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Abstract. Answer Set Programming (ASP) allows us to address knowledge-intensive
search and optimization problems in a declarative way due to its integrated modeling,
grounding, and solving workflow. A problem is modeled using a rule based language and
then grounded and solved. Solving results in a set of stable models that correspond to
solutions of the modeled problem. In this thesis, we present the design and implementation
of the clingo system—perhaps, the most widely used ASP system. It features a rich modeling
language originating from the field of knowledge representation and reasoning, efficient
grounding algorithms based on database evaluation techniques, and high performance solving
algorithms based on Boolean satisfiability (SAT) solving technology. The contributions of
this thesis lie in the design of the modeling language, the design and implementation of the
grounding algorithms, and the design and implementation of an Application Programmable
Interface (API) facilitating the use of ASP in real world applications and the implementation
of complex forms of reasoning beyond the traditional ASP workflow.

To succinctly model a wide range of problems, clingo supports a rich input language
featuring object variables, function symbols, integer arithmetics, aggregate expressions,
and further language constructs to support advanced forms of reasoning. Given a problem
modeled in this language, the process of grounding involves replacing all object variables
with variable-free terms. Formally, this process results in infinitely many rules and even
nested infinite expressions in case of aggregates. Yet, in practice, grounding algorithms yield
a finite set of rules consisting of finite subexpressions only that have the same stable models
as the semantic representation. We present and prove the correctness of the grounding
algorithms employed by the clingo system. After grounding, rules are passed to the solving
component. For this purpose, clingo incorporates the clasp solver developed by our research
group.

Despite ASP’s versatility, there are problems that are difficult to map to its standard
ground and solve workflow. Therefore, we extend the clingo system with a multi-shot
solving mode to model flexible reasoning processes and theory reasoning capabilities to
handle non-Boolean constraints. Multi-shot solving and theory reasoning are realized via
clingo’s API and dedicated language extensions. We show how to apply both approaches to
solve temporal problems requiring multiple ground and solve calls, and scheduling problems
with constraints over integer variables with large domains.
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CHAPTER 1

Introduction

Answer Set Programming (ASP) is a popular approach to solve knowledge-intensive
search and optimization problems in a declarative way [13,79]. It rests on strong logic
foundations as it closely relates to a non-monotonic variant of the logic of here-and-
there [125]. Relations to neighboring fields have been intensively studied, for example,
ASP can be seen as a fragment of default logic or or as an alternative semantics to Prolog
that elegantly captures negation as failure [18,95]. These roots make ASP applicable
to a wide range of reasoning tasks including tasks involving incomplete information.
It features a simple yet powerful rule-based language that can express all problems
up to the second level of the polynomial hierarchy. The language allows us to write
uniform problem specifications that can be used to solve specific problem instances.
Even complex problems can typically be modeled with a small number of generic rules.
Another important aspect of ASP is it’s elaboration tolerance. It is often possible to
add new rules to a problem specification or modify a few of them to adapt to changing
requirements throughout the development of an application. Both problem specification
and instance can then be solved by high performance ASP systems. There are numerous
applications in various domains that have successfully applied ASP. This includes, for
example, systems biology [108], planning [83], package configuration [87], a NASA space
shuttle controller [122], or scheduling at the Swiss railway company [1].

The ASP solving process can be summarized by the steps depicted in Figure 1.0.1.
First, a problem is modeled in form of a logic program. The difference to traditional
programming is that we do not write an algorithm to solve a problem but specify how
solutions to a problem should look like. We then pass this program to an ASP solver.
In the following, we use the clingo solver, which is the main subject of this thesis. The
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Figure 1.0.2. Towers of Hanoi instance with 4 discs and 3 pegs

#const m=4.
#const n=2**m-1.

time(1..n).
peg(a;b;c).
disc(1..m).
init(1..m,a).
goal(1..m,c).
(a) Clingo program.

time(t). for 1 ≤ t ≤ 15
peg(p). for p ∈ {a, b, c}
disc(d). for 1 ≤ d ≤ 4
init(d,a). for 1 ≤ d ≤ 4
goal(d,c). for 1 ≤ d ≤ 4
(b) Grounded clingo program.

Listing 1.0.1. Facts for ToH instance in Figure 1.0.2

grounding component of the solver instantiates the logic program by substituting all
object variables in it with ground terms. We obtain a ground logic program that is passed
to the solving component of clingo. The solver then reports stable models, each of which
represents one solution to the original problem. Notably, the solver is complete—it can
find all solutions to a problem.

We explain ASP’s declarative solving approach on the Towers of Hanoi (ToH) puzzle.
The goal of this puzzle is to move discs between pegs from an initial to a goal configuration.
All discs have different sizes and can be moved between pegs subject to the following
conditions: only one disc can be moved at a time, only the top-most disc on a peg can
be moved, and a disc cannot be put on a smaller disc. The classical ToH problem has
three pegs and n discs, which initially are on the first peg stacked in order of decreasing
size and have to be moved to the third peg. In the following, we develop a logic program
that captures solutions to the ToH puzzle for an arbitrary initial and goal configuration
up to a fixed predefined number of steps.

First, we represent an instance of the ToH puzzle by a set of facts. We consider
a puzzle with three pegs labeled a to c and four discs labeled 1 to 4 as depicted in
Figure 1.0.2. The four pegs are initially on peg a and in the goal situation have to be on
peg c. The size of a disc is determined by its label; smaller discs are labeled with smaller
numbers. The corresponding logic program is given in Listing 1.0.1a together with its
grounding in Listing 1.0.1b.

The first two lines define the two constants m and n where m is the number of discs
set to 4 and n is the maximum number of moves that can be used to solve the puzzle set
to 2m− 1 = 15. Both constants are used throughout the program. The remaining lines in
the program define facts over the predicates time, peg, disc, init, and goal.
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1 % establish initial situation
2 on(D,P,0) :- init(D,P).
3

4 % choose discs to move
5 { move(D,P,Q,T) } :- on(D,P,T-1), peg(Q), P!=Q, time(T).
6

7 % there must be at most one move per time step.
8 :- time(T), #count { D,P,Q: move(D,P,Q,T) } > 1.
9 % only the topmost disc can be moved

10 :- move(D,P,_,T), on(E,P,T-1), D>E.
11 % a disc can only be put on larger discs
12 :- move(D,_,Q,T), on(E,Q,T-1), D>E.
13

14 % effects: change the location of the moved disc
15 on(D,Q,T) :- move(D,_,Q,T).
16 % inertia: discs stay in place by default
17 on(D,P,T) :- on(D,P,T-1), not -on(D,P,T), time(T).
18 % uniqueness of location: a disc can only be on one peg
19 -on(D,Q,T) :- on(D,P,T), peg(Q), P!=Q.
20

21 % ensure that the goal was reached
22 :- time(T), not time(T+1), goal(D,P), not on(D,P,T).
23

24 % restrict output to moves
25 #show move/4.

Listing 1.0.2. Encoding for ToH problem

We first define facts over predicate time using the constant n. The rule uses the
range term 1..n as argument of time, which is expanded by the grounding component
to the facts ‘time(t).’ for 1 ≤ t ≤ 15. The purpose of the time predicate is to specify
time steps at which discs can be moved. The next line defines the available pegs. In
the definition, we use the pool term a;b;c, which is expanded to the facts ‘peg(p).’
for p ∈ {a, b, c}. The available discs over predicate disc are then defined using a range
term as for the time steps. Finally, the init and goal predicates describe the location of
the discs at the initial and goal situation. Since we are only interested in configurations
where smaller discs are stacked on larger ones, we leave the ordering implicit and only
specify which disc is on which peg. Hence, the first argument of predicates init and
goal specifies the disc and the second argument the peg. We do not detail the topic
here further but this representation is actually advantageous for solving. In fact, in
practice, the representation plays an important factor how well a program scales to solve
challenging instances.

With the instance at hand, we turn to the specification of the ToH puzzle as a logic
program; we also refer to this program as the encoding. The full encoding is given in
Listing 1.0.2. In the encoding, we use the predicate on to capture the location of a disc
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at a given time point; its first argument is the disc, the second the peg, and the third the
time point. Similarly, we use predicate move to describe moves of a disc from one peg to
another at a given time point; its first argument is the disc to be moved, the second the
peg it is moved from, the third the peg it is moved to, and the fourth the time point.

In Line 2, we establish the initial situation at time point 0. The rule can be read as
follows: for all possible ground terms for d and p, derive atom on(d,p,0) in the head
of the rule whenever the atom init(d,p) in the body of the rule is true. When the
grounder instantiates this rule for the above problem instance, it actually only produces
rule instances with values for d and p where there are matching facts over init. We
discuss this process in Section 3.2.

Next, in Line 5, we generate candidate discs to move using a choice rule as indicated
by the rule head surrounded by curly braces. The solver is free to choose such rule heads
whenever all elements of the rule body are true. Any disc on any peg at a previous time
point is a candidate to be moved to a different peg at the current time point. Note
that no move is generated at the initial time point because atoms on(D,P,-1) can never
become true. Following the generate-define-test approach [115], these candidates include
invalid moves; we discard such invalid moves using integrity constraints in the follow up
part of the encoding. An integrity constraint discards a solution whenever all elements of
its rule body are true. The integrity constraint in Line 8 ensures that there is at most one
move per time step. Here we use a #count aggregate to count the number of candidate
moves per time step. Whenever this count is larger than 1, the solution is discarded.
The following two integrity constraints discard moves where either the disc is blocked by
another disc or the target peg contains a smaller disc.

At this point, we have ensured that any move leads to a valid configuration but we
have not yet encoded how to transition from one time point to the next. To do this, we
specify the effect of a move in Line 15. The rule states that the new location of a disc
subject to a move is the target peg. The following two rules are more interesting and
showcase the roles of default negation (not) and classical negation (-) in ASP. The rule
in Line 17 asserts that by default the location of a disc does not change. The interesting
part is the body literal not -on(D,P,T+1), which is true unless it has been explicitly
derived that disc D is not on peg D, that is, -on(D,P,T+1) is true. For this to work,
the next rule derives classically false atoms over on asserting that a disc has a unique
location, that is, a disc cannot be on a peg if it is already on some other peg.

Finally, we ensure, in Line 22, that the goal situation has been reached at the last
time point and, in Line 25, that the output of the solver is restricted to atoms over
predicate move. We depict the output when passing the above instance and encoding
to clingo in Listing 1.0.3. By additionally passing argument 0 on the command line, we
instruct the solver to enumerate all solutions to the problem. The solver reports exactly
one solution consisting of 15 moves that lead from the initial to the goal situation.

1.1 Selected contributions

In the following, we summarize my contributions along the aforementioned model-
ground-solve workflow of ASP and give abstracts of the papers included in this thesis. We
begin with an overview article of the systems I have contributed to (see Section 1.1.1) and
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1 $ clingo instance.lp encoding.lp 0
2 clingo version 5.5.2
3 Reading from instance.lp ...
4 Solving...
5 Answer: 1
6 move(1,a,b,1) move(2,a,c,2) move(3,a,b,4) move(1,b,c,3)
7 move(1,c,a,5) move(2,c,b,6) move(1,a,b,7) move(4,a,c,8)
8 move(1,b,c,9) move(2,b,a,10) move(1,c,a,11) move(3,b,c,12)
9 move(1,a,b,13) move(2,a,c,14) move(1,b,c,15)

10 SATISFIABLE
11

12 Models : 1
13 Calls : 1
14 Time : 0.02s (Solving: 0.01s 1st Model: 0.01s Unsat: 0.00s)
15 CPU Time: 0.02s

Listing 1.0.3. Clingo output for example ToH problem

then turn to two foundational articles regarding grounding (see Section 1.1.2) and multi-
shot solving (see Section 1.1.3). The third paper introduces theory solving, providing
the means to extend ASP with foreign inferences (see Section 1.1.4). The final two
papers show successful ASP-based systems. We present systems to extend ASP with
integer constraints (see Section 1.1.6) using theory solving and temporal operators (see
Section 1.1.5) relying on multi-shot solving.

1.1.1 Potassco: the Potsdam answer set solving collection. The paper pro-
vides an overview over the core systems for ASP solving developed within the Potassco
project at the University of Potsdam. The two central components of the project are
the grounder gringo and the (propositional) solver clasp. Relying on these systems,
clingo, iclingo, claspD, and claspar offer extended functionality. The clingo system is
the monolithic combination of clasp and gringo providing the user with the convenience
of not having to deal with two different programs. The iclingo system extends clingo
with an incremental grounding and solving mode, which can for example be used to solve
planning problems. The claspD solver adds support for disjunctive logic programs to
clasp allowing the user to solve problems on the second level of the polynomial hierarchy.
Finally, there is the claspar system, which was the first ASP system to enable parallel
CDNL-based ASP solving on clusters of computers.

We published the paper in 2011. It provides an overview over the systems developed
in our group and with more than 500 citations is one of our most cited papers. My
contributions to the paper lie in the design and implementation of the gringo, clingo,
iclingo, and claspar systems as well as the design of the input languages of both gringo
and iclingo. The gringo and clasp systems provide the foundations for many advanced
systems developed by our group [12,22,100,102,104] and others [9,11,26,52,53,127,
130,138,143]. The claspar system can be seen as a predecessor to the multi-threaded
clasp system, which offers similar functionality for the nowadays ubiquitous multi-core
architecture. The functionalities of clasp, gringo, and iclingo have meanwhile been
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combined and extended resulting in the clingo-5 system, which we discuss in detail in
this thesis. We include the paper in Section 2.1 and discuss the historical development of
clingo’s input language in Section 3.1.

1.1.2 On the foundations of grounding in answer set programming. The
paper provides the theoretical foundations of grounding algorithms. Building on the
semantics of gringo’s modeling language defined in [69] and the operator based character-
ization of stable and well-founded models in [139], we introduce a formal characterization
of grounding algorithms in terms of (fixed point) operators. A major role is played by
dedicated well-founded operators whose associated models provide semantic guidance
for delineating the result of grounding along with on-the-fly simplifications. We address
an expressive class of logic programs that incorporates recursive aggregates and thus
amounts to the scope of existing ASP modeling languages. This is accompanied with a
plain algorithmic framework detailing the grounding of recursive aggregates. The given
algorithms correspond essentially to the ones used in the ASP grounder gringo.

We published this paper in 2022. Here, I provide a detailed description of the
grounding algorithms used in the gringo system. While semi-naive based grounding
algorithms were first implemented in dlv, this is the first paper that provides a tight
characterization of the output of such an (optimized) algorithm and a full proof for its
soundness. Notably, we rely on advanced concepts like infinitary formulas to capture
aggregate expressions. We include the paper in Section 2.2 and discuss the grounding
algorithms in Section 3.2.

1.1.3 Multi-shot ASP solving with clingo. This paper introduces a flexible
paradigm of grounding and solving in ASP, which we refer to as multi-shot ASP solving,
and present its implementation in the ASP system clingo (version 4). Multi-shot ASP
solving features grounding and solving processes that deal with continuously changing
logic programs. In doing so, they remain operative and accommodate changes in a
seamless way. For instance, such processes allow for advanced forms of search, as in
optimization or theory solving, or interaction with an environment, as in robotics or
query answering. Common to them is that the problem specification evolves during the
reasoning process, either because data or constraints are added, deleted, or replaced. This
evolutionary aspect adds another dimension to ASP since it brings about state changing
operations. We address this issue by providing an operational semantics that characterizes
grounding and solving processes in multi-shot ASP solving. This characterization provides
a semantic account of grounder and solver states along with the operations manipulating
them. The operative nature of multi-shot solving avoids redundancies in relaunching
grounder and solver programs and benefits from the solver’s learning capacities. Clingo
accomplishes this by complementing ASP’s declarative input language with control
capacities. On the declarative side, a new directive allows for structuring logic programs
into named and parametrizable subprograms. The grounding and integration of these
subprograms into the solving process is completely modular and fully controllable from
the procedural side. To this end, clingo offers a new Application Programming Interface
(API) that is conveniently accessible via external languages. By strictly separating logic
and control, clingo also abolishes the need for dedicated systems for incremental and
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reactive reasoning, like iclingo and oclingo, respectively, and its flexibility goes well
beyond the advanced yet still rigid solving processes of the latter.

We published this paper in 2019. My contributions are the design and implementation
of the application programmable interface (API) of the clingo system and its experimental
evaluation. The clingo API comprises more than 200 functions and is available for C,
C++, Lua and Python. The development includes both the grounding and solving aspect
of ASP. While the grounder is solely implemented by me, the solving functionality relies
on the infrastructure provided by the clasp system. We include the paper in Section 2.3
and discuss multi-shot solving in Section 3.3.

1.1.4 How to build your own ASP-based system. This paper provides a
tutorial on how to use clingo (version 5) to build customized ASP-based systems. More
precisely, we show how the ASP system clingo can be used for extending ASP and
for implementing customized special-purpose systems. To this end, we propose two
alternatives. We begin with a traditional AI technique and show how metaprogramming
can be used for extending ASP. This is a rather light approach that relies on clingo’s
reification feature to use ASP itself for expressing new functionalities. The second part
of this tutorial uses traditional programming (in Python) for manipulating clingo via its
API. This approach allows for changing and controlling the entire model-ground-solve
workflow of ASP. Central to this is clingo’s new Application class that allows us to
draw on clingo’s infrastructure by customizing processes similar to the one in clingo.
For instance, we may apply manipulations to programs’ abstract syntax trees, control
various forms of multi-shot solving, and set up theory propagators for foreign inferences.
A cross-sectional structure, spanning meta as well as application programming, is clingo’s
intermediate format, aspif, that specifies the interface among the underlying grounder
and solver. We illustrate the aforementioned concepts and techniques throughout this
tutorial by means of examples and several non-trivial case-studies. In particular, we
show how clingo can be extended by difference constraints and how guess-and-check
programming can be implemented with both meta and application programming.

We published this paper in 2020. My contributions lie in both providing the infras-
tructure to build applications as well as building applications on top of clingo. This
includes the development of the reification output and basic metaencodings as well as
the interfaces for multi-shot and theory solving. I contributed to all applications relying
on the clingo API presented in the paper. This includes extending ASP with difference
constraints and solving second level problems using a guess and check approach. We
include the paper in Section 2.4 and discuss the paper in Sections 3.4 and 3.5.

1.1.5 Temporal answer set programming on finite traces. In this paper, we
introduce an alternative approach to Temporal Answer Set Programming that relies on a
variation of Temporal Equilibrium Logic (TEL) for finite traces. This approach allows us
to even out the expressiveness of TEL over infinite traces with the computational capacity
of multi-shot ASP solving. Also, we argue that finite traces are more natural when
reasoning about action and change. As a result, our approach is readily implementable
via multi-shot ASP systems and benefits from an extension of ASP’s full-fledged input
language with temporal operators. This includes future as well as past operators whose
combination offers a rich temporal modeling language. For computation, we identify the
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class of temporal logic programs and prove that it constitutes a normal form for our
approach. Finally, we outline two implementations, a generic one and an extension of
the ASP system clingo.

We published this paper in 2018. My contributions lie in the design and implemen-
tation of the two systems tel and telingo developed in this paper as well as work on
the normal form for temporal programs. Notably, the telingo system gave rise to the
design and implementation of the API to modify the abstract syntax tree of clingo’s
input. We include the paper in Section 2.5 and discuss the basic telingo implementation
in Section 3.4.

1.1.6 Clingo goes linear constraints over reals and integers. While we can
use ASP to solve a wide range of knowledge-intensive combinatorial search problems, it
falls short in handling non-Boolean constraints like linear constraints over integers. Such
kind of constraints play an important role in solving industrial problems like, for example,
train scheduling at the Swiss railway company [1]. In the paper, we instantiate clingo’s
theory reasoning framework with different forms of linear constraints and elaborate upon
its formal properties. We discuss three different implementations, and present techniques
for using these constraints in a reactive context. More precisely, we introduce extensions
to clingo with difference and linear constraints over integers and reals, respectively, and
realize them in complementary ways. Finally, we empirically evaluate the resulting
clingo derivatives clingcon, clingo[dl], and clingo[lp] on common language fragments and
contrast them to related ASP systems.

We published this paper in 2017. My contributions lie in the design and implementa-
tion of the API to create the systems based on clingo. In particular, the applications
in this paper drove the development of its theory propagation related functionality.
Furthermore, I refined both the Python and C++ implementation of clingo[dl]. Notably,
the C++ variant of clingo[dl] performed best in the benchmarks presented in this paper.
We include the paper in Section 2.6 and discuss the basic clingo[dl] implementation in
Section 3.5.

1.2 Overall contributions

I contributed to the following papers loosely grouped by topics: the ASP input
language [31,69], grounding [84,86,89], solving [56,77,78,82], multi-shot solving [67,
68,73,75,80,83,109], theory solving [27–29,61,76,104], portfolio solving [81,100,101],
systems biology [108,126], package configuration [87,129], advanced modeling [70,71,
85,88], and overview articles [72,74].

Furthermore, clingo is one of the most widely used systems for ASP solving. This
can be seen in the number of researchers citing our work. For example, clingo is used in
many systems [9,11,26,52,54,127,130,138] and applications [4,16,20,21,38,42,49,
58,59,66,103,118,120,131,133,145] by third parties worldwide.
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CHAPTER 3

Discussion

3.1 The clingo language

One of the most important aspects of ASP is its high-level input language that
allows for modeling combinatorial problems in an easy and succinct way. Historically,
there are the input languages of the lparse [135] and dlv-1 [113] systems. The lparse
system was the first ASP grounder followed by the grounder of the dlv-1 system.1 Below
we list the main features and differences of the two systems focussing on their input
languages. Both systems support rules build from atoms over object variables and
constants but differ regarding extended language features and accepted input. The lparse
input language supports both symbolic and interpreted functions providing a natural
way to model many problems. The dlv-1 system does not support symbolic functions
and instead of providing interpreted functions, requires the user to use inbuilt predicates
that only support non-negative integers and additionally require a maximum value for
their domain. Furthermore, both lparse and dlv-1 require variables in rules to be bound
by some positive body literal. In dlv-1, any positive body literal can bind a variable. In
lparse, only omega-restricted [136] positive body literals can bind variables restricting
the class of programs accepted by lparse as compared to dlv-1. Another important
language element of ASP are aggregate expressions to conveniently and compactly model
properties involving sets of atoms. The lparse system supports choice rules, cardinality
constraints, and weight constraints. Recursion through aggregates is supported even
though there are counterintuitive cases for non-monotone aggregates [64]. The dlv-1
system supports #count, #sum, and #min and #max aggregates. The #count and #sum
aggregates correspond roughly to cardinality and weight constraints. Unlike lparse, dlv-1
only supports stratified aggregates.

Section 2.1 comprises the work in [74] introducing the open source project potassco,
the Potsdam Answer Set Solving Collection bundling tools for ASP developed at the
University of Potsdam. These tools include the grounder gringo and solver clasp that
are nowadays combined in the ASP system clingo providing many advanced features like
multi-shot or theory solving, which we discuss in Sections 3.3 to 3.5. For this reason, we
only consider the clingo language in this section, which some of our earlier publications
also refer to as gringo language. We begin by briefly describing the evolution of the
language from clingo series 3 to 5. In [74], we give an overview of the main features of
the clingo-3 input language. This version of the language combines the main features
of the lparse and dlv-1 input languages. Its syntax for aggregates follows that of lparse
and is incompatible with dlv-1. In version 4 of the language, we aligned the aggregate

1Meanwhile the dlv-2 system supersedes dlv-1 featuring an extended input language.

11
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syntax of clingo with that of dlv-1. Starting with clingo-4 and dlv-2, both systems accept
a common syntax as defined in the ASP-Core-2 standard that has been used in ASP
competitions [5,32,92,93] to evaluate the performance of ASP solvers. However, the
clingo-4 language is a superset of the ASP-Core-2 standard. In [69], we refine and
formally define the semantics of the clingo-4 language. The refinements concern features
beyond ASP-Core-2, like the semantics of pools, undefined arithmetic, and recursive
aggregates, and are implemented in the clingo-5 system.

3.1.1 Background. In the following, we do not consider the full clingo-5 input
language. Instead, we introduce a rather simple class of logic programs and define its
semantics. Note, however, that this class is powerful enough to model NP-complete
problems [119]. We use this class of programs throughout this chapter to show important
aspects of the clingo system.

We consider a signature Σ = (C,P,V) of finite disjoint sets of constant, predicate,
and variable symbols. Predicate symbols are associated with non-negative integer arities.
In the following, we use a finite subset of the non-negative integers as constant symbols,
lower case strings for predicate symbols, and upper case strings for variable symbols. We
also drop the term ‘symbol’ and speak of constants, predicates, and variables.

An atom over signature Σ has form p(t1, . . . , tn) where p ∈ P is a predicate with arity
n and each ti ∈ C ∪ V is either a constant or variable. Given an atom a over signature Σ,
a literal over Σ is either the atom itself or its negation ¬a. A literal without negation is
called positive, and negative otherwise.

A rule over signature Σ has form h← B where h is an atom over Σ and B is a finite
set of literals over Σ. We refer to h as the head, B the body, and the literals in B as
the body literals of r. A program over signature Σ is a finite set of rules over Σ. In the
following, we omit braces around sets and write h← l1, . . . , ln instead of h← {l1, . . . , ln}
when explicitly writing the literals li, and only write the rule head when the body is
empty.

We say that an atom, literal, rule, or program is ground if it does not contain
any variables. We use H(h ← B) = h and B(h ← B) = B to obtain the head
and body of a rule, respectively. We extend both functions to programs by letting
H(P ) = {H(r) | r ∈ P} and B(P ) =

⋃
r∈P B(r). Given a set of literals L, the

sets L+ = {l ∈ L | l is an atom} and L− = {a | ¬a ∈ L} comprise all atoms occurring
positively and negatively in L, respectively; to refer to all atoms in L, we use L± = L+∪L−.
Furthermore, we let A(P ) = H(P ) ∪ B(P )± stand for the set of all atoms occurring
in a program P . Finally, we use pred(p(t1, . . . , tn)) = p to refer to the predicate of
atom p(t1, . . . , tn) and pred(A) = {pred(a) | a ∈ A} to refer to the predicates occurring
in a set A of atoms.

Example 3.1.1. As an example, we consider a simplified version of the introductory
example in Listings 1.0.1 and 1.0.2. Since we use this example throughout the following
sections, we abbreviate predicates to keep listings and figures compact. We use predicates
e (equal), ne (notequal), o (on), no (noton), m (move), nm (notmove), and f (fail).
For our instance and encoding, we use a signature with the symbols

• P = {step, peg, disc, init, e, ne, o, no, m, nm, f },
• V = {P, P ′, D, T, T ′}, and
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step(0, 1) step(1, 2)
peg(1) peg(2)

disc(1) disc(2)
init(1, 1) init(2, 1)

Listing 3.1.1. Simplified ToH instance

e(P, P )← peg(P )(r1)
ne(P ′, P )← peg(P ′), peg(P ),¬e(P ′, P )(r2)
o(D, P, 0)← init(D, P )(r3)

m(D, P, T )← ¬nm(D, P, T ), o(D, P ′, T ′), ne(P ′, P ), step(T ′, T )(r4)
nm(D, P, T )← ¬m(D, P, T ), o(D, P ′, T ′), ne(P ′, P ), step(T ′, T )(r5)

o(D, P, T )← m(D, P, T )(r6)
o(D, P, T )← o(D, P, T ′),¬no(D, P, T ), step(T ′, T )(r7)

no(D, P, T )← o(D, P ′, T ), ne(P ′, P )(r8)
f ← ¬f , o(D, P, T ), no(D, P, T )(r9)

Listing 3.1.2. Simplified ToH encoding

• C = {0, 1, 2}.
The problem instance is given in Listing 3.1.1. Since our simple language neither

provides arithmetics nor comparisons, we use predicate step instead of time to capture
transitions from one time point to the next. We also ignore the goal just focussing on
transitions.

The encoding in Listing 3.1.2 encodes moves of discs between pegs but neither asserts
that only the smallest disc on a peg is moved nor the goal condition is reached; in fact,
an arbitrary number of discs can be moved at each but the initial time step. We only
highlight the differences as compared to the encoding in Listing 1.0.2 in the introductory
section.

In our simple language, we neither have equality nor non-equality predicates, which
we encode using auxiliary predicates and rules. Moreover, we neither have choice rules
nor integrity constraints at our disposal, which, instead, we encode using even and odd
cycles [116], respectively. Finally, we only have default negation (via the ¬ connective)
at our disposal. We encode classical negation using auxiliary predicates for classically
negated atoms [96], and odd cycles to discard contradictory models.

We begin by encoding when two pegs are equal or different in rules r1 and r2, respec-
tively. Moreover, since there are no aggregates in our language, we keep the encoding
short by allowing arbitrary moves in a transition. To determine candidate moves, we
use rules r4 and r5, which depend cyclically on each other via an even cycle involving
predicates m and nm. This cycle ensures that a disc is either moved or not moved.



3.1. THE clingo LANGUAGE 14

Finally, we use an odd cycle involving atom f in rule r9 to discard inconsistent solutions
regarding the locations of discs. This is important for instances with more than two pegs
because there is no constraint that a disc can only be moved to one peg. Here, we emulate
classical negation because corresponding atoms over o and no can never be part of a model
together.

An instance of a rule is obtained by substituting constants from its signature for all
its variables. We use Γ(P ) to denote the set of all instances of rules in P .

Example 3.1.2. For example, the set of all instances of rule r1 is
e(0, 0)← peg(0)(g1)
e(1, 1)← peg(1)(g2)
e(2, 2)← peg(2)(g3)

because we have C = {0, 1, 2}. Observe that for a rule with n variables, we obtain |C|n
instances. Since rule r1 has one variable and we have three constants, we obtain three
instances as expected. We also see that the first instance refers to atom peg(0), which can
never be derived by any rule. In Section 3.2, we present algorithms to compute instances
of rules avoiding such unnecessary ones.

The atom base of a signature Σ is the set of all ground atoms over Σ. A two-valued
interpretation over an interpretation Σ is a set I ⊆ A of atoms where A is the atom
base of Σ. Atoms contained in I are considered true and atoms contained in A \ I are
considered false.

From now on we no longer mention the signature and assume that interpretations,
programs, rules, literals, and atoms in the same context share the same signature.

An interpretation I satisfies
• an atom if it is true in I,
• a literal ¬a if a is false in I,
• a rule if I satisfies its head or does not satisfy some literal in its body, and
• a program if I satisfies all its rules.

If I satisfies a program, we say that I is a model of the program.
The reduct P I of a program P w.r.t. to an interpretation I is the program {H(r)←

B(r)+ | r ∈ Γ(P ), I ∩ B(r)− = ∅}, which selects rule instances from P such that
all negative body literals are satisfied by the interpretation and strips negative body
literals [95]. An interpretation I is a stable model of a program P if it is among the
subset minimal models of the reduct P I . Observe that a stable model I is also a model
because the reduct only removes rules satisfied by I and if a reduced rule is satisfied by
I, so is its unreduced counterpart.

Example 3.1.3. For example, let us consider the program P consisting of the rules
in Listings 3.1.1 and 3.1.2. Below, we specify the stable models of our program. To keep
the example compact, we do not show that the models are indeed subset minimal models
of the reduct.

Let F be the heads of the rules in Listing 3.1.1. Any stable model of P includes the
atoms from set F . Further atoms are determined by the rules r1 to r9. In particular,
rules r4 and r5 specify that a disc is either moved or not. Because we can move any
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disc at any time, the set M = {1, 2} × {1, 2} captures all possible moves of discs at time
steps. Let M ⊆M be a set of moves and M̄ =M\M be its complement. Because there
are only two pegs, the set M uniquely determines the stable model X0 ∪X1 ∪X2 of our
program where the sets Xi of atoms relevant to time steps 0 ≤ i ≤ 2 are

X0 = F

∪ {e(p, p) | p ∈ C, peg(p) ∈ F}
∪ {ne(p, p′) | p, p′ ∈ C, peg(p′), peg(p) ∈ F, p ̸= p′}
∪ {o(d, p, 0) | d, p ∈ C, init(d, p) ∈ F}
∪ {no(d, p, 0) | d, p ∈ C, init(d, p) ∈ F, peg(p) ∈ F, p ̸= p′}, and

Xi = {m(d, p, i), o(d, p, i) | (d, i) ∈M, p ∈ C, no(d, p, i− 1) ∈ Xi−1}
∪ {nm(d, p, i), no(d, p, i) | (d, i) ∈ M̄, p ∈ C, no(d, p, i− 1) ∈ Xi−1}
∪ {o(d, p, i) | (d, i) ∈ M̄, p ∈ C, o(d, p, i− 1) ∈ Xi−1}
∪ {no(d, p, i) | (d, i) ∈M, p ∈ C, o(d, p, i− 1) ∈ Xi−1}.

Note that the atoms in X0 are uniquely determined by the facts.

3.1.2 Summary. Section 2.1 comprises [74] presenting an overview of the systems
developed within the Potassco project. This overview includes a short summary of the
clingo-3 language that at that point was already widely used by researchers. The clingo-3
language supports safe disjunctive programs with aggregates and is backward compatible
with the lparse language regarding the main language features. This includes choice rules,
cardinality and weight constraints, conditional literals, and term pools. Notably, clingo-3
already has extended support for aggregates using a syntax similar to weight constraints.
This includes #min, #max, #count, #sum, #avg, and #times aggregates.

The language was modified in clingo series 4 to be more compatible with dlv’s input
language. The common part of the input languages are now specified in the ASP-Core [34]
and ASP-Core-2 [31] standards as supported by clingo-4 and dlv-2. At this point, we
also dropped backward compatibility with lparse. One major change is the removal of
support for lparse’s multi-set based weight constraints of form ‘[ . . . ] b’ in favor of
set based aggregates of form ‘#sum { . . . } <= b’. However, we retained and extended
support for some language constructs introduced in lparse. This includes choice rules,
cardinality constraints as a shortcut for #count aggregates, conditional literals, and
term pools. Support for less frequently used aggregates like #avg and #times has been
dropped.

The semantics of clingo series 5 was further cleaned up and refined in [69] regarding
the semantics of term pools, undefined arithmetic, and aggregates. Term pools were
introduced in lparse and provide a convenient way to compactly express a set of rules.
We refined their semantics and ensured that they can be consistently used throughout a
logic program. Undefined arithmetic was simply replaced by value 0, which could lead to
surprising solutions. It is now treated like an empty pool; in effect, discarding rules or
nested language constructs involving undefined operations. Using the results in [6], the
system now also supports recursive non-monotone aggregates.
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Apart from this, the language supports heuristic directives to incorporate domain-
specific information into ASP solving [90], script, external and program directives
to support multi-shot solving (see Section 3.3), and theory definitions and atoms to
incorporate theory specific reasoning into ASP (see Sections 3.4 and 3.5).

3.2 Grounding

ASP rests upon a two step approach consisting of grounding and solving. Interestingly,
there are a lot of systems only accepting ground programs as input, facing few systems
accepting non-ground programs, for example, lparse (which only implements grounding),
dlv, or clingo. This is probably due to the complexity of the input language as compared
to the much simpler ground format. One such complex and important feature of the
input language are aggregate expressions. This can be seen in the numerous works [47,
62,65,98,110,111,134] on finding a suitable semantics for aggregates. Among them,
we follow the semantics introduced in [65] defined for the ground case.

In the non-ground case, we are faced with one further challenge. Grounding involves
replacing variables with all possible variable-free terms constructible from the signature
associated with a program. Since programs can contain function symbols and (symbols
for) integers, the systematic grounding of a program has infinite size as soon as there is one
variable. The semantics in [65] covers programs with infinitely many rules. But to capture
aggregates, we also have to deal with nested expressions composed of infinitely many
elements. The semantic foundations for aggregates (and the main language constructs of
the clingo language) have been laid in [69]. It resorts to infinitary formulas that support
nested conjunctions and disjunctions of infinite size.

Section 2.2 comprises the work in [107], which presents a grounding algorithm that
takes programs with aggregates as input. We show that the output of the algorithm can
be characterized by fixed points of operators. In particular, we use an approximation of
the well-founded model of a program [142], that is, the fixed point of the well-founded
operator. We build a ground program that is equivalent to the input program while
computing an approximate model. Deciding whether the approximate model is finite is
undecidable in general but there are classes of programs for which the fixed points of our
operators are finite and, thus, also our algorithm terminates in finitely many steps. In
what follows, we use the rather simple class of programs introduced in Section 3.1 and
develop grounding algorithms for it. These algorithms can be seen as a baseline for the
algorithms in Section 2.2. While it is relatively straightforward to extend the algorithms
to accept programs with aggregates, it is much harder to characterize them and formally
prove their correctness. Thus, we refer for detailed results to Section 2.2 and only discuss
some issues regarding aggregate programs and our overall contributions at the end of the
section.

3.2.1 Background. In Section 3.1, we introduced a reduct based characterization
of the stable models of programs. For the purpose of grounding, we now turn to an
operator based characterization of their semantics following [140].

As put forward in [141], we associate a program P with its one-step provability
operator TP , defined for an interpretation I as TP (I) = {H(r) | r ∈ Γ(P ), B(r)+ ⊆
I, B(r)− ∩ I = ∅}, which gathers all rule heads whose body literals are satisfied by the
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interpretation. The fixed points of the operator TP w.r.t. ⊆ are the supported models
and the prefixed points w.r.t. ⊆ the models of the program P . A model either satisfies
the head or falsifies the body of all rule instances of the program; a supported model [37]
additionally requires that for each atom in the supported model there is at least one rule
instance with a satisfied body supporting it.

Example 3.2.1. For example, just considering the three rule instances g1 to g3 of
rule r1 from Example 3.1.2, the empty set is a model and the only supported model of
the three rule instances, whereas the set {e(i, i), p(i) | 0 ≤ i ≤ 2} is a model but not a
supported model.

The next operator uses the reduct from Section 3.1. We observe that the reduct of
a program is positive, that is, it does not contain rules with negative body literals. It
turns out that the TP operator always has a least fixed point for positive programs w.r.t.
the ⊆ relation, which we write as lfp⊆(TP ). Given a program P , we define the stable
operator SP applied to an interpretation I as

SP (I) = lfp⊆(TP I ).

The fixed points of SP w.r.t. ⊆ correspond to the stable models of P as defined in
Section 3.1. The operator based characterization of stable models emphasizes that all
atoms in a stable model are acyclically derivable. Fixing the negative literals via the
reduct, all atoms in the stable model must be derivable via the T operator. Note that
the program in Example 3.1.3 is a so-called tight program [63] for which the supported
and stable models coincide.

We next turn to operators that take additional truth values into account. A four-
valued interpretation over signature Σ is a pair (I, J) of sets I ⊆ A and J ⊆ A of atoms
where A is the atom base of Σ. Atoms contained in I are considered certain and atoms
in J possible. Intuitively, an atom that is certain and possible is true, an atom that
is certain but not possible is inconsistent, an atom that is not certain but possible is
unknown, and an atom that is neither certain nor possible is false.

Let (I ′, J ′) and (I, J) be two four-valued interpretations over the same signature. We
use (I, J) ⊔ (I ′, J ′) as a shortcut for (I ∪ I ′, J ∪ J ′). Furthermore, we say that (I ′, J ′) is
less precise than (I, J), written (I ′, J ′) ≤p (I, J), if I ′ ⊆ I and J ⊆ J ′. The precision
ordering also has an intuitive reading: the more atoms are certain or the fewer atoms are
possible, the more precise is a four-valued interpretation. The least precise four-valued
interpretation over signature Σ is (∅,A) where A is the atom base of Σ.

We omit whether an interpretation is two- or four-valued whenever clear from context.
As put forward in [142], the stable operator has an alternating fixed point that can

be used to define the well-founded model of a program. We follow the slightly different
approach of [46], by constructing an operator that takes a four-valued interpretation as
input. Given a program P , the well-founded operator WP for an interpretation (I, J) is
defined as

WP (I, J) = (SP (J), SP (I)).
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This operator has a least fixed point w.r.t. ≤p, which we refer to as the well-founded
model of P and write as

WM (P ) = lfp≤p(WP ).

Given a program P and its well-founded model (I, J), we have I ⊆ X ⊆ J for any stable
model X of P .

Example 3.2.2. Coming back to the program from Example 3.1.1, we give its well-
founded model (I, J). The certain atoms I correspond to the set X0 (derived from facts
independent of M) given in Example 3.1.3. This agrees with the intuition that all atoms
derivable from the certain atoms given by the instance should be certain in the well-founded
model as well. We now turn to the possible atoms J = J0 ∪ J1 ∪ J2 where the sets Ji of
possible atoms relevant to time steps 0 ≤ i ≤ 2 are

J0 = I, and
Ji = {m(d, p, i), nm(d, p, i),

o(d, p, i), no(d, p, i) | d, p ∈ C, no(d, p, i− 1) ∈ Ji−1}
∪ {o(d, p, i), no(d, p, i) | d, p ∈ C, o(d, p, i− 1) ∈ Ji−1}
∪ {f }.

Note that at time step one, only moves to peg two are considered. At time step two, moves
to all pegs are possible. Furthermore, observe that atom f is possible in the well-founded
model but never part of a stable model; all other atoms possible in the well-founded model
are contained in at least one stable model.

Proceeding as in Section 2.2, the simplification P I,J of a program P w.r.t. the
interpretation (I, J) is {r ∈ Γ(P ) | B(r)+ ⊆ J, B(r)− ∩ I = ∅}. The program P and its
simplification P I,J have the same stable models for all (I, J) ≤p WM (P ). In practice,
grounding algorithms step-by-step calculate the rules contained in the simplification
relative to some approximation of the well-founded model.

Example 3.2.3. For example, the rule instance g1 is discarded if our example program
is simplified with its well-founded model (I, J) because p(0) /∈ J . Rule instances g2 and g3
are kept.

One of the first steps during grounding is to group rules into components suitable
for successive instantiation. This amounts to splitting a program into a sequence of
subprograms.

Inter-rule dependencies are determined by the predicates appearing in their heads
and bodies. A rule r1 depends on a rule r2 if pred(H(r2)) ∈ pred(B(r1)±). Rule r1
depends positively or negatively on r2 if pred(H(r2)) ∈ pred(B(r1)+) or pred(H(r2)) ∈
pred(B(r1)−), respectively. The strongly connected components of a program P are the
equivalence classes of the rule dependency relation. A strongly connected component P1
depends on another component P2 if there is a rule in P1 that depends on a rule in P2. A
topological ordering of the components is then used to guide grounding. We define an
instantiation sequence for a program P as the sequence (Pi)i∈I of its strongly connected
components such that i < j if Pj depends on Pi.
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Figure 3.2.1. Rule dependencies of simplified ToH encoding

Example 3.2.4. Figure 3.2.1 depicts the inter-rule dependencies of our example pro-
gram in Listings 3.1.1 and 3.1.2. Rules are depicted in solid boxes and their dependencies
via arrows, which join/branch in case that there is a small solid circle. A rule r depends
on another rule r′ if we can follow from the box of r beginning without an arrow tip to the
one of r′ with an arrow tip. Colors are used as a visual aid to distinguish dependencies;
all arrow segments with the same color are connected. Finally, components are depicted
via dotted boxes with their sequence index in the top left corner. We have 13 components
and see that components P12 and P13 involve recursive rules because they depend on
themselves. This recursion is also reflected in the way operators proceed, in the presence
of recursion it takes multiple applications of an operator before a fixed point is reached as
can be seen in Example 3.2.5 below.

With an instantiation sequence at hand, we can ground subprograms successively
taking into account certain and possible atoms derived previously. Accordingly, we extend
the operators introduced above with context information. In what follows, we append
letter ‘C ’ to names of interpretations having a contextual nature.

Given a program P , we define the one-step provability operator of P relative to
contextual interpretation IC for an interpretation I as

T IC
P (I) = TP (IC ∪ I),
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the stable operator for P relative to contextual interpretation IC for an interpretation J
as

SIC
P (J) = lfp⊆(T IC

P J ),

the well-founded operator of P relative to contextual interpretation (IC , JC ) for an
interpretation (I, J) as

W IC ,JC
P (I, J) = (SIC

P (J), SJC
P (I)), and

the well-founded model of P relative to contextual interpretation (IC , JC ) as

WM IC ,JC (P ) = lfp≤p(W IC ,JC
P ).

To characterize our grounding algorithms, we are only interested in contextual well-
founded models of subprograms. We do not consider other kinds of contextual models
here.

Example 3.2.5. Let us use component P12 from Figure 3.2.1, the set F from Exam-
ple 3.1.3, and the contextual interpretations

IC = JC = F

∪ {e(1, 1), e(2, 2)} via r1

∪ {ne(1, 2), ne(2, 1)} via r2

∪ {o(1, 1, 0), o(2, 1, 0)} via r3.

With this, we compute the certain atoms I = SIC
P (A) via the smallest fixed point of T IC

P A .
Observe that the reduct with the atom base A discards all instances of rules r4, r5, and r7.
We cannot use rule r6 either because atoms over predicate m are neither contained in the
contextual interpretation nor derivable by any rules. We obtain that

I = T IC
P A

12
(∅) = {no(1, 2, 0), no(2, 2, 0)} via r8

is the least fixed point of T IC
P A

12
.

Next, let us compute the possible atoms J = SJC
P12

(∅) via the smallest fixed point of
T JC

P ∅
12

. Unlike above, the reduct with the empty set removes the negative bodies without
discarding any rules. Thus, we can now use rules r4, r5, and r7 to derive atoms. We
obtain the interpretations

J0 = T JC
P ∅

12
(∅) = I

∪ {m(1, 2, 1), m(2, 2, 1)} via r4

∪ {nm(1, 2, 1), nm(2, 2, 1)} via r5

∪ {o(1, 1, 1), o(2, 1, 1)} via r7,
J1 = T JC

P ∅
12

(J0) = J0

∪ {m(1, 2, 2), m(2, 2, 2)} via r4

∪ {nm(1, 2, 2), nm(2, 2, 2)} via r5
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∪ {o(1, 2, 1), o(2, 2, 1)} via r6

∪ {o(1, 1, 2), o(2, 1, 2)} via r7

∪ {no(1, 2, 1), no(2, 2, 1)} via r8,
J2 = T JC

P ∅
12

(J1) = J1

∪ {m(1, 1, 2), m(2, 1, 2)} via r4

∪ {nm(1, 1, 2), nm(2, 1, 2)} via r5

∪ {o(1, 2, 2), o(2, 2, 2)} via r6

∪ {no(1, 1, 1), no(2, 1, 1), no(1, 2, 2), no(2, 2, 2)} via r8,
J3 = T JC

P ∅
12

(J2) = J2

∪ {no(1, 1, 2), no(2, 1, 2)} via r8.

The set J = J3 is the least fixed point of T JC
P ∅

12
.

Observe that we have just computed (I, J) = W IC ,JC
P12

(∅,A). This is also the least
fixed point of the well-founded operator W IC ,JC

P12
. We obtain that (I, J) = WM IC ,JC (P12)

is the well-founded model of P12 in the context (IC , JC ).

We now apply the contextual well-founded operator to an instantiation sequence
to iteratively compute the well-founded model of the whole program. We define the
well-founded model of instantiation sequence (Pi)i∈I for program P as WM ((Pi)i∈I) =⊔

i∈I(Ii, Ji) where

(IC i, JC i) =
⊔
i<j

(Ii, Ji) and(1)

(Ii, Ji) = WM IC i,JC i(Pi).(2)

We shown in Section 2.2 that the well-founded model WM ((Pi)i∈I) of the sequence is
equivalent to the well-founded WM (P ) of the whole program.

Example 3.2.6. Next, we show how the approximate model of the sequence (Pi)1≤i≤13
is calculated. We give below the intermediate models (Ii, Ji) as in Equation (2) for
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components Pi:
I1 = J1 = {step(0, 1)} I2 = J2 = {step(1, 2)}
I3 = J3 = {init(1, 1)} I4 = J4 = {init(1, 2)}
I5 = J5 = {peg(1)} I6 = J6 = {peg(2)}
I7 = J7 = {disc(1)} I8 = J8 = {disc(2)}
I9 = J9 = {o(1, 1, 0), o(2, 1, 0)}

I10 = J10 = {e(1, 1), e(2, 2)} I11 = J11 = {ne(1, 2), ne(2, 1)}
I12 = {no(1, 2, 0), no(2, 2, 0)}
J12 = I12 ∪ {m(d, 2, 1), nm(d, 2, 1) | 1 ≤ d ≤ 2}

∪ {m(d, p, 2), nm(d, p, 2) | 1 ≤ d, p ≤ 2}
∪ {o(d, p, t), no(1, 2, t) | 1 ≤ d, p, t ≤ 2}

(I13, J13) = (∅, {f})
Observe that the union of all models corresponds to the well-founded model in Exam-
ple 3.2.2. Furthermore, note that we have seen in Example 3.2.5 how to compute the con-
textual well-founded model of component P12. The contextual interpretation

⊔
1≤i≤11(Ii, Ji)

in Equation (1) and the contextual well-founded model (I12, J12) in Equation (2) corre-
spond to the contextual interpretation/well-founded model used/computed in the example,
respectively.

In practice, grounding algorithms cannot compute the well-founded model on-the-fly
but rather compute an approximation. We define the approximate model relative to
contextual interpretation (IC , JC ) of a program P as AM IC ,JC (P ) = (I, J) where

P ′ = {r ∈ P | pred(B(r)−) ∩ pred(H(P )) = ∅},(3)
I = SIC

P ′ (JC ), and(4)
J = SJC

P (IC ∪ I).(5)

Example 3.2.7. The contextual approximate model AM IC ,JC (P12) is equivalent to
the contextual well-founded model WM IC ,JC (P12) in Example 3.2.5. This is because
the reduct P A

12 is equivalent to the program P ′
12 obtained from P12 as in (3) and the

well-founded model is computed with just one application of the well-founded operator
applied to the least precise interpretation (∅,A).

Analogous to above, we can now apply this contextual operator to a sequence of
programs. We define the approximate model of instantiation sequence (Pi)i∈I for program
P as AM ((Pi)i∈I) =

⊔
i∈I(Ii, Ji) where

(IC i, JC i) =
⊔
i<j

(Ii, Ji) and

(Ii, Ji) = AM IC i,JC i(Pi).
Since the approximate model is restricted to two applications of the stable operator, it
is less precise than the well-founded model in general. We obtain that AM ((Pi)i∈I) ≤p
WM ((Pi)i∈I). For stratified programs, where no strongly connected component depends
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negatively on itself, we obtain that AM ((Pi)i∈I) = WM ((Pi)i∈I). In fact, the approximate
model is total in this case, that is, the certain and possible atoms of the model coincide. As
a consequence, the grounding component of clingo can completely evaluate such programs.
Finally, since the approximate model is the same for all instantiation sequences of a
program, we define the approximate model of a program P as AM (P ) = AM ((Pi)i∈I)
using an arbitrary instantiation sequence of P .

Example 3.2.8. We have already seen in Example 3.2.7 that the contextual approxi-
mate and well-founded models are equivalent for component P12. In fact, this is the case
for all intermediate models when calculating the respective models of the sequence. Thus,
the approximate and well-founded models of the sequence are equivalent, too.

Before we can turn to grounding algorithms, we restrict the class of programs to
so-called safe programs. A program is safe if all its rules are safe; a rule is safe if all
variables occurring in it also occur in its positive body. Our algorithms operate on safe
rules and programs only. Furthermore, this allows us to restrict the signature of a program
to the symbols appearing in a program; adding further symbols to this signature does
not change the semantics of the program in the sense that the stable and well-founded
models are the same as the ones of the program with the restricted signature [25].

Example 3.2.9. Our example program in Listings 3.1.1 and 3.1.2 is safe.

3.2.2 Algorithms. A substitution over signature Σ is a mapping from the variables
in Σ to the constants and variables in Σ. We use ι to denote the substitution mapping
each variable to itself. The result of applying a substitution σ to an expression e, written
eσ, is the expression obtained by replacing all occurrences of each variable v in e by
σ(v). The composition of two substitutions σ and θ is the substitution σ ◦ θ where
(σ ◦ θ)(v) = θ(σ(v)).

In the following, we are interested in substitutions that step-by-step replace variables
in body literals to obtain rule instances. A substitution σ is a matcher of expression e to
variable-free expression g, if eσ = g and σ maps all variables not occurring in e to itself.
Note that there is at most one matcher of e to g. We let

match(e, g) =
{
{σ} if there is a matcher σ of e to g,
∅ otherwise.

When grounding rules, we look for matches of body literals in the atoms accumulated so
far. The latter is captured by a four-valued interpretation to distinguish certain atoms
among the possible ones. Given a substitution σ, a literal l, and an interpretation (I, J),
we define the set of matches for l in (I, J) w.r.t. σ as

MatchesI,J
l (σ) =

{
{σ | aσ /∈ I} if a = ¬l,
{σ ◦ σ′ | a ∈ J, σ′ ∈ match(lσ, a)} otherwise.

In this way, positive body literals yield a (possibly empty) set of substitutions refining
the one at hand, while negative literals are only considered when ground and then act as
a test on the given substitution.

Function GroundRule for rule instantiation is given in Algorithm 3.1. It takes a
substitution σ and a set L of literals and yields a set of instances of a safe normal rule
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1 function GroundRuleI,J
r,f,J ′(σ, L):

2 if L ̸= ∅: # match next
3 (G, l)← (∅, Selectσ(L))
4 for each σ′ in MatchesI,J

l (σ):
5 G← G ∪ GroundRuleI,J

r,f,J ′(σ′, L \ {l})
6 return G

7 else if f = t or B(rσ)+ ⊈ J ′: # rule instance
8 return {rσ}
9 else: # rule seen

10 return ∅

Algorithm 3.1. Grounding rules

r, passed as a parameter; it is called from Algorithm 3.2 with the identity substitution
and the body literals B(r) of r. The other parameters consist of an interpretation
(I, J) comprising the set of possibly derivable atoms along with the certain ones, an
interpretation J ′ reflecting the previous value of J , and a Boolean flag f used to avoid
duplicate rule instances in consecutive calls to Algorithm 3.1. The idea is to extend the
current substitution in Lines 4 to 5 until we obtain a substitution σ that induces an
instance rσ of rule r. To this end, Selectσ(L) picks for each call some literal l ∈ L such
that l ∈ L+ or lσ is ground. That is, it yields either a positive body literal or a ground
negative body literal, as needed for computing MatchesI,J

l (σ). Whenever an application
of Matches for the selected literal in B(r) results in a non-empty set of substitutions,
the function is called recursively for each such substitution. The function then returns a
set of all rule instances obtained from the recursive calls in Line 8. (Note that we refrain
from applying any simplifications to rule instances and rather leave them intact to obtain
more direct formal characterizations of the results of our grounding algorithms.) The
recursion terminates if the set of remaining body literals is empty, in which case, we
obtain a rule instance rσ. The test B(rσ)+ ⊈ J ′ in Line 7 makes sure that the instance
is discarded if it was already obtained by a previous invocation GroundRule where the
flag f ensures that all instances are gathered in the first iteration. This is relevant for
recursive rules and reflects the approach of semi-naive database evaluation [2]. We obtain
that

• {r}I,J = GroundRuleI,J
r,t,∅(ι, B(r)), and

• {r}I,J = {r}I,J ′ ∪ GroundRuleI,J
r,f ,J ′(ι, B(r)).

Thus, calls to GroundRule amount to applications of the one-step provability operator
because H({r}I,J) = TP I (J). This can easily be seen comparing the definition of of the
program simplification and the one-step-operator, which gather rules and rule heads
under the same condition.

Example 3.2.10. Next, we show how the two calls GroundRuleIC ,JC
r4,t,∅ (σ, B(r4)) and

GroundRuleIC ,JC∪J0
r4,f ,J0

(σ, B(r4)) proceed when called with interpretation J0 and contextual
interpretation (IC , JC ) as given in Example 3.2.5 using the rules from Listing 3.1.2.
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o(D, P ′, T ′) t(T ′, T ) ne(P ′, P ) ¬nm(D, P, T ) m(D, P, T )

o(1, 1, 0) t(0, 1) ne(1, 2) ¬nm(1, 2, 1) m(1, 2, 1)

o(2, 1, 0) t(0, 1) ne(1, 2) ¬nm(2, 2, 1) m(2, 2, 1)

o(1, 1, 0) t(0, 1) ne(1, 2) ¬nm(1, 2, 1) ×

o(2, 1, 0) t(0, 1) ne(1, 2) ¬nm(2, 2, 1) ×

o(1, 1, 1) t(1, 2) ne(1, 2) ¬nm(1, 2, 2) m(1, 2, 2)

o(2, 1, 1) t(1, 2) ne(1, 2) ¬nm(2, 2, 2) m(2, 2, 2)

Table 1. Grounding rule r4 obtaining atoms in J0 and J1 over predicate m
as in Example 3.2.5

The execution of the two calls is illustrated in Table 1. The header above the double
line contains the literals of the body of rule r4 in the first four columns in the order
they are selected for grounding in Line 3, as well as the head atom of the rule in the
last column. Rows 2 and 3 correspond to the first and rows 4 to 7 to the second call to
GroundRule. Both groups of rows are separated by a horizontal line. A group of matches
is connected via vertical lines and is iterated in the loop in Lines 4 to 5. Recursive calls
in Line 5 to GroundRule are indicated via horizontal arrows. We use the × symbol to
indicate that a rule instance has been discarded due to the test in Line 7. We can read
off a rule instance by following arrows from the left to the rightmost column selecting one
atom out of a group of matches.

Observe that the first call produces all instances of r4 with atoms over predicate m as
head that are contained in J0 from Example 3.2.5. Similarly, the second call produces all
instances with atoms over predicate m that are contained in J1 from Example 3.2.5 not
yet included in J0. We can call function GroundRule for the remaining rules r5 to r8 to
compute all sets Ji from Example 3.2.5.

Finally, note that we could discard the matches o(1, 1, 0) and o(2, 1, 0) in the second
call right away because no atoms over the remaining predicates in the positive body of
the rule have been added to J0. The grounding algorithm of clingo is optimized to avoid
processing such matches.

Let us now turn to grounding components of instantiation sequences in Algorithm 3.2.
The function GroundComponent takes a program P along with two sets IC and JC of
ground atoms as input. Intuitively, P is a component in an instantiation sequence and IC
and JC form a four-valued interpretation (IC , JC ) comprising the certain and possible
atoms gathered while grounding previous components (although their roles get reversed
in Algorithm 3.3). After variable initialization, GroundComponent loops over consecutive
rule instantiations in G until no more possible atoms are obtained. In this case, it returns
in Line 6 the set of obtained rule instances. In more detail, the program P is instantiated
in Line 4, at which point J holds the possible atoms derived so far and J ′ its previous
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1 function GroundComponent(P, IC , JC ):
2 (G, f, J ′, J)← (∅, t, ∅, ∅)
3 while f = t or J ′ ̸= J :
4 G← G ∪

⋃
r∈P GroundRuleIC ,JC∪J

r,f,JC∪J ′(ι, B(r))
5 (f, J ′, J)← (f , J, J ∪H(G))
6 return G

Algorithm 3.2. Grounding components

1 function Ground(P ):
2 let (Pi)i∈I be an instantiation sequence for P

3 (F, G)← (∅, ∅)
4 for each i in I:
5 P ′

i ← {r ∈ Pi | pred(H(Pi)) ∩ pred(B(r)−) = ∅}
6 F ← F ∪ GroundComponent(P ′

i , H(G), H(F ))
7 G← G ∪ GroundComponent(Pi, H(F ), H(G))
8 return G

Algorithm 3.3. Grounding programs

value. For the next iteration, J is augmented in Line 5 with all rule heads in G and
the flag f is set to false. Recall that the purpose of f is to ensure that initially all
rules are grounded. In subsequent iterations, duplicates are omitted by setting the flag
to false and filtering rules whose positive bodies are a subset of the atoms J ′ used in
previous iterations. Given J = SJC

P (IC ) and G = GroundComponent(P, IC , JC ), we have
H(G) = J and G = P IC ,JC∪J . Thus, function GroundComponent reflects the application
of the stable model operator relative to contextual interpretation (JC , IC ).

Example 3.2.11. We have seen in Example 3.2.10 that four successive calls to
GroundRule for each rule in component P12 produce the rule instances whose heads
correspond to interpretation J from Example 3.2.5. Function GroundComponent called
with context (IC , JC ) calls GroundRule successively to obtain exactly those rule instances.

Note that the loop performs one unnecessary iteration. The last interpretation J3
only adds atoms over predicate no, which cannot be used to provide further rule instances
because atoms over no only occur negatively in rule bodies. The clingo system avoids such
iterations by avoiding calls to GroundRule if there is no positive literal in a rule that can
provide at least one match including an atom from the previous iteration.

Finally, Algorithm 3.3 grounds programs by iterating over the components of one of its
instantiation sequences. Just as Algorithm 3.2 reflects the application of a stable operator,
function Ground follows the definition of an approximate model. At first, we construct
program P ′ from the component at hand by stripping rules involved in a negative cycle;
this is the same program as in (3). Then, rule instances providing certain atoms are
computed in Line 6; the head atoms of those instances correspond to interpretation I
in (4). Similarly, rule instances providing possible atoms are computed in Line 7; the
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head atoms correspond to interpretation J in (5). Accordingly, the whole iteration aligns
with the approximate model. We obtain our main result that Ground(P ) = P AM(P ).

Example 3.2.12. In Example 3.2.11, we have seen that the atoms obtained by the
contextual stable operator correspond to the rule heads produced by function function
GroundComponent. Furthermore, in Example 3.2.7, we have seen the intermediate models
computed when calculating the approximate models via calls to the contextual stable
operator. The rule instances produced to obtain these intermediate models correspond to
the output of our grounding algorithm. They comprise relevant instances in the sense
that all atoms appearing positively in body literals are possible and atoms appearing in
negative body literals are not certain.

Listing 3.2.1 shows the rule instances as output by clingo, when the plain text output
via option --text is requested. First, we see that clingo removes literals from rule
bodies. Given an intermediate model (I, J), it removes positive body literals contained
in I (for example in Line 5), and negative body literals not contained in J (for example
in Line 7). This simplification can be disabled using option --facts-only to obtain an
output closer to the one described in this section. Second, we see that clingo further refines
components. The component P12 = {r4, r5, r6, r7, r8} from Example 3.2.4 is refined further
into components {r4, r6, r7}, {r5}, and {r8}. Observe that atoms over predicate nm as
derived by rule r5 only occur negatively in rule bodies in P12. This means that the rule
cannot be used to derive certain atoms because it is removed from the component in
Line 5. Since there are no certain atoms over predicate nm, negative literals over nm
always match and GroundRule never discards rule instances because of them. Thus, we
can as well ground the rule later.

Otherwise, observe that the rule instances directly correspond to the ones produced
by Algorithm 3.3. We see, for example, that the rule heads in Lines 11 to 23 directly
correspond to the ones reported in Example 3.2.5 (excluding the ones in components {r5}
and {r8}, which are grounded later). The rules in Lines 11 to 12 correspond to J0, the
rules in Lines 13 to 17 to J1, the rules in Lines 18 to 21 to J2, and the rules in Lines 22
to 23 to J3. Even though no new atoms are added in the last iteration of the loop in
GroundComponent, it still gathers rule instances and then exits the loop. In practice, the
refined instantiation sequence used in clingo can reduce the peak memory used by the
system because smaller components are considered at a time, and also in some cases
provide more precise approximate models.

3.2.3 Summary. In Section 2.2, we provide the first comprehensive elaboration of
the theoretical foundations of grounding. We follow an operator based characterization.
These operators directly correspond to the recursion/loops in our grounding algorithms
and facilitate proving their correctness. In this section, we have shown this connection
for a simple class of programs. To cover the larger class of aggregate programs with
aggregates and uninterpreted functions2, we rely on programs with infinitary formulas as
rule bodies. This is important because the atom base associated with such programs is
infinite in general, which results in infinitary formulas for aggregates. Yet, such formulas

2In practice, we rarely nest uninterpreted functions in programs but many programs use arithmetic
operations. It is relatively straightforward to extend our results for programs with uninterpreted functions
to programs with arithmetic operations.
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1 % facts
2 trans(0,1). trans(1,2). peg(1). peg(2).
3 init(1,1). init(2,1). disc(1). disc(2).
4 % component {r1}
5 e(1,1). e(2,2).
6 % component {r2}
7 ne(2,1). ne(1,2).
8 % component {r3}
9 o(1,1,0). o(2,1,0).

10 % component {r4, r6, r7}
11 o(2,1,1) :- not no(2,1,1). o(1,1,1) :- not no(1,1,1).
12 m(2,2,1) :- not nm(2,2,1). m(1,2,1) :- not nm(1,2,1).
13 o(1,1,2) :- o(1,1,1), not no(1,1,2).
14 o(2,1,2) :- o(2,1,1), not no(2,1,2).
15 m(1,2,2) :- o(1,1,1), not nm(1,2,2).
16 m(2,2,2) :- o(2,1,1), not nm(2,2,2).
17 o(1,2,1) :- m(1,2,1). o(2,2,1) :- m(2,2,1).
18 o(2,2,2) :- o(2,2,1), not no(2,2,2).
19 o(1,2,2) :- o(1,2,1), not no(1,2,2).
20 m(2,1,2) :- o(2,2,1), not nm(2,1,2).
21 m(1,1,2) :- o(1,2,1), not nm(1,1,2).
22 o(2,2,2) :- m(2,2,2). o(1,2,2) :- m(1,2,2).
23 o(1,1,2) :- m(1,1,2). o(2,1,2) :- m(2,1,2).
24 % component {r5}
25 nm(1,2,1) :- not m(1,2,1). nm(2,2,1) :- not m(2,2,1).
26 nm(2,2,2) :- o(2,1,1), not m(2,2,2).
27 nm(1,2,2) :- o(1,1,1), not m(1,2,2).
28 nm(1,1,2) :- o(1,2,1), not m(1,1,2).
29 nm(2,1,2) :- o(2,2,1), not m(2,1,2).
30 % component {r8}
31 no(1,1,1) :- o(1,2,1). no(2,1,1) :- o(2,2,1).
32 no(2,1,2) :- o(2,2,2). no(1,1,2) :- o(1,2,2).
33 no(1,2,0). no(2,2,0).
34 no(2,2,1) :- o(2,1,1). no(1,2,1) :- o(1,1,1).
35 no(1,2,2) :- o(1,1,2). no(2,2,2) :- o(2,1,2).
36 % component {r9}
37 f :- no(2,1,1), o(2,1,1), not f.
38 f :- no(1,1,1), o(1,1,1), not f.
39 f :- no(1,1,2), o(1,1,2), not f.
40 f :- no(2,1,2), o(2,1,2), not f.
41 f :- no(1,2,1), o(1,2,1), not f.
42 f :- no(2,2,1), o(2,2,1), not f.
43 f :- no(2,2,2), o(2,2,2), not f.
44 f :- no(1,2,2), o(1,2,2), not f.

Listing 3.2.1. Clingo output for simplified ToH example
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pose one further challenge. It is no longer possible to obtain operators in the same way
as we presented above for our simplified language. Instead, we borrow the operators
in [139] defined for an alternative semantics and define the well-founded and approximate
model in terms of them. Interestingly, the fixed points of the stable operator no longer
correspond to the stable models of our target semantics. Thus, we identify a restricted
class of programs powerful enough to capture aggregate programs. The well-founded
and approximate models approximate the stable models of this class. For our simplified
programs, we have seen that we can simplify a program using the approximate model to
obtain a set of relevant rule instances. The same is true for aggregate programs but we
have to introduce an additional complementary simplification that restricts the size of the
infinitary formulas for aggregates. It turns out, that the grounding algorithms produce a
finite set of equivalent rules for an aggregate program whenever the approximate model
of the program is finite. Finally, let us note that grounding algorithms for aggregate
programs build on top of the algorithms presented in this section. In fact, Algorithms 3.1
and 3.3 are left untouched from a high level point of view. Only Algorithm 3.2 is extended,
adding additional steps to ground aggregates. The first step decomposes aggregates into
rules without aggregates similar to the ones presented in this section. These rules are
then grounded using Algorithm 3.1 and the aggregates are reassembled from the obtained
rule instances in the last step.

The approach to grounding presented in this section follows the traditional two-phase
approach of grounding and solving as implemented by mainstream ASP systems [55,132].
It completely separates the grounding process from the subsequent solving. This can
lead to grounding becoming a bottleneck when the grounding algorithms produce too
many instances [41]. An alternative way to tackle this problem is lazy grounding and
solving [112,124,144], which grounds rules on-the-fly while solving. Potentially, much
fewer rule instances are produced during this process. However, it becomes much harder
to adapt existing solving technology to this setting. Another interesting approach is to
move part of the grounding process to solving. It has been shown in [17] that normal logic
programs with fixed predicate arities can be translated into disjunctive logic programs
that have polynomial size groundings. This approach can drastically reduce the grounding
effort at the expense of having to solve a second level problem afterward.

3.3 Multi-shot solving

Standard ASP solving follows a one-shot approach consisting of first grounding and
then solving a program. This is also reflected by the available systems. For example,
take lparse [135] and smodels [121], the former grounds a program and then passes the
grounded program to the latter to compute stable models. Even monolithic systems like
dlv [113] and clingo [74] (up to version 3) proceed in the same way, passing the grounded
program internally from the grounding to the solving component. The iclingo [75] and
oclingo [68] systems where the first to deviate from this rigid reasoning process. The
former was designed to solve planning problems by gradually extending a program w.r.t.
an increasing bound on the solution size. The latter took this approach one step further
by providing facilities to react to real-time events during the reasoning process. Yet,
both systems follow a fixed control flow that evades fine-grained user control. Beyond
this, however, there is substantial need for specifying flexible reasoning processes. For
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example, when it comes to interactions with an environment (as in robotics or with
users), advanced search (as in multi-objective optimization, planning, theory solving,
or heuristic search), or recurrent query answering (as in hardware analysis and testing
or stream processing). Common to all these advanced forms of reasoning is that the
problem specification evolves during the respective reasoning processes, either because
data or constraints are added, deleted, or replaced.

Section 2.3 comprises the work in [80] presenting the multi-shot solving capabilities
of the clingo system. Multi-shot solving allows us to address complex reasoning tasks
involving continuously changing programs. Such changes include adding rules to or
deleting rules from a logic program as well as setting truth values of input atoms to react
to external input. Here, we first introduce the necessary background building upon the
theoretical foundations of grounding presented in Section 3.2. We illustrate this material
using the simplified ToH problem from Section 3.1. In the second part, we present
a simplified state based formalization of clingo’s Application Programmable Interface
(API) and show how to use it to solve the full ToH problem as given in Chapter 1. The
main advantage is that we no longer have to bound the plan length in advance but
incrementally extend a program until a solution is found.

3.3.1 Background. We use the notation for programs and related concepts from
Section 3.2. We first define concepts for ground programs and, afterward, show how to
use our grounding algorithms to apply them to non-ground programs.

Given a ground program P , we say that an atom h ∈ A depends positively on an
atom b ∈ A if there is a rule r ∈ Γ(P ) such that h = H(r) and b ∈ B(r)+. The strongly
connected atom components of a program P are the equivalence classes of the positive
atom dependency relation.

A module P is a triple (P, JI , JO) where P is a ground program, and JI and JO are
disjoint sets of ground input and output atoms as indicated by the suffixes I and O,
respectively. Furthermore, we require that the body atoms

B(P )± ⊆ JI ∪ JO(6)

are either output or input atoms and that all head atoms

H(P ) ⊆ JO(7)

are output atoms. Observe that because JI and JO are disjoint, we also obtain that the
head atoms cannot be input atoms, that is, H(P ) ∩ JI = ∅.

An interpretation X is a stable model of a module (P, JI , JO) if X is a stable model of
P ∪{a← | a ∈ JI ∩X}. Two modules (P1, JI 1, JO1) and (P2, JI 2, JO2) are compositional
if

JO1 ∩ JO2 = ∅ and(8)
JO1 ∩ C = ∅ or JO2 ∩ C = ∅(9)

for every strongly connected atom component C of P1 ∪ P2. In other words, all rules
defining an atom must belong to the same module and positive recursion must be
within modules—not among them. Given two compositional modules P1 = (P1, JI 1, JO1)
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and P2 = (P2, JI 2, JO2), we define their join P1 ⋊⋉ P2 as

(P1 ∪ P2, (JI 1 \ JO2) ∪ (JI 2 \ JO1), JO1 ∪ JO2).(10)

The module theorem [123] shows that, for compositional modules, an interpretation X
is a stable model of P1 ⋊⋉ P2 iff X = X1 ∪ X2 for stable models X1 and X2 of P1
and P2, respectively, such that X1 ∩ (JI 1 ∪ JO2) = X2 ∩ (JI 2 ∪ JO1). Finally, we
assume that the join operator is left associative to avoid writing parenthesis, that is,
P1 ⋊⋉ P2 ⋊⋉ P3 = (P1 ⋊⋉ P2) ⋊⋉ P3 for modules P1, P2, and P3.

Example 3.3.1. Taking up the simplified ToH example from Section 3.2, we use the
set

F = {o(1, 1, 0), ne(1, 2), step(0, 1),
o(1, 2, 1), ne(2, 1), step(1, 2)}

of atoms to define the module

P0 = ({a← | a ∈ F}, ∅, F ).

Note that F is a subset of the certain atoms as given in Example 3.2.2. For the purpose
of this example, we consider the instances

m(1, 2, 1)← ¬nm(1, 2, 1), o(1, 1, 0), ne(1, 2), step(0, 1)(g4,1)
nm(1, 2, 1)← ¬m(1, 2, 1), o(1, 1, 0), ne(1, 2), step(0, 1)(g5,1)

o(1, 2, 1)← m(1, 2, 1)(g6,1)
m(1, 1, 2)← ¬nm(1, 1, 2), o(1, 2, 0), ne(2, 1), step(1, 2)(g4,2)

nm(1, 1, 2)← ¬m(1, 1, 2), o(1, 2, 0), ne(2, 1), step(1, 2)(g5,2)
o(1, 1, 2)← m(1, 1, 2)(g6,2)

of rules r4, r5, and r6 from Example 3.1.1, and the modules

P1 = ({g4,1, g5,1, g6,1},
{o(1, 1, 0), ne(1, 2), step(0, 1)},
{m(1, 2, 1), nm(1, 2, 1), o(1, 2, 1)}) and

P2 = ({g4,2, g5,2, g6,2},
{o(1, 2, 1), ne(2, 1), step(1, 2)},
{m(1, 1, 2), nm(1, 1, 2), o(1, 1, 2)}).

Observe that we can compose modules P0 ⋊⋉ P1 ⋊⋉ P2, that is, property (8) holds
because the outputs of all three modules are disjoint, and property (9) holds because there
is no positive recursion in our example program.
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Thus, we can use the module theorem to compute the stable models of the join, which
are simply the stable models of the union P0 ∪ P1 ∪ P1 because P0 has no inputs:

X1 = F ∪ {nm(1, 2, 1)},
X2 = F ∪ {m(1, 2, 1), o(1, 2, 1), nm(1, 1, 2)}, and
X3 = F ∪ {m(1, 2, 1), o(1, 2, 1), m(1, 1, 2), o(1, 1, 2)}.

We further develop this example in the following and show that solutions to the ToH
problem up to a time step i can be captured by modules Pi starting from a module
that represents the initial state P0. From a high level point of view, incremental solving
proceeds as follows: we ground a module for a program (capturing a time step in our
example), extend the previous one with it, and then compute the stable models of the
extended module. Starting with the empty module (∅, ∅, ∅), this process is repeated until
the desired set of stable models is obtained.

Next, we show how to ground and extend modules. We define the ground module for
program P relative to G1 as

ΓM(G1, P ) = G2

where

G1 = (G1, JI 1, JO1),
G2 = (Γ(P ), JI 2, JO2),
JI 2 = JO1 \H(Γ(P )), and

JO2 = A(Γ(P )) \ JI 2.

Observe that the modules G1 and G2 are not necessarily compositional. In our current
setup, where the inputs of G2 are solely given by the outputs of G1, they are composi-
tional whenever JO1 ∩H(Γ(P )) = ∅.3 If the modules are compositional, we obtain the
module G1 ⋊⋉ G2, which can be extended by grounding further programs. Note that for
G1 = (∅, ∅, ∅) the join G1 ⋊⋉ G2 = G2 is always compositional.

Next, we show how to use the well-founded model and program simplification from
Section 3.2 to simplify modules. Let P be a program, and

G1 = (G1, JI 1, JO1) and
G2 = (G2, JI 2, JO2) = ΓM(G1, P )

be modules such that G1 and G2 are compositional. Remember that we just defined the
ground program G2 to be the set Γ(P ) of all rule instances of P . We now show how to
simplify program G2 by means of the techniques developed in Section 3.2. Let

(I1, J1) = WM ∅,JI 1(G1) and

(I2, J2) = WM (I1,J1)⊔(∅,JI 1)(G2)

3The clingo system does not check if programs are compositional. It is left to the user to write
programs that satisfy both properties. However, we see in Section 3.4, how to build applications on top
of clingo’s multi-shot solving that are more user friendly in this regard.
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1 function Ground(P, IC , JC ):
2 let (Pi)i∈I be an instantiation sequence for P

3 (F, G)← (∅, ∅)
4 for each i in I:
5 P ′

i ← {r ∈ Pi | pred(H(Pi)) ∩ pred(B(r)−) = ∅}
6 F ← F ∪ GroundComponent(P ′

i , H(G), H(F ))
7 G← G ∪ GroundComponent(Pi, H(F ), H(G))
8 return (G, H(F ), H(G))

Algorithm 3.4. Contextual grounding of programs

be contextual well-founded models of G1 and G2. Using these models, we simplify
program G2 by letting

G′
2 = G

(I1,J1)⊔(I2,J2)⊔(∅,JI 1)
2 ,

which we associate with the module

G′
2 = (G′

2, JI 2, A(G′
2) \ JI 2).

Using the results from Section 3.2, we obtain that the modules G2 and G′
2 as well as the

joins G1 ⋊⋉ G2 and G1 ⋊⋉ G′
2 have the same stable models.

We use the above construction as a template to modify function Ground in Algo-
rithm 3.3 from Section 3.2 to extend modules. Instead of the well-founded model, the
algorithm computes the less-precise approximate model. This is no problem because
the above construction works with any approximation of the well-founded model. We
now turn to the modified grounding algorithm in Algorithm 3.4. First, to provide the
contextual interpretation, we add parameters IC and JC and ground components relative
to them. Second, remember that the final ground programs assigned to variables F and
G hold the approximate model (H(F ), H(G)) of the input program. We return this
model in addition to the grounded program in Line 8.

We now show how to ground a module using Algorithm 3.4. We define the contextual
ground module for program P relative to module G1 and contextual interpretation
(IC , JC ) as

GroundModuleIC ,JC (G1, P ) = (G2, (I2, J2))
where

G1 = (G1, JI 1, JO1),
(G2, I2, J2) = Ground(P, IC , JC ∪ JI 1),

G2 = (G2, JI 2, JO2),
JI 2 = JO1 \H(G2), and

JO2 = A(G2) \ JI 2.

Next, we show when we can use the contextual ground module instead of the ground
module of a program to extend a module in the sense that both joins have the same
stable models. Let G1 = (G1, JI 1, JO1) be a module, (IC , JC ) be an interpretation,
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m(D, P, t)← ¬nm(D, P, t), o(D, P ′, t′), ne(P ′, P )(r′
4)

nm(D, P, t)← ¬m(D, P, t), o(D, P ′, t′), ne(P ′, P )(r′
5)

o(D, P, t)← m(D, P, t)(r′
6)

o(D, P, t)← o(D, P, t′),¬no(D, P, t)(r′
7)

no(D, P, t)← o(D, P ′, t), ne(P ′, P )(r′
8)

f (t)← ¬f (t), o(D, P, t), no(D, P, t)(r′
9)

Listing 3.3.1. Incremental simplified ToH encoding

P be a program, G2 = ΓM(G1, P ), and (G′
2, (I ′

2, J ′
2)) = GroundModuleIC ,JC (G1, P ). If

(IC , JC ) ≤p WM ∅,JI 2(G1) and G1 and G2 are compositional, then we get that
(1) G1 ⋊⋉ G2 and G1 ⋊⋉ G′

2 have the same stable models, and
(2) (IC , JC ) ⊔ (I ′

2, J ′
2) ≤p WM ∅,JI ′(G′) where (G′, JI ′, JO′) = G1 ⋊⋉ G′

2.
Property (1) shows that we obtain equivalent modules using our grounding algorithm.
Note that the modules can differ in their outputs, though. The outputs of G1 ⋊⋉ G2 are
a superset of the outputs of G1 ⋊⋉ G′

2 in general. Property (2) shows that we can use
(IC , JC ) ⊔ (I ′

2, J ′
2) as contextual interpretation to further extend the module G1 ⋊⋉ G′

2.
To be able to ground compositional modules from a fixed set of programs, we define

parametrizable programs. To this end, we treat some of the constants occurring in
programs as parameters, that is, we use a signature Σ = (C ∪ K,P,V). Symbols in C, P,
and V are used as before but the parameter symbols in K are replaced by constants in C
in a program before grounding it. Given a program P with parameters K = {k1, . . . , kn},
we write P [k1/c1, . . . , kn/cn] to obtain a program over signature (C,P,V) from P by
(simultaneously) replacing all occurrences of parameters ki in it by constants ci ∈ C. To
keep the notation compact, we write P [k/c] instead of P [k1/c1, . . . , kn/cn] for tuples
k = (k1, . . . , kn) and c = (c1, . . . , cn) of parameters and symbols.

Example 3.3.2. We show how to use parametrizable programs to obtain compositional
modules for each time step of our ToH example.

Let F be the rules in Listing 3.1.1 excluding the facts for transitions using predi-
cate step. We omit them here because time points are captured by the parameters t for
the current and t′ for the previous time point. We let

Pbase = F ∪ {r1, r2, r3}

be a program without parameters using rules from Listing 3.1.2. The next two programs
use rules from Listing 3.3.1, instead. We let

Pstep = {r′
4, r′

5, r′
6}

be a program with parameters t and t′, and

Pcheck = {r′
8, r′

9}
be a program with parameter t.
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We can now incrementally ground modules for time steps. For time step 0, we let

(G0, (I0, J0)) = GroundModule∅,∅((∅, ∅, ∅), Pbase ∪ Pcheck[t/0]) and
P0 = (∅, ∅, ∅) ⋊⋉ G0 = G0

by extending the empty module. We obtain that module

G0 = (G0, ∅, JO0)

has an empty set of inputs. Next, we inductively define modules for time steps 0 < i ≤ 2,
letting

(IC i, JC i) =
⊔
j<i

(Ij , Jj),

(Gi, (Ii, Ji)) = GroundModuleIC i,JC i(Pi−1, Pstep[t′/(i− 1), t/i] ∪
Pcheck[t/i]), and

Pi = Pi−1 ⋊⋉ Gi.

First, we verify that Pi−1 and Gi = (Gi, JI i, JOi) are compositional. This is ensured in
the way parameters t and t′ are used in the programs Pstep and Pcheck. Remember that
parameters t and t′ refer to the current and previous time steps, respectively. Parameter t
is used in all rule heads of the programs. Literals in rule bodies either use parameter t
or t′, or use predicates defined in the base program. Thus, rule heads define atoms for
the current time step and rule bodies refer to the current or previous time steps. This
ensures that the outputs of module Pi−1 and the outputs of module Gi are disjoint. Hence,
property (8) holds for them. Property 9 holds in our example, too, because our modules
only use inputs from preceding modules, which prevents recursion among modules. In
fact, we have JI i = JO0 ∪ · · · ∪ JOi−1. We obtain that

Pi = (G0 ∪ · · · ∪Gi, ∅, JO0 ∪ · · · ∪ JOi).

Finally note that, excluding atoms over step, the stable models of program G0 ∪ · · · ∪Gi

correspond to the stable models X0 ∪ · · · ∪Xi from Example 3.1.3. for horizons 0 ≤ i ≤ 2.

So far, we have seen how to obtain modules that use output atoms from previously
grounded modules as input. Next, we show how to specify additional inputs to a module.
We extend the signature Σ = (C,P∪{ϵ},V) with a fresh nullary predicate ϵ. An extensible
program over signature Σ can use atom ϵ in positive rule bodies to mark rules whose
only purpose is to provide input atoms; we refer to the heads of instances of such rules
as external atoms.

We extend the definition of ground modules to extensible programs defining the ground
module for extensible program P relative to module G1 and contextual interpretation
(IC , JC ) as

ΓM(G1, P ) = G2
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where

G1 = (G1, JI 1, JO1),
G2 = (G2, JI 2, JO2),
G2 = {g ∈ Γ(P ) | ϵ /∈ B(g)},
JI 2 = (JO1 ∪H(Γ(P ))) \H(G2), and

JO2 = A(G2) \ JI 2.

Note that all rules referring to ϵ are stripped from Γ(P ); such rules are only used to
define the external atoms in H(Γ(P )) \H(G2).

As before, we can also use Algorithm 3.4 to extend a module. We extend the definition
of the contextual ground modules to extensible programs, defining the contextual ground
module for extensible program P relative to module G1 and contextual interpretation
(IC , JC ) as

GroundModuleIC ,JC (G1, P ) = (G2, (I2, J2))

where

G1 = (G1, JI 1, JO1),
G2 = (G2, JI 2, JO2),

(G′
2, (I2, J2)) = Ground(P, IC , JC ∪ JI 1 ∪ {ϵ})

G2 = {g ∈ G′
2 | ϵ /∈ B(g)},

JI 2 = (JO1 ∪H(G′
2)) \H(G2), and

JO2 = A(G2) \ JI 2.

Next, we shed some light on joins with ground modules and contextual ground
modules for extensible programs. Let G1 = (G1, JI 1, JO1) be a module, (IC , JC ) be
an interpretation, P be an extensible program, G2 = ΓM(G1, P ), and (G′

2, (I ′
2, J ′

2)) =
GroundModuleIC ,JC (G1, P ). If (IC , JC ) ≤p WM ∅,JI 2(G1), and G1 and G2 are composi-
tional, then we get

(1) for interpretations X with X ∩ (JI 2 \ JI ′
2) = ∅, that X is a stable model of

G1 ⋊⋉ G2 iff X is a stable model of G1 ⋊⋉ G′
2, where JI and JI ′ are the inputs of

G1 ⋊⋉ G2 and G1 ⋊⋉ G′
2, respectively, and

(2) (IC , JC ) ⊔ (I ′
2, J ′

2) ≤p WM ∅,JI ′(G′) where (G′, JI ′, JO′) = G1 ⋊⋉ G′
2.

For extensible programs, we no longer get that G1 ⋊⋉ G′
2 and G1 ⋊⋉ G2 have the same

stable models. This is because the inputs of G′
2 are subject to grounding. Thus, the join

G1 ⋊⋉ G′
2 might have fewer input atoms than G1 ⋊⋉ G2. Property (1) still identifies a

common set of stable models, namely, those in which the missing input atoms are false.
Property (2) shows that we can use the interpretation (IC , JC ) ⊔ (I ′

2, J ′
2) as contextual

interpretation to further extend the module G1 ⋊⋉ G′
2.
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Example 3.3.3. We extend program Pcheck from Example 3.3.2 with the following
rules:

query(t)← ϵ(r′
10)

f (t)← ¬f (t), query(t),¬o(D, 2, t), disc(D)(r′
11)

Let P′
i be the module constructed as in Example 3.3.2 using program Pcheck extended

with the above rules. The inputs of the module now additionally comprise the atoms
query(j) for j ≤ i. In our setting, we are only interested in the stable models of P′

i where
the external atom query(i) is true and the external atoms query(j) are false for all j < i.

Module P′
0 has no stable models where atom query(0) is true. Module P′

1 has exactly
one stable model where atom query(1) is true and atom query(0) is false, namely, the
model where all discs are moved from the first to the second peg in the first transition.

Remember that we defined stable models of modules in such a way that the input
atoms can become true without any rules deriving them. The clingo system by default
only computes stable models in which external atoms are false. However, its application
programmable interface (API) can be used to let them flip freely or to pin them to
concrete truth values. Using the module P′

i = (G, JI , JO) from Example 3.3.3, we can
use clingo’s API to fix the truth values of atoms in JI as required. Thus, we can directly
compute stable models for the program G ∪ {query(i)← }.

3.3.2 Multi-shot solving. We now turn to the (subset of the) clingo API for
multi-shot solving. In the following, we use the Python language bindings; support
for additional languages including C, C++, Lua, and more via third party projects
are available. For capturing multi-shot solving, we account for system states holding
information about the program kept within the system. To this end, we define a simple
operational semantics based on system states and associated operations. Note that we
present a simplified version of system states and their operations here. We refer to
Section 2.3 for a full account.

A system state is a quadruple (P ,P, (IC , JC ), A) where
• P = (Pn)n∈N is a collection of parametrizable extensible programs,
• P is a module,
• (IC , JC ) is an interpretation, and
• A a set of atoms.

When solving with P , the input atoms are fixed according to the atoms in A, that is,
input atoms contained in A are set to true, and to false otherwise. System states can
be created using function create, which reads a program from a list of files obtaining a
collection of parametrizable extensible programs.
create(files) : 7→ (P ,P, (IC , JC ), A)

for a collection P of parametrizable extensible programs read from the given list of
files where
• P = (∅, ∅, ∅),
• (IC , JC ) = (∅, ∅), and
• A = ∅.

We do not detail how collections of programs are read from files and rather give an
informal description in the following example.
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1 #program base.
2 % establish initial situation
3 on(D,P,0) :- init(D,P).
4

5 #program check(t).
6 % uniqueness of location: a disc can only be on one peg
7 -on(D,Q,t) :- on(D,P,t), peg(Q), P!=Q.
8

9 % ensure that the goal was reached
10 :- query(t), goal(D,P), not on(D,P,t).
11

12 #program step(t).
13 % choose discs to move
14 { move(D,P,Q,t) } :- on(D,P,t-1), peg(Q), P!=Q.
15

16 % there must be at most one move per time step.
17 :- #count { D,P,Q: move(D,P,Q,t) } > 1.
18 % only the topmost disc can be moved
19 :- move(D,P,_,t), on(E,P,t-1), D>E.
20 % a disc can only be put on larger discs
21 :- move(D,_,Q,t), on(E,Q,t-1), D>E.
22

23 % effects: change the location of the moved disc
24 on(D,Q,t) :- move(D,_,Q,t).
25 % inertia: discs stay in place by default
26 on(D,P,t) :- on(D,P,t-1), not -on(D,P,t).
27

28 % restrict output to moves
29 #show move/4.

Listing 3.3.2. Incremental ToH encoding

Example 3.3.4. We now switch back to the ToH problem as presented in the intro-
duction in Chapter 1 and give an encoding in Listing 3.3.2 to solve the problem using
clingo’s multi-shot solving.

Note the additional directives starting with keyword #program in Lines 1, 5, and 12.
Such program directives gather the following rules up to the next program directive or
the end of the file. They give rise to parametrizable programs associated with the name
and parameters following the keyword; parameters are enclosed in parenthesis, which
can be omitted for empty parameter tuples. In our example, we have program Pbase
without parameters, and programs Pcheck and Pstep with parameter t. Note that unlike in
Example 3.3.2, we do not need a parameter to refer to the previous time step because the
clingo language supports arithmetic operations; we can simply use t-1, instead.

The incremental grounding of the ToH encoding is handled using the Python script
in Listing 3.3.3, which is enclosed within #script (python) and #end. We delay a
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1 #script (python)
2

3 from clingo.symbol import Number, Function
4

5 def main(ctl):
6 step, ret, query = 0, None, None
7 while ret is None or not ret.satisfiable:
8 parts = [("check", [Number(step)])]
9 if query is not None:

10 ctl.release_external(query)
11 parts.append(("step", [Number(step)]))
12 else:
13 parts.append(("base", []))
14 ctl.ground(parts)
15 query = Function("query", [Number(step)])
16 ctl.assign_external(query, True)
17 ret, step = ctl.solve(), step + 1
18 #end.
19

20 #program check(t).
21 #external query(t).

Listing 3.3.3. Embedded Python code for incremental solving

description of this script until we have introduced the necessary operations to capture its
semantics. Note, though, the #external directive in Line 21, which provides a convenient
syntax to define external input atoms. It corresponds to the rule r′

10 from Example 3.3.3
and is part of the Pcheck program. We separate this directive from the encoding to be able
to use the script to incrementally solve related problems.

Forgoing extended language constructs not supported by our simple language, we call
create with files containing the instance, encoding, and script for the ToH problem in
Listings 1.0.1a, 3.3.2, and 3.3.3 to obtain the collection of parametrizable extensible
programs (Pn)n∈N for N = {base, check, step}. Note that the rules in Listing 1.0.1a are
not subject to a program directive. Such rules are by default added to program Pbase.
Thus, the initial program state is

((Pn)n∈N , (∅, ∅, ∅), (∅, ∅), ∅).

Note that the module associated with the state is still empty. We have to ground programs
first to extend the module.

Function ground instantiates selected programs from the collection P for designated
parameters. The resulting module is then used to extend the module of the current
system state. We below assume that the join is always compositional; the clingo system



3.3. MULTI-SHOT SOLVING 40

reports an error if condition (8) is violated and might report unexpected additional stable
models if condition (9) is violated.4

ground((n, cn)n∈N ′) : (P 1,P1, (IC 1, JC 1), A1) 7→ (P 2,P2, (IC 2, JC 2), A2)
for a collection of program names and tuples of constants to ground where
• P 2 is the collection of programs obtained from P 1 by extending the signatures

of its programs with the constants in cn for all n ∈ N ′,
• (G, I, J) = GroundModuleIC1,JC1(P1,

⋃
n∈N ′ Pn[kn/cn]) where kn are the pa-

rameters of program Pn and ((Pn)n∈N ) = P 2,
• P2 = P1 ⋊⋉ G,
• (IC 2, JC 2) = (IC 1, JC 1) ⊔ (I, J), and
• A2 = A1 ∩ JI where JI are the inputs of P2.

Note that the join P1 ⋊⋉ G turns some of the input atoms of P1 to output atoms. We
subtract these atoms from the atoms A1 to ensure that A2 is a subset of the input atoms
of P2.

The next function is used to change the truth value of input atoms.
assign(a, v) : (P ,P, (IC , JC ), A1) 7→ (P ,P, (IC , JC ), A2)

for a ground atom a and a truth value v ∈ {t, f} where

• A2 =
{

A1 ∪ {a} if v = t and a is an input of P,
A1 \ {a} otherwise.

This function provides the only means to set an input atom to true; the default truth value
for input atoms is false. Furthermore, note that calling this function with a non-input
atom does not change the system state; their truth values cannot be fixed using this
function.

The next function removes the input status from an atom.
release(a) : (P ,P1, (IC , JC ), A1) 7→ (P ,P2, (IC , JC ), A2)

for a ground atom a where
• A2 = A1 \ {a} and

• P2 =
{
P1 ⋊⋉ (∅, ∅, {a}) if a is an input of P1,
P1 otherwise.

Again note that the function only affects input atoms, which become output atoms in
the resulting system state. This operation permanently sets released atoms to false. The
advantage over simply setting the atom to false is that the system can simplify its internal
state, completely removing the atom from it.

Finally, operation solve outputs the stable models of the current module filtered by
the atoms in A while leaving the system state unchanged.
solve() : (P ,P, (IC , JC ), A) 7→ (P ,P, (IC , JC ), A)

outputs all stable models X of P such that A ⊆ X and X ∩ (JI \A) = ∅ where JI
are the inputs of P.

4The solver translates a logic program into an internal representation for solving and afterwards
discards the logic program to reduce the system’s memory consumption. The internal representation
does not store enough information to detect cycles.
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1 $ clingo instance.lp encoding.lp script.lp 0
2 clingo version 5.5.2
3 Reading from instance.lp ...
4 Solving... Solving... Solving... Solving...
5 Solving... Solving... Solving... Solving...
6 Solving... Solving... Solving... Solving...
7 Solving... Solving... Solving... Solving...
8 Answer: 1
9 move(1,a,b,1) move(2,a,c,2) move(1,b,c,3) move(3,a,b,4)

10 move(1,c,a,5) move(2,c,b,6) move(1,a,b,7) move(4,a,c,8)
11 move(1,b,c,9) move(2,b,a,10) move(1,c,a,11) move(3,b,c,12)
12 move(1,a,b,13) move(2,a,c,14) move(1,b,c,15)
13

14 Models : 1
15 Calls : 16
16 Time : 0.10s (Solving: 0.02s 1st Model: 0.00s Unsat: 0.02s)
17 CPU Time: 0.09s

Listing 3.3.4. Clingo output for incremental ToH example

Note that we can alternatively capture the stable models output by solve by the module
P ⋊⋉ ({a← | a ∈ A}, ∅, JI ) where JI are the inputs of P; the resulting join has no input
atoms.

Example 3.3.5. Here we show how the script in Listing 3.3.3 is processed by clingo.
The example proceeds similar to Example 3.3.2 by first grounding programs Pbase and
Pcheck for time step 0 and then grounding programs Pstep and Pcheck for time steps i > 0.

The script defines a main function in Lines 5 to 17. This main function replaces the
default behavior of clingo to read, ground, and solve a given program. If a main function
is given in a script, the system only reads a program from the given input files and then
calls the main function with a Control object corresponding to a system state with a
collection of parametrizable extensible programs read from the input files. Remember
Example 3.3.4, where we describe how the initial state S is created by reading the programs
in Listings 1.0.1a, 3.3.2, and 3.3.3. Next, we describe how the script proceeds from this
state.

In the first iteration of the loop in Lines 7 to 17, ground is called with the list
[("base", []), ("check", Number(0))]. The Control object changes its state to

S′
0 = ground(((base, ()), (check, (0))))(S).

At this point, the input atom query(0) to enable/disable the goal check is false. Before
solving, we change its truth value in Line 16 to true and enter the state

S0 = assign(query(0), t)(S′
0)

We then proceed in Line 3.3.2 with computing stable models using the solve operation.
The problem is unsatisfiable and the loop enters the next iteration.
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At each iteration i > 0 of the loop, we first release the external atom query(i − 1)
entering state

S′′
i = release(query(i− 1))(Si−1),

and then call ground with the list [("step", [Number(i)]), ("check", Number(i))].
The Control object changes its state to

S′
i = ground(((step, (i)), (check, (i))))(S′′

i ).

Before solving, the current query atom is set to true and we enter state

Si = assign(query(i), t)(S′′
i ).

This process is repeated until the problem becomes satisfiable. Note that our incremental
solving mode cannot detect if an instance of our ToH problem is unsatisfiable (for example,
with less than three pegs only the top-most disc can be moved). The loop in Lines 7 to 17
never steps for such instances.

We depict the output of the clingo system for our example problem in Listing 3.3.4.
Observe that the output is similar to that of the introductory example in Listing 1.0.3.
We see additional lines Solving... for each solve call and, also, the number of such
calls in the short summary at the end. The reported stable model (limited to atoms over
predicate move) corresponds exactly to the one in Listing 1.0.3.

3.3.3 Summary. In Section 2.3, we present clingo’s multi-shot solving approach
complementing ASP’s declarative input language by procedural control capacities. This
is accomplished within a single integrated grounding and solving process in which a
program may evolve over time. A program is dynamically extended via grounding. Parts
of the grounded program can then be enabled, disabled, or removed via external input
atoms. We capture the semantic underpinnings of our approach in terms of module
theory and present a state based characterization of the clingo API. The procedural
control is exercised via traditional programming languages. Currently, the clingo API is
available for Lua, Python, C, C++ and also for Java, Rust, Prolog, Haskell via external
projects. Our framework is geared toward real world applications balancing declarative
expressiveness with high performance implementation. To achieve this goal, we cannot
arbitrarily extend a program. The evolution of a program is governed by module theory.
A system state is captured by a module consisting of a program decorated with its input
and output. This module can be extended with further modules given that the modules
are compositional. As a result, the high level clingo API allows us to address a wide range
of problems including unrolling a transition function as in planning [48], interacting with
an environment as in robotics [8,16] or stream reasoning [19], interacting with a user
exploring a domain [94], theory solving [104], and advanced forms of search [23]. Our
multi-shot solving approach is unique in the field of ASP. While the approach in [33]
incrementally grounds a program, it reinitializes the solver at each step.

3.4 Temporal solving

Representing and reasoning about dynamic systems is a key problem in Artificial
intelligence and beyond. Accordingly, various formal systems have arisen including calculi
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for reasoning about actions and change [128], and temporal logics [57]. In ASP, this is
reflected by action languages [97] and recently introduced temporal extensions to the
stable model semantics [3]. On the one hand, action languages provide a clean and elegant
way to describe transition systems via so-called static and dynamic laws. Although, they
are typically translated to ASP, they lack its rich modeling language. Hence, dynamic
problems are often modeled directly in ASP by explicitly representing time points and
bounding the maximum number of transitions between states of a transition system. The
ToH example from the previous section is an example. On the other hand, temporal
extensions of the stable model semantics used to deal with models that are infinite
sequences of states. This rules out computation by ASP technology and is unnatural
to model planning problems where we are only interested in finite sequences of states
leading from an initial to some goal state.

In Section 2.5, we define stable models for temporal formulas corresponding to
sequences of states—so-called traces. The semantics rests upon a combination of the logic
of Here and There [99, HT] and Linear Temporal Logic over finite traces [44, LTLf ].
Although, we discuss traces of infinite length in [29], we solely focus on finite traces here.
We introduce temporal programs whose semantics is defined via temporal formulas and
develop a prototypical system based on multi-shot solving techniques from Section 3.3
to compute their stable models. We illustrate how to model the ToH example from
Chapter 1 using temporal programs and solve it using the developed system.

3.4.1 Background. A temporal formula over an alphabet A is defined inductively
as follows:

• a ∈ A and ⊥ are temporal formulas,
• ⊙F is a temporal formula if F is a temporal formula and ⊙ ∈ {‚, ˝},
• F ⊙ G is a temporal formula if F and G are temporal formulas, and ⊙ ∈
{∨,∧,→, ·̋ , ·̨ , ‚̋· , ˛̨·}.

We refer to ‚, ‚̋· and ˛̨· as previous, trigger and since, and to ˝, ·̋ and ·̨ as next, release
and until.

We define the derived Boolean connectives ¬F = ⊥ → F and ⊤ = ¬⊥. Furthermore,
we define the following derived temporal operators:

‚̋F = ⊥ ‚̋· F always before ˝F = ⊥ ·̋ F always afterward
˛̨F = ⊤ ˛̨· F eventually before ˛F = ⊤ ·̨ F eventually afterward

I = ¬‚⊤ initial F = ¬˝⊤ final
ˆ̨̨F = ˛̨(I ∧ F ) initially ˆ̨F = ˛(F ∧ F ) finally
‚̂F = I ∨ ‚F weak previous ˆ̋F = F ∨ ˝F weak next

A (finite) trace of length n ≥ 0 over an alphabet A is a sequence (X)0≤i≤n of sets such
that each Xi ⊆ A. In the following, we are interested in temporal stable models of formulas,
which are traces that satisfy a set of temporal formulas as well as a minimality/derivability
criteria formally defined in Section 2.5.

Similar to the previous sections, we introduce a simplified version of the material in
Section 2.5 to present the main ideas and concepts. Thus, we consider a simple class of
temporal formulas that have a straight-forward mapping to the incremental programs
introduced in Section 3.3.
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Let Σ be a signature. A temporal atom over Σ has form a, ‚a, or ˆ̨̨a where a is an
atom over Σ. A temporal literal over Σ is either formula F, or has form a or ¬a for a
temporal atom a over Σ. A temporal program over Σ consists of temporal rules over Σ of
form

h← B(11)
ˆ̋˝(h← B)(12)
˝(h← B)(13)

where h is an atom over Σ and B is a set of temporal literals over Σ. Rules of
form (11), (12), and (13) are called initial, dynamic, and always rules, respectively.

We define instances of temporal rules in in analogy to Section 3.1 for programs. An
instance of a temporal rule is obtained by substituting constants from its signature for
all its variables. We use Γ(P ) to denote the set of all instances of rules in a temporal
program P .

The semantics of temporal programs is given via a translation to temporal formulas.
We translate a temporal program P into a temporal formula over the atom base of P
using translation ϕ as follows:

ϕ(h← B) =
∧
l∈B

l→ h,

ϕ(˝r) = ˝ϕ(r),
ϕ(ˆ̋˝r) = ˆ̋ϕ(˝r), and

ϕ(P ) = {ϕ(r) | r ∈ Γ(P )}.

As in Section 2.5, the temporal stable models of temporal program P are the temporal
stable models of ϕ(P ).

Observe that initial rules of form (11) over standard literals are syntactically equivalent
to standard rules. In fact, temporal stable models of length zero of a set of such rules
directly correspond to their standard stable models. Thus, we can see standard programs
as temporal programs that consist of initial rules only. Dynamic rules of form (12) apply
to all but the initial time step. Such rules can be used to specify how to transition from
one time step to the next. For example, in our ToH example, we can encode the inertia
of discs as follows:

ˆ̋˝(o(D, P )← ‚o(D, P ),¬no(D, P )).

Always rules of form (13) not just apply to the initial time point but to all time points.
We can express for example that solutions of our ToH problem have to be consistent:

˝(f ← ¬f , o(D, P ), no(D, P )).

Note that an always rule ˝r can equivalently be written using the initial and dynamic
rules r and ˆ̋˝r.

To compute temporal stable models, we use multi-shot solving as introduced in
Section 3.3. We translate a temporal program P over a signature Σ into a collection
of parametrizable programs over signature Σ′. The signature Σ′ is obtained from Σ
by incrementing the arities of predicates in Σ by one. Furthermore, we add a fresh
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predicate f with arity 1 and fresh constants t and t′ for parameters. We define the
translation τ as follows:

τ(p(t)) = p(t, t),
τ(‚p(t)) = p(t, t′),
τ(ˆ̨̨p(t)) = p(t, 0),

τ(F) = f(t),
τ(¬a) = ¬τ(a),

τ(h← B) = τ(h)← {τ(l) | l ∈ B}, and
τ(P ) = (Pn)n∈{init,dynamic,always}

where

Pinit = {τ(r) | r ∈ P},
Pdynamic = {τ(r) | ˆ̋˝r ∈ P}, and

Palways = {τ(r) | ˝r ∈ P} ∪ {f(t)← ϵ}.

are parametrizable extensible programs with parameters t and t′.
Next, we use the translation τ and the state based operations from Section 3.3 to

obtain states capturing the temporal stable models of a temporal program. We inductively
define states in such a way that a state Si captures all temporal stable models of length
i ≥ 0 of a temporal program. Given a temporal program P , we let

S′′
0 = (ϕ(P ), (∅, ∅, ∅), (∅, ∅), ∅)

S′
0 = ground(((init, (−1, 0)), (always, (−1, 0))))(S′′

0 ),
S0 = assign(f(0), t)(S′

0)

and for i > 0

S′′
i = release(f(i− 1))(Si−1),

S′
i = ground(((always, (i− 1, i)), (dynamic, (i− 1, i))))(S′′

i ),
Si = assign(f(i), t)(S′′

i ).
Then, the current and grounded module when obtaining states Si are compositional, and
there is a one-to-one correspondence between the temporal stable models of length n of
temporal program P and the stable models output by solve(Sn). That is, a temporal stable
model (Xi)0≤i≤n corresponds to the stable model {p(t, i) | p(t) ∈ Xi, 0 ≤ i ≤ n}∪{f(n)}
as output by solve.

Example 3.4.1. We show how to use temporal programs to obtain temporal stable
models specifying solutions of our simplified ToH example.

Since initial rules are syntactically equivalent to standard rules, we use the rules
(without time parameter) in program Pbase \ {r3} from Example 3.3.2 as initial rules.
From rule r3, we remove the time parameter and use rule r′′

3 in Listing 3.4.1. We next
turn to the dynamic rules r′′

4 , r′′
5 , r′′

6 , and r′′
7 in Listing 3.4.1. These rules correspond

to rules r′
4, r′

5, r′
6, and r′

7 from program Pstep in Example 3.3.2. As compared to the
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o(D, P )← init(D, P )(r′′
3)

ˆ̋˝(m(D, P )← ¬nm(D, P ), ‚o(D, P ′), ˆ̨̨ne(P ′, P ))(r′′
4)

ˆ̋˝(nm(D, P )← ¬m(D, P ), ‚o(D, P ′), ˆ̨̨ne(P ′, P ))(r′′
5)

ˆ̋˝(o(D, P )← m(D, P ))(r′′
6)

ˆ̋˝(o(D, P )← ‚o(D, P ),¬no(D, P ))(r′′
7)

˝(no(D, P )← o(D, P ′), ˆ̨̨ne(P ′, P ))(r′′
8)

˝(f ← ¬f , o(D, P ), no(D, P ))(r′′
9)

Listing 3.4.1. Simplified temporal ToH encoding

standard rules, we omit time parameters in these rules applying operator ‚ to literals
referring to the previous time point and operator ˆ̨̨ to literals referring to the initial time
point. In the same way, we obtain the always rules r′′

8 and r′′
9 from rules r′

8 and r′
9 in

program Palways.
Furthermore, observe that the states Si to capture temporal stable models are defined

similarly as in Example 3.3.5. In fact, the only difference is that (for technical reasons)
initial rules additionally receive a time parameter in the translation, the parameter names
differ, and that atom query(i) is called f (i). Thus, it is easy to see that states for the
same length i have corresponding stable models for our example programs.

3.4.2 Temporal solving. We now develop a simplified version of the telingo system
that supports temporal programs as input. To represent temporal programs, we use
#program directives to partition rules in initial, dynamic and always rules. For con-
venience, we also treat rules in the default base program as initial rules. This allows
us to use problem instances across clingo and telingo. For example, we can use the
ToH instance from Listing 1.0.1a without change in telingo. The ‚ and ˆ̨̨ operators are
represented by preceding an atom with a prime and an underscore, respectively. To
encode the F operator, we use clingo’s theory language (in a limited form), which allows
us to precede an identifier with an ampersand.

Example 3.4.2. Similar to Example 3.3.4, we forgo extended language constructs not
supported by our simple temporal programs and give an encoding for the ToH problem in
telingo syntax in Listing 3.4.2.

Unlike in Example 3.4.1, we have to resort to the available clingo syntax to represent
temporal operators. Initial rules are given in Lines 1 to 3, always rules in Lines 5 to 11,
and dynamic rules in Lines 13 to 27. To encode the temporal operators ‚ and ˆ̨̨, we
change the semantics of some of clingo’s identifiers. For example, in Line 15, we write
'on(D,P) instead of ‚on(D, P ) and, in Line 7, we write _on(D,P) instead of ˆ̨̨on(D, P ).
In Line 11, we write &final instead of F making use of clingo’s theory language extension.
Also note that we support #show statements to limit the output as used in Line 30.

In the following, we draw on material from Section 2.4 using clingo’s API to implement
a simplified version of the telingo system. In particular, we use clingo’s abstract syntax
tree (AST) to transform a temporal program into an incremental one. We rewrite the
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1 #program initial.
2 % establish initial situation
3 on(D,P) :- init(D,P).
4

5 #program always.
6 % uniqueness of location: a disc can only be on one peg
7 -on(D,Q) :- on(D,P), _peg(Q), P!=Q.
8

9

10 % ensure that the goal was reached
11 :- &final, _goal(D,P), not on(D,P).
12

13 #program dynamic.
14 % choose discs to move
15 { move(D,P,Q) } :- 'on(D,P), _peg(Q), P!=Q.
16

17 % there must be at most one move per time step.
18 :- #count { D,P,Q: move(D,P,Q) } > 1.
19 % only the topmost disc can be moved
20 :- move(D,P,_), 'on(E,P), D>E.
21 % a disc can only be put on larger discs
22 :- move(D,_,Q), 'on(E,Q), D>E.
23

24 % effects: change the location of the moved disc
25 on(D,Q) :- move(D,_,Q).
26 % inertia: discs stay in place by default
27 on(D,P) :- 'on(D,P), not -on(D,P).
28

29 % restrict output to moves
30 #show move/3.

Listing 3.4.2. Temporal ToH encoding

AST using the Transformer class, which implements the visitor pattern to transform
nodes in the AST of a program. Since we have to rewrite the input program, we cannot
use an embedded script as in Section 3.3 and rather use clingo’s Application class to
customize how a program is parsed, grounded, solved and its solutions are output. We
split the implementation of our simplified telingo system into three parts: a transformer
to handle temporal atoms, a transformer to handle temporal literals and temporal rules,
and an application class to implement parsing, grounding, solving and output.

We proceed bottom up and begin by implementing translation τ for temporal atoms
in Listing 3.4.3. The AtomTransformer in the listing derives from clingo’s Transformer
class, which implements a visitor that allows us to change the AST of a clingo pro-
gram. The transformer recursively visits each node of an AST. We implement function
visit_Function in Lines 18 to 22, which is called whenever the transformer visits a node
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1 from clingo.symbol import Function, Number
2 import clingo.ast as ast
3

4 class AtomTransformer(ast.Transformer):
5 def _prm(self, fun, loc):
6 if fun.startswith('_'):
7 return fun[1:], ast.SymbolicTerm(loc, Number(0))
8

9 if fun.startswith("'"):
10 prm = ast.BinaryOperation(
11 loc, ast.BinaryOperator.Minus,
12 ast.SymbolicTerm(loc, Function('__t')),
13 ast.SymbolicTerm(loc, Number(1)))
14 return fun[1:], prm
15

16 return fun, ast.SymbolicTerm(loc, Function('__t'))
17

18 def visit_Function(self, trm):
19 fun, prm = self._prm(trm.name, trm.location)
20 trm = trm.update(name=fun)
21 trm.arguments.append(prm)
22 return trm

Listing 3.4.3. Transformer to rewrite atoms

of type function. Note that atoms in clingo share the same syntax as terms, thus, they
are represented using function terms. Our transformer only visits the outermost function
term, transforms it, and then stops further processing. Remember that translation τ
for temporal atoms simply appends a time parameter to the arguments of an atom.
Helper function _prm determines the time parameter and strips operators encoded in the
function name. The result of this function is then used to update the function name
and its parameters in Lines 20 and 21, respectively. Our helper function proceeds as
follows. In Lines 6 to 7, we handle functions starting with an underscore representing
operator ˆ̨̨ and return the function name stripped from its initial underscore together
with term 0 to refer to the initial time step. For example, given function name "_on",
the function returns a pair consisting of string "on" and term 0. In Lines 9 to 14, we
proceed similarly but return the term __t-1 to refer to the previous time step. Note
that we precede the parameter with two underscores; this a convention to avoid conflicts
with other identifiers used in encodings. For example, given function name "'on", the
function returns a pair consisting of string "on" and term __t-1. In Line 9, we simply
return term __t to refer to the current time step. For example, given function name
"on", the function returns a pair consisting of string "on" and term __t.

We next turn to the ProgramTransfomer class in Listing 3.4.4. This class is re-
sponsible to translate temporal atoms, final operators, #program directives, and #show
statements. Function visit_SymbolicAtom in Lines 31 to 32 is used to translate temporal
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25 import clingo.ast as ast
26

27 class ProgramTransformer(ast.Transformer):
28 def __init__(self):
29 self.atf = AtomTransformer()
30

31 def visit_SymbolicAtom(self, atm):
32 return atm.update(symbol=self.atf(atm.symbol))
33

34 def visit_TheoryAtom(self, atm):
35 if atm.term.name == 'final':
36 loc = atm.location
37 prm = ast.SymbolicTerm(loc, Function('__t'))
38 fun = ast.Function(loc, "__final", [prm], False)
39 return ast.SymbolicAtom(fun);
40 return atm
41

42 def visit_Program(self, prg):
43 nms = ('base', 'initial', 'always', 'dynamic')
44 if prg.name in nms:
45 pms = [ast.Id(prg.location, '__t')]
46 return prg.update(parameters=pms)
47 return prg
48

49 def visit_ShowSignature(self, sig):
50 return sig.update(arity=sig.arity + 1)

Listing 3.4.4. Transformer to rewrite programs

atoms using the AtomTransformer from Listing 3.4.3; it simply adds a time parame-
ter to the atom. For example, 'on(D,P) representing the temporal atom ‚on(D, P )
is translated to on(D,P,__t). Function visit_TheoryAtom in Lines 34 to 40 replaces
the theory atom &final to represent F by the ordinary atom __final(t). We again
use two underscores to mark this atom for internal use. Function visit_Program in
Lines 42 to 47 adds a time parameter to the program directives base, initial, always, and
dynamic to gather the respective temporal rule types. Note that we also consider the
base program here, which is treated the same way as the initial program. For example,
the directive #program dynamic is replaced by #program dynamic(__t). Finally, in
Lines 49 to 50, we implement visit_ShowSignature to adjust #show statements by
incrementing their arity by one. This is necessary because the arity of all predicates
increased by one by adding a time parameter. With this, we can reuse clingo’s output
functionality to only show selected atoms. For example, the directive #show move/3 is
replaced by #show move/4.

Our simplified telingo system is implemented in Listing 3.4.5 using the classes from
Listings 3.4.3 and 3.4.4. We define the TelApp class deriving from clingo’s Application
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53 from clingo.application import clingo_main, Application
54 from clingo.symbol import Function, Number, SymbolType
55 import clingo.ast as ast
56 from sys import exit, stdout
57

58 class TelApp(Application):
59 def print_model(self, mdl, prt):
60 tab = {}
61 for s in mdl.symbols(shown=True):
62 if s.type == SymbolType.Function and s.arguments:
63 sms = tab.setdefault(s.arguments[-1], [])
64 sms.append(Function(s.name, s.arguments[:-1]))
65 for stp, sms in sorted(tab.items()):
66 stdout.write(f" State {stp}:")
67 sig = None
68 for sym in sorted(sms):
69 if (sym.name, len(sym.arguments)) != sig:
70 stdout.write("\n ")
71 sig = (sym.name, len(sym.arguments))
72 stdout.write(f" {sym}")
73 stdout.write("\n")
74

75 def main(self, ctl, files):
76 with ast.ProgramBuilder(ctl) as bld:
77 ptf = ProgramTransformer()
78 ast.parse_files(files, lambda s: bld.add(ptf(s)))
79 ctl.add('always', ['__t'], '#external __final(__t).')
80 stp, ret, fin = 0, None, None
81 while ret is None or not ret.satisfiable:
82 pts = [('always', [Number(stp)])]
83 if fin is not None:
84 ctl.release_external(fin)
85 pts.append(('dynamic', [Number(stp)]))
86 else:
87 pts.append(('base', [Number(stp)]))
88 pts.append(('initial', [Number(stp)]))
89 ctl.ground(pts)
90 fin = Function('__final', [Number(stp)])
91 ctl.assign_external(fin, True)
92 ret, stp = ctl.solve(), stp + 1
93

94 exit(clingo_main(TelApp()))

Listing 3.4.5. Application to solve temporal programs
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1 $ python telingo.py instance.lp encoding.lp 0
2 telingo version 2.1.2
3 Reading from instance.lp ...
4 Solving... Solving... Solving... Solving...
5 Solving... Solving... Solving... Solving...
6 Solving... Solving... Solving... Solving...
7 Solving... Solving... Solving... Solving...
8 Answer: 1
9 State 0: State 1: move(1,a,b)

10 State 2: move(2,a,c) State 3: move(1,b,c)
11 State 4: move(3,a,b) State 5: move(1,c,a)
12 State 6: move(2,c,b) State 7: move(1,a,b)
13 State 8: move(4,a,c) State 9: move(1,b,c)
14 State 10: move(2,b,a) State 11: move(1,c,a)
15 State 12: move(3,b,c) State 13: move(1,a,b)
16 State 14: move(2,a,c) State 15: move(1,b,c)
17 SATISFIABLE
18

19 Models : 1
20 Calls : 16
21 Time : 0.10s (Solving: 0.04s 1st Model: 0.01s Unsat: 0.04s)
22 CPU Time: 0.10s

Listing 3.4.6. Telingo output for temporal ToH example

class. An instance of this class is then used in Line 94 to launch the telingo system. Apart
from functionality overridden in the derived class, the system behaves as clingo. We now
turn to the overridden functionality. By overriding function main, we change the way a
program is parsed, grounded, and solved. In Lines 76 to 78, we first parse the files passed
to the telingo system and then apply the ProgramTransformer developed in Listing 3.4.4
to each parsed statement captured by an AST. The remainder of the function proceeds in
a similar fashion as Listing 3.3.3 in Section 3.3. Remember that we introduced predicate
__final to capture operator F. In Line 79, we add a program to declare corresponding
atoms as external. This corresponds to the external query atom from Listing 3.3.3. The
only difference is that we add it via clingo’s API. The code in Lines 80 to 92 corresponds
to the main function in Listing 3.3.3. Only the programs to ground change. Program
base is now called initial (or base) and called with parameter __t=0, program step is
called dynamic, and program check is called always. Finally, function print_model, in
Lines 59 to 73, changes how a model is printed. The function outputs a stable model of
the rewritten program as a temporal stable model by listing atoms state by state.

Example 3.4.3. In Listing 3.4.6, we show the output of running the script in
Listings 3.4.3 to 3.4.5 run with the encodings in Listings 1.0.1a and 3.4.2.

Observe that the output closely resembles the one in Listing 3.3.4 of Example 3.3.5.
The only difference is how the model is printed. In fact, the output would be equal if we
had not overridden function print_model.
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3.4.3 Summary. We have sketched the design and implementation of an ASP
system extended by constructs from Linear Temporal Logic. The logical foundations of
this approach were laid in Section 2.5, where we introduce Temporal Equilibrium Logic
for finite traces, TELf , based on the logic of Here and There and Linear Temporal Logic
for finite traces. In Section 2.5, we prove that there is a simple normal form for TELf

motivating our definition of temporal programs. We have drawn on these foundations by
designing a corresponding extension of the ASP system clingo. The described prototypical
implementation reflects the one of the actual telingo system. Moreover, it illustrates the
great practical value of clingo’s AST that allows for clean and easy extensions of ASP
systems and, also, how multi-shot solving can be used as a solving infrastructure for
sophisticated forms of reasoning such as temporal reasoning.

From a modeling perspective, temporal programs have several advantages as compared
to the incremental solving mode introduced in Section 3.3. This can be seen comparing
the encodings for the ToH problem presented in this and the previous section. For
one, the encoding is more declarative because we do not have to explicitly model time
points using integers. For another, we only permit operators referring to the past in rule
bodies. This ensures that temporal programs can be translated to modular incremental
programs. In Section 2.5, we further extend this class to so called present-centered
temporal programs. This class permits to use temporal operators referring to the future
in rule heads and the past in rule bodies, and arbitrary temporal operators in constraints.

In conclusion, we obtain a system offering an expressive and semantically well
founded language for modeling dynamic systems in ASP implemented using existing
solving technology.

3.5 Theory solving

Answer set programming has become an established paradigm to solve combinatorial
search problems. Despite its versatility, it sometimes falls short in handling non-Boolean
domains. In particular, this applies to problems involving constraints over large integer
domains. An example class for such problems are scheduling problems [39] where tasks
have to be assigned to time points meeting a set of constraints, like limited processing
resources and deadlines to finish tasks. The problem here is that explicitly modeling time
points in ASP results in large ground programs and more compact representations, like
binary encodings for integers, harm the search efficiency. In Section 2.4, we address this
shortcoming by providing the means to implement generic theory reasoning. This spans
from theory grammars to extend the input language to theory propagators to extend the
search itself. We have already seen how to extend clingo’s input language in Section 3.4.
In this section, we show how to extend clingo’s search to propagate difference constraints
over integer variables and illustrate how such constraints can be used to encode the flow
shop scheduling problem [137].

Section 2.6 comprises the work in [104], presenting three different systems to extend
clingo with constraints over integers and even floating point numbers, namely, clingo[lp],
clingo[dl], and clingcon. The former supports linear constraints over floating point
numbers relying on external LP solvers [43], while the latter two systems implement
specialized algorithms for integer constraints tightly integrated into clingo’s search.
However, all three systems build upon clingo’s infrastructure for theory propagation. In
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the following, we develop a simplified version of the clingo[dl] system supporting rules
with difference constraints in their heads. Even though the system only offers a restricted
form of constraints, it is particularly well suited for solving scheduling programs.

3.5.1 Background. We begin by extending the programs introduced in Section 3.1
with difference constraints. A dl-atom has form

a− b ≤ c(14)

where a and b are term tuples, and c is a term optionally preceded by a minus sign. A
dl-program is a set of rules of form

h← B(15)

where h is an atom or dl-atom and B is a set of body literals.
We say that a ground dl-atom of form (14) is well-formed if c is an integer; ground

atoms are well-formed. An instance of a rule is obtained by replacing all variables in it
by constants such that its head is well-formed. The grounding Γ(P ) for a dl-program
P is defined as in Section 3.1 using the above instance definition. Further notions, like
interpretations and stable models defined for programs in Section 3.1, are extended to
dl-programs by treating ground well-formed dl-atoms like atoms.

We now define the semantics of dl-programs. An interpretation is dl-consistent if
there is a mapping λ from tuples of constants to integers such that for all dl-atoms of
form (14) in the interpretation, we have λ(a) − λ(b) ≤ c. Given a dl-program P , an
interpretation is a dl-stable model of P if it is a dl-consistent stable model of P .

Example 3.5.1. In the following, we consider the permutation flow shop problem
about scheduling the tasks t1, . . . , tn on processing units u1, . . . , um for n, m > 0 in such a
way that the tasks are processed within a given time budget b. Each task ti takes time di,j

to be processed on a processing unit uj. A schedule λ mapping a task and machine pair
to a positive integer is subject to the following conditions:

(1) λ(t, u) ≤ λ(t′, u) implies λ(t, u′) ≤ λ(t′, u′) for all tasks t and t′, and units u
and u′, that is, the tasks are processed in the same order on all machines,

(2) λ(ti, uk) + di,k ≤ λ(tj , uk) or λ(tj , uk) + dj,k ≤ λ(ti, uk) for all units uk, and
tasks ti and tj with i ̸= j, that is, no two tasks can run at the same time on a
unit, and

(3) λ(ti, uj) + di,j ≤ λ(ti, uk) for all tasks ti, and units uj and uk with j < k, that
is, a task has to be processed on a unit before going to the next one,

(4) λ(ti, uj) + di,j ≤ b for all tasks ti and units uj, that is, all tasks have to finish
within the given budget.

We use the instance depicted in Figure 3.5.1 with n = 3 tasks and m = 2 units. As
given in the first column, we have the tasks t1, t2, and t3. The processing times of a task
are given by the colored squares where lighter shades capture the duration on unit u1 and
darker shades the duration on unit u2. We have d1,1 = 3, d2,1 = 1, d3,1 = 5, d1,2 = 4,
d2,2 = 6, and d3,2 = 5.
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durations
tasks unit u1 unit u2

t1
t2
t3

Figure 3.5.1. Flowshop instance with bound 16

unit first solution second solution
t2 < t3 < t1 t2 < t1 < t3

u1

u2

Figure 3.5.2. Solutions for flowshop example

We represent this problem using the following facts:

b(16) t(1) t(2) t(3)
u(1) d(1, 1, 3) d(2, 1, 1) d(3, 1, 5)
u(2) d(1, 2, 4) d(2, 2, 6) d(3, 2, 5)

ord(1, 2) ord(2, 3)

We use atoms t(i), u(j), d(i, j, dij ), and b(b) to capture tasks ti, units uj, durations di,j,
and budget b, respectively. Furthermore, we use ord(i, i + 1) for 1 ≤ i ≤ max{n, l} to
order task and unit indices in ascending order.

To model this problem with a dl-program, we guess an order in which to process tasks.
A task is scheduled on a processing unit before succeeding tasks are scheduled on the same
unit. In Figure 3.5.2, we depict the two solutions of this form for our example instance
in Figure 3.5.1. In the first solution, we first process task t2, then task t1, and task t3 at
the end. This takes exactly 16 time units, which is the maximum our budget permits. The
solution can be verified in the picture by counting the number of squares in the picture
from left to right. The second solution has the same cost and just exchanges the order in
which the last two tasks from the previous solution are processed.
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Next, we encode the problem as a dl-program:

a(S, T )← ¬na(S, T ), t(T ), t(S)(r1)
na(S, T )← ¬a(S, T ), t(T ), t(S)(r2)

assigned(S)← a(S, T )(r3)
f ← ¬f, t(S),¬assigned(S)(r4)

eq(T, T )← t(T )(r5)
f ← ¬f, a(S, T ), a(S, T ′),¬eq(T, T ′)(r6)

(S, U)− (S′, U) ≤ −D ← a(S, T ), t(S′), ord(S, S′), d(T, U, D)(r7)
(S, U)− (S, U ′) ≤ −D ← a(S, T ), u(U ′), ord(U, U ′), d(T, U, D)(r8)

(s)− (S, U) ≤ 0← t(S), u(U)(r9)
(S, U)− (e) ≤ −D ← t(S), u(U)(r10)

(e)− (s) ≤ B ← b(B)(r11)

We use atom a(s, i) to assign tasks ti to slots 1 ≤ s ≤ n; a task assigned to a slot s is
processed before a task assigned to slot s′ if s < s′. The assignment is encoded in rules r1
to r6. Rules r1 and r2 guess an assignment of tasks to slots, rules r3 and r4 ensure that
at least one task is assigned to a slot, and rules r5 and r6 ensure that at most one task is
assigned to a slot. This assignment is then used in the following rules to derive dl-atoms
that ensure properties (1) to (4) for schedules. We use tuples (s, i) to capture the starting
time of a task assigned to slot s on unit ui. With this, rule r7 encodes properties (1)
and (2), and rule r8 encodes property (3). Furthermore, we use tuples (s) and (e) to
capture start and end times, which according to rule r11 must be no more than b time
units apart. Rules r9 and r10 encode that all starting and finishing times of tasks on units
must be greater or equal to the start and less or equal to the finishing times, respectively.
Thus, rules r9 to r11 ensure property (4).

For our example instance, this encoding has the two dl-stable models

{a(1, 2), a(2, 3), a(3, 1)} and {a(1, 2), a(2, 1), a(3, 3)},

restricted to atoms over predicate a, corresponding to the solutions in Figure 3.5.2.

3.5.2 Theory specification. We now show how to use clingo’s input language to
specify difference constraints. The input language provides syntax for theory specifications
to define theory atoms that can be used in rules. A theory specification consists of a list
of theory term and theory atom definitions. The former specify which kind of terms can
be used in theory atoms. The latter specify which kind of theory atoms can be used
in rules. For a formal description, we refer to Section 2.4. Here, we only explain the
theory specification in Listing 3.5.1 to extend a program with difference constraints in
rule heads.

The code in Lines 2 to 10 is an example for a theory term definition. It has name
term and contains a set of operator definitions within braces. Each operator is associated
with a priority, an operator type, and an associativity in case of a binary operator.
An operator can be either binary or unary. Binary operators are either left or right
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1 #theory dl {
2 term {
3 - : 3, unary;
4 ** : 2, binary, right;
5 * : 1, binary, left;
6 / : 1, binary, left;
7 \\ : 1, binary, left;
8 + : 0, binary, left;
9 - : 0, binary, left

10 };
11 &diff/0 : term, {<=}, term, head
12 }.

Listing 3.5.1. Difference logic theory

1 b(16). u(1). u(2).
2 t(1). d(1,1,3). d(1,2,4).
3 t(2). d(2,1,1). d(2,2,6).
4 t(3). d(3,1,5). d(3,2,5).

Listing 3.5.2. Facts for flowshop instance in Figure 3.5.1

associative. Using this theory term definition, we can construct theory terms like

(S,U)-(s,U+1) or S+U+2*D.

The precedence and associativity of operators ensures that the second term uniquely
corresponds to the term (S+U)+(2*D). Furthermore, note that the first term can be
used on the left hand side of a difference constraint while the second cannot. A theory
term definition only describes the operators that can be used to construct theory terms,
additional checks have to performed programmatically using the clingo API.

The code in Line 11 is an example for a theory atom definition. It allows us to
construct theory atoms with atoms over predicate diff with arity 0 as name using theory
terms specified by theory term definition term as elements. Furthermore, we can use
<= and a theory term specified by theory term definition term as guard. Finally, the
theory atom is restricted to occur in rule heads via label head. Using this theory atom
definition, we can construct theory atoms like

&diff { (S,U)-(s,U+1) } <= -D or
&diff { S+U+2*D } <= -D.

As above, invalid difference constraints like the second one have to be discarded program-
matically.

Example 3.5.2. We now have the necessary syntax to compactly encode the flow
shop problem from Example 3.5.1 in Listings 3.5.2 and 3.5.3 using clingo’s rich input
language.
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1 1 { a(S,T) : t(S) } 1 :- t(T).
2 1 { a(S,T) : t(T) } 1 :- t(S).
3

4 &diff { (S,U)-(S+1,U) } <= -D :- a(S,T), d(T,U,D), t(S+1).
5 &diff { (S,U)-(S,U+1) } <= -D :- a(S,T), d(T,U,D), u(U+1).
6 &diff { 0-(S,U) } <= 0 :- a(S,T), u(U).
7 &diff { (S,U)-0 } <= B-D :- a(S,T), d(T,U,D), b(B).
8

9 #show a/2.

Listing 3.5.3. Encoding for flowshop problem

In Lines 1 to 2, we encode the assignment from tasks to slots using aggregates. The
rules in line Lines 4 and 5 correspond to rules r7 and r8 from Example 3.5.1, respectively.
The rules in Lines 6 to 7 correspond to rules r9 to r11. Note that the term 0 in the
difference constraint is used like tuple (s) in rules r9 and r11. In fact, clingo[dl] treats
this value specially when outputting mappings witnessing dl-consistency. We delay further
details until we have described the output of our simplified clingo[dl] implementation for
this example. Furthermore, we do not need to introduce tuple (e) because we can subtract
the duration from the bound in Line 7 combining rules r10 and r11.

When we pass the programs in Listings 3.5.2 and 3.5.3 along with the theory from
Listing 3.5.1 to clingo, we obtain 6 stable models—one for each assignment of tasks to
slots. In the following, we show how to use the API to implement a propagator to discard
stable models that are not dl-consistent.

3.5.3 Theory solving. The algorithmic approach to ASP solving modulo theories
of clingo is based on Conflict-Driven Constraint Learning (CDCL). From a high-level
point of view, clingo’s solving component translates a ground program into a set of
nogoods or constraints implicitly capturing a set of nogoods [79]. The solving component
then tries to find assignments that satisfy this set of nogoods. Nogoods and assignments
are sets of literals where a set of nogoods is satisfied by an assignment if none of them is
a subset of the assignment. Each satisfying assignment corresponds to a stable model of
the original program.

To implement a particular theory, the clingo API offers the propagator interface that
can be implemented by a custom propagator to implicitly represent a set of nogoods.
In our difference constraint propagator, a nogood consists of literals referring to theory
atoms that cannot be satisfied at the same time. The propagator implicitly captures
the set of all such nogoods and informs the solver at key points about them. These
key points are determined by the backtracking-based search for satisfying assignments.
The search proceeds by incrementally extending an assignment via unit propagation and
backtracking as soon as it determines that an assignment can no longer be extended to a
valid solution (that is, as soon as a nogood conflicts with the current assignment). The
propagator interface provides two methods to customize this process. Method propagate
is called whenever an assignment is extended with literals relevant to the propagator.
In our simple difference constraint propagator, we only use this function to inform the
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solver about nogoods that became conflicting, forcing the solver to backtrack. It is also
possible to inform the solver about unit resulting nogoods, which we do not discuss
here; further information can be found in [40]. Method undo is called whenever the
solver backtracks. For performance reasons, we incrementally update the state of the
propagator during propagation. Here, we simply reset the state taking back changes
done during propagation until a point is reached from which the search can continue. For
details, we refer to Section 2.6.

Our example propagator for difference constraints in Listing 3.5.4 implements the
algorithm presented in [40]. The idea is that deciding whether a set of difference
constraints is satisfiable can be mapped to a graph problem. Given a set of difference
constraints, let (V, E) be the weighted directed graph such that V is the set of variables
occurring in the constraints and E the set of weighted edges (u, v, d) for each constraint
u− v ≤ d. The set of difference constraints is satisfiable if the corresponding graph does
not contain a negative cycle (that is, a cycle whose sum of edge labels is negative). The
Graph class is responsible for cycle detection; we refrain from giving its code and rather
concentrate on describing its interface:

• Function add_edge adds an edge of form (u, v, d) to the graph. If adding an
edge to the graph leads to a negative cycle, the function returns the cycle in
form of a list of edges; otherwise, it returns None. Furthermore, each edge added
to the graph is associated with a decision level. This additional information is
used to backtrack to a previous state of the graph, whenever the solver has to
backtrack to recover from a conflict.
• Function backtrack takes a decision level as argument. It removes all edges

added on that level from the graph.
• The class internally maintains a mapping from nodes to integers. This mapping

can be turned into a mapping from terms to integers witnessing dl-consistency.
Function get_assignment returns this mapping in form of a list of pairs of
terms and integers.

The difference constraint propagator implements the Propagator interface in List-
ing 3.5.4 in Lines 113 to 157; it features aspects like incremental propagation and
backtracking, while supporting solving with multiple threads, and multi-shot solving.
Whenever the set of edges associated with the current partial assignment of a solver
induces a negative cycle and, hence, the corresponding difference constraints are unsat-
isfiable, it adds a nogood forbidding the negative cycle. To this end, it maintains data
structures for detecting whether there is a conflict upon addition of new edges. More
precisely, the propagator has three data members:

(1) The _l2e dictionary in Line 115 maps solver literals for difference constraint
theory atoms to their corresponding edges,

(2) the _e2l dictionary in Line 116 maps edges back to solver literals, and
(3) the _states list in Line 117 stores for each solver thread its current graph with

the edges assigned so far.
Function init in Lines 119 to 128 sets up watches as well as the dictionaries _l2e and

_e2l. To this end, it traverses the theory atoms over predicate &diff in Lines 120 to 128.
Note that the loop simply ignores other theory atoms treated by other propagators. In
Lines 122 to 124, we extract the edge from the theory atom. Each such atom is associated



3.5. THEORY SOLVING 59

113 class DLPropagator(Propagator):
114 def __init__(self):
115 self._l2e = {}
116 self._e2l = {}
117 self._states = []
118

119 def init(self, init):
120 for a in init.theory_atoms:
121 if a.term.name == "diff" and not a.term.arguments:
122 u = _eval(a.elements[0].terms[0].arguments[0])
123 v = _eval(a.elements[0].terms[0].arguments[1])
124 w = _eval(a.guard[1]).number
125 l = init.solver_literal(a.literal)
126 self._l2e.setdefault(l, []).append((u, v, w))
127 self._e2l.setdefault((u, v, w), []).append(l)
128 init.add_watch(l)
129

130 def _state(self, thread_id):
131 while len(self._states) <= thread_id:
132 self._states.append(Graph())
133 return self._states[thread_id]
134

135 def _lit(self, ctl, edge):
136 for lit in self._e2l[edge]:
137 if ctl.assignment.is_true(lit):
138 return lit
139

140 def propagate(self, ctl, changes):
141 state = self._state(ctl.thread_id)
142 level = ctl.assignment.decision_level
143 for lit in changes:
144 for edge in self._l2e[lit]:
145 cycle = state.add_edge(level, edge)
146 if cycle is not None:
147 c = [self._lit(ctl, e) for e in cycle]
148 ctl.add_nogood(c) and ctl.propagate()
149 return
150

151 def undo(self, thread_id, amt, changes):
152 self._state(thread_id).backtrack(amt.decision_level)
153

154 def on_model(self, model):
155 amt = self._state(model.thread_id).get_assignment()
156 model.extend([Function("dl", [var, Number(value)])
157 for var, value in amt])

Listing 3.5.4. Propagator for difference constraints
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160 class DLApp(Application):
161 program_name = "clingo-dl"
162 version = "1.0"
163

164 def __init__(self):
165 self._propagator = DLPropagator()
166

167 def on_model(self, model):
168 self._propagator.on_model(model)
169

170 def main(self, ctl, files):
171 ctl.register_propagator(self._propagator)
172 ctl.load("dl-theory.lp")
173

174 for path in files:
175 ctl.load(path)
176 if not files:
177 ctl.load("-")
178

179 ctl.ground([("base", [])])
180 ctl.solve(on_model=self.on_model)
181

182

183 sys.exit(int(clingo_main(DLApp(), sys.argv[1:])))

Listing 3.5.5. Application to solve dl-programs

with a solver literal, obtained in Line 125. The mappings between solver literals and
corresponding edges are then stored in the _l2e and _e2l dictionaries in Lines 126
and 127. In Line 128 of the loop, a watch is added for each solver literal at hand, so that
the solver calls function propagate whenever the edge has to be added to the graph.

Function propagate, given in Lines 140 to 149, accesses ctl.thread_id in Line 141
to obtain the graph associated with the active thread. The loops in Lines 143 to 149
then iterate over the list of changes and associated edges. In Line 145, each such edge is
added to the graph. If adding the edge produces a negative cycle, a nogood is added in
Line 148. Because an edge can be associated with multiple solver literals, we use function
_lit retrieving the first solver literal associated with an edge that is true, to construct
the nogood forbidding the cycle. Given that the solver has to resolve the conflict and
backtrack, the call to add_nogood always returns false, so that propagation is stopped
without processing the remaining changes any further.

Given that each edge added to the graph in Line 3.5.3 is associated with the current
decision level, the implementation of function undo in Lines 151 to 152 is straight-forward.
It calls function backtrack on the solver thread’s graph to remove all edges added on
the current decision level.



3.5. THEORY SOLVING 61

1 $ python script.py instance.lp encoding.lp 0
2 clingo-dl version 1.0
3 Reading from instance.lp ...
4 Solving...
5 Answer: 1
6 dl((1,1),0) dl((2,1),1) dl((3,1),6)
7 dl((1,2),1) dl((2,2),7) dl((3,2),12)
8 a(1,2) a(2,3) a(3,1)
9 Answer: 2

10 dl((1,1),0) dl((2,1),1) dl((3,1),4)
11 dl((1,2),1) dl((2,2),7) dl((3,2),11)
12 a(1,2) a(2,1) a(3,3)
13 SATISFIABLE
14

15 Models : 2
16 Calls : 1
17 Time : 0.02s (Solving: 0.01s 1st Model: 0.0s Unsat: 0.0s)
18 CPU Time: 0.02s

Listing 3.5.6. Clingo[dl] output for flow shop example

Listing 3.5.5 shows the application that registers our propagator and addresses
grounding and solving. Lines 170 to 180 implement a customized main function. The
difference to clingo’s regular one is that a propagator for difference constraints is registered
in Line 171 and the theory description from Listing 3.5.1 is added in Line 172. Loading of
the input files, grounding, and solving then follow as usual. Note that the solve function
in Line 180 takes a model callback as argument. Whenever a dl-stable model is found,
this callback adds symbols to it representing a mapping witnessing the satisfiability of its
associated difference constraints. The additional symbols are printed as part of clingo’s
default output.

Example 3.5.3. Running our simplified version of clingo[dl] using the code in
Listings 3.5.4 and 3.5.5 produces the output as given in Listing 3.5.6. Observe that the
two reported solutions correspond to the ones given in Figure 3.5.2 where the start times
of jobs are given by the symbols over function dl. Furthermore, note that the mapping
does not mention the term 0. The graph class makes sure that this term is always mapped
to zero and omits it from the output.

3.5.4 Summary. To illustrate the theory reasoning framework of clingo, we have
sketched the design and implementation of an ASP system extended by difference
constraints. The prototypical system reflects the actual clingo[dl] system, which has
been used to successfully solve challenging scheduling problems. One prominent example
is the scheduling of trains at the Swiss railway company for a railway network of about
200km with 500 train lines [1]. The system builds upon clingo’s API for theory solving,
which much like SAT modulo theory [14, SMT] solving allows for extending ASP with
custom theories. Theory reasoning includes the whole ASP solving process from the
input language to grounding and solving. In particular, problems can be modeled using
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clingo’s high level modeling language enriched with additional domain specific constraints.
While systems to extend ASPs solving capabilities exist [15,105,114,117], they rely
on translations to foreign languages including the aforementioned SMT. As such, they
do not benefit from the advanced solving capabilities offered by clingo, like (projected)
solution enumeration[91], search for optimal models [7], or heuristic modification [90].
To date, clingo[dl] and clingcon [12] are the only ASP-based systems with support for
integer constraints that are integrated tightly into a CDCL-based search algorithm to
offer high performance solving and advanced reasoning modes.

3.6 Conclusion

In this thesis, we presented major aspects of the design and implementation of the
clingo ASP system. Its high-level input language allows for modeling a wide range of
combinatorial search problems. The language is tailored to compactly encode problems
supporting disjunctive programs with aggregates. Its semantics is firmly rooted in logic
and we have shown the correctness of the grounding algorithms employed by the clingo
system. Based on this foundation, we developed an application programmable interface
(API) that allows for embedding clingo into applications and to implement advanced forms
of reasoning. We demonstrated the usefulness of the API by developing systems that offer
advanced functionality not directly available in ASP. This includes the clingo[dl] system
to solve problems with integer constraints and the telingo system that adds temporal
operators to ASP.

3.7 Future work

In Section 3.1, we presented clingo’s input language. Its design was driven by the
applications of our group and feedback from researchers. In particular, theory extensions
were developed to make it possible to rapidly develop systems like clingcon, clingo[dl]
or telingo. This can be seen in the long development of the clingcon system. The
first versions of this system were forks of clingo that were difficult to maintain because
they relied on low-level interfaces and needed adjustments with each update of clingo.
Recent versions build on clingo’s theory specification language (and stable API) to avoid
such problems. However, currently, the specification language only allows for defining
simple term grammars. Future revisions of the language might provide more expressive
grammars to ease the development of theory extensions. Another route is to extend
the expressiveness of the language itself. This might include adding further aggregate
constructs or lifting restrictions on safety to allow for writing more compact encodings.
Moreover, the clingo language contains many features not covered by the ASP-Core-2
standard. Future revisions of the standard might adopt language features from clingo.

In Section 3.3, we presented multi-shot solving allowing to incrementally ground and
solve a program. A program can be extended with another program given that they
are compositional. This requirement forbids recursion among both programs. It would
be possible to lift this restriction. For example, incremental graph-based problems that
inherently require recursion could benefit from such an extension.

In Sections 3.4 and 3.5, we presented clingo’s API for building ASP-based systems.
One possible future extension that came up in applications like clingo[dl] and clingcon is
the need to configure the solver’s decision heuristics to select literals for branching. When



3.7. FUTURE WORK 63

constraints are implicitly captured by theories, the solver cannot initialize its decision
heuristics based on such constraints. This might be remedied by providing interfaces giving
the developer of a theory the means to inform the solver about important literals. Another
aspect is the grounding of theory atoms. Currently, theory atoms are grounded according
to a grammar without applying on-the-fly simplifications. The size of the grounding might
be reduced by providing interfaces to apply simplifications while grounding. Furthermore,
variables occurring in theory atoms have to be bound by positive literals for a rule to be
safe. In some theories, for example in the telingo system, terms in theory atoms refer
to actual atoms that could be used for providing matches. Interfaces to more tightly
integrate theory atoms into the grounding process would extend the class of safe programs
and allow for writing more compact encodings.
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