there will be no new prevente(lf <;) for any ruler though there
may be more rules that are preferred thaiThus,UX;~* = UX~. Thatis, X = UX".
Since <, is a total ordering,X = UX,~'. Therefore,X is a BE-preferred answer set
of(I1, <).

only-if part Suppose thak is a BE-preferred answer set @i, <), then there is a total
ordering<; such thatY = UX;~*. By Lemmg 15X = UX;~*. We want to prove that
UX,~* = UX": On the contrary, assume that this is not true. Théfi~* c UX . That
is, there is a rule: € II such thathead(r) ¢ UX;~* = X butr is active wrt(X, X). On
the other hand, sinc& is an answer set dfl, head(r) € X, contradiction. Therefore,
X=UXs. O
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Proof[7.10

If IT is transformed int&x (II), thenIl may be performed two kinds of transformations:

1. Deleting every rule having prerequisitsuch that € X: this kind of rule can be
neither active wrt X, X') nor a preventer of another rule because it is not active wrt
(X, X;) foranyi > 0.

2. Removing from each remaining ruleall prerequisites.

Suppose that is changed inte’ by this transformation. Then

e ris active wrt(X, X) iff 7/ is active wrt(X, X);
e ris a preventer iffIl, <) iff »’ is a preventer i€y (II), <).

By Lemmg 7.1B, Lemm@a 7.10 is proven. [J

Lemma 7.14

Let (I, <) be a statically ordered logic program ovemand letX be an answer set af.
Then X satisfies the Brewka/Eiter criterion fof (or equivalently for€x (IT)) according
to (Brewka and Eiter 1999) if and only X is a <g-preserving answer set of.

To prove this theorem, the following result given|in (Brewka and Eiter 1999) is required.

Lemma 7.15

Let (II, <) be a statically ordered logic program ov&iand letX be an answer set df.
ThenX is aB-preferred answer set if and only if, for each rule 1T with body ™ (r) C X
andhead(r) ¢ X, thereis arule’ € 'y X such that < r’ andhead(r’) € body~(r).

Proof[7.14

if part Let X be a<g-preserving answer set of.

Assume thatX is not aB-preferred answer set, by Lemrpa .15, then there is a rule
r € II such that the followings hold:

1. body™(r) C X;

2. head(r) ¢ X and

3. Forany rule’ € T X with r < 1/, head(r’) does not defeat.

Then,head(r') & body~ (r). Thusr’ € I\ I'y X . This contradict to the Condition 2 in
Definition[I§. ThereforeX is aB-preferred answer set ®f.

only-if part Suppose thak is aB-preferred answer set &f. ThenX is also aB-preferred

answer set ofIl, <’) where<’ is a total ordering and compatible with. Notice that

the ordering<’ actually determines an enumeratipn);c; of I'n.X such that-; <’ r; if

Jj < 1. Thus, this enumeration @f; X obviously satisfies the condition 1 in Definitipn] 15.
We prove the Condition 2 is also be satisfied. tek ' andr’ € I \ T'y X. Suppose

thatbody ™ (1) C X andhead(r') ¢ X. By Lemmg7.1p, there is a rulg € I' X such

thatr’ < r; andhead(r;) € body~ (r'). Thus, the Condition 2 is satisfied. [
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Proof[20

Under the assumption of the theorem, we can see?f(lﬁpg))YX =Tw

7 (<), y X for any
setsX andY of literals, which implieffHK)(X) = C' _,(X) for any setX of literals.

(I1,<)
Thus, the conclusion is obtained by Theoferh 14. (J

Proof(2]

By comparing Condition 1I(b) in Definitiop|1 arid 6, we get
ThoyX S (T marX.

This meang’y; _, (X) C Car <) (X). If X is aD-preferred answer set 6fL, <), it follows
from Theore A thad?fHK)(X) = X. Thus, X C C(r1,<)(X). On the other hand, since
aD-preferred answer set is also a standard answer set, weCiavg(X) C CpnX = X.
Therefore,X = C1,<)(X). O

Proof[22

By comparing Condition | in Definitiop|1 arjd [L3, we get
(7)< v X CTh o)y X.

This mean<(y, ) (X) € Cfy ) (X). If X is aw-preferred answer set ¢fl, <), then
X = Car,<)(X). Thus, X C C(BHK)(X). On the other hand, sincE is also a standard
answer set, we ha\@E‘HK)(X) C CnX = X. Therefore,X = C1,«)(X). O

Proof[23 It follows directly from Theoreri 21 arjd 2. [J

Proof[24

By Theoren{ 1B, the ordered progrdii, <) has the unique-preferred answer set*.
Since< C <, X~ is also ap-preferred answer set ¢fl, <). On the other hand, each
stratified logic program has the unique answer set (the perfect moded)§{&l) = { X*}.
By Theorenj 2B, we arrive at the conclusion of Theofen 24.[]J
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