
Tools for Representing and Reasoning about Biological Models in
Action Language C

Steve Dworschak and Torsten Grote and Arne König and Torsten Schaub and Philippe Veber
Universität Potsdam, Institut für Informatik, August-Bebel-Str. 89, D-14482 Potsdam, Germany

Abstract

We elaborate upon the usage of action language C for repre-
senting and reasoning about biological models. First, we pro-
vide a simple extension of C allowing for variables and show
its usefulness in modeling biochemical reactions according
to the well-known model of BIOCHAM. Second, we show
how the biological action description language CTAID can be
mapped onto C. Finally, we describe a toolbox for using ac-
tion languages, including among them, a compiler mapping
C and CTAID to logic programs under answer sets seman-
tics along with a web-service integrating different front- and
back-ends for addressing dynamical systems by means of ac-
tion description languages via answer set programming. This
is accompanied by an empirical evaluation with existing sys-
tems for processing action description languages.

Introduction
We elaborate upon action languages (Gelfond and Lifs-
chitz 1998) for qualitative modeling of biological networks.
Action languages are formal models used for reasoning
about the effects of actions, while being close to natu-
ral language. Central to this approach to formalizing ac-
tions is the concept of a transition system, which consti-
tutes its semantic underpinning. The first action language
for representing and reasoning about biological networks
was introduced in (Tran and Baral 2004; Baral et al. 2004;
Tran 2006) and further extended in (Dworschak et al. 2008)
leading to action language CTAID .

In what follows, we extend the overall approach in sev-
eral ways while centering it on the classical action language
C (Giunchiglia and Lifschitz 1998). To begin with, we pro-
vide a simple extension of C allowing for variables and show
its usefulness in modeling biochemical reactions according
to the well-known model of BIOCHAM. Similar to the ap-
proach taken in the dlvk system based on action language
K (Eiter et al. 2003a), we delegate the treatment of vari-
ables to Answer Set Programming (ASP; (Baral 2003)) in
order to be able to use ASP grounders for variable instan-
tiation. Second, we provide a translation mapping the bio-
logically motivated action description language CTAID onto
C and give a result fixing the formal correspondence. This
allows us to further develop CTAID within a broader and
well-established framework, avoiding further dedicated im-
plementations. Moreover, it provides CTAID with access

to further implementations of C, like CCalc (Giunchiglia
et al. 2004) or CPlan (Castellini, Giunchiglia, and Tac-
chella 2003) (even though they cannot harness existing ASP
grounders for variable treatment). Finally, we describe a
toolbox for using action languages, including among them,
a (pipe-based) compiler mapping C and CTAID to logic pro-
grams under answer sets semantics along with a web-service
integrating different front- and back-ends for addressing dy-
namical systems by means of action description languages
via answer set programming. Our tools are designed for
an easy and flexible integration with existing open source
tools via pipes, in particular, ASP grounders and solvers, as
well as further front- and back-ends. This is accompanied by
an empirical evaluation with existing systems for processing
action description languages.

Background
Answer Set Programming. Our language is built from a
set F of function symbols (including the natural numbers), a
set V of variable symbols, and a set P of predicate symbols.
The set T of terms is the smallest set containing V and all
expressions of the form f(t1, . . . , tn), where f ∈ F and ti ∈
T for 1 ≤ i ≤ n. The set A of atoms contains expressions
of the form p(t1, . . . , tn), where p ∈ P and ti ∈ T for
1 ≤ i ≤ n. A literal is an atom a or its negation ¬a; both
can be preceded by default negation, denoted as not a and
not ¬a, respectively. For a ∈ A, we let a = ¬a and¬a = a.
A logic program over A is a set of rules of the form

a← b1, . . . , bm,not cm+1, . . . ,not cn (1)

where a, bi, cj are literals over A for 0 < i ≤ m < j ≤ n.
For a rule r as in (1), let head(r) = a, body(r)+ =
{b1, . . . , bm}, and body(r)− = {cm+1, . . . , cn}. Given an
expression e ∈ T ∪ A, let var(e) denote the set of all vari-
ables occurring in e; analogously, var(r) gives all variables
in rule r. The ground instantiation of a program P is de-
fined as grd(P ) = {rθ | r ∈ P, θ : var(r) → U}, where
U = {t ∈ T | var(t) = ∅}; analogously, grd(A) =
{a ∈ A | var(a) = ∅} is the set of all ground atoms. A
set X ⊆ grd(A) ∪ grd(A) is a (consistent) answer set of a
program P over A, if X is the ⊆-smallest model of

{head(r)← body(r)+ | r ∈ grd(P ), body(r)− ∩X = ∅} .



e[5] f[0] t[0] d[0] s[0.0.0] paper.tex 18/08/2008 at 19:41 page 2 #0

Action Language C. Action languages use fluents to de-
scribe the states of a system and actions influence the values
of fluents. In C (and CTAID ), static laws describe properties
between fluents that need to be satisfied in every state of the
system. Dynamic laws describe the effects of actions, that
is, how the system evolves when actions are executed.

More formally, we consider action language C (Gel-
fond and Lifschitz 1998) over a Boolean action signature
〈B,F,A〉, where B is the set {f, t} of truth values, F is a
set of fluent names, and A is a set of action names. In C, an
action description DC over a signature 〈B,F,A〉 consists of
static laws, such as

(caused ϕ if ψ) (2)

and dynamic laws of the form

(caused ϕ if ψ after ω), (3)

where ϕ and ψ are propositional combinations of fluent
names and ω is a propositional combination of fluent and
action names. Every action descriptionDC induces a unique
transition system TC(DC) = 〈S, V,R〉, where S is a set of
states, V is a function determining fluents values in state
s, and R is a relation containing all possible transitions be-
tween states. A trajectory s0, A1, s1, . . . , sn−1, An, sn in a
transition system 〈S, V,R〉 is a sequence of sets of actions
Ai ⊆ A and states si ∈ S where (si−1, Ai, si) ∈ R for
0 ≤ i ≤ n. Intuitively, a trajectory represents one possi-
ble history (or simply path) within a transition system. In
(Gelfond and Lifschitz 1998), several syntactic extensions
are defined. For instance, the rule (ω may cause ϕ if ψ)
is a shorthand for (caused ϕ if ϕ after ψ ∧ ω). Similarly,
(inertial ϕ) is a shorthand for (caused ϕ if ϕ after ϕ).
We refer to (Gelfond and Lifschitz 1998) for more detailed
definitions.

Besides an action description language, both C and CTAID

define a query language. We implemented R (Gelfond
and Lifschitz 1998) as the query language for C and the
query mechanisms described in (Dworschak et al. 2008) for
CTAID . In this paper, we focus only on the transition sys-
tems and our toolbox realizing the different encodings, so
we omit a detailed description of query languages and the
different reasoning modes. In the biological setting, queries
combined with reasoning modes like planning and expla-
nation are used to answer biological questions. For exam-
ple, one is able to determine whether certain states can be
reached in molecular networks, queries about existence of
paths can be answered and it is possible to do high-level ex-
periment planning.

Encoding Action Language C
For implementing action language C, we build upon the
translation to ASP described in (Lifschitz and Turner 1999).
Let DC be an action description over signature 〈B,F,A〉.
We require DC to be definite, that is, the heads ϕ of laws
(caused ϕ if ψ) and (caused ϕ if ψ after ω) are fluent
literals (or the constant ⊥). Furthermore, ψ is a conjunc-
tion of fluent literals and ω is a conjunction of fluent and/or
action literals. In what follows, we denote ϕ by f , ψ by
g1 ∧ . . . ∧ gm and ω by l1 ∧ . . . ∧ ln.

We define a logic program lpn(DC) whose answer sets
correspond to trajectories of length n in the transition system
induced by DC . lpn(DC) contains atoms a(t) and f(t) for
each a ∈ A, f ∈ F and t = 0, . . . , n. For each static law
(caused f if g1 ∧ . . . ∧ gm) in DC , lpn(DC) contains for
each t = 0, . . . , n a rule

f(t)← not g1(t), . . . ,not gm(t) .

Analogously, each dynamic law (caused f if g1 ∧ . . . ∧
gm after lm+1 ∧ . . . ∧ ln) in DC , adds to lpn(DC) for each
t = 0, . . . , n− 1 a rule

f(t+1)← not g1(t+ 1), . . . ,not gm(t+ 1), lm+1(t), . . . , ln(t) .

Furthermore, lpn(DC) contains

¬a(t) ← not a(t), ¬e(0) ← not e(0),
a(t) ← not ¬a(t), e(0) ← not ¬e(0)

for each a ∈ A, t = 0, . . . , n and each e ∈ F .
Our implementation of the encoding allows to use vari-

ables when writing rules in C. This is done by delegating
the grounding of variables to the grounding process of the
underlying logic program. To this end, we start by extend-
ing the syntax of C by a trailing keyword where followed
by domain predicates for binding the variables occurring in
the actual causal laws. To be precise, the causal laws in (2)
and (3) are extended as follows:

(caused ϕ if ψ where δ) (4)
(caused ϕ if ψ after ω where δ) (5)

where ϕ,ψ, and ω are as defined in (2) and (3), except for
containing variables, and δ is a combination of non-fluent
and non-action atoms such that var(ϕ)∪var(ψ)∪var(ω) ⊆
var(δ). Intuitively, δ captures static domain information
used for binding the variables in ϕ,ψ, ω. The concept of a
definite action description generalizes in the obvious way,
restricting δ to conjunctions of non-fluent and non-action
atoms. Now, given such a definite action descriptionDC , the
variable-tolerating extension of lpn(DC) is obtained from
lpn(DC) by extending the body of each resulting logic pro-
gramming rule by d1, . . . , do whenever the causal law con-
tains the condition where d1 ∧ · · · ∧ do.

Let us illustrate the practical impact of this pragmatic
extension by modeling the Biochemical Abstract Machine
(BIOCHAM; (Fages, Sollman, and Chabrier-Rivier 2004;
Chabrier-Rivier et al. 2004)), used to build biochemical sys-
tems. The biological background is indeed very easy. A
modeled scenario consists of different chemical reactions
that specify relations between different compounds. Reac-
tants are compounds that need to be present that a reac-
tion can take place and products are compounds that will
be present after a reaction took place. One can model this
scenario using C with the following rules. At first, our syn-
tax requires to specify a preamble where actions and fluents
are defined:

<action> occurs(R) <where> reaction(R).
<fluent> present(P) <where> compound(P).

• • • — Preliminary Draft — August 18, 2008 — LastChangedRevision : 11227 — • • • p2:#0 —©R©M



e[5] f[2] t[0] d[1] s[0.0.0] paper.tex 18/08/2008 at 19:41 page 3 #0

Strings enclosed in <> are keywords, variables start with
uppercase letters and lines end with a dot. That is, for
every term t belonging to the extension of the predicate
reaction, we introduce the actions occurs(t). For
every term t belonging to the extension of the predicate
compound, we introduce the fluents present(t).

We now can define the dynamics of the system:
<caused> present(P)
<after> occurs(R)
<where> reaction(R), compound(P),

product(P,R).

<caused> <false>
<after> occurs(R),-present(P)
<where> reaction(R),compound(P),

reactant(P,R).

occurs(R) <may cause> -present(P)
<where> reaction(R),compound(P),

reactant(P,R).

<inertial> present(P) <where> compound(P).
<inertial> -present(P) <where> compound(P).

The first rule states that a compound P is present after a reac-
tion R occurred producing P. The second rule is a constraint
enforcing all compounds P to be present if a reaction oc-
curs where P is a reactant of. Note that negation is denoted
as - and <false> as well as <true> are keywords for
the two Boolean constants. The third rule models a certain
non-determinism: The semantics of BIOCHAM defines that
after a reaction occurs, it remains unclear whether the reac-
tants are still present or not. The reason is that the semantics
abstract from concentrations of compounds. That is, we con-
sider two cases: In one transition we assume that the com-
pound P was fully consumed, modeled as -present(P).
The other transition is that P remains to be present. The
last two rules state that compounds that are not affected by
reactions do not change their value 1.

Let us briefly detail how variables are passed through the
encoding proposed in (Lifschitz and Turner 1999). For this,
consider the first rule of the BIOCHAM example:
<caused> present(P)
<after> occurs(R)
<where> reaction(R), compound(P),

product(P,R).

It is translated to the following logic rule:
present_fluent(P,T+1)
:- occurs_action(R,T),

reaction(R),compound(P),product(P,R),
time(T).

Apart from the time-parameter T, we attach variable P to the
fluent present and R to the action occurs. The domain
information given in the <where> statement is then passed
as grounding information to the logic program rule.

1These rules represents the frame axiom: Compounds that are
not consumed remain present, absent compounds that where not
produced remain absent.

The last pending issue is to specify the domains:

compound(a). compound(b).
reaction(r1).
reactant(a,r1). product(b,r1).

The database is represented as a logic program. It can be
seen as static knowledge attached to the modeled dynamic
behavior of the system. In most cases, the database only
contains facts. In the example, we are now able to reason
about a scenario with two compounds and one reaction. An
encoding of a simple version of the biological textbook ex-
ample of the Mitogen-activated protein kinase (MAPK)2 in-
cluding 23 products and 30 reactions, yields a problem in-
stance containing 147 facts. One of the advantages using
variables is that the system can be easily enhanced by ex-
tending the database, that is, without touching the specifica-
tion of the dynamics.

Mapping CTAID to C
As with C, an action description in CTAID is given relative
to an action signature 〈B,F,A〉. The major conceptual dif-
ference between CTAID and C is that the latter implicitly
treats actions to be exogenous. That is, all actions might oc-
cur at every time-point as long as their effects do not lead
to a contradiction. For biological purposes, this behavior
is inappropriate. Unlike this, CTAID allows for specifying
explicit conditions when actions are executed or not. For
example, using CTAID ’s triggering rule, we can describe
properties when (re)actions must be executed immediately.
Furthermore, CTAID offers the following constructs: Inhi-
bition rules express when actions must not be executed and
allowance rules express that actions might occur, but are not
forced to. A default expresses that a fluent takes a certain
value unless it is known otherwise. No-concurrency con-
straints allow to control the parallel execution of actions. In
a more formal way, an action description in CTAID contains
expressions of the following form:

(a causes ϕ if ψ)
(ϕ if ψ)
(ϕ triggers a)
(ϕ allows a)
(ϕ inhibits a)
(noconcurrency ω)
(default f),

where a is an action and ω is either an action or a con-
junction of action literals, ϕ and ψ are conjunctions of fluent
literals and f is a fluent literal. We refer to (Dworschak et
al. 2008) for a more detailed description of CTAID .

We now describe our translation of CTAID into C. To this
end, we need to extend the action signature to accommo-
date some control information. To be precise, we add the
fluents ih(a), tr(a), ex(a), al(a) for each action name a.
Intuitively, these fluents signal properties reflecting the be-
havior of inhibition, triggering, and allowance rules. With

2http://en.wikipedia.org/wiki/MAPK

• • • — Preliminary Draft — August 18, 2008 — LastChangedRevision : 11227 — • • • p3:#0 —©R©M



e[6] f[3] t[1] d[1] s[0.0.0] paper.tex 18/08/2008 at 19:41 page 4 #1

them, we can define the mapping of rules in CTAID to rules
in C as follows.

Definition 1 Let DCTAID be an action description in CTAID

over action signature 〈B,F,A〉. The corresponding action
description DC in C over action signature

〈B,F ∪
⋃

a∈A{ih(a), tr(a), ex(a), al(a)}, A〉 (6)

is defined as follows:

1. For each action name a ∈ A, action description DC con-
tains the static laws

(caused ¬ih(a) if ¬ih(a)),
(caused ¬tr(a) if ¬tr(a)),
(caused ¬ex(a) if ¬ex(a)), and
(caused ¬al(a) if ¬al(a)).

2. For each dynamic law (a causes ϕ if ψ) in DCTAID ,
where ϕ = f1 ∧ . . . ∧ fm, DC contains the laws

(caused fi if > after ψ ∧ a)

for each fi where 1 ≤ i ≤ m.
3. For each static law (ϕ if ψ) in DCTAID

,
where ϕ = f1 ∧ . . . ∧ fm, DC contains the laws

(caused fi if ψ)

for each fi where 1 ≤ i ≤ m.
4. For each allowance rule (ϕ allows a) inDCTAID

,DC con-
tains

(caused al(a) if ϕ) and
(caused ⊥ if > after ¬al(a) ∧ a).

5. For each triggering rule (ϕ triggers a) in DCTAID , DC
contains

(caused tr(a) if ϕ),
(caused ex(a) if > after a),
(caused ⊥ if ¬ex(a) after tr(a) ∧ ¬ih(a)) and
(caused ⊥ if ex(a) after ¬tr(a)).

6. For each inhibition rule (ϕ inhibits a) in DCTAID
, DC

contains

(caused ih(a) if ϕ) and
(caused ⊥ if > after ih(a) ∧ a).

7. For each constraint (noconcurrency ω) inDCTAID , DC
contains

(caused ⊥ if > after ω).
8. For each default rule (default f) inDCTAID

,DC contains

(caused f if f).

9. For each f ∈ F , such that (default f) 6∈ DCTAID
, DC

contains

(caused f if f after f) and
(caused ¬f if ¬f after ¬f).

The symbols > and ⊥ denote the Boolean constants for t
and f in B.

The rules in 1. state that ih(a), tr(a), ex(a), and al(a)
are set to be false by default. As described in 4.–6., they
are only set true when certain properties hold. There is a
direct correspondence between static and dynamic rules in
CTAID and C (cf. 2. and 3.) except the fact that conjunc-
tions in heads are split in order to get a definite action de-
scription. An allowance rule is expressed using a static rule
setting al(a) and a dynamic rule that can be viewed as a
constraint eliminating transitions where action a occurred
while al(a) was false (cf. 4.). Rules given in 5. express
triggering rules: whenever a trigger is applicable, tr(a) is
set and every execution of an action a causes ex(a) to be
true. The second dynamic rule eliminates transitions where
the conditions for a triggering rule were satisfied but a was
not executed, that is, ex(a) is false. Since CTAID gives in-
hibition rules priority over triggering rules, the constraint is
only applicable if ¬ih(a) is satisfied. The third dynamic rule
eliminates transitions where a is executed without having an
applicable trigger. Inhibition rules are mapped in the same
way as allowance rules (cf. 6.). No-concurrency constraints
and defaults in CTAID have a direct correspondence to rules
in C (cf. 7. and 8.). Given that fluents are implicitly inertial3
in CTAID but not in C, for each fluent there is a dynamic rule
in DC that expresses inertial behavior (cf. 9.).

We can show the following result:

Theorem 1 Let DCTAID be an action description in CTAID

over action signature 〈B,F,A〉 and let DC be the corre-
sponding action description in C over the action signature
in (6) generated from DCTAID

using the mapping in Defini-
tion 1.

Then, each trajectory in the transition system TC(DC) (as
defined in (Gelfond and Lifschitz 1998)), corresponds to a
unique trajectory in the transition system induced byDCTAID

(as defined in (Dworschak et al. 2008)) and vice versa.

Problem descriptions in CTAID can now be dealt with
the general-purpose language C. That is, we do not need
a rather complicated (re)definition of semantics in order to
describe transition systems having a biological background
using CTAID . It can now be seen as another layer of interface
on top of the action description language C.

In the following sections we describe how the different
encodings can be used in our toolchain and how they per-
form compared to other implementations.

The BioPlan System
Our approach to representing and reasoning about biological
models is as follows: at first, the biological model needs
to be specified in the action description language of C or
CTAID . This description is compiled into a logic program as
described above and subsequently dealt with using an ASP
system, usually composed of a grounder and a solver. To
a turn 1 nce the logic program is solved, the answers of the 1 DELETEO

3That is, fluents that are neither defaults nor affected directly or
indirectly by dynamic rules do not change their value in a transi-
tion.

• • • — Preliminary Draft — August 18, 2008 — LastChangedRevision : 11227 — • • • p4:#1 —©R©M



e[6] f[7] t[1] d[1] s[0.0.0] paper.tex 18/08/2008 at 19:41 page 5 #1

Accessible via web-interface

C/CTAID

Interfaces

Firefox Editor

?

-

Compiler

al2asp

ASP

SolverGrounder

gringo clasp

6 -

Backends

Textual Output

as2sth

Statistics

gnuplot

6

Figure 1: Overview of our system architecture

solver need to be put back in correspondence to the original
problem specification. Finally, the obtained data needs to
be interpreted in a biologically meaningful way by a human
expert. An overview of our system is given in Figure 1.

Interfaces
To begin with, we have a closer look at the interfaces to our
system. Our system is able to handle the discussed action
descriptions in C and CTAID . For action descriptions in C,
one has to write down the rules in an editor, as shown in the
BIOCHAM example. This is of course also possible using
CTAID . Since CTAID has a much more biological orientation
than C, we offer another interface for CTAID that is more in-
tuitive for users having a purely biological background: A
graphical interface that was built as a Firefox browser ex-
tension. It allows for building rules as a graph whose nodes
(fluents and actions) and edges (causal relationships) corre-
spond to the underlying expressions of CTAID . An example
is shown in Figure 2. Since this paper has more a technical
orientation, we are not detailing a biological example using
CTAID .

Compiler
Once the description is done, it is passed to our compiler
al2asp. As mentioned before, this program is able to
handle the described languages and their different encodings
that need to be given via command line options:
al2asp -l c direct C to ASP encoding
al2asp -l c taid direct CTAID to ASP encoding
al2asp -l c taid2c CTAID to C encoding

While the two first commands yield a logic program4, the
last one outputs rules in C.5
al2asp is implemented in C++ and freely available

at (BioASP Tools). Notably, al2asp relies on scanner
and parser generators flex and bison++, making it easily
amenable to language extensions.

4The direct CTAID to ASP encoding implements a slightly mod-
ified encoding according to the one given in (Dworschak et al.
2008) that is not discussed in this paper.

5One can just reuse the tool to complete the encoding: al2asp
-l c taid2c <file.desc> | al2asp -l c.

An al2asp generated logic program containing vari-
ables appears incomplete. The additional logic program pro-
viding the binding information must be concatenated to the
output of al2asp in order to get the resulting logic pro-
gram that can be grounded. This ground program expresses
the transition system described by the original description in
C.

ASP Tools
Reconsidering Figure 1, the resulting logic program is dealt
with by an ASP system, consisting of a grounder and a
solver component. As discussed, the logical representation
of an action description may contain object variables that are
passed on to the grounder. Our grounder, gringo (Gebser,
Schaub, and Thiele 2007)6, systematically replaces all vari-
ables by ground terms, while aiming at producing a com-
pact propositional program. The resulting program is then
passed to the ASP solver, clasp (Gebser et al. 2007b;
2007a)7, which computes the stable models (see (Baral
2003) for details) of the program. Each such model rep-
resents a valid trajectory in the transition system induced by
the original action description.

Backends
The action description for the BIOCHAM system combined
with the underlying domain induces the transition system
given in Figure 3.

Given that fluent and action names are changed in the log-
ical encoding (ie. an additional time parameter appears as
additional argument) as well as the obtained solutions ap-
pear in an unsorted way, the output of an ASP system must
be transformed in a more readable and problem-oriented for-
mat. To this end, we offer different possibilities to present
the output using the program as2sth: One possibility is
a textual representation of the trajectories that gives a de-
tailed overview of actions and states involved in a given
solution. To illustrate this, recall our BIOCHAM example
and consider the answer sets representing all 8 trajectories
of length 1. Our interface displays them as follows.

6http://www.cs.uni-potsdam.de/gringo
7http://www.cs.uni-potsdam.de/clasp

• • • — Preliminary Draft — August 18, 2008 — LastChangedRevision : 11227 — • • • p5:#1 —©R©M



e[6] f[9] t[1] d[1] s[0.0.0] paper.tex 18/08/2008 at 19:41 page 6 #1

Figure 2: Screenshot of our graphical user interface for CTAID . Problem descriptions can be modeled in a graphical way
by combining nodes with different arrows that correspond to rules in CTAID . The textual representation is generated by the
program in order to process it with our compiler or to directly send the description to our web-based service.

## ANSWER 1 ################
0 A + occurs(r1)
0 F + present(a)
0 F - present(b)
1 F - present(a)
1 F + present(b)
## ANSWER 2 ################
...
## ANSWER 8 ################
0 F + present(a)
0 F - present(b)
1 F + present(a)
1 F - present(b)
## SUMMARY #################
models: 8

The first column denotes the timestep, the second one the
type of the logic literal (action or fluent), the third one the
value of the literal (true or false) and the last one the original
name as used in the action description.

This method becomes inapplicable when the number of
solutions increases, which is the case in most of the biologi-
cal applications. To this end, another possibility is to gener-

ate csv output that can be processed with external programs
like database systems, statistical tools, etc.

A third possibility is to use our built in gnuplot inter-
face: We currently provide some statistical post-processing
counting fluent values and actions at each time step in all tra-
jectories. For example, let us assume that a fluent f appears
to be true at a certain timestep t in all trajectories. When pre-
senting all occurrences of fluents (or actions) in a graphical
way, one can easily see that fluent f is essential for having
solutions.8 Although our simple BIOCHAM example fo-
cuses on the transition system (having no queries at all), the
graphical representation can already be useful to get an idea.
Reconsider the transition system given in Figure 3. Figure 4
is the graphical representation of all 128 trajectories having
a length of 6. It is easy to see that there is a direct cor-
respondence between the presence of compound a and b.
While a tends to decrease, b tends to increase.9 It is nearly

8This can also be seen as a cautious reasoning mode.
9Indeed, this outcome seems to be trivial since this is exactly

the relation between the two compounds that was modeled before.
But on larger scale examples it is possible to identify relations that

• • • — Preliminary Draft — August 18, 2008 — LastChangedRevision : 11227 — • • • p6:#1 —©R©M



e[6] f[12] t[1] d[1] s[0.0.0] paper.tex 18/08/2008 at 19:41 page 7 #2

a b ¬a b

a ¬b ¬a¬b

r1,
{}

{} {}

{}

r1 r1

r1

Figure 3: Transition system of the BIOCHAM example.
a and b are shorthands for fluents present(a) and
present(b), r1 is a shorthand for action occurs(r1).
{} denotes the empty action, that is, no action is executed
in a transition labeled like this. Note that the loop at node
{a, b} describes two transitions.

Figure 4: Graphical representation of all trajectories of the
BIOCHAM example having length 6. Y-Axis denotes the
percentage of true propositions (resp. the presence of com-
pounds), and X-Axis denotes the timesteps. The two dif-
ferent bars represent the compounds a and b. For exam-
ple, consider the second bar at timestep 1: it denotes that
present(b) is true at timestep 1 in 50% out of all answer
sets.

impossible to gain such information by only looking at the
calculated trajectories.

Toolchain Access
The whole reasoning tool is accessible in two ways. The first
possibility is to download the tools described in Figure 1
from (BioASP Tools) and to run them on a local machine.
We are building up a graphical tool wrapping the underly-
ing command-line execution of the described tools. By now,
given that the tools are available on a Linux machine, a user
may start the different programs via pipelining by hand. For
example, if we have a our BIOCHAM description in C given
in a file named biocham.alc, the domain specification
given in a file named biocham.stat and want to display
the chart as given in Figure 4 using gnuplot, you invoke on
your local system the following commands:

$UNIX> al2asp -l c biocham.alc | \
cat - biocham.stat | \
gringo -c n=5 | clasp 0 | \
as2sth --csv | \
asplot present(a) present(b) \
&& gnuplot plot.plt

The second possibility is more user-friendly. To this end,
we built up a web-based interface at (BioASP Tools), where
the described tools are fully encapsulated as a server appli-
cation. In this way, one can use the whole reasoning sys-
tem without installing local applications. The mentioned
Firefox-Plugin to describe CTAID problems in a graphical

were not given explicitly in the action description.

way is able to access the web interface directly by send-
ing the underlying action description to the web server. We
added several examples on our web interface, where one can
see how descriptions and queries to the system look like and
how a user is able to access the different backends.

Benchmarks
In this section, our core tools (al2asp, gringo and
clasp) will be empirically compared to the systems
CCalc (Giunchiglia et al. 2004) and dlvk (Eiter et al.
2003a) since all of them use input languages based on C.
Unfortunately, the system CPlan (Castellini, Giunchiglia,
and Tacchella 2003) is no longer maintained and the authors
provided a windows executable only which was not usable
in our benchmark setting.

The benchmarks were carried out on an Intel Core2Duo
6400 with 2.13GHz and 2 GB RAM running a 32-bit
version of Ubuntu GNU/Linux. For our tests, we used
al2asp v0.4, gringo v1.0.0 and clasp v1.0.5 with de-
fault settings. CCalc was used in version 2.0 and among
the provided SAT solvers grasp was used. Although
grasp does not provide the current state of the art SAT solv-
ing techniques, it was the only solver in our tests that pro-
duced all solutions. Regarding dlvk, we used release 2007-
10-11 with default settings.

Concerning pure planning problems, one is often inter-
ested in finding only the first solution. This issue is different
in our approach, in most of the biological applications there
is a need to consider all solutions. For example, recall Figure
4 where we need to process all answer sets in order to do sta-
tistical analysis. Biological queries to the system often lead
to a large number of answers that need to be processed by
biologists afterwards. Due to biologist’s additional knowl-
edge, some of the answers might make no sense in the real
biological background and sometimes they want to figure
out subsets satisfying certain constraints they did not know
before. 2 To this end, we consider both cases when compar- 2 SD: rewrote this

ing the different systems, finding one, and finding all solu-
tions.

Unfortunately, our current biological applications get
solved too fast to make systems comparable. Being not
generic10, a comparison of different systems using our bio-
logical problems is not yet feasible. We use crafted artificial
problems instead to compare performance of systems.

The first problem is the well known blocks world which
consists of a table and several blocks. Given an initial state
of piled up blocks, the planning system’s task is to find out
how to rearrange the blocks such that they are piled up in
a predefined order. We used the dlvkencoding and prob-
lem instances from (Eiter et al. 2003b). Due to advances in
computer hardware, these old instances are solved too fast to
get reasonable runtimes. That is why we came up with five
additional instances (p6 - p10, see Table 1) which are still
demanding for the systems running on today’s hardware.

Our second benchmark suite lights out11 is very similar to
10Unlike most artificial problems, we do not have parameters

controlling the size of problem instances.
11Idea taken from General Gameplaying Competition 2008.

• • • — Preliminary Draft — August 18, 2008 — LastChangedRevision : 11227 — • • • p7:#2 —©R©M



e[6] f[13] t[1] d[1] s[0.0.0] paper.tex 18/08/2008 at 19:41 page 8 #2

No. Instance length bioplan - one CCalc - one dlvk - one bioplan - all CCalc - all dlvk - all

1 p01 05 0.31 0.51 0.06 0.32 0.51 0.06
2 p02 06 0.22 0.35 0.05 0.22 0.42 0.05
3 p03 08 1.19 1.21 1.21 1.21 8.23 4.57
4 p04 09 3.89 3.88 1.17 4.05 5.74 15.19
5 p05 11 5.04 5.39 2.92 4.92 11.24 22.98
6 p06 13 4.21 3.88 21.15 4.78 408.23 —
7 p07 14 8.76 7.08 42.04 11.81 364.22 —
8 p08 16 36.88 14.28 — 133.49 — —
9 p09 16 39.39 129.15 — 41.75 — —

10 p10 17 66.68 — — 85.83 — —

Average Time (Sum Timeouts) 17.49 (0) 19.47 (3) 10.54 (9) 20.61 (0) 122.87 (9) 9.58 (15)
Average Penalized Time 17.49 77.52 187.38 20.61 266.01 304.79

Table 1: Blocks world experiments computing one and all solutions

No. Instance length bioplan CCalc dlvk

1 l1nc 10 0.10 0.14 17.81
2 l2nc 15 0.20 0.19 —
3 l3nc 20 2.12 0.26 —
4 l4nc 25 — 0.39 —

5 l1c 1 8.63 — 2.43
6 l2c 1 17.39 — 5.24
7 l3c 1 26.41 — 8.09
8 l4c 1 35.43 — 10.56

Average Time (Sum Timeouts) 12.90 (3) 0.24 (12) 8.82 (9)
Average Penalized Time 86.29 300.12 230.51

Table 2: Lights out experiments computing one solution

the bomb in the toilet problem: All of a variable number of
light bulbs has to be switched off. In every state, every light
can either be switched on or off. The problem comes in two
flavors, either with concurrent execution of actions allowed
or with concurrency disabled. The optimal12 plan length in
the latter case is equal to the number of light bulbs. It is
easy to see that this problem leads to n! many optimal plans
regarding n bulbs that only differ in the sequence of switch-
ing off bulbs. Due to this behaviour, we omit computing all
solutions as in the blocks world setting.

The results of the blocks world benchmarks are listed in
Table 1 and the lights out results are in Table 2. For every
problem instance, we measured the time in seconds of three
separate solving processes and computed the average which
is shown in each systems column. A dash indicates that a
system was unable to compute a solution in less than 600
seconds. The column labeled length denotes the length of
the shortest possible plan(s) for the problem instance which
is passed as a parameter to the different systems. The last
row in the tables lists penalized average times. In contrast
to normal average times, the penalized ones take timeouts
into account. Although the system might have taken much
longer to find a solution, the penalized average is computed
as if the system found a solution after 600 seconds.

Results show that compared to the other systems our sys-

12Optimal means that there is at least one solution at bound t,
but no solution can at bound t− 1.

tem performs quite well and appears to be robust. In the
blocks world example, it was the only system that could enu-
merate all solutions in reasonable time. As mentioned, this
issue is especially valuable because our biological applica-
tions often need all solutions to be computed. But also when
only one solution has to be found, our system outperformed
both CCalc and dlvk. CCalc’s performance was compara-
ble to ours until the problems became too hard in benchmark
number 9.

Regarding the lights out problem, CCalc performs sur-
prisingly well when concurrent execution of actions is not
allowed. It computes a solution almost instantly, while dlvk

has difficulties even in the smallest instance. Although be-
ing quite fast with a few light bulbs, the runtime of our sys-
tem rises rapidly as soon as more than twenty bulbs are in-
volved. When allowing concurrency in this example, dlvk

is the fastest system. CCalc seems to have great problems
with the huge13 number of light bulbs which was used in the
problem instances and is unable to find a solution in any in-
stance. Our system performs quite well in this benchmark,
though not as well as dlvk. In general, the benchmarks show
that our system is more than competitive compared to other
planning systems.

Discussion
Although we motivate (and apply) our approach in a biolog-
ical setting, many features are readily applicable to repre-
senting and reasoning about dynamical systems in general.
Centering our approach on C has several benefits. First,
C is a rich and well-studied formalism. Second, it con-
stitutes a mainstream implementation line for action lan-
guages. To this end, we provided a translation of the bi-
ologically motivated action language CTAID to C and de-
vise several tools for dealing with action descriptions in C
(and CTAID ). Among them, we implemented the compiler
al2asp allowing for translating action descriptions in C
(and CTAID ) to logic programs under answer sets seman-
tics. This approach is similar to the one taken by dlvk for
processing action language K. Both approaches exploit the

1325.000 bulbs in instance l1c up until 100.000 bulbs in instance
l4c.

• • • — Preliminary Draft — August 18, 2008 — LastChangedRevision : 11227 — • • • p8:#2 —©R©M



e[6] f[13] t[1] d[1] s[0.0.0] paper.tex 18/08/2008 at 19:41 page 9 #2

grounding and solving capacities of ASP, offering uniform
(and thus instance independent) problem encodings and easy
variable handling. Our approach is supported by a variety of
pragmatic yet indispensable tools for addressing real world
applications. Compared to other planning systems, we are
able to compete with, and sometimes even outperform cur-
rent systems. Finally, our tools (as well as their source code)
and the benchmark problems are freely available at (BioASP
Tools).

References
Baral, C.; Chancellor, K.; Tran, N.; Tran, N.; Joy, A.; and
Berens, M. 2004. A knowledge based approach for rep-
resenting and reasoning about signaling networks. In Pro-
ceedings of the Twelfth International Conference on Intelli-
gent Systems for Molecular Biology/Third European Con-
ference on Computational Biology (ISMB’04/ECCB’04),
15–22.
Baral, C.; Brewka, G.; and Schlipf, J., eds. 2007. Pro-
ceedings of the Ninth International Conference on Logic
Programming and Nonmonotonic Reasoning (LPNMR’07),
volume 4483 of Lecture Notes in Artificial Intelligence.
Springer-Verlag.
Baral, C. 2003. Knowledge Representation, Reasoning and
Declarative Problem Solving. Cambridge University Press.
BioASP Tools. http://www.cs.uni-potsdam.
de/wv/bioasp.
Castellini, C.; Giunchiglia, E.; and Tacchella, A. 2003. Sat-
based planning in complex domains: Concurrency, con-
straints and nondeterminism. Artificial Intelligence 147(1-
2):85–117.
Chabrier-Rivier, N.; Chiaverini, M.; Danos, V.; Fages, F.;
and Schächter, V. 2004. Modeling and querying biomolec-
ular interaction networks. Theor. Comput. Sci. 325(1):25–
44.
Dworschak, S.; Grell, S.; Nikiforova, V.; Schaub, T.; and
Selbig, J. 2008. Modeling biological networks by action
languages via answer set programming. Constraints 13(1-
2):21–65.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres, A.
2003a. A logic programming approach to knowledge-state
planning. Artificial Intelligence 144(1-2):157–211.
Eiter, T.; Faber, W.; Leone, N.; Pfeifer, G.; and Polleres,
A. 2003b. A logic programming approach to knowledge-
state planning, ii: The dlvk system. Artificial Intelligence
144(1-2):157–211.
Fages, F.; Sollman, S.; and Chabrier-Rivier, N. 2004. Mod-
elling and querying interaction networks in the biochemical
abstract machine biocham. Journal of Biological Physics
and Chemistry 4:64–73.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub, T.
2007a. clasp: A conflict-driven answer set solver. In Baral
et al. (2007), 260–265.
Gebser, M.; Kaufmann, B.; Neumann, A.; and Schaub,
T. 2007b. Conflict-driven answer set solving. In
Veloso, M., ed., Proceedings of the Twentieth International

Joint Conference on Artificial Intelligence (IJCAI’07),
386–392. AAAI Press/The MIT Press. Available at
http://www.ijcai.org/papers07/contents.php.
Gebser, M.; Schaub, T.; and Thiele, S. 2007. GrinGo: A
new grounder for answer set programming. In Baral et al.
(2007), 266–271.
Gelfond, M., and Lifschitz, V. 1998. Action languages.
Electronic Transactions on Artificial Intelligence 3(6):193–
210.
Giunchiglia, E., and Lifschitz, V. 1998. An action lan-
guage based on causal explanation: Preliminary report. In
Proceedings of the National Conference on Artificial Intel-
ligence (AAAI), 623–630.
Giunchiglia, E.; Lee, J.; Lifschitz, V.; McCain, N.; and
Turner, H. 2004. Nonmonotonic causal theories. Artificial
Intelligence 153(1-2):49–104.
Lifschitz, V., and Turner, H. 1999. Representing transi-
tion systems by logic programs. In Gelfond, M.; Leone,
N.; and Pfeifer, G., eds., Proceedings of the Fifth Interna-
tional Conference on Logic Programming and Nonmono-
tonic Reasoning (LPNMR’99), volume 1730 of Lecture
Notes in Artificial Intelligence, 92–106. Springer-Verlag.
Tran, N., and Baral, C. 2004. Reasoning about triggered
actions in AnsProlog and its application to molecular inter-
actions in cells. In Dubois, D.; Welty, C.; and Williams,
M., eds., Proceedings of the Ninth International Confer-
ence on Principles of Knowledge Representation and Rea-
soning (KR’04), 554–564. AAAI Press.
Tran, N. 2006. Reasoning and hypothesing about signaling
networks. Ph.D. Dissertation, Arizona State University.

This article was processed using the comments style on Au-
gust 18, 2008.
There remain 2 comments to be processed.

• • • — Preliminary Draft — August 18, 2008 — LastChangedRevision : 11227 — • • • p9:#2 —©R©M


