
Modern Constraint Answer Set Solving

Dissertation
von

Max Ostrowski

zur Erlangung des akademischen Grades
Doktor der Naturwissenschaften (Dr. rer. nat.)

in der Wissenschaftsdisziplin
“Wissensverarbeitung und Informationssysteme”

eingereicht an der
Mathematisch-Naturwissenschaftlichen Fakultät

der Universität Potsdam

angefertigt am 2. März 2018, Institut für Informatik
Professur Wissensverarbeitung und Informationssysteme

betreut von Prof. Dr. Torsten Schaub

Abstract

Answer Set Programming (ASP) is a declarative problem solving approach, combining a
rich yet simple modeling language with high-performance solving capabilities. Although
this has already resulted in various applications, certain aspects of such applications
are more naturally modeled using variables over finite domains, for accounting for
resources, fine timings, coordinates, or functions. Our goal is thus to extend ASP
with constraints over integers while preserving its declarative nature. This allows for
fast prototyping and elaboration tolerant problem descriptions of resource related
applications. The resulting paradigm is called Constraint Answer Set Programming
(CASP).

We present three different approaches for solving CASP problems. The first one, a
lazy, modular approach combines an ASP solver with an external system for handling
constraints. This approach has the advantage that two state of the art technologies
work hand in hand to solve the problem, each concentrating on its part of the problem.
The drawback is that inter-constraint dependencies cannot be communicated back
to the ASP solver, impeding its learning algorithm. The second approach translates
all constraints to ASP. Using the appropriate encoding techniques, this results in a
very fast, monolithic system. Unfortunately, due to the large, explicit representation
of constraints and variables, translation techniques are restricted to small and mid-
sized domains. The third approach merges the lazy and the translational approach,
combining the strength of both while removing their weaknesses. To this end, we
enhance the dedicated learning techniques of an ASP solver with the inferences of the
translating approach in a lazy way. That is, the important knowledge is only made
explicit when needed.

By using state of the art techniques from neighboring fields, we provide ways to
tackle real world, industrial size problems. By extending CASP to reactive solving,
we open up new application areas such as online planning with continuous domains
and durations.

Zusammenfassung

Die Antwortmengenprogrammierung (ASP) ist ein deklarativer Ansatz zur Problemlö-
sung. Eine ausdrucksstarke Modellierungssprache erlaubt es, Probleme einfach und
flexibel zu beschreiben. Durch sehr effiziente Problemlösungstechniken, konnten bereits
verschiedene Anwendungsgebiete erschlossen werden. Allerdings lassen sich Probleme
mit Ressourcen besser mit Gleichungen über Ganze oder Reelle Zahlen lösen, anstatt
mit reiner Boolescher Logik. In dieser Arbeit erweitern wir ASP mit Arithmetik über
Ganze Zahlen zu Constraint Answer Set Programming (CASP). Unser Hauptaugen-
merk liegt dabei auf der Erweiterung der Modellierungssprache mit Arithmetik, ohne
Performanz oder Flexibilität einzubüßen.

In einem ersten, bedarfsgesteuertem, modularen Ansatz kombinieren wir einen
ASP Solver mit einem externen System zur Lösung von ganzzahligen Gleichungen. Der
Vorteil dieses Ansatzes besteht darin, dass zwei verschiedene Technologien Hand in
Hand arbeiten, wobei jede nur ihren Teil des Problems betrachten muss. Ein Nachteil
der sich daraus ergibt ist jedoch, dass Abhängigkeiten zwischen den Gleichungen nicht
an den ASP Solver kommuniziert werden können. Das beeinträchtigt die Lernfähigkeit
des zu Grunde liegenden Algorithmus. Der zweite von uns verfolgte Ansatz übersetzt die
ganzzahligen Gleichungen direkt nach ASP. Durch entsprechende Kodierungstechniken
erhält man ein sehr effizientes, monolithisches System. Diese Übersetzung erfordert
eine explizite Darstellung aller Variablen und Gleichungen. Daher ist dieser Ansatz nur
für kleine bis mittlere Wertebereiche geeignet. Die dritte Methode, die wir in dieser
Arbeit vorstellen, vereinigt die Vorteile der beiden vorherigen Ansätze und überwindet
ihre Kehrseiten. Wir entwickeln einen lernenden Algorithmus, der die Arithmetik
implizit lässt. Dies befreit uns davon, eine möglicherweise riesige Menge an Variablen
und Formeln zu speichern, und erlaubt es uns gleichzeitig dieses Wissen zu nutzen.

Das Ziel dieser Arbeit ist es, durch die Kombination hochmoderner Technologien,
industrielle Anwendungsgebiete für ASP zu erschliessen. Die verwendeten Techniken
erlauben eine Erweiterung von CASP mit reaktiven Elementen. Das heißt, dass das
Lösen des Problems ein interaktiver Prozess wird. Das Problem kann dabei ständig
verändert und erweitert werden, ohne dass Informationen verloren gehen oder neu
berechnet werden müssen. Dies eröffnet uns neue Möglichkeiten, wie zum Beispiel
reaktives Planen mit Ressourcen und Zeiten.

Selbstständigkeitserklärung
Hiermit erkläre ich, dass ich die vorliegende Arbeit selbstständig angefertigt, nicht
anderweitig zu Prüfungszwecken vorgelegt und keine anderen als die angegebenen
Hilfsmittel verwendet habe. Sämtliche wissentlich verwendeten Textausschnitte, Zitate
oder Inhalte anderer Verfasser wurden ausdrücklich als solche gekennzeichnet.

Potsdam, 2. März 2018

Max Ostrowski

Acknowledgments
This is for all people, constantly asking “Are you still not finished with your PhD?” —
It is done. At last.

First and foremost, I would like to thank my supervisor Prof. Dr. Torsten Schaub
for his continuous support. He manages a great team of researchers, while respecting
various ways of living and working and never even bothered when you had to take
care of your child or simply work from home. Also, this work would not have been
possible without the daily chat with my colleagues, quite some of them I call friends
now. Finally, and most importantly, I thank my wife and friends for supporting me
all the time.

This work was partially funded by DFG grant SCHA 550/9.

Contents

1 Introduction 3
1.1 Contributions . 4
1.2 Outline . 7

2 Background 9
2.1 Constraint Answer Set Programming 10
2.2 Logic Programs . 10
2.3 Constraint Satisfaction Problems . 12
2.4 Constraint Stable Models . 13

3 Constraint Answer Set Programming via Conflict Driven Constraint
Learning 15
3.1 Boolean Constraint Solving . 16
3.2 Basic Conflict Driven Constraint Learning 20
3.3 Architecture . 23
3.4 Extended Conflict Driven Constraint Learning 26
3.5 Reason and Conflict Reduction . 29
3.6 Implementation Techniques . 33

3.6.1 Lazy Reasons . 33
3.6.2 Global Constraints . 34
3.6.3 Initial Lookahead . 34
3.6.4 Optimization . 35

3.7 Evaluation . 35
3.8 Conclusion . 41

4 Encoding Constraint Satisfaction Problems 43
4.1 Normalizing Constraints . 44
4.2 Encoding Linear Constraints . 45
4.3 Nogoods of Constraint Satisfaction Problems 47
4.4 Encoding Constraint Satisfaction Problems 50

4.4.1 Encoding Constraint Answer Set Programs 57
4.5 Evaluation . 58
4.6 Conclusion . 61

5 Lazy Nogood and Variable Generation 63
5.1 Constraint Stable Models in Terms of Propagators 63
5.2 System Design . 65

5.2.1 Architecture . 65
5.2.2 Language . 66
5.2.3 Algorithms . 70

5.3 Distinguished Features . 78
5.4 Evaluation . 86

6 Multi-Shot Constraint Answer Set Programming 101
6.1 Multi-Shot Solving . 101
6.2 Incremental Programs . 102
6.3 Incremental 𝑁 -Queens . 103
6.4 Planning with Durations . 108

7 Related Work 111
7.1 Logic Programs Modulo Theories . 111
7.2 Comparing Different Semantics and Systems 112

8 Conclusion 123

List of Figures

2-1 Workflow of ASP. 9

3-1 Architecture of clingcon 1 + 2. 25
3-2 Evaluating filtering techniques wrt. conflict size.. 39
3-3 Evaluating filtering techniques wrt. runtime. 39

4-1 Architecture of aspartame. 44
4-2 A graphical representation of the linear constraint 𝑥+ 𝑦 ≤ 7. 46

5-1 Architecture of clingcon 3. 65

List of Tables

3.1 Computing the stable model {light , night , switchOn, 𝑥 < 7, 𝑥 ≥ 22}
with CDCL(𝑃1). 24

3.2 Conflict analysis of {Tlight ,F{switchOn},F{∼night}}. 24
3.3 Comparing clingo 2.0.2, adsolver, and clingcon 1. 36
3.4 Evaluating lazy nogood generation within clingcon. 37
3.5 Evaluating filtering techniques. 40
3.6 The effects of theory propagation wrt. runtime. 40
3.7 Initial Lookahead (I.L.). 41

4.1 Experiments comparing different encodings with sugar. 59
4.2 Experiments comparing different encodings for alldifferent. 60

5.1 Order literals of different views of one variable. 78
5.2 Constraint logic programs using reified T(𝑥 > 7) ⇔ 𝑥 > 7 and half-

reified T(𝑥 > 7)′ ⇒ 𝑥 > 7 constraints. 84
5.3 Default configuration D of clingcon 3.2.0. 87
5.4 Comparison of different features of clingcon 3.2.0 on the benchmark

set of the minizinc competition 2015. Shown are scores of how often a
configuration is better than another. Bold numbers indicate the best
configuration for the benchmark class. 88

5.5 Comparing clingcon 3.2.0 DT with different state of the art CP solvers
on the minizinc competition 2015 benchmark set. 93

5.6 Comparison of different CASP systems on the two dimensional strip
packing problem. 95

5.7 Comparison of different CASP systems on the incremental scheduling
problem. 98

5.8 Comparison of different CASP systems on the weighted sequence problem. 99
5.9 Comparison of different CASP systems on the reverse folding problem. 100

6.1 Comparison of different incremental 𝑛-queens programs. 107

7.1 Feature comparison of different systems. 113

Chapter 1

Introduction

Answer Set Programming (ASP;[15, 87, 95]) is a declarative problem solving approach,
combining a rich yet simple modeling language with high-performance solving capa-
bilities. This approach has already resulted in various applications. Among them,
a decision support systems for NASA shuttle controllers [7, 98], product configura-
tion [111], scheduling [70], timetabling [12], shift design [1] and various reasoning tools
in systems biology [16, 65]. However, certain aspects of such applications are more
naturally modeled using variables over finite domains, accounting for resources, fine
timings, coordinates, or functions. Consider a complex planning problem, where the
task is to schedule different machines, each of them consuming and producing goods,
while at the same time using energy. All these resources, like runtime, power, fuel and
storage can hardly be handled using purely propositional approaches, as a problem
inherent to all these solving approaches is the grounding bottleneck. That is, the
need to explicitly represent every combination of values in a constraint. Therefore, a
dedicated treatment of variables and constraints over integers is needed, as done in
constraint processing (CP;[38, 106]).

Our goal is to extend ASP with constraints over integers while preserving its declar-
ative nature and excellent performance. The resulting paradigm is called Constraint
Answer Set Programming (CASP) and can be used for fast prototyping of elaboration
tolerant problem descriptions of resource related applications. Groundbreaking work
on enhancing ASP with CP techniques for handling (integer) arithmetics was con-
ducted in [19, 90, 91]. Based on firm semantical underpinnings, this approach provides
a family of ASP languages parameterized by different constraint classes. While [19]
develops a high-level algorithm viewing both ASP and CP solvers as black boxes, [91]
embeds a black-boxed CP solver into a traditional, backtracking based ASP solver.
This resulted in two approaches to handle ASP with constraints. Unfortunately,
neither of them uses elaborated conflict-driven learning techniques from Satisfiability
Checking (SAT;[23, 94]), and therefore is not matching the performance of state of the
art problem solving solvers. We address this problem and propose several alternative
ways to combine modern ASP and CP solving techniques to handle CASP problems.

1.1 Contributions

This thesis focuses on CASP and how to solve problems within this paradigm. Our
goal is to conserve the declarative nature and elaboration tolerance of ASP and develop
refined techniques to tackle real world, industrial problems. Therefore, we concentrate
on state of the art solving techniques like learning algorithms as well as modeling
techniques such as multi-shot solving. We now present the four main parts of our
contribution, all of them published.

Constraint Answer Set Programming via Conflict Driven Constraint Learn-
ing We define CASP, pursuing a semantic approach that is based on a propositional
language rather than a multi-sorted, first-order language, as used in [19, 90, 91].
This allows us to use conflict-driven constraint learning (CDCL;[62]) technology for
solving propositional problems. These learning algorithms are the state of the art
solution to Boolean satisfiability problems and have been well researched since the
mid-90s. We use and extend these sophisticated algorithms for solving CASP problems.
Our extension follows the so-called lazy approach of advanced Satisfiability Modulo
Theories (SMT;[97]) solvers by abstracting from the constraints in a specialized theory.
The idea is as follows. During solving, the ASP solver passes its (partial) information
to a CP solver, which checks the implied constraints via constraint propagation. As a
result, it either signals that no solution exists or, if possible, extends the knowledge
base of the ASP solver. To facilitate learning within the ASP solver, however, each
inference must be justified by providing a “reason” for the underlying algorithms. Yet,
to the best of our knowledge, this is not supported by off-the-shelf CP solvers.1

We show the correctness of our approach by proving the relation between the defi-
nition of CASP and its characterization using Boolean propositions. As a consequence,
we develop an algorithmic framework for conflict-driven ASP solving that integrates
CP solving capabilities while overcoming the aforementioned difficulty. This results
in the system clingcon 1, outperforming previous approaches. Additionally, it can
handle optimization over constraint variables and global constraints. In a second step,
the algorithmic framework is extended by filtering techniques based on Irreducible
Inconsistent Sets (IIS;[68, 120]). This technique strengthens the provided conflicts
and improves the learning capabilities of the whole approach.

Encoding Constraint Satisfaction Problems For solving Constraint Satisfac-
tion Problems (CSPs), the preferred method is not so clear and new approaches have
been developed during the last years. Having a standard, non-learning CP solver has
the benefit of supporting special (global) constraint propagators for various kinds of
constraints. An implicit variable/domain representation supports huge or even infinite
domains. On the other hand, encoding finite linear CSPs as propositional formulas
and solving them by using modern solvers for SAT [73] has proven to be a highly
effective approach by the award-winning sugar 2 system. This system transforms a

1 Advanced SMT solvers, like [97], address this through handcrafted theory solvers.
2 http://bach.istc.kobe-u.ac.jp/sugar

Introduction 4 Contributions

http://bach.istc.kobe-u.ac.jp/sugar

CSP into a propositional formula in Conjunctive Normal Form (CNF). The translation
relies on the order encoding [31, 116], and the resulting CNF formula can be solved
by an off-the-shelf SAT solver. We elaborate upon an alternative approach based on
ASP and present the resulting aspartame3 framework. It constitutes an ASP-based
CP solver similar to sugar. The major difference between sugar and aspartame rests
upon the implementation of the translation of CSPs into Boolean constraint problems.
While sugar implements a translation into CNF in Java, aspartame starts with a
translation into a set of facts. These facts are combined with a general-purpose ASP
encoding for CP solving (also based on the order encoding), to be solved by an ASP
solver. We extend the used techniques to provide an ASP library for solving CASP.

Lazy Nogood and Variable Generation Our first approach presented in this
section used to handle CASP consists of a learning ASP solver in combination with
a non-learning CP solver. Without learning algorithms, such CP solvers rest upon
an implicit variable representation. It permits huge domains and thus avoids the
grounding bottleneck, but also restricts information exchange which impedes the
CDCL algorithm used by the learning ASP solver. On the other hand, the translation
approach, encoding CASP using ASP, explicitly represents integer variables and
therefore benefits from the full power of CDCL. The granularity induced by this
representation provides accurate conflict and propagation information. The downside
of this is its limited scalability due to the size of the translation. We therefore present
an approach combining the use of CDCL with an explicit representation that overcomes
the named weaknesses of the two approaches. Inspired by the work of [44, 99, 118], we
are using dedicated propagators to implicitly represent the encoding of the constraints
and create the necessary propositions and variables whenever needed. Hence, we
neither need to make the constraints nor the variables explicit a priori but create
them on demand. In combination with a generic, declarative theory language and
sophisticated preprocessing techniques, we provide a full fledged implementation of
a modern CASP solver, named clingcon 3. We evaluate our system and compare it
with state of the art CP and CASP solvers. Also, we provide a tool for translating
CP benchmarks in the minizinc format into the internal ASP format. This enables
the CASP community to take advantage of a whole new class of benchmarks.

Multi-Shot Constraint Answer Set Programming Multi-shot ASP solving [57,
58, 59] is about solving continuously changing logic programs in an operative way.
This can be controlled via reactive procedures that loop on solving while reacting, for
instance, to outside changes or previous solving results. Such reactions may entail the
addition or retraction of rules that the operative approach can accommodate by leaving
the unaffected program parts intact within the solver. This avoids re-grounding and
benefits from heuristic scores and constraints learned over time. Evolving constraint
logic programs can be extremely useful in dynamic applications to add new resources,
set observed variables, and add or relieve restrictions on capacities. To extend multi-
shot solving to CASP, clingcon 3 allows us to add and delete constraints in order

3 https://potassco.org/labs/2016/09/20/aspartame.html

Introduction 5 Contributions

https://potassco.org/labs/2016/09/20/aspartame.html

to capture evolving CSPs. New resources can be added using additional constraint
variables and domains. While restricting variables by adding constraints and rules
to the constraint logic program is easy, increasing their capacity is not. The key to
this is lazy variable generation that allows us to avoid making huge domains explicit.
For this purpose, we start with a virtually maximum domain that is restrained by
retractable constraints. The domain is then increased by relaxing these constraints.
After providing an example, we present a first approach to plan with durations using
the presented techniques. Therefore, we took an extended version of the famous Yale
shooting problem considering actions with durations.

We conclude the thesis with a comparison of different approaches to constraint
answer set solving by contrasting around 20 systems.

Publications Most parts of this thesis have been published in international journals
and proceedings of international conferences. We give below the chapters and the
respective publications. Note that several additions like theorems and proofs have
been made to the publications. Definitions and declarations have been unified.

Chapter 2 and 3

∙ M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In
P. Hill and D. Warren, editors, Proceedings of the Twenty-fifth International
Conference on Logic Programming (ICLP’09), volume 5649 of Lecture Notes in
Computer Science, pages 235–249. Springer-Verlag, 2009

∙ M. Ostrowski and T. Schaub. ASP modulo CSP: The clingcon system. Theory
and Practice of Logic Programming, 12(4-5):485–503, 2012

Chapter 4

∙ M. Banbara, M. Gebser, K. Inoue, M. Ostrowski, A. Peano, T. Schaub, T. Soh,
N. Tamura, and M. Weise. aspartame: Solving constraint satisfaction problems
with answer set programming. In F. Calimeri, G. Ianni, and M. Truszczyński,
editors, Proceedings of the Thirteenth International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’15), volume 9345 of Lecture
Notes in Artificial Intelligence, pages 112–126. Springer-Verlag, 2015

Chapter 5 and 6

∙ M. Banbara, B. Kaufmann, M. Ostrowski, and T. Schaub. Clingcon: The next
generation. Theory and Practice of Logic Programming, 17(4):408–461, 2017

∙ T. Janhunen, R. Kaminski, M. Ostrowski, T. Schaub, S. Schellhorn, and P. Wanko.
Clingo goes linear constraints over reals and integers. Theory and Practice of
Logic Programming, 17(5-6):872–888, 2017

Introduction 6 Contributions

The development of the different solving strategies for CASP problems was inspired by
my work on different problems in systems biology, like the evolution of ontologies [100],
automated network reconstruction [45] and Boolean network identification [71, 101].

1.2 Outline

In Chapter 2, we capture the necessary background for CASP. We start with an
informal description of the workflow for using ASP and why it is necessary to extend
it to CASP. After a description of CASP, we formally introduce ASP and define
its solutions using the Gelfond-Lifschitz reduct on logic progams. Since CASP is an
amalgamation of ASP and CP, a proper definition of a CSP is given. This finally
allows us to characterize the solutions of a CASP problem as constraint stable models.

In Chapter 3, we start with a characterization of a logic program and its solutions
(stable models) using nogoods and Boolean assignments. This characterization is
extended with externals [44], and we come up with a basic CDCL algorithm for
solving such programs. To compute constraint stable models, an extension of the basic
algorithm is provided and exemplified. To improve the learning facilities of CDCL,
designated techniques are presented to improve the interplay between ASP and CP.
Finally, we propose the CASP systems clingcon 1 and clingcon 2 and evaluate their
performance wrt. previously developed CASP approaches.

In Chapter 4, we contrast the learning approach with an eager, translational
concept by translating a CSP into Boolean nogoods. After a short discourse about
normalizing non-linear constraints into linear ones, we give a concise overview of
several encoding techniques, such us direct, logarithmic, support, range, and order
encoding. As the latter enforces bound consistency on linear constraints and can
reduce tractable CSP to tractable SAT [103], we use it to characterize constraint
stable models using an ASP encoding. Therefore, CASP problems can be encoded
using exactly the same encoding. Finally, we evaluate the presented techniques and
compare them wrt. the state of the art CP solver sugar.

In Chapter 5, the learning and the translational approach are combined using lazy
nogood and variable generation. As a foundation for this approach, we characterize
solutions of CASP in terms of nogoods and propagators. This is followed by a
description of the design of the CASP solver clingcon 3, defining its architecture, input
language and algorithms. As this system represents nogoods of the order encoding
implicitly, new preprocessing techniques are developed. To assess the performance of
our approach, we start with an extensive evaluation of its features. Then, we compare
our system to state of the art CP solvers, using benchmarks from the minizinc
competition 2016. Finally, CASP benchmarks are used to evaluate and confront our
systems with other modern CASP solvers.

In Chapter 6, an extension to multi-shot ASP using CASP is presented. Given the
circumstance that lazy variable generation can handle variables with huge domains,
we elaborate on the resulting possibilities for multi-shot solving. In fact, we can add
and remove constraints as well as increase or decrease the domain of variables. We

Introduction 7 Outline

show these features using an encoding for the 𝑛-queens problem and evaluate different
techniques in terms of performance, number of atoms and nogoods. Afterwards, we
apply these techniques to encode a variant of the well known Yale shooting problem.

In Chapter 7, we conclude the thesis with an overview of related systems and
paradigms. Therefore, we start with a definition of our CASP semantics in terms of
the more general framework of ASP modulo theories. We then briefly compare it with
other CASP paradigms, namely 𝒜𝒞 [90], ℰ𝒵 [5, 9], 𝒜𝒮𝒫ℳ𝒯 [18], Here and There
with Constraints [26], and Bound Founded ASP [3, 4]. Also, several systems have
been developed and we shortly address their features and shortcomings.

Introduction 8 Outline

Chapter 2

Background

ASP combines a high level modeling language with state of the art Boolean constraint
solving technology. In this paradigm, it is unnecessary to describe how to solve the
problem but to define the problem [56, 78]. This workflow is shown in Figure 2-1. After

Problem

Logic
Program Grounder Solver Stable

Models

Solution

- - -

?

6

Modeling Interpreting

Solving

Figure 2-1: Workflow of ASP.

describing the problem, it is modeled as a logic program using first order variables. The
grounding process is responsible for replacing all occurrences of first order variables
with constants from the Herbrand universe [86]. Afterwards, the grounded program is
solved using an ASP solver, computing the stable models of it. Modern ASP solvers
are based on CDCL algorithms using nogoods. The stable models of the program can
then be interpreted as solutions to the problem.

The process of grounding enables us to use fast CDCL algorithms to solve the
problem. One drawback is the combinatorial nature of this process that can result
in a very large representation of the problem, called the grounding bottleneck. This
becomes a problem when modeling resources or functions over large, finite domains.
To partially overcome this problem, CASP uses constraints over integer or real valued
variables. One main goal of this thesis is to provide and compare efficient approaches
to overcome the grounding bottleneck using CASP.

In this chapter, we give the definitions of CASP and its prerequisites.

∙ We start with the basics of constraint logic programs and give reference to their

origin. Since constraint logic programs form a combination of logic programs
and CSPs, we:

– define logic programs and the semantics of ASP using the Gelfond-Lifschitz
reduct [66],

– present the general concept of a CSP over integer variables and its solutions,
and finally

– combine these concepts to define the semantics of constraint logic programs.

2.1 Constraint Answer Set Programming

CASP has been developed to combine the advantages of ASP and CP. Thus keeping a
declarative modeling language in combination with a very fast Boolean search engine
and extending it with capabilities to handle constraints over large domains. It has
its origins in [19, 90, 91] which have been unified in [80]. In the constraints, integer
or real valued variables in ASP programs are used and enable ASP to handle large
quantities instead of Boolean states in a natural way. It has been proven useful for
expressing constraints over resources, timings, and others. Logic programs, involving
Boolean and integer variables and constraints are called constraint logic programs.

A constraint logic program consists of a logic program 𝑃 over disjoint sets 𝒜, 𝒞
of propositional variables, and an associated CSP (𝒱 , 𝐷, 𝐶). Elements of 𝒜 and 𝒞
are referred to as regular and constraint atoms, respectively. The CSP consists of a
set of integer variables 𝒱 , a set 𝐷 of corresponding variable domains, and a set 𝐶 of
constraints.

2.2 Logic Programs

A constraint logic program 𝑃 consists of rules of the form1

𝑎0 ← 𝑎1, . . . , 𝑎𝑚,∼𝑎𝑚+1, . . . ,∼𝑎𝑛 (2.1)

where 0 ≤ 𝑚 ≤ 𝑛 and 𝑎0 ∈ 𝒜 and each 𝑎𝑖 ∈ 𝒜 ∪ 𝒞 is an atom for 1 ≤ 𝑖 ≤ 𝑛.
As an example2, consider the logic program 𝑃1:

1 We present our approach in the context of normal logic programs, though it readily applies to
disjunctive logic programs with aggregates — as does clingcon 3.

2 This example was inspired by [9].

Background 10 Constraint Answer Set Programming

Example 1

switchOn ← ∼switchOff (2.2)
switchOff ← ∼switchOn (2.3)

light ← switchOn (2.4)
light ← ∼night (2.5)
night ← (𝑥 < 7) (2.6)
night ← (𝑥 ≥ 22) (2.7)
sleep ← switchOff , night (2.8)

This program contains regular atoms switchOn, switchOff , light , night , and sleep
from 𝒜 along with the constraint atoms (𝑥 < 7) and (𝑥 ≥ 22) from 𝒞. Accordingly,
𝑥 is an integer variable in 𝒱. The programs intuitive meaning is that we can either
switch the light on or off. There is light, if we switched it on or it is not night. Despite
other opinions, we define night to be between 22:00 (10 P.M.) and 7:00 (7 A.M.). The
last line states that we can sleep if it is night and the light is switched off.

We need the following auxiliary definitions. We define head(𝑟) = 𝑎0 as the
heads of rules 𝑟 in (2.1), body(𝑟) = {𝑎1, . . . , 𝑎𝑚,∼𝑎𝑚+1, . . . ,∼𝑎𝑛} as its body, and
atom(𝑟) = {𝑎0, 𝑎1, . . . , 𝑎𝑚, 𝑎𝑚+1, . . . , 𝑎𝑛}. Moreover, we let head(𝑃) = {head(𝑟) | 𝑟 ∈
𝑃}, body(𝑃) = {body(𝑟) | 𝑟 ∈ 𝑃}, body𝑃 (𝑎) = {body(𝑟) | 𝑟 ∈ 𝑃, head(𝑟) = 𝑎}, and
atom(𝑃) = {atom(𝑟) | 𝑟 ∈ 𝑃}. While body(𝑟)+ = {𝑎1, . . . , 𝑎𝑚} denotes the positive
part of the body of a rule 𝑟, body(𝑟)− = {𝑎𝑚+1, . . . , 𝑎𝑛} denotes the negative one. We
can project body(𝑟) on a set of atoms 𝒜, written as body(𝑟)|𝒜 = (body(𝑟)+∩𝒜)∪{∼𝑎 |
𝑎 ∈ body(𝑟)− ∩ 𝒜}. If body(𝑟) = ∅, 𝑟 is called a fact. If head(𝑟) is missing, 𝑟 is called
an integrity constraint and 𝑟 stands for 𝑥 ← body(𝑟),∼𝑥 where 𝑥 is a new atom.3
Whenever 𝒞 = ∅, a constraint logic program is called a normal logic program.

In ASP, the semantics of a normal logic program 𝑃 is given by its stable models [64,
66]. These are defined using the reduct of a normal logic program. The reduct, 𝑃𝑋 , of
𝑃 relative to a set of atoms 𝑋 is defined by

𝑃𝑋 = {head(𝑟)← body(𝑟)+ | 𝑟 ∈ 𝑃, body(𝑟)− ∩𝑋 = ∅}

Note that 𝑃𝑋 is a positive program possessing a unique ⊆-minimal model (cf. [41]).
Given this, 𝑋 is a stable model of normal logic program 𝑃 , if 𝑋 itself is the ⊆-minimal
model of 𝑃𝑋 . Note that any stable model of 𝑃 is a ⊆-minimal model of 𝑃 as well,
while the converse does not hold in general. A logic program is tight, if it does not
have any cycles in its positive dependency graph

𝐺(𝑃) = (atom(𝑃), {(𝑎, 𝑏) | 𝑟 ∈ 𝑃, 𝑎 ∈ body(𝑟)+, 𝑏 ∈ head(𝑟)})

3 As syntactic sugar, a rule 𝑐← 𝑎1, . . . , 𝑎𝑚,∼𝑎𝑚+1, . . . ,∼𝑎𝑛 with a constraint atom 𝑐 ∈ 𝒞 in the
head stands for ← 𝑎1, . . . , 𝑎𝑚,∼𝑎𝑚+1, . . . ,∼𝑎𝑛,∼𝑐.

Background 11 Logic Programs

While 𝑃1 is a tight program, the program

𝑎← 𝑏

𝑏← 𝑎

is non-tight. We refer to [15] for a comprehensive introduction to ASP.
To extend this characterization to programs with constraint atoms, it is important

to realize that the truth value of such atoms is determined external to the program.
In CASP, this is reflected by the requirement that constraint atoms must not occur
in the head of rules.4 Hence, treating constraint atoms as regular ones leaves them
unfounded, which means that they would never occur in a ⊆-minimal model of 𝑃 .

2.3 Constraint Satisfaction Problems

A constraint satisfaction problem (CSP) is a triple (𝒱 , 𝐷, 𝐶), where 𝒱 is a set of
variables with respective domains 𝐷, and 𝐶 is a set of constraints. The domain of a
variable 𝑣 ∈ 𝒱 is given by D(𝑣) ∈ 𝐷. The complement of a constraint 𝑐 ∈ 𝐶 is denoted
as 𝑐. We require 𝐶 to be closed under complements. Following [38], a constraint 𝑐 is a
pair (𝑆,𝑅) consisting of a 𝑘-ary relation 𝑅 defined on a vector of variables 𝑆 ∈ 𝑉 𝑘,
called the scope of 𝑅. That is, for 𝑆 = (𝑣1, . . . , 𝑣𝑘), we have 𝑅 ⊆ D(𝑣1)× · · · ×D(𝑣𝑘).
Given that our relations have a schema, we adapt the definition of relations and tuples
used in database theory for making the ordering of values within tuples obsolete
(cf. [46, p. 141]). For our examples, we often use constraints 𝑐 of the form

𝑎1𝑣1 + · · ·+ 𝑎𝑘𝑣𝑘 ∘ 𝑏 (2.9)

where 𝑎𝑖, 𝑏 are integers, 𝑣𝑖 ∈ 𝒱 for 1 ≤ 𝑖 ≤ 𝑘 and ∘ ∈ {<,≤, >,≥,=, ̸=}. The scope of
such an arithmetic constraint can easily be obtained as 𝑐 = ((𝑣1, . . . , 𝑣𝑘), {(𝑥1, . . . , 𝑥𝑘) |
𝑎1𝑥1 + · · ·+ 𝑎𝑘𝑥𝑘 ∘ 𝑏, 𝑥𝑖 ∈ D(𝑣𝑖), 1 ≤ 𝑖 ≤ 𝑘}).

In Example 1, we have 𝑥 ∈ 𝒱 and let D(𝑥) = {0, . . . , 23}. Since we require 𝐶 to
be closed under complements, it contains both 𝑥 < 7 and its complement 𝑥 ≥ 7, as
well as 𝑥 ≥ 22 and its complement 𝑥 < 22.

An assignment C : 𝑣 ∈ 𝒱 ↦→ 𝑑 ∈ D(𝑣) satisfies a constraint 𝑐 = ({𝑣1, . . . , 𝑣𝑘}, 𝑅),
if (C(𝑣1), . . . ,C(𝑣𝑘)) ∈ 𝑅. A set 𝐶 of constraints is called conflicting, if there does
not exist an assignment C that satisfies all constraints 𝑐 ∈ 𝐶. We let satC(𝐶) denote
the set of all constraints in 𝐶 satisfied by C. Following [42], we call (C, satC(𝐶))
a configuration of (𝒱 , 𝐷,𝐶). For instance, the assignment C = {𝑥 ↦→ 5} satisfies
the constraints 𝑥 < 7 and 𝑥 < 22. Accordingly, ({𝑥 ↦→ 5}, {𝑥 < 7, 𝑥 < 22}) is a
configuration of ({𝑥}, {𝐷(𝑥)}, {𝑥 < 7, 𝑥 ≥ 7, 𝑥 ≥ 22, 𝑥 < 22}).

Moreover, we rely on the CP concept of a view. Following [108], a view on a
variable 𝑥 is an expression 𝑎𝑥+ 𝑏 for integers 𝑎, 𝑏; its image is defined as img(𝑎𝑥+ 𝑏) =
{𝑎𝑥 + 𝑏 | 𝑥 ∈ D(𝑥)}.5 Since a view 𝑎𝑥 + 𝑏 can always be replaced with a fresh

4 In alternative semantic settings, theory atoms may also occur as rule heads (cf. [53]).
5 Any linear expression with one variable can be converted to an expression of the form 𝑎𝑥+ 𝑏.

Background 12 Constraint Satisfaction Problems

variable 𝑦 along with a constraint 𝑦 = 𝑎𝑥 + 𝑏, we may use them nearly everywhere
where we would otherwise use variables. For a view 𝑣, we define lb(𝑣) and ub(𝑣)
as the smallest/largest value in img(𝑣).6 Then, prev(𝑑, 𝑣) (next(𝑑, 𝑣)) is a function
mapping a value 𝑑 to the largest (smallest) element 𝑑′ in img(𝑣) which is smaller
(larger) than 𝑑 if 𝑑 > lb(𝑣) (𝑑 < ub(𝑣)), otherwise it is −∞ (∞). In our example, we
have lb(𝑥) = 0 and ub(𝑥) = 23, and for instance prev(17, 2𝑥+ 3) = 15, next(5, 𝑥) = 6,
and prev(0, 𝑥) = −∞, respectively.

2.4 Constraint Stable Models

Given a constraint logic program 𝑃 over regular atoms 𝒜 and constraint atoms 𝒞
associated with CSP (𝒱 , 𝐷,𝐶). We identify constraint atoms in 𝒞 with constraints in
𝐶 via a function 𝛾 : 𝒞 ↦→ 𝐶. Sometimes we abuse notation and use 𝛾 to identify a set
of constraints atoms with a set of constraints. Given an assignment C : 𝒱 ↦→ 𝐷 and
the constraint logic program 𝑃 , we define the constraint reduct as

𝑃C = {head(𝑟)← body(𝑟)|𝒜 | 𝑟 ∈ 𝑃, body(𝑟) ∈ body𝐶
C(𝑃)}

where body𝐶
C(𝑃) = {body(𝑟) | 𝑟 ∈ 𝑃, 𝛾(body(𝑟)+) ∩ 𝒞 ⊆ sat𝐶(C), 𝛾(body(𝑟)−) ∩

sat𝐶(C) = ∅} is the set of bodies where all constraints are satisfied. This basically
means that all constraints are evaluated wrt. the constraint assignment and removed
from the logic program.

In our example, we associate the constraint atom (𝑥 < 7) with the constraint 𝑥 < 7,
or formally, 𝛾(𝑥 < 7) = 𝑥 < 7. The constraint assignment C = {𝑥 ↦→ 5} satisfies the
constraints {𝑥 < 7, 𝑥 < 22} ⊆ 𝐶. Its constraint reduct 𝑃C is therefore given as

switchOn ← ∼switchOff

switchOff ← ∼switchOn

light ← switchOn

light ← ∼night

night ←
sleep ← switchOff , night

We can now define the constraint stable models of a constraint logic program in
compliance with [64].

6 Note that for a view of the form 1𝑥+ 0 we have D(𝑥) = img(𝑥).

Background 13 Constraint Stable Models

Definition 1

Let 𝑃 be a constraint logic program over regular atoms 𝒜 and constraint atoms 𝒞
associated with CSP (𝒱 , 𝐷,𝐶). Furthermore, let C : 𝒱 ↦→ 𝐷 be an assignment of
integer variables and 𝑋 ⊆ 𝒜 ∪ 𝒞 a set of atoms.
Then, (𝑋,C) is a constraint stable model of 𝑃 iff 𝑋 ∩ 𝒞 = {𝑐 | 𝛾(𝑐) ∈ satC(𝐶)}
and 𝑋 ∩ 𝒜 is the ⊆-smallest model of the program (𝑃C)

𝑋 .

Accordingly, our example yields the following constraint stable models

𝑋 C

{switchOn, light} 𝑥 ∈ {7, . . . , 21}
{switchOn, light , night , (𝑥 < 7)} 𝑥 ∈ {0, . . . , 6}
{switchOn, light , night , (𝑥 ≥ 22)} 𝑥 ∈ {22, 23}
{switchOff , light} 𝑥 ∈ {7, . . . , 21}
{switchOff , night , sleep, (𝑥 < 7)} 𝑥 ∈ {0, . . . , 6}
{switchOff , night , sleep, (𝑥 ≥ 22)} 𝑥 ∈ {22, 23}

(2.10)

where 𝑥 ∈ {𝑚, . . . , 𝑛} means that either 𝑥 ↦→ 𝑚, or 𝑥 ↦→ 𝑚+ 1, . . . , or 𝑥 ↦→ 𝑛.

Background 14 Constraint Stable Models

Chapter 3

Constraint Answer Set Programming
via Conflict Driven Constraint

Learning

This chapter shows the relation of ASP to Boolean constraint solving and extends
it to the paradigm of CASP. We demonstrate one way of handling CASP problems
using state of the art techniques from SAT, ASP, and CP. In particular we show the
following.

∙ In view of our focus on computational aspects, we deal with Boolean assignments
and constraints. We give a corresponding characterization of a logic program
and its stable models.

∙ We extend this characterization to logic programs with externals and give a
definition of constraint stable models in terms of these.

∙ A description of a basic CDCL algorithm for logic programs with externals is
given and exemplified.

∙ To solve constraint logic programs, an extension of the shown algorithm is
provided that computes constraint stable models.

∙ Since the extended CDCL algorithm uses an external CP solver to handle the
constraint part of the problem, the reason and conflict handling (a core part of
CDCL) is reduced. Several techniques are presented to overcome this problem.

∙ After presenting distinguished implementation techniques of this approach, we
evaluate the system wrt. previously developed approaches to solve constraint
logic programs.

The definition of CASP, the system description of clingcon and part of its evaluation
have been published in our paper [64]. The reduction methods presented in Section 3.5
and the corresponding evaluations are detailed in [102]. An elaborate description
of ASP, the basic CDCL algorithm and its modifications were added. Finally, a

theorem establishing the relation between the constraint reduct and logic programs
with externals is given and proved.

3.1 Boolean Constraint Solving

The basic idea of CDCL-based ASP solving is to map inferences from rules as in (2.1)
to unit propagation on Boolean constraints. Our description of this approach follows
the one given in [56].

Accordingly, we represent Boolean assignments, B, over a set of atoms 𝒜 ∪ 𝒞
by sets of signed literals T𝑎 or F𝑎 standing for 𝑎 ↦→ T and 𝑎 ↦→ F, respectively,
where 𝑎 ∈ 𝒜 ∪ 𝒞. The complement of a signed literal 𝜎 is denoted by 𝜎. We define
BT = {𝑎 ∈ 𝒜∪𝒞 | T𝑎 ∈ B} and BF = {𝑎 ∈ 𝒜∪𝒞 | F𝑎 ∈ B}. We can also project an
assignment to a set of atoms B|𝒜 = {T𝑎 | 𝑎 ∈ BT ∩ 𝒜} ∪ {F𝑎 | 𝑎 ∈ BF ∩ 𝒜}. Then,
an assignment B is complete, if BT ∩BF = ∅ and BT ∪BF = 𝒜∪𝒞. For instance, the
assignment {TswitchOn,FswitchOff ,Flight ,Tnight ,Fsleep,F(𝑥 < 7),T(𝑥 ≥ 22)} is
complete wrt. the atoms in Example 1.

Boolean constraints are represented as nogoods. A nogood is a set of signed literals
representing an invalid partial assignment. A nogood 𝛿 is violated by a Boolean
assignment B whenever 𝛿 ⊆ B. A complete Boolean assignment is a solution of a set
of nogoods, if it violates none of them. Given a Boolean assignment B and a nogood
𝛿 such that 𝛿 ∖ B = {𝜎} and 𝜎 /∈ B, we say that 𝛿 is unit wrt. B and asserts the
unit-resulting literal 𝜎. For a set ∆ of nogoods and an assignment B, unit propagation
is the iterated process of extending B with unit-resulting literals until no further
literal is unit-resulting for any nogood in ∆.

With these concepts in mind, the Boolean constraints induced by a normal logic
program 𝑃 can be captured as the nogoods of its completion and loop formulas. To
define the completion, the equivalence of a body 𝛽 = {𝑝1, . . . , 𝑝𝑚,∼𝑝𝑚+1, . . . ,∼𝑝𝑛} ∈
body(𝑃) with all of its atoms is expressed in Equations 3.1 and 3.2.

𝛿(𝛽) = {F𝛽,T𝑝1, . . . ,T𝑝𝑚,F𝑝𝑚+1, . . . ,F𝑝𝑛} (3.1)

∆(𝛽) = {{T𝛽,F𝑝1}, . . . , {T𝛽,F𝑝𝑚}, {T𝛽,T𝑝𝑚+1}, . . . , {T𝛽,T𝑝𝑛} } . (3.2)

An atom 𝛽 is introduced for every body {𝑝1, . . . , 𝑝𝑚,∼ 𝑝𝑚+1, . . . ,∼ 𝑝𝑛} ∈ body(𝑃).
The corresponding literals T𝛽 and F𝛽 are called body literals.

Equations 3.3 and 3.4 handle the equivalence of all atoms 𝑎 ∈ 𝒜 with its supporting
bodies body𝑃 (𝑎) = {𝛽1, . . . , 𝛽𝑘}.

∆𝑃 (𝑎) = { {F𝑎,T𝛽1}, . . . , {F𝑎,T𝛽𝑘} } (3.3)

𝛿𝑃 (𝑎) = {T𝑎,F𝛽1, . . . ,F𝛽𝑘} . (3.4)

The Boolean constraints induced by the completion of normal logic program 𝑃

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

16 Boolean Constraint Solving

over 𝒜 can be captured as follows:

∆𝑃 ={𝛿(𝛽) | 𝛽 ∈ body(𝑃)} ∪ {𝛿 ∈ ∆(𝛽) | 𝛽 ∈ body(𝑃)} (3.5)
∪{𝛿𝑃 (𝑎) | 𝑎 ∈ atom(𝑃)} ∪ {𝛿 ∈ ∆𝑃 (𝑎) | 𝑎 ∈ atom(𝑃)}

According to [83], exponentially many loop nogoods Λ𝑃 may be needed to charac-
terize the stable models of a logic program. We therefore define:

Λ𝑃 =
⋃︀

𝑈⊆atom(𝑃),
EB𝑃 (𝑈)={𝐵1,...,𝐵𝑘}

{{T𝑎,F𝐵1, . . . ,F𝐵𝑘} | 𝑎 ∈ 𝑈} (3.6)

where EB𝑃 (𝑈) = {body(𝑟) | 𝑟 ∈ 𝑃, head(𝑟) ∈ 𝑈, body(𝑟) ∩ 𝑈 = ∅}.

Definition 2: [56]

Let 𝑃 be a normal logic program over a set of atoms 𝒜 and let B be a (unique)
solution of the set ∆𝑃 ∪ Λ𝑃 of nogoods.
Then, a set of atoms 𝑋 = BT ∩ 𝒜 is a stable model of 𝑃 .

In Example 1, the nogoods 𝛿𝑃1(switchOn) and ∆𝑃1(switchOn) are

{TswitchOn,F{∼switchOff }} and {FswitchOn,T{∼switchOff }}.

Similarly, the body {∼switchOff } of Rule (2.2) gives rise to nogoods

𝛿({∼switchOff }) = {F{∼switchOff },FswitchOff }.

and
∆({∼switchOff }) = {T{∼switchOff },TswitchOff }

Hence, once an assignment contains TswitchOn, we may derive FswitchOff via unit
propagation (using both the first and the last nogood).

To extend this characterization to programs with constraint atoms, it is important
to realize that the truth value of such atoms is determined external to the program.
For instance, in our example, we would get from both 𝛿𝑃1(𝑥 < 7) and Λ𝑃1 the nogood
{T(𝑥 < 7)}, which would set (𝑥 < 7) permanently to false. To address this issue, we
handle 𝒞 as external atoms.

Logic Programs With Externals The Boolean constraints induced by the com-
pletion of logic programs over regular atoms 𝒜 and externals 𝒞 as defined in [44]
are:

∆𝒞
𝑃 ={𝛿(𝛽) | 𝛽 ∈ body(𝑃)} ∪ {𝛿 ∈ ∆(𝛽) | 𝛽 ∈ body(𝑃)} (3.7)
∪{𝛿𝑃 (𝑎) | 𝑎 ∈ atom(𝑃) ∖ 𝒞} ∪ {𝛿 ∈ ∆𝑃 (𝑎) | 𝑎 ∈ atom(𝑃) ∖ 𝒞}. (3.8)

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

17 Boolean Constraint Solving

Then, the loop nogoods of a logic program with externals are defined as

Λ𝒞
𝑃 =

⋃︀
𝑈⊆atom(𝑃)∖𝒞,

EB𝑃 (𝑈)={𝐵1,...,𝐵𝑘}
{{T𝑎,F𝐵1, . . . ,F𝐵𝑘} | 𝑎 ∈ 𝑈} . (3.9)

These equations are obtained by replacing atom(𝑃) in the qualification of Equa-
tion (3.5) and Equation (3.6) with atom(𝑃) ∖ 𝒞.

Theorem 3.1.1

Let 𝑃 be a constraint logic program over regular atoms 𝒜 and constraint atoms 𝒞
associated with the CSP (𝒱 , 𝐷,𝐶). Furthermore, let C : 𝑉 → 𝐷 be an assignment
of integer variables.
Then, (𝑋,C) is a constraint stable model of 𝑃 iff 𝑋 = BT∩ (𝒜∪𝒞) for a (unique)
solution B of the set ∆𝒞

𝑃∪Λ𝒞
𝑃∪{{F𝑐} | 𝛾(𝑐) ∈ satC(𝐶)}∪{{T𝑐} | 𝛾(𝑐) ∈ satC(𝐶)}

of nogoods.

Accordingly, our example yields the constraint stable models in 2.10. For in-
stance, the very first constraint stable model corresponds to the Boolean assignment
{TswitchOn,Tlight ,FswitchOff ,Fnight ,Fsleep,F(𝑥 < 7),F(𝑥 ≥ 22)} paired with
the constraint variable assignment {𝑥 ↦→ 7}.

Proof 3.1.1 Given Definition 1, 𝑋 ∩ 𝒞 = {𝑐 | 𝛾(𝑐) ∈ satC(𝐶)} and 𝑋 ∩ 𝒜 is the
⊆-smallest model of the reduct (𝑃C)𝑋 . According to Definition 2, 𝑋 ∩ 𝒜 is a stable
model of 𝑃C and 𝑋∩𝒜 = AT for a (unique) solution A of ∆𝑃C∪Λ𝑃C. Given 𝒜∩𝒞 = ∅
(by definition), we have that A ∪ {T𝑐 | 𝛾(𝑐) ∈ satC(𝐶)} ∪ {F𝑐 | 𝛾(𝑐) ∈ satC(𝐶)} is a
solution of ∆𝑃C ∪ Λ𝑃C ∪ΘC where ΘC = {{F𝑐} | 𝛾(𝑐) ∈ satC(𝐶)} ∪ {{T𝑐} | 𝛾(𝑐) ∈
satC(𝐶)}. We now show that the set of solutions wrt. 𝒜 ∪ 𝒞 for ∆𝑃C ∪ Λ𝑃C ∪ΘC is
equivalent to the set of solutions of ∆𝒞

𝑃 ∪ Λ𝒞
𝑃 ∪ΘC.

We can apply an assignment B to a set of nogoods Σ,

Σ ◇B = {𝛿 ∖B | 𝛿 ∈ Σ, ∀𝜎 ∈ B, 𝜎 /∈ 𝛿}

by removing all occurrences of 𝜎 ∈ B from all of the nogoods and removing all nogoods
that contain 𝜎. We can unit propagate a set of nogoods

unit(Σ) = {Σ ◇B | B = {𝜎 | {𝜎} ∈ Σ}}

by applying Σ◇{𝜎} for all unit nogoods {𝜎} ∈ Σ. With unit(Σ)* we denote the fixpoint
of this function.

To check whether the solutions of ∆𝑃C ∪ Λ𝑃C ∪ ΘC and ∆𝒞
𝑃 ∪ Λ𝒞

𝑃 ∪ ΘC are the
same, we first compare the nogoods from unit(∆𝑃C)* and unit(∆𝒞

𝑃 ∪ΘC)*. We now
show this comparison for each part of the completion nogoods separately. Recall that
body𝐶

C(𝑃) = {body(𝑟) | 𝑟 ∈ 𝑃, 𝛾(body(𝑟)+)∩𝒞 ⊆ satC(𝐶), 𝛾(body(𝑟)−)∩ satC(𝐶) = ∅}
is the set of bodies where all constraints are satisfied. We split the completion nogoods

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

18 Boolean Constraint Solving

into parts to show that

unit(∆𝑃C)* = unit(∆𝒞
𝑃 ∪ΘC)* .

For this, the following four equivalences have to hold:

I unit({𝛿(𝛽|𝒜) | 𝛽 ∈ body𝐶
C(𝑃)})* = unit({𝛿(𝛽) | 𝛽 ∈ body(𝑃)} ∪ΘC)*

II unit(
⋃︀

𝛽∈body𝐶
C(𝑃) ∆(𝛽|𝒜))* = unit(

⋃︀
𝛽∈body(𝑃) ∆(𝛽) ∪ΘC)*

III unit({𝛿𝑃C(𝑎) | 𝑎 ∈ atom(𝑃)∖𝒞})* = unit({𝛿𝑃 (𝑎) | 𝑎 ∈ atom(𝑃)∖𝒞}∪ΞC∪ΘC)*

IV unit(
⋃︀

𝑎∈atom(𝑃)∖𝒞 ∆𝑃C(𝑎))* = unit(
⋃︀

𝑎∈atom(𝑃)∖𝒞 ∆𝑃 (𝑎) ∪ ΞC ∪ΘC)*

where ΞC = {{T𝛽} | 𝛽 ∈ body(𝑃) ∖ body𝐶
C(𝑃)} is the set of nogoods that implies all

bodies to be false that contain a constraint literal that is false wrt. C. We let

𝛽 = {𝑝1, . . . , 𝑝𝑚,∼𝑝𝑚+1, . . . ,∼𝑝𝑛, 𝑐1, . . . , 𝑐𝑘,∼𝑐𝑘+1, . . . ,∼𝑐𝑙}

where 𝑝𝑖 ∈ 𝒜, 𝑐𝑗 ∈ 𝒞, 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑙.
To prove I, for every 𝛽 ∈ body𝐶

C(𝑃), we have that

𝛿(𝛽|𝒜) = {F𝛽,T𝑝1, . . . ,T𝑝𝑚,F𝑝𝑚+1, . . . ,F𝑝𝑛}

while

𝛿(𝛽) = {F𝛽,T𝑝1, . . . ,T𝑝𝑚,F𝑝𝑚+1, . . . ,F𝑝𝑛,T𝑐1, . . . ,T𝑐𝑘,F𝑐𝑘+1, . . . ,F𝑐𝑙}

It is easy to see that unit({𝛿(𝛽|𝒜)})* = unit({𝛿(𝛽)}∪ΘC)* as body𝐶
C(𝑃) contains only

bodies where all constraint literals are true wrt. C and unit()* removes all these literals
from 𝛿(𝛽) as ΘC implies all constraint literals that are true wrt. C.

For all other bodies 𝛽 ∈ body(𝑃) ∖ body𝐶
C(𝑃), we have that 𝑃C removes the

whole rule and therefore does not require any nogood. On the other hand we have
that 𝛿(𝛽) contains at least one constraint literal which is false wrt. C. Therefore,
unit({𝛿(𝛽)} ∪ΘC)* = ∅, as unit propagation removes all nogoods that contain a false
literal wrt. C (as ΘC implies all constraint literals that are true wrt. C).

To prove II, for every 𝛽 ∈ body𝐶
C(𝑃), we have that

∆(𝛽|𝒜) = {{T𝛽,F𝑝1}, . . . , {T𝛽,F𝑝𝑚}, {T𝛽,T𝑝𝑚+1}, . . . , {T𝛽,T𝑝𝑛}}

contains only atoms from 𝒜 while

∆(𝛽) = ∆(𝛽|𝒜) ∪ {{T𝛽,F𝑐1}, . . . , {T𝛽,F𝑐𝑘}, {T𝛽,T𝑐𝑘+1}, . . . , {T𝛽,T𝑐𝑙}}

Due to ΘC, all literals F𝑐1, . . . ,F𝑐𝑘,T𝑐𝑘+1, . . . ,T𝑐𝑙 are false wrt. C, and these nogoods
are removed via unit propagation leaving unit(∆(𝛽|𝒜))* = unit(∆(𝛽) ∪ΘC)*.

For all other bodies 𝛽 ∈ body(𝑃) ∖ body𝐶
C(𝑃), we have that 𝑃C removes the

whole rule and therefore does not require any nogood. Given ∆(𝛽) as before, we

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

19 Boolean Constraint Solving

know that at least one constraint literal of F𝑐1, . . . ,F𝑐𝑘,T𝑐𝑘+1, . . . ,T𝑐𝑙 is true wrt.
C, and unit propagation creates the nogood {T𝛽}. This again removes all no-
goods containing T𝛽, resulting in unit(∆(𝛽) ∪ ΘC)* = ∅. Furthermore, we know
that

⋃︀
𝛽∈body(𝑃)∖body𝐶

C(𝑃) unit(∆(𝛽) ∪ΘC) creates the nogoods ΞC, which are needed to
prove III and IV.

To prove III, we consider all atoms 𝑎 ∈ atom(𝑃) ∖ 𝒞 where
body𝑃 (𝑎) = {𝛽1, . . . , 𝛽𝑖, 𝛽𝑖+1, . . . , 𝛽𝑗} and {𝛽𝑖+1, . . . , 𝛽𝑗} = body(𝑃) ∖ body𝐶

C(𝑃). We
know that

𝛿𝑃C(𝑎) = {T𝑎,F𝛽1, . . . ,F𝛽𝑖}

where body𝑃C(𝑎) = {𝛽1, . . . , 𝛽𝑖} ⊆ body𝐶
C(𝑃) and

𝛿𝑃 (𝑎) = {T𝑎,F𝛽1, . . . ,F𝛽𝑖,F𝛽𝑖+1, . . . ,F𝛽𝑗}

Given that ΞC implies these false bodies, we can easily see that unit({𝛿𝑃C(𝑎)})* =
unit({𝛿𝑃 (𝑎)} ∪ ΞC)*.

To prove IV, considering all atoms as before, We know that

∆𝑃C(𝑎) = { {F𝑎,T𝛽1}, . . . , {F𝑎,T𝛽𝑖} }

and
∆𝑃 (𝑎) = ∆𝑃C(𝑎) ∪ {{F𝑎,T𝛽𝑖+1}, . . . , {F𝑎,T𝛽𝑗}}

Since all the extra bodies in ∆𝑃 (𝑎) are false, the additional nogoods are removed by
unit propagation leaving unit(∆𝑃C(𝑎))* = unit(∆𝑃 (𝑎) ∪ ΞC)*.

As we have shown that all parts I to IV of the completion coincide, we conclude
that unit(∆𝑃C)* = unit(∆𝒞

𝑃 ∪ΘC)*.
Given the false bodies in body(𝑃) ∖ body𝐶

C(𝑃) it is easy to see that unit(Λ𝑃C)* =
unit(Λ𝒞

𝑃 ∪ ΞC)*.
We have shown that the nogoods

unit(∆𝑃C ∪ Λ𝑃C ∪ΘC)* = unit(∆𝒞
𝑃 ∪ Λ𝒞

𝑃 ∪ΘC)*

and therefore conclude that ∆𝑃C ∪ Λ𝑃C ∪ ΘC has the same solutions wrt. 𝒜 ∪ 𝒞 as
∆𝒞

𝑃 ∪ Λ𝒞
𝑃 ∪ΘC. �

3.2 Basic Conflict Driven Constraint Learning

For computing the stable models of a normal logic program with externals we use
a Conflict Driven Constraint Learning (CDCL) [62] algorithm, which is effective for
SAT [32, 88, 89, 123]. The CDCL algorithm is based on unit propagation of nogoods,
conflict analysis, non-chronological backtracking and nogood learning. We shortly
explain CDCL and its sub-functions in Algorithm 1. For this, we sometimes see an
assignment B as a sequence of literals, following the order they have been added
(assigned) to B. With B[𝜎], we denote the subsequence of all literals that have been
added before 𝜎. We also introduce the notion of a decision level, where 𝑑𝑙(𝜎) denotes

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

20 Basic Conflict Driven Constraint
Learning

Algorithm 1: CDCL
Input :A normal logic program 𝑃 over 𝒜 and externals 𝒞.
Output :A stable model of 𝑃 .

1 ℬ ← 𝒜∪ 𝒞 ∪ {body(𝑟) | 𝑟 ∈ 𝑃} // set of atoms
2 B← ∅ // (Boolean) assignment
3 ∇ ← ∅ // set of (dynamic) nogoods
4 dl ← 0 // decision level
5 loop
6 (B,∇)← Propagation(B,∇)
7 Σ← {𝛿 | 𝛿 ∈ ∆𝒞

𝑃 ∪∇, 𝛿 ⊆ B}
8 if Σ ̸= ∅ then
9 if dl = 0 then return unsatisfiable

10 (𝛿′, dl)← ConflictAnalysis𝑃 (∇,B, 𝛿) for some 𝛿 ∈ Σ
11 ∇ ← ∇∪ {𝛿′}
12 B← B ∖ {𝜎 | 𝜎 ∈ B, dl(𝜎) > dl}
13 else if BT ∪BF = ℬ then
14 return (BT ∩ (𝒜 ∪ 𝒞))
15 else
16 𝜎𝑑 ← Select(ℬ,B)
17 dl ← dl + 1
18 B← B ∘ 𝜎𝑑

the decision level on which this literal was assigned.
The algorithm starts with an empty assignment B and decision level 0. The goal

is to gradually fill the assignment until it contains exactly one literal per atom. The
positive literals then represent a solution to the normal logic program.

Our algorithm executes the following steps in order, until we have either found a
solution or assured that no such solution exists. First, we propagate on the nogoods
of the normal logic program in line 6 which is implemented in detail by Algorithm 2.
After propagation reached a fixpoint, we check if we have any conflicting nogoods
in lines 7 – 8. If we encounter a conflict on decision level 0 (line 9), the problem
is unsatisfiable and the algorithm terminates. Every other conflict gets analyzed in
line 10 and we backtrack to the decision level which is returned by ConflictAnalysis
(Algorithm 3). In this case we also add the conflict nogood to the set of learned
nogoods ∇. If we are not having a conflict, we either have a complete assignment in
line 14 and return a stable model of 𝑃 , or we select a new literal to be assigned/joined
to the partial assignment based on some decision heuristic in line 16.

We now detail propagation in Algorithm 2. Propagation adds the set of literals
that are implied by nogoods in lines 5 – 6 to the assignment B. We propagate in a loop
until we either encounter a conflict in line 2 or have reached a fixpoint in line 11. In
the case of ASP, there are two ways of propagation. The first one is unit propagation
on the nogoods in ∆𝒞

𝑃 and ∇ (see lines 3 – 6). For every unit nogood, we add the

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

21 Basic Conflict Driven Constraint
Learning

Algorithm 2: Propagation
Global :A normal logic program 𝑃 over 𝒜 and externals 𝒞.
Input :A Boolean assignment B and a set ∇ of nogoods.
Output :A (Boolean) assignment and a set of nogoods.

1 loop
2 if 𝛿 ⊆ B for some 𝛿 ∈ ∆𝒞

𝑃 ∪∇ then return (B,∇)
3 Σ← {𝛿 | 𝛿 ∈ ∆𝒞

𝑃 ∪∇, 𝛿 ∖B = {𝜎}, 𝜎 /∈ B}
4 if Σ ̸= ∅ then
5 foreach 𝛿 ∈ Σ such that 𝛿 ∖B = {𝜎} do
6 B← B ∘ 𝜎
7 else
8 Σ← UfsPropagation𝑃 (B)
9 if Σ ̸= ∅ then

10 ∇ ← ∇∪ Σ

11 if Σ = ∅ then return (B,∇)

unit-resulting literal 𝜎 to the assignment B. In this way, we capture all inferences
from these sets of nogoods. If unit propagation has reached a fixpoint, we propagate
on Λ𝒞

𝑃 in lines 8 – 10. As this set of nogoods can be exponential in size [83] we are
not representing it explicitly but use the dedicated algorithm UfsPropagation
which returns a set of unit and/or conflicting nogoods based on the current partial
assignment. These nogoods are added to the learned nogoods ∇. If UfsPropagation
does not return any new nogoods, propagation has reached a fixpoint and the algorithm
terminates.

Whenever we encounter a conflicting nogood in the CDCL algorithm, we need to
analyse and simplify it such that it contains only one literal of the current decision
level. The ConflictAnalysis is detailed in Algorithm 3. Here, we resolve literals 𝜎
from a conflicting nogood 𝛿 until we only have one literal of the highest decision level
left in this nogood. A literal 𝜎 is resolved in line 5 using a nogood 𝜀 which is asserting
literal 𝜎 for an assignment B[𝜎]. Combining those two nogoods (𝛿 ∖ {𝜎}) ∪ (𝜀 ∖ {𝜎})
yields a new conflicting nogood without 𝜎. Since 𝜀 was used to assert 𝜎, all new
literals added by the union of the two nogoods have a decision level which is smaller
than or equal to that of 𝜎. Finally, there is only one literal of the current decision
level left and we return the new nogood and the second highest decision level. This is
the level that is used for backjumping in the CDCL algorithm.

To improve the understanding of the whole CDCL algorithm we compute a
solution of program 𝑃1 from Example 1. Table 3.1 shows the additions to the
assignment and the nogoods that are used for propagation. Note that the atoms
𝒞 = {(𝑥 < 7), (𝑥 ≥ 22)} are external atoms. We start with selecting Tlight and
Tsleep in line 16 of Algorithm 1 as there is nothing to propagate in line 6. Afterwards
we resume with propagation. With T{switchOff, night}, we denote the assignment of
a body literal. It has to be true as it is the only body to derive sleep. The nogood

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

22 Basic Conflict Driven Constraint
Learning

Algorithm 3: ConflictAnalysis
Global :A normal logic program 𝑃 over 𝒜 and externals 𝒞.
Input :A set ∇ of nogoods, a (Boolean) assignment B, and a conflicting

nogood 𝛿.
Output :A derived nogood and a decision level.

1 loop
2 foreach 𝜎 ∈ 𝛿 such that 𝛿 ∖B[𝜎] = {𝜎} do
3 𝑘 ← max{dl(𝜎′) | 𝜎′ ∈ 𝛿 ∖ {𝜎}}
4 if 𝑘 = dl(𝜎) then
5 𝛿 ← (𝛿 ∖ {𝜎}) ∪ (𝜀 ∖ {𝜎}) where 𝜀 ∈ ∆𝒞

𝑃 ∪∇, 𝜀 ∖B[𝜎] = {𝜎}
6 else return (𝛿, 𝑘)

𝛿𝑃 (sleep) = {Tsleep,F{switchOff, night}} is used to assert this. Now, we propagate
Tnight and TswitchOff and their respective bodies F{∼night} and F{∼switchOff }.
As already shown before, given TswitchOff , we derive TswitchOn. This leads us to a
conflict in line 7 of Algorithm 1. We use ConflictAnalysis in Algorithm 3 to analyze
the conflicting nogood {Tlight , F{switchOn}, F{∼night}}. We replace the literal that
was added last viz. F{switchOn} with FswitchOn using the nogood {T{switchOn},
FswitchOn}. The intermediate results of resolving this nogood are shown in Table 3.2.
Here, 𝛿 shows the conflicting nogood, which is resolved with 𝜀 using the highlighted
literals. The final conflict nogood is {Tlight ,T{switchOff, night}}. This new nogood
tells us that in no solution to the problem the light is on while it is night and the
switch is off. As it contains only one literal of the current decision level 2, we undo
the assignment and backtrack to level 1 in line 12 of Algorithm 1 and learn the
nogood {Tlight ,T{switchOff , night}} by adding it to the set ∇. Now, we start the
loop again and directly propagate F{switchOff, night} from the newly learned nogood.
Since this is the only supporting body for the atom sleep, it must be false. As we
cannot propagate any further literals, we add Tnight in line 16. By propagation, we
derive that TswitchOn as the light is on and it is night. After assigning all other
atoms via unit propagation, we are left with two constraint atoms (𝑥 < 7) and
(𝑥 ≥ 22). We simply decide to make them both true (not shown in the table) using
the select function. Having a complete assignment we can now return the solution
BT ∩ (𝒜 ∪ 𝒞) = {𝑙𝑖𝑔ℎ𝑡, 𝑛𝑖𝑔ℎ𝑡, 𝑠𝑤𝑖𝑡𝑐ℎ𝑂𝑛, (𝑥 < 7), (𝑥 ≥ 22)}. Note that this solution
is not a constraint stable model, as 𝑥 < 7 and 𝑥 ≥ 22 are contradictory, but until now,
no consistency check of the constraints is involved.

3.3 Architecture
For implementing CASP, we decided to draw upon experiences made in the area of
SMT [97]. SMT enriches SAT with different theories like equalities and uninterpreted
functions, bit-vector or floating point arithmetic, difference logic, or linear real/inte-
ger/mixed arithmetics. The goal is to find a solution to the SAT part of the problem

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

23 Architecture

dl B 𝛿 𝑢𝑠𝑖𝑛𝑔 Line

1 Tlight 16
2 Tsleep 16

T{switchOff, night} {Tsleep,F{switchOff, night}} 𝛿𝑃 (sleep) 6
Tnight {T{switchOff, night},Fnight} ∆({switchOff, night}) 6
F{∼night} {T{∼night},Tnight} ∆({∼night}) 6
TswitchOff {T{switchOff, night},FswitchOff } ∆({switchOff, night}) 6
F{∼switchOff } {T{∼switchOff },TswitchOff } ∆({∼switchOff }) 6
FswitchOn {TswitchOn,F{∼switchOff }} 𝛿𝑃 (switchOn) 6
T{∼switchOn} {F{∼switchOn},FswitchOn} 𝛿({∼switchOn}) 6
F{switchOn} {T{switchOn},FswitchOn} ∆({switchOn}) 6

{Tlight ,F{switchOn},F{∼night}} 7
{Tlight ,T{switchOff, night}} dl = 1 10

1 F{switchOff , night} {Tlight ,T{switchOff, night}} ∇ 6
Fsleep {Tsleep,F{switchOff, night}} 𝛿𝑃 (sleep) 6

2 Tnight 16
F{∼night} {T{∼night},Tnight} ∆({∼night}) 6
T{switchOn} {Tlight ,F{switchOn},F{∼night}} 𝛿𝑃 (light) 6

. . .

Table 3.1: Computing the stable model {light , night , switchOn, 𝑥 < 7, 𝑥 ≥ 22} with
CDCL(𝑃1).

𝛿 𝜀

0 {Tlight , F{switchOn}, F{∼night}} {T{switchOn}, FswitchOn}
1 {Tlight , FswitchOn, F{∼night}} {TswitchOn, F{∼switchOff } }
2 {Tlight , F{∼switchOff }, F{∼night}} {T{∼switchOff }, TswitchOff }
3 {Tlight , TswitchOff , F{∼night}} {T{switchOff, night},FswitchOff }
4 {Tlight , T{switchOff, night}, F{∼night}} {T{∼night}, Tnight}
5 {Tlight , T{switchOff, night}, Tnight} {T{switchOff , night},Fnight}
6 {Tlight , T{switchOff, night}}

Table 3.2: Conflict analysis of {Tlight ,F{switchOn},F{∼night}}.

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

24 Architecture

CP
Language

gringo clasp

CP
Propagator

CP
Solver

Figure 3-1: Architecture of clingcon 1 + 2.

that is consistent with the theory. Various techniques [97] have been developed:

The Lazy Approach abstracts from the constraints in a specialized theory. Every
constraint is represented by a Boolean atom. This allows for a compact handling
of the theory and dedicated theory algorithms. The SAT solver takes care of a
valid assignment to the Boolean variables while dedicated algorithms use this
assignment to check consistency with respect to the theory. The drawbacks
of this approach are that the collaboration between the SAT and the theory
solver is not easy, as modern CDCL algorithms usually need reason and conflict
nogoods.

Partial Assignment Checks are used to check consistency of an incomplete as-
signment with respect to the theory. They find inconsistent assignments much
earlier during the search but come at the cost of additional theory checks. It is
possible to use incomplete consistency checks which can detect that a partial
assignment is inconsistent. These algorithms are usually very fast but cannot
detect inconsistency in all cases. For linear constraints, bound propagation can
be such a test.

Theory Propagation does not only check consistency with the theory but also
allows to infer knowledge from the theory given a partial assignment. With this
knowledge, dedicated theory algorithms can extend the Boolean assignment by
literals directly inferred from the theory.

Incremental Propagation allows the theory solver to have an internal state. As in
CDCL, the assignment gets extended step by step, new constraints are added
that must be checked. Some solvers can take advantage of the fact that a subset
of the constraints has already been checked. So propagation does not need to
redo all of its work and just needs to incorporate the new constraints. This can
increase the performance of the theory propagation drastically.

The Eager Approach translates theory atoms into Boolean propositions. For some
theories, there exist efficient translations. This approach makes full use of the
learning capabilities of a SAT solver. One drawback is that the encoding into
clauses or nogoods can be too big for certain theories to be solvable. Also, some
translation may produce fewer clauses while sacrificing the propagation strength
of unit propagation.

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

25 Architecture

We decided on a lazy approach for our first system named clingcon 1.1 We therefore
use a CP solver to check for consistency of our assignment by abstracting from the
integer arithmetic constraints [97]. To profit from the development of different CP
solvers, we focus on an approach taking an unmodified, black-box CP solver. Hence
we have no insight into the CP system. The award winning solver gecode2 is used in
our system. We also developed our algorithms in a way that it is easy to exchange
the CP solver. The architecture of our system is shown in Figure 3-1. We extended
the input language of the ASP grounder gringo by a language for constraints over
integers and changed the ASP solver clasp to contain an additional CP propagator.
This propagator then calls the black box system gecode for CP propagation. While the
ASP solver uses an extended CDCL algorithm, the CP solver checks the constraints
implied by the partial assignment for consistency. Incremental theory propagation is
also applied, which means that not only the consistency is checked, but also if new
knowledge can be derived and extend the Boolean assignment. We now show how we
extended the CDCL algorithm to handle constraint logic programs.

3.4 Extended Conflict Driven Constraint Learning

Given a constraint logic program 𝑃 over 𝒜 and externals 𝒞 associated with the
CSP (𝒱 , 𝐷, 𝐶), we want to compute a constraint stable model (𝑋,C). Following
Theorem 3.1.1, we develop a modified CDCL algorithm to find a solution B to

∆𝒞
𝑃 ∪ Λ𝒞

𝑃 ∪ {{F𝑐} | 𝛾(𝑐) ∈ satC(𝐶)} ∪ {{T𝑐} | 𝛾(𝑐) ∈ satC(𝐶)}

such that 𝑋 = BT ∩ (𝒜 ∪ 𝒞) and 𝑋 ∩ 𝒞 = {𝑐 | 𝛾(𝑐) ∈ satC(𝐶)}. We extend 𝛾 to
signed literals over 𝒞 as follows:

𝛾(𝜎) =

{︃
𝛾(𝑎) if 𝜎 = F𝑎, 𝑎 ∈ 𝒞
𝛾(𝑎) if 𝜎 = T𝑎, 𝑎 ∈ 𝒞

For instance, we have 𝛾(F(𝑥 < 7)) = 𝑥 ≥ 7. When applied to a set of literals, 𝛾 refers
to its set of constraints.

We use CDCL Algorithm 1 and extend it by a CP oracle. The input of our new
Algorithm 4 is a constraint logic program. As all differences to Algorithm 1, this is
highlighted. Several major changes have been done. First of all, the Propagation
function has been extended to also accept a CSP and there is a consistency check added
if we encounter a complete Boolean assignment. If we have such a complete Boolean
assignment (line 13) we are not sure whether there exists an assignment C such that all
constraints 𝛾(B|𝒞) are satisfied. Therefore, we use the function Labeling(𝒱,𝐷,𝐶)(B|𝒞)
in line 14 which returns either an assignment C such that satC(𝐶) = 𝛾(B|𝒞), or
conflicting . In the first case, we simply return a constraint stable model. In the latter,
we take the complete assignment B|𝒞 projected on the constraint atoms as a conflict

1 Its successor clingcon 2, using the same architecture, is described in Section 3.5.
2 http://www.gecode.org

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

26 Extended Conflict Driven Constraint
Learning

http://www.gecode.org

Algorithm 4: CDCL-CASP
Input :A constraint logic program 𝑃 over 𝒜 and externals 𝒞 associated with

(𝒱 , 𝐷,𝐶).
Output :A constraint stable model of 𝑃 .

1 ℬ ← 𝒜∪ 𝒞 ∪ {body(𝑟) | 𝑟 ∈ 𝑃} // set of atoms
2 B← ∅ // (Boolean) assignment
3 ∇ ← ∅ // set of (dynamic) nogoods
4 dl ← 0 // decision level
5 loop
6 (B,∇)← Propagation(B,∇)
7 Σ← {𝛿 | 𝛿 ∈ ∆𝒞

𝑃 ∪∇, 𝛿 ⊆ B}
8 if Σ ̸= ∅ then
9 if dl = 0 then return unsatisfiable

10 (𝛿′, dl)← ConflictAnalysis𝑃 (∇,B, 𝛿) for some 𝛿 ∈ Σ
11 ∇ ← ∇∪ {𝛿′}
12 B← B ∖ {𝜎 | 𝜎 ∈ B, dl(𝜎) > dl}
13 else if BT ∪BF = ℬ then
14 C← Labeling(𝒱,𝐷,𝐶)(B|𝒞)
15 if C = conflicting then
16 (𝛿, dl)← ConflictAnalysis𝑃 (∇,B,B|𝒞)
17 ∇ ← ∇∪ {𝛿}
18 B← B ∖ {𝜎 | 𝜎 ∈ B, dl(𝜎) > dl}
19 else return (BT ∩ (𝒜 ∪ 𝒞),C)

20 else
21 𝜎𝑑 ← Select(ℬ,B)
22 dl ← dl + 1
23 B← B ∘ 𝜎𝑑

and resolve it (lines 15 – 18) as before.3

Also, the propagation Algorithm 5 is extended by CSP propagation. Whenever no
new knowledge can be derived by unit propagation or UfsPropagation𝑃 (𝒞,B), we
call CspPropagation(B|𝒞) to invoke an external CP solver for propagation.4 Given
a set of literals B, it either returns a set of newly derived literals B′ or conflicting .
All constraints 𝛾(B′) are inferred by the external CP solver from 𝛾(B|𝒞). If it returns
conflicting , we return and add the currently assigned constraint literals B|𝒞 as a
conflicting nogood (line 13). One major difficulty is that the CDCL Algorithm requires
conflicts and reasons which cannot be obtained easily from a black box system. We

3 Note that in the case that we have found a solution, the labeling function always returns the
best solution in terms of the CSP optimization. The currently best value for a solution is stored
internally and a global optimal solution is guaranteed this way.

4 Of course this can be improved by only doing constraint propagation if there is a change in the
assignment wrt. the constraint atoms 𝒞.

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

27 Extended Conflict Driven Constraint
Learning

Algorithm 5: Propagation
Global :A constraint logic program 𝑃 over 𝒜 and externals 𝒞 associated with

(𝒱 , 𝐷,𝐶).
Input :A Boolean assignment B and a set ∇ of nogoods.
Output :A (Boolean) assignment and a set of nogoods.

1 loop
2 if 𝛿 ⊆ B for some 𝛿 ∈ ∆𝒞

𝑃 ∪∇ then return (B,∇)
3 Σ← {𝛿 | 𝛿 ∈ ∆𝒞

𝑃 ∪∇, 𝛿 ∖B = {𝜎}, 𝜎 /∈ B}
4 if Σ ̸= ∅ then
5 foreach 𝛿 ∈ Σ such that 𝛿 ∖B = {𝜎} do
6 B← B ∘ 𝜎
7 else
8 Σ← UfsPropagation𝑃 (𝒞,B)
9 if Σ ̸= ∅ then

10 ∇ ← ∇∪ Σ
11 else
12 B′ ← CspPropagation(B|𝒞)
13 if B′ = conflicting then return (B,∇∪Reduce(𝒱,𝐷,𝐶)(B|𝒞))
14 foreach 𝜎 ∈ B′ do ∇ ← ∇∪Reduce(𝒱,𝐷,𝐶)(B|𝒞 ∪ {𝜎})
15 if B′ = ∅ then return (B,∇)

therefore incorporated the Reduce function which we present in the next section. For
the moment, let us assume it to be the identity function. In the case that we deduce
a set of literals B′ in line 14, we add a unit nogood B|𝒞 ∪ {𝜎} for each 𝜎 ∈ B′. We
reduce the size of this nogood with the Reduce function as explained below. Note
that propagation always favors unit propagation before UfsPropagation before
CspPropagation. So we only call the costly CSP propagation once we have reached
a fixpoint with the other (cheaper) propagation.

To improve the understanding of the changes to the basic CDCL algorithm, we
compute a constraint stable model for Example 1. We start Algorithm 4 with an
empty assignment B and program 𝑃1. We reuse the updates to the assignment
and the nogoods that are used in Table 3.1 exactly as before. We can do this
because we have not yet decided a truth value for a constraint atom and therefore
CspPropagation always returns the empty set. The only atoms left are (𝑥 < 7) and
(𝑥 ≥ 22), so we select T(𝑥 < 7) in line 21 of Algorithm 4. Given this, we have that
B|𝒞 = {T(𝑥 < 7)} and therefore CspPropagation({T(𝑥 < 7)}) = {F(𝑥 ≥ 22)}, as
𝑥 < 7 implies 𝑥 < 21. Since this is not conflicting, we extend ∇ by {T(𝑥 < 7),T(𝑥 ≥
22)} in line 14 of Algorithm 5. Now, unit propagation extends the assignment by
F(𝑥 ≥ 22) in lines 3 – 6 reaching a fixpoint. We have a complete assignment and
label the variables in 𝒱 in line 14 of Algorithm 4. One possible labeling for the
variables in 𝒱 is C = {𝑥 ↦→ 5}. This assignment is consistent with the constraints
in satC(𝐶) = {𝑥 < 7, 𝑥 < 21}. Therefore, we return the constraint stable model

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

28 Extended Conflict Driven Constraint
Learning

Algorithm 6: deletion filtering
Global :A CSP (𝒱 , 𝐷,𝐶).
Input :A list of literals B = [𝜎1, . . . , 𝜎𝑛].
Output :A (shortened) list of literals.

1 𝑖← 1
2 while 𝑖 ≤ |B|
3 if CspPropagation([𝜎1, . . . , 𝜎𝑖−1, 𝜎𝑖+1, . . . , 𝜎|B|]) = conflicting then
4 B← [𝜎1, . . . , 𝜎𝑖−1, 𝜎𝑖+1, . . . , 𝜎|B|]

5 else
6 𝑖← 𝑖+ 1

7 return B

({light , night , switchOn, (𝑥 < 7)}, {𝑥 ↦→ 5}).

3.5 Reason and Conflict Reduction

A crucial part of a CDCL system are short reasons and conflicts. Having the partial
assignment as reason/conflict hinders propagation, as not every part of it is actually
needed. We now show how to use a technique to produce a so called Irreducible
Inconsistent Set (IIS;[30, 68, 77, 120]). For this, an algorithm similar to Algorithm 6
is proposed in [30]. It reduces a set of conflicting constraints to a conflicting subset
minimal set. The basic idea is to remove one constraint after the other and check if the
set is still conflicting. If this is the case, we can permanently remove this constraint
and continue. If not, this constraint is a crucial part of the conflict and stays in the
set.

To show the effects of the reduction method in Algorithm 6, we use an extended
set of constraint atoms over variables 𝒱 = {𝑥, 𝑦, 𝑧, 𝑤} and domains 𝐷 = {D(𝑣) =
{0, . . . , 8} | 𝑣 ∈ 𝒱}. Reconsider the execution of the extended CDCL algorithm in
Section 3.4 and suppose that we found the assignment

B = {T(𝑥+ 𝑦 > 8),T(𝑧 = 0),T(𝑤 = 0),T(𝑦 = 𝑥),

F(𝑥+ 𝑧 > 8),F(𝑥+ 𝑤 > 8),T(𝑦 − 𝑥 = 1)}

which is conflicting wrt. CspPropagation(B|𝒞). We want to reduce it, as it contains
a lot of unrelated information. In the first step, we remove T(𝑥 + 𝑦 > 8) from the
assignment, but the induced CSP is still conflicting. Hence, that we can safely remove
it. The same works for the next two literals T(𝑧 = 0) and T(𝑤 = 0). Then, we try
to remove T(𝑦 = 𝑥) from the assignment in line 3 but detect that the induced CSP
is no longer conflicting, so this constraint is necessary for the set of constraints to
be conflicting. We continue by removing F(𝑥 + 𝑧 > 8) and F(𝑥 + 𝑤 > 8) while the
CSP is still conflicting. Finally, we try to remove T(𝑦 − 𝑥 = 1) but find out that
this constraint is necessary for the conflict. We are left with a reduced conflict clause

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

29 Reason and Conflict Reduction

Algorithm 7: forward filtering
Global :A CSP (𝒱 , 𝐷,𝐶).
Input :A list of literals B = [𝜎1, . . . , 𝜎𝑛].
Output :A (shortened) list of literals.

1 B′ ← []
2 while CspPropagation(B′) ̸= conflicting
3 L← B′

4 𝑖← 1
5 while CspPropagation(L) ̸= conflicting
6 L← L ∘ 𝜎𝑖
7 𝑖← 𝑖+ 1

8 B′ ← B′ ∘ 𝜎𝑖
9 return B′

{T(𝑦 = 𝑥),T(𝑦 − 𝑥 = 1)} which is the real cause of the conflict and a smaller nogood.
Precise conflicts and reasons are a crucial part of every CDCL algorithm. Therefore,

we present several methods to improve the trivial conflicts we get from the blackbox
CP solver approach.

Forward Filtering With gecode, we decided for a modern CP solver that supports
incremental propagation. In fact, propagation is done in a constraint space where the
restricted domains of the variables are stored after propagation. Usually, propagation
cannot be undone, but adding a constraint to a solver is simple, as it constrains
the variables even more. Removing a constraint (as it is shown in Algorithm 6) is
usually not possible. So propagation has to start from scratch with a (reduced) set of
constraints every time. Therefore, we use the forward filtering Algorithm 7. It tries to
avoid resetting the constraint space and incrementally adds constraints to a testing
constraint space in lines 5 – 7. If the testing constraint space becomes conflicting , we
add the last literal to the result, as this is a crucial part of the inconsistency. We
redo this until the result becomes conflicting . This algorithm is designed to achieve
a better performance with a standard incremental CP solver. Consider again our
example, B = {T(𝑥+ 𝑦 > 8),T(𝑧 = 0),T(𝑤 = 0),T(𝑦 = 𝑥),F(𝑥+ 𝑧 > 8),F(𝑥+𝑤 >
8),T(𝑦 − 𝑥 = 1)}. We add T(𝑥+ 𝑦 > 8) to the testing list L. This constraint alone
is not conflicting, so we keep adding constraints until L = B in lines 5 – 7. Now, we
know that the last constraint T(𝑦 − 𝑥 = 1) is indispensable for the inconsistency.
Restarting the loop, with L = [T(𝑦 − 𝑥 = 1)] in line 3, we can add T(𝑥 + 𝑦 > 8),
T(𝑧 = 0), T(𝑤 = 0), and T(𝑦 = 𝑥) until L becomes conflicting again. Now, since we
have that B′ = [T(𝑦 − 𝑥 = 1),T(𝑦 = 𝑥)] our algorithm detects a conflict in line 2 and
returns this reduced set. We found exactly the same irreducible inconsistent set as
with the deletion filtering Algorithm 6 but did most of the constraint propagation
incrementally.

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

30 Reason and Conflict Reduction

Algorithm 8: range filtering
Global :A CSP (𝒱 , 𝐷,𝐶).
Input :A list of literals B = [𝜎1, . . . , 𝜎𝑛].
Output :A (shortened) list of literals.

1 B′ ← []
2 𝑖← 𝑛
3 while CspPropagation(B′) ̸= conflicting
4 B′ ← B′ ∘ 𝜎𝑖
5 𝑖← 𝑖− 1

6 return B′

Backward Filtering The basic idea of this algorithm is the same as in Algorithm 7.
With backward filtering, we reverse the order of the inconsistent constraint list.
Therefore, we first test the last assigned constraint and iterate to the first. In this
way, we accommodate the fact that one of the literals that was decided on the current
decision level has to be included in the conflicting nogood. Otherwise, we would have
recognized the conflict before.

Range Filtering Still trying to reduce the amount of propagation that we need,
Algorithm 8 does not aim at computing an irreducible list of constraints, but tries to
approximate a smaller one to find a tradeoff between reduction of size and runtime of
the algorithm. Therefore, as shown in Algorithm 8, we move through the reversed list
of constraints B and add constraints to the result B′ until it becomes inconsistent. In
our example, we reduce the inconsistent list by the elements T(𝑥+ 𝑦 > 8), T(𝑧 = 0),
and T(𝑤 = 0), as this is the first part of the list of constraints that is unnecessary for
the conflict.

Connected Component Filtering With Algorithm 9, we make use of the structure
of the constraints. It only adds constraints that share some of their variables and
starts with the last constraint from the list. While 𝒱 ′ contains all variables that
occur in the testing list, the function vars(𝜎) returns all variables of the constraint
𝛾(𝑐) where 𝜎 = T𝑐 or F𝑐. We start the loop by remembering how many constraint
variables we have seen so far (line 6). Now, we iterate over all constraints that contain
some of the already inspected variables in 𝒱 ′ (lines 8 – 9). We add them to the test
list L and also extend 𝒱 ′. As in Algorithm 7, once L becomes conflicting, the last
constraint is added to the result B′. If B′ is already conflicting, we are done and have
a minimal list of constraints. Otherwise, we restart the loop, restricting the set of
variables 𝒱 ′ to the variables in B′. Furthermore, we only iterate over the constraints
from the test list B′, as this list is already conflicting. If we cannot find a conflicting
list of constraints (this can be the case if the last constraint of the input list B is not
contained in the minimal list of constraints), we add all variables of all constraints in
B to 𝒱 ′. This algorithm takes account of the internal structure of the constraints. In

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

31 Reason and Conflict Reduction

Algorithm 9: connected component filtering
Global :A CSP (𝒱 , 𝐷,𝐶).
Input :A list of literals B = [𝜎1, . . . , 𝜎𝑛].
Output :A (shortened) list of literals.

1 if 𝑠𝑖𝑧𝑒(B) = 0 then return ∅
2 B′ ← []
3 L ← []
4 𝒱 ′ ← vars(𝜎𝑛)
5 while CspPropagation(B′) ̸= conflicting
6 𝑐𝑜𝑢𝑛𝑡← |𝒱 ′|
7 𝑖← 𝑠𝑖𝑧𝑒(B)
8 while CspPropagation(L) ̸= conflicting and 𝑖 ≥ 0
9 if 𝒱 ′ ∩ vars(𝜎𝑖) ̸= ∅ then

10 L← L ∘ 𝜎𝑖
11 𝒱 ′ ← 𝒱 ′ ∪ vars(𝜎𝑖)

12 𝑖← 𝑖− 1

13 if CspPropagation(L) = conflicting then
14 B′ ← B′ ∘ 𝜎𝑖
15 𝒱 ′ ← {𝑣 | 𝑣 ∈ vars(𝜎), 𝜎 ∈ B′}
16 B← remove(L, 𝜎𝑖)
17 L← B′

18 if 𝑐𝑜𝑢𝑛𝑡 = |𝒱 ′| then 𝒱 ′ ← {𝑣 | 𝑣 ∈ vars(𝜎), 𝜎 ∈ B}
19 return B′

our example, the last constraint is T(𝑦 − 𝑥 = 1), so 𝒱 ′ = {𝑦, 𝑥} and we completely
ignore T(𝑧 = 0) and T(𝑤 = 0).

Connected Component Range Filtering This algorithm is a combination of
connected component filtering and range filtering. We simply stop Algorithm 9 at
line 13 and return L. As with range filtering, this algorithm does not return a minimal,
but smaller list of constraints.

Reducing Reasons To use the Reduce function also for minimizing reasons, the
function CspPropagation(B) needs to be deterministic, monotone, and reaching
a fixpoint on the assignment B of constraint literals. For all CSPs (𝒱 , 𝐷,𝐶) and
assignments B, B′ = CspPropagation(B). The function reaches a fixpoint, if
∅ = CspPropagation(B ∪ B′) or B′ = conflicting . It is monotone, if for every
assignment D ⊇ B, D′ = CspPropagation(D), either D′ = conflicting or D′ ⊇ B′.

Given a partial assignment B, CspPropagation(B) returns a set B′. Since the
function is monotone, no subset of B is conflicting. As the call on B returns B′, and
it computes a fixpoint, any call to B∪{𝜎} where 𝜎 ∈ B′ is also not conflicting. Hence
CspPropagation(B∪{𝜎}) is conflicting, as the function is monotone. The Reduce

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

32 Reason and Conflict Reduction

function can shrink a conflicting set, so Reduce(𝒱,𝐷,𝐶)(B ∪ {𝜎}) does not remove 𝜎
from the set (as it is no longer conflicting), and returns a (minimal) nogood asserting
𝜎.

In fact, the Reduce function can be used to shrink unit nogoods as it can be seen
in Algorithm 5 line 14. Consider the following propagation

{F(𝑦−𝑥 = 1)} = CspPropagation({T(𝑥+𝑦 > 8),T(𝑧 = 0),T(𝑤 = 0),T(𝑦 = 𝑥)})

To reduce the unit nogood, we call Reduce(𝒱,𝐷,𝐶)({T(𝑥+ 𝑦 > 8),T(𝑧 = 0),T(𝑤 =
0),T(𝑦 = 𝑥)} ∪ {T(𝑦 − 𝑥 = 1)}) on line 14 in Algorithm 5. The filtering Algorithm 6
reduces it to {T(𝑦 = 𝑥),T(𝑦 − 𝑥 = 1)}, a nogood that is unit and minimal wrt. the
original assignment.

3.6 Implementation Techniques

After developing an algorithm to compute constraint stable models, we now present
different techniques that are implemented in clingcon 1 and 2. These techniques either
improve the performance of our approach or add new features relevant for CASP
solving. Finally, we evaluate the presented techniques on standard CASP problems,
comparing our system to previous approaches tackling CASP.

3.6.1 Lazy Reasons

All algorithms to reduce reasons that we proposed so far are developed with the idea
in mind to avoid the function CspPropagation, as it can be costly and is called
quite often. A different approach to avoid calling our CP solver is to reduce and store
the asserting nogoods only lazily. Hence, instead of adding a (reduced) nogood to the
learned nogoods ∇, every time that CspPropagation returns a set of literals B′ in
Algorithm 5, we simply store the lazy nogoods {{𝜎, 𝜖} | 𝜎 ∈ B′} where 𝜖 denotes an
internal data structure that stores a reference to the last literal 𝜎′ in the assignment
B. Unit propagation can still add 𝜎 ∈ B′ to the assignment, but at this point in
computation there is no need to know the rest of the nogood. Actually, we only need
the complete nogood whenever 𝜎 occurs in a conflict. Conflict analysis in Algorithm 3
uses the actual nogood to resolve 𝜎. As only a lazy nogood was stored, we have to
recreate that nogood. Given that we have stored 𝜎′ in the internal data structure 𝜖,
we can simply replace 𝜖 with B[𝜎′]. The restored nogood is {𝜎} ∪B[𝜎′], as originally
intended. Now, it is also the time to call one of the costly reduction functions to
reduce this nogood to a smaller one. The advantages of this method are that:

∙ we only use a reduction filter on the nogood if it is actually used in conflict
analysis and

∙ we are not adding the nogoods to ∇ such that unit propagation is slowed down
by the amount of nogoods that we add.

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

33 Implementation Techniques

Algorithm 10: CSP Lookahead
Input :A CSP (𝒱 , 𝐷,𝐶) and a set of constraint atoms 𝒞.
Output :A set of nogoods Σ.

1 Σ← ∅
2 let 𝜎 ∈ {T𝑐,F𝑐 | 𝑐 ∈ 𝒞} in
3 𝛿 ← CspPropagation({𝜎})
4 if 𝛿 = conflicting then
5 Σ← Σ ∪ {𝜎}
6 else
7 foreach 𝜎′ ∈ 𝛿 do Σ← Σ ∪ {{𝜎, 𝜎′}}

8 return Σ

The last point in this can also be a drawback as the nogood is not added for further
propagation which means that CspPropagation has to derive the same literals again
during the search and no shortcut via a nogood is created.

3.6.2 Global Constraints

Global constraints are known to speed up the computation in traditional CP solvers.
Within our framework, it is possible to use any global constraint that is supported by
the blackbox CP solver. Nevertheless, global constraints usually cannot be reified in
such solvers and therefore, are only allowed as facts in the input language of clingcon
1 and 2. Currently, two global constraints are implemented in these systems. The
global distinct, where a set of terms must be different from each other. And the global
count constraint, which counts the number of terms that are equal to a certain term 𝑑.

3.6.3 Initial Lookahead

As shown in [122], initial lookahead on constraints can be very helpful in the context
of SMT. It makes implicit knowledge (stored in the propagators of the theory solver)
explicitly available to the propositional solver. We use this feature as a preprocessing
step, restricted to constraint literals. As we can see in Algorithm 10, for every
constraint literal 𝜎 ∈ {T𝑐,F𝑐 | 𝑐 ∈ 𝒞} we call CspPropagation. If 𝜎 is conflicting,
we add a unary nogood {𝜎} such that unit propagation can infer 𝜎. If it is not
conflicting, we we add a binary nogood {𝜎, 𝜎′} for every literal 𝜎′ which is implied
by CspPropagation. In this way, binary relations between constraints become
explicitly available to the ASP solver. For example, T(𝑧 = 0) implies F(𝑥 + 𝑧 > 8)
or T(𝑥+ 𝑦 > 8) implies F(𝑦 = 0).5 Initial lookahead can be enabled/disabled in the
solver using the command line option --csp-initial-lookahead.

5 Recall that D(𝑣) = {0, . . . , 8} for all 𝑣 ∈ 𝒱.

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

34 Implementation Techniques

3.6.4 Optimization

Our systems clingcon 1 and 26 supports optimization statements over integer vari-
ables. Also multiple objective functions are supported. For this, we benefit from the
techniques that are available in the CP solver. The optimization can be controlled
with two command line options. Use --csp-opt-val to set an initial value for the
optimization statements. Only better solutions are enumerated. The other option is
--csp-opt-all which lets the solver enumerate all solutions less or equal to the bound
found last. So to compute all optimal solutions, one first computes one optimal solution
and then calls the solver again with the optimal value as input to --csp-opt-val.

3.7 Evaluation

We developed the system clingcon 1, which can solve constraint answer set programs.
It extends the ASP system clingo 2.0.27 with the generic CP solver gecode 2.2.08.

The used techniques are established in the area of SMT and proven to be efficient.
We first compare our approach to the adsolver [91], which also uses a lazy approach. It
lacks features of CDCL and uses traditional ASP solving algorithms, based on DPLL-
style backtracking, combined with a solver for difference logic. In fact, adsolver ’s
implementation relies on lparse [113] and smodels [109]. The implementation described
in [90] allows the usage of difference constraints of the form 𝑥−𝑦 > 𝑐 for variables 𝑥, 𝑦,
and constant 𝑐; at most one such constraint is allowed within integrity constraints.
The underlying CP solver is handcrafted and thus supports incremental solving and
backtracking. In fact, no learning is done in the system. Our experiments consider
a benchmark suite stemming from the decision support systems for NASA shuttle
controllers [7, 8, 98]. It involves mapping logical time steps on real-time and has
already been used to appraise adsolver in [91]. We compare the system adsolver 1.55
with clingcon 1. All benchmarks are run on a 3.4GHz Linux system using a time limit
of 600s and 3GB memory restriction. We also encoded the problem in pure ASP and
solved it using the ASP solver clingo. In Table 3.3, the runtime (in seconds) of the
different approaches is presented. A — denotes a timeout of 600 seconds. We show
the results for 12 randomly picked sample instances for different amount of time steps.
The pure ASP encoding with the solver clingo can only solve 5 time steps and we
observed memory exhaustion on all instances using 7 time steps. The dedicated CASP
system adsolver can solve up to 13 time steps on some instances and outperforms
the pure ASP approach by far. The new clingcon system, using a dedicated CDCL
approach and no filtering techniques performs even better on all instances, by up to
two orders of magnitude. This clearly shows that CASP benefits from the combination
of a learning algorithm like CDCL with a dedicated CP solver.

We evaluate how lazy nogoods without any filtering algorithms affect the perfor-
mance. In Table 3.4, we can see that not learning the asserting nogoods helps to

6 as well as clingcon 3
7 https://potassco.org/clingo/
8 http://www.gecode.org

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

35 Evaluation

https://potassco.org/clingo/
http://www.gecode.org

clingo adsolver clingcon 1
timesteps 5 5 7 11 13 5 7 11 13

3-0/025 162 14 51 460 365 1 1 4 5
3-0/050 173 31 108 471 — 1 2 8 12
3-0/100 175 448 188 — — 1 2 5 7
3-0/125 165 19 60 224 — 1 1 4 8
5-0/025 174 28 107 — — 1 2 10 15
5-0/050 163 13 42 204 497 1 1 4 7
5-0/100 168 21 66 282 514 1 1 4 5
5-0/125 174 32 104 429 — 1 2 6 10
8-0/025 177 41 140 — — 1 2 9 7
8-0/050 167 18 54 215 — 1 1 4 8
8-0/100 165 13 41 208 — 1 2 4 5
8-0/125 162 16 53 246 519 1 1 4 7

avg 169 58 84 378 558 1 2 5 8

Table 3.3: Comparing clingo 2.0.2, adsolver, and clingcon 1.

avoid timeouts even for 20 time steps. Exhaustive nogood recording slows down unit
propagation more than the additional inferences would help the solver. To make the
learned nogoods more useful, we evaluate different reduction methods in the next step.

We have shown that using CDCL to solve CASP problems has some potential. A
broader set of benchmarks is used to evaluate the different techniques we proposed.

Two Dimensional Strip Packing The task is to position a given set of squares
into a rectangular strip of dimension 𝑛×𝑚 without overlapping [110]. This problem
is directly taken from the third ASP Competition [28].9 The position of the corners of
the squares is represented using integer variables. Within ASP we check whether two
squares overlap.

Incremental Scheduling As presented in the third ASP Competition, incremental
scheduling is inspired by a real world application in commercial printing [6]. It is
about simulating an online scheduling process where the schedule needs to be up to
date while jobs are added and equipment goes off. All jobs have a duration, a deadline,
a device and an impact. There is a set of precedences between the jobs that has to
be respected. If a job is not finished before its deadline, it gets a tardiness based on
its impact. The goal is to find a schedule having an overall tardiness below a given
minimum.

9 https://www.mat.unical.it/aspcomp2011

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

36 Evaluation

https://www.mat.unical.it/aspcomp2011

lazy learn
timesteps 5 7 11 13 20 5 7 11 13 20

3-0/025 1 1 4 5 17 1 1 4 5 18
3-0/050 1 2 6 11 27 1 2 8 12 30
3-0/100 1 2 10 12 38 1 2 5 7 33
3-0/125 1 1 4 10 133 1 1 4 8 31
5-0/025 1 2 5 14 66 1 2 10 15 118
5-0/050 1 1 4 10 241 1 1 4 7 —
5-0/100 1 1 4 6 25 1 1 4 5 49
5-0/125 1 2 6 9 81 1 2 6 10 73
8-0/025 1 2 11 12 222 1 2 9 7 —
8-0/050 1 1 4 7 457 1 1 4 8 32
8-0/100 1 2 5 6 26 1 2 4 5 23
8-0/125 1 1 4 6 17 1 1 4 7 18

avg 1 2 5 9 113 1 2 5 8 135

Table 3.4: Evaluating lazy nogood generation within clingcon.

Quasi Group Completion Quasi Group Completion has been used for benchmark-
ing CP systems in [69]. Given an 𝑛× 𝑛 square where some of the fields are already
filled with numbers from 1 to 𝑛. The task is to complete the square with numbers
from 1 to 𝑛 such that all numbers in each row/column are different from each other.
We tested 78 instances of size 20× 20, partially filled with random numbers.

Weighted Sequence Tree Also, presented in the third ASP Competition, the
problem is inspired by finding an optimal join order in the cost-based query optimizer
of Oracle [81]. Given a set of nodes 𝑆 and a maximum cost 𝑚, each node 𝑖 has weight
𝑤𝑖, integer cardinality 𝑐𝑖, and a color 𝑟 ∈ {𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒}. The goal is to find a
sequence for all nodes such that the cost of that sequence is below a certain threshold.
As the weight and cardinality of a node is given, we can choose the color and position
in the sequence ourselves. The cost of the first node is 0, whereas every other node 𝑖
has the cost

𝑐𝑜𝑠𝑡(𝑖) =

⎧⎪⎨⎪⎩
𝑤𝑖 + 𝑐𝑖 if 𝑟𝑖 = 𝑔𝑟𝑒𝑒𝑛

𝑐𝑜𝑠𝑡(𝑖− 1) + 𝑤𝑖 if 𝑟𝑖 = 𝑟𝑒𝑑

𝑐𝑜𝑠𝑡(𝑖− 1) + 𝑐𝑖 if 𝑟𝑖 = 𝑏𝑙𝑢𝑒

⎫⎪⎬⎪⎭
The cost of the sequence is the sum of the costs of all leaves.

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

37 Evaluation

Unfounded Set Check To increase the spectrum of benchmarks, we conceived
a new collection of benchmarks which make use of the CP solver to handle the
unfounded set check UfsPropagation for some normal logic programs. Therefore,
we reify [52, 60] logic programs, in our case we take:

∙ Labyrinth – the problem of guiding an avatar through a dynamically changing
labyrinth to certain fields [28],

∙ HashiwoKakero – a logic puzzle game, and

∙ HamiltonianCycle – finding a cycle in a graph that uses every node only once.

Using a reified program, we can reason about its structure. In particular, we can
add an encoding that does the unfounded set check using level-mapping as proposed
in [48, 74, 96]. We assign a level to every atom in a strongly connected component
and use the CP solver to find a valid mapping. Using this translation, we can solve
any non-tight logic program using the CP solver for the unfounded set check. All
instances and encodings are freely available.10

Settings We run our benchmarks single-threaded on a cluster with 24 × 8 cores
with 2.27GHz each. We restricted each run to use 4GB RAM. In all our benchmarks
we used the standard configuration of clingcon 2.0, unless stated otherwise. This also
means that we used lazy reasons, a feature that is enabled by default. So every reason
that is generated by the CP solver is not reduced during propagation but when it is
needed during conflict analysis.

Reason and Conflict Reduction First, we analyze how much the different conflict
and reason reduction methods presented in Section 3.5 differ in size of conflicts and
average runtime. As conflicts and reasons are strongly interacting in the CDCL
framework, we test the combination of all our proposed algorithms. We denote the
filtering algorithms with the following shortcuts: s(Simple), b(Backward Filtering),
f(Forward Filtering), c(Connected Component Filtering), r(Range Filtering) and
o(Connected Component Range Filtering). We name the filtering algorithm for reasons
first, separated by a slash from the algorithm used to filter conflicts. To denote the
configuration using Range Filtering for reasons and Forward Filtering for conflicts, we
simply write r/f. The configuration evaluated so far, without applying any reduction
methods, is therefore denoted s/s.

We start by showing the impact on average conflict size of all configurations using a
heat map in Figure 3-2. It shows the reduction of the conflict size in percentage relative
to the worst configuration. The rows represent the used algorithms for reason filtering,
the columns represent the algorithms for filtering conflicts. So the worst configuration
is represented by a totally black square and a configuration that reduces the average
conflict size by half is gray. A completely white field means that the conflict size has
been reduced to zero. As we can see in Figure 3-2, the average conflict size is reduced

10 http://www.cs.uni-potsdam.de/clingcon/benchmarks.html

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

38 Evaluation

http://www.cs.uni-potsdam.de/clingcon/benchmarks.html

s

b

f

c

r

o

s b f c r o

(a) Packing

s

b

f

c

r

o

s b f c r o

(b) Inc. Shed.

s

b

f

c

r

o

s b f c r o

(c) Quasi Group

s

b

f

c

r

o

s b f c r o

(d) Weighted Tree

s

b

f

c

r

o

s b f c r o

(e) USC

Figure 3-2: Evaluating filtering techniques wrt. conflict size..

s

b

f

c

r

o

s b f c r o

(a) Packing

s

b

f

c

r

o

s b f c r o

(b) Inc. Sched.

s

b

f

c

r

o

s b f c r o

(c) Quasi Group

s

b

f

c

r

o

s b f c r o

(d) Weighted Tree

s

b

f

c

r

o

s b f c r o

(e) USC

Figure 3-3: Evaluating filtering techniques wrt. runtime.

by all combinations of filtering algorithms. Furthermore, we see that the first row and
column, respectively, is usually darker than the others, which indicates that filtering
either only conflicts or only reasons is not enough. Also, we see that for the Unfounded
Set Check (USC) benchmark the filtering of reasons does not have any effect. This is
due the encoding of the problem. Since nearly no propagation takes place, no reasons
are computed at all. The shades on the Range Filtering rows/columns (denoted by r)
clearly show that the Range Filtering produces larger conflicts. But this is improved
by incorporating structure to the filtering algorithm using Connected Component
Range Filtering.

Next, we want to see if the reduction of the average conflict size also pays off in
terms of runtime. Therefore, Figure 3-3 shows the heat map for average runtime. A
black square denotes the slowest configuration, while a gray one is twice as fast. As
we can clearly see, the reduction of runtime coincides with the reduction of conflict
size in most cases. Furthermore, we can see a clear speedup for all benchmark classes
except Weighted Sequence Tree using the filtering algorithms.

Table 3.5 compares the Simple version s/s without using any filtering algorithms,
with the configuration o/b (reducing reasons using Connected Component Range
Filtering and reducing conflicts using Backward Filtering), as it has the lowest number
of timeouts. It shows the average runtime in seconds together with the number of
timeouts, and the average conflict size. We note a speedup of around one order of
magnitude on all benchmarks except Weighted Tree. The same picture is given for
the reduction of conflict size. Whenever the average conflict size (acs) is reduced,
this also pays off in terms of runtime.

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

39 Evaluation

Instances time time acs acs
(#number) s/s o/b s/s o/b

Packing(50) 888(49) 63(0) 293 40
Inc. Sched.(50) 30(01) 3(0) 15 5
Quasi Group(78) 390(28) 12(0) 480 56
Weighted Tree(30) 484(07) 574(18) 31 31
USC (132) 721(104) 92(1) 454 13

Table 3.5: Evaluating filtering techniques.

CspPropagation on partial assignments complete assignments

Packing 63 571
Inc. Sched. 3 11
Quasi Group 12 19
Weighted Tree 574 546
USC 92 82

Table 3.6: The effects of theory propagation wrt. runtime.

Theory Propagation Theory propagation is a technique used in SMT to infer
knowledge from the theory given only a partial assignment. By disabling this partial
check we can see whether this technique has an influence on the performance of our
solver. Table 3.6 shows the average runtime in seconds, with and without theory
propagation on our benchmark sets with configuration o/b. We see that it speeds up
the solving of the Packing problem by an order of magnitude. On other benchmarks
relinquishing some propagation strength can improve the overall speed of the system.
This is the case as CspPropagation does not infer any useful knowledge on these
problems and the time is better spend using unit propagation.

Initial Lookahead In Table 3.7 we evaluate the effects of initial lookahead. We
see that the inferred binary nogoods are quite helpful. For the Quasi Group and
the Weighted Tree problem we reduce the number of timeouts and achieve a speedup.
On other problems, either no simple nogoods can be inferred or are not helpful.
Nevertheless, the time spent on the lookahead was negligible on all of our benchmarks.

Global Constraints To confirm that global constraints speed up the computation,
we modeled the Quasi Group problem using the global constraint distinct. Using the
distinct constraint, we achieve an average runtime of 220 seconds and 18 timeouts over
all instances while the decomposed version is much slower. It uses a cubic number of

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

40 Evaluation

instances time time time nogoods
(#number) (timeouts) with I.L of I.L. from I.L

Packing(50) 888(49) 882(49) 5 7970
Inc. Sched.(50) 30(01) 40(02) 0 73
Quasi Group(78) 390(28) 355(24) 9 105367
Weighted Tree(30) 484(07) 312(04) 0 1520
USC (132) 721(104) 719(103) 3 1

Table 3.7: Initial Lookahead (I.L.).

inequalities and used 390 seconds on average and had 28 timeouts. Clingcon confirms,
that global constraints are handled more efficiently than their explicit decomposition.

3.8 Conclusion
We introduced a novel approach to integrate constraint processing capabilities into
modern ASP solvers based on CDCL. Our semantic approach relies on a propositional
language rather than a multi-sorted, first-order language, as used in [19, 90, 91]. With
clingcon 1 and 2 we developed a system for solving CASP. We are able to use state of
the art CP solvers and do not need to implement any CP propagation or optimization
techniques as this is done completely in the external CP solver. In this way, we profit
from new developments in this area. We provide an open source version of our system
using the grounder gringo, the ASP solver clasp, and the CP solver gecode. The
software and full language documentation is available for download.11 We showed that
our method based on a modern CDCL algorithm is very suitable for solving CASP and
is in alignment with the latest developments in SMT. By following the lazy approach of
advanced SMT solvers by abstracting from the constraints in a specialized theory [97],
we outperform traditional CASP systems (based on DPLL-style backtracking) by
orders of magnitude. Having a declarative input language is a big advantage over pure
SMT systems, complex hybrid problems can now easily be expressed using CASP.

A major difficulty in our endeavor was the lack of CP solvers providing an interface
supporting conflict-driven learning. We addressed this problem by developing a new
algorithmic framework for re-engineering minimal reasons/conflicts. This enables the
ASP solver to learn about the structure of the theory, even if the theory solver does
not give any information about it (the CP solver acts as a blackbox). We furthermore
show that while applying these filtering methods, knowledge is discovered that is
valuable for the overall search process and can therefore speed up the search by orders
of magnitude. We point out that the developed techniques regarding the filtering
methods can also be applied to other theories then CP.

11 https://sourceforge.net/projects/potassco/files/clingcon/ For newer versions please
visit: https://potassco.org/clingcon/

Constraint Answer Set Programming
via Conflict Driven Constraint Learn-
ing

41 Conclusion

https://sourceforge.net/projects/potassco/files/clingcon/
https://potassco.org/clingcon/

Chapter 4

Encoding Constraint Satisfaction
Problems

Encoding finite linear Constraint Satisfaction Problems (CSPs; [106]) as propositional
formulas and solving them by using modern SAT solvers has proven to be a highly
effective approach by the award-winning sugar 1 system. The CP solver sugar reads a
CSP instance and transforms it into a propositional formula in Conjunctive Normal
Form (CNF). The translation relies on the order encoding [31, 116], and the resulting
CNF formula can be solved by an off-the-shelf SAT solver.

In this chapter, we elaborate upon an alternative approach based on ASP and
present the resulting aspartame2 framework, serving two purposes. First, aspartame
provides a library for solving CSPs as part of an encompassing logic program. Second,
it constitutes an ASP-based CP solver similar to sugar. The major difference between
sugar and aspartame rests upon the implementation of the translation of CSPs into
Boolean constraint problems. While sugar implements a translation into CNF in
Java, aspartame starts with a representation as a set of facts.3 Its architecture is
given in Figure 4-1. When used as a library, this set of facts (representing the CSP)
must be supplied by the user. In turn, these facts are combined with a general-
purpose ASP encoding for CP solving (also based on the order encoding), which is
subsequently instantiated by an off-the-shelf ASP grounder, in our case gringo. The
resulting propositional logic program is then solved by an off-the-shelf ASP solver (here
clasp). The high-level approach of ASP has obvious advantages. First, instantiation
is done by general-purpose ASP grounders rather than dedicated implementations.
Second, the elaboration tolerance of ASP makes it easy to maintain and modify the
encoding. Therefore, it is easy to experiment with novel or heterogeneous encodings.
However, the question is whether the high-level approach of aspartame matches the
performance of the more dedicated sugar system. We empirically address this question
by contrasting the performance of both CP solvers, while fixing the back-end solver to
clasp, used as both a SAT and an ASP solver.

1 http://bach.istc.kobe-u.ac.jp/sugar
2 https://potassco.org/labs/2016/09/20/aspartame.html
3 When used as CP solver, aspartame re-uses sugar ’s front-end for parsing and normalizing
(non-linear) CSPs. We also extended sugar to produce a fact-based representation.

http://bach.istc.kobe-u.ac.jp/sugar
https://potassco.org/labs/2016/09/20/aspartame.html

CSP
Instance

sugar
A
S
P

ASP
Facts

ASP
Encoding

gringo clasp CSP
Solution

- - - - -

Figure 4-1: Architecture of aspartame.

From an ASP perspective, we gain insights into advanced modeling techniques for
solving CSPs. The ASP encoding, implementing CP solving with aspartame, has the
following features:

∙ usage of function terms to abbreviate structural subsums,

∙ avoidance of (artificial) intermediate integer variables (to split sum expressions),

∙ a collection of encodings for the distinct constraint.

This chapter is structured as follows.

∙ As the presented translation techniques can handle linear constraints, we intro-
duce a set of constraints that can easily be transformed into linear constraints.

∙ After a short overview of several known translation techniques for linear con-
straints, we define the nogoods of a CSP using the order encoding. Given this,
we develop a characterization of constraint stable models using nogoods only.

∙ We show how to represent and encode a CSP using a basic ASP encoding.
Afterwards, several improvements are discussed.

∙ It is possible to extend aspartame to handle CASP problems. We give a short
example on how this is done.

∙ Finally, we evaluate the presented techniques of our system and also compare it
to the state of the art CP solver sugar.

Parts of this chapter have been published in [11]. We extended the publication by a
more elaborate definition of the order encoding. In order to represent CASP using
this encoding, reified, linear constraints are used.

4.1 Normalizing Constraints

This chapter uses a technique to translate linear constraints of the form

𝑎1𝑣1 + · · ·+ 𝑎𝑘𝑣𝑘 ≤ 𝑏 (4.1)

Encoding Constraint Satisfaction Prob-
lems

44 Normalizing Constraints

into a set of nogoods, given that 𝑎𝑖, 𝑏 are integers, and 𝑣𝑖 are integer variables for
1 ≤ 𝑖 ≤ 𝑘. We introduce some basic translation techniques that allow us to handle
any constraint of the form

𝑎1𝑣1 + · · ·+ 𝑎𝑘𝑣𝑘 ∘ 𝑏 (4.2)

where ∘ ∈ {<,>,≤,≥,=, ̸=}. While translating

𝑎1𝑣1 + · · ·+ 𝑎𝑘𝑣𝑘 < 𝑏 into 𝑎1𝑣1 + · · ·+ 𝑎𝑘𝑣𝑘 ≤ 𝑏− 1,

𝑎1𝑣1 + · · ·+ 𝑎𝑘𝑣𝑘 ≥ 𝑏 into −𝑎1𝑣1 − · · · − 𝑎𝑘𝑣𝑘 ≤ −𝑏, and
𝑎1𝑣1 + · · ·+ 𝑎𝑘𝑣𝑘 > 𝑏 into −𝑎1𝑣1 − · · · − 𝑎𝑘𝑣𝑘 ≤ −𝑏− 1

is trivial, other constraints require more elaborate techniques.
Given a constraint logic program 𝑃 over regular atoms 𝒜 and constraint atoms

𝒞 associated with CSP (𝒱 , 𝐷,𝐶), we translate a constraint 𝛾(𝑐), 𝑐 ∈ 𝒞 of the form
𝑎1𝑣1 + · · · + 𝑎𝑘𝑣𝑘 = 𝑏, by introducing new rules. We therefore translate 𝑃 into a
new constraint logic program 𝑃 ′ over regular atoms 𝒜 ∪ {𝑐} and constraint atoms
𝒞∖{𝑐}∪{𝑙, 𝑟}. We let 𝛾(𝑙) = 𝑎1𝑣1+ · · ·+𝑎𝑘𝑣𝑘 ≤ 𝑏 and 𝛾(𝑟) = −𝑎1𝑣1−· · ·−𝑎𝑘𝑣𝑘 ≤ −𝑏4
and add the new rule 𝑐 ← 𝑙, 𝑟 to 𝑃 ′. Let us have a look at the following example
program.

Example 2

a ← (𝑥+ 𝑦 > 8), (𝑧 − 𝑤 = 42)

The translation process changes the first constraint and adds an additional rule for
the second constraint.

a ← (−𝑥− 𝑦 ≤ −9), 𝑐

𝑐← (𝑧 − 𝑤 ≤ 42), (−𝑧 + 𝑤 ≤ −42)

For inequality constraints 𝛾(𝑐) ≡ 𝑎1𝑣1 + · · · + 𝑎𝑘𝑣𝑘 ̸= 𝑏 we propose a similar
translation process adding the rules

𝑐← (𝑎1𝑣1 + · · ·+ 𝑎𝑘𝑣𝑘 ≤ 𝑏− 1)

𝑐← (−𝑎1𝑣1 − · · · − 𝑎𝑘𝑣𝑘 ≤ −𝑏− 1).

As our implementation only supports constraints that can be normalized to the form
𝑎1𝑣1+ · · ·+𝑎𝑘𝑣𝑘 ≤ 𝑏, we assume that the constraint logic program has been normalized
in the presented way if not mentioned otherwise.

4.2 Encoding Linear Constraints
Given a linear constraint, several translations into Boolean formulas exists. The
translated constraints then can be solved using CDCL like algorithms while learning

4 This is equivalent to 𝑎1𝑣1 + · · ·+ 𝑎𝑘𝑣𝑘 ≥ 𝑏.

Encoding Constraint Satisfaction Prob-
lems

45 Encoding Linear Constraints

x x x x x

x x x x

x x x

x x

x

1 2 3 4 5 6 7

1

2

3

4

5

6

7

0 x

y

Figure 4-2: A graphical representation of the linear constraint 𝑥+ 𝑦 ≤ 7.

inter-constraint dependencies. We give a brief overview over common translations
and explain their advantages and drawbacks. For a more detailed view, [43] describes
different translations, their propagation strengths and their complexity.

Direct Encoding The direct encoding [121] is the most obvious way to encode
a linear constraint. It uses one atom for each domain value 𝑑 of each variable 𝑣,
where the atom has the meaning 𝑣 = 𝑑. For a linear constraint, for each forbidden
combination of values a nogood is created. E.g. for constraint 𝑥+ 𝑦 ≤ 7, the nogood
{T(𝑥 = 5),T(𝑦 = 4)} is part of the encoding. The linear constraint 𝑥 + 𝑦 ≤ 7 is
given by the dashed line in Figure 4-2 and every dot on the left side of it is a valid
assignment for D(𝑥) = D(𝑦) = {2, . . . , 6}. Each x is represented by one nogood in
the direct encoding, representing a forbidden assignment of the two variables. This
encoding technique does not achieve arc consistency5 by unit propagation.

Logarithmic Encoding The logarithmic encoding [121] is optimized for the size
of the encoding. For every variable 𝑣, we have one atom for each bit of the binary
representation of its domain. So atom 𝑣𝑗 means that the value of 𝑣 has the 𝑗th bit set
to true in its binary notation. For a linear constraint, each forbidden combination is
ruled out by a nogood describing the combination of forbidden bits. For the constraint
used above, the nogood {T(𝑥1),T(𝑥3),T(𝑦3)} is part of the encoding and expresses
the same condition as the nogood shown for the direct encoding. The logarithmic
encoding also does not achieve arc consistency by unit propagation and its propagation

5 Every admissible value of a variable is consistent (wrt. a constraint) with some admissible value
of another variable.

Encoding Constraint Satisfaction Prob-
lems

46 Encoding Linear Constraints

strength is weak. The advantage of this encoding technique is its compactness.

Support Encoding The support encoding [67] can be used either with the direct
or the logarithmic encoding. The idea is to encode the supported regions instead of
the conflicting ones. In some cases, this technique reduces the number of nogoods.

Range encoding In a range encoding, a variable 𝑣 and its range 𝑙 ≤ 𝑣 ≤ 𝑢 are
encoded by propositional variables 𝑣𝑢𝑙 for every possible range. Hence, a quadratic
number of atoms is needed to represent a variable. Channelling constraints are
introduced to say that 𝑣𝑢𝑙 implies 𝑣𝑢prev(𝑙,𝑣) and 𝑣

next(𝑢,𝑣)
𝑙 . The advantage of this

encoding is that holes in the domain can be propagated.

Order Encoding The order encoding [31, 115, 116] introduces exactly one atom
per domain value per variable. The atom (𝑣 ≤ 𝑑) has the meaning 𝑣 ≤ 𝑑 for a variable
𝑣 and its values 𝑑 ∈ D(𝑣). Channelling constraints are introduced to say that (𝑣 ≤ 𝑑)
implies (𝑣 ≤ next(𝑑, 𝑣)). For a linear constraint, one nogood can remove a whole set
of conflicting values, as we can see in Figure 4-2. Each gray box is represented by
a nogood using the order encoding, e.g. {F(𝑥 ≤ 2),F(𝑦 ≤ 4)} for ruling out every
solution where 𝑥 is greater than 2 and 𝑦 is greater than 4. A detailed description of
the order encoding is to be given in Section 4.3.

Compact Order Encoding The compact order encoding [14, 117] is a mixture
between the order and the logarithmic encoding. Each variable is represented using
digits of base 𝐵. If 𝐵 is the size of the domain, this is equivalent to the order encoding
and if 𝐵 = 2 this is the logarithmic encoding. This encoding is made for representing
larger variables by using a bitwise representation and sacrificing propagation strength.

4.3 Nogoods of Constraint Satisfaction Problems

We decided on the order encoding technique to translate a CSP into a set of nogoods,
as it is well established [103, 114]. To this end, given a CSP (𝒱 , 𝐷,𝐶), we let 𝒪𝒱 stand
for the set of order atoms associated with variables in 𝒱 . Whenever the set 𝒱 is clear
from the context, we drop it and simply write 𝒪. More precisely, we introduce an order
atom (𝑣 ≤ 𝑑) ∈ 𝒪 for each constraint variable 𝑣 ∈ 𝒱 and value 𝑑 ∈ D(𝑣), 𝑑 ̸= ub(𝑣).
We refer to signed literals over 𝒪 as signed order literals.

Now, we are ready to map a linear CSP into a set of nogoods. First, we need to
make sure that each variable in 𝒱 has exactly one value from its domain in 𝐷. To
this end, we define the following set of nogoods.

Φ(𝒱 , 𝐷) = {{T(𝑣 ≤ 𝑑),F(𝑣 ≤ next(𝑑, 𝑣))} | 𝑣 ∈ 𝒱 , 𝑑 ∈ D(𝑣),

next(𝑑, 𝑣) < ub(𝑣)}
(4.3)

Encoding Constraint Satisfaction Prob-
lems

47 Nogoods of Constraint Satisfaction
Problems

Intuitively, each such nogood stands for an implication “(𝑣 ≤ 𝑑)⇒ (𝑣 ≤ 𝑑+ 1)”. In
Example 1, we get the following nogoods.

Φ({𝑥}, {𝐷(𝑥)}) = {{T(𝑥 ≤ 0),F(𝑥 ≤ 1)}, . . . , {T(𝑥 ≤ 21),F(𝑥 ≤ 22)}}. (4.4)

Second, we need to establish the relation between constraint atoms 𝒞 and their
associated linear constraints in 𝐶. Following [49], a reified constraint is an equivalence
“T𝑐⇔ 𝛾(𝑐)” where 𝑐 ∈ 𝒞; it is decomposable into two half-reified constraints “T𝑐⇒
𝛾(𝑐)” and “F𝑐⇒ 𝛾(𝑐)”.

To translate constraints into nogoods, we need to translate expressions of the form
𝑎𝑣+ 𝑏 ≤ 0 for 𝑣 ∈ 𝒱 and integers 𝑎, 𝑏 into signed ordered literals.6 Following [116], we
then define (𝑎𝑣 + 𝑏 ≤ 0)‡ as

(𝑎𝑣 + 𝑏 ≤ 0)‡ =

⎧⎨⎩ (𝑣 ≤ ⌊−𝑏
𝑎
⌋)† if 𝑎 > 0

(𝑣 ≤ ⌈−𝑏
𝑎
⌉ − 1)† if 𝑎 < 0

where (𝑣 ≤ 𝑑)† is defined for lb(𝑣) ≤ 𝑑 < ub(𝑣) as

(𝑣 ≤ 𝑑)† =

{︃
T(𝑣 ≤ 𝑑) if 𝑑 ∈ D(𝑣)

T(𝑣 ≤ prev(𝑑, 𝑣)) if 𝑑 /∈ D(𝑣)

If 𝑑 ≥ ub(𝑣) then (𝑣 ≤ 𝑑)† = T∅; if 𝑑 < lb(𝑣) then (𝑣 ≤ 𝑑)† = F∅, where ∅ stands for
the empty body.7 Expressing constraint 𝑥 < 7 from Example 1 in terms of signed
order literals results in (1 · 𝑥+ (−6) ≤ 0)‡ = T(𝑥 ≤ 6). The signed literal T(𝑥 ≤ 6)
indicates that 6 is the largest integer satisfying the constraint. Also, we get the signed
literals (𝑥 ≤ 0)† = F∅ and (𝑥 ≤ 23)† = T∅.

We sometimes use <,>, or≥ as operators in these expressions and implicitly convert
them to the normal form 𝑎𝑣 + 𝑏 ≤ 0 to be used in this translation. Accordingly, the
complementary constraint yields (𝑥 > 6)‡ = ((−1) · 𝑥+ 7 ≤ 0)‡ = (𝑥 ≤ ⌈−7

−1
⌉ − 1)† =

F(𝑥 ≤ 6).
The actual relation between the constraint atoms in 𝒞 and their associated linear

constraints in 𝐶 is established via the following nogoods.

Ψ(𝒞) =
⋃︀

𝑐∈𝒞 𝜓(T𝑐, 𝛾(𝑐)) ∪ 𝜓(F𝑐, 𝛾(𝑐)) . (4.5)

For all constraint atoms 𝑐 ∈ 𝒞 associated with the linear constraint 𝛾(𝑐) =
∑︀𝑛

𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏
in 𝐶, we define for both of its half-reified constraints the set of nogoods

𝜓(T𝑐,
∑︀𝑛

𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏) = {{T𝑐} ∪ (𝛿 ∖ {T∅}) | 𝛿 ∈ 𝜑(
∑︀𝑛

𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏),F∅ /∈ 𝛿} (4.6)

𝜓(F𝑐,
∑︀𝑛

𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏) = {{F𝑐} ∪ (𝛿 ∖ {T∅}) | 𝛿 ∈ 𝜑(
∑︀𝑛

𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏),F∅ /∈ 𝛿} (4.7)

6 Any linear inequality using <,>,≤,≥, and one variable can be converted into this form.
7 We use T∅ and F∅ as representatives for tautological and unsatisfiable signed literals; they are
removed in (4.6) and (4.7) below.

Encoding Constraint Satisfaction Prob-
lems

48 Nogoods of Constraint Satisfaction
Problems

where

𝜑(
∑︀𝑛

𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
{(𝑎1𝑣1 > 𝑏)‡} if 𝑛 = 1

{(𝑎1𝑣1 ≥ 𝑑)‡} ∪ 𝛿 if 𝑛 > 1

𝛿 ∈ 𝜑(
∑︀𝑛

𝑖=2 𝑎𝑖𝑣𝑖 ≤ 𝑏− 𝑑),

𝑑 ∈ img(𝑎1𝑣1)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (4.8)

Note that nogoods with T∅ and F∅ are simplified in (4.6) and (4.7). Also, observe
that the definition of 𝜑 is recursive although this does not show up with our simple
examples.

In Example 1, we obtain

𝜓(T(𝑥 < 7), 𝑥 ≤ 6) = {{T(𝑥 < 7),F(𝑥 ≤ 6)}} (4.9)
𝜓(F(𝑥 < 7),−𝑥 ≤ −7) = {{F(𝑥 < 7),T(𝑥 ≤ 6)}} (4.10)

and

𝜓(T(𝑥 ≥ 22),−𝑥 ≤ −22) = {{T(𝑥 ≥ 22),T(𝑥 ≤ 21)}} (4.11)
𝜓(F(𝑥 ≥ 22), 𝑥 ≤ 21) = {{F(𝑥 ≥ 22),F(𝑥 ≤ 21)}} (4.12)

Taken together, these nogoods realize the aforementioned equivalence between the
constraint atoms (𝑥 < 7), (𝑥 ≥ 22), and their associated constraints. Note that (𝑥 < 7)
and (𝑥 ≥ 22) are constraint atoms in 𝒞, while (𝑥 ≤ 6) and (𝑥 ≤ 21) are order atoms
in 𝒪 and thus belong to the encoding of the constraints. For further illustration,
reconsider the Boolean assignment B|𝒞 = {F(𝑥 < 7),F(𝑥 ≥ 22)} inducing the first
constraint stable models in (2.10). Applying unit propagation, we get F(𝑥 ≤ 6)
via (4.10) and in turn F(𝑥 ≤ 5) to F(𝑥 ≤ 1) via the nogoods in Φ({𝑥}, {𝐷(𝑥)})
in (4.3). Similarly, making F(𝑥 ≥ 22) true yields T(𝑥 ≤ 21), via the nogoods in (4.12).
All in all, a CSP (𝒱 , 𝐷,𝐶) is characterized by the nogoods in Φ(𝒱 , 𝐷) and Ψ(𝒞).

While in Section 3.1 the corresponding constraint variable assignment C is de-
termined externally, it can be directly extracted from a solution B for Φ(𝒱 , 𝐷) by
means of the following functions: The upper bound for a view 𝑣 relative to a Boolean
assignment B is given by ubB(𝑣) = min({ub(𝑣)} ∪ {𝑑 | 𝑑 ∈ img(𝑣), (𝑣 ≤ 𝑑)‡ ∈ B})
and its lower bound by lbB(𝑣) = max({lb(𝑣)}∪{𝑑 | 𝑑 ∈ img(𝑣), (𝑣 ≥ 𝑑)‡ ∈ B}). Then,
C(𝑣) = lbB(𝑣) = ubB(𝑣) for all 𝑣 ∈ 𝒱. Accordingly, the above Boolean assignment
corresponds to the solutions {{𝑥 ↦→ 𝑣} | 𝑣 ∈ {7, . . . , 21}}.

Proposition 4.3.1

Let 𝑃 be a constraint logic program over regular atoms 𝒜 and constraint atoms 𝒞
associated with the CSP (𝒱 , 𝐷,𝐶) and let B be a solution of the set Φ(𝒱 , 𝐷)∪Ψ(𝒞)
of nogoods.
Then, B|𝒞 = {T𝑐 | 𝛾(𝑐) ∈ satC(𝐶)}∪{F𝑐 | 𝛾(𝑐) ∈ satC(𝐶)} iff C = {𝑣 ↦→ lbB(𝑣) |
𝑣 ∈ 𝒱}.

Encoding Constraint Satisfaction Prob-
lems

49 Nogoods of Constraint Satisfaction
Problems

Proof 4.3.1 The correctness follows directly from the correctness of the order encoding
as shown in [116].

Combining the nogoods stemming from the logic program and its associated CSP, we
obtain the following characterization of constraint logic programs.

Theorem 4.3.2

Let 𝑃 be a constraint logic program over regular atoms 𝒜 and constraint atoms 𝒞
associated with the CSP (𝒱 , 𝐷,𝐶).
Then, (𝑋,C) is a constraint stable model of 𝑃 iff (C, satC(𝐶)) is a configuration
for (𝒱 , 𝐷,𝐶), and 𝑋 = BT ∩ (𝒜 ∪ 𝒞) for any (unique) solution B of the set
∆𝒞

𝑃 ∪ Λ𝒞
𝑃 ∪ Ψ(𝒞) ∪ Φ(𝒱 , 𝐷) of nogoods and C = {𝑣 ↦→ lbB(𝑣) | 𝑣 ∈ 𝒱} being a

total assignment over 𝒱 .

Proof 4.3.2 The proof of this theorem is obtained by replacing {{F𝑐} | 𝛾(𝑐) ∈
satC(𝐶)} ∪ {{T𝑐} | 𝛾(𝑐) ∈ satC(𝐶)} in Theorem 3.1.1 with Φ(𝒱 , 𝐷) ∪ Ψ(𝒞). The
correctness of the solution is assured by Proposition 4.3.1.

4.4 Encoding Constraint Satisfaction Problems
For using aspartame as a CP solver, we extended the front-end of the sugar system
by an output component representing CSPs in terms of ASP facts. The latter also
constitute the CSP instances when using aspartame as a library. As usual, the resulting
facts can then be combined with a first-order encoding processable with off-the-shelf
ASP systems. In what follows, we describe aspartame’s fact format and we present
dedicated ASP encodings utilizing function terms to capture substructures in CSP
instances.

Fact Format Facts express the variables and constraints of a CSP instance in the
syntax of ASP grounders like gringo. Their format is easiest explained on the set of
clauses from Example 3 with D(𝑥) = D(𝑦) = D(𝑧) = {1, 2, 3} and D(𝑏) = {0, 1}. Each
clause is the disjunction of its elements, and its representation is shown in Listing 4.1.

Example 3

𝐶1 = {𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥, 𝑦, 𝑧)}
𝐶2 = {𝑏, 4𝑥− 3𝑦 + 𝑧 ≤ 0}
𝐶3 = {¬𝑏,−4𝑥+ 3𝑦 ≤ −6}

While facts of the predicate var/2 provide labels of Boolean variables, like 𝑏, the
predicate var/3 includes a third argument for declaring the domains of integer variables,
like 𝑥, 𝑦, and 𝑧. Domain declarations rely on function terms range(𝑙,𝑢), standing for

Encoding Constraint Satisfaction Prob-
lems

50 Encoding Constraint Satisfaction
Problems

1 var(bool ,b). var(int ,(x;y;z),range (1 ,3)).

3 constraint (1,global(alldifferent ,arg(x,arg(y,arg(z,nil))))).
4 constraint (2,b).
5 constraint (2,op(le,op(add ,op(add ,op(mul ,4,x),op(mul ,-3,y)),op(mul ,1,z)) ,0)).
6 constraint (3,op(neg ,b)).
7 constraint (3,op(le,op(add ,op(mul ,-4,x),op(mul ,3,y)),-6)).
8 objective(minimize ,x).

Listing 4.1: Facts representing the CSP from above.

integer intervals [𝑙, 𝑢]. While one term, range(1,3), suffices for the common domain
{1, 2, 3} of 𝑥, 𝑦, and 𝑧 (line 1 in Listing 4.1), in general, several intervals can be
specified (via separate facts) to form non-contiguous domains. Note that the interval
format for integer domains offers a compact fact representation of domains; e.g., the
single term range(1,10000) captures a domain of 10000 elements. Furthermore, the
usage of meaningful function terms avoids any need for artificial labels to refer to
domains or parts thereof.

The literals of constraint clauses are also represented by means of function terms.
In fact, the second argument of constraint/2 in line 3 of Listing 4.1 stands for
𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡(𝑥, 𝑦, 𝑧) from the constraint clause 𝐶1 in Example 3, identified by the first
argument of constraint/2. Since each fact of predicate constraint/2 is supposed
to describe a single literal only, constraint clause identifiers establish the connection
between individual literals of a clause. The function term expressing the distinct
constraint includes an argument list of the form arg(𝑣1,arg(. . . ,arg(𝑣𝑛,nil). . .)),
in which 𝑣1, . . . , 𝑣𝑛 refer to integer variables. In line 3 of Listing 4.1, a distinct
constraint over arguments 𝑣⃗ is declared via global(alldifferent,𝑣⃗); at present,
alldifferent is a fixed keyword in facts used by aspartame, but support for other
kinds of global constraints can be added in the future. The more complex term of
the form op(le,Σ,𝑚) in line 5 stands for a linear inequality Σ ≤ 𝑚. In particular,
the inequality 4𝑥 − 3𝑦 + 𝑧 ≤ 0 from 𝐶2 is represented by nested op(add,Σ,𝑎𝑣)
terms whose last argument 𝑎𝑣 and deepest Σ part are of the form op(mul,𝑎,𝑣);
such nesting corresponds to the precedence (((4 * 𝑥) + (−3 * 𝑦)) + (1 * 𝑧)) ≤ 0.
The representation by function terms captures linear inequalities of arbitrary arity
and, as with integer intervals, associates (sub)sums with canonical labels. Finally
lines 4 – 5 denote the clause 𝐶2. In line 6, a Boolean constraint, e.g. 𝑜𝑝(𝑛𝑒𝑔, 𝑏) using
Boolean variables and the operator 𝑛𝑒𝑔 for classical negation is shown. To state the
objective functions for minimizing/maximizing a set of variables we use the predicate
objective(minimize,𝑥) where 𝑥 denotes an integer variable that is to be minimized.

First-Order Encoding In addition to a dedicated output component of sugar
for generating ASP facts, aspartame comes with several alternative first-order ASP
encodings for solving CSP instances. In the following, we first describe a basic encoding
that implements the order encoding techniques [114, 116] from Section 4.3 concisely,
and then present optimizations and extensions for the distinct constraints. We also
show that these aspartame encodings can be used as library for solving CASP and

Encoding Constraint Satisfaction Prob-
lems

51 Encoding Constraint Satisfaction
Problems

constraint optimization problems. To concentrate on the encoding of linear constraints
and distinct, we simplified the encoding and stripped off capabilities for handling
Boolean variables and restrict ourselves to unary constraint clauses in the following.
Our encodings are given in the language of the grounder gringo 4 that features the
Lua scripting language to help with more complex calculations during grounding.

Basic Encoding In Listing 4.2 we show auxiliary predicates that we use in our
encoding. Given a CSP instance (𝒱 , 𝐷, 𝐶), for each integer variable 𝑣 ∈ 𝒱 , the domain
values of the variables are kept in a Lua table, and then the lower and upper bounds of
each 𝑣 are calculated via Lua and captured in the second arguments of lb/2 and ub/2
respectively in lines 1 – 3. Each literal of a constraint clause is classified into a distinct
constraint expressed by alldiff/1 or a linear inequality by wsum/1 in lines 5 – 7. The
identifier in the first argument of constraint/2 is removed in lines 6 – 7, since the
aspartame encoding presented here is restricted to unary constraint clauses. For each
linear inequality

∑︀𝑛
𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏, in line 6,

∑︀𝑛
𝑖=1 𝑎𝑖𝑣𝑖 is sorted in descending order of

|D(𝑣𝑖)| via Lua, and then the constraint is captured in the argument of predicate
wsum/1. Each sum Σ in op(_,Σ,_) is decomposed into (sub)sums in lines 9 – 10, and
then the lower and upper bounds of them are calculated and captured in the second
arguments of inf/2 and sup/2 respectively in lines 13 – 19. In line 11, a predicate
unary_exp(𝑒) is generated if 𝑒 is an unary expression of the form op(mul,𝑎𝑖,𝑣𝑖).

1 var(V) :- var(int ,V,_).
2 lb(V,@getLB(V)) :- var(V).
3 ub(V,@getUB(V)) :- var(V).

5 global(I,global(Func ,Args)) :- constraint(I,global(Func ,Args)).
6 wsum(@sortWsum(L)) :- constraint(I,L); not global(_,L).
7 alldiff(Args) :- global(_,global(alldifferent ,Args)).

9 exp(E) :- wsum(op(_,E,_)).
10 exp(E1;E2) :- exp(op(add ,E1,E2)).
11 unary_exp(op(mul ,A,V)) :- exp(op(mul ,A,V)).

13 inf(op(mul ,A,V),A*LB) :- exp(op(mul ,A,V)); A > 0; lb(V,LB).
14 inf(op(mul ,A,V),A*UB) :- exp(op(mul ,A,V)); A < 0; ub(V,UB).
15 inf(op(add ,E1 ,E2),A+B) :- exp(op(add ,E1,E2)); inf(E1 ,A); inf(E2 ,B).

17 sup(op(mul ,A,V),A*UB) :- exp(op(mul ,A,V)); A > 0; ub(V,UB).
18 sup(op(mul ,A,V),A*LB) :- exp(op(mul ,A,V)); A < 0; lb(V,LB).
19 sup(op(add ,E1 ,E2),A+B) :- exp(op(add ,E1,E2)); sup(E1 ,A); sup(E2 ,B).

Listing 4.2: Auxiliary predicates

Encoding Integer Variables To define the order atoms 𝒪 and nogoods Φ(𝒱 , 𝐷)
from Equation (4.3) we use Listing 4.3. The first line introduces an order atom p(v, d),
meaning (𝑣 ≤ 𝑑), for every 𝑣 ∈ 𝒱 and 𝑑 ∈ D(𝑣). We use a choice rule [56] to say
that we can chose any truth-assignment for them. To ensure that each variable has
exactly one value, lines 2 – 3 introduce the nogoods from Φ(𝒱 , 𝐷). Note that the Lua
function getDom(v) returns D(𝑣), and getSimpGT(a, v) = next(𝑎, 𝑣). For illustration,
consider an integer variable 𝑥 ∈ {2, 3, 4, 5, 6} represented by var(int, x , range(2, 6))
as an ASP fact. The grounded, propositional logic program is

Encoding Constraint Satisfaction Prob-
lems

52 Encoding Constraint Satisfaction
Problems

{p(x,2), p(x,3), p(x,4), p(x,5), p(x ,6)}.
:- p(x,2); not p(x,3).
:- p(x,3); not p(x,4).
:- p(x,4); not p(x,5).
:- p(x,5); not p(x,6).
:- not p(x,6).

resulting in the following stable models:

stable models interpretation

{p(x,6)} 𝑥 ↦→ 6

{p(x,5),p(x,6)} 𝑥 ↦→ 5

{p(x,4),p(x,5),p(x,6)} 𝑥 ↦→ 4

{p(x,3),p(x,4),p(x,5),p(x,6)} 𝑥 ↦→ 3

{p(x,2),p(x,3),p(x,4),p(x,5),p(x,6)} 𝑥 ↦→ 2

Note that the nogoods from Φ(𝒱 , 𝐷) are represented using integrity constraints.

1 { p(V,A) : A = @getDom(V) } :- var(V).
2 :- p(V,A); not p(V,B); B = @getSimpGT(A,V); A < UB; ub(V,UB).
3 :- not p(V,UB); var(V); ub(V,UB).

Listing 4.3: Encoding of Integer Variables

Encoding of Linear Constraints The nogoods of a linear constraint are recursively
defined as 𝜑(

∑︀𝑛
𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏) in Equation (4.8). Following this equation, the first rule

in Listing 4.4 describes the reduction of an (n)-ary constraint
∑︀𝑛

𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏 (𝑛 ≥ 2) in
line 3 to an (𝑛−1)-ary constraint

∑︀𝑛
𝑖=2 𝑎𝑖𝑣𝑖 ≤ 𝑏−𝑑 (line 1), by removing the last unary

expression of the constraint and subtracting 𝑑 from the right hand side. This is done for
all values 𝑑 ∈ img(𝑎1𝑣1). As a condition to the rule, the literal representing (𝑎𝑛𝑣𝑛 ≥ 𝑑)‡

is added in lines 4 – 5. The Lua function getSimpLE(d − 1 , v) simply returns prev(𝑑, 𝑣),
and lines 4 – 5 correspond to the transformation ()‡ which is described in Section 4.3.
This encoding procedure can be optimized by considering the validity and inconsistency
of the recursive part

∑︀𝑛
𝑖=2 𝑎𝑖𝑣𝑖 ≤ 𝑏 − 𝑑, which can reduce the number of nogoods.

The validity and inconsistency of the recursive part can be captured by inequalities
𝑏 − 𝑑 ≥ sup(

∑︀𝑛
𝑖=2 𝑎𝑖𝑣𝑖) and 𝑏 − 𝑑 < inf(

∑︀𝑛
𝑖=2 𝑎𝑖𝑥𝑖), respectively, where inf and sup

indicate the lower and upper bounds of the linear expressions. When the recursive
part is valid, the nogood containing it is unnecessary. When it is inconsistent, the
literal of the recursive part can be removed, and moreover only one such nogood is
sufficient. Based on the observations above, the function getDomOpt() restricts the
values of 𝑑 in such a way that the recursive part becomes neither valid nor inconsistent,
if (𝑎𝑛𝑣𝑛 ≥ 𝑑)‡ holds. In the second rule, only one wsum(op(le, op(mul, a, v), b − Inf))
corresponding to 𝑎1𝑣1 ≤ 𝑏 − inf(

∑︀𝑛
𝑖=2 𝑎𝑖𝑣𝑖) is generated if there exists at least one

value in img(𝑎1𝑣1) such that the recursive part becomes inconsistent.

Encoding Constraint Satisfaction Prob-
lems

53 Encoding Constraint Satisfaction
Problems

1 wsum(op(le ,X,B-A*D)) :-
2 not unary(X) : opt_binary == 1;
3 wsum(op(le ,op(add ,X,op(mul ,A,V)),B)),
4 not p(V,D’) : A > 0, D’ = @getSimpLE(D-1,V);
5 p(V,D) : A < 0;
6 D = @getDomOpt(V,A,B-Sup ,B-Inf), inf(X,Inf), sup(X,Sup).

8 wsum(op(le ,op(mul ,A,V),B-Inf)) :-
9 wsum(op(le ,op(add ,X,op(mul ,A,V)),B)),

10 B-Inf < Sup , inf(X,Inf), sup(op(mul ,A,V),Sup).

Listing 4.4: Encoding of
∑︀𝑛

𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏 (𝑛 ≥ 2)

1 :- wsum(op(le,op(mul ,A,V),B)), Inf <= B, B < Sup ,
2 inf(op(mul ,A,V),Inf), sup(op(mul ,A,V),Sup),
3 not p(V,B’) : A > 0;
4 p(V,B’) : A < 0;
5 B’ = @getLE(B,A,V).

7 :- wsum(op(le,op(mul ,A,V),B)), Inf > B, inf(op(mul ,A,V),Inf).

Listing 4.5: Encoding of 𝑎1𝑣1 ≤ 𝑏

Now, that we have a recursive definition for constraints with an arity of two or above,
the encoding of unary expressions is described in Listing 4.5. If the unary expression
𝑎1𝑣1 ≤ 𝑏 is neither valid nor inconsistent, the first rule translates the expression directly
to its order literal (𝑎1𝑣1 ≤ 𝑏)‡, using the Lua function getLE(v , a, b) = prev(𝑏+ 1, 𝑎𝑣).
It therefore ensures that, whenever a unary expression is true, the respective order
literal has to hold. If the unary expression is inconsistent, the second rule ensures that
it never holds.

We refer to the encoding of Listings 4.2–4.5 as basic encoding. This encoding can
concisely implement CP solving based on the order encoding techniques by utilizing the
feature of function terms. Moreover, it proposes an alternative approach to splitting
sum expressions. In fact, the basic encoding splits them by generating the instances of
predicate wsum/1 during recursive encoding, rather than by introducing intermediate
integer variables during preprocessing like sugar ’s CSP-to-CSP translation. It is noted
that global constraints such as alldifferent and others need to be translated into linear
inequalities by sugar ’s front-end and then encoded by the basic encoding.

Optimized Encoding The basic encoding can generate redundant clauses for
linear inequalities of size two. Consider 𝑥 + 𝑦 ≤ 7 represented by a function term
op(le, op(add, op(mul, 1, x), op(mul, 1, y)), 7), where D(𝑥) = D(𝑦) = {2, 3, 4, 5, 6}.
The resulting propositional logic program is as follows.

:- not p(y,5). :- not p(x,5).
wsum(op(le ,op(mul ,1,x),2)) :- not p(y,4). :- wsum(op(le,op(mul ,1,x),2)); not p(x,2).
wsum(op(le ,op(mul ,1,x),3)) :- not p(y,3). :- wsum(op(le,op(mul ,1,x),3)); not p(x,3).
wsum(op(le ,op(mul ,1,x),4)) :- not p(y,2). :- wsum(op(le,op(mul ,1,x),4)); not p(x,4).

Encoding Constraint Satisfaction Prob-
lems

54 Encoding Constraint Satisfaction
Problems

1 :- wsum(op(le,op(add ,op(mul ,A1 ,V1),op(mul ,A1,V2)),B)),
2 not p(V2 ,C) : A1 > 0 , C = @getSimpLE(D-1,V2);
3 p(V2,D) : A1 < 0;
4 not p(V1 ,E) : A1 > 0;
5 p(V1,E) : A1 < 0;
6 D = @getDomOpt(V2,A1,B-Sup ,B-Inf), inf(op(mul ,A1,V1),Inf),
7 sup(op(mul ,A1 ,V1),Sup), E = @getLE(B-A1*D,A1 ,V1).

Listing 4.6: Encoding of 𝑎1𝑣1 + 𝑎2𝑣2 ≤ 𝑏

1 alldiffArg(arg(V,A),1,V,A) :- alldiff(arg(arg(V,A),nil)).
2 alldiffArg(N,I+1,V,A) :- alldiffArg(N,I,_,arg(V,A)).

4 val(V,A) :- var(int ,V,_), p(V,A), not p(V,@getSimpLE(A-1,V)), alldiffArg(_,_,V,_).

6 alldiffRange(A,LB,UB) :- alldiff(arg(A,nil)),
7 LB = #min {L,V : var(int ,V,range(L,_)), alldiffArg(A,_,V,_)},
8 UB = #max {U,V : var(int ,V,range(_,U)), alldiffArg(A,_,V,_)}.

Listing 4.7: Auxiliary predicates for the alldifferent constraints

The intermediate instances of wsum/1 are redundant and can be removed. This issue
can be fixed by the optimized encoding which is an extension of the basic encoding by
adding only the one rule of Listing 4.6 and by setting the constant opt_binary to
1. The rule of Listing 4.6 represents the special case of the first rule in Listing 4.4
for

∑︀𝑛
𝑖=1 𝑎𝑖𝑣𝑖 ≤ 𝑏 with (𝑛 = 2) and does not generate any intermediate instances of

wsum/1. However, we keep generating such intermediate instances for 𝑛 > 2 because
they can be shared by different linear inequalities and can be effective in reducing the
number of nogoods. For the above example, the optimized encoding generates the
following.

:- not p(y,5). :- not p(x,5).
:- not p(y,4); not p(x,2). :- not p(y,3); not p(x,3). :- not p(y,2); not p(x,4).

Alldifferent encodings In this part, we present different encodings for the alldiffer-
ent constraint. In Listing 4.7 we show all the auxiliary atoms that we need for the forth-
coming encodings. In the first two lines we create the predicate alldiffArg(n, i, v, a)
to collect all variables 𝑣 and coefficients 𝑎 for the alldifferent constraint 𝑛. The
consecutive index 𝑖 is used to access all variables in an order. Using these atoms, we
create a direct encoding for all variables that occur in an alldifferent constraint in
line 4. We use the atoms val(v, a) to denote that 𝑣 = 𝑎. Furthermore, we create a
maximum range of all variables that occur in an alldifferent constraint in lines 6 – 8
using alldiffRange(n, lb, ub). We refer to these values as the range of the alldifferent
constraint.

We now present different encodings for the alldifferent constraint. The simplest
one, alldiffA, is presented in Listing 4.8. It ensures that two distinct variables that
occur in the same alldifferent constraint do not take the same value using the atom

Encoding Constraint Satisfaction Prob-
lems

55 Encoding Constraint Satisfaction
Problems

1 :- alldiffRange(CI ,LB,UB), X = LB..UB , val(V1 ,X), val(V2 ,X),
2 alldiffArg(CI ,_,V1,_), alldiffArg(CI ,_,V2 ,_), V1 < V2.

Listing 4.8: Encoding 𝐴 for alldifferent.

1 :- alldiffRange(CI ,LB,UB),
2 X = LB..UB , 2{val(V,X) : alldiffArg(CI,_,V,_)}.

Listing 4.9: Encoding 𝐵 for alldifferent.

val(v, a). This encoding produces a quadratic number of rules (in the number of
variables occurring in the constraint) for every value 𝑥 in the range of the constraint.
The encoding alldiffB from Listing 4.9 does the same, this time using a cardinality
constraint. Any value 𝑥 in the range of the alldifferent constraint is not allowed to be
can be assigned to at most one variable. This encoding uses exactly one rule for every
value 𝑥.

The encoding alldiffC from Listing 4.10 is a more sophisticated one. For every
variable 𝑣1, . . . , 𝑣𝑛 in an alldifferent constraint 𝑐 we derive an atom seen(c, i− 1, x)
that means that at least one variable 𝑣𝑗 with 𝑗 ≥ 𝑖 has taken the value 𝑥. In line 3,
we forbid that a variable 𝑣𝑗 has the same value as a variable 𝑣𝑖 with 𝑖 < 𝑗.

The last encoding, alldiffD, in Listing 4.11 uses Hall intervals [21], and does not
use the direct encoding from Listing 4.7. In the first line, we compute all Hall intervals
of maximum size 𝐻 ({[𝑠, 𝑠+ ℎ] | 𝑠 ∈ [𝑙𝑏, 𝑢𝑏− ℎ] , 0 ≤ ℎ ≤ 𝐻}), for the interval
[𝑙𝑏, 𝑢𝑏] of an alldifferent constraint. Next, we create a fresh integer variable with the
domain {0, 1} for every Hall interval in lines 3 – 4. In the lines 6 – 8 we create a reified
constraint ℎ𝑎𝑙𝑙𝑣𝑎𝑟(𝑣, 𝑙𝑏, 𝑢𝑏)⇔ 𝑣 ≥ 𝑙𝑏 ∧ 𝑣 ≤ 𝑢𝑏 to ensure that a Hall interval variable
is one, whenever its variable 𝑣 is inside the Hall interval and zero otherwise. The last
four rules create a constraint for each Hall interval [𝑙, 𝑢] that ensures that the sum
of all hallvar variables is less than 𝑢− 𝑙, practically ensuring that no two variables
have the same value. With this encoding we can achieve stronger propagation on
alldifferent constraints using unit propagation at the cost of producing more rules. We
can control this behaviour with the hallsize hall = 𝐻, having better propagation but
also producing more constraints giving higher values of 𝐻. Note that hall propagation
can not be done efficiently using unit propagation [22].

Objective Functions To minimize an integer variable, the objective/2 predicate
is used in Listing 4.12. For every variable 𝑥 we want to minimize we add p(𝑥,𝑑) with
a weight of 𝑑−prev(𝑑, 𝑥) to an ASP minimize statement for every 𝑑 ∈ D(𝑥), 𝑑 ≠ lb(𝑥).
The Lua function getSimpLE(d − 1 , v) simply returns prev(𝑑, 𝑣). So for minimizing
𝑥 where D(𝑥) = {0, 1, 5, 6} the statement grounds to

#minimize {(1-0),x : p(x,1); (5-1),x : p(x,5); (6-5),x : p(x,6)}.

Encoding Constraint Satisfaction Prob-
lems

56 Encoding Constraint Satisfaction
Problems

1 seen(CI,I-1,X) :- alldiffArg(CI,I,V,_), 1 < I, val(V,X).
2 seen(CI,I-1,X) :- seen(CI ,I,X), 1 < I.
3 :- alldiffArg(CI,I,V,_), val(V,X), seen(CI ,I,X).

Listing 4.10: Encoding 𝐶 for alldifferent.

1 hInterval(CI,S,E) :- alldiffRange(CI ,LB,UB), H=0..hall , S=LB..UB -H, E=S+H.

3 hVar(V,S,E) :- hInterval(CI,S,E), alldiffArg(CI,_,V,_).
4 var(int ,hVar(V,S,E),range (0,1)) :- hVar(V,S,E).

6 :- p(hVar(V,S,E),0), hVar(V,S,E), p(V,@getSimpLE(E,V)), not p(V,@getSimpLE(S-1,V)).
7 :- not p(hVar(V,S,E),0), hVar(V,S,E), p(V,@getSimpLE(S-1,V)).
8 :- not p(hVar(V,S,E),0), hVar(V,S,E), not p(V,@getSimpLE(E,V)).

10 lastArg(CI ,X) :- alldiffArg(CI ,X,_,_), not alldiffArg(CI,X+1,_,_).
11 hCtor(CI ,S,E,1,op(mul ,1,hVar(V,S,E))) :- alldiffArg(CI ,1,V,_), hInterval(CI ,S,E).
12 hCtor(CI ,S,E,N+1,op(add ,Old ,op(mul ,1,hVar(V,S,E)))) :- hCtor(CI,S,E,N,Old),
13 alldiffArg(CI ,N+1,V,_), hInterval(CI ,S,E).
14 constraint(hc(CI,S,E),op(le,C,E-S+1)) :- hCtor(CI,S,E,Last ,C), lastArg(CI,Last).

Listing 4.11: Encoding 𝐷 for alldifferent.

4.4.1 Encoding Constraint Answer Set Programs

We developed an encoding for linear constraints and also the alldifferent constraint.
This allows us to solve CSPs over finite integers just as the sugar system. We now
elaborate on an extension of this encoding. Although aspartame was not specifically
designed for CASP, it can be used to express CASP problems quite easily. By simply
using the wsum/1 atom in a problem encoding combined with the encodings for
aspartame, we can use constraints in our ASP problem specification. As an example,
we reconsider the two dimensional strip packing problem from Section 3.7.

Two Dimensional Strip Packing To encode this problem, the set of rectangles is
represented by a set of facts r(I,W,H). Each I identifies a rectangle with width W and
height H. The task is to fit all into a container of width w and height ub. This time,
we minimize the height of the container. Based on the problem description in [11],
Listing 4.13 encodes the problem using var/3 for describing integer variables and
their domain, le(x, c, y) intending to express 𝑥+ 𝑐 ≤ 𝑦 and objective/2 to minimize
the total height. Whenever an arrangement of squares is chosen in lines 6 – 7 and
le(x, c, y) holds, we derive a wsum/1 atom in line 10 which ensures that the constraint
𝑥+ 𝑐 ≤ 𝑦 holds using the aspartame encoding.

This method has some problems related to the input language of aspartame. The
fact format was designed to be automatically generated from a CSP encoding. It is
not convenient to use constraints in the body of a rule (as they cannot easily be made
external) nor to create (n)-ary linear constraints8 because of the nested structure that
was chosen for performance reasons.

8 Constraints whose length depends dynamically on the input instance.

Encoding Constraint Satisfaction Prob-
lems

57 Encoding Constraint Satisfaction
Problems

1 #minimize{ (D-P),V,D : p(V,D), objective(minimize ,V), P=@getSimpLE(D-1,V) }.

Listing 4.12: Encoding objective functions.

1 var(int , x(I), range(0,w-W)) :- r(I,W,H).
2 var(int , y(I), range(0,ub -H)) :- r(I,W,H).
3 var(int , height , range(0,ub)).
4 objective(minimize , height).

6 1 { le(x(I),WI ,x(J)) ; le(x(J),WJ ,x(I)) ; le(y(I),HI ,y(J)) ; le(y(J),HJ ,y(I)) } :-
7 r(I,WI ,HI), r(J,WJ ,HJ), I < J.
8 le(y(I),H,height) :- r(I,W,H).

10 wsum(op(le ,op(add ,op(mul ,1,X),op(mul ,-1,Y)),-C)) :- le(X,C,Y).

Listing 4.13: Encoding of 2sp problems

4.5 Evaluation
As mentioned, aspartame re-uses sugar ’s front-end for parsing and normalizing CSPs.
Hence, it accepts the same input formats, viz. XCSP9 and sugar ’s native CSP format.10

For this, we implemented an output hook for sugar that provides us with the resulting
CSP instance in aspartame’s fact format. This format can also be used for directly
representing linear arithmetic constraints within standard ASP encodings used for
CASP. In both cases, the resulting facts are then used for grounding a dedicated ASP
encoding (via the ASP grounder gringo). In turn, the resulting propositional logic
program is passed to the ASP solver clasp that returns an assignment, representing a
solution to the original CSP instance.

Our empirical analysis considers all instances of GLOBAL categories in the 2009
CSP Competition.9 We ran them on a cluster of Linux machines equipped with dual
Xeon E5520 quad-core 2.26GHz processors and 48GB RAM. We separated grounding
and solving times, and imposed on each a limit of 1800s and 16GB. While we count
a grounding timeout as 1800s, we penalize unsuccessful solving with 1800s if either
solving or grounding does not finish in time

At first, we analyze the difference between the basic encoding and its refinements
from Section 4.4. To this end, Table 4.1 contrasts the results obtained from different
ASP encodings as well as sugar (2.2.1). The name of the benchmark class and the
number of instances is given in the first column. In each setting, the trans column
shows the average time used for translating CSP problems into their final propositional
format. For this purpose, aspartame uses gringo (4.5), while sugar uses a dedicated
implementation resulting in a CNF in DIMACS format. Analogously, the solve column
gives the average time for each benchmark class, showing the number of translation
(to𝑡) and total timeouts (to). In all cases, we use clasp 3.1.1 as back-end ASP or
SAT solver, respectively, in its ASP default configuration tweety. Comparing the

9 http://www.cril.univ-artois.fr/CPAI09
10 http://bach.istc.kobe-u.ac.jp/sugar/package/current/docs/syntax.html

Encoding Constraint Satisfaction Prob-
lems

58 Evaluation

http://www.cril.univ-artois.fr/CPAI09
http://bach.istc.kobe-u.ac.jp/sugar/package/current/docs/syntax.html

basic optimized optimizednosplit sugar
instances trans solve tot to trans solve tot to trans solve tot to trans solve tot to

CabinetStart(40) 1800 1800 40 40 53 20 0 0 8 2 0 0 4 12 0 0
QG3(7) 2 515 0 2 2 515 0 2 2 515 0 2 2 514 0 2
QG4(7) 2 291 0 1 2 278 0 1 2 278 0 1 2 269 0 1
QG5(7) 1 168 0 0 1 71 0 0 1 71 0 0 1 60 0 0
QG6(7) 3 257 0 1 4 257 0 1 4 257 0 1 2 257 0 1
QG7 3 263 0 1 4 259 0 1 4 259 0 1 2 258 0 1
Squares(37) 49 385 0 5 162 229 0 4 33 278 0 4 4 271 0 4
SquaresUnsat(37) 49 745 0 15 160 683 0 13 33 728 0 13 4 660 0 13
Bibd1011(6) 19 5 0 0 30 3 0 0 15 6 0 0 9 6 0 0
Bibd1213(7) 28 13 0 0 42 20 0 0 20 15 0 0 7 2 0 0
Bibd6(10) 5 1 0 0 8 1 0 0 4 1 0 0 3 1 0 0
Bibd7(14) 6 1 0 0 9 1 0 0 5 1 0 0 4 1 0 0
Bibd8(7) 9 14 0 0 14 3 0 0 7 11 0 0 4 2 0 0
Bibd9(10) 13 3 0 0 20 2 0 0 9 3 0 0 6 4 0 0
BibdVariousK(29) 17 343 0 4 23 298 0 4 14 324 0 5 6 266 0 3
bqwh15106(10) 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
bqwh18141(10) 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
Cjss(10) 61 1084 0 6 97 1085 0 6 86 1091 0 6 24 944 0 5
Compet02(20) 199 67 0 0 1165 200 2 2 1164 200 2 2 22 9 0 0
Compet08(16) 17 146 0 1 90 16 0 0 91 16 0 0 73 463 0 4
CostasArray(11) 3 577 0 3 15 381 0 2 16 514 0 3 2 362 0 2
LatinSquare(10) 1 180 0 1 2 180 0 1 2 180 0 1 1 180 0 1
MagicSquare(18) 1057 1179 10 11 1208 1103 11 11 1444 1400 14 14 629 756 6 7
Medium(5) 305 117 0 0 1717 1446 4 4 1721 1446 4 4 31 10 0 0
Nengfa(3) 113 19 0 0 777 5 0 0 770 5 0 0 4 6 0 0
pigeons(19) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
Pseudo(100) 122 466 5 23 142 482 7 26 12 382 0 18 95 488 5 26
Rcpsp(39) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
RcpspTighter(39) 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0
Small(5) 14 2 0 0 87 1 0 0 87 1 0 0 4 1 0 0

total 210 412 55 114 163 273 24 78 124 274 20 75 44 252 11 70

Table 4.1: Experiments comparing different encodings with sugar.

basic encoding with the optimized encoding, we observe that the latter significantly
reduces both solving and grounding timeouts (mainly due to the CabinetStart class).
Next, we investigate the impact of the recursive structure of our encodings. For this,
we disabled splitting of linear constraints within sugar ’s translation. This usually
leads to an exponential increase in the number of clauses for sugar. The results are
given in column optimizednosplit of Table 4.1. In fact, disabled splitting performs
as good as the optimized encoding with splitting. In some cases, it even improves
performance. Since splitting constraints the right way usually depends heavily on
heuristics, our recursive translation offers a heuristic-independent solution to this
problem. Finally, although aspartame and sugar are at eye height regarding solving
time and timeouts, aspartame falls short by an order of magnitude when it comes to
translating CSPs into propositional format. Here the dedicated implementation of

Encoding Constraint Satisfaction Prob-
lems

59 Evaluation

sugar 11 clearly outperforms the grounder-based approach of aspartame. On the other
hand, our declarative approach allows us to easily modify and thus experiment with
different encodings.

This flexibility was extremely useful when elaborating upon different encodings.
While for the benchmarks used in Table 4.1 the alldifferent constraints are translated
to linear constraints with the help of sugar, we now handle them by an encoding.
To this end, Table 4.2 compares four alternative encodings for handling alldifferent

Encoding 𝐴 Encoding 𝐵 Encoding 𝐶 Encoding 𝐷 Encoding 𝐵†

instances trans solve tot to trans solve tot to trans solve tot to trans solve tot to trans solve tot to

CabinetStart(40) 54 20 0 0 53 20 0 0 53 20 0 0 65 23 0 0 8 2 0 0
QG3(7) 2 515 0 2 2 515 0 2 2 515 0 2 3 515 0 2 2 515 0 2
QG4(7) 2 276 0 1 2 278 0 1 2 283 0 1 3 290 0 1 2 278 0 1
QG5(7) 1 56 0 0 1 68 0 0 1 60 0 0 3 149 0 0 1 68 0 0
QG6(7) 4 257 0 1 4 257 0 1 4 257 0 1 6 258 0 1 4 257 0 1
QG7 4 259 0 1 4 260 0 1 4 259 0 1 4 261 0 1 4 260 0 1
Squares(37) 161 229 0 4 161 230 0 4 161 230 0 4 166 232 0 4 33 281 0 4
SquaresUnsat(37) 158 683 0 13 158 682 0 13 158 682 0 13 168 701 0 13 32 726 0 13
Bibd1011(6) 30 3 0 0 30 3 0 0 31 3 0 0 32 3 0 0 15 6 0 0
Bibd1213(7) 42 20 0 0 42 20 0 0 43 20 0 0 43 24 0 0 20 15 0 0
Bibd6(10) 8 1 0 0 8 1 0 0 8 1 0 0 14 1 0 0 4 1 0 0
Bibd7(14) 9 1 0 0 9 1 0 0 9 1 0 0 9 1 0 0 5 1 0 0
Bibd8(7) 14 3 0 0 14 3 0 0 14 3 0 0 14 3 0 0 7 11 0 0
Bibd9(10) 20 2 0 0 20 2 0 0 20 2 0 0 21 3 0 0 9 3 0 0
BibdVariousK(29) 23 298 0 4 23 298 0 4 23 298 0 4 26 300 0 4 14 324 0 5
bqwh15106(10) 0 0 0 0 0 0 0 0 0 0 0 0 4 1 0 0 0 0 0 0
bqwh18141(10) 0 0 0 0 0 0 0 0 0 0 0 0 5 1 0 0 0 0 0 0
Cjss(10) 99 1085 0 6 99 1085 0 6 99 1085 0 6 97 1085 0 6 87 1091 0 6
Compet02(20) 834 22 0 0 836 18 0 0 840 21 0 0 1095 268 2 2 842 19 0 0
Compet08(16) 236 463 0 4 232 455 0 4 230 475 0 4 633 1498 0 13 233 455 0 4
CostasArray(11) 5 503 0 2 5 349 0 2 5 494 0 3 10 517 0 3 6 343 0 2
LatinSquare(10) 0 180 0 1 0 180 0 1 0 180 0 1 2 180 0 1 0 180 0 1
MagicSquare(18) 1192 1107 11 11 1192 1103 11 11 1191 1104 11 11 1196 1106 11 11 1442 1401 14 14
Medium(5) 1510 36 0 0 1499 34 0 0 1503 35 0 0 1700 1458 4 4 1507 34 0 0
Nengfa(3) 10 2 0 0 9 1 0 0 9 2 0 0 67 117 0 0 9 1 0 0
pigeons(19) 0
Pseudo(100) 142 482 7 26 142 482 7 26 142 482 7 26 142 483 7 26 12 382 0 18
Rcpsp(39) 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
RcpspTighter(39) 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
Small(5) 62 1 0 0 62 1 0 0 61 1 0 0 92 8 0 0 62 1 0 0

total 148 269 18 76 148 266 18 76 148 269 18 77 174 326 24 92 110 264 14 72

Table 4.2: Experiments comparing different encodings for alldifferent.

presented above. Our experiments show however, that simple translations using binary
inequalities like 𝐴 and 𝐵 are as good as more complex ones like 𝐶 and even outperform
more sophisticated ones as 𝐷. The last column shows the combination of non-splitting
linear constraints (in sugar) and handling the alldifferent constraint with translation

11 The timeouts of sugar during translation are always due to insufficient memory.

Encoding Constraint Satisfaction Prob-
lems

60 Evaluation

𝐵. This is currently the best performing combination of encodings and constitutes
the default setting of aspartame (2.0.0).12

4.6 Conclusion
As regards pure CP solving, our approach can be seen as a first-order alternative
to SAT-based approaches like sugar [116]. The resulting system aspartame relies
on high-level ASP encodings and delegates both the grounding and solving tasks
to general-purpose ASP systems. Furthermore, these encodings can be used as a
library for solving CSPs as part of an encompassing logic program, as it is done in the
framework of CASP.

Although the performance of the underlying SAT solver is crucial, the SAT
encoding plays an equally important role [104]. Among them, we find the direct [121],
support [67], logarithmic [121], order [31, 116], and compact order [117] encoding. The
order encoding showed good performance for a wide range of CSPs [31, 93, 99, 110]. In
fact, the SAT-based CP solver sugar won the GLOBAL category at the 2008 and 2009 CP
solver competitions [79]. Also, the SAT-based CP solver BEE [92] and the CLP system
B-Prolog [124] use this encoding. In fact, the order encoding provides a compact
translation of arithmetic constraints, while also maintaining bounds consistency by
unit propagation. Interestingly, it has been shown that the order encoding is the only
existing SAT encoding that can reduce tractable CSP to tractable SAT [103].

We have focused our empirical comparison on the SAT-based CP solver sugar. This
is motivated as follows. First, sugar follows a rather similar approach as aspartame.
Second, we could compare sugar and aspartame in a uniform setting by fixing the
back-end solver to clasp. Furthermore, sugar has been extensively compared to genuine
CP solvers in the literature, which also puts aspartame’s performance in context. In
particular, the empirical success of sugar suggests that CP solving via state of the art
Boolean constraint solvers should be the option of choice whenever the size required
for a Boolean representation can be afforded. Although aspartame does not fully
match the performance of sugar from a global perspective, the picture is fragmented
and leaves room for further improvements, especially for the translation process.

Before we compare aspartame with our previously proposed CASP approach, we
extend the translational approach by making it “online”. In fact, instead of translating
all constraints a priori, we aim at translating them on the fly during the solving process.
This approach combines the advantages of the order encoding with the extended CDCL
approach from Section 3.4 and is to be presented in the next chapter.

12 The system is available at https://potassco.org/labs/2016/09/20/aspartame.html

Encoding Constraint Satisfaction Prob-
lems

61 Conclusion

https://potassco.org/labs/2016/09/20/aspartame.html

Chapter 5

Lazy Nogood and Variable
Generation

In this chapter we develop an approach for handling CASP using lazy nogood and
variable generation techniques. These are particularly efficient for solving linear
constraints over variables with huge domains. The main part of this chapter was
already published in [13]. It is structured as follows:

∙ We first characterize CASP in terms of nogoods and propagators. This forms
the foundation for the lazy nogood learning approach.

∙ Next, we describe the design of our new system clingcon 3, including its archi-
tecture and its input language.

∙ The algorithms from Section 3.4 are extended to use constraint propagators
and lazy variable generation. In combination with the approach presented in
Chapter 4, a partial translation of the problem can be achieved.

∙ We now detail some of the distinguishing features of our system. These features
include preprocessing and runtime features adjusted to fit our approach.

∙ To assess the usefulness of our approach, we start with an extensive evaluation of
its features. Then, we compare our system to state of the art CP solvers, using
benchmarks from the minizinc competition 2016. Finally, CASP benchmarks
are evaluated and our system is confronted with other modern CASP systems,
including the aspartame and clingcon 2 system presented before.

5.1 Constraint Stable Models in Terms of
Propagators

The basic idea of lazy nogood generation is to make the nogoods in Φ(𝒱 , 𝐷) and Ψ(𝒞)
(Equations (4.3) and (4.5) from Section 4.3) only explicit on demand. This is done by
propagators corresponding to the respective set of nogoods. A popular example of

this is the unfounded-set-check algorithm in ASP solvers that only makes the nogoods
in Λ𝑃 (3.6) explicit on demand.

Following [44], a propagator for a set Θ of nogoods is a function ΠΘ mapping a
Boolean assignment B to a subset of Θ such that for each total assignment B: if
𝛿 ⊆ B for some 𝛿 ∈ Θ, then 𝛿′ ⊆ B for some 𝛿′ ∈ ΠΘ(B). That is, whenever there is a
nogood in Θ violated by an assignment B, then ΠΘ(B) yields a violated nogood, too.
A propagator ΠΘ is conflict optimal, if for all partial assignments B, the violation
of a nogood in Θ by B implies that some nogood in ΠΘ(B) is violated by B. ΠΘ is
inference optimal, if it is conflict optimal and ΠΘ(B) contains all unit nogoods of Θ
wrt. B.

We obtain the following extension of Theorem 4.3.2.

Theorem 5.1.1

Let 𝑃 be a constraint logic program over regular atoms 𝒜 and constraint atoms 𝒞
associated with the CSP (𝒱 , 𝐷,𝐶) and let ΠΘ be a propagator for Θ = Λ𝒞

𝑃 , Ψ(𝒞),
and Φ(𝒱 , 𝐷), respectively.
Then, B is a solution of the set

∆𝒞
𝑃 ∪ Λ𝒞

𝑃 ∪Ψ(𝒞) ∪ Φ(𝒱 , 𝐷)

of nogoods iff B is a solution of the set

∆𝒞
𝑃 ∪ ΠΛ𝒞

𝑃
(B) ∪ ΠΨ(𝒞)(B) ∪ ΠΦ(𝒱,𝐷)(B)

of nogoods.

This theorem tells us that the nogoods in Ψ(𝒞), Φ(𝒱 , 𝐷), and Λ𝒞
𝑃 must not be explicitly

represented but can be computed by corresponding propagators ΠΘ that add them
lazily on demand.

Proof 5.1.1 This theorem follows directly from the definition of a propagator, as a
propagator ΠΘ(B) always contains a conflicting nogood iff Θ contains a conflicting
nogood wrt. a complete assignment B.

To relax the restrictions imposed by this theorem, the idea is to compile out a subset
of constraints and variables of the CSP while leaving the others subject to lazy nogood
generation. This is captured by the following corollary to Theorem 5.1.1.

Corollary 5.1.1 Let 𝑃 be a constraint logic program over regular atoms 𝒜 and
constraint atoms 𝒞 associated with the CSP (𝒱 , 𝐷,𝐶) and let ΠΘ be a propagator for
Θ = Λ𝒞

𝑃 , Ψ(𝒞 ∖ 𝒞 ′), and Φ(𝒱 ∖ 𝒱 ′, 𝐷 ∖𝐷′), respectively, for arbitrary subsets 𝒞 ′ ⊆ 𝒞,
𝒱 ′ ⊆ 𝒱, and 𝐷′ ⊆ 𝐷.
Then, B is a solution of the set

∆𝒞
𝑃 ∪ Λ𝒞

𝑃 ∪Ψ(𝒞) ∪ Φ(𝒱 , 𝐷)

Lazy Nogood and Variable Generation 64 Constraint Stable Models in Terms of
Propagators

of nogoods iff B is a solution of the set

∆𝒞
𝑃 ∪Ψ(𝒞 ′) ∪ Φ(𝒱 ′, 𝐷′) ∪ ΠΛ𝒞

𝑃
(B) ∪ ΠΨ(𝒞∖𝒞′)(B) ∪ ΠΦ(𝒱∖𝒱 ′,𝐷∖𝐷′)(B)

of nogoods.

This correspondence nicely reflects upon the basic idea of our approach. While
the entire set of loop nogoods Λ𝒞

𝑃 is handled by the unfounded set propagator ΠΛ𝒞
𝑃

as usual, the ones capturing the CSP is divided among the explicated nogoods in
Ψ(𝒞 ′) ∪ Φ(𝒱 ′, 𝐷′) and the implicit ones handled by the propagators ΠΨ(𝒞∖𝒞′) and
ΠΦ(𝒱∖𝒱 ′,𝐷∖𝐷′). Note that variables and domain elements are often only dealt with
implicitly through their induced order atoms in 𝒪.

5.2 System Design
We now present the clingcon 3 system, a lazy nogood and variable generating CASP
solver. It combines the previously presented approaches by extending the CDCL
approach with a propagator that uses the order encoding. We also propose a new
CASP input language based on the general theory language framework [53] provided
by gringo.

5.2.1 Architecture

clingcon 3 is an extension of the ASP system clingo 5, which itself relies on the
grounder gringo and the solver clasp. The architecture of clingcon 3 is given in
Figure 5-1. More precisely, clingcon uses gringo’s capabilities to specify and process

CASP
Program

clingcon

gringo clasp
CSP

CASP
Solution

-- -

CSP
Grammar

Figure 5-1: Architecture of clingcon 3.
.

customized theory languages. For this, it is sufficient to supply a grammar fixing the
syntax of constraint-related expressions. As detailed in Section 5.2.2, this allows us
to express linear constraints similar to standard ASP aggregates by using first-order
variables. Unlike this, clingcon extends clasp in several ways to accommodate its lazy
approach to constraint solving. First, clasp’s preprocessing capabilities are extended
to integrate linear constraints. Second, dedicated propagators are added to account for
lazy constraint propagation. Both extensions are detailed in Section 5.3. And finally,

Lazy Nogood and Variable Generation 65 System Design

a special output module was created to integrate CSP solutions. Notably, clingcon 3
pursues a lazy yet two-fold approach to constraint solving that allows for making a
part of the nogoods in Φ(𝒱 , 𝐷) ∪ Ψ(𝒞) explicit during preprocessing, while leaving
the remaining constraints implicit and the creation of corresponding nogoods subject
to the constraint propagator. In this way, a part of the CSP can be put right up
front under the influence of CDCL-based search. All other constraints are only turned
into nogoods when needed. Accordingly, only a limited subset of order atoms from 𝒪
(the atoms that represent the integer variables) must be introduced at the beginning;
further ones are only created if they are needed upon the addition of new nogoods.
This is also called lazy variable generation.

It is worth mentioning that both the grounding and the solving component of
clingcon can also be used separately via clingo’s option ‘--mode’. That is, the same
result as with clingcon is obtained by passing the output of ‘clingcon --mode=gringo’
to ‘clingcon --mode=clasp’. The intermediate result of grounding a CASP program
is expressed in the aspif format [54] that accommodates both the regular ASP part
of the program as well as its constraint-based extension. This modular design allows
others to take advantage of clingcon’s infrastructure for their own CASP solvers. Also,
external front ends can be used for generating ground CASP programs; e.g. the flatzinc
translator used in Section 5.4.

Finally, extra effort was taken to transfer clasp specific features to clingcon’s solving
component. This includes multi-threading [63], unsatisfiable core techniques [2], multi-
criteria optimization [55], domain-specific heuristics [61], multi-shot solving [57, 59],
and clasp’s reasoning modes like enumeration, intersection and union of models.
Vocabulary-sensitive reasoning modes like projective enumeration and domain-specific
heuristics can be used via auxiliary atoms.

5.2.2 Language

As mentioned, the treatment of the extended input language of CASP programs can
be mapped onto gringo’s theory language capabilities [53]. For this, it is sufficient to
supply a corresponding grammar fixing the syntax of the language extension. The one
used for clingcon is given in Listing 5.1. The grammar is named csp and consists of
two parts, one defining theory terms in lines 2 – 27 and another defining theory atoms
in lines 29 – 33. All regular terms are implicitly included in the respective theory terms.
These are then used to represent constraint-related expressions that are turned by
grounding into linear constraint atoms using predicate &sum, domain restrictions using
predicate &dom, directives &show and &minimize, and the predefined global constraint
&distinct.1

Before delving into further details, let us illustrate the resulting syntax by the CASP
program for two dimensional strip packing given in Listing 5.2, already introduced
in Section 3.7 and Section 4.4.1. Given a set of rectangles, each represented by a
fact r(I,W,H) where I identifies a rectangle with width W and height H, the task is to
fit all into a container of width w and height ub while minimizing the needed height

1 Which is equivalent to the alldifferent constraint from Section 4.4.

Lazy Nogood and Variable Generation 66 System Design

1 #theory csp {
2 dom_term {
3 + : 5, unary;
4 - : 5, unary;
5 .. : 1, binary , left;
6 * : 4, binary , left;
7 + : 3, binary , left;
8 - : 3, binary , left
9 };

10 linear_term {
11 + : 5, unary;
12 - : 5, unary;
13 * : 4, binary , left;
14 + : 3, binary , left;
15 - : 3, binary , left
16 };
17 show_term {
18 / : 1, binary , left
19 };
20 minimize_term {
21 + : 5, unary;
22 - : 5, unary;
23 * : 4, binary , left;
24 + : 3, binary , left;
25 - : 3, binary , left;
26 @ : 0, binary , left
27 };

29 &dom/0 : dom_term , {=}, linear_term , any;
30 &sum/0 : linear_term , {<=,=,>=,<,>,!=}, linear_term , any;
31 &distinct /0 : linear_term , any;
32 &show/0 : show_term , directive;
33 &minimize /0 : minimize_term , directive
34 }.

Listing 5.1: Language Syntax

1 &dom {0..w-W} = x(I) :- r(I,W,H).
2 &dom {0..ub -H} = y(I) :- r(I,W,H).

4 1 { le(x(I),WI ,x(J));
5 le(x(J),WJ ,x(I));
6 le(y(I),HI ,y(J));
7 le(y(J),HJ ,y(I)) } :- r(I,WI ,HI), r(J,WJ ,HJ), I < J.

9 &sum{VI; C} <= VJ :- le(VI,C,VJ).

11 &dom {0..ub} = height.
12 &sum{y(I); H} <= height :- r(I,W,H).
13 &minimize {height }.
14 &show {height }.

Listing 5.2: Two Dimensional Strip Packing

Lazy Nogood and Variable Generation 67 System Design

1 r(a,5,2). r(b,2,3). r(c,2 ,2).

3 &dom {0..(6 -5)} = x(a). &dom {0..(6 -2)} = x(b). &dom {0..(6 -2)} = x(c).
4 &dom {0..(10 -2)} = y(a). &dom {0..(10 -3)} = y(b). &dom {0..(10 -2)} = y(c).

6 1 <= { le(x(a),5,x(b)); le(x(b),2,x(a));
7 le(y(a),2,y(b)); le(y(b),3,y(a)) }.
8 1 <= { le(x(a),5,x(c)); le(x(c),2,x(a));
9 le(y(a),2,y(c)); le(y(c),2,y(a)) }.

10 1 <= { le(x(b),2,x(c)); le(x(c),2,x(b));
11 le(y(b),3,y(c)); le(y(c),2,y(b)) }.

13 &sum{ x(a); 5 } <= x(b) :- le(x(a),5,x(b)).
14 &sum{ x(b); 2 } <= x(a) :- le(x(b),2,x(a)).
15 &sum{ y(a); 2 } <= y(b) :- le(y(a),2,y(b)).
16 &sum{ y(b); 3 } <= y(a) :- le(y(b),3,y(a)).
17 &sum{ x(a); 5 } <= x(c) :- le(x(a),5,x(c)).
18 &sum{ x(c); 2 } <= x(a) :- le(x(c),2,x(a)).
19 &sum{ y(a); 2 } <= y(c) :- le(y(a),2,y(c)).
20 &sum{ y(c); 2 } <= y(a) :- le(y(c),2,y(a)).
21 &sum{ x(b); 2 } <= x(c) :- le(x(b),2,x(c)).
22 &sum{ x(c); 2 } <= x(b) :- le(x(c),2,x(b)).
23 &sum{ y(b); 3 } <= y(c) :- le(y(b),3,y(c)).
24 &sum{ y(c); 2 } <= y(b) :- le(y(c),2,y(b)).

26 &dom{ 0..10 } = height.

28 &sum{ y(a); 2 } <= height.
29 &sum{ y(b); 3 } <= height.
30 &sum{ y(c); 2 } <= height.

32 &minimize{ height }.
33 &show{ height }.

Listing 5.3: Two Dimensional Strip Packing Example

of the container. The first two lines of Listing 5.2 restrict the domain of the left
lower corner of each rectangle I. The respective instantiations of x(I) and y(I) yield
constraint variables denoting the x and y coordinate of I, respectively. Note that in
both lines the consecutive dots ‘..’ construct a theory term ‘0..w-W’ and ‘0..ub-H’
once w and ub are replaced, respectively. The choice rule in lines 4 – 7 lets us choose
among all combinations of two rectangles, that is, which one is left, right, below or
above. At least one of these relations must hold so that no two rectangles overlap.
Atoms of form le(VI,C,VJ) indicate that coordinate VI+C must be less than or equal
to VJ. This property is enforced by the linear constraint in line 9. Finally, to minimize
the overall height of (stacked) rectangles, we introduce the variable height. This
variable’s value has to be greater than or equal to the y coordinate of any rectangle
I plus the rectangle’s height H. This ensures that height is greater or equal to the
height of the highest rectangle. Finally, height is minimized in line 13.

Now, if we take the three rectangles r(a,5,2), r(b,2,3), r(c,2,2) along with
ub=10 and w=6, we obtain the ground program in Listing 5.3. The domains of the
constraint variables giving the x- and y-coordinates are delineated in line 3 and 4.
Note that in contrast to regular ASP the grounder leaves terms with the theory symbol
.. intact. The orientation of each pair of rectangles is chosen in lines 6 – 11. If for

Lazy Nogood and Variable Generation 68 System Design

example le(x(c),2,x(b)) becomes true, that is, rectangle 𝑐 is left of 𝑏, then the
constraint 𝑥(𝑐) + 2 ≤ 𝑥(𝑏) is enforced in line 22. After setting the domain for the
height variable in line 26, we restrict it to be greater or equal to the top y-coordinate
of all rectangles in lines 28 – 30. Line 32 enforces the minimization of this variable.
A solution with minimal height consists of the regular atoms le(y(b),3,y(a)),
le(y(c),2,y(a)), and le(x(c),2,x(b)), and the constraint variable assignment
{height ↦→ 5, y(c) ↦→ 1, x(c) ↦→ 2, x(a) ↦→ 1, x(b) ↦→ 4, y(a) ↦→ 3, y(b) ↦→ 0}. Of
course other minimal configurations exist.

We have seen above how seamlessly theory atoms capturing constraint-related
expressions can be used in logic programs. We detail below the five distinct atom
types featured by clingcon and refer the interested reader for a general introduction
to theory terms and atoms to [53].

Actual constraints are represented by the theory atoms &dom, &sum, and &distinct.
All three can occur in the head and body of rules, as indicated by any in lines 29 – 31
in Listing 5.1. We discuss below their admissible format after grounding. In the
following, a linear expression is a sum of integers, products of integers, or products of
an integer and a constraint variable.

Domain constraints are of form &dom{𝑑1; . . . ; 𝑑𝑛} = 𝑡 where

∙ each 𝑑𝑖 is a domain term of form

– 𝑢 or
– 𝑣..𝑤

where 𝑢, 𝑣, 𝑤 are constraint variable free linear expressions2 and

∙ 𝑡 is a linear expression containing exactly one constraint variable.

Then, the previous expression represents the constraint 𝑡 ∈
⋃︀𝑛

𝑖=1J𝑑𝑖K, where
J𝑑K = {𝑢} if 𝑑 = 𝑢, J𝑑K = {𝑣, . . . , 𝑤} if 𝑑 = 𝑣..𝑤, and undefined otherwise.

This constraint can be used to set the domain of variables where even non-
contiguous domains can be used by having 𝑛 > 1. For example &dom{1..3; 5} = 𝑥
represents the constraint 𝑥 ∈ {1, . . . , 3} ∪ {5}.

Linear constraints are of form &sum{𝑡1; . . . ; 𝑡𝑛} ∘ 𝑡𝑛+1 where

∙ each 𝑡𝑖 is a linear expression containing at most one constraint variable,
and

∙ ∘ is one of the operators <=,=,>=,<,>,!=.

This expression represents the linear constraint (𝑡1 + · · ·+ 𝑡𝑛) ∘ 𝑡𝑛+1, which can
be translated into one or two linear constraints as described in Section 4.1.

Distinct constraints are of form &distinct{𝑡1; . . . ; 𝑡𝑛} where each 𝑡𝑖 is a linear
expression containing at most one constraint variable. Such an expression stands
for the constraints 𝑡𝑖 ̸= 𝑡𝑗 for 0 ≤ 𝑖 < 𝑗 ≤ 𝑛.

2 Linear expressions that evaluate to a constant value.

Lazy Nogood and Variable Generation 69 System Design

The distinct (or alldifferent) constraint is one of the most common global
constraints in CP. We use it to show how global constraints can be incorporated
into the language.

The two remaining theory atoms provide directives, similar to their regular counter-
parts.

Output directives are of form &show{𝑠1; . . . ; 𝑠𝑛} where each 𝑠𝑖 is a show term of
form

∙ 𝑓/𝑚 where 𝑓 is a function symbol and 𝑚 a positive integer or

∙ 𝑡, where 𝑡 is a constraint variable.

While the latter adds variable 𝑡 to the list of output variables, the first one adds
all variables of the form 𝑓(𝑡1, . . . , 𝑡𝑚) (where 𝑡𝑖 is a term) as output variables.
For all constraint stable models, the value of the output variables is shown in a
solution.

Minimize directives are of form &minimize{𝑚1; . . . ;𝑚𝑛} where each 𝑚𝑖 is a min-
imize term of form 𝑡𝑖@𝑙𝑖 and 𝑡𝑖 being a linear expression with at most one
constraint variable. Since we support multi-objective optimization, 𝑙𝑖 is an
integer stating the priority level. Whenever @𝑙𝑖 is omitted, 𝑙𝑖 assumed to be
zero. Priorities allow for representing lexicographically ordered minimization
objectives. As in regular ASP, higher levels are more significant than lower ones.

Let us make precise how minimize statements induce optimal constraint stable
models. Let 𝑃 be a constraint logic program associated with (𝒱 , 𝐷, 𝐶). For
a variable assignment C and an integer 𝑙, define

∑︀C
𝑙 as the sum of all values

𝑎 · C(𝑣) + 𝑐 for all occurrences of minimize terms 𝑎𝑣 + 𝑐@𝑙 in all minimize
statements in 𝑃 . A constraint stable model (𝑋,C) of 𝑃 wrt. (𝒱 , 𝐷, 𝐶) is non-
optimal if there is a constraint stable model (𝑋 ′,C′) such that

∑︀C′

𝑙 <
∑︀C

𝑙 and∑︀C′

𝑙′ =
∑︀C

𝑙′ for all 𝑙′ > 𝑙, and optimal otherwise. Maximization can be achieved
by multiplying each minimize term by −1.

Note that the set of constraints supported by clingcon is only a subset of the
constraints expressible with the syntax fixed in Listing 5.1. While for example
expressions with more than one constraint variable are well-formed according to the
syntax, they are not supported by clingcon.

5.2.3 Algorithms

As already mentioned, clingcon 3 pursues a lazy approach to constraint solving that
distinguishes two phases. During preprocessing, any part of the nogoods representing
a CSP can be made explicit and thus put right away under the influence of CDCL
based solving. Unlike this, the remaining constraints are at first kept implicit and their
corresponding nogoods are only added via constraint propagators to CDCL solving
when needed. This partitioning of constraints constitutes a trade-off. On the one

Lazy Nogood and Variable Generation 70 System Design

hand, constraint propagators are usually slower than unit propagation, in particular,
when dealing with sets of nogoods of moderate size because of modern SAT techniques
such as the two-watched-literals scheme [123]. On the other hand, translating all
constraints is often impracticable, in particular, when dealing with very large domains.
Hence, a good trade-off is to restrict the translation to “small constraints” in order to
benefit from the high performance of CDCL solving and to unfold “larger constraints”
only on demand.

In what follows, we make clingcon’s two-fold approach precise by presenting algo-
rithms for translation and propagation of constraints before discussing implementation
details in Section 5.3.

Partial Translation. Following Corollary 5.1.1, a subset 𝒞 ′ ⊆ 𝒞 of the constraint
atoms is used to create the set of nogoods Ψ(𝒞 ′). Therefore, Algorithm 11 creates a
set of nogoods that is equivalent to 𝜓(𝜎, 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 ≤ 𝑏), as defined in (4.6)
and (4.7); in turn, they are used to create Ψ(𝒞 ′) as shown in (4.5). To this end, it is
initially engaged by Translate({𝜎}, 𝑎1𝑣1 + · · ·+ 𝑎𝑛𝑣𝑛 ≤ 𝑏). We start the algorithm

Algorithm 11: Translate
Input :A set of signed literals 𝛿 and a linear constraint 𝑎1𝑣1 + · · ·+ 𝑎𝑛𝑣𝑛 ≤ 𝑏.
Output :A set of nogoods.

1 Σ← ∅
2 𝑑← 𝑛𝑒𝑥𝑡(𝑏−

∑︀𝑛
𝑗=2 ub(𝑎𝑗𝑣𝑗), 𝑎1𝑣1)

3 while 𝑑 ≤ ub(𝑎1𝑣1)
4 if 𝑑+

∑︀𝑛
𝑗=2 lb(𝑎𝑗𝑣𝑗) ≤ 𝑏 then

5 Σ← Σ ∪Translate(𝛿 ∪ {(𝑎1𝑣1 ≥ 𝑑)‡}, 𝑎2𝑣2 + · · ·+ 𝑎𝑛𝑣𝑛 ≤ 𝑏− 𝑑)
6 else
7 return Σ ∪ {𝛿 ∪ {(𝑎1𝑣1 ≥ 𝑑)‡}}
8 𝑑← 𝑛𝑒𝑥𝑡(𝑑, 𝑎1𝑣1)

9 return Σ

by having 𝜎 in the set of literals 𝛿, and setting 𝑑 to the smallest value greater than
𝑏−

∑︀𝑛
𝑗=2 𝑢𝑏(𝑎𝑗𝑣𝑗) in the image of 𝑎1𝑣1. This is the smallest value needed to violate

the constraint. If 𝑑 and the least sum
∑︀𝑛

𝑗=2 𝑙𝑏(𝑎𝑗𝑣𝑗) added by all other views is still
less than 𝑏 in line 4, we have to recursively translate the rest of the constraint, while
subtracting 𝑑 from the right-hand side in Line 5. Otherwise the constraint is already
violated and we return all nogoods created so far in line 7. We iteratively increase 𝑑
in line 8 and repeat this process (line 3) for all values in img(𝑎1𝑣1). Note that this
also involves adding all order atoms 𝒪Ψ(𝒞′) =

⋃︀
𝛿∈Ψ(𝒞′) 𝛿

T ∪ 𝛿F included in the created
nogoods Ψ(𝒞 ′) to the solver.

Which constraints to translate is subject to heuristics and command line options,
as explained in Section 5.3.

Extended Conflict Driven Constraint Learning. After translating a part of
the problem into a set of nogoods Ψ(𝒞 ′), using the order atoms 𝒪Ψ(𝒞′) ⊆ 𝒪, we explain

Lazy Nogood and Variable Generation 71 System Design

Algorithm 12: CDCL-CASP
Input :A constraint logic program 𝑃 over 𝒜 and externals 𝒞 associated with

(𝒱 , 𝐷,𝐶), a set of constraint atoms 𝒞 ′ ⊆ 𝒞, and a set of order atoms
𝒪Ψ(𝒞′) ⊆ 𝒪.

Output :A constraint stable model of 𝑃 .

1 ℬ ← 𝒜∪ 𝒞 ∪ {body(𝑟) | 𝑟 ∈ 𝑃} ∪ 𝒪Ψ(𝒞′) // set of atoms
2 B← ∅ // (Boolean) assignment
3 ∇ ← ∅ // set of (dynamic) nogoods
4 dl ← 0 // decision level
5 loop
6 (ℬ,B,∇)← Propagation(ℬ,B, 𝒞 ′, 𝒞,∇)
7 Σ← {𝛿 | 𝛿 ∈ ∆𝒞

𝑃 ∪∇, 𝛿 ⊆ B}
8 if Σ ̸= ∅ then
9 if dl = 0 then return unsatisfiable

10 (𝛿′, dl)← ConflictAnalysis𝑃 (∇,B, 𝛿) for some 𝛿 ∈ Σ
11 ∇ ← ∇∪ {𝛿′}
12 B← B ∖ {𝜎 | 𝜎 ∈ B, dl(𝜎) > dl}
13 else if BT ∪BF = ℬ then
14 if lbB(𝑣) ̸= ubB(𝑣) for some 𝑣 ∈ 𝒱 then
15 ℬ ← ℬ ∪ Split𝒱,𝐷(ℬ)
16 else
17 return (BT ∩ (𝒜 ∪ 𝒞), {𝑣 ↦→ lbB𝑣 | 𝑣 ∈ 𝒱})
18 else
19 𝜎𝑑 ← Select(ℬ,B)
20 dl ← dl + 1
21 B← B ∘ 𝜎𝑑

how to solve the remaining constraint logic program 𝑃 over 𝒜 and 𝒞 associated with
(𝒱 , 𝐷,𝐶). Our algorithmic approach follows the one in [44], where a modified CDCL
algorithm supporting external propagators is presented. We extend our Algorithm 1
with lazy nogood and variable generation in Algorithm 12. The algorithm relies
upon a growing set of Boolean variables ℬ, which is initiated with all atoms (regular,
constraint, and the set of the order atoms in 𝒪Ψ(𝒞′)), and subsequently expanded by
further order atoms. Accordingly, the Boolean assignment B is restricted to atoms in
ℬ, and recorded nogoods are accumulated in ∇. Starting with an empty assignment,
the Propagation method (Line 6), extends the assignment B with propagated
literals, adds new nogoods to ∇ and extends the set of atoms ℬ. This method is
detailed below in Algorithm 13. When encountering a conflicting assignment (Line 7),
we either backjump (lines 10 – 12) or, if we cannot recover from the conflict, return
unsatisfiable. Whenever all atoms in ℬ are assigned (Line 13), we check whether a
complete assignment for the variables in 𝒱 is obtained from B in Line 14. If this is
the case, we return the constraint stable model (BT ∩ (𝒜 ∪ 𝒞), {𝑣 ↦→ lbB(𝑣) | 𝑣 ∈ 𝒱}).

Lazy Nogood and Variable Generation 72 System Design

Otherwise, Split𝒱,𝐷(ℬ,B) creates a new order atom for the constraint variable with
the currently largest domain that splits the domain in half. If we face an incomplete
assignment, we extend it using the Select function.

Algorithm 13: Propagation

Global :A constraint logic program 𝑃 over 𝒜 and externals 𝒞 associated with
(𝒱 , 𝐷,𝐶).

Input :A set of atoms ℬ, a Boolean assignment B, two sets of constraint
atoms 𝒞 ′ and 𝒞, and a set of learned nogoods ∇.

Output :A set of atoms, a Boolean assignment, and a set of learned nogoods.
1 loop
2 if 𝛿 ⊆ B for some 𝛿 ∈ ∆𝒞

𝑃 ∪Ψ(𝒞 ′) ∪∇ then return (ℬ,B,∇)
3 Σ← {𝛿 | 𝛿 ∈ ∆𝒞

𝑃 ∪∇, 𝛿 ∖B = {𝜎}, 𝜎 /∈ B}
4 if Σ ̸= ∅ then
5 foreach 𝛿 ∈ Σ such that 𝛿 ∖B = {𝜎} do
6 B← B ∘ 𝜎
7 else
8 Σ← UfsPropagation𝑃 (B)
9 if Σ ̸= ∅ then

10 ∇ ← ∇∪ Σ
11 else
12 Σ← CspPropagation(ℬ, 𝒞 ∖ 𝒞 ′,B)
13 for 𝛿 ∈ Σ do ℬ ← ℬ ∪ 𝛿T ∪ 𝛿F
14 ∇ ← ∇∪ Σ
15 if Σ = ∅ then return (ℬ,B,∇)

Algorithm 13 reflects the proceeding of our propagators and is an extension of the
basic propagation Algorithm 2. At first, unit propagation is run on the completion
nogoods ∆𝒞

𝑃 , the nogoods from the partial translation Ψ(𝒞 ′), and finally the already
learned nogoods ∇ on lines 3 – 6. Then, propagator ΠΛ𝒞

𝑃
is engaged via UfsPropaga-

tion (line 8). If it does not add any new nogoods to ∇, CspPropagation is called
(line 12). This method acts as a propagator, returning a set of nogoods Σ. Since some
of these nogoods may use new order atoms not introduced so far, we dynamically
extend the set of atoms ℬ by the atoms in 𝛿T ∪ 𝛿F stemming from the added nogoods
𝛿 ∈ Σ.

New nogoods produced by any propagator are added to the set ∇ of recorded
nogoods and propagation resumes afterwards (lines 6 and 10). Notably, CspPropa-
gation is not run until a fixpoint is obtained. However, its set of returned nogoods
remains non-empty until a fixpoint is reached. In this way, unit propagation interleaves
with constraint propagation while delaying more complex propagation. In all, since
unit propagation is much faster, it always precedes unfounded set propagation, which
again precedes constraint propagation. This order reflects the complexity of the
respective propagators, so that the faster the propagation, the sooner it is engaged.

Lazy Nogood and Variable Generation 73 System Design

Lazy Variable Generation. Realizing CspPropagation as a propagator for ΠΨ(𝒞)
and ΠΦ(𝒱,𝐷) allows for lazy nogood generation and for capturing inferences of the order
encoding. However, to be effective, lazy variable generation requires a different set of
constraints to be propagated. For illustration, suppose CspPropagation is a propa-
gator for Ψ(𝒞) ∪ Φ(𝒱 , 𝐷). Considering example program 𝑃1 along with T(𝑥 < 7) ∈ B
results in CspPropagation(∅, ∅, {T(𝑥 < 7)}) = {{T(𝑥 < 7),F(𝑥 ≤ 6)}}, which is a
subset of Ψ(𝒞) according to (4.9). This nogood comprises the order atom (𝑥 ≤ 6) which
is added to ℬ in line 13. Having this nogood, unit propagation adds in turn T(𝑥 ≤ 6)
to the assignment in lines 3 – 6. Then, CspPropagation({(𝑥 ≤ 6)}, ∅, {T(𝑥 ≤ 6)})
yields the nogoods {{T(𝑥 ≤ 6),F(𝑥 ≤ 7)}, . . . , {T(𝑥 ≤ 21),F(𝑥 ≤ 22)}} belonging to
Φ(𝒱 , 𝐷) and produces the corresponding order atoms {(𝑥 ≤ 7), . . . , (𝑥 ≤ 22)}. We
see that once a certain upper bound T(𝑣 ≤ 𝑥) ∈ B is found, all order atoms in
{(𝑣 ≤ 𝑥′) | 𝑥′ > 𝑥, 𝑥′ ∈ D(𝑣), 𝑥′ < ub(𝑣)} are added to ℬ. Similarly, if a lower bound
F(𝑣 ≤ 𝑥) ∈ B is fixed, all order atoms {(𝑣 ≤ 𝑥′) | 𝑥′ ≤ 𝑥, 𝑥′ ∈ D(𝑣)} are added to ℬ.
To avoid adding superfluous order atoms, we let CspPropagation be a propagator
for Ψ(𝒞) ∪ Φ′(𝒱 , 𝐷) where

Φ′(𝒱 , 𝐷) = {{T(𝑣 ≤ 𝑑),F(𝑣 ≤ 𝑒)} | 𝑣 ∈ 𝒱 , 𝑑 ∈ D(𝑣), 𝑒 ∈ D(𝑣), 𝑑 < 𝑒 < ub(𝑣)}.

Although Φ′(𝒱 , 𝐷) is a superset of Φ(𝒱 , 𝐷), CspPropagation only adds nogoods
from Φ′(𝒱 , 𝐷) whose order atoms have already been introduced, that is, {(𝑣 ≤ 𝑑), (𝑣 ≤
𝑒)} ⊆ ℬ. While Φ(𝒱 , 𝐷) contains for each variable 𝑣 a linear number of nogoods of
form {T(𝑣 ≤ 𝑑),F(𝑣 ≤ next(𝑑, 𝑣))}, Φ′(𝒱 , 𝐷) contains a quadratic number of nogoods
for each variable. The nogoods in Φ(𝒱 , 𝐷) allow for propagating the truth value of
one order literal to its adjacent one. Unlike this, Φ′(𝒱 , 𝐷) contains redundant nogoods
that allow for propagating the truth value of one order literal to all greater ones by
means of nogoods of form {T(𝑣 ≤ 𝑑),F(𝑣 ≤ 𝑒)} for all values 𝑒 ∈ D(𝑣) such that
𝑑 < 𝑒 < ub(𝑣). Instead of “chaining” all values together, the latter nogoods allow us
to directly infer any greater value. Since we restrict our propagator for Φ′(𝒱 , 𝐷) to
only return nogoods where all order atoms are included in ℬ, no new order atoms
are created. In our example, as ubB(𝑥) = 6, the next iteration of this optimized
CspPropagation function now returns {T(𝑥 ≥ 22),T(𝑥 ≤ 21)} which is part of Ψ(𝒞)
according to (4.11). As this introduces the order atom (𝑥 ≤ 21), CspPropagation
also returns {T(𝑥 ≤ 6),F(𝑥 ≤ 21)}, which is a subset of Φ′(𝒱 , 𝐷). It is easy to
see that all intermediate atoms {(𝑥 ≤ 6), . . . , (𝑥 ≤ 20)} are not introduced and we
directly “jump” to the necessary atoms. Using these two nogoods, unit propagation
extends the assignment by T(𝑥 ≤ 21) and F(𝑥 ≥ 22) in lines 3 – 6 reaching a complete
assignment. Also ℬ has been extended to now contain the order atom (𝑥 ≤ 21). New
nogoods produced by any propagator are added to the set ∇ of recorded nogoods and
propagation resumes afterwards (line 10 and line 13). Notably, CspPropagation
is not run until a fixpoint is obtained. However, its set of returned nogoods remains
non empty until a fixpoint is reached. In this way, unit propagation interleaves with
constraint propagation while delaying more complex propagation. In all, as unit
propagation is much faster, it always precedes unfounded set propagation, which again
precedes constraint propagation. This order reflects the complexity of the respective

Lazy Nogood and Variable Generation 74 System Design

propagators, so that the faster the propagation, the sooner it is engaged.
As we have restricted 𝑥 between the values lbB(𝑥) = 0 and ubB(𝑥) = 6, Split

adds the order atom (𝑥 ≤ 3). The Select function in line 18 extends B by e.g.
F(𝑥 ≤ 3), and we have to add another order atom (𝑥 ≤ 5) in line 16. After selecting
F(𝑥 ≤ 5) we have lbB(𝑥) = ubB(𝑥) = 6 and return the constraint stable model
({light , night , switchOn, (𝑥 < 7)}, {𝑥 ↦→ 6}) in line 15. Note that only 4 of 24 order
atoms have been added to the set of atoms. This allows us to handle variables with
huge domains as potentially only a small portion of its order atoms has to be added
to the system.

Constraint Propagation. CspPropagation is depicted in Algorithm 14 and
consists of two parts (lines 1 – 10 and lines 11 – 21). The first part starts with selecting

Algorithm 14: CspPropagation

Global :A constraint logic program 𝑃 over 𝒜, 𝒞 associated with (𝒱 , 𝐷,𝐶).
Input :A set of atoms ℬ, a set of constraint atoms 𝒞 ′, and a Boolean

assignment B.
Output :A set of nogoods.

1 Σ← ∅ // an empty set of nogoods
2 for 𝑣 ∈ 𝒱 do
3 if T(𝑣 ≤ 𝑑) ∈ B for some 𝑑 ∈ D(𝑣) then
4 𝑢𝑏← min {𝑑 | 𝑑 ∈ D(𝑣),T(𝑣 ≤ 𝑑) ∈ B}
5 Σ← Σ ∪ {{T(𝑣 ≤ 𝑢𝑏),F(𝑣 ≤ 𝑥)} | 𝑥 > 𝑢𝑏, (𝑣 ≤ 𝑥) ∈ ℬ,T(𝑣 ≤ 𝑥) /∈ B}
6 if F(𝑣 ≤ 𝑑) ∈ B for some 𝑑 ∈ D(𝑣) then
7 𝑙𝑏← max {𝑑 | 𝑑 ∈ D(𝑣),F(𝑣 ≤ 𝑑) ∈ B}
8 Σ← Σ ∪ {{T(𝑣 ≤ 𝑥),F(𝑣 ≤ 𝑙𝑏)} | 𝑥 < 𝑙𝑏, (𝑣 ≤ 𝑥) ∈ ℬ,F(𝑣 ≤ 𝑥) /∈ B}
9 if Σ ̸= ∅ then return Σ

10 for 𝑐 ∈ 𝒞 ∖ 𝒞 ′ do
11 if T𝑐 ∈ B then
12 Σ← Σ ∪ PropagateBounds(B,T𝑐⇒ 𝛾(𝑐))
13 else if F𝑐 ∈ B then
14 Σ← Σ ∪ PropagateBounds(B,F𝑐⇒ 𝛾(𝑐))
15 else
16 Σ← Σ ∪ PropagateReification(B,T𝑐⇒ 𝛾(𝑐))

17 Σ← Σ ∪ PropagateReification(B,F𝑐⇒ 𝛾(𝑐))

18 if Σ ̸= ∅ then return Σ

19 return ∅

the unit nogoods from Φ′(𝒱 , 𝐷). For every variable 𝑣 ∈ 𝒱 , we check if it already has
an upper bound 𝑢𝑏 (lines 3 – 4) given by T(𝑣 ≤ 𝑢𝑏) ∈ B. If this is the case, we add
the nogoods

{{T(𝑣 ≤ 𝑢𝑏),F(𝑣 ≤ 𝑥)} | 𝑥 > 𝑢𝑏, (𝑣 ≤ 𝑥) ∈ ℬ,T(𝑣 ≤ 𝑥) /∈ B}

Lazy Nogood and Variable Generation 75 System Design

to Σ to ensure consistency of all order atoms (𝑣 ≤ 𝑥) ∈ ℬ where 𝑥 > 𝑢𝑏 that are not
already true. Lines 6 – 8 do the same for the tightest lower bound of the variable. If
any nogoods are found, they are immediately returned in line 10. The Propagation
function continues with unit propagation on the new nogoods. The second part of the
constraint propagation (lines 11 – 21), generating the nogoods in Ψ(𝒞 ∖ 𝒞 ′) lazily, is
only done if all order atoms are properly propagated, i.e. no new nogoods have been
generated in the first part (lines 1 – 10). This is detailed in the next paragraph.

To generate the nogoods in Ψ(𝒞 ∖ 𝒞 ′) lazily, Algorithm 14 uses functions Propa-
gateBounds and PropagateReification for half-reified constraint T𝑐⇒ 𝛾(𝑐) and
F𝑐⇒ 𝛾(𝑐), respectively, for each 𝑐 ∈ 𝒞 ∖𝒞 ′. In the respective algorithms 15 and 16, we
consider four different strengths of propagation, denoted by ps . A strength of 1 means
that our propagator only produces conflicting nogoods. A strength of 2 means that it
additionally checks if yet undecided constraints became true. Strength 3 furthermore
adds unit nogoods that also propagate the bounds of the variables in a constraint if it
is already decided to be true, whereas strength 4 also computes optimized nogoods
for yet undecided constraints. The propagators are conflict optimal and for strength
4 even inference optimal. We divided our propagator into two algorithms, handling
reified constraints of form 𝜎 ⇒ 𝑎1𝑣1 + · · ·+ 𝑎𝑛𝑣𝑛 ≤ 𝑏. Algorithm 15 is only called if
𝜎 ∈ B. Whenever 𝜎 is true, we check whether the constraint 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 ≤ 𝑏

Algorithm 15: PropagateBounds

Global :An integer ps .
Input :A Boolean assignment B and a half-reified constraint

𝜎 ⇒ 𝑎1𝑣1 + · · ·+ 𝑎𝑛𝑣𝑛 ≤ 𝑏.
Output :A set of nogoods.

1 Σ← ∅ // An empty set of nogoods
2 if

∑︀𝑛
𝑗=1 ubB(𝑎𝑗𝑣𝑗) ≤ 𝑏 then return ∅

3 if ps ≤ 2 then
4 if

∑︀𝑛
𝑗=1 lbB(𝑎𝑗𝑣𝑗) > 𝑏 then

5 Σ← {{𝜎} ∪ {(𝑎𝑗𝑣𝑗 ≥ 𝑙𝑏B(𝑎𝑗𝑣𝑗))
‡ | 1 ≤ 𝑗 ≤ 𝑛}}

6 return Σ

7 for 𝑖 = 1..𝑛 do
8 𝑐𝑢𝑟 ← 𝑏−

∑︀𝑛
𝑗=1,𝑗 ̸=𝑖 lbB(𝑎𝑗𝑣𝑗)

9 if 𝑐𝑢𝑟 < ubB(𝑎𝑖𝑣𝑖) then
10 Σ← Σ ∪ {{𝜎, (𝑎𝑖𝑣𝑖 > 𝑐𝑢𝑟)‡} ∪ {(𝑎𝑗𝑣𝑗 ≥ lbB(𝑎𝑗𝑣𝑗))

‡ | 1 ≤ 𝑗 ≤ 𝑛, 𝑗 ̸= 𝑖}}
11 if 𝑐𝑢𝑟 < lbB(𝑎𝑖𝑣𝑖) then return Σ

12 return Σ

can be falsified. If it can never be falsified, e.g., the sum of the current upper bounds
already satisfies the constraint in line 1, we are done. If we only have propagation
strength 1 or 2, we check in line 3 whether the sum of the current lower bounds is
already above the bound 𝑏. In this case, we simply return the current lower bounds of
the views as a nogood, since the constraint is already violated. For example, take the

Lazy Nogood and Variable Generation 76 System Design

constraint 𝜎 ⇒ 𝑥+ 𝑦 ≤ 9 with D(𝑥) = D(𝑦) = {1, . . . , 15} and the current lower and
upper bounds lbB(𝑥) = 7, ubB(𝑥) = 10, lbB(𝑦) = 5, and ubB(𝑦) = 12. The sum of the
lower bounds 7 + 5 is greater than 9, and so the constraint is violated. Therefore, we
add the nogood {𝜎, (𝑥 ≥ 7)‡, (𝑦 ≥ 5)‡}. If the propagation strength is greater than 2
(lines 7 – 11), we try to find new upper bounds for the views of the constraint. For
this purpose, 𝑐𝑢𝑟 represents the maximal value that 𝑎𝑖𝑣𝑖 can take without violating
the constraint. All other views 𝑎𝑗𝑣𝑗 (𝑗 ≠ 𝑖) contribute at least their current lower
bound to the sum. In our example, this means that 𝑐𝑢𝑟 = 9 − 5 = 4. If this value
is less than the current upper bound of 𝑎𝑖𝑣𝑖 (line 8), we create a nogood that allows
us to propagate the new upper bound. In the example, this is {𝜎, (𝑥 > 4)‡, (𝑦 ≥ 5)‡}.
Compared to the nogood that was created in line 4, this nogood is stronger as the
required minimum for 𝑥 is lower. If 𝑐𝑢𝑟 is even below the current lower bound of 𝑎𝑖𝑣𝑖,
we have a conflict and stop eagerly (line 11). Since 𝑐𝑢𝑟 = 4 and lbB(𝑥) = 7, this is the
case in our example. This algorithm has linear complexity 𝑂(𝑛), but since we consider
domains/images with holes, finding the literal (𝑎𝑖𝑣𝑖 > 𝑐𝑢𝑟)‡ is actually 𝑂(log(|D(𝑣𝑖)|))
which raises the overall complexity for propagation strength greater than 2.

Algorithm 16 is only called if neither 𝜎 ∈ B nor 𝜎 ∈ B, e.g. whenever 𝜎 is
unknown, and propagation strength is at least 2 (line 1). If the sum of all current

Algorithm 16: PropagateReification

Global :An integer ps .
Input :A Boolean assignment B and a half-reified constraint

𝜎 ⇒ 𝑎1𝑣1 + · · ·+ 𝑎𝑛𝑣𝑛 ≤ 𝑏.
Output :A set of nogoods.

1 if ps = 1 then return ∅
2 𝑙𝑜𝑤 ←

∑︀𝑛
𝑗=1 𝑙𝑏B(𝑎𝑗𝑣𝑗)

3 if 𝑙𝑜𝑤 > 𝑏 then
4 𝛿 ← {𝜎}
5 if ps < 4 then
6 𝛿 ← 𝛿 ∪ {(𝑎𝑗𝑣𝑗 ≥ 𝑙𝑏B(𝑎𝑗𝑣𝑗))

‡ | 1 ≤ 𝑗 ≤ 𝑛}
7 else
8 for 𝑗 ∈ 1..𝑛 do
9 𝑙𝑜𝑤′ ← 𝑙𝑜𝑤 − 𝑙𝑏B(𝑎𝑗𝑣𝑗)

10 𝑐𝑢𝑟 ← 𝑛𝑒𝑥𝑡(𝑏− 𝑙𝑜𝑤′, 𝑎𝑗𝑣𝑗)
11 𝛿 ← 𝛿 ∪ {(𝑎𝑗𝑣𝑗 ≥ 𝑐𝑢𝑟)‡}
12 𝑙𝑜𝑤 ← 𝑙𝑜𝑤′ + 𝑐𝑢𝑟

13 return {𝛿}

lower bounds on the left hand side is greater than 𝑏 (lines 2 – 3), the constraint can
never become satisfied. Given a propagation strength below 4, we simply create a
nogood based on the current lower bounds. In our example, this is the same nogood
{𝜎, (𝑥 ≥ 7)‡, (𝑦 ≥ 5)‡} generated in Algorithm 15. If the propagation strength is 4
(lines 8 – 13), we try to find a sum of the views that is minimally greater than 𝑏. In

Lazy Nogood and Variable Generation 77 System Design

our example, we start with a lower bound 𝑙𝑜𝑤 = 12. By subtracting lbB(𝑥), we get
𝑙𝑜𝑤′ = 5. This leaves us with 𝑐𝑢𝑟 = next(9−5, 𝑥) = 5 adding (𝑥 ≥ 5)‡ to the nogood 𝛿.
In the second iteration, we now have to find a sufficient lower bound for 𝑦 that violates
the constraint. We see that this value is 5, adding (𝑦 ≥ 5)‡ to 𝛿 in line 11 resulting
in the nogood {𝜎, (𝑥 ≥ 5)‡, (𝑦 ≥ 5)‡}. Again, the complexity of the refined search is
higher but also the produced nogoods are stronger. Note that as an optimization,
PropagateBound and PropagateReification are only called if the bounds of
the variables of the constraints have changed. The propagation strength is set using
the option --prop-strength.

5.3 Distinguished Features

We now present different features of our new solver clingcon 3. We start with the
preprocessing features that aim at reducing the size of domains, number of variables
and prepare the program for solving. Then, we elaborate on the constraint solving
techniques used by clingcon. After presenting the algorithmic framework of clingcon 3,
we now describe some of its specific features. Many of them aim at reducing the sizes of
domains and the number of variables, while others address special functionalities, like
global constraints or multi-objective optimization over integer variables, respectively.
When we refer in the following to the truth values of atoms, we consider a partial
assignment obtained by propagation and/or preprocessing.

Views. A view 𝑎𝑣 + 𝑏 can be represented with the same set of order atoms as
its variable 𝑣 [118]. Consider the view −5𝑣 + 7 together with the domain D(𝑣) =
{1, 2, 3, 4, 5}. We show how the order atoms of 𝑣 are used to encode constraints
over the view in clingcon. The view −5𝑣 + 7 has the following values in its image:
img(−5𝑣 + 7) = {−18,−13,−8,−3, 2}. The order literals for {(𝑣 ≤ 𝑥)‡ | 𝑥 ∈ D(𝑣)}
and {(−5𝑣+7 ≤ 𝑥)‡ | 𝑥 ∈ img(−5𝑣+7)} are given in Table 5.1. We see that the set of

Expression Image Order Literals

𝑣 {1, 2, 3, 4, 5} T(𝑣 ≤ 1) T(𝑣 ≤ 2) T(𝑣 ≤ 3) T(𝑣 ≤ 4) T∅
−5𝑣 + 7 {−18,−13,−8,−3, 2} F(𝑣 ≤ 4) F(𝑣 ≤ 3) F(𝑣 ≤ 2) F(𝑣 ≤ 1) T∅

Table 5.1: Order literals of different views of one variable.

order atoms used for these literals is the same. By allowing views instead of variables,
we avoid introducing new variables (for views). In fact, neither the XCSP [107] nor
the flatzinc3 format allow for using views in global constraints. For instance, a distinct
constraint over the set of views {1000𝑣1, 1000𝑣2, 1000𝑣3, 1000𝑣4, 1000𝑣5} translates
into the same nogoods as a distinct constraint over {𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5}. Due to the
restriction to use variables, according solvers like sugar [116] introduce auxiliary

3 http://www.minizinc.org/downloads/doc-1.3/flatzinc-spec.pdf

Lazy Nogood and Variable Generation 78 Distinguished Features

variables 𝑣′𝑖 = 1000𝑣𝑖 for 1 ≤ 𝑖 ≤ 5. If D(𝑣𝑖) = {1, . . . , 10}, bound propagation yields
the domains D(𝑣′𝑖) = {1000 · 1, . . . , 1000 · 10} = {1000, . . . , 10000}.4 Furthermore,
around 220000 nogoods for the equality constraints are created. By handling views
directly, we avoid introducing these auxiliary variables and constraints in clingcon 3.

The same holds for minimization statements. Views on variables such as 3 * 𝑣2
or −𝑣3 allow for weighting variables during minimization as well as maximization,
without the need of introducing auxiliary variables and additional constraints.

Non-Contiguous Integer Domains. We represent domains of variables (and
images of views) as sorted lists of ranges like [1..3, 7..12, 39..42] instead of single ranges
like [1..42]. This has the advantage that we can represent domains with holes directly,
without any additional constraints. Introducing order atoms for such a non-contiguous
domain produces fewer atoms (3 + 6 + 4− 1 = 12 in this example5) than for a domain
only represented with two bounds (41). A drawback of this representation is that
the lookup for a certain value 𝑑 in the domain becomes logarithmic, as we rely upon
binary search in the list of ranges. This is frequently done in Algorithms 11, 15, and 16
whenever a calculated value 𝑑 leads to searching for a literal (𝑣 ≤ 𝑑)‡.

Equality Processing. To minimize the numbers of atoms and nogoods that have
to be created during a translation or solving process, we need to reduce the numbers
of integer variables. To accomplish this, we consider the equalities in a CSP that
include only two integer variables, and replace all occurrences of the first variable
with a view on the second variable in all other constraints. Consider a constraint logic
program 𝑃 over 𝒜 and 𝒞 associated with (𝒱 , 𝐷,𝐶). For each element 𝛾(𝜎) ∈ 𝐶 of
the form 𝑎𝑥+ 𝑐1 = 𝑏𝑦 + 𝑐2 (or 𝑎𝑥+ 𝑐1 ̸= 𝑏𝑦 + 𝑐2) where 𝜎 is true (false), 𝑎, 𝑏, 𝑐1, 𝑐2 are
integers, and 𝑥, 𝑦 ∈ 𝒱 , we successively replace constraints in 𝐶. For this, we normalize
the constraint 𝛾(𝜎) to 𝑎𝑥 = 𝑏𝑦 + 𝑐 where 𝑥 is lexicographically smaller than 𝑦 and
multiply all constraints in 𝐶 containing variable 𝑦 with 𝑏 and replace 𝑏𝑦 + 𝑐 by 𝑎𝑥
in them. The domain of 𝑥 is made domain consistent such that 𝑎𝑑 ∈ img(𝑏𝑦 + 𝑐)
holds for all 𝑑 ∈ D(𝑥). Afterwards, we remove 𝛾(𝜎) from 𝐶 and 𝑦 from 𝒱 . Note that
by replacing variables, new equalities may arise, which we process until a fixpoint is
reached.

For illustration, consider the following set 𝐶 of constraints.

𝑎 = 2𝑏 (5.1)
𝑏 = 2𝑐 (5.2)
𝑐 = 2𝑑 (5.3)
𝑑 = 2𝑒 (5.4)
𝑒 = 2𝑓 (5.5)

𝑎+ 14𝑑− 3𝑓 + 𝑏 ≤ −𝑔 (5.6)

4 As done in the sugar system.
5 The −1 is due to the fact that we do not need an atom to represent ≤ 42, as it is trivially true.

Lazy Nogood and Variable Generation 79 Distinguished Features

And assume that the constraint literals associated with the first 5 constraints are
true. Furthermore, let D(𝑥) = {−212, . . . , 212} where 𝑥 ∈ {𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔}}. Without
any simplification, we have 7 variables, all with a domain size of 8193. By simply
translating these constraints, we would create 2 * 7 * 8193 = 114688 order and direct
atoms and around 118 million nogoods. Let us show how equality processing allows
us to significantly reduce these numbers in our example. To begin with, we multiply
the constraint in (5.6), viz. 𝑎+ 14𝑑− 3𝑓 + 𝑏 ≤ −𝑔, with 2 and replace −6𝑓 with −3𝑒
using the constraint in (5.5). This yields 2𝑎+ 28𝑑− 3𝑒+ 2𝑏 ≤ −2𝑔. Also, (5.5) allows
us to restrict the domain of 𝑒 to D(𝑒) = {−211, . . . , 211}. We then remove 𝑒 = 2𝑓
from the set of constraints and 𝑓 from the set of variables. We repeat this procedure
for all other equalities. To replace 𝑒, we again multiply the obtained constraint by
2, yielding 4𝑎 + 56𝑑 − 6𝑒 + 4𝑏 ≤ −4𝑔, and replace 6𝑒 with 3𝑑 using (5.4). This
results in 4𝑎+ 53𝑑+ 4𝑏 ≤ −4𝑔. Again, we remove 𝑑 = 2𝑒 and variable 𝑒, and obtain
D(𝑑) = {−210, . . . , 210}. Using (5.3), we multiply by 2 and replace 106𝑑 with 53𝑐 which
leads to the constraint 8𝑎+53𝑐+8𝑏 ≤ −8𝑔. To remove 𝑐, the constraint in (5.2) is used
to replace 106𝑐 with 53𝑏 resulting in 16𝑎+69𝑏 ≤ −16𝑔. In the last step, we apply (5.1)
to get 32𝑎+ 69𝑎 ≤ −32𝑔 which simplifies to 101𝑎 ≤ −32𝑔. As a result, the overall set
of constraints is thus reduced to a single constraint 101𝑎 ≤ −32𝑔. This constraint uses
only two variables with domains D(𝑎) = {−27, . . . , 27} and D(𝑔) = {−212, . . . , 212}.
All other constraints and variables have been removed. To translate this constraint,
we need 256 + 8192 = 8448 order atoms and 268 nogoods.

Our approach to equivalence processing is inspired by Boolean Equi-propagation [93],
which directly replaces the order atoms of one variable with the other. Directly using
integer variables, without considering the order literal representation, allows us to use
this technique also in the context of lazy variable generation. Here, it reduces the
number of variables, which leads to shorter constraints, which ultimately reduces the
number of nogoods in the translation process.

Equality preprocessing is done once in clingcon 3, before the actual solving starts
and can be controlled using the command line option --equality-processing.

Distinct Translation. clingcon features two alternatives for translating global
distinct constraints. Assume that constraint atom c represents a distinct constraint
over a set {𝑣1, . . . , 𝑣𝑛}. Since we represent distinct constraints in terms of rules and
other linear constraints, this constraint atom becomes a regular atom and is used in
the head of rules.

The first method to handle this constraint uses a quadratic number of new, regular
atoms 𝑛𝑒𝑞(𝑣𝑖, 𝑣𝑗) for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑛 together with the rules

𝑛𝑒𝑞(𝑣𝑖, 𝑣𝑗)← (𝑣𝑖 − 𝑣𝑗 ≤ 1)

𝑛𝑒𝑞(𝑣𝑖, 𝑣𝑗)← (𝑣𝑗 − 𝑣𝑖 ≤ 1)

to represent that two variables are unequal. By adding the following rule to the

Lazy Nogood and Variable Generation 80 Distinguished Features

program

c ← 𝑛𝑒𝑞(𝑣1, 𝑣2), 𝑛𝑒𝑞(𝑣1, 𝑣3), . . . , 𝑛𝑒𝑞(𝑣1, 𝑣𝑛),

𝑛𝑒𝑞(𝑣2, 𝑣3), . . . , 𝑛𝑒𝑞(𝑣2, 𝑣𝑛),

.
𝑛𝑒𝑞(𝑣𝑛−1, 𝑣𝑛)

clingcon ensures that 𝑐 is only true if all variables are distinct from each other.
The second alternative uses a so-called direct encoding [121]. For each value

𝑑 ∈
⋃︀𝑛

𝑖=1 img(𝑣𝑖), we ensure that at most one variable from {𝑣1, . . . , 𝑣𝑛} takes this
value. Therefore, we introduce regular atoms of form 𝑒𝑞(𝑣𝑖, 𝑑) for all these variables
together with the rule

𝑒𝑞(𝑣𝑖, 𝑑)← (𝑣𝑖 ≤ 𝑑), (−𝑣𝑖 ≤ −𝑑) (5.7)

representing that 𝑣𝑖 = 𝑑. Furthermore, we add a cardinality constraint [109] for each
value 𝑑 to the effect that no two or more variables may have the same value, viz.

c ′ ← 2 {𝑒𝑞(𝑣1, 𝑑), . . . , 𝑒𝑞(𝑣𝑛, 𝑑)}

The new regular atom c ′ is true if two or more variables have the same value 𝑑. If
this is not the case, the distinct constraint atom holds via the rule:

c ← ∼c ′

We reuse the direct encoding atoms 𝑒𝑞(𝑣𝑖, 𝑑) for other distinct constraints. Note
that introducing all direct encoding atoms also involves the creation of corresponding
order atoms before the solving process. So no variable from a distinct constraint
can be created lazily. This is also the reason why this option is not enabled in
clingcon by default and distinct constraints are translated using inequalities. The use
of the direct encoding along with cardinality constraints is enabled with the option
–distinct-to-card.

Pigeon Hole Constraints. To enhance the propagation strength when translat-
ing distinct constraints in clingcon, we add rules for the lower and upper bounds.
Consider the constraint atom c for a distinct constraint over {𝑣1, . . . , 𝑣𝑛} and let
𝑈 =

⋃︀𝑛
𝑖=0 img(𝑣𝑖), 𝑙 be the 𝑛th smallest element in 𝑈 , and 𝑢 be the 𝑛th greatest

element in 𝑈 . We add the rules:

← c, (𝑣1 > 𝑢), . . . , (𝑣𝑛 > 𝑢)

← c, (𝑣1 < 𝑙), . . . , (𝑣𝑛 < 𝑙)

where as before, c is treated as regular atom.
So given a distinct constraint over {𝑣1, 𝑣2, 𝑣3} with D(𝑣𝑖) = {1, . . . , 10} for 1 ≤ 𝑖 ≤ 3

Lazy Nogood and Variable Generation 81 Distinguished Features

we add the rules

← c, (𝑣1 > 8), (𝑣2 > 8), (𝑣3 > 8)

← c, (𝑣1 < 3), (𝑣2 < 3), (𝑣3 < 3)

This forbids all variables to have a value greater than eight or to have a value less
than three. This feature only causes a constant overhead in the number of rules. It
can be controlled using the option --distinct-pigeon.

Permutation Constraints. A distinct constraint over {𝑣1, . . . , 𝑣𝑛} where 𝑈 =⋃︀𝑛
𝑖=1 img(𝑣𝑖) and |𝑈 | = 𝑛 induces a permutation on the variables. Let c be the

constraint atom representing this global constraint. In this special case, we can add
the rules

← c,∼𝑒𝑞(𝑣1, 𝑑), . . . ,∼𝑒𝑞(𝑣𝑛, 𝑑) for all 𝑑 ∈ 𝑈.

These rules enforce that each value is taken at least once.
For example, given a distinct constraint over {𝑣1, 𝑣2, 𝑣3} with D(𝑣𝑖) = {1, . . . , 3}

for 1 ≤ 𝑖 ≤ 3 we add the rules

← c,∼𝑒𝑞(𝑣1, 1),∼𝑒𝑞(𝑣2, 1),∼𝑒𝑞(𝑣3, 1)

← c,∼𝑒𝑞(𝑣1, 2),∼𝑒𝑞(𝑣2, 2),∼𝑒𝑞(𝑣3, 2)

← c,∼𝑒𝑞(𝑣1, 3),∼𝑒𝑞(𝑣2, 3),∼𝑒𝑞(𝑣3, 3)

This feature introduces direct encoding atoms along with the respective rules and order
atoms in (5.7). Since these atoms cannot be treated lazily, this feature is disabled by
default but can be controlled using the option --distinct-permutation.

Sorting. Sorting constraints by descending coefficients is known to avoid redundant
nogoods in the translation process [114]. Also, systems like sugar sort constraints
by smallest domain first, and when tied, with largest coefficient. clingcon can either
sort by coefficient or domain size first, in decreasing or increasing order. The option
--sort-coefficient controls the sorting of the constraints.

Splitting Constraints. Considering that directly translating a linear constraint
𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 ≤ 𝑏 with the order encoding leads to an exponential number of
nogoods, we split long constraints into shorter ones by introducing new variables.
Thereby we adapt the heuristics of sugar. We only split a constraint if the number of
variables is greater than 𝛼 and if its translation produces more than 𝛽 nogoods. If both
conditions hold, we recursively split a constraint into 𝛼 parts. The new constraints
have the form 𝑎𝑘𝑣𝑘 + · · · + 𝑎𝑙𝑣𝑙 = 𝑣𝑘𝑙 where 1 ≤ 𝑘 ≤ 𝑙 ≤ 𝑛. 𝛼 and 𝛽 are freely
configurable. By default, splitting is disabled in clingcon, but 𝛼 and 𝛽 can be changed
with options --split-size and --max-nogoods-size.

Lazy Nogood and Variable Generation 82 Distinguished Features

Symmetry Breaking. When splitting a constraint like 𝑎1𝑣1 + 𝑎2𝑣2 + 𝑎3𝑣3 ≤ 𝑏, we
get the constraints 𝑎1𝑣1 +𝑎1𝑣2 = 𝑣12 and 𝑣12 +𝑎3𝑣3 ≤ 𝑏. Equations like 𝑎1𝑣1 +𝑎1𝑣2 = 𝑣12
are represented as conjunctions of 𝑎1𝑣1 + 𝑎1𝑣2 ≤ 𝑣12 and 𝑎1𝑣1 + 𝑎1𝑣2 ≥ 𝑣12 as shown
in Section 4.1. By dropping the latter inequality, we obtain an equi-satisfiable set of
constraints being smaller than before but admitting more (symmetric) solutions, as 𝑣12
freely varies. Symmetry breaking should therefore be enabled if one wants to enumerate
all solutions without duplicates. This form of symmetry breaking is usually skipped
in SAT-based CSP solvers like sugar. This option is set via --break-symmetries.

Domain Propagation. To create the domain of variables like 𝑣1𝑛 in the aforemen-
tioned constraints of form 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 = 𝑣1𝑛, we may use bound propagation.
For example, the constraint 42𝑥 + 1337𝑧 = 𝑦 where D(𝑥) = D(𝑧) = {0, 1} results
in the domain D(𝑦) = {42 · lb(𝑥) + 1137 · lb(𝑧), . . . , 42 · ub(𝑥) + 1137 · ub(𝑧)} =
{0, . . . , 1379}. Using domain propagation instead leads to the much smaller domain
D(𝑦) = {42𝑑𝑥 + 1137𝑑𝑧 | 𝑑𝑥 ∈ D(𝑥), 𝑑𝑧 ∈ D(𝑧)} = {0, 42, 1337, 1379}. However, we
restrict domain propagation to preprocessing by default, as it has an exponential
runtime. clingcon allows for controlling domain propagation by setting a threshold on
the domain size; this is set by option --domain-size.

Translate Constraints. Following a two-fold approach, clingcon can translate some
constraints while leaving others to constraint propagators as shown in Section 5.2.3.
clingcon provides the option --translate-constraints=m to decide which constraints
to translate or not. The translation depends on the estimated number of nogoods∏︀𝑛−1

𝑖=1 |D(𝑣𝑖)| that Algorithm 11 produces for a constraint 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 ≤ 𝑏. If
this number is below the threshold m, clingcon translates the constraint. Also all order
atoms used in these nogoods are created.

Redundant Nogood Check. A nogood 𝛿 is said to be stronger than a nogood 𝛿′,
iff for all literals (𝑣 > 𝑑)‡ ∈ 𝛿, there exists a literal (𝑣 > 𝑑′)‡ ∈ 𝛿′ such that 𝑑 ≤ 𝑑′ and
𝑣 is a view. Whenever a nogood is created in line 7 in Algorithm 11, we compare it
to the previously created one. If one of them is stronger, we only keep the stronger
one, otherwise, we keep both. This feature allows clingcon to remove some redundant
nogoods during the translation process. It is especially useful if the constraints are
not sorted by descending coefficients. The check just adds constant overhead to the
translation process but avoids creating a significant amount of nogoods. For instance,
translating the famous send more money problem results in 628 nogoods among which
327 are redundant, when using --split-size=3. This feature can be triggered using
option --redundant-nogood-check.

Don’t Care Propagation. Suppose we want to express that (𝑥 > 7) should hold
whenever 𝑎 holds; otherwise we do not care whether (𝑥 > 7) holds or not. A
corresponding constraint logic program is given in the first row of Table 5.2 together
with its constraint stable models. In the standard case for CASP, the constraint atom
is reified with its constraint via T(𝑥 > 7) ⇔ 𝑥 > 7. In the case that 𝑎 is true, the

Lazy Nogood and Variable Generation 83 Distinguished Features

logic program 𝑃 constraint stable models of 𝑃

{𝑎} {({𝑎, (𝑥 > 7)}, {𝑥 ↦→ 𝑑}) | 𝑑 ∈ {8, . . . , 10}}∪
← 𝑎,∼(𝑥 > 7) {({(𝑥 > 7)}, {𝑥 ↦→ 𝑑}) | 𝑑 ∈ {8, . . . , 10}}∪

{(∅, {𝑥 ↦→ 𝑑}) | 𝑑 ∈ {1, . . . , 7}}

{𝑎} {({𝑎, (𝑥 > 7)′}, {𝑥 ↦→ 𝑑}) | 𝑑 ∈ {8, . . . , 10}}∪
← 𝑎,∼(𝑥 > 7)′ {(∅, {𝑥 ↦→ 𝑑}) | 𝑑 ∈ {1, . . . , 10}}
← ∼𝑎, (𝑥 > 7)′

Table 5.2: Constraint logic programs using reified T(𝑥 > 7)⇔ 𝑥 > 7 and half-reified
T(𝑥 > 7)′ ⇒ 𝑥 > 7 constraints.

constraint atom (𝑥 > 7) has to be true. The reification ensures that 𝑥 is greater than
7, leading to three different assignments {{𝑥 ↦→ 𝑑} | 𝑑 ∈ {8, . . . , 10}} for variable 𝑥.
In the case that 𝑎 is false, the constraint atom (𝑥 > 7) can either be true or false.
The first case results in the same three assignments, while the latter corresponds
to seven others, viz. {{𝑥 ↦→ 𝑑} | 𝑑 ∈ {1, . . . , 7}}, as the reification imposes that the
constraint 𝑥 > 7 does not hold, basically enforcing 𝑥 ≤ 7. We note that in case 𝑎 is
false, the constraint imposed on 𝑥 is either 𝑥 > 7 or 𝑥 ≤ 7. Hence, there is actually no
restriction on the assignment of 𝑥. We exploit this observation by replacing (𝑥 > 7)
with a new constraint atom (𝑥 > 7)′ and adding the rule ← ∼𝑎, (𝑥 > 7)′. The idea
is that atom (𝑥 > 7)′ imposes (𝑥 > 7) as a half-reified constraint, meaning that
𝑥 is enforced to be greater than 7 only if the constraint atom (𝑥 > 7)′ is true, i.e.
T(𝑥 > 7)′ ⇒ 𝑥 > 7. We obtain exactly the same stable models in terms of the regular
atoms and integer variable assignments, as depicted in the second row of Table 5.2.
The difference between these two programs lies in the assignment of the constraint
atoms. The additional rule ← ∼𝑎, (𝑥 > 7)′ ensures that the constraint atom (𝑥 > 7)′

is false, whenever 𝑎 is false. Since we connect the constraint atom with its constraint
using a half-reified constraint, this constraint has no effect on the assignment of 𝑥,
resulting in {{𝑥 ↦→ 𝑑} | 𝑑 ∈ {1, . . . , 10}}. Although the number of constraint stable
models stays the same, the number of different Boolean assignments is reduced.

This technique is called Don’t Care Propagation [119]. All constraint atoms that
only occur in integrity constraints and only positively (negatively) in the whole program
are don’t care atoms. clingcon fixes the truth value of don’t care atoms to false (true),
if all integrity constraints containing the atom have at least one literal being false
under the current assignment. Don’t care propagation can be useful in SAT, but it has
even more potential to be helpful in CASP/SMT, since we not only reduce the search
space but also the theory propagator has to handle only one half-reified constraint per
don’t care atom. Hence, only half of the inferences have to be checked. This technique
is not specifically designed for CSP but it can also be used for other theories. Don’t
care propagation is controlled using the option --dont-care-propagation.

Lazy Nogood and Variable Generation 84 Distinguished Features

Order Atom Generation. When translating a constraint, all order atoms for
all its integer variables must be available. By not translating all constraints, we
also do not need to create all order atoms. Some of them can be created on the
fly during propagation. With this in mind, it might still be useful to create a
certain number of order atoms per variable in a preprocessing step. clingcon can
create 𝑛 atoms evenly spread among the domain values of a variable 𝑣. So if we
have a domain D(𝑣) = {1, . . . , 10, 90, . . . , 100} and create four order atoms we use
(𝑣 ≤ 3), (𝑣 ≤ 8), (𝑣 ≤ 92), and (𝑣 ≤ 97). These order atoms allow the solver to
split the domain during the search. Option --min-lits-per-var=n adds at least
𝑚𝑖𝑛(𝑛, |D(𝑣)| − 1) order atoms for each variable 𝑣.

Explicit Binary Order Nogoods. Some order atoms are created before solving.
Therefore, it can also be beneficial to create a subset of the order nogoods Φ′(𝒱 , 𝐷) in
advance, as shown in Corollary 5.1.1. Given that we created the set of order atoms
{(𝑣 ≤ 𝑥1), . . . , (𝑣 ≤ 𝑥𝑛)} for a variable 𝑣 ∈ 𝒱 where 𝑥𝑖 < 𝑥𝑖+1 for 1 ≤ 𝑖 ≤ 𝑛, the
explicit order nogoods

{{T𝑣 ≤ 𝑥1,F𝑣 ≤ 𝑥2}, . . . , {T𝑣 ≤ 𝑥𝑛−1,F𝑣 ≤ 𝑥𝑛}}

can also be created. To introduce these binary order nogoods for all order atoms that
have been created before the solving process, the option --explicit-binary-order
can be used.

Objective Functions. We support multi-objective optimization on sets of views.
For all views 𝑎𝑣+𝑐 subject to minimization, we use the signed order literals (𝑎𝑣+𝑐 ≥ 𝑑)‡

with weight {︃
𝑑− 𝑝𝑟𝑒𝑣(𝑑, 𝑎𝑣 + 𝑐) if 𝑑 > lb(𝑎𝑣 + 𝑐)

𝑑 if 𝑑 = lb(𝑎𝑣 + 𝑐)

for all values 𝑑 ∈ img(𝑎𝑣 + 𝑐) in an ASP minimize statement. This minimizes the
total sum of the set of views. By using native ASP minimize statements, clingcon
reuses clasp’s branch and bound and unsatisfiable core based techniques [2]. For
instance, for minimizing 3𝑥 where D(𝑥) = {1, 3, 7}, we have the following weighted
literals in the (internal) ASP minimize statement (3𝑥 ≥ 3)‡ = 3, (3𝑥 ≥ 9)‡ = 6, and
(3𝑥 ≥ 21)‡ = 12. In terms of ASP-pseudo-code this amounts to a minimize statement
of form #𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒{6 : ∼𝑥 ≤ 1; 12 : ∼𝑥 ≤ 3} although order literals are not part of
the input language. (3𝑥 ≥ 3)‡ evaluates to true, while (3𝑥 ≥ 9)‡ and (3𝑥 ≥ 21)‡ can
be expressed via order literals as ∼(𝑥 ≤ 1) and ∼(𝑥 ≤ 3), respectively.

Flattening Objective Functions. Minimizing the value of an integer variable 𝑦
that is included in a constraint 𝛾(𝜎) = (𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 = 𝑦) where 𝜎 is true, is
equivalent to minimizing the value of 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛. Directly using the views
𝑎𝑖𝑣𝑖 strengthens the nogoods used to represent the minimize statement. The con-

Lazy Nogood and Variable Generation 85 Distinguished Features

straint 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 = 𝑦 can be removed if 𝑦 is not used anywhere else.6 In
fact, this pattern occurs quite often in our minizinc benchmark set. Replacing vari-
able 𝑦 with its constituents 𝑎1𝑣1 + · · · + 𝑎𝑛𝑣𝑛 can be controlled with the option
--flatten-optimization.

Reduced Nogood Learning. Whenever CspPropagation in Algorithm 13 and 14
derives a nogood, it is possible to not add it to the store of learned nogoods ∇ but
rather keep it implicit and only add it if it is really needed for conflict analysis. The
internal interface of clasp supports such a behavior. While the learned nogoods ∇
improve the strength of unit propagation, too many nogoods decrease its performance.
Therefore, lazily adding these nogoods when they are actually needed can improve unit
propagation. To disable the storage of nogoods and handle them implicitly, clingcon
provides option --learn-nogoods.

5.4 Evaluation

In this section, we evaluate the afore-presented features and compare clingcon with
other systems. We performed all our benchmarks on an Intel Xeon 3.40GHz processor
with Debian GNU/Linux 3.8. We used a timeout of 1800 seconds and restricted main
memory to 6GB. In all tests, we count a memory out as a timeout. The experiments
are split into three sections. First, we evaluate the presented features and discuss
corresponding configurations of clingcon. Second, we compare clingcon with state of
the art CP solvers using the benchmark classes of the minizinc competition 2015. And
finally, we contrast clingcon with other CASP systems using different CASP problems.

To evaluate the presented techniques, we give a comprehensive comparison in
Table 5.4. To concentrate on the CP techniques of clingcon 3.2.0, we use the CP
benchmarks of the minizinc competition 2015.7 We removed the benchmark classes
large scheduling and project planning as they cannot be translated into the flatzinc
format without the use of special global constraints. For all other classes, we used the
mzn2fzn8 toolchain to convert all instances to flatzinc while removing all non-linear
and global constraints except for distinct. This functionality is provided by mzn2fzn,
which translates non-supported constraints away. We use the standard translation
provided by mzn2fzn to handle all benchmark classes. In this way, even problems
using constraints on sets, non-linear equations, or complex global constraints can be
handled by solvers restricted to basic linear constraints. For making this benchmark
suite available to the CASP community, we build a converter from flatzinc to the
aspif format [54] used by clingcon; it is called fz2aspif.9 To evaluate the different
features, we modified the scoring system of the minizinc competition, which is based
on the Borda count evaluation technique. On a per instance basis, a configuration
gets one point for every other configuration being worse. A configuration is considered

6 We keep the constraint to correctly print 𝑦 in a solution.
7 http://www.minizinc.org/challenge2015/challenge.html
8 http://www.minizinc.org/software.html
9 https://potassco.org/labs/2016/12/02/fz2aspif.html

Lazy Nogood and Variable Generation 86 Evaluation

http://www.minizinc.org/challenge2015/challenge.html
http://www.minizinc.org/software.html
https://potassco.org/labs/2016/12/02/fz2aspif.html

Option Value Explanation

--equality-processing true Enable equality processing
--distinct-to-card false Translate distinct constraints using inequalities
--distinct-pigeon true Use pigeon hole constraints
--distinct-permutation false Not using permutation constraints
--sort-coefficient false Sort by domain size first
--sort-descend-coefficient true Sort using decreasing coefficients
--sort-descend-domain false Sort using increasing domain sizes
--split-size -1 Not splitting constraints
--max-nogoods-size 1024 Not splitting constraints with less than 1024 nogoods
--translate-constraints 10000 Translate constraints with less than 10000 nogoods
--break-symmetries true Break symmetries when splitting
--domain-size 10000 Use 10000 as a threshold for domain propagation
--redundant-nogood-check true Enable redundant nogood check when translating
--dont-care-propagation true Enable don’t care propagation
--min-lits-per-var 1000 Introduce at least 1000 order atoms per variable
--flatten-optimization true Flatten the objective function
--prop-strength 4 Use highest propagation strength 4
--explicit-binary-order false Not explicitly creating nogoods from Φ′(𝒱, 𝐷)

--learn-nogoods true Add all learned nogoods to ∇ immediately

Table 5.3: Default configuration D of clingcon 3.2.0.

worse, if either the found optimization value is at least 1% lower, or if it has the
same optimization value but is slower. A configuration is considered slower if it is at
least 5 seconds slower. Classes marked with * are decision problems (all others are
optimization problems); classes containing the global distinct constraint are marked
with †. We have exactly five instances per class.

The following discussion refers to the results shown in Table 5.4. The columns
used for comparison are named in the paragraph heading. Column 𝐷 presents the
default configuration of clingcon given in Table 5.3. All other listed configurations
differ only in one or two options from this default in order to test specific techniques.
For instance, for evaluating equality processing, we compare default configuration D ,
using equality processing, with configuration NE , disabling equality processing. Thus,
except for --equality-processing, all other options remain unaltered.

Equality Processing (D, NE) To evaluate the influence of equality processing, we
compare default configuration D (with equality processing) with configuration
NE (without equality processing). This feature improves performance on nearly
all benchmark classes significantly. By simply removing constraints and variables
the underlying CSP gets easier to solve.

Lazy Nogood and Variable Generation 87 Evaluation

instances D NE DT NP PO SC SP ST NS D1 D2 D3 T1 T2 T3 T4 NR ND M1 M2 M3 NF P1 P2 P3 EO RL

costas*† 38 47 15 39 41 38 27 27 24 27 27 26 12 33 0 0 16 38 36 38 40 38 12 12 38 32 60
cvrp† 49 38 90 61 65 49 51 44 52 51 51 51 31 67 41 0 34 55 93 95 97 49 9 9 49 100 66
freepizza 121 111 121 121 121 121 47 26 49 51 47 47 79 121 121 26 26 100 99 107 102 115 109 113 120 120 109
gfd-schedule 105 69 103 102 102 103 52 11 47 54 54 54 58 102 102 0 36 50 84 114 112 103 81 81 105 102 93
grid-colour 130
is† 118 111 116 119 111 118 45 0 45 44 45 44 96 118 118 0 0 93 128 53 56 118 0 0 117 90 80
mapping 106 87 106 106 106 106 33 0 18 30 33 33 104 112 110 0 0 124 84 109 111 106 0 0 106 97 112
knapsack 66 55 64 66 66 64 7 2 7 3 7 7 65 65 66 0 2 66 44 73 76 57 99 99 64 40 34
nmseq* 100 100 100 100 98 99 16 27 25 25 28 28 100 67 100 0 28 100 88 79 100 96 0 0 92 39 130
opd 89 82 88 89 89 89 125 125 121 125 125 125 52 89 88 0 125 63 44 89 90 88 79 79 88 78 83
open-stacks† 96 73 116 107 77 95 57 54 71 65 58 59 33 96 77 21 55 95 79 95 103 92 61 61 94 117 54
p1f † 66 66 100 70 71 66 35 65 35 36 35 35 84 66 66 0 65 75 57 74 76 71 64 64 66 78 68
radiation 125 118 125 125 124 115 62 43 40 52 62 62 108 107 103 0 50 125 112 119 110 101 68 68 125 128 40
roster 130 130 130 130 130 130 130 130 130 130 130 130 130 130 130 0 130 130 130 130 130 130 130 130 130 130 130
spot5 86 86 86 86 86 86 105 75 105 100 105 105 86 86 86 0 78 86 68 111 68 86 102 102 86 120 106
tdtsp 77 69 77 77 77 77 94 0 35 94 94 94 47 76 30 0 0 3 70 59 119 77 44 12 84 46 75
triangular 15 15 15 15 15 15 38 11 38 38 38 15 56 15 15 0 11 15 15 15 15 8 77 77 15 33 27
zephyrus 72 47 72 72 72 72 62 0 62 62 62 62 64 72 72 0 0 72 71 103 0 72 0 0 46 72 7

total 1589 1434 1654 1615 1581 1573 1116 770 1034 1117 1131 1107 1335 1552 1455 177 786 1420 1432 1593 1535 1537 1065 1037 1555 1552 1404

Table 5.4: Comparison of different features of clingcon 3.2.0 on the benchmark set of the minizinc competition 2015. Shown are
scores of how often a configuration is better than another. Bold numbers indicate the best configuration for the benchmark class.

Distinct Translation (D, DT) Translating global distinct constraints into car-
dinality rules prevents order atoms from being created lazily. The default
configuration D translates them into a set of inequalities. The translation using
cardinality constraints in column DT performs better on cvrp, open-stacks,
and p1f, while it performs worse on the benchmark class costas. As long as
the domain size is small, this feature can be useful for problems using distinct
constraints. The configuration DT performs best of all tested configurations.

Pigeon Hole Constraints (D, NP) Since pigeon hole constraints add only con-
stant overhead in the number of nogoods, they are enabled in configuration D .
Disabling their addition, slightly increases performance on benchmark classes
containing distinct constraints (marked with †), as witnessed in column NP .
Although these constraints have no positive effect on the benchmarks at hand,
we keep this feature enabled by default since it increases propagation strength.

Permutation Constraints (D, PO) Unlike pigeon hole constraints, permutation
constraints introduce direct encoding atoms which prevents lazy variable genera-
tion for some constraint variables. This is the reason why this feature is disabled
by default in configuration D . We enabled it in column PO . Again, this feature
only influences benchmark classes containing distinct constraints. It improves
performance for the cvrp class but decreases it on the other classes. The impact
of this feature depends upon the respective problem.

Sorting (D, SC) As we cannot account for all combinations of sorting mechanisms,
we evaluate this feature only on the cases discussed in [114]. Default configuration
D implements the one in sugar ; it sorts by smallest domain first and prefers
larger coefficients. The alternative sorting recommended in [114] first sorts on
larger coefficients and afterwards uses the smaller domain. This behavior is
enforced by setting --sort-coefficient=true and reflected in column SC . We
see that both sorting methods yield a similar performance when applied to our
lazy nogood generating approach.

Splitting Constraints (D, SP , T4 , ST) Splitting constraints into smaller ones
is mandatory for any translation-based approach using the order encoding to
avoid an exponential number of nogoods. We restricted our evaluation to a
splitting size of 3, as done in sugar. The default configuration D of cling-
con does not split any constraints. The effect of splitting constraints into
ternary ones (--split-size=3) is reflected by column SP ; it performs poorly
in our lazy nogood generating setting because it introduces many new con-
straints and variables. On the other hand, when translating all constraints
(--translate-constraints=-1) as shown in column T4 , the split into con-
straints of up to three variables (using --translate-constraints=-1 and
--split-size=3) increases performance significantly, as witnessed by column
ST . We conclude that splitting constraints is not necessary for lazy nogood
generating solvers but essential for translational approaches that use the order
encoding.

Lazy Nogood and Variable Generation 89 Evaluation

Symmetry Breaking (SP , NS) Splitting constraints introduces auxiliary vari-
ables that may lead to redundant solutions. Symmetry breaking eliminates such
redundancies and has only an effect when splitting constraints. This is why it is
interesting to compare column SP (--split-size=3) where symmetry breaking
is enabled with column NS (--split-size=3 and --break-symmetries=false)
where it is disabled. In both cases, all constraints are split into ternary ones.
The additional constraints remove symmetric solutions from the search space
and therefore seem to be beneficial, especially on classes tdtsp, radiation, and
mapping.

Domain Propagation (D1 , D2 , SP , D3) To investigate the impact of domain
propagation during preprocessing, we tested four different configurations that
all split constraints into ternary ones (--split-size=3). They only differ in
using the options --domain-size=0 (no domain propagation) in column D1 ,
--domain-size=1000 in column D2 , --domain-size=10000 in column SP , and
--domain-size=-1 (unlimited domain propagation) in column D3 . We observe
that unlimited domain propagation reduces performance in benchmark class
triangular but has no significant influence otherwise. The other tested configu-
rations have no influence on the runtime of the benchmarks. We assume that
domain propagation does not prune the domain enough to make a considerable
difference. For the default configuration of clingcon, we decided to restrict it to
a reasonable number (10000) which leaves it enabled for mid-sized domains.

Translate Constraints (T1 , T2 , D, T3 , T4) We have already seen that trans-
lating all constraints as shown in column T4 is not very beneficial. Now,
we evaluate whether the translation of “small” constraints improves perfor-
mance through a mixture of “translating small constraints” and “handling
larger ones lazily”. Therefore, we compare the results obtained with option
--translate-constraints=0 (no constraints are translated) in column T1 , with
T2 where --translate-constraints=1000 (translate constraints that produce
up to 1000 nogoods) is used, with D using --translate-constraints=10000
(up to 10000 nogoods), with T3 using --translate-constraints=50000 (up to
50000 nogoods), and T4 using --translate-constraints=-1 (all constraints
are translated). There is a trade-off on the size of constraints to translate. While
translating small constraints (constraints that produce up to 1000 nogoods)
improves performance, the translation of larger constraints decreases it again.
On some benchmarks, like triangular and p1f, translating no constraints is
beneficial. Also, translating all constraints in T4 performs worst of all tested
configurations.

Redundant Nogood Check (ST , NR) To evaluate this feature, we decided to
translate all constraints (--translate-constraints=-1). Since this configu-
ration is not producing good results for a comparison (most of the time the
translation is simply too large to be finished), we additionally split the con-
straints into ternary ones with option --split-size=3. With this, we com-
pare the configuration with redundancy check in column ST with NR where

Lazy Nogood and Variable Generation 90 Evaluation

redundancy checking is disabled (--redundant-nogood-check=false). The
redundant nogood check is fast and simply removes redundant nogoods from the
order encoding. Benchmark classes like costas and cvrp perform better with the
reduced set of nogoods, while redundant nogoods are beneficial for gfd-schedule
and radiation.

Don’t Care Propagation (D, ND) is enabled by default and removes unnecessary
implications from the problem. Disabling (--dont-care-propagation=false)
this feature in column ND decreases performance.

Order Atom Generation (M1 , D, M2 , M3) Adding order atoms lazily is manda-
tory to handle large domains. We now evaluate the effect of adding a small
amount of order atoms eagerly for every constraint variable, evenly spread
among its domain values. We compare column M1 using --min-lits-per-var=0
(adding no atoms), with D using --min-lits-per-var=1000 (adding 1000 order
atoms per variable), with M2 using --min-lits-per-var=10000 (adding 10000),
and M3 using --min-lits-per-var=-1 (adding all order atoms). Adding no
order atoms in advance drastically reduces performance of the system while
adding 1000 to 10000 order atoms achieves best performance. When adding too
many or even all order atoms before solving, performance is again decreased,
especially on classes with large domains like zephyrus. Also, note that the tested
benchmark classes are very sensitive to this option as adding atoms beforehand
may influence the heuristic of the search.

Flattening Objective Functions (D, NF) is a feature well received by this bench-
mark set. All flatzinc encodings contain only one variable subject to minimization.
On most benchmark classes this variable simply represents the sum of a set
of variables. Adding this set directly to the objective function avoids adding
an unnecessary and probably large constraint and also improves propagation
strength of the learned nogoods. Unlike D , configuration NF disables this
feature via --flatten-optimization=false. We observe that flattening the
optimization statement increases the performance on many benchmark classes.

Lazy Nogood Generation (P1 , P2 , P3 , D) We now evaluate the four propa-
gation strengths described before where --prop-strength=1 is reflected by
the results in column P1 , --prop-strength=2 by the ones in column P2 ,
--prop-strength=3 in column P3 , and --prop-strength=4 in the default con-
figuration D . We see that a high propagation strength is important. Especially
propagating changed bounds with --prop-strength=3 is necessary for many
benchmark classes. Interestingly, less propagation performs best for the classes
knapsack and triangular where constraint propagation is not dominating the
search but still takes time. On these classes, configurations with propagation
strength 1 or 2 spend less time on CspPropagation and more on pure CDCL
search, as attested by a much higher number of choices.

Explicit Binary Order Nogoods (D, EO) Default configuration D does not in-
troduce explicit binary order nogoods Φ(𝒱 , 𝐷) but uses a propagator for captur-

Lazy Nogood and Variable Generation 91 Evaluation

ing the corresponding inferences lazily. The --explicit-binary-order=true
option reflected in column EO creates these nogoods explicitly for all order
atoms created during preprocessing, leaving the others subject to lazy nogood
propagation. Although, overall performance of the implicit binary order nogoods
is better, for some benchmark classes like cvrp and spot5 using binary order
nogoods explicitly is the best choice. This is one of the options for which it is
hard to find a clear cut default setting and that needs consideration for each
benchmark class.

Reduced Nogood Learning (D, RL) clingcon’s default configuration D adds all
nogoods returned by CspPropagation to the set of learned nogoods (viz. ∇
in Algorithm 13). Lazily adding these nogoods when they are actually needed
for conflict analysis is achieved with --learn-nogoods; the results are shown
in column RL. The average performance of adding nogoods lazily is inferior
to the one obtained by learning all nogoods. Nevertheless, the latter setting
performs best on costas and nmseq, the two decision problems in our benchmark
set. Future work has to investigate which of the nogoods have to be learned and
which of them can be added lazily.

Configuration DT is the configuration with the highest overall score. Nevertheless,
clingcon’s default configuration is more conservative since it allows for using lazy
variable generation in all cases. For instance, with configuration DT it is impossible
to run the multi-shot 𝑛-queens example presented in the next Chapter 6, because 230

order atoms would have to be created per queen in order to use cardinality constraints
for the distinct constraint.

Next, we compare clingcon to state of the art CP solvers on the same set
of benchmarks with the same scoring system. The second column of Table 5.5
shows configuration DT of clingcon 3. This is the best configuration of the in-
ternal comparison in Table 5.4, which is obtained using the command line option
--distinct-to-cardinality=true. We compare it to g12fd (Mercury FD Solver),
which is the G12 FlatZinc interpreter’s default solver, taken from the minizinc 2.0.11
package.10 Furthermore, we have taken gecode 4.4.0,11 a well-known classical CP solver.
Also, the lazy clause generating solvers minisatid 3.11.0 [35]12 as well as chuffed,13 the
best solver of the minizinc competition 2015.14 Finally, we compare to picatsat 2.0,15

a CP solver that won the second place at the minizinc competition 2016 by translating
constraints into SAT using a logarithmic encoding. We ran g12fd and gecode with
--ignore-user-search to disable any special heuristic given in the problem encodings
for all solvers. In the competition, this is called “free search”. To measure the core
performance of the systems, it is most instructive to consider chuffed ′ and picatsat ′

10 http://www.minizinc.org/software.html
11 http://www.gecode.org
12 With some bugfixes. Special thanks to Bart Bogaerts for his great support on this work.
13 https://github.com/geoffchu/chuffed — SHA 5b379ed9942ee59e8684149eae3fec1af426f6ee
14 It did not participate in the ranking as it is was entered by the organizers. It ran outside of

competition and was faster than the winning system.
15 http://picat-lang.org

Lazy Nogood and Variable Generation 92 Evaluation

http://www.minizinc.org/software.html
http://www.gecode.org
https://github.com/geoffchu/chuffed
http://picat-lang.org

instances clingcon g12fd gecode minisatid chuffed chuffed ′ picatsat picatsat ′

costas*† 6 0 19 9 8 8 11 11
cvrp† 24 3 6 5 30 22 4 6
freepizza 35 15 0 31 26 26 3 3
gfd-schedule 10 9 12 27 28 28 20 14
grid-colour 35 1 8 34 23 23 31 31
is† 17 15 2 17 35 32 19 11
mapping 17 14 0 17 29 29 23 16
knapsack 19 11 14 8 5 5 26 26
nmseq* 24 15 25 3 21 21 5 5
opd 25 6 4 15 21 17 31 32
open-stacks† 20 0 9 8 35 35 21 16
p1f† 21 0 22 3 34 21 5 8
radiation 28 7 7 12 33 33 18 14
roster 35 35 0 35 35 35 29 28
spot5 20 10 0 19 16 16 35 31
tdtsp 8 35 10 1 31 24 10 9
triangular 15 29 5 26 23 24 12 12
zephyrus 3 20 7 10 26 26 30 30

total 362 225 150 280 459 425 333 303

Table 5.5: Comparing clingcon 3.2.0 DT with different state of the art CP solvers on
the minizinc competition 2015 benchmark set.

which use the two solvers on exactly the same set of constraints as clingcon. Hence,
all non-linear and global constraints (except distinct) are translated using mzn2fzn in
the same way for all systems.16

The results in Table 5.5 show that clingcon17 outperforms established systems such
as g12fd, gecode, minisatid, and even picatsat. There are also different benchmark
classes where solvers dominate each other and vice versa. We point out that gecode has
special propagators for many non-linear and global constraints that have been used
in the benchmarks. Also chuffed, as a lazy clause generating solver, has propagators

16 Unfortunately, we were unable to compare to the lazy clause generating system g12lazy, as it
produced wrong results on some of the benchmarks and is no longer maintained. We cannot
convert the competition benchmarks to a format readable by sugar, as existing converters are
outdated and not compatible anymore.

17 Note that the Borda Count scores are relative to the compared systems, and therefore are
different for the same configuration of clingcon in Table 5.4 and 5.5.

Lazy Nogood and Variable Generation 93 Evaluation

for many other constraints and can therefore handle some of the benchmark classes
much better. As we are building a CASP system, we refrain from supporting a
broad variety of global constraints, as some of them can be modeled in ASP. So
for a better comparison on the features of clingcon, we translated all non-linear
and global constraints except for distinct in the columns chuffed ′ and picatsat ′ into
linear ones. Here, we see that these systems profit from the dedicated treatment
of global constraints but that the base performance of clingcon is comparable. In
general, clingcon does not match the performance of the best solver of the minizinc
competition 2015 but on benchmark classes like freepizza, grid-colour, opd, knapsack,
and spot5, it even outperformed chuffed. We conclude that clingcon, despite being a
CASP system, is at eye level with state of the art CP solvers but cannot top the best
lazy clause generating systems.

Finally, we compare clingcon against six other CASP systems.

∙ inca [43] with the option --linear-bc,18 a lazy nogood generating system not
supporting lazy variable generation.

∙ clingcon 2 [102], using gecode 3.7.3 as a black-box CP solver.

∙ ezcsp 1.6.24 [9], also pursuing a black-box approach but using CP solver B-
Prolog 7.4 with ASP solver clasp.

∙ aspartame [11], a system using an eager translation of the constraint part by
means of an ASP encoding.

∙ ezsmt 1.0.0 [82], translating CASP programs to SMT, solved by SMT solver
z3 4.2.2.

∙ clingo 5.1.0, a pure ASP solver to measure the influence of the CP part on
solving.

The first benchmark class is the two dimensional strip packing problem [110]; its
encoding is shown in Listing 5.2. In Table 5.6, column clingo 5 reflects the results
obtained with a highly optimized ASP encoding, using a handcrafted order encoding.
Time is given in seconds, letting - denote a timeout of 1800 seconds. The best objective
value computed so far is given in the columns headed with opt. For aspartame, we
have taken an encoding provided in [11]. For the other systems such as clingcon 2,
clingcon 3, and inca, we adjusted the syntax for the linear constraints. We refrained
from comparing with ezcsp or ezsmt as both systems are not supporting optimization
of integer variables. The bottom row counts the number of times a system performed
best. We clearly see that clingcon 2 is outperformed even by the manual ASP encoding.
The new clingcon 3 system performs best. The translational approach of aspartame is
close to the inca system, and both perform better than the manual ASP approach.
According to [110], these results compete with dedicated, state of the art systems.

18 This option was recommended by the authors of the system for these kind of benchmarks.

Lazy Nogood and Variable Generation 94 Evaluation

clingo 5 aspartame clingcon 2 inca clingcon 3
instances time opt time opt time opt time opt time opt

BENG01 9 30 20 30 - 916 30 2 30
BENG02 - 58 1336 57 - - 58 - 58
BENG03 - 87 - 85 - - 85 775 84
BENG04 - 111 - 108 - - 108 - 108
BENG05 - 141 - 136 - - 136 - 136
BENG06 1226 36 32 36 - 5 36 23 36
BENG07 - 69 - 68 - - 69 - 68
BENG08 - - - - 104 - 103
BENG09 - - - - - 128
BENG10 - - - - - 158
CGCUT01 1 23 1 23 - 26 - 25 0 23
CGCUT02 - 66 - 65 - - 67 - 65
CGCUT03 - - - - -
GCUT01 - 1016 5 1016 0 1016 0 1016 0 1016
GCUT02 - 1242 - 1195 - - 1190 - 1190
GCUT03 - 134 1803 - 1 1803 12 1803
GCUT04 - - - - -
HT01 1 20 1 20 - 22 346 20 0 20
HT02 8 20 5 20 - 25 77 20 1 20
HT03 1 20 1 20 - 10 20 0 20
HT04 840 15 33 15 - - 16 8 15
HT05 12 15 9 15 - 8 15 13 15
HT06 14 15 8 15 - 359 15 1 15
HT07 - 31 175 30 - - 31 - 31
HT08 1284 30 - 31 - - 31 - 31
HT09 - 31 272 37 - - 31 41 30
NGCUT01 0 23 0 23 1 23 0 23 0 23
NGCUT02 2 30 1 30 - 33 80 30 0 30
NGCUT03 2 28 2 28 - 1 28 0 28
NGCUT04 0 20 0 20 0 20 0 20 0 20
NGCUT05 0 36 0 36 - 0 36 0 36
NGCUT06 8 31 1 31 - 0 31 0 31
NGCUT07 0 20 0 20 0 20 0 20 0 20
NGCUT08 1 33 1 33 - 36 38 33 0 33
NGCUT09 87 50 - 50 - 57 - 50 1549 50
NGCUT10 6 80 1 80 - 81 0 80 0 80
NGCUT11 4 52 1 52 - 55 0 52 0 52
NGCUT12 - 87 3 87 - 0 87 0 87

#single best 13 21 4 16 28

Table 5.6: Comparison of different CASP systems on the two dimensional strip packing
problem.

Lazy Nogood and Variable Generation 95 Evaluation

The next benchmark classes are incremental scheduling, weighted sequence, and
reverse folding, all stemming from the ASP competition.19 Encodings for clingo,
ezcsp,20 ezsmt, and clingcon 2 have been taken from [82] in combination with instances
from the ASP competition.21 We changed the pure ASP encoding for clingo slightly
for a better grounding performance. For these classes, we could not provide an
encoding for aspartame, as its prototypical CASP support does not allow for modeling
parametrized n-ary constraints.

For incremental scheduling, inca produces wrong results due to its usage of an
intermediate version of gringo, viz. 3.0.92. The runtime in seconds for incremental
scheduling is shown in Table 5.7. We see that clingcon 2 improves on the dedicated
ASP encoding. In fact, incremental scheduling is a true CASP problem where the
pure ASP encoding can be improved by using CP. While the black-box approach of
ezcsp performs worst, ezsmt and clingcon 3 clearly dominate this comparison.22 The
enhanced preprocessing techniques and the lazy variable generation of clingcon even
outperforms the industrial SMT solver z3 (as used in ezsmt).

For the weighted sequence problem, we see in Table 5.8 that inca, clingo, ezsmt ,
and clingcon 3 perform well on this benchmark set, while clingcon 2 could not compete
with the timings of the other systems and ezcsp does not solve any of them. Again,
time is shown in seconds and - denotes a timeout of 1800 seconds. We also see that
the performance of the pure ASP encoding is in the same range as that of the winning
CASP systems. Hence, the ASP solving part clearly dominates the CSP part. This also
explains the slightly worse performance of clingcon 3 due to its heavy preprocessing
of the CSP part.

For the reverse folding problem, we compare the same systems as before. Table 5.9
gives the running time in seconds. While all CASP systems improve upon the pure
ASP encoding, clingcon 2 and clingcon 3 perform best on this benchmark class. The
preprocessing overhead of clingcon 3 does not pay off in terms of runtime on this
benchmark class, making it perform slightly worse than clingcon 2. Of the two lazy
nogood generating solvers inca and clingcon 3, the latter performs better due to
lazy variable generation, as not all order atoms have to be generated before solving.
While the black-box approach of ezcsp can solve the problem, the translation to SMT
by ezsmt performs even better. We conclude that this is also due to the fact that
no auxiliary atoms for an encoding of the constraints are used in ezsmt. A closer
inspection revealed that the number of choices for inca and clingcon 2 is below 100 on
average. For this problem, the ASP part is dominated by the CSP part. This is also
the reason why the pure ASP encoding produces a memory out on all instances (it
was not able to ground all constraints).

We conclude that clingcon 3 improves significantly upon its predecessor clingcon 2,
is comparable to state of the art CP systems, and the currently fastest CASP system

19 http://aspcomp2015.dibris.unige.it/LPNMR-comp-report.pdf
20 To be comparable, we used the encoding without cumulative constraint.
21 We refrained from using the other three benchmark classes from this source as the available

instances were too easy to solve to produce informative results.
22 The time to run the completion and translation processes for ezcsp and ezsmt is not included in

the tables.

Lazy Nogood and Variable Generation 96 Evaluation

http://aspcomp2015.dibris.unige.it/LPNMR-comp-report.pdf

available. All benchmarks, encodings, instances and results are available online.23

Finally, we present an approach to multi-shot CASP solving that makes use of the
presented features such as lazy variable generation.

23 https://potassco.org/clingcon

Lazy Nogood and Variable Generation 97 Evaluation

https://potassco.org/clingcon

instances clingo 5 clingcon 2 clingcon 3 ezcsp ezsmt

020-inc 302 1 0 0 0
028-inc - 16 4 - 5
044-inc - 518 149 - 116
063-inc 335 0 1 - 0
083-inc 268 - 1 - 0
096-inc 719 298 1 - 0
106-inc 470 - 2 - 1
158-inc 355 4 1 0 1
175-inc - 83 6 - 4
181-inc - 5 1 - 2
184-inc 425 - 1 - 1
211-inc - - 194 - 799
214-inc - - 7 - 76
230-inc - 77 9 - 24
256-inc - - - - -
257-inc - - - - -
266-inc - - 767 - -
334-inc - - - - -
338-inc - - - - -
362-inc - - - - -

single best 0 4 14 2 11

Table 5.7: Comparison of different CASP systems on the incremental scheduling
problem.

Lazy Nogood and Variable Generation 98 Evaluation

instances clingo 5 inca clingcon 2 clingcon 3 ezcsp ezsmt

01-tree 6 5 6 1 - 1
02-tree 8 1 8 3 - 5
05-tree 5 1 4 1 - 3
06-tree 3 2 19 1 - 3
07-tree 3 4 1 1 - 4
11-tree 2 0 6 1 - 0
15-tree 2 3 1 1 - 1
16-tree 2 4 15 5 - 1
22-tree 4 0 4 1 - 0
23-tree 3 0 4 0 - 3
26-tree 2 3 51 4 - 1
29-tree 7 1 26 2 - 5
33-tree 9 7 95 15 - 9
35-tree 24 10 231 30 - 26
38-tree 7 17 30 10 - 11
39-tree 6 7 330 46 - 23
40-tree 3 9 398 47 - 14
41-tree 36 14 18 13 - 34
49-tree 7 3 220 22 - 14
53-tree 5 8 297 33 - 2

#single best 17 17 8 14 0 15

Table 5.8: Comparison of different CASP systems on the weighted sequence problem.

Lazy Nogood and Variable Generation 99 Evaluation

instances clingo 5 inca clingcon 2 clingcon 3 ezcsp ezsmt

07-reverse - 1 0 1 11 1
11-reverse - 1 0 1 9 1
15-reverse - 1 1 1 6 1
18-reverse - 2 1 2 27 1
20-reverse - 6 3 4 60 10
24-reverse - 12 5 8 272 49
28-reverse - 11 5 7 107 8
31-reverse - 20 8 36 128 73
34-reverse - 25 11 20 625 112
35-reverse - 35 15 23 353 96
39-reverse - 40 18 23 682 212
44-reverse - - 33 38 - 339
47-reverse - 6 4 4 86 4
49-reverse - 7 4 4 67 4
50-reverse - 2 1 2 12 4

#single best 0 8 15 12 1 8

Table 5.9: Comparison of different CASP systems on the reverse folding problem.

Lazy Nogood and Variable Generation 100 Evaluation

Chapter 6

Multi-Shot Constraint Answer Set
Programming

This chapter shows how CASP can be extended to multi-shot solving. In particular,
we show the following.

∙ An overview of multi-shot solving in the context of CASP and its applications.

∙ An introduction to incremental programs using the 𝑛-queens problem.

∙ An example on planning with durations using the spoiled Yale shooting scenario.

Parts of this chapter have been published in [75] and [13].

6.1 Multi-Shot Solving

As mentioned, a major design objective of clingcon 3 is to transfer clingo’s functionali-
ties to CASP solving. A central role in this is played by multi-shot solving [57, 58, 59]
because it allows for casting manifold reasoning modes. More precisely, multi-shot
solving is about solving continuously changing logic programs in an operative way.
This can be controlled via reactive procedures that loop on solving while reacting, for
instance, to outside changes or previous solving results. These reactions may entail
the addition or retraction of rules that the operative approach can accommodate by
leaving the unaffected program parts intact within the solver. This avoids re-grounding
and benefits from heuristic scores and nogoods learned over time.

To extend multi-shot solving to CASP, our propagators allow for adding and
deleting constraints in order to capture evolving CSPs. Evolving constraint logic
programs can be extremely useful in dynamic applications, for example, to:

∙ add new resources in a planning domain,

∙ set the value of an observed variable measured using sensors,

∙ add restrictions to reduce the capacity of containers, or

∙ increase their capacity depending on external systems like weather forecast etc.

The presented propagators provide means for all these issues. New resources can be
added using additional constraint variables and domains. Values can be limited by
adding constraints and rules to the constraint logic program. Due to our monotone
treatment of CSPs in CASP, it is always possible to add new constraint atoms. Since
they are not allowed to occur in rule heads they to not interfere with the completion of
the logic program. Hence, we can combine (and therefore extend) two constraint logic
programs under exactly the same restrictions that apply to normal logic programs
(cf. [57, 58]).

While confining variables is easy, accomplished by adding constraints on those
variables, increasing their capacity is addressed via lazy variable generation. That is,
we start with a virtually maximum domain that is restrained by retractable constraints.
The domain is then increased by relaxing these constraints. Importantly, the order
atoms representing the active domain are only generated when needed. This avoids
introducing a large amount of atoms, especially in the non-active area of the domain.
As an example, consider the variable 𝑥 and its domain D(𝑥) = {1, . . . , 109} having
one billion elements. By adding the constraint 𝑥 ≤ 10, only the first 10 values are
valid assignments. After retracting 𝑥 ≤ 10 and adding 𝑥 ≤ 20, only the first 20 values
constitute the search space. Since order atoms are only introduced in the actual search
space, no atoms are introduced for the huge amount (109 − 20) of other values. Using
this technique, CASP can deal with increasing domains within reasonable space.

For illustration, let us consider the well-known 𝑛-queens puzzle for demonstrating
how to incrementally add new constraints and constraint variables to a constraint logic
program and how to remove constraints from it. Afterwards, we show how planning
with durations can be achieved using clingcon 3. We therefore add durations to the
actions of the famous Yale shooting problem.

6.2 Incremental Programs
To illustrate how seamlessly clingcon integrates CASP and multi-shot solving, we
apply clingo’s exemplary Python script for incremental solving to model different
incremental versions of the 𝑛-queens puzzle in CASP. Multi-shot solving in clingo
relies on two directives [57, 58], the #program directive for regrouping rules and the
#external directive for declaring atoms as being external to the program at hand.
The truth value of such external atoms is set via clingo’s API. Clingo’s incremental
solving procedure is provided in Python and loops over increasing integers until a
stop criterion is met. It presupposes three groups of rules declared via #program
directives. At step 0, the programs named base and check(n) are ground and solved
for n = 0. Then, in turn programs check(n) and step(n) are added for n > 0 and
the obtained program is grounded and solved. Other names and components are
definable by appropriate changes to the Python program. Stop criteria can be the
satisfiability or unsatisfiability of the respective program at each iteration. In addition,
at each step n an external atom query(n) is introduced; it is set to true for the current
iteration n and false for all previous instances with smaller integers than n. Although

Multi-Shot Constraint Answer Set Pro-
gramming

102 Incremental Programs

we reproduce the exemplary Python program from clingo’s example pool in Listing 6.1,
we must refer the reader to [57] for further details.

1 #script (python)

3 import clingo

5 def get(val , default):
6 return val if val != None else default

8 def main(prg):
9 imin = get(prg.get_const ("imin"), clingo.Number (0))

10 imax = prg.get_const ("imax")
11 istop = get(prg.get_const ("istop"), clingo.String ("SAT"))

13 step , ret = 0, None
14 while ((imax is None or step < imax.number) and
15 (step == 0 or step < imin.number or (
16 (istop.string == "SAT" and not ret.satisfiable) or
17 (istop.string == "UNSAT" and not ret.unsatisfiable) or
18 (istop.string == "UNKNOWN" and not ret.unknown)))):
19 parts = []
20 parts.append ((" check", [step]))
21 if step > 0:
22 prg.release_external(clingo.Function ("query", [step -1]))
23 parts.append ((" step", [step]))
24 prg.cleanup ()
25 else:
26 parts.append ((" base", []))
27 prg.ground(parts)
28 prg.assign_external(clingo.Function ("query", [step]), True)
29 ret , step = prg.solve(), step+1
30 #end.

32 #program check(t).
33 #external query(t).

Listing 6.1: Incremental mode of Clingo5

6.3 Incremental 𝑁-Queens
The CASP encoding of the incremental 𝑛-queens puzzle in Listing 6.2 demonstrates
the addition and removal of constraints and also shows how variable domains are
dynamically increased. As usual, the goal is to put 𝑛 queens on an 𝑛 × 𝑛 chess
board such that no two queens threaten each other. Here, however, this is done for
an increasing sequence of integers 𝑛 such that the queens puzzle for 𝑛 is obtained
by extending the one for 𝑛 − 1. While the first line of Listing 6.2 includes the
Python program in Listing 6.1, the next one includes the grammar from Listing 5.1.
Line 3 suppresses the output of regular atoms. The remaining encoding makes use of
two features of clingo’s exemplary incremental solving procedure, viz. subsequently
grounding and solving rules regrouped under program step(n) and the external atom
query(n).1 In Listing 6.2, all rules in lines 7 – 17 are regrouped under subprogram

1 Strictly speaking, lines 1 – 3 belong to the program base that is treated once at the beginning
(cf. Listing 6.1 and [57] for details).

Multi-Shot Constraint Answer Set Pro-
gramming

103 Incremental 𝑁 -Queens

1 #include "incmode.lp".
2 #include "csp.lp".
3 #show.

5 #program step(n).

7 pos(n).

9 &sum{ q(n) } > 0.
10 &sum{ q(X) } <= n :- pos(X), query(n).

12 &distinct{ q(X) : pos(X) }.

14 &distinct{ q(X)+X-1 : pos(X) }.
15 &distinct{ q(X)-X+1 : pos(X) }.

17 &show{ q(n) }.

Listing 6.2: Incremental 𝑛-queens encoding 𝑄1 (incqueens.lp)

step(n). The Python program Listing 6.1 makes clingcon in turn solve the empty
program, then program step(1), then program step(1) and step(2) together, then
both former programs and step(3), etc. This is done by keeping the previous programs
in the solver and by replacing parameter n in lines 7 – 17 with the respective integer
when grounding the added subprogram. Thus, at each step n a fact ‘pos(n).’ is added
to the solver (cf. line 7). The heads of line 9 and 10 represent the linear constraints

𝑞(𝑛) > 0 and 𝑞(𝑥) ≤ 𝑛 for 𝑥 ∈ {1, . . . , 𝑛} .

At each step n, the integer variable q(n) is introduced and required to be a positive
integer. Moreover, all integer variables q(1) to q(n) are required to take values less
or equal than 𝑛. However, while the former constraint is unconditional, the latter are
subject to the external atom query(n). The functioning of Listing 6.1 ensures that
only query(n) is true while query(s) is false for all s < n. In this way, the domain
of all constraint variables q(1) to q(n) is increased by one at each step. Lines 12-15
in Listing 6.1 add distinct constraints to the effect that no two queens can be placed
on the same row or diagonal of the board. Line 17 simply instructs clingcon to add
q(n) to the output constraint variables.

In the following, we detail the grounding process for this example. The base
program simply consists of the first 3 lines of the original encoding. Afterwards,
program step(1) is grounded, adding the first constraints of the problem. The result
is shown in Listing 6.3. The first variable q(1) is introduced and its lower bound is fixed
to 1 in line 3. Its upper bound is also restricted to 1 but here only if query(1) holds.
This is only the case of n=1 when solving program step(1) (line 4). In all subsequent
cases, query(1) is false, and hence 𝑞(1) ≤ 1 is not imposed anymore. Accordingly,
the atom &sum{q(1)} <= 1 can vary freely (since it is an external constraint atom).
Don’t care propagation, described in Section 5.3, addresses such atoms and removes
them from the system.

As solving the 1-queen problem is uninteresting, the second solving step adds

Multi-Shot Constraint Answer Set Pro-
gramming

104 Incremental 𝑁 -Queens

1 pos (1).

3 &sum{ q(1) } > 0.
4 &sum{ q(1) } <= 1 :- query (1).

6 &distinct{ q(1) }.

8 &distinct{ q(1) }.
9 &distinct{ q(1) }.

11 &show{ q(1) }.

Listing 6.3: Grounded incremental 𝑛-queens program step(1).

1 pos (2).

3 &sum{ q(2) } > 0.
4 &sum{ q(1) } <= 2 :- query (2).
5 &sum{ q(2) } <= 2 :- query (2).

7 &distinct{ q(1), q(2) }.

9 &distinct{ q(1), q(2)+1 }.
10 &distinct{ q(1), q(2)-1 }.

12 &show{ q(2) }.

Listing 6.4: Grounded incremental 𝑛-queens program step(2).

program step(2) shown in Listing 6.4. We are now solving the second step and
query(1) will no longer be true, which amounts to removing the rule from line 4 in
Listing 6.3. The new step adds two rules for this instead (lines 4 – 5) and restricts
all variables to be less than or equal 2. Also, additional distinct constraints are
added involving q(2). The next step again removes the rules in lines 4 – 5 by making
query(2) false and adds a new restriction (lines 4 – 6 in Listing 6.5). In this way,
we not only add new variables at each step, but also increase the upper bounds of
existing ones. For solving the third step, the grounded rules of all three steps are
taken together, only query(3) is set to true, and all previously added instances of
query/1 are false. This leaves us with the following set of constraints that have to
hold in any solution for this step.

𝑞(1) > 0 𝑞(2) > 0 𝑞(3) > 3

𝑞(1) ≤ 3 𝑞(2) ≤ 3 𝑞(3) ≤ 3

𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡{𝑞(1)} 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡{𝑞(1), 𝑞(2)} 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡{𝑞(1), 𝑞(2), 𝑞(3)}
𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡{𝑞(1), 𝑞(2) + 1} 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡{𝑞(1), 𝑞(2) + 1, 𝑞(3) + 2}
𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡{𝑞(1), 𝑞(2)− 1} 𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡{𝑞(1), 𝑞(2)− 1, 𝑞(3)− 2}

Listing 6.6 shows a run of Listing 6.2 up to 10 steps. Setting the stop criterion
to UNKNOWN makes sure that the process neither terminates upon satisfiable nor
unsatisfiable result.

Multi-Shot Constraint Answer Set Pro-
gramming

105 Incremental 𝑁 -Queens

1 pos (3).

3 &sum{ q(3) } > 0.
4 &sum{ q(1) } <= 3 :- query (3).
5 &sum{ q(2) } <= 3 :- query (3).
6 &sum{ q(3) } <= 3 :- query (3).

8 &distinct{ q(1),q(2),q(3) }.

10 &distinct{ q(1), q(2)+1, q(3)+2 }.
11 &distinct{ q(1), q(2)-1, q(3)-2 }.

13 &show{ q(3) }.

Listing 6.5: Grounded incremental 𝑛-queens program step(3).

1 $ clingcon incqueens.lp -c imax =10 -c istop =\" UNKNOWN \"
2 clingcon version 3.2.0
3 Reading from incqueens.lp
4 Solving ...
5 Answer: 1
6
7 Solving ...
8 Answer: 1
9 q(1)=1

10 Solving ...
11 Solving ...
12 Solving ...
13 Answer: 1
14 q(4)=2 q(3)=4 q(2)=1 q(1)=3
15 Solving ...
16 Answer: 1
17 q(5)=3 q(1)=1 q(2)=4 q(3)=2 q(4)=5
18 Solving ...
19 Answer: 1
20 q(6)=5 q(5)=3 q(1)=2 q(2)=4 q(3)=6 q(4)=1
21 Solving ...
22 Answer: 1
23 q(7)=6 q(6)=3 q(5)=5 q(1)=2 q(2)=4 q(3)=1 q(4)=7
24 Solving ...
25 Answer: 1
26 q(8)=7 q(7)=3 q(6)=1 q(5)=6 q(1)=4 q(2)=2 q(3)=5 q(4)=8
27 Solving ...
28 Answer: 1
29 q(9)=3 q(8)=6 q(7)=8 q(6)=5 q(5)=2 q(1)=1 q(2)=4 q(3)=7 q(4)=9
30 SATISFIABLE
31
32 Models : 8+
33 Calls : 10
34 Time : 0.075s (Solving: 0.02s 1st Model: 0.02s Unsat: 0.00s)
35 CPU Time : 0.070s

Listing 6.6: Running Listing 6.2 (𝑄1; incqueens.lp)

Multi-Shot Constraint Answer Set Pro-
gramming

106 Incremental 𝑁 -Queens

Measure 𝑄1 𝑄2 𝑄3

Time 138s 10s 16s
Atoms 55k 55k 32k
Static Nogoods 24k 5k 2k
Dynamic Nogoods 1181k 320k 301k

Table 6.1: Comparison of different incremental 𝑛-queens programs.

A closer look at the distinct constraints in lines 12 – 15 of Listing 6.2 reveals quite
some redundancy. This is because the constraints added at each step supersede the ones
added previously, and they all coexist in the system. For example, at Step 3 the system
contains 3 instances of line 12, namely &distinct{q(1)}, &distinct{q(1),q(2)},
and &distinct{q(1),q(2),q(3)}. Clearly, the first two constraints are redundant in
view of the third but remain in the system. To avoid this redundancy, we can make
use of the external atom query(n) to remove the redundant distinct constraints at
each step in the same way we tighten the upper bound of variable domains. This
amounts to replacing lines 12 – 15 in Listing 6.2 with the ones given in Listing 6.7.

12 &distinct{ q(X) : pos(X)} :- query(n).

14 &distinct{ q(X)+X-1 : pos(X)} :- query(n).
15 &distinct{ q(X)-X+1 : pos(X)} :- query(n).

Listing 6.7: Retracting Constraints, encoding 𝑄2

Although the last modification guarantees that the system bears no redundant
distinct constraints,2 it leads to adding and removing the same restrictions over and
over again. For example, the constraint that q(1) and q(2) must have different values
is included in every distinct constraint after step 1. And this information is retracted
and re-added at each step. This is avoided by the constraints in Listing 6.8. This
formulation only adds constraints for the new variable q(n) at each step n and stays
clear from retracting any constraints.

12 &sum{ q(X) } != q(n) :- X=1..n-1.

14 &sum{ q(X)+X-1 } != q(n)+n-1 :- X=1..n-1.
15 &sum{ q(X)-X+1 } != q(n)-n+1 :- X=1..n-1.

Listing 6.8: Partial Constraints, encoding 𝑄3

Evaluation Table 6.1 gives a comparison of the three different encodings for the
incremental 𝑛-queens problem for 30 steps. The first row gives the respective total
running time of clingcon 3.2.0. The second one reports the total number of introduced
atoms. The third one gives the sum of static nogoods generated at each step, and the

2 Given that don’t care propagation is enabled by default.

Multi-Shot Constraint Answer Set Pro-
gramming

107 Incremental 𝑁 -Queens

1 #include "incmode.lp".
2 #include "csp.lp".

4 #program base.
5 action(wait). action(load). action(shoot).
6 duration(load ,25). duration(shoot ,5). duration(wait ,36).
7 unloaded (0).
8 &sum { at(0) } = 0.
9 &sum { armed (0) } = 0.

Listing 6.9: Yale shooting instance

last one the sum of dynamic nogoods ∇ generated by lazy constraint propagation.
We observe that the initial encoding 𝑄1 performs worst in all aspects. The inherent
redundancy of 𝑄1 is reflected by the high number of dynamic nogoods generated by
the constraint propagator. This is the source of its inferior overall performance. Unlike
this, the two alternative approaches bear less redundancy, as reflected by their much
lower number of dynamic nogoods. In 𝑄2, this is achieved by eliminating duplicate
inferences from redundant constraints. Although 𝑄3 even further reduces the number
of atoms as well as static and dynamic nogoods, its runtime is slightly inferior. This is
arguably due to the usage of elementary linear constraints rather then global distinct
constraints (and the pigeon hole constraints which are enabled by default).

6.4 Planning with Durations

To show how constraint answer set solving can be used in the domain of planning,
we adapted the spoiled Yale shooting scenario from [27]. The goal is to kill turkeys.
To this aim, we have a gun and two actions, load and shoot. If we load, the gun
becomes loaded. If we shoot, it kills the turkey, if the gun was loaded for no more than
35 minutes. Otherwise the gun powder spoils. We model this incremental planning
problem using CASP. We start by including the incremental Python program and the
CSP grammar in the first two lines of Listing 6.9. This listing is the base program. All
actions and their durations are introduced in Lines 5 and 6. At the initial situation,
the gun is unloaded as described in Lines 7 to 9. Listing 6.10 characterizes the dynamic
part of the problem; it is grounded for each step n. Line 3 enforces that exactly one
action is done per step. The exact time every step takes place is denoted by the integer
variables at(n). The difference between two consecutive time steps is exactly the
duration of the respective action (Line 4). The next three lines ensure the inertia of
the fluents, e.g., the gun stays loaded/unloaded if it was loaded/unloaded before, and
the turkey stays dead. Lines 10 and 11 use the integer variable armed(n) to denote
for how long the weapon is loaded at step n. Whenever it is unloaded, armed(n) is
0, otherwise it is increased by the duration of the last action. The upcoming four
lines (13–16) encode the conditions and effects of the actions. When we load the gun,
it becomes loaded, when we shoot, it becomes unloaded. If we shoot and the gun
was loaded for no longer than 35 minutes (and thus the gun powder is unspoiled),

Multi-Shot Constraint Answer Set Pro-
gramming

108 Planning with Durations

1 #program step(n).

3 1{do(X,n) : action(X)}1.
4 &sum { at(n); -1*at(N’) } = D :- do(X,n); duration(X,D); N’=n-1.

6 loaded(n) :- loaded(n-1); not unloaded(n).
7 unloaded(n) :- unloaded(n-1); not loaded(n).
8 dead(n) :- dead(n-1).

10 &sum { armed(n) } = 0 :- unloaded(n-1).
11 &sum { armed(n); -1*armed(N’) } = D :- do(X,n); duration(X,D); N’=n-1; loaded(N’).

13 loaded(n) :- do(load ,n).
14 unloaded(n) :- do(shoot ,n).
15 dead(n) :- do(shoot ,n); &sum { armed(n) } <= 35.
16 :- do(shoot ,n), unloaded(n-1).

Listing 6.10: Spoiled Yale shooting scenario

1 #program check(n).
2 :- not dead(n); query(n).
3 :- not &sum { at(n) } <= 100; query(n).
4 :- do(shoot ,n); not &sum { at(n) } > 35.

Listing 6.11: Query for the Yale Shooting Scenario.

then the turkey is dead. The last line ensures that we cannot shoot if the gun is
not loaded. Together with the initial situation and the actions from Listing 6.9 this
encodes the spoiled Yale shooting problem, and any solution represents an executable
plan. Listing 6.11 adds a query to our problem. In Line 2 we ensure that the turkey
is dead in step n. Because we added the external atom query(n) to this rule, it is
only active if we are actually solving step n and is removed in all other steps. The
next line ensures that we kill the turkey within 100 minutes. And as an additional
constraint, we added some preparation time such that we are not allowed to shoot in
the first 35 minutes. It is possible to solve this problem within three steps.

Multi-Shot Constraint Answer Set Pro-
gramming

109 Planning with Durations

There exist two constraint stable models (𝑋,C) at this time point:3

𝑋 ∩ 𝒜 constraint assignment

unloaded(0), 𝑎𝑡(0) ↦→ 0, 𝑎𝑟𝑚𝑒𝑑(0) ↦→ 0,
do(wait,1), unloaded(1), 𝑎𝑡(1) ↦→ 36, 𝑎𝑟𝑚𝑒𝑑(1) ↦→ 0,
do(load,2), loaded(2), 𝑎𝑡(2) ↦→ 61, 𝑎𝑟𝑚𝑒𝑑(2) ↦→ 0,
do(shoot,3), unloaded(3), dead(3) 𝑎𝑡(3) ↦→ 66, 𝑎𝑟𝑚𝑒𝑑(3) ↦→ 5

unloaded(0), 𝑎𝑡(0) ↦→ 0, 𝑎𝑟𝑚𝑒𝑑(0) ↦→ 0,
do(load,1), loaded(1), 𝑎𝑡(1) ↦→ 25, 𝑎𝑟𝑚𝑒𝑑(1) ↦→ 0,
do(load,2), loaded(2), 𝑎𝑡(2) ↦→ 50, 𝑎𝑟𝑚𝑒𝑑(2) ↦→ 25,
do(shoot,3), unloaded(3), dead(3) 𝑎𝑡(3) ↦→ 55, 𝑎𝑟𝑚𝑒𝑑(3) ↦→ 30

which means that we either wait before loading and shooting, or load the gun instead
of waiting, such that the gun is loaded twice before shooting.

Conclusion We have shown that multi-shot solving can be extended to the paradigm
of CASP. Solving planning or scheduling problems involving ressources can now be
done in an incremental way. Especially the possibility to increase the domains of
the variables will be a helpful feature in modeling these problems. This cannot be
done easily with a translational approach, due to the grounding of variables with huge
domains.

3𝒜 denotes the set of regular atoms.

Multi-Shot Constraint Answer Set Pro-
gramming

110 Planning with Durations

Chapter 7

Related Work

This chapter gives an overview on the area of CASP. We compare different semantics
and their implementations. We start with a definition of our semantics in terms of the
more general framework of ASP modulo Theories [54]. Afterwards, a comprehensive
list of features of available CASP systems is presented and their pros and cons are
discussed. A subset of this list has already been published in [75].

7.1 Logic Programs Modulo Theories

According to [54], a logic program 𝑃 modulo theories is a logic program over two
disjoint alphabets, 𝒜 and 𝒯 , consisting of regular and theory atoms. In what follows,
we simplify the definition by concentrating only on one theory 𝑇 . Accordingly, 𝑃 is
a set of rules of the form (2.1) over atoms 𝒜 ∪ 𝒯 . In analogy to input atoms from
#external directives [57], 𝒯 is partitioned into defined theory atoms 𝒯 ∩ head(𝑃)
and external theory atoms 𝒯 ∖ head(𝑃). In order to reflect different forms of theory
propagation, 𝒯 is partitioned into strict theory atoms 𝒯𝑒 and non-strict theory atoms
𝒯𝑖, i.e., 𝒯𝑒 ∩ 𝒯𝑖 = ∅ and 𝒯𝑒 ∪ 𝒯𝑖 = 𝒯 . The strict theory atoms in 𝒯𝑒 resemble the
treatment of reified constraints (T𝑎⇔ 𝑐), where 𝑎 is a theory atom and 𝑐 is a constraint.
Non-strict theory atoms in 𝒯𝑖 are treated like half-reified constraints (T𝑎⇒ 𝑐).1

A set 𝒮 ⊆ 𝒯 is called a 𝑇 -solution, if 𝑇 is consistent with the conditions expressed
by elements of 𝒮 as well as complements of conditions associated with the false strict
theory atoms 𝒯𝑒 ∖ 𝒮. We identify the theory 𝑇 with a set ∆𝑇 of theory nogoods such
that, given a total assignment B, we have that 𝛿 ⊆ B for some 𝛿 ∈ ∆𝑇 iff there is no
𝑇 -solution 𝒮 such that {𝑎 | 𝑎 ∈ 𝒯 ,T𝑎 ∈ B} ⊆ 𝒮 and {𝑎 | 𝑎 ∈ 𝒯𝑒,F𝑎 ∈ B} ∩ 𝒮 = ∅.
That is, the nogoods in ∆𝑇 reject B iff no 𝑇 -solution (i) includes all theory atoms in 𝒯
that are assigned to true by B and (ii) excludes all strict theory atoms in 𝒯𝑒 assigned
to false by B. This semantic condition establishes a (one-to-one) correspondence
between 𝑇 -stable models of 𝑃 and solutions for (∆

𝒯 ∖head(𝑃)
𝑃 ∪ Λ

𝒯 ∖head(𝑃)
𝑃) ∪∆𝑇 .

1 That is, 𝒯𝑒 stands for equivalences and 𝒯𝑖 for implication.

Proposition 7.1.1

Let 𝑃 be a logic program over theory 𝑇 with regular atoms 𝒜 and theory atoms
𝒯 .
Then, (B|𝒜∪𝒯)T is a T-stable model of 𝑃 iff B is a solution of ∆

𝒯 ∖head(𝑃)
𝑃 ∪

Λ
𝒯 ∖head(𝑃)
𝑃 ∪∆𝑇 .

This proposition is taken from [54] where the definition of the completion exactly
coincides with the definition of the completion for logic programs with externals.

CASP as Logic Program over Theories We now express a constraint logic
program as a logic program over theories.

Theorem 7.1.2

Let 𝑃 be a constraint logic program over regular atoms 𝒜 and constraint atoms
𝒞 associated with the CSP 𝑇 = (𝒱 , 𝐷,𝐶). We let 𝒞 be the set of theory atoms,
𝒞𝑒 = 𝒞, 𝒞𝑖 = ∅, and head(𝑃) ∩ 𝒞 = ∅.
Then, (𝑋,C) is a constraint stable model of 𝑃 iff 𝑋 is a 𝑇 -stable model of 𝑃 .

Proof 7.1.1 This theorem directly follows from Proposition 7.1.1 and Theorem 4.3.2,
as the definitions are identical in the case of CASP.

Intuitively, in a constraint logic program, all constraint atoms are strict, and they are
not allowed to occur in any head of a rule. Therefore, CASP is an instance of logic
programs modulo CSP.

7.2 Comparing Different Semantics and Systems
Here we give an overview of the development of CASP, its different semantics, languages
and systems. We start with the groundwork that was done with the development of
the language 𝒜𝒞 and go on alphabetically. For each approach to CASP, we then give
an example of its syntax, its restrictions and possibilities, and explain the semantic
differences. Also, the corresponding systems implementing the approach and a short
description of the used technologies are given. Table 7.1 summarizes their features.
The first column “translation” depicts whether the system translates CASP to ASP,
SMT or Mixed Integer Linear Programming (MILP). Hence, once the input program
is translated to the target paradigm, only a solver for the target formalism is needed.
This is also one of the big advantages of the translational approaches. They profit
from the features and performance of the respective target formalisms e.g. SMT, MILP
or ASP, and no new solver needs to be developed. A drawback is the translation itself,
that can result in large propositional representations or weak propagation strength.
The second column marks systems that use an explicit representation for the integer
variables. This is the case when using some form of encoding and usually results in

Related Work 112 Comparing Different Semantics and
Systems

a large number of propositional atoms to represent variables with large domains. If
non-linear constraints like quadratic equations and global constraints are supported,
this is shown in the next column. Afterwards, the support for real numbers and
optimization over integer or real numbers is depicted. The last column marks whether
the used formalism supports a system intrinsic way to handle default values for integer
or real variables.

translation explicit non-linear reals optimization defaults

acsolver - - 3 3 - -
adsolver - - - - - -
aspartame 3 3 - - 3 -
aspmt2smt 3 - 3 3 - 3

bfasp 3 31 - - 3 3

clingo[dl] - - - - - -
clingo[lp] - - - 3 32 -
clingcon 1 - - 3 - 3 -
clingcon 2 - - 3 - 3 -
clingcon 3 33 31 34 - 3 -
dingo 3 - - - - -
dlvhex [cp] - - 3 - 3 -
ezcsp - - 3 3 - -
ezsmt 3 - 3 3 - -
inca - 3 3 - 3 -
lc2casp 33 31 34 - 3 3

mingo 3 - - 35 - -
minisatid - 31 3 - 3 -
msvm 3 3 - - - 3
1 Can be generated lazily.
2 Optimization is done locally for every stable model.
3 Allows for partial translation of the problem.
4 Translation of distinct into linear constraints.
5 Only for the variables, not any constants.

Table 7.1: Feature comparison of different systems.

𝒜𝒞-programs To the best of our knowledge, 𝒜𝒞 was the first approach to create
a CASP language and semantics, combining ASP and CR-Prolog. 𝒜𝒞 uses regular
and constraint sorts. The idea is to avoid grounding constraint variables and only
ground variables over regular sorts. It furthermore distinguishes between regular

Related Work 113 Comparing Different Semantics and
Systems

predicates (over regular sorts), constraint predicates (simple arithmetic expressions
over constraint sorts), defined predicates (defined in terms of constraint predicates),
and mixed predicates (over regular and constraint sorts). Thus 𝒜𝒞 allows constraint
variables to occur in predicates in the head of rules. Two implementations for this
language are proposed in [90]. The acsolver is based on lparse, Surya and CLP(R).
The adsolver in turn, on lparse, smodels and a self-made, incremental difference logic
solver. Both solvers cannot handle defined predicates. They use classical ASP solving
techniques such as DPLL-style backtracking [33] and therefore support no advanced
learning features. Nevertheless, they support theory propagation on partial assign-
ments. Program 𝑃1 from Example 1 can be written in the following adsolver syntax.

1 :- constants
2 x :: real [0..23].

4 switchOn <- not switchOff.
5 switchOff <- not switchOn.
6 light <- switchOn.
7 light <- not night.
8 night <- time(x) & x=X & X < 7.
9 night <- time(x) & x=X & X >= 22.

10 sleep <- switchOff & night.

The solutions for this program are the same as in (2.10).

aspartame The aspartame system (Section 4.4) was not developed as a CASP sys-
tem but as a CP solver. It uses an ASP encoding to solve CSP problems by translating
the constraints into a logic program using the order encoding. It is possible to combine
a CSP with a logic program to form a constraint answer set problem, although the en-
coding itself is not elaboration tolerant. This can be seen from the syntax for Example 1.

1 var(bool ,"early "). var(bool ,"late ").
2 var(int ,"x",range (0 ,23)).
3 switchOn :- not switchOff.
4 switchOff :- not switchOn.
5 light :- switchOn.
6 light :- not night.
7 night :- not p("early ",0).
8 night :- not p("late ",0).
9 sleep :- switchOff , night.

10 constraint (1,op(neg ,"early ")).
11 constraint (1,op(le,op(mul ,1,"x") ,6)).
12 constraint (2,"early ").
13 constraint (2,op(le,op(mul ,-1,"x"),-7)).
14 constraint (3,op(neg ,"late ")).
15 constraint (3,op(le,op(mul ,-1,"x") ,-22)).
16 constraint (4,"late ").
17 constraint (4,op(le,op(mul ,1,"x") ,21)).

To produce an encoding with the same semantics as in our example, we currently have
to reify the constraints with Boolean variables manually. Therefore, we add two clauses
for Tearly ⇔ 𝑥 < 7 and Tlate ⇔ 𝑥 ≥ 22 respectively (lines 10 – 13 and lines 14 – 17).
With p(early , 0) and p(late, 0) we can access the truth value of the Boolean constraint
variables early and late, where p(early , 0) means that early is false.

Related Work 114 Comparing Different Semantics and
Systems

𝒜𝒮𝒫ℳ𝒯 The functional stable model semantics [18] defines non-monotonic reason-
ing on non-Boolean variables. This allows for expressing, i.e. defaults in an elaboration
tolerant way. Consider the following bath tub example. A tub starts with an amount
of 100 units of water. It can be refilled by using the tap, actually gaining one unit
every time step. The CASP program looks like this:

← ∼amountT = amountT+1 ,∼opentapT

← ∼amountT + 1 = amountT+1 , opentapT

The first rule is stating that the amount of water stays the same when the tap is
closed, while the second rule increases the amount by one for every time step where
the tap is open. If we now add a possibility to empty the tub, like pulling the plug,
we need to change the first rule to account for this new action.

← ∼amountT = amountT+1 ,∼opentapT ,∼pullplugT

← ∼amountT + 1 = amountT+1 , opentapT

← ∼amountT − 1 = amountT+1 , pullplugT

Now, the first rule states that the amount of water stays the same when the tap is
closed and we have not pulled the plug. As we have to change the rules when adding
an action, this is not elaboration tolerant. 𝒜𝒮𝒫ℳ𝒯 can use integer variables in the
head of rules, and therefore solves this problem elegantly. The following program

amountT+1 = 𝑋 ← ∼∼amountT+1 = 𝑋, amountT = 𝑋

amountT+1 = 𝑋 ← amountT = 𝑋 − 1, opentap

solves this problem by using a default. The first rule (using a double negation) actually
says that the amount stays the same, if there is no reason to believe something else.
This program can now easily be extended by other actions without the need to change
the first rule.

amountT+1 = 𝑋 ← amountT = 𝑋 + 1, pullplug

In [18], it is shown that CASP is a special case of 𝒜𝒮𝒫ℳ𝒯 where the theory is fixed
to CSP and intensional constants are limited to propositional constants only, and do
not allow function constants.

While the first implementation called msvm eliminates the intensional functions
by grounding them and afterwards solving the problem using gringo and clasp, a
second implementation called aspmt2smt translates a logic program with constraints
into SMT. It uses the grounder gringo and the SMT solver z3, and can therefore also
handle constraints over real values. Unlike with ezsmt, the SMT solver cannot be
changed in this system and is hard wired. The implementation is also restricted to
tight logic programs. Program 𝑃1 from Example 1 can be written in the following
syntax.

Related Work 115 Comparing Different Semantics and
Systems

1 :- constants
2 x :: real [0..23].
3 {time(x) = V}.
4 switchOn <- not switchOff.
5 switchOff <- not switchOn.
6 light <- switchOn.
7 light <- not night.
8 night <- time(x)=X & X < 7.
9 night <- time(x)=X & X >= 22.

10 sleep <- switchOff & night.

We see in line 3 that we need to have an (in this case empty) reason for the variable
time(x) to get a value.

Bound Founded ASP The bound founded approach [3, 4] defines CP variables
similar to 𝒜𝒮𝒫ℳ𝒯 and 𝐻𝑇𝐶 (see below). CP variables can occur in assignments
in the head of a rule. Instead of justifying all possible values for the head variable,
bound founded ASP only justifies the minimal (maximal) value that can be derived
by a rule. Its implementation extends the lazy nogood generating CP solver chuffed.

clingo[dl] The clingo derivative clingo[dl] [75] accepts a subset of the theory of
linear constraints namely Quantifier-Free Integer Difference Logic (QF-IDL) dealing
with constraints of the form 𝑥 − 𝑦 ≤ 𝑘, where 𝑥 and 𝑦 are integer variables and
𝑘 is an integer constant. Despite its restriction, QF-IDL can be used to naturally
encode timing related problems, e.g., scheduling or timetabling, and provides the
additional advantage of being solvable in polynomial time. clingo[dl] uses clingo’s
theory interface [54] to integrate a propagator that checks during search whether
the current set of implied difference constraints is satisfiable. Using clingo’s theory
language, the syntax for program 𝑃1 from Example 1 is:

1 &diff{ x-0 } <= 23.
2 &diff{ 0-x } <= 0.
3 switchOn :- not switchOff.
4 switchOff :- not switchOn.
5 light :- switchOn.
6 light :- not night.
7 night :- &diff{ x-0 } <= 6.
8 night :- &diff{ 0-x } <= -22.
9 sleep :- switchOff , night.

To use the strict semantics (see Section 7.1) on theory atoms, we use the command
line option -c strict=1. This system is part of the potassco tool collection
https://potassco.org/labs/clingodl/.

clingo[lp] The clingo derivative clingo[lp] [75] combines ASP with the theory of
linear constraints over either reals or integers. As clingo[dl] above, it uses the same
theory interface to check whether the current set of implied linear constraints is
satisfiable. On that account, it uses the Linear Programming (LP) solver cplex or
lpsolve. The syntax for program 𝑃1 from Example 1 is

Related Work 116 Comparing Different Semantics and
Systems

https://potassco.org/labs/clingodl/

1 &dom {0..23} = x.
2 switchOn :- not switchOff.
3 switchOff :- not switchOn.
4 light :- switchOn.
5 light :- not night.
6 night :- &sum{x} < 7.
7 night :- &sum{x} >= 22.
8 sleep :- switchOff , night.

Strict semantics is enabled using the command line option -c nstrict=0. This system
is also available at https://potassco.org/labs/clingolp/.

clingcon CASP as defined in Section 2.1 and 2.4 is proven to be a syntactic variant
of 𝒜𝒞− which is 𝒜𝒞 without defined predicates [80]. It does not allow constraints to
occur in the head of rules. We have developed three different versions of clingcon, that
implement CASP.

clingcon 1 uses modern CDCL techniques with learning as presented in Section 3.4,
and is based on gringo, clasp, and gecode. It checks partial assignments for
consistency with the theory and does theory propagation to infer knowledge
from the CP solver. The used CP solver is incremental, meaning that there is
no reason to recompute the CP part for every propagation step. To the best of
our knowledge, it is also the first CASP solver that supports objective functions
on the constraint variables, being able to handle optimization problems.

clingcon 2 is an extension of clingcon 1, introducing reason and conflict reduction.
We showed in Section 3.7 that the learning capabilities of the systems are
improved by this technique. clingcon 1 and 2 share the same syntax. Program
𝑃1 from Example 1 can be written as follows.

1 $domain (0..23).
2 switchOn :- not switchOff.
3 switchOff :- not switchOn.
4 light :- switchOn.
5 light :- not night.
6 night :- x $< 7.
7 night :- x $>= 22.
8 sleep :- switchOff , night.

clingcon 3 uses the modular syntax of gringo [53] as shown in Section 5.2.2. The
syntax for program 𝑃1 from Example 1 has therefore been changed to the
following.

1 &dom {0..23} = x.
2 switchOn :- not switchOff.
3 switchOff :- not switchOn.
4 light :- switchOn.
5 light :- not night.
6 night :- &sum{x} < 7.
7 night :- &sum{x} >= 22.
8 sleep :- switchOff , night.

As depicted in Section 5.2, it supports lazy nogood and lazy variable generation

Related Work 117 Comparing Different Semantics and
Systems

https://potassco.org/labs/clingolp/

by using a self made CP propagator for linear constraints. It can also handle
multi-shot problems by solving them incrementally.

dingo The translator dingo [76] combines ASP with Difference Logic (DL;[20, 50])
constraints. All these constraints of the form 𝑥+𝑘 ≥ 𝑦 can efficiently be handled using
a cycle detection algorithm for a weighted graph. It translates the CASP program
into difference logic. It thereby preserves the ASP semantics for Boolean atoms and
treats constraints similar to CASP. While translating the completion of the program
into linear constraints is easy, a level ranking characterization [85] is used to capture
the loop formulas of a logic program. Afterwards, an SMT solver with support for
difference logic, for example z3, can be used to solve the problem. Program 𝑃1 from
Example 1 can be written in the following syntax.

1 int(x).
2 int(zero).
3 dl_le(zero ,zero ,0).
4 dl_le(x,zero ,23).
5 dl_le(zero ,x,0).
6 switchOn :- not switchOff.
7 switchOff :- not switchOn.
8 light :- switchOn.
9 light :- not night.

10 night :- dl_le(x,zero ,6).
11 night :- dl_le(zero ,x,-22).
12 sleep :- switchOff , night.

Constraint Hex Programs Constraint Hex Programs have been developed in [37,
112]. The definition of constraint stable models is based on the constraint reduct as
defined in Section 2.4. The stable models themselves are defined using the Faber-
Leone reduct [47] unlike the Gelfond-Lifschitz [66] reduct we are using. In the solver
dlvhex [cp], constraint hex programs are then translated to standard hex programs with
the special case of CP as theory. The implementation also uses gringo and clasp and
the CP solver gecode. Recent versions of DLVHex [105] support theory propagation
on partial assignments and apply an irreducible inconsistent set algorithm, like the
ones shown in Section 3.5. According to [37, 112], performance is slightly worse than
the one of clingcon 2. These two systems are very similar to each other and therefore
the syntax for Example 1 is the same.

ℰ𝒵 Designed as a description language for CP problems, ℰ𝒵 was presented in [5, 9].
Given a logic program, certain predicates in the answer set (stable model) 𝑋 like
cspdomain(fd), cspvar(x,1,10) and required(x < 7) form a CSP. If there exists
a solution C to the CSP, then 𝑋 is called a weak answer set to the problem. Both solu-
tions together ⟨𝑋,C⟩ are called extended weak answer set. ℰ𝒵 is a syntactic variant of
language 𝒜𝒞− where constraints occur only in integrity constraints [80]. The language
does not support constraints directly in rules but allows the predicate required in the
head. Example 1 using the required predicate can be written in the ℰ𝒵 language as:

Related Work 118 Comparing Different Semantics and
Systems

1 cspdomain(fd).
2 cspvar(x,0 ,23).
3 switchOn :- not switchOff.
4 switchOff :- not switchOn.
5 light :- switchOn.
6 light :- not night.
7 night :- not day.
8 day :- not night.
9 required(x<7 \/ x>21) :- night.

10 sleep :- switchOff , night.

Note that we had to introduce an additional atom day to cope with constraints in
rule bodies. In a preprocessing step, a simple integrity constraint is added to connect
the required atom with a constraint.

← 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑥 < 7 ∖/ 𝑥 > 21),∼(𝑥 < 7 ∨ 𝑥 > 21)

Due to the nature of the language, constraints are treated as non-strict (see
Section 7.1), i.e. T𝑎 ⇒ 𝑐 for an atom 𝑎 and a constraint 𝑐. This is because the
constraint 𝑐 is part of the constraint problem if 𝑎 is in a stable model, but 𝑐 does not
have to be part of the CP if 𝑎 is not. This explains the restriction that constraints
are only allowed in integrity constraints. Consider the following line of our example
program, as if we would have used the constraint in the body:

night ← (𝑥 < 7)

It has the following extended weak answer sets:

𝑋 C

{} 𝑥 ∈ {0, . . . , 23}
{night , (𝑥 < 7)} 𝑥 ∈ {0, . . . , 6}

where D(𝑥) = {0, . . . , 23}. We see that the first line contains solutions where e.g.
𝑥 = 0 but night is not true. In fact, ℰ𝒵 yields unexpected results if constraints
are used in rule bodies of non-integrity constraints. This observation was also made
in [10, 75]. We are aware of two implementations that directly use ℰ𝒵 as an input
language.

ezcsp supports three different integration schemas [9]. The black-box integration
schema is a loose coupling of the ASP and the CP solver. ezcsp uses smodels and
clasp as ASP solvers and bprolog or sicstus prolog as CP solvers. Once a stable
model is computed by the ASP solver, it is translated into a CSP and checked
with the external CP solver. If the check fails, another solution is computed.
Therefore, all knowledge gathered so far is lost and the systems are started
from scratch, adding an integrity constraint to avoid finding the same solution
again. The grey-box integration schema uses an incremental ASP solver instead,
keeping the learnt knowledge after every stable model. Finally, the white-box
integration schema is a tight integration of the CP solver into the ASP solving

Related Work 119 Comparing Different Semantics and
Systems

process. This schema allows for theory propagation on partial assignments and
is the strongest approach wrt. CDCL learning. Since ezcsp uses a Prolog system
as CP solver it can also handle constraints over real numbers. On the other
hand, it cannot compute optimal solutions wrt. an objective function.

ezsmt reuses the input language ℰ𝒵 [82],2 and translates tight CASP programs to
the SMT-LIB standard format [17]. These SMT programs can then be solved
by any SMT solver, for example z3 [36]. The translation technique is easy, as
simply the nogoods of the completion (with the constraints as external atoms)
need to be converted to clauses for the SMT solver. As ezsmt can only handle
tight logic programs, no loop formulas are needed.

For an extensive comparison of 𝒜𝒞, CASP, and ℰ𝒵, we refer to [80].

inca The inca [43] system implements CASP semantics as described in Section 2.4.
It uses an extended CDCL algorithm similar to the one proposed in Algorithm 12. It
generated lazy nogoods using a propagator for linear constraints and various other
propagators for the distinct constraint. Since inca also uses the order encoding but
no lazy variable generation, Φ(𝒱 , 𝐷) and 𝒪𝒱 have to be introduced beforehand. This
prevents inca from handling variables with huge domains. Program 𝑃1 from Example 1
can be written in the following syntax.

1 #var $x = 0..23.
2 switchOn :- not switchOff.
3 switchOff :- not switchOn.
4 light :- switchOn.
5 light :- not night.
6 night :- $x #< 7.
7 night :- $x #>= 22.
8 sleep :- switchOff , night.

Here and There with Constraints The theory of Here and There with Con-
straints (𝐻𝑇𝐶 ;[26]) also combines default reasoning with constraints similar to𝒜𝒮𝒫ℳ𝒯 .
It actually extends the logic of Here and There (𝐻𝑇) [72] to handle constraints. It
is therefore more general than CASP. A special case, 𝐻𝑇 with linear constraints
uses constraint assignments in the head of a rule and constraint checks in the body.
Variables take a value if they are defined and stay unassigned otherwise. The bath
tub problem can be encoded in the following elaboration tolerant way.

1 &assign {amount(T+1) := amount(T)} :- not &sum{amount(T+1)} != amount(T).
2 &assign {amount(T+1) := amount(T)+1} :- opentap.
3 &assign {amount(T+1) := amount(T)-1} :- pullplug.

In [26], we provide a translation for this special case of 𝐻𝑇𝐶 with linear constraints to

2 http://www.unomaha.edu/college-of-information-science-and-technology/
natural-language-processing-and-knowledge-representation-lab/software/ezsmt.
php

Related Work 120 Comparing Different Semantics and
Systems

http://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/ezsmt.php
http://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/ezsmt.php
http://www.unomaha.edu/college-of-information-science-and-technology/natural-language-processing-and-knowledge-representation-lab/software/ezsmt.php

CASP. We developed the translator lc2casp3 that transforms a program written in a
gringo 5 syntax extension, used to represent these programs, into the input language of
clingcon 3. Lazy variable generation is needed, as the translation step cannot provide
domains for the variables. The syntax for program 𝑃1 from Example 1 has therefore
to be adapted using assignments.

1 &dom {0..23} = x.
2 &assign {x := 0..23}.
3 switchOn :- not switchOff.
4 switchOff :- not switchOn.
5 light :- switchOn.
6 light :- not night.
7 night :- &sum{x} < 7..
8 night :- &sum{x} >= 22.
9 sleep :- switchOff , night.

In line 2, we use an unconditioned assignment to allow 𝑥 to take any value. This is
necessary to emulate the semantics of CASP and resembles the same rule that was
added for the semantics of 𝒜𝒮𝒫ℳ𝒯 .

mingo The mingo system translates ASP in combination with linear constraints [84]
to Mixed Integer Programming (MIP). Mingo follows the same approach as dingo [76].
The translated program is a set of linear constraints which can be solved by a MIP
solver like cplex. Due to the nature of these solvers, constraint variables over reals are
possible. Program 𝑃1 from Example 1 can be written in the following syntax.

1 int(x).
2 mgeq(1,x,0).
3 mleq(1,x ,23).
4 switchOn :- not switchOff.
5 switchOff :- not switchOn.
6 light :- switchOn.
7 light :- not night.
8 night :- mleq(1,x,6).
9 night :- mgeq(1,x,22).

10 sleep :- switchOff , night.

idp The idp system [34] can solve typed first order logic with inductive definitions
(𝐹𝑂(𝐼𝐷)). It supports arithmetic constraints over integers, similar to CASP. Unlike
CASP, it uses a typed input language. The implementation uses an extension of
minisat, called minisatid, a CDCL-based SAT solver with lazy clause and variable
generation. It uses an algorithm similar to Algorithm 12 but based on SAT instead of
ASP.

3 http://www.cs.uni-potsdam.de/lc2casp/

Related Work 121 Comparing Different Semantics and
Systems

http://www.cs.uni-potsdam.de/lc2casp/

Chapter 8

Conclusion

By combining the declarative modeling approach of ASP with solving capabilities of
CP, we made CASP applicable to real world, industrial size problems that involve
resources like machine and railway scheduling, factory layouting, SQL based query
optimization, etc. The main challenge to overcome was to combine the handling of
huge domains with dedicated learning techniques to keep the desired performance.
In addition to this, we used reactive solving techniques to enhance the versatility of
the approach even more. It is now the first time that we can combine all the benefits
that we have from ASP, having an elaboration tolerant, declarative framework and
a fast solving technology (CDCL), with the possibilities to handle resources using
non-Boolean variables, intrinsic to CP. This thesis gives an overview on CASP, its
origins and usages, and evaluates different techniques for handling it.

To define CASP, we pursue a semantic approach that is based on a propositional
language. Following the approach of SMT, we abstract from the constraints in a
specialized theory. By replacing the semantics of SAT with the one of ASP, we had
to account for the modeling language of ASP and also change the underlying solver
technology. This led to the development of a full fledged general theory language
that is easily extendible and can handle arbitrary kinds of theories [53]. With the
propositional characterization, we developed an extension of the CDCL algorithm for
handling constraint logic programs, by using a modern CP solver to check partial
assignments for consistency. This resulted in the modern CASP solver clingcon 1,
combining the ASP solver clasp with the black box CP solver gecode. We found out
that propagation on partial assignments is important on most problems. Furthermore,
special filtering techniques are applied to improve the interplay of CDCL and external
CP solvers.

A different approach is pursued by translating a CSP into nogoods. We developed an
elaboration tolerant ASP encoding to handle this translation using the order encoding.
The translated CSP can be solved using a highly optimized ASP solver. Unfortunately,
performance degrades with increasing domain size of the integer variables. We
found out that dedicated preprocessing techniques are needed to further improve on
grounding.

Solvers that translate CSPs into SAT or ASP profit from the raw speed and
the learning capabilities of CDCL. Unfortunately, they suffer from the grounding

bottleneck in case of large domains. Some encoding techniques (like the logarithmic
encoding) have been developed to reduce grounding size but sacrifice propagation
strength. This led to the development of lazy nogood generating solvers. They improve
on the grounding bottleneck, as an exponential number of nogoods is represented
implicitly. Furthermore, learned nogoods can be forgotten without sacrificing com-
pleteness using standard CDCL techniques. Unfortunately, the representation of the
variables has to be made explicit which is linear in size of the domain for the order
encoding. This results in large or impossible groundings for huge domains. Lazy
variable generation is a solution to this. As there is no need to represent variables
in advance, it perfectly complements lazy nogood generation and results in excellent
performance. Therefore, combining the advantages of the learning approach using a
CDCL algorithm with the translation method using the order encoding, a lazy nogood
generating system was devised. It was extended with lazy variable generation to cope
with huge domains. It supports dedicated preprocessing features, a generic input
language, and the possibility of translating a part of the CSP. The evaluation shows
that a high configurability is important to cope with different problems.

This lazy approach enabled us to development constraint multi-shot solving, which
is a useful paradigm for solving planning problems with resources. It allows us to
gradually build up a system instead of solving a huge problem at once, also reacting
to outside behaviour. The devised system can add and remove constraints as well as
increase or decrease the domain of variables.

Finally, an overview of other CASP systems and paradigms is given. This compar-
ison has shown that our systems provide a lot of features, such as multi-shot solving
and optimization, in combination with good performance.

While CASP is a perfect paradigm for solving problems involving resources, encod-
ing them using a language that naturally handles defaults can be beneficial. Extending
the framework of CASP with non-monotone constraint variables like it was done in
𝒜𝒮𝒫ℳ𝒯 , Here and There with Constraints, and Bound Founded ASP definitively
increases the elaboration tolerance and modeling convenience. In [26], we translate the
theory of Here and There with Linear Constraints into CASP. We presented a tool
called lc2casp that extends our input language by exactly these features, compiling
the result back to CASP, to be readily solved with clingcon 3. So no new solving
paradigms or systems need to be developed for this enhanced CASP approach.

In the future, encodings specifically designed for lazy variable generation need to
be explored. It has proven to be a well suited method for handling CP, and redundant
information or large groundings are no longer the bottlenecks, rather propagation
strength and complexity get into focus. Therefore, also combinations of encodings
(order, range, direct) may be beneficial in lazy variable generating approaches. Another
point that can be learned from conventional CP solvers is heuristics. As ASP can
modify the heuristic of the underlying CDCL search engine in a declarative way [61],
this needs to be extended to constraint variables to mimic and extend traditional CP
heuristics.

Conclusion 124

Bibliography

[1] M. Abseher, M. Gebser, N. Musliu, T. Schaub, and S. Woltran. Shift design
with answer set programming. Fundamenta Informaticae, 147(1):1–25, 2016.

[2] B. Andres, B. Kaufmann, O. Matheis, and T. Schaub. Unsatisfiability-based
optimization in clasp. In Dovier and Santos Costa [40], pages 212–221.

[3] R. Aziz. Bound founded answer set programming. CoRR, abs/1405.3367, 2014.

[4] R. Aziz, G. Chu, and P. Stuckey. Stable model semantics for founded bounds.
Theory and Practice of Logic Programming, 13(4-5):517–532, 2013.

[5] M. Balduccini. Representing constraint satisfaction problems in answer set pro-
gramming. In W. Faber and J. Lee, editors, Proceedings of the Second Workshop
on Answer Set Programming and Other Computing Paradigms (ASPOCP’09),
pages 16–30, 2009.

[6] M. Balduccini. Industrial-size scheduling with ASP+CP. In Delgrande and
Faber [39], pages 284–296.

[7] M. Balduccini, M. Gelfond, and M. Nogueira. Answer set based design of
knowledge systems. Annals of Mathematics and Artificial Intelligence, 47(1-
2):183–219, 2006.

[8] M. Balduccini, M. Gelfond, M. Nogueira, and R. Watson. The USA-Advisor: A
case study in answer set planning, 2001.

[9] M. Balduccini and Y. Lierler. Integration schemas for constraint answer set
programming: a case study. In E. Lamma and T. Swift, editors, Technical Com-
munications of the Twenty-ninth International Conference on Logic Programming
(ICLP’13), volume 13(4-5) of Theory and Practice of Logic Programming, Online
Supplement, 2013.

[10] M. Balduccini and Y. Lierler. Constraint answer set solver EZCSP and why
integration schemas matter. Unpublished draft, 2016. Available at: http:
//works.bepress.com/yuliya_lierler/64/.

[11] M. Banbara, M. Gebser, K. Inoue, M. Ostrowski, A. Peano, T. Schaub, T. Soh,
N. Tamura, and M. Weise. aspartame: Solving constraint satisfaction problems
with answer set programming. In F. Calimeri, G. Ianni, and M. Truszczyński,

http://works.bepress.com/yuliya_lierler/64/
http://works.bepress.com/yuliya_lierler/64/

editors, Proceedings of the Thirteenth International Conference on Logic Pro-
gramming and Nonmonotonic Reasoning (LPNMR’15), volume 9345 of Lecture
Notes in Artificial Intelligence, pages 112–126. Springer-Verlag, 2015.

[12] M. Banbara, K. Inoue, B. Kaufmann, T. Schaub, T. Soh, N. Tamura, and
P. Wanko. teaspoon: Solving the curriculum-based course timetabling problems
with answer set programming. In E. Burke, L. Di Gaspero, B. McCollum,
A. Schaerf, and E. Özcan, editors, Proceedings of the Eleventh International
Conference of the Practice and Theory of Automated Timetabling (PATAT’16),
pages 13–32, 2016.

[13] M. Banbara, B. Kaufmann, M. Ostrowski, and T. Schaub. Clingcon: The next
generation. Theory and Practice of Logic Programming, 17(4):408–461, 2017.

[14] M. Banbara, N. Tamura, and T. Tanjo. Proposal of a compact and efficient
SAT encoding using a numeral system of any base. In Y. Ben-Haim and
Y. Naveh, editors, Proceedings of the Second International Workshop on the
Cross-Fertilization Between CSP and SAT (CSPSAT’11), 2011.

[15] C. Baral. Knowledge Representation, Reasoning and Declarative Problem Solving.
Cambridge University Press, 2003.

[16] C. Baral, K. Chancellor, N. Tran, N. Tran, A. Joy, and M. Berens. A knowledge
based approach for representing and reasoning about signaling networks. In
Proceedings of the Twelfth International Conference on Intelligent Systems
for Molecular Biology/Third European Conference on Computational Biology
(ISMB’04/ECCB’04), pages 15–22. Oxford University Press, 2004.

[17] C. Barrett, P. Fontaine, and C. Tinelli. The SMT-LIB Standard: Version 2.5,
2015. Available at http://www.SMT-LIB.org.

[18] M. Bartholomew and J. Lee. Functional stable model semantics and answer set
programming modulo theories. In F. Rossi, editor, Proceedings of the Twenty-
third International Joint Conference on Artificial Intelligence (IJCAI’13), pages
718–724. IJCAI/AAAI Press, 2013.

[19] S. Baselice, P. Bonatti, and M. Gelfond. Towards an integration of answer set
and constraint solving. In M. Gabbrielli and G. Gupta, editors, Proceedings
of the Twenty-first International Conference on Logic Programming (ICLP’05),
volume 3668 of Lecture Notes in Computer Science, pages 52–66. Springer-Verlag,
2005.

[20] R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87–90,
1958.

[21] C. Bessiere, G. Katsirelos, N. Narodytska, C. Quimper, and T. Walsh. Decom-
positions of all different, global cardinality and related constraints. In Boutilier
[24], pages 419–424.

BIBLIOGRAPHY 126 BIBLIOGRAPHY

http://www.SMT-LIB.org

[22] C. Bessiere, G. Katsirelos, N. Narodytska, and T. Walsh. Circuit complexity
and decompositions of global constraints. In Boutilier [24], pages 412–418.

[23] A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of
Satisfiability, volume 185 of Frontiers in Artificial Intelligence and Applications.
IOS Press, 2009.

[24] C. Boutilier, editor. Proceedings of the Twenty-first International Joint Confer-
ence on Artificial Intelligence (IJCAI’09). AAAI/MIT Press, 2009.

[25] A. Brodsky, editor. Proceedings of the Twenty-fifth IEEE International Confer-
ence on Tools with Artificial Intelligence (ICTAI’13). IEEE Computer Society
Press, 2013.

[26] P. Cabalar, R. Kaminski, M. Ostrowski, and T. Schaub. An ASP semantics
for default reasoning with constraints. In R. Kambhampati, editor, Proceedings
of the Twenty-fifth International Joint Conference on Artificial Intelligence
(IJCAI’16), pages 1015–1021. IJCAI/AAAI Press, 2016.

[27] P. Cabalar, R. Otero, and S. Pose. Temporal constraint networks in action. In
W. Horn, editor, Proceedings of the Fourteenth European Conference on Artificial
Intelligence (ECAI’00), pages 543–547. IOS Press, 2000.

[28] F. Calimeri, G. Ianni, F. Ricca, M. Alviano, A. Bria, G. Catalano, S. Cozza,
W. Faber, O. Febbraro, N. Leone, M. Manna, A. Martello, C. Panetta, S. Perri,
K. Reale, M. Santoro, M. Sirianni, G. Terracina, and P. Veltri. The third answer
set programming competition: Preliminary report of the system competition
track. In Delgrande and Faber [39], pages 388–403.

[29] M. Carro and A. King, editors. Technical Communications of the Thirty-second
International Conference on Logic Programming (ICLP’16), volume 52. Open
Access Series in Informatics (OASIcs), 2016.

[30] J. Chinneck and E. Dravinieks. Locating minimal infeasible constraints sets in
linear programs. In ORSA Journal On Computing, volume 3, pages 157–168.
Operations Research Society of America, 1991.

[31] J. Crawford and A. Baker. Experimental results on the application of satis-
fiability algorithms to scheduling problems. In B. Hayes-Roth and R. Korf,
editors, Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI’94), pages 1092–1097. AAAI Press, 1994.

[32] A. Darwiche and K. Pipatsrisawat. Complete algorithms. In Biere et al. [23],
chapter 3, pages 99–130.

[33] M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-
proving. Communications of the ACM, 5:394–397, 1962.

BIBLIOGRAPHY 127 BIBLIOGRAPHY

[34] B. De Cat, B. Bogaerts, M. Bruynooghe, and M. Denecker. Predicate logic as a
modelling language: The IDP system. CoRR, abs/1401.6312, 2014.

[35] B. De Cat, B. Bogaerts, J. Devriendt, and M. Denecker. Model expansion in the
presence of function symbols using constraint programming. In Brodsky [25],
pages 1068–1075.

[36] L. de Moura and N. Bjørner. Z3: An efficient SMT solver. In C. Ramakrishnan
and J. Rehof, editors, Proceedings of the Fourteenth International Conference on
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’08),
volume 4963 of Lecture Notes in Computer Science, pages 337–340. Springer-
Verlag, 2008.

[37] A. De Rosis, T. Eiter, C. Redl, and F. Ricca. Constraint answer set programming
based on HEX-programs. In D. Inclezan and M. Maratea, editors, Proceedings
of the Eighth Workshop on Answer Set Programming and Other Computing
Paradigms (ASPOCP’15), 2015.

[38] R. Dechter. Constraint Processing. Morgan Kaufmann Publishers, 2003.

[39] J. Delgrande and W. Faber, editors. Proceedings of the Eleventh International
Conference on Logic Programming and Nonmonotonic Reasoning (LPNMR’11),
volume 6645 of Lecture Notes in Artificial Intelligence. Springer-Verlag, 2011.

[40] A. Dovier and V. Santos Costa, editors. Technical Communications of the Twenty-
eighth International Conference on Logic Programming (ICLP’12), volume 17.
Leibniz International Proceedings in Informatics (LIPIcs), 2012.

[41] W. Dowling and J. Gallier. Linear-time algorithms for testing the satisfiability
of propositional Horn formulae. Journal of Logic Programming, 1:267–284, 1984.

[42] C. Drescher. Conflict-driven constraint answer set solving. PhD thesis, Computer
Science and Engineering, Faculty of Engineering, UNSW, 2015.

[43] C. Drescher and T. Walsh. A translational approach to constraint answer set
solving. Theory and Practice of Logic Programming, 10(4-6):465–480, 2010.

[44] C. Drescher and T. Walsh. Answer set solving with lazy nogood generation. In
Dovier and Santos Costa [40], pages 188–200.

[45] M. Durzinsky, W. Marwan, M. Ostrowski, T. Schaub, and A. Wagler. Automatic
network reconstruction using ASP. Theory and Practice of Logic Programming,
11(4-5):749–766, 2011.

[46] R. Elmasri and S. Navathe. Fundamentals of database systems. Addison-Wesley,
1994.

[47] W. Faber, G. Pfeifer, and N. Leone. Semantics and complexity of recursive
aggregates in answer set programming. Artificial Intelligence, 175(1):278–298,
2011.

BIBLIOGRAPHY 128 BIBLIOGRAPHY

[48] F. Fages. Consistency of Clark’s completion and the existence of stable models.
Journal of Methods of Logic in Computer Science, 1:51–60, 1994.

[49] T. Feydy, Z. Somogyi, and P. Stuckey. Half reification and flattening. In J. Lee,
editor, Proceedings of the Seventeenth International Conference on Principles
and Practice of Constraint Programming (CP’11), volume 6876 of Lecture Notes
in Computer Science, pages 286–301. Springer-Verlag, 2011.

[50] L. Ford and D. Fulkerson. Flows in networks. Princeton University Press, 1962.

[51] J. Gallagher and M. Gelfond, editors. Technical Communications of the Twenty-
seventh International Conference on Logic Programming (ICLP’11), volume 11.
Leibniz International Proceedings in Informatics (LIPIcs), 2011.

[52] M. Gebser, R. Kaminski, B. Kaufmann, M. Lindauer, M. Ostrowski, J. Romero,
T. Schaub, and S. Thiele. Potassco User Guide. University of Potsdam, second
edition edition, 2015.

[53] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko.
Theory solving made easy with clingo 5. In Carro and King [29], pages 2:1–2:15.

[54] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, and P. Wanko.
Theory solving made easy with clingo 5 (extended version). Available at http://
www.cs.uni-potsdam.de/wv/publications/, 2016. Extended version of [53].

[55] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-criteria opti-
mization in answer set programming. In Gallagher and Gelfond [51], pages
1–10.

[56] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in
Practice. Synthesis Lectures on Artificial Intelligence and Machine Learning.
Morgan and Claypool Publishers, 2012.

[57] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Clingo = ASP +
control: Preliminary report. In M. Leuschel and T. Schrijvers, editors, Technical
Communications of the Thirtieth International Conference on Logic Programming
(ICLP’14), volume 14(4-5) of Theory and Practice of Logic Programming, Online
Supplement, 2014. Available at http://arxiv.org/abs/1405.3694v1.

[58] M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Multi-shot ASP solving
with clingo. CoRR, abs/1705.09811, 2017.

[59] M. Gebser, R. Kaminski, P. Obermeier, and T. Schaub. Ricochet robots
reloaded: A case-study in multi-shot ASP solving. In T. Eiter, H. Strass,
M. Truszczyński, and S. Woltran, editors, Advances in Knowledge Representation,
Logic Programming, and Abstract Argumentation: Essays Dedicated to Gerhard
Brewka on the Occasion of His 60th Birthday, volume 9060 of Lecture Notes in
Artificial Intelligence, pages 17–32. Springer-Verlag, 2015.

BIBLIOGRAPHY 129 BIBLIOGRAPHY

http://www.cs.uni-potsdam.de/wv/publications/
http://www.cs.uni-potsdam.de/wv/publications/
http://arxiv.org/abs/1405.3694v1

[60] M. Gebser, R. Kaminski, and T. Schaub. Complex optimization in answer set
programming. Theory and Practice of Logic Programming, 11(4-5):821–839,
2011.

[61] M. Gebser, B. Kaufmann, R. Otero, J. Romero, T. Schaub, and P. Wanko.
Domain-specific heuristics in answer set programming. In M. desJardins and
M. Littman, editors, Proceedings of the Twenty-Seventh National Conference on
Artificial Intelligence (AAAI’13), pages 350–356. AAAI Press, 2013.

[62] M. Gebser, B. Kaufmann, and T. Schaub. Conflict-driven answer set solving:
From theory to practice. Artificial Intelligence, 187-188:52–89, 2012.

[63] M. Gebser, B. Kaufmann, and T. Schaub. Multi-threaded ASP solving with
clasp. Theory and Practice of Logic Programming, 12(4-5):525–545, 2012.

[64] M. Gebser, M. Ostrowski, and T. Schaub. Constraint answer set solving. In
P. Hill and D. Warren, editors, Proceedings of the Twenty-fifth International
Conference on Logic Programming (ICLP’09), volume 5649 of Lecture Notes in
Computer Science, pages 235–249. Springer-Verlag, 2009.

[65] M. Gebser, T. Schaub, S. Thiele, B. Usadel, and P. Veber. Detecting inconsisten-
cies in large biological networks with answer set programming. In M. Garcia de
la Banda and E. Pontelli, editors, Proceedings of the Twenty-fourth International
Conference on Logic Programming (ICLP’08), volume 5366 of Lecture Notes in
Computer Science, pages 130–144. Springer-Verlag, 2008.

[66] M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R. Kowalski and K. Bowen, editors, Proceedings of the Fifth International
Conference and Symposium of Logic Programming (ICLP’88), pages 1070–1080.
MIT Press, 1988.

[67] I. Gent. Arc consistency in SAT. In F. van Harmelen, editor, Proceedings of
the Fifteenth Eureopean Conference on Artificial Intelligence (ECAI’02), pages
121–125. IOS Press, 2002.

[68] J. Gleeson and J. Ryan. Identifying minimally infeasible subsystems of inequal-
ities. In ORSA Journal On Computing, volume 2, pages 61–63. Operations
Research Society of America, 1990.

[69] C. Gomes and B. Selman. Problem structure in the presence of perturbations.
In Proceedings of the Fourteenth National Conference on Artificial Intelligence
(AAAI’97), pages 221–226. AAAI/MIT Press, 1997.

[70] G. Grasso, S. Iiritano, N. Leone, V. Lio, F. Ricca, and F. Scalise. An ASP-based
system for team-building in the Gioia-Tauro seaport. In M. Carro and R. Peña,
editors, Proceedings of the Twelfth International Symposium on Practical Aspects
of Declarative Languages (PADL’10), volume 5937 of Lecture Notes in Computer
Science, pages 40–42. Springer-Verlag, 2010.

BIBLIOGRAPHY 130 BIBLIOGRAPHY

[71] C. Guziolowski, L. Paulevé, M. Ostrowski, T. Schaub, and A. Siegel. Boolean net-
work identification from multiplex time series data. In O. Roux and J. Bourdon,
editors, Proceedings of the Thirteenth International Conference on Computa-
tional Methods in Systems Biology (CMSB’15), volume 9308 of Lecture Notes in
Bioinformatics, pages 170–181. Springer-Verlag, 2015.

[72] A. Heyting. Die formalen Regeln der intuitionistischen Logik. In Sitzungsberichte
der Preussischen Akademie der Wissenschaften, page 42–56. Deutsche Akademie
der Wissenschaften zu Berlin, 1930. Reprint in Logik-Texte: Kommentierte
Auswahl zur Geschichte der Modernen Logik, Akademie-Verlag, 1986.

[73] J. Huang. Universal Booleanization of constraint models. In P. Stuckey, edi-
tor, Proceedings of the Fourteenth International Conference on Principles and
Practice of Constraint Programming (CP’08), volume 5202 of Lecture Notes in
Computer Science, pages 144–158. Springer-Verlag, 2008.

[74] T. Janhunen. Some (in)translatability results for normal logic programs and
propositional theories. Journal of Applied Non-Classical Logics, 16(1-2):35–86,
2006.

[75] T. Janhunen, R. Kaminski, M. Ostrowski, T. Schaub, S. Schellhorn, and
P. Wanko. Clingo goes linear constraints over reals and integers. Theory
and Practice of Logic Programming, 17(5-6):872–888, 2017.

[76] T. Janhunen, I. Niemelä, and M. Sevalnev. Computing stable models via reduc-
tions to difference logic. In E. Erdem, F. Lin, and T. Schaub, editors, Proceedings
of the Tenth International Conference on Logic Programming and Nonmonotonic
Reasoning (LPNMR’09), volume 5753 of Lecture Notes in Artificial Intelligence,
pages 142–154. Springer-Verlag, 2009.

[77] U. Junker. Quickxplain: Conflict detection for arbitrary constraint propaga-
tion algorithms. IJCAI’01 Workshop on Modelling and Solving problems with
constraints, 2001.

[78] B. Kaufmann, N. Leone, S. Perri, and T. Schaub. Grounding and solving in
answer set programming. AI Magazine, 37(3):25–32, 2016.

[79] C. Lecoutre, O. Roussel, and M. van Dongen. Promoting robust black-box
solvers through competitions. Constraints, 15(3):317–326, 2010.

[80] Y. Lierler. Relating constraint answer set programming languages and algorithms.
Artificial Intelligence, 207:1–22, 2014.

[81] Y. Lierler, S. Smith, M. Truszczynski, and A. Westlund. Weighted-sequence
problem: ASP vs CASP and declarative vs problem-oriented solving. In C. V.
Russo and N. Zhou, editors, Proceedings of the Eleventh International Symposium
on Practical Aspects of Declarative Languages (PADL’12), volume 7149 of Lecture
Notes in Computer Science, pages 63–77. Springer-Verlag, 2012.

BIBLIOGRAPHY 131 BIBLIOGRAPHY

[82] Y. Lierler and B. Susman. SMT-based constraint answer set solver EZSMT
(system description). In Carro and King [29], pages 1:1–1:15.

[83] F. Lin and Y. Zhao. ASSAT: computing answer sets of a logic program by SAT
solvers. Artificial Intelligence, 157(1-2):115–137, 2004.

[84] G. Liu, T. Janhunen, and I. Niemelä. Answer set programming via mixed
integer programming. In G. Brewka, T. Eiter, and S. McIlraith, editors, Pro-
ceedings of the Thirteenth International Conference on Principles of Knowledge
Representation and Reasoning (KR’12), pages 32–42. AAAI Press, 2012.

[85] G. Liu and J. You. Level mapping induced loop formulas for weight constraint
and aggregate logic programs. Fundamenta Informaticae, 101(3):237–255, 2010.

[86] J. Lloyd. Foundations of Logic Programming. Symbolic Computation. Springer-
Verlag, 1987.

[87] V. Marek and M. Truszczyński. Stable models and an alternative logic pro-
gramming paradigm. In K. Apt, V. Marek, M. Truszczyński, and D. Warren,
editors, The Logic Programming Paradigm: a 25-Year Perspective, pages 375–398.
Springer-Verlag, 1999.

[88] J. Marques-Silva, I. Lynce, and S. Malik. Conflict-driven clause learning SAT
solvers. In Biere et al. [23], chapter 4, pages 131–153.

[89] J. Marques-Silva and K. Sakallah. GRASP: A search algorithm for propositional
satisfiability. IEEE Transactions on Computers, 48(5):506–521, 1999.

[90] V. Mellarkod and M. Gelfond. Integrating answer set reasoning with constraint
solving techniques. In J. Garrigue and M. Hermenegildo, editors, Proceedings
of the Ninth International Symposium on Functional and Logic Programming
(FLOPS’08), volume 4989 of Lecture Notes in Computer Science, pages 15–31.
Springer-Verlag, 2008.

[91] V. Mellarkod, M. Gelfond, and Y. Zhang. Integrating answer set program-
ming and constraint logic programming. Annals of Mathematics and Artificial
Intelligence, 53(1-4):251–287, 2008.

[92] A. Metodi and M. Codish. Compiling finite domain constraints to SAT with
BEE. Theory and Practice of Logic Programming, 12(4-5):465–483, 2012.

[93] A. Metodi, M. Codish, and P. Stuckey. Boolean equi-propagation for concise
and efficient SAT encodings of combinatorial problems. Journal of Artificial
Intelligence Research, 46:303–341, 2013.

[94] D. Mitchell. A SAT solver primer. Bulletin of the European Association for
Theoretical Computer Science, 85:112–133, 2005.

BIBLIOGRAPHY 132 BIBLIOGRAPHY

[95] I. Niemelä. Logic programs with stable model semantics as a constraint pro-
gramming paradigm. Annals of Mathematics and Artificial Intelligence, 25(3-
4):241–273, 1999.

[96] I. Niemelä. Stable models and difference logic. Annals of Mathematics and
Artificial Intelligence, 53(1-4):313–329, 2008.

[97] R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Solving SAT and SAT modulo
theories: From an abstract Davis-Putnam-Logemann-Loveland procedure to
DPLL(T). Journal of the ACM, 53(6):937–977, 2006.

[98] M. Nogueira, M. Balduccini, M. Gelfond, R. Watson, and M. Barry. An A-
prolog decision support system for the space shuttle. In I. Ramakrishnan,
editor, Proceedings of the Third International Symposium on Practical Aspects
of Declarative Languages (PADL’01), volume 1990 of Lecture Notes in Computer
Science, pages 169–183. Springer-Verlag, 2001.

[99] O. Ohrimenko, P. Stuckey, and M. Codish. Propagation via lazy clause generation.
Constraints, 14(3):357–391, 2009.

[100] M. Ostrowski, G. Flouris, T. Schaub, and G. Antoniou. Evolution of ontologies
using ASP. In Gallagher and Gelfond [51], pages 16–27.

[101] M. Ostrowski, L. Paulevé, T. Schaub, A. Siegel, and C. Guziolowski. Boolean
network identification from perturbation time series data combining dynamics
abstraction and logic programming. Biosystems, 149:139–153, 2016.

[102] M. Ostrowski and T. Schaub. ASP modulo CSP: The clingcon system. Theory
and Practice of Logic Programming, 12(4-5):485–503, 2012.

[103] J. Petke and P. Jeavons. The order encoding: From tractable CSP to tractable
SAT. In K. Sakallah and L. Simon, editors, Proceedings of the Fourteenth
International Conference on Theory and Applications of Satisfiability Testing
(SAT’11), volume 6695 of Lecture Notes in Computer Science, pages 371–372.
Springer-Verlag, 2011.

[104] S. Prestwich. CNF encodings. In Biere et al. [23], pages 75–97.

[105] C. Redl. The dlvhex system for knowledge representation: recent advances
(system description). Theory and Practice of Logic Programming, 16(5-6):866–
883, 2016.

[106] F. Rossi, P. van Beek, and T. Walsh, editors. Handbook of Constraint Program-
ming. Elsevier Science, 2006.

[107] O. Roussel and C. Lecoutre. XML representation of constraint networks: Format
XCSP 2.1. CoRR, abs/0902.2362, 2009.

BIBLIOGRAPHY 133 BIBLIOGRAPHY

[108] C. Schulte and G. Tack. Views and iterators for generic constraint imple-
mentations. In P. van Beek, editor, Proceedings of the Eleventh International
Conference on Principles and Practice of Constraint Programming (CP’05), vol-
ume 3709 of Lecture Notes in Computer Science, pages 118–132. Springer-Verlag,
2005.

[109] P. Simons, I. Niemelä, and T. Soininen. Extending and implementing the stable
model semantics. Artificial Intelligence, 138(1-2):181–234, 2002.

[110] T. Soh, K. Inoue, N. Tamura, M. Banbara, and H. Nabeshima. A SAT-based
method for solving the two-dimensional strip packing problem. Fundamenta
Informaticae, 102(3-4):467–487, 2010.

[111] T. Soininen and I. Niemelä. Developing a declarative rule language for ap-
plications in product configuration. In G. Gupta, editor, Proceedings of the
First International Workshop on Practical Aspects of Declarative Languages
(PADL’99), volume 1551 of Lecture Notes in Computer Science, pages 305–319.
Springer-Verlag, 1999.

[112] O. Stashuk. Integrating constraint programming into answer set programming.
Master Thesis, TU Wien, 2013.

[113] T. Syrjänen. Lparse 1.0 user’s manual, 2001.

[114] N. Tamura, M. Banbara, and T. Soh. Compiling pseudo-Boolean constraints to
SAT with order encoding. In Brodsky [25], pages 1020–1027.

[115] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP
into SAT. In F. Benhamou, editor, Proceedings of the Twelfth International
Conference on Principles and Practice of Constraint Programming (CP’06),
volume 4204 of Lecture Notes in Computer Science, pages 590–603. Springer-
Verlag, 2006.

[116] N. Tamura, A. Taga, S. Kitagawa, and M. Banbara. Compiling finite linear CSP
into SAT. Constraints, 14(2):254–272, 2009.

[117] T. Tanjo, N. Tamura, and M. Banbara. Azucar: A SAT-based CSP solver using
compact order encoding. In A. Cimatti and R. Sebastiani, editors, Proceedings
of the Fifteenth International Conference on Theory and Applications of Satisfi-
ability Testing (SAT’12), volume 7317 of Lecture Notes in Computer Science,
pages 456–462, Berlin, Heidelberg, 2012. Springer-Verlag.

[118] F. Thibaut and P. Stuckey. Lazy clause generation reengineered. In I. Gent,
editor, Proceedings of the Fifteenth International Conference on Principles and
Practice of Constraint Programming (CP’09), volume 5732 of Lecture Notes in
Computer Science, pages 352–366. Springer-Verlag, 2009.

BIBLIOGRAPHY 134 BIBLIOGRAPHY

[119] C. Thiffault, F. Bacchus, and T. Walsh. Solving non-clausal formulas with DPLL
search. In M. Wallace, editor, Proceedings of the Tenth International Conference
on Principles and Practice of Constraint Programming (CP’04), volume 3258 of
Lecture Notes in Computer Science, pages 663–678. Springer-Verlag, 2004.

[120] J. van Loon. Irreducibly inconsistent systems of linear inequalities. European
Journal of Operational Research, 8(3):283–288, 1981.

[121] T. Walsh. SAT versus CSP. In R. Dechter, editor, Proceedings of the Sixth
International Conference on Principles and Practice of Constraint Programming
(CP’00), volume 1894 of Lecture Notes in Computer Science, pages 441–456.
Springer-Verlag, 2000.

[122] Y. Yu and S. Malik. Lemma learning in SMT on linear constraints. In A. Biere
and C. Gomes, editors, Proceedings of the Ninth International Conference on
Theory and Applications of Satisfiability Testing (SAT’06), volume 4121 of
Lecture Notes in Computer Science, pages 142–155. Springer-Verlag, 2006.

[123] L. Zhang, C. Madigan, M. Moskewicz, and S. Malik. Efficient conflict driven
learning in a Boolean satisfiability solver. In Proceedings of the International
Conference on Computer-Aided Design (ICCAD’01), pages 279–285. ACM Press,
2001.

[124] N. Zhou. The SAT compiler in B-prolog. The Association for Logic Program-
ming Newsletter, March 2013, 2013. http://www.cs.nmsu.edu/ALP/2013/03/
the-sat-compiler-in-b-prolog/.

BIBLIOGRAPHY 135 BIBLIOGRAPHY

http://www.cs.nmsu.edu/ALP/2013/03/the-sat-compiler-in-b-prolog/
http://www.cs.nmsu.edu/ALP/2013/03/the-sat-compiler-in-b-prolog/

	Introduction
	Contributions
	Outline

	Background
	Constraint Answer Set Programming
	Logic Programs
	Constraint Satisfaction Problems
	Constraint Stable Models

	Constraint Answer Set Programming via Conflict Driven Constraint Learning
	Boolean Constraint Solving
	Basic Conflict Driven Constraint Learning
	Architecture
	Extended Conflict Driven Constraint Learning
	Reason and Conflict Reduction
	Implementation Techniques
	Lazy Reasons
	Global Constraints
	Initial Lookahead
	Optimization

	Evaluation
	Conclusion

	Encoding Constraint Satisfaction Problems
	Normalizing Constraints
	Encoding Linear Constraints
	Nogoods of Constraint Satisfaction Problems
	Encoding Constraint Satisfaction Problems
	Encoding Constraint Answer Set Programs

	Evaluation
	Conclusion

	Lazy Nogood and Variable Generation
	Constraint Stable Models in Terms of Propagators
	System Design
	Architecture
	Language
	Algorithms

	Distinguished Features
	Evaluation

	Multi-Shot Constraint Answer Set Programming
	Multi-Shot Solving
	Incremental Programs
	Incremental N-Queens
	Planning with Durations

	Related Work
	Logic Programs Modulo Theories
	Comparing Different Semantics and Systems

	Conclusion

