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Abstract

Modern solvers for Boolean Satisfiability (SAT) and Answer
Set Programming (ASP) are based on sophisticated Boolean
constraint solving techniques. In both areas, conflict-driven
learning and related techniques constitute key features whose
application is enabled by conflict analysis. Although various
conflict analysis schemes have been proposed, implemented,
and studied both theoretically and practically in the SAT area,
the heuristic aspects involved in conflict analysis have not yet
received much attention. Assuming a fixed conflict analy-
sis scheme, we address the open question of how to iden-
tify “good” reasons for conflicts, and we investigate several
heuristics for conflict analysis in ASP solving. To our knowl-
edge, a systematic study like ours has not yet been performed
in the SAT area, thus, it might be beneficial for both the field
of ASP as well as the one of SAT solving.

Introduction
The popularity of Answer Set Programming (ASP; (Baral
2003)) as a paradigm for knowledge representation and
reasoning is mainly due to two factors: first, its rich
modeling language and, second, the availability of high-
performance ASP systems. In fact, modern ASP solvers,
such as clasp (Gebser et al. 2007a), cmodels (Giunchiglia,
Lierler, & Maratea 2006), and smodelscc (Ward & Schlipf
2004), have meanwhile closed the gap to Boolean Satis-
fiability (SAT; (Mitchell 2005)) solvers. In both fields,
conflict-driven learning and related techniques have led to
significant performance boosts (Bayardo & Schrag 1997;
Marques-Silva & Sakallah 1999; Moskewicz et al. 2001;
Gebser et al. 2007d). The basic prerequisite for the ap-
plication of such techniques is conflict analysis, that is, the
extraction of non-trivial reasons for dead ends encountered
during search. Even though ASP and SAT solvers exploit
different inference patterns, their underlying search tech-
niques are closely related to each other. For instance, the
basic search strategy of SAT solver chaff (Moskewicz et
al. 2001), nowadays a quasi standard in SAT solving, is
also exploited by ASP solver clasp, in particular, the prin-
ciples of conflict analysis are similar. Vice versa, the so-
lution enumeration approach implemented in clasp (Gebser
et al. 2007b) could also be applied by SAT solvers. Given
these similarities, general search or, more specifically, con-
flict analysis techniques developed in one community can

(almost) immediately be exploited in the other field too.
In this paper, we address the problem of identifying

“good” reasons for conflicts to be recorded within an ASP
solver. In fact, conflict-driven learning exhibits several de-
grees of freedom. For instance, several constraints may be-
come violated simultaneously, in which case one can choose
the conflict(s) to be analyzed. Furthermore, distinct schemes
may be used for conflict analysis, such as the resolution-
based First-UIP and Last-UIP scheme (Zhang et al. 2001).
Finally, if conflict analysis is based on resolution, several
constraints may be suitable resolvents, likewise permitting
to eliminate some literal in a resolution step.

For the feasibility of our study, it was necessary to prune
dimensions of freedom in favor of predominant options.
In the SAT area, the First-UIP scheme (Marques-Silva &
Sakallah 1999) has empirically been shown to yield better
performance than other known conflict resolution strategies
(Zhang et al. 2001). We thus fix the conflict analysis strat-
egy to conflict resolution according to the First-UIP scheme.
Furthermore, it seems reasonable to analyze the first conflict
detected by a solver (although conflicts encountered later
on may actually yield “better” reasons). This leaves to us
the choice of the resolvents to be used for conflict resolu-
tion, and we investigate this issue with respect to different
goals: reducing the size of reasons to be recorded, skipping
greater portions of the search space by backjumping (ex-
plained below), reducing the number of conflict resolution
steps, and reducing the overall number of encountered con-
flicts (roughly corresponding to runtime). To this end, we
modified the conflict analysis procedure of our ASP solver
clasp1 for accommodating a variety of heuristics for choos-
ing resolvents. The developed heuristics and comprehensive
empirical results for them are presented in this paper.

Logical Background
We assume basic familiarity with answer set semantics (see,
for instance, (Baral 2003)). This section briefly introduces
notations and recalls a constraint-based characterization of
answer set semantics according to (Gebser et al. 2007c).
We consider propositional (normal) logic programs over an
alphabet P . A logic program is a finite set of rules

p0 ← p1, . . . , pm,∼pm+1, . . . ,∼pn (1)
1http://www.cs.uni-potsdam.de/clasp



where 0 ≤ m ≤ n and pi ∈ P is an atom for 0 ≤ i ≤ n.
For a rule r as in (1), let head(r) = p0 be the head of r
and body(r) = {p1, . . . , pm,∼pm+1, . . . ,∼pn} be the body
of r. The set of atoms occurring in a logic program Π is de-
noted by atom(Π), and the set of bodies in Π is body(Π) =
{body(r) | r ∈ Π}. For regrouping bodies sharing the same
head p, define body(p) = {body(r) | r ∈ Π, head(r) = p}.

For characterizing the answer sets of a program Π, we
consider Boolean assignments A over domain dom(A) =
atom(Π) ∪ body(Π). Formally, an assignment A is a se-
quence (σ1, . . . , σn) of (signed) literals σi of the form Tv
or Fv for v ∈ dom(A) and 1 ≤ i ≤ n. Intuitively, Tv ex-
presses that v is true and Fv that it is false in A. We denote
the complement of a literal σ by σ, that is, Tv = Fv and
Fv = Tv. Furthermore, we let A ◦ B denote the sequence
obtained by concatenating two assignments A and B. We
sometimes abuse notation and identify an assignment with
the set of its contained literals. Given this, we access the
true and false propositions in A via AT = {p ∈ dom(A) |
Tp ∈ A} and AF = {p ∈ dom(A) | Fp ∈ A}. Finally, we
denote the prefix of A up to a literal σ by

A[σ] =
{

(σ1, . . . , σm) if A = (σ1, . . . , σm, σ, . . . , σn)
A if σ /∈ A .

In our context, a nogood (Dechter 2003) is a set
{σ1, . . . , σm} of literals, expressing a constraint violated by
any assignment containing σ1, . . . , σm. An assignment A
such that AT ∪AF = dom(A) and AT ∩AF = ∅ is a solu-
tion for a set ∆ of nogoods if δ 6⊆ A for all δ ∈ ∆. Given a
logic program Π, we below specify nogoods such that their
solutions correspond to the answer sets of Π.

We start by describing nogoods capturing the models of
the Clark’s completion (Clark 1978) of a program Π. For
(β = {p1, . . . , pm,∼pm+1, . . . ,∼pn}) ∈ body(Π), let

∆β =

{Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn,Fβ},
{Fp1,Tβ}, . . . , {Fpm,Tβ},
{Tpm+1,Tβ}, . . . , {Tpn,Tβ}

 .

Observe that every solution for ∆β must assign body β
equivalent to the conjunction of its elements. Similarly, for
an atom p ∈ atom(Π), the following nogoods stipulate p to
be equivalent to the disjunction of body(p) = {β1, . . . , βk}:

∆p =
{
{Fβ1, . . . ,Fβk,Tp},
{Tβ1,Fp}, . . . , {Tβk,Fp}

}
.

Combining the above nogoods for Π, we get

∆Π =
⋃
β∈body(Π)∆β ∪

⋃
p∈atom(Π)∆p .

The solutions for ∆Π correspond one-to-one to the models
of the completion of Π. If Π is tight (Fages 1994; Erdem
& Lifschitz 2003), these models are guaranteed to match the
answer sets of Π. This can be formally stated as follows.

Theorem 1 ((Gebser et al. 2007c)) Let Π be a tight logic
program. Then, X ⊆ atom(Π) is an answer set of Π iff
X = AT ∩ atom(Π) for a (unique) solution A for ∆Π.

We proceed by considering non-tight programs Π. As
shown in (Lin & Zhao 2004), loop formulas can be added
to the completion of Π to establish full correspondence to
the answer sets of Π. For U ⊆ atom(Π), let EBΠ(U) be

{body(r) | r ∈ Π, head(r) ∈ U, body(r) ∩ U = ∅} .

Observe that EBΠ(U) contains the bodies of all rules in Π
that can externally support (Lee 2005) an atom in U . Given
U = {p1, . . . , pj} and EBΠ(U) = {β1, . . . , βk}, the fol-
lowing nogoods capture the loop formula of U :

ΛU =
{
{Fβ1, . . . ,Fβk,Tp1}, . . . ,
{Fβ1, . . . ,Fβk,Tpj}

}
.

Furthermore, we define

ΛΠ =
⋃
U⊆atom(Π)ΛU .

By augmenting ∆Π with ΛΠ, Theorem 1 can be extended to
non-tight programs.
Theorem 2 ((Gebser et al. 2007c)) Let Π be a logic pro-
gram. Then, X ⊆ atom(Π) is an answer set of Π iff
X = AT∩atom(Π) for a (unique) solutionA for ∆Π∪ΛΠ.

By virtue of Theorem 2, the nogoods in ∆Π ∪ ΛΠ pro-
vide us with a constraint-based characterization of the an-
swer sets of Π. However, it is important to note that the
size of ∆Π is linear in atom(Π)×body(Π), while ΛΠ con-
tains exponentially many nogoods. As shown in (Lifschitz
& Razborov 2006), under current assumptions in complexity
theory, the exponential number of elements in ΛΠ is inher-
ent, that is, it cannot be reduced significantly in the worst
case. Hence, ASP solvers do not determine the nogoods
in ΛΠ a priori, but include mechanisms to determine them
on demand. This is illustrated further in the next section.

Algorithmic Background
This section recalls the basic decision procedure of clasp
(Gebser et al. 2007c), abstracting Conflict-Driven Clause
Learning (CDCL; (Mitchell 2005)) for SAT solving from
clauses, that is, Conflict-Driven Nogood Learning (CDNL).

Conflict-Driven Nogood Learning
Algorithm 1 shows our main procedure for deciding whether
a program Π has some answer set. The algorithm starts with
an empty assignment A and an empty set ∇ of recorded
nogoods (Lines 1–2). Note that dynamic nogoods added
to ∇ in Line 5 are elements of ΛΠ, while those added in
Line 9 result from conflict analysis (Line 8). In addition to
conflict-driven learning, the procedure performs backjump-
ing (Lines 10–11), guided by a decision level k determined
by conflict analysis. Via decision level dl , we count deci-
sion literals, that is, literals in A that have been heuristically
selected in Line 15. The initial value of dl is 0 (Line 3), and
it is incremented in Line 16 before a decision literal is added
to A (Line 17). All literals in A that are not decision liter-
als have been derived by propagation in Line 5, and we call
them implied literals. For any literal σ in A, we write dl(σ)
to refer to the decision level of σ, that is, the value dl had
when σ was added to A. After propagation, the main loop



Algorithm 1: CDNL
Input : A program Π.
Output: An answer set of Π.

A← ∅ // assignment over atom(Π) ∪ body(Π)1
∇ ← ∅ // set of (dynamic) nogoods2
dl ← 0 // decision level3
loop4

(A,∇)← PROPAGATION(Π,∇, A)5
if ε ⊆ A for some ε ∈ ∆Π ∪∇ then6

if dl = 0 then return no answer set7
(δ, k)← CONFLICTANALYSIS(ε,Π,∇, A)8
∇ ← ∇∪ {δ}9
A← A \ {σ ∈ A | k < dl(σ)}10
dl ← k11

else if AT ∪AF = atom(Π) ∪ body(Π) then12

return AT ∩ atom(Π)13
else14

σd ← SELECT(Π,∇, A)15
dl ← dl + 116
A← A ◦ (σd)17

(Lines 4–17) distinguishes three cases: a conflict detected
via a violated nogood (Lines 6–11), a solution (Lines 12–
13), or a heuristic selection with respect to a partial assign-
ment (Lines 14–17). Finally, note that a conflict at decision
level 0 signals that Π has no answer set (Line 7).

Propagation
Our propagation procedure, shown in Algorithm 2, derives
implied literals and adds them to A. Lines 3–9 describe unit
propagation (cf. (Mitchell 2005)) on ∆Π∪∇. If a conflict is
detected in Line 4, unit propagation terminates immediately
(Line 5). Otherwise, in Line 6, we determine all nogoods δ
that are unit-resulting wrt A, that is, the complement σ of
some literal σ ∈ δ must be added to A because all other lit-
erals of δ are already true inA. If there is some unit-resulting
nogood δ (Line 7), A is augmented with σ in Line 8. Ob-
serve that δ is chosen non-deterministically, and several dis-
tinct nogoods may imply σ wrt A. This non-determinism
gives rise to our study of heuristics for conflict resolution,
selecting a resolvent among the nogoods δ that imply σ.

The second part of Algorithm 2 (Lines 10–14) checks
for unit-resulting or violated nogoods in ΛΠ. If Π is tight
(Line 10), sophisticated checks are unnecessary (cf. Theo-
rem 1). Otherwise, we consider sets U ⊆ atom(Π) such
that EBΠ(U) ⊆ AF, called unfounded sets (Van Gelder,
Ross, & Schlipf 1991). An unfounded set U is determined in
Line 12 by a dedicated algorithm, whereU∩AF = ∅. If such
a nonempty unfounded set U exists, each nogood δ ∈ ΛU
is either unit-resulting or violated wrt A, and an arbitrary
δ ∈ ΛU is recorded in Line 14 for triggering unit propaga-
tion. Note that all atoms in U must be falsified before an-
other unfounded set is determined (cf. Lines 11–12). Even-
tually, propagation terminates in Line 13 if no nonempty un-
founded set has been detected in Line 12.

Algorithm 2: PROPAGATION

Input : A program Π, a set∇ of nogoods, and an
assignment A.

Output: An extended assignment and set of nogoods.

U ← ∅ // unfounded set1
loop2

repeat3
if δ ⊆ A for some δ ∈ ∆Π ∪∇ then4

return (A,∇)5

Σ← {δ ∈ ∆Π ∪∇ | δ \A = {σ}, σ /∈ A}6
if Σ 6= ∅ then let σ ∈ δ \A for some δ ∈ Σ in7

A← A ◦ (σ)8

until Σ = ∅9

if TIGHT(Π) then return (A,∇)10

U ← U \AF11
if U = ∅ then U ← UNFOUNDEDSET(Π, A)12
if U = ∅ then return (A,∇)13
let δ ∈ ΛU in∇ ← ∇∪ {δ}14

Algorithm 3: CONFLICTANALYSIS

Input : A violated nogood δ, a program Π, a set ∇ of
nogoods, and an assignment A.

Output: A derived nogood and a decision level.

loop1
let σ ∈ δ such that δ \A[σ] = {σ}2
k ← max ({dl(ρ) | ρ ∈ δ \ {σ}} ∪ {0})3
if k = dl(σ) then4

Σ← {ε ∈ ∆Π ∪∇ | ε \A[σ] = {σ}}5
ε← SELECTANTECEDENT(Σ)6
δ ← (δ \ {σ}) ∪ (ε \ {σ})7

else return (δ, k)8

Conflict Analysis
Algorithm 3 shows our conflict analysis procedure, which
is based on resolution. Given a nogood δ that is violated
wrt A, we determine in Line 2 the literal σ ∈ δ added last
to A. If σ is the single literal of its decision level dl(σ) in δ
(cf. Line 3), it is called a unique implication point (UIP;
(Marques-Silva & Sakallah 1999)). Among a number of
conflict resolution schemes, the First-UIP scheme, stopping
conflict resolution as soon as the first UIP is reached, has
turned out to be the most efficient and most robust strategy
(Zhang et al. 2001). Our conflict analysis procedure follows
the First-UIP scheme by performing conflict resolution only
if σ is not a UIP (tested in Line 4) and, otherwise, return-
ing δ along with the smallest decision level k at which σ is
implied by δ after backjumping (Line 8).

Let us take a closer look at conflict resolution steps in
Lines 5–7. It is important to note that, if σ is not a UIP, it
cannot be the decision literal of dl(σ). Rather, it must have
been implied by some nogood ε ∈ ∆Π ∪ ∇. As a conse-
quence, the set Σ determined in Line 5 cannot be empty, and



we call its elements antecedents of σ. Note that each an-
tecedent ε contains σ and had been unit-resulting immedi-
ately before σ was added to A; we thus call ε \ {σ} a reason
for σ. Knowing that σ may have more than one antecedent,
a non-deterministic choice among them is made in Line 6.
Exactly this choice is subject to the heuristics studied below.
Furthermore, as σ is the literal of δ added last toA, δ\{σ} is
also a reason for σ. Since they imply complementary liter-
als, no solution can jointly contain both reasons, viz., δ\{σ}
and ε \ {σ}. Hence, combining them in Line 7 gives again
a nogood violated wrt A. Finally, note that conflict reso-
lution is guaranteed to terminate at some UIP, but different
heuristic choices in Line 6 may result in different UIPs.

Implication Graphs and Conflict Graphs
To portray the matter of choosing among several distinct an-
tecedents, we modify the notion of an implication graph
(Beame, Kautz, & Sabharwal 2004). At a given state of
CDNL, the implication graph contains a node for each lit-
eral σ in assignment A and, for a violated nogood δ ⊆ A, a
node σ is included, where σ is the literal of δ added last toA,
that is, δ \ A[σ] = {σ}. Furthermore, for each antecedent δ
of an implied literal σ, the implication graph contains di-
rected edges labeled with δ from all literals in the reason
δ \ {σ} to σ. Different from (Beame, Kautz, & Sabharwal
2004), where implication graphs reflect exactly one reason
per implied literal, our implication graph thus includes all of
them. If the implication graph contains both σ and σ, we
call them conflicting literals. Note that an implication graph
contains at most one such pair {σ, σ}, called conflicting as-
signment, because our propagation procedure in Algorithm 2
stops as soon as a nogood becomes violated (cf. Lines 4–5).

An exemplary implication graph is shown in Figure 1.
Each of its nodes (except for one among the two conflict-
ing literals) corresponds to a literal that is true in assignment

A =
(
Fa,Fb,Fp,Tq,Tr,Ts,Fv,Tt,Fu,Fw,Tx

)
.

The three decision literals in A are underlined, and all
other literals are implied. For each literal σ, its decision
level dl(σ) is also provided in Figure 1 in parentheses. Ev-
ery edge is labeled with at least one antecedent of its target,
that is, the edges represent the following nogoods:

n0 = {Fa,Tb} n1 = {Tr,Fs}
n2 = {Ts,Ft} n3 = {Ts,Tu}
n4 = {Ts,Tw} n5 = {Tr,Tv}
n6 = {Tq,Fv,Tw} n7 = {Tt,Fu,Fx}
n8 = {Fp,Tt,Fx} n9 = {Fw,Tx} .

Furthermore, nogood {Ta} is unit-resulting wrt the empty
assignment, thus, implied literal Fa (whose decision level
is 0) does not have any incoming edge. Observe that the im-
plication graph contains conflicting assignment {Tx,Fx},
where Tx has been implied by nogood n7 and likewise
by n8. It is also the last literal inA belonging to violated no-
good n9, so that its complement Fx is the second conflicting
literal in the implication graph. Besides Tx, literal Fw has
multiple antecedents, namely, n4 and n6, which can be read
off the labels of the incoming edges of Fw.
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Figure 1: An exemplary implication graph containing a con-
flicting assignment.

The conflict resolution done in Algorithm 3, in particu-
lar, the heuristic choice of antecedents in Line 6, can now be
viewed as an iterative projection of the implication graph. In
fact, if an implied literal has incoming edges with distinct la-
bels, all edges with a particular label are taken into account,
while the edges with different labels only are dropped. This
observation motivates the following definition: a subgraph
of an implication graph is a conflict graph if it contains a
conflicting assignment and, for each implied literal σ in the
subgraph, the set of predecessors of σ is a reason for σ. Note
that this definition allows us to drop all literals that do not
have a path to any conflicting literal, such as Fa and Fb in
Figure 1. Furthermore, the requirement that the predeces-
sors of an implied literal form a reason corresponds to the
selection of an antecedent, where only the incoming edges
with a particular label are traced via conflict resolution.

The next definition accounts for a particularity of ASP
solving related to unfounded set handling: a conflict graph
is level-aware if each conflicting literal σ has some prede-
cessor ρ such that dl(ρ) = dl(σ). In fact, propagation in
Algorithm 2 is limited to falsifying unfounded atoms, thus,
unit propagation on nogoods in ΛΠ is performed only par-
tially and may miss implied literals corresponding to exter-
nal bodies (cf. (Gebser et al. 2007c)). If a conflict graph
is not level-aware, the violated nogood δ provided as in-
put to Algorithm 3 already contains a UIP, thus, δ itself
is returned without performing any conflict resolution in-
between. Given that we are interested in conflict resolution,
we below consider level-aware conflict graphs only.

Finally, we characterize nogoods derived by Algorithm 3
by cuts in conflict graphs (cf. (Zhang et al. 2001; Beame,
Kautz, & Sabharwal 2004)). A conflict cut in a conflict
graph is a bipartition of the nodes such that all decision liter-
als belong to one side, called reason side, and the conflicting
assignment is contained in the other side, called conflict side.
The set of nodes on the reason side that have some edge into
the conflict side form the conflict nogood associated with
a particular conflict cut. For illustration, a First-New-Cut
(Beame, Kautz, & Sabharwal 2004) is shown in Figure 2.
For the underlying conflict graph, we can choose among the
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Figure 2: The implication graph with a First-New-Cut.

incoming edges of Tx whether to include the edges labeled
with n7 or the ones labeled with n8. With n7, we get conflict
nogood {Tt,Fu,Fw}, while n8 yields {Fp,Tt,Fw}.

Different conflict cuts correspond to different resolution
schemes, where we are particularly interested in the First-
UIP scheme. Given a conflict graph and conflicting assign-
ment {σ, σ}, a UIP σUIP can be identified as a node such
that all paths from σd, the decision literal of decision level
dl(σ) = dl(σ), to either σ or σ go through σUIP (cf. (Zhang
et al. 2001)). In view of this alternative definition of a UIP,
it becomes even more obvious than before that σd is indeed
a UIP, also called the Last-UIP. In contrast, a literal σUIP

is the First-UIP if it is the UIP “closest” to the conflicting
literals, that is, if no other UIP is reachable from σUIP . The
First-UIP-Cut is then given by the conflict cut that has all lit-
erals lying on some path from the First-UIP to a conflicting
literal, except for the First-UIP itself, on the conflict side and
all other literals (including the First-UIP) on the reason side.
The First-UIP-Nogood, that is, the conflict nogood associ-
ated with the First-UIP-Cut, is exactly the nogood derived
by conflict resolution in Algorithm 3 when antecedents that
contribute edges to the conflict graph are selected for conflict
resolution. Also note that the First-UIP-Cut for a conflict
graph is unique, thus, by projecting an implication graph
to a conflict graph, we implicitly fix the First-UIP-Nogood.
With this is mind, the next section deals with heuristics for
extracting conflict graphs from implication graphs.

Heuristics
In this section, we propose several heuristics for conflict res-
olution striving for different goals.

Recording Short Nogoods
Under the assumption that short nogoods prune larger por-
tions of the search space than longer ones, a First-UIP-
Nogood looks the more attractive the less literals it contains.
In addition, unit propagation on shorter nogoods is usually
faster and might even be enabled to use particularly opti-
mized data structures, for instance, specialized to binary or
ternary nogoods (Ryan 2004). As noticed in (Mahajan, Fu,
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Figure 3: A First-UIP-Cut obtained with Hshort .

& Malik 2005), a conflict nogood stays short when the re-
solvents are short, when the number of resolvents is small,
or when the resolvents have many literals in common. In the
SAT area, it has been observed that preferring short nogoods
in conflict resolution may lead to resolution sequences in-
volving mostly binary and ternary nogoods, so that derived
conflict nogoods are not much longer than the originally vi-
olated nogoods (Mitchell 2005). Our first heuristics,Hshort ,
thus selects an antecedent containing the smallest number of
literals among the available antecedents of a literal. Given
the same implication graph as in Figure 1 and 2, Hshort

may yield the conflict graph shown in Figure 3 by prefer-
ring antecedent n7 of Tx over n8 and antecedent n4 of Fw
over n6 during conflict resolution. The corresponding First-
UIP-Nogood, {Ts}, is indeed short and enables CDNL to
after backjumping derive Fs by unit propagation at decision
level 0. However, the antecedents n7 and n8 of Tx are of
the same size, thus, Hshort may likewise pick n8, in which
case the First-UIP-Cut in Figure 4 is obtained. The corre-
sponding First-UIP-Nogood, {Fp,Ts}, is longer. Nonethe-
less, our experiments below empirically confirm that Hshort

tends to reduce the size of First-UIP-Nogoods. But before,
we describe further heuristics focusing also on other aspects.

Performing Long Backjumps
By backjumping, CDNL may skip the exhaustive explo-
ration of regions of the search space, possibly escaping spare
regions not containing any solution. Thus, it seems rea-
sonable to aim at First-UIP-Nogoods such that their liter-
als belong to small decision levels, as they are the deter-
mining factor for the lengths of backjumps. Our second
heuristics, Hlex , thus uses a lexicographic order to rank an-
tecedents according to the decision levels of their literals.
Given an antecedent δ of a literal σ, we arrange the liter-
als in the reason δ \ {σ} for σ in descending order of their
decision levels. The so obtained sequence (σ1, . . . , σm),
where δ \ {σ} = {σ1, . . . , σm}, induces a descending list
levels(δ) = (dl(σ1), . . . , dl(σm)) of decision levels. An
antecedent δ is then considered to be smaller than another
antecedent ε, viz., δ < ε, if the first element that differs in
levels(δ) and levels(ε) is smaller in levels(δ) or if levels(δ)
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is a prefix of levels(ε) and shorter than levels(ε). Due to
the last condition, Hlex also prefers an antecedent δ that is
shorter than ε, provided that literals of the same decision lev-
els as in δ are also found in ε. Reconsidering the implication
graph in Figure 1 and 2, we obtain levels(n8) = (3, 1) <
(3, 3) = levels(n7) for antecedents n7 and n8 of Tx, and
we have levels(n4) = (3) < (3, 2) = levels(n6) for an-
tecedents n4 and n6 of Fw. By selecting antecedents that
are lexicographically smallest, Hlex leads us to the conflict
graph shown in Figure 4. In this example, the corresponding
First-UIP-Nogood, {Fp,Ts}, is weaker than {Ts}, which
may be obtained with Hshort (cf. Figure 3).

Given that lexicographic comparisons are computation-
ally expensive, we also consider a lightweight variant of
ranking antecedents according to decision levels. Our third
heuristics, Havg , prefers an antecedent δ over ε if the aver-
age of levels(δ) is smaller than the average of levels(ε). In
our example, we get avg [levels(n8)] = avg(3, 1) = 2 <
3 = avg(3, 3) = avg [levels(n7)] and avg [levels(n6)] =
avg(3, 2) = 2.5 < 3 = avg(3) = avg [levels(n4)], yield-
ing the conflict graph shown in Figure 5. Unfortunately, the
corresponding First-UIP-Nogood, {Fp,Tq,Tr}, does not
match the goal of Havg as backjumping only returns to de-
cision level 2, where Tr is then flipped to Fr. Note that this
behavior is similar to chronological backtracking, which can
be regarded as the most trivial form of backjumping.

Shortening Conflict Resolution
Our fourth heuristics,Hres , aims at speeding up conflict res-
olution itself by shortening resolution sequences. In order
to earlier encounter a UIP, Hres prefers antecedents such
that the number of literals at the current decision level dl is
smallest. In our running example,Hres prefers n8 over n7 as
it contains fewer literals whose decision level is 3. However,
antecedents n4 and n6 of Fw are indifferent, thus,Hres may
yield either one of the conflict graphs in Figure 4 and 5.

Search Space Pruning
The heuristics presented above rank antecedents merely by
structural properties, thus disregarding their contribution in
the past to solving the actual problem. The latter is estimated
by nogood deletion heuristics of SAT solvers (Goldberg &
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Figure 5: A First-UIP-Cut obtained with Havg .

Novikov 2002; Mahajan, Fu, & Malik 2005), and clasp also
maintains activity scores for nogoods (Gebser et al. 2007a).
Our fifth heuristics, Hactive , makes use of them and ranks
antecedents according to their activities.

Finally, we investigate a heuristics,Hprop , that stores (and
prefers) the smallest decision level at which a nogood has
ever been unit-resulting. The intuition underlying Hprop is
that the number of implied literals at small decision levels
can be viewed as a measure for the progress of CDNL, in
particular, as attesting unsatisfiability requires a conflict at
decision level 0. Thus, it might be a good idea to prefer no-
goods that gave rise to implications at small decision levels.

Experiments
For their empirical assessment, we have implemented the
heuristics proposed above in a prototypical extension of our
ASP solver clasp version 1.0.2. (Even though there are
newer versions of clasp, a common testbed, omitting some
optimizations, is sufficient for a representative comparison.)
Note that clasp (Gebser et al. 2007a) incorporates various
advanced Boolean constraint solving techniques, e.g.:
• lookback-based decision heuristics (Goldberg & Novikov

2002),
• restart and nogood deletion policies (Eén & Sörensson

2003),
• watched literals for unit propagation on “long” nogoods

(Moskewicz et al. 2001),
• dedicated treatment of binary and ternary nogoods (Ryan

2004), and
• early conflict detection (Mahajan, Fu, & Malik 2005).
Due to this variety, the solving process of clasp is a complex
interplay of different features. Thus, it is almost impossi-
ble to observe the impact of a certain feature, such as our
conflict resolution heuristics, in isolation. However, we be-
low use a considerable number of benchmark classes with
different characteristics and shuffled instances, so that noise
effects should be compensated at large.

For accommodating conflict resolution heuristics consid-
ering several antecedents per literal, the low-level imple-
mentation of clasp had to be modified. These modifications



are less optimized than the original implementation, so that
our prototype incurs some disadvantages in raw speed that
can potentially be reduced by optimizing the implementa-
tion. However, for comparison, we include unmodified clasp
version 1.0.2, not applying any particular heuristics in con-
flict resolution. Given that unit propagation in clasp privi-
leges binary and ternary nogoods, they are more likely to be
used as antecedents than longer nogoods, as original clasp
simply stores the first antecedent it encounters and ignores
others. In view of this, unit propagation of original clasp
leads conflict resolution into the same direction as Hshort ,
though in a less exact way. The next table summarizes all
clasp variants and conflict resolution heuristics under con-
sideration, denoting the unmodified version simply by clasp:

Label Heuristics Goal
clasp — speeding up unit propagation

claspshort Hshort recording short nogoods
clasplex Hlex performing long backjumps
claspavg Havg performing long backjumps
claspres Hres shortening conflict resolution

claspactive Hactive search space pruning
claspprop Hprop search space pruning

Note that all clasp variants perform early conflict detection,
that is, they encounter a unique conflicting assignment be-
fore beginning with conflict resolution. Furthermore, all of
them perform conflict resolution according to the First-UIP
scheme. Thus, we do not explore the first two among the
three degrees of freedom mentioned in the introductory sec-
tion and concentrate fully on the choice of resolvents.

We conducted experiments on the benchmarks used in
categories SCore and SLparse of the first ASP system com-
petition (Gebser et al. 2007d). Tables 1–4 group bench-
mark instances by their classes, viz., Classes 1–11. Via su-
perscripts s and r in the first column, we indicate whether
the n instances belonging to a class are structured (e.g.,
15-Puzzle) or randomly generated (e.g., BlockedN-Queens).
We omit classifying Factoring, which is a worst-case prob-
lem where an efficient algorithm would yield a crypto-
graphic attack. Furthermore, Tables 1–4 show results for
computing one answer set or deciding that an instance has no
answer set. For each benchmark instance, we performed five
runs on different shuffles, resulting in 5n runs per bench-
mark class. All experiments were run on a 3.4GHz PC un-
der Linux; each run was limited to 600s time and 1GB RAM.
Note that, in Tables 1–3, we consider only the instances on
which runs were completed by all considered clasp variants.

Table 1 shows the average lengths of First-UIP-Nogoods
for the heuristics aiming at short nogoods, implemented by
claspshort and clasplex , among which the latter uses the
lengths of antecedents as a tie breaker. For comparison, we
also include original clasp. On most benchmark classes, we
observe that claspshort as well as clasplex tend to reduce the
lengths of First-UIP-Nogoods, up to 14 percent shorter than
the ones of clasp on BlockedN-Queens. But there remains
only a slight reduction of about 6 percent shorter First-
UIP-Nogoods of clasplex in the summary of all benchmark
classes (weighted equally). We also observe that claspshort ,
more straightly preferring short antecedents than clasplex ,

No. Class n claspshort clasplex clasp

1s 15-Puzzle 10 22.33 22.35 23.03
2r BlockedN-Queens 7 27.32 28.23 31.85
3s EqTest 5 172.12 178.27 189.12
4 Factoring 5 134.95 130.67 141.34
5s HamiltonianPath 14 12.96 11.73 12.04
6r RandomNonTight 14 31.82 32.07 32.74
7r BoundedSpanningTree 5 35.06 36.68 33.95
8s Solitaire 4 24.55 22.02 25.03
9s Su-Doku 3 16.22 15.09 13.99
10s TowersOfHanoi 5 52.89 52.31 58.29
11r TravelingSalesperson 5 101.37 90.35 99.26

Average First-UIP-Nogood Length 45.15 44.46 47.21

Table 1: Average lengths of First-UIP-Nogoods per conflict.

No. Class n claspavg clasplex clasp

1s 15-Puzzle 10 2.12 2.14 2.10
2r BlockedN-Queens 7 1.07 1.08 1.07
3s EqTest 5 1.03 1.04 1.03
4 Factoring 5 1.20 1.21 1.20
5s HamiltonianPath 14 2.53 2.58 2.62
6r RandomNonTight 14 1.15 1.16 1.15
7r BoundedSpanningTree 5 3.12 3.47 3.06
8s Solitaire 4 3.34 3.28 2.92
9s Su-Doku 3 2.55 3.01 2.76
10s TowersOfHanoi 5 1.46 1.46 1.40
11r TravelingSalesperson 5 1.27 1.51 1.43

Average Backjump Length 1.89 1.99 1.89

Table 2: Average backjump lengths per conflict.

does not reduce First-UIP-Nogood lengths any further. In-
terestingly, there is no clear distinction between structured
and randomly generated instances, neither regarding magni-
tudes nor reduction rates of First-UIP-Nogood lengths.

Table 2 shows the average backjump lengths in terms of
decision levels for the clasp variants aiming at long back-
jumps, viz., claspavg and clasplex . We note that average
backjump lengths of more than 2 decision levels indicate
structured instances, except for BoundedSpanningTree. Re-
garding the increase of backjump lengths, claspavg does not
exhibit significant improvements, and the polarity of dif-
ferences to original clasp varies. Only the more sophisti-
cated heuristics of clasplex almost consistently leads to in-
creased backjump lengths (except for HamiltonianPath), but
the amounts of improvements are rather small.

Table 3 shows the average numbers of conflict resolu-
tion steps for claspres and clasplex , among which the for-
mer particularly aims at their reduction. Somewhat surpris-
ingly, claspres in all performs more conflict resolution steps
even than original clasp, while clasplex almost consistently
exhibits a reduction of conflict resolution steps (except for
Su-Doku). This negative result for claspres suggests that
trimming conflict resolution regardless of its outcome is not
advisable. The quality of recorded nogoods certainly is a key
factor for the performance of conflict-driven learning solvers
for ASP and SAT, thus, shallow savings in their retrieval are
not worth it and might even be counterproductive globally.



No. Class n claspshort clasplex claspavg claspres claspactive claspprop clasp

1s 15-Puzzle 10
195.00 203.96 203.54 248.00 261.44 226.96 241.18
0.13 0.14 0.14 0.15 0.16 0.15 0.14

2r BlockedN-Queens 7
27289.06 26989.57 28176.00 27553.63 30240.71 29119.60 28588.34

116.87 (24) 122.04 (21) 39.70 (27) 86.24 (24) 138.01 (22) 68.10 (25) 24.52 (22)

3s EqTest 5
62430.92 62648.96 59330.52 62705.00 62374.84 63303.44 62290.76

19.47 21.66 19.41 19.98 20.03 21.30 15.66

4 Factoring 5
15468.44 14838.64 14985.72 16016.56 16365.52 15404.64 16920.68

6.30 5.85 6.27 6.55 6.36 6.36 5.11

5s HamiltonianPath 14
703.70 683.29 653.19 564.83 764.16 694.33 650.70
0.05 0.05 0.05 0.04 0.06 0.05 0.05

6r RandomNonTight 14
427031.71 411024.73 402846.21 429955.23 423332.74 405476.81 406007.41

53.85 55.17 51.53 54.92 53.33 52.78 41.79

7r BoundedSpanningTree 5
879.92 640.88 801.76 634.96 662.22 940.92 949.84
4.51 4.37 4.38 4.36 4.27 4.98 4.42

8s Solitaire 4
193.85 145.85 103.40 134.75 103.40 95.90 134.00

66.14 (2) 0.22 (5) 30.81 (4) 0.22 (5) 0.21 (5) 0.21 (5) 0.23 (4)

9s Su-Doku 3
123.40 127.80 164.60 111.93 108.67 119.87 123.93

. 18.89 19.85 19.75 19.10 19.39 19.77 19.96

10s TowersOfHanoi 5
145064.20 124222.96 71220.52 140386.64 97411.80 134192.96 133760.48

62.43 46.69 21.86 52.19 32.76 47.63 37.60

11r TravelingSalesperson 5
2512.20 1018.80 3243.16 2535.40 1334.32 2500.16 947.56
34.06 21.63 42.22 36.77 25.70 34.42 20.89

Average Number of Conflicts 56824.37 53545.45 48477.39 56737.24 52748.20 54339.63 54217.91
Average Time (Sum Timeouts) 31.89 (26) 24.81 (26) 19.68 (31) 23.38 (29) 25.02 (27) 21.31 (30) 14.20 (26)

Average Penalized Time 49.25 46.75 45.28 48.05 47.12 47.14 37.27

Table 4: Average numbers of conflicts and runtimes.

No. Class n claspres clasplex clasp

1s 15-Puzzle 10 102.95 103.45 103.77
2r BlockedN-Queens 7 18.17 17.61 17.74
3s EqTest 5 86.94 84.78 85.76
4 Factoring 5 325.54 290.36 296.07
5s HamiltonianPath 14 11.87 12.03 12.14
6r RandomNonTight 14 16.41 16.47 32.74
7r BoundedSpanningTree 5 20.11 20.27 20.66
8s Solitaire 4 79.05 67.70 79.89
9s Su-Doku 3 21.48 20.86 19.73
10s TowersOfHanoi 5 41.60 40.36 42.69
11r TravelingSalesperson 5 141.68 96.06 122.98

Average Number of Resolution Steps 78.71 70.00 75.83

Table 3: Average numbers of resolution steps per conflict.

Finally, Table 4 provides average numbers of conflicts and
average runtimes in seconds for all clasp variants. For each
benchmark class, the first line provides the average num-
bers of conflicts encountered on instances where runs were
completed by all clasp variants, while the second line gives
the average times of completed runs and numbers of time-
outs in parentheses. (Recall that all clasp variants were run
on 5n shuffles of the n instances per class, leading to more
than n timeouts on BlockedN-Queens and, with some clasp
variants, also on Solitaire.) At the bottom of Table 4, we
summarize average numbers of conflicts and average run-
times over all benchmark classes (weighted equally). Note
that the last but one line provides the sums of timeouts in
parentheses, while the last line penalizes timeouts with max-

imum time, viz., 600 seconds. As mentioned above, origi-
nal clasp is highly optimized and does not suffer from the
overhead incurred by the extended infrastructure for apply-
ing heuristics in conflict resolution. As a consequence, we
observe that original clasp outperforms its variants on most
benchmark classes as regards runtime. Among the variants
of clasp, claspavg in all exhibits the best average number of
conflicts and runtime. However, it also times out most often
and behaves unstable, as the poor performance on Classes 2
and 11 shows. In contrast, claspshort and clasplex lead to
fewest timeouts (in fact, as many timeouts as clasp), and
clasplex encounters fewer conflicts than claspshort . Vari-
ant claspactive , preferring “critical” antecedents, exhibits a
comparable performance, while claspres and claspprop yield
more timeouts and also encounter relatively many conflicts.
Overall, we notice that some clasp variants perform reason-
ably well, but without significantly decreasing the number
of conflicts in comparison to original clasp. As there is no
clear winner among our clasp variants, unfortunately, they
do not suggest any “universal” conflict resolution heuristics.

Discussion
We have proposed a number of heuristics for conflict resolu-
tion and conducted a systematic empirical study in the con-
text of our ASP solver clasp. However, it is too early to con-
clude any dominant approach or to make general recommen-
dations. As has also been noted in (Mitchell 2005), conflict
resolution strategies are almost certainly important but have
received little attention in the literature so far. In fact, dedi-
cated approaches in the SAT area (Ryan 2004; Mahajan, Fu,



& Malik 2005) merely aim at reducing the size of recorded
nogoods. Though this might work reasonably well in prac-
tice, it is unsatisfactory when compared to sophisticated de-
cision heuristics (Goldberg & Novikov 2002; Ryan 2004;
Mahajan, Fu, & Malik 2005; Dershowitz, Hanna, & Nadel
2005) resulting from more profound considerations. We thus
believe that heuristics in conflict resolution deserve further
attention. Future lines of research may include developing
more sophisticated scoring mechanisms than the ones pro-
posed here, combining several scoring criterions, or even de-
termining and possibly recording multiple reasons for a con-
flict (corresponding to different conflict graphs). Any future
improvements in these directions may significantly boost the
state-of-the-art in both ASP and SAT solving.
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