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Abstract

The attractiveness of Answer Set Programming (ASP) and re-
lated paradigms for declarative problem solving is consider-
ably due to the availability of highly efficient yet easy-to-use
implementations. A major driving force for the development
and improvement of tools are standardized problem repre-
sentations, for several reasons. First, they relieve developers
from the burden of inventing their own input formats. Sec-
ond, they establish interoperability between separate tools,
allowing users to easily compare and exchange them without
extensively converting their problem representations. Third,
they facilitate the acquisition of problem descriptions from
distinct sources, which is useful for benchmarking and as-
sessment purposes. Historically, however, standards for rep-
resenting logic programs, serving as inputs to ASP systems,
were mainly dictated by the few available tools. In fact, there
currently are two quasi standards, namely, the formats used
by Iparse and dlv, incompatible with each other. As a first
step towards overcoming this deficiency, this work proposes
an intermediate format for ground logic programs, intended
for the representation of inputs to ASP solvers. The format
is not designed to be a primary input language, given that
ASP systems usually deploy a second component, called a
grounder, to deal with the inputs provided by users. In view
of this, our format is situated intermediate a grounder and a
solver, guided by the example of grounder /parse and solver
smodels, the latter marking the first among nowadays a va-
riety of solvers processing the output of Iparse. However,
the output format of Iparse has some decisive drawbacks,
namely, its restrictive range and limited extensibility. We thus
propose a new intermediate language, where our major de-
sign goals are flexibility in problem representation and easy
extensibility to new language constructs.

Introduction

Answer Set Programming (ASP; (Baral 2003; Gelfond &
Leone 2002; Marek & Truszczyniski 1999; Niemeld 1999))
is a declarative approach to modeling and solving search
problems, represented as logic programs. As illustrated in
Figure 1, an ASP system usually deploys two components:
a grounder and a solver. The input to an ASP system typ-
ically consists of a non-ground problem encoding and a
ground problem instance. In such uniform encodings, the
use of first-order variables reduces size and permits sim-
pler, and therefore easier to write, logic programs. Further-
more, regarding the input language, several extensions have
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Figure 1: Basic Architecture of an ASP System

been proposed, like aggregates, cardinality and weight con-
straints, and optimize statements (Dell’ Armi ef al. 2003;
Leone et al. 2006; Simons, Niemel4d, & Soininen 2002). A
grounder translates such a problem representation (typically
a pair of an encoding and an instance) from the input lan-
guage into a ground logic program, represented in a simpli-
fied, solver-readable form. Starting from a grounder’s out-
put, a solver then searches for answer sets, corresponding to
solutions of the original problem. The most common solv-
ing approaches are based on the Davis-Putnam-Logemann-
Loveland (DPLL; (Davis, Logemann, & Loveland 1962;
Davis & Putnam 1960)) algorithm, like in dlv (Leone et al.
2006) and smodels (Simons, Niemeld, & Soininen 2002),
or Conflict-Driven Clause Learning (CDCL; (Marques-Silva
& Sakallah 1999; Mitchell 2005; Moskewicz et al. 2001)),
e.g., used in clasp (Gebser et al. 2007a).

There currently is a single intermediate language accessi-
ble to ASP solvers, namely, the output format of grounder
Iparse (Syrjinen).! However, the format is not standardized
and might thus change over different I[parse versions, which
is a delicate issue since no version information is included,
e.g., for backward compatibility. The latter also makes ad
hoc extensions of Iparse’s output format intricate and error-
prone.” Furthermore, the fact that Iparse’s output format is
designed to match smodels’ internal data structures necessi-
tates program transformations incurring a loss of structural
information (Liu & Truszczynski 2005). We thus consider
the restrictedness, on the one hand, and the limited extensi-
bility, on the other hand, of Iparse’s output format as serious
drawbacks, making it unsuitable as a general standard.

This work proposes a new intermediate format, called AS-
Pils (“ASP intermediate language standard”), for the use in-
between grounders and solvers. Important design goals are:

'The dlv system uses an internal grounder that is directly cou-
pled with the solver.

ZFor instance, the tool dencode (Janhunen) includes function-
ality for making conversions between the disjunctive rule output
formats of old (up to version 1.0.14) and new versions of Iparse.




e simplicity and efficiency in outputting and parsing;
e independence of grounder and solver implementations;

e support of the existing (input) language constructs (cf.
(Dell’ Armi et al. 2003; Leone et al. 2006) & (Syrjinen));

e support of version information, meta-information, and
user comments; and

o flexibility and easy extensibility.

The development of ASPils is inspired by experiences
made in related fields, such as Boolean Satisfiability (SAT),
having standardized problem description languages, e.g.,
DIMACS format (DIMACS 1993).3 For one, such standard-
ized languages establish interoperability between solvers
and further tools, for instance, tools generating solver inputs.
As a concrete example in ASP, a standardized intermediate
language might enable (arbitrary) solvers to process the out-
put of dlv’s grounding component, and also dlv’s solving
component to process the output of an external grounder.
From a user’s point of view, interoperability facilitates run-
ning different solvers, as a problem encoding written in the
input language of a particular grounder could after ground-
ing be processed by an arbitrary solver. Furthermore, a
standardized intermediate language supported by all solvers
would greatly foster ASP solver competitions, where in the
past the different input formats of d/v and other solvers have
been a major bottleneck (Gebser et al. 2007b). In fact,
as a secondary benefit, a common language eases collect-
ing challenging benchmarks from distinct sources and might
thus push the further development of ASP solvers, like it has
been experienced in SAT. To this end, this paper introduces
ASPils and illustrates its potential usage on examples; full
details are provided in (Gebser et al. 2008a).

In order to put this document in perspective, let us stress
that ASPils is proposed as a standard for the transmission
of ground logic programs from grounders to solvers. At
this stage, our proposal aims at recording the language con-
structs currently supported by Iparse-based solvers as well
as dlv’s solving component and at integrating them into a
common framework, also anticipating future extensions to a
certain extent. Of course, an input format for ASP solvers
can only turn into a standard if it is widely supported and
used in practice, which requires a community effort, espe-
cially, from ASP system developers. Our proposal of ASPils
thus aims at providing a starting point for a community-wide
discussion of a standardized input format for ASP solvers.
Even if such a standard is successfully established, it will
not instantly abolish all differences and peculiarities of ASP
systems. For instance, grounders and integrated ASP sys-
tems may further (have to) use proprietary input languages,
and any modular (Oikarinen & Janhunen 2006), incremen-
tal (Gebser et al. 2008b), or even a system not following
the computational pattern shown in Figure 1 might not be
readily supplied with an appropriate input format. How-
ever, before succeeding to standardize the simplest element
in the workflow of ASP systems, namely, the intermediate

3See (Janhunen 2007; Gebser ef al. 2008a) for detailed discus-
sions of intermediate formats.

language used in-between a grounder and a solver, any at-
tempts to standardize more diversified matters would most
likely be prone to fail. Hence, even though the scope of AS-
Pils is limited to an intermediate representation according to
Figure 1, we think that it may initiate a worthwhile discus-
sion on language standards in ASP.

General Design of ASPils

We now briefly describe the design decisions underlying AS-
Pils, the new intermediate language for ASP we propose
here. Our global goal is to specify a language that has the
potential to become a standard format for inputs to ASP
solvers. Thus, we have to respect that different ASP solvers
support different language constructs, e.g., dlv deals with
aggregates (Dell’Armi et al. 2003) and smodels with ex-
tended rules (Simons, Niemeld, & Soininen 2002). In order
to reflect this diversity, our language must be general and
solver-independent. Furthermore, it is impossible to foresee
language constructs that might evolve in the future. Hence,
extensibility of the language is an important issue. We thus
include a version number in problem descriptions of ASPils.
In addition, normal forms are used to specify language frag-
ments. Their main purpose is to reflect different capabilities
of solvers, which are thus enabled to check whether a prob-
lem description is appropriate before processing it further.

The body of ASPils consists of entries, mainly defining
objects of particular types. The idea is similar to the output
format of Iparse (Syrjdnen), using several rule types. How-
ever, ASPils goes further than Iparse by not restricting types
to rules, rather, all entities in a ground logic program, e.g.,
atoms, conjunctions, disjunctions, etc., are objects having a
type. An advantage of this is that complex structures oc-
curring in a program, e.g., conjunctions of cardinality and
weight constraints, can be represented in a modular and
structure-preserving way. In contrast, Iparse would have to
introduce new atoms and rules to represent complex struc-
tures in its restrictive output format. Another advantage of
types is the easy embedding of new language constructs, as
it only requires the definition of a type identifier and a syn-
tax for objects of the type. To avoid clashes of custom type
identifiers, we use numbers consisting of a “major” and a
“minor” slot (similar to IP addresses), where the major slot
ought to be related to a research group defining the type. If
newly introduced types turn into a standard, they can be in-
tegrated into ASPils via an additional normal form or even a
new language version.

As mentioned above, every object occurring in a prob-
lem description has an associated type. In addition, each
object has a unique ID, that is, a positive integer, to refer
to the object. This makes the language modular because,
on the syntactic level, other objects make use only of the
ID of an referenced object, but not of its internal structure.
Hence, if new language constructs are introduced, their ob-
jects can immediately be used within available structures,
without needing to exchange them. A second potential ben-
efit of object IDs is the possibility to re-use them if the same
object has multiple occurrences in a ground logic program,
thus compacting the representation. Note that this accounts



for ordinary propositional atoms as well as for non-atomic
structures, such as conjunctions and disjunctions.

On the technical level, our language shall be easy to parse,
independent of system environments, and resistant against
potential parsing errors. To this end, we use a numeri-
cal text format and number O as an explicit delimiter for
entries. As O can also occur within an entry (not as de-
limiter), each entry must specify its number of consecu-
tive (numeric and/or symbolic) parameters directly after its
type. This shall enable the correct syntactic decomposi-
tion of ASPils sentences, even without recognizing the con-
tents, and it deliberately introduces a layer of redundancy
in order to avoid parsing errors. Also note that most pa-
rameters occurring in entries are numeric and thus repre-
sented by integers, which should facilitate their recogni-
tion by solvers. In particular, negative integers are used
to denote the default negations of objects having the ab-
solute values as their IDs. Of course, the use of numbers
makes ASPils less human-readable, but human-readability
is not one of our design goals anyway. Symbolic infor-
mation can still be included, most likely, for defining atom
names, but usually such information needs not be interpreted
by solvers. Furthermore, arbitrary meta-information as well
as user comments can be provided using dedicated types.
Note that comments are the only kind of objects not hav-
ing an ID, as they ought to be ignored by solvers. In con-
trast, meta-information may be exploited by solvers, but it
should not be mandatory for solvers to recognize it. We
do not suggest any kind of meta-information, but infor-
mation like whether a logic program is tight (Fages 1994;
Erdem & Lifschitz 2003) or whether it has an answer set
might be useful for particular purposes.

Language Description

This section describes the elementary constituents of our
proposed intermediate language ASPils, where we focus on
intuitions and examples. The formal specification of ASPils
can be found in (Gebser er al. 2008a). Below, italic and
typewriter fonts indicate non-terminals and terminals,
respectively, in the grammar of ASPils.

Header
Every sentence of ASPils starts with a header.* E.g., header
131300

consists of a 1 indicating the type header, a 3 providing the
number of parameters before the delimiter, the second 1 stat-
ing that this is the first version of ASPils, the second 3 indi-
cating conformance to normal form “SModels” (introduced
below), a 0 stating that there are no additional headers, and
the second 0 delimiting the header. Note that language ver-
sion 1 of ASPils, defined in (Gebser et al. 2008a), does not
specify any additional headers, hence, their number will al-
ways be 0. The pattern that a type number is followed by the
number of parameters before delimiter O recurs in each of
the types described below, while the parameters themselves
are specific.

*Only comments are allowed before header and after object eof.

End Of File

Every sentence of ASPils is terminated with an occurrence
of object eof,* 1ooking as follows:

000

The first 0 indicates the object’s type, the second its number
of parameters, and the third one delimits it. (The full stop

@

sign “.” is part of the surrounding text, but not of ASPils.)

Entries

In-between the header and end of file, a ground logic pro-
gram is specified by entries, providing meta-information,
comments, or defining elements of the program at hand.
Each entry starts with its type number, an up to eight digits
long hexadecimal cipher. The first four digits denote the re-
search group that has developed the type; for the core types
described below, the four leading digits are zeros and can
thus be omitted. The last four digits of a type number must
not evaluate to zero (reserved for object eof). Each type
number is followed by the number of consecutive param-
eters before the entry is delimited by an occurrence of 0.
Each entry type imposes particular parameters, that is, the
slots specified in the grammar (Gebser ef al. 2008a) must be
filled with terminals.

Meta-Information. Objects of type 2 can be used to pro-
vide meta-information. Although we do not suggest any par-
ticular meta-object, the following one is syntactically valid:

2 3 42 "tight program" 23 0

Among the 3 parameters of the entry, 42 is the object ID,
"tight program" is a safe verbal, that is, a list of
strings and whitespaces enclosed in double quotes, and 23
is the single element of a list of meta-options (that is, inte-
gers). Meta-information may be exploited by solvers, but
any such information should not affect the semantics of the
specified ground logic program, so that it is admissible for
solvers to simply ignore unrecognized meta-objects.

Comments. Comments of type 3 do not define any object
(i.e., they do not have an object ID as parameter). An exam-
ple comment looks as follows:

3 1 "grounded by GrinGo version 2" 0

As comments are not associated with an ID, they cannot be
referenced by objects defined in an ASPils problem descrip-
tion. In fact, comments are understood to be completely up
to user information, such as the author of a problem de-
scription or the grounder that generated it. Unlike meta-
information, comments must always be ignored by solvers.

Atoms. Objects of type 4 define atoms. E.g., consider:

4 2 8 p(a,l) 0
4 5 15 "-p(a,1l)" 1 2 80

The first entry specifies that object ID 8 stands for an atom
whose name is p (a, 1), and the second entry defines ob-



ject ID 15 to represent another atom with name -p (a, 1) 3
Furthermore, atom option 1, provided for -p (a, 1), de-
clares the atom as hidden, that is, the atom name shall be
suppressed in the output of an ASP solver. We include this
option in order to reflect the effect of hide declarations in the
input language of Iparse (Syrjanen). However, while Iparse
suppresses atom names by not including them in the symbol
table, we choose to keep the symbolic names of atoms and to
signal their hidden nature via an option. In this way, it stays
possible to recover a symbolic representation from the in-
termediate format, as it is done by tool /plist (Janhunen) for
Iparse’s output format using the symbolic information still
available there. The second atom option 2 for —p (a, 1)
declares the atom to be the classical negation of the object
with ID 8, viz., of atom p (a, 1) . Classical negation is un-
derstood in the sense of (Gelfond & Lifschitz 1991). In our
example, it means that atoms p (a, 1) and -p (a, 1) can-
not jointly belong to a stable model of the program at hand.

Rules, Facts, and Integrity Constraints. In ASP, a logic
program is a set of rules, each rule consisting of a head and
a body. Either the head or the body may be constant, in
which case the rule is called a fact or an integrity constraint,
respectively. Let us consider the following example logic
program containing a rule, a fact, and an integrity constraint:

-p(a,1l) :— not p(a,l).
p(a,1).

= —p(a,1l).

Reusing object IDs 8 and 15 forp(a, 1) and -p(a, 1),
respectively, corresponding entries in ASPils are as follows:

53 5515 -8 0
6 2 66 8 0
72 77 15 0

Here, type numbers 5, 6, and 7 indicate that the objects with
IDs 55, 66, and 77 are a rule, a fact, and an integrity con-
straint, respectively. Note that —8 in the first entry refers
to the default negation of the atom with ID 8, viz., of atom
p (a, 1). Furthermore, observe that the second entry spec-
ifies only a head literal and the third one only a body liz-
eral, while the rule defined by the first entry contains both
a head and a body literal. The choice of introducing three
different types is motivated by the goal of not imposing any
hard-wired assumptions on the structure of heads and bod-
ies, while still being able to identify the role of particular /it-
erals. Importantly, workarounds such as the _-false atom,
introduced by Iparse (Syrjanen) as the head of integrity con-
straints, ought to be avoided. Due to the generic design of
entries for rules, facts, and integrity constraints, allowing to
refer to arbitrary and possibly default negated objects, there
are no restrictions on the structure of heads and bodies (rules
might even reference each other) a priori. Below, the issue
of ensuring certain formats is dealt with via normal forms.

The name of the second atom must be provided as a safe ver-
bal, enclosed in double quotes. Double quotes may only be omitted
for atom names starting with a letter. Due to this requirement, the
first symbols of atom names and integers become unambiguous.

Conjunctions and Disjunctions. In order to express more
complex rules than the ones given above, entries may specify
conjunctions and disjunctions of literals. For instance,

8 3 89 -8 -15 0

defines an object with ID 89 as the conjunction of the de-
fault negations of the objects with IDs 8 and 15. Similarly,

9 3 98 8 150

defines a disjunction of the objects with IDs 8 and 15.
Assuming that ID 8 stands for atom p (a, 1) and 15 for
-p (a, 1), the entries

72 78 89 0
6 2 67 98 0

describe the following integrity constraint and disjunctive
fact:

:— not p(a,l), not -p(a,l).
p(all) | —p(a,l).

Finally, note that the normal forms described below restrict
conjunctions to occur in bodies of rules and disjunctions to
being used in rule heads.

Default Negation. Programs in “canonical form” (Lee
2005; Lifschitz, Tang, & Turner 1999) permit double (de-
fault) negation of atoms. Rather than permitting multiple
occurrences of “~” at the beginning of a literal (which would
make literals and integers syntactically different), we intro-
duce entries defining default negation objects for represent-
ing nested negation. This allows us to express a “choice”

p(a,1l) :— not not p(a,l).
in terms of the following entries:
a 2 44 -8 0

53 45 8 44 0

Observe that the object defined by the first entry stands for
the default negation of literal —8 and, thus, for the double
negation of the object with ID 8, viz., of atom p(a, 1).
Finally, note that, under answer set semantics, rules using an
atom and those using its double negation are not necessarily
equivalent (Lifschitz, Tang, & Turner 1999), so that double
negation constitutes a proper syntactic feature.

Cardinality and Weight Constraints. Cardinality and
weight constraints (Simons, Niemeld, & Soininen 2002;
Syrjdnen) permit expressing conditions on sets of literals,
that is, true literals can be counted or their weights can be
summed up in order to compare the result against a lower
and an upper bound. Letting object IDs 1, 2, 3, and 4 stand
for atoms a, b, ¢, and d, we can represent the expressions

2{a, b, not c, not d}3

-1[a=-2, b=1l, not c¢=3, not d=-4]2

in ASPils as follows:

b 75 2312 -3 -4 0
clle6-1212-3-4-213-40
Here, the object IDs 5 and 6 of the cardinality and weight
constraint, respectively, are immediately followed by their
lower and upper bounds. Afterwards, the literals are pro-
vided, and for weight constraint 6, also a list of weights (ex-
actly one weight per literal). The primary constituents of a



logic program, viz., rules, facts, and integrity constraints,
can incorporate cardinality and weight constraints just like
atoms, simply by referencing their IDs directly or indirectly
through literals. Observe that, in general, we allow for upper
bounds as well as for negative weights, both of which can
occur in the input language, but not in the output language,
of Iparse. In fact, Iparse performs a number of transforma-
tions and introduces new atoms to remove them. Some of the
normal forms below impose similar restrictions, thus, spec-
ifying Iparse-like fragments of ASPils. In such fragments,
only trivial upper bounds are permitted, obtained by sum-
ming up all (positive) weights, where weight 1 is used for
the literals of cardinality constraints.

Weighted Literals. Weighted literals are auxiliary con-
cepts, devised for the use with aggregates and optimization
statements (see below), thus, establishing a uniform way of
referencing objects (simple or complex ones) evaluating to
numbers. For instance, we may associate weights to literals,
as in the above weight constraint, via the following entries:

d311 1 -20

d312 2 10
d 313 -3 30
d 314 -4 -4 0

Aggregates. We adopt the aggregates supported by dlv
(Dell’ Armi et al. 2003), allowing for five operations, viz.,
count, sum, max, min, and times. While count applies to
Boolean operands, that is, to literals, the other four aggre-
gates operate on numerical values, thus, they require object
IDs rather than literals as parameters. Reusing atoms a, b,
c, and d as well as weighted literals as specified above, we
may define a count and a sum aggregate as follows:

e521 1 2-3-40
£ 522 11 12 13 14 0

Observe that count applies to (possibly negative) literals,
while dlv’s aggregates are restricted to atoms. As such a
restriction does not significantly simplify dealing with ag-
gregates, we do not adopt it here, and the weighted literals
used by sum may also apply to negative literals (as it is the
case for the objects with IDs 13 and 14). However, in or-
der to reasonably apply an aggregate, operands must have
appropriate types, being an issue to the normal forms below.

Operators. Arithmetic comparison operators can be ap-
plied to weighted literals and aggregates in order to retrieve
Boolean values from them. Thus, operators can be refer-
enced by rules, facts, and integrity constraints in the same
way as atoms. We provide two kinds of operators: (binary)
operators of type in-between 13 and 17 can be used to com-
pare the numerical values of two objects with one another,
while unary operators of type in-between 18 and 1c al-
low for comparing an object’s numerical value to an inte-
ger. Both kinds of operators support the following compar-
ison operations: eq (“equal”), leq (“less or equal”), It (“less
than”), geq (“greater or equal’), and gt (“greater than”). For
instance, the following entry describes the application of the
(binary) operator eq to the aggregates with IDs 21 and 22
as defined above:

13 3 31 21 22 0

An application of unary operator leq to the aggregate with
ID 22 and integer O can be specified as follows:

19 3 91 22 0 O

Finally, note that current ASP solvers do not support (bi-
nary) operators of type in-between 13 and 17, hence, they
will not be permitted by the normal forms below.

Optimization. Amongst the most common optimization
techniques in ASP are “minimize statements” (Simons,
Niemeld, & Soininen 2002) supported by smodels and
“weak constraints” (Leone et al. 2006) supported by dlv. In
order to reflect them, we introduce an optimize object whose
underlying strategy is minimization of (arbitrarily many) ob-
jective functions of distinct priorities, the priorities forming
a strict total order. Other strategies than lexicographic or-
dering of objective functions, e.g., Pareto optimality, would
also be possible but are currently not in use, so we do not
(yet) consider them. In what follows, we detail how “mini-
mize statements” and “weak constraints” can be represented
in ASPils.

Minimize Statements of smodels: Assume that an input
program provided to /parse contains two minimize state-
ments (in order):

minimize[not a, b, c].
minimize[a=4, not b=3, c=2].

The first statement expresses that a minimum number of
its literals should be true, while the second one is about
minimizing the sum of weights of true literals. The cor-
responding objective functions are expressed by a count
and a sum aggregate (over weighted literals), respectively,
where we assume IDs 1, 2, and 3 for atoms a, b, and c:

d 311 1 4 0
d3 12 -2 3 0
d 313 3 2 0
e 421 -1 2 30
f 4 22 11 12 13 O

Note that the count aggregate with ID 21 gives the objec-
tive function minimized by the first statement over liter-
als, and the sum aggregate with ID 22 takes the weights
provided in the second minimize statement into consider-
ation. We are now ready to define a single optimize object
that incorporates both aggregates:

1d 4 43 le 22 21 O

The type of this object is 1d, 4 the number of parame-
ters, and 43 the ID. Furthermore, 1e specifies the lexi-
cographic optimization strategy, which is the only strat-
egy included in the first version of ASPils. Finally, min-
imizing the numerical value of the sum aggregate with
ID 22 takes higher priority than minimizing the value of
the count aggregate with ID 21. This priority, reverse to
the order of minimize statements in the input, is indeed
applied by smodels. While smodels derives the (reverse)
priorities of minimize statements implicitly from the or-
der in the input, in the ASPils representation, priorities are
explicit because the objective functions to be minimized
are combined within an optimize object.



Weak Constraints of dlv: We start with an example. Con-
sider the following weak constraints:

" a, not b. [1:2]
“ not c. [1:1]
T b, c. [2:1]

Note that the numbers in brackets describe weights and
levels. As level 2 of the first weak constraint is greater
than 1, the first weak constraint is of higher priority than
the second and the third one. Among the last two weak
constraints, the priority of the third one is greater simply
because its weight 2 is greater than 1. In order to express
the non-singleton bodies of weak constraints, we define
conjunctions as follows:

8 3811 -20
8 3832 30

The conjunction with ID 81 stands for the body of the first
weak constraint, and the one with ID 83 for the body of
the third weak constraint. We can now proceed by defin-
ing weighted literals, one per weak constraint:

d3 11 8110
d321 -310
d 322 8320

Observe that the weight of each weak constraint is the
weight given in the input. Finally, we use a sum aggre-
gate for multiple weak constraints at the same level and
define an optimize object as follows:

f 3 24 21 22 0
1d 4 35 le 11 24 O

The last entry expresses that we minimize weights starting
with the weak constraint at level 2 and, secondarily, for
the weak constraints at level 1.

We now provide a general scheme of how to represent
multiple weak constraints of distinct levels in ASPils.
Consider the following weak constraints ordered by their
levels I;, where we assume [; > [; if ¢« < j in order to
respect level priorities:

27 bodyy, . [wi, ] ... 7 body,, . [wn, i ]

27 body, . [wi,, lm] ... i body, . [wn,, tln].
In ASPils, the bodies body, , ..., body,, of weak con-
straints can be defined by literals either over atoms (for
singleton bodies) or over conjunctions, which can be de-
fined as usual. Thus, we keep notation body,;j in the fol-

lowing weighted literals:
d 3 z1, body,, wi, O

d 3 mp, body,, wn, O

m

d 3 =z, body, w1, O

d 3 zn,, bodynm Whp,, 0.
The weighted literals defined above are similar to those
used in the representation of minimize statements. In
fact, it makes no difference in ASPils whether they re-
fer to atoms or to conjunctions. The next step of adding
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Figure 2: Normal Form Hierarchy

level-wise sum aggregates and a single optimize object is
similar to minimize statements:

f ni+1 s1 T1, ... Tpy O
f nm+1 sm Ti,, --- Tn, O
1d m+2 o 1le s ... sm 0.

The given embeddings in ASPils indicate that minimize
statements and weak constraints are handled likewise, us-
ing weighted literals, sum aggregates (sometimes, simpler
constructs are sufficient), and an optimize object.

Normal Forms

This section describes seven normal forms corresponding
to different language fragments handled by existing ASP
solvers. The normal forms stand in a hierarchy, as shown
in Figure 2. Each of the normal forms is identified via a
corresponding number, given in parentheses in Figure 2, to
be provided within the header of a problem description in
ASPils. The full specification of the normal forms presented
below can be found in (Gebser et al. 2008a). In particu-
lar, admissible object types and reference relationships are
defined for each normal form in turn. In what follows, we
focus on their main features and provide examples.

Normal Form Simple

This normal form corresponds to the input language used in
the SCore category of the ASP system competition (Gebser
et al. 2007b). It allows for representing ground normal logic
programs without any extended constructs (like aggregates,
etc.). For example, consider the following input program:

a :— not b.

b :- not a.

:— b.

c :— d, not b.
d.

#hide a.

This program can be represented in ASPils as follows:®

®We indicate the meanings of objects in comments preceding
their definitions.



3 1 "header, language version =: 1,
normal form =: 1" 0
131100
3 1 "a =: 1 and hidden,
b =:2, ¢c=: 3, d=:4"0
4 31a1l10do0
4 22Db 0
4 23 c0
4 2 4dO0
31 "(a := not b.) =: 5" 0
5351 -20
31 "(b := not a.) =: 6" 0
5362 -10
31 "(:= Db.) =: 7" 0
72720
31 "(d, not b) =: 8" 0
8 384 -20
31 "(c :=d, not b.) =: 9" 0
539380
31 "(d.) =: 10" O
6 210 4 0
3 1 "end of file" O
000

Note that the above representation is not unique, for in-
stance, we could have assigned different object IDs or
changed the order of entries.

Normal Form SimpleDLP

This normal form, corresponding to the input language used
in the SCoreV category of the ASP system competition
(Gebser et al. 2007b), extends normal form “Simple” by
allowing disjunctions over atoms to occur in heads of rules
and facts. E.g., consider the following disjunctive program:

a | b.

b | ¢ | d:- a, not d.
This program can be represented in ASPils as follows:
3 1 "header, language version =: 1,
normal form =: 2" 0
131200
31"a=:1, b=:2, ¢c=:3,d=:4"0
42 1a0d0
4 22Db O
4 23 c0
4 2 4dO0
31 "(a | b) =:5"0
935120
31 "(a | b.) =:06"0
6 2650
31 "(b | c | d =:7"0
9472340
31 "(a, not d) =: 8" 0
8 381 -40
31 "(b | c¢c | d:-a, not d.) =: 9" 0
539780
3 1 "end of file" O
000

As in the previous subsection, this representation in ASPils
is not unique.

Normal Form SModels

This normal form is inspired by the input language of solver
smodels (Simons, Niemeld, & Soininen 2002), that is, it ex-
tends “Simple” by cardinality and weight constraints as well

as optimize objects. Note that the weights used in weight
constraints and weighted literals have to be non-negative.
Furthermore, the upper bounds of cardinality and weight
constraints must be trivial, that is, they cannot be smaller
than the number of literals or the sum of weights, respec-
tively, in a constraint. If a cardinality constraint occurs as
the head of a rule or fact, its lower bound must also be trivial,
viz., it must be 0, while weight constraints are not permitted
as heads. Finally, note that weighted literals as well as count
and sum aggregates may only be used in combination with
an optimize object, but not as a part of a rule, a fact, or an
integrity constraint. Let us consider the following program:

{a, b}.

c :— a, not b.

:— 3[a=2, b=1, not c=2].
minimize[not a=1, not b=2, c=2].

The following is a possible representation in ASPils:

3 1 "header, language version =: 1,
normal form =: 3" 0
131300
31 "a=:1, b=:2, c=: 3"0
421 a0
42 2Db 0
4 23 cO0
31 "{a, b} =: 4" 0
b5402120
31 "({a, b}.) =: 5" 0
6 2540
31 "(a, not b) =: 6" 0
8361 -20
31 "(c := a, not b.) =: 7" 0
537360
3 1 "3[a=2, b=1, not c=2] =: 8" 0
c 98 3 12-32120
31 "(:= 3[a=2, b=1, not c=2].) =: 9" O
72 9 8
3 1 "(not a=1) =: 10, (not b=2) =: 11,
(c=2) =: 12" O
10 -1 1 0
11 -2 2 0
12 320

"sum[not a=1, not b=2, c=2] 13" 0
13 10 11 12 0

"(minimize[not a=1, not b=2, c=2].)
=: 14" 0

1d 3 14 1le 13 0

3 1 "end of file" O

000
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Normal Form CModels

This normal form is closely related to the input language
of solver cmodels (Giunchiglia, Lierler, & Maratea 2006;
Lierler 2005), basically, augmenting “SModels” normal
form with disjunctions in heads of rules and facts.”

Normal Form CModelsExtended

This normal form is derived from “CModels” by dropping
some restrictions. Non-trivial upper bounds are permitted
for cardinality and weight constraints. Furthermore, both of
them can occur with non-trivial bounds as heads of rules and

"While cmodels does not process minimize statements, they can
be expressed in “CModels” via optimize objects.



facts. Finally, negative weights can be used within weight
constraints and weighted literals being subject to optimize
objects. The following program uses these extra features:

0Ola=1l, b=-1]0 := O[c=-1, d=1]0.
0O[c=1, d=-1]0 :- O[a=-1, b=1]0.
minimize[not a=-1, not b=2, c=-2, d=1].

This program can be represented in ASPils as follows:

3 1 "header, language version =: 1,
normal form =: 5" 0

131500

31 "a=:1, b=:2, c=:3, d=:4"0

4 21 a0

4 22DbO0

4 23 c 0

4 2 4dO0

31 "0[a=1, b=-1]0 =: 5" 0

c7500121-10

31 "0O[c=-1, d=1]0 =: 6" O

c760034-110

31 "(0[a=1l, b=-1]0 :—= O[c=-1, d=1]0.)
=: 7" 0

537560

31 "O[c=1, d=-1]0 =: 8" O

c7800341-10

31 "O[a=-1, b=1]0 =: 9" O

c790012-110

31 "(0[c=1, d=-1]0 := O[a=-1, b=1]0.)
=: 10" O

53108 90

3 1 "(not a=-1) =: 11, (not b=2) =: 12,

(c=-2) =: 13, (d=1) =: 14" O

d 3 11 -1 -1 0

d3 12 -2 20

d 313 3 -20

d3 14 4 10

3 1 "sum[not a=-1, not b=2, c=-2, d=1]
=: 15" 0

=

5 15 11 12 13 14 0

3 1 "(minimize[not a=-1, not b=2, c=-2,
d=1].) =: 16" 0

1d 3 16 1le 15 0

3 1 "end of file" O

00O

Normal Form DLV

This normal form is inspired by the input language of solver
dlv (Dell’Armi et al. 2003; Leone et al. 2006). Hence,
it allows for disjunctions over atoms in heads of rules and
facts. Furthermore, aggregates may be used in bodies, under
the proviso that all referenced weighted literals have non-
negative weights.® As dlv does not deal with cardinality
and weight constraints, we exclude cardinality and weight
constraints from “DLV” normal form. (However, cardinal-
ity and weight constraints can equivalently be expressed in
terms of count and sum aggregates, respectively.) Finally,
weak constraints (Leone et al. 2006) can be represented us-
ing optimize objects. For illustration, consider program:

a | b | c.
d :— sum[a=1, b=1l, c=2] >= 2.
:7 d, not b. [1:2]

8The dlv solver requires logic programs to be “aggregate-
stratified” (Dell’ Armi et al. 2003), which is not reflected herein.

:Ta. [2:1]
" not c. [1:1]

The following is a representation of this program in ASPils:

3 1 "header, language version =: 1,
normal form =: 6" 0

131600

31 "a=:1, b=:2, c=:3,d=:4"0

4 21 a0

4 2 2Db 0

4 23 c O

4 2 44dO0

31 "(a | b ] c)=:5"0

9451230

31 "(a | b | c.) =:06"0

6 2650

31 "(a=1) =: 7, (b=1) =: 8, (c=2) =: 9" 0

d3 7110

d38210

d3 9320

3 1 "sum[a=1l, b=1, c=2] =: 10" O

£ 4107 8 90

3 1 "(sum[a=1, b=1, c=2] >= 2) =: 11" 0

1b 3 11 10 2 0

31 "(d := suml[a=1, b=1l, c=2] >= 2.)
=: 12" 0

5312 4 11 0

3 1 "(d, not b) =: 13" 0

8 313 4 -2 0

31 "((d, not b)=1) =: 14, (a=2) =: 15,

(not c=1) =: 16" O

d3 14 1310

d 315 120

d3 16 -3 10

3 1 "sum[a=2, not c=1] =: 17" O

f 3 17 15 16 0

3 1 "(minimize[a=2, not c=1].
minimize[ (d, not b)=1].) =: 18" 0

1d 4 18 1le 14 17 O
3 1 "end of file" 0
00O

Normal Form Conglomeration

This normal form is the most general one provided here.
It results from “CModelsExtended” and “DLV” by drop-
ping some restrictions of the latter, that is, unary opera-
tors and aggregates may occur in the heads of rules and
facts, and negative weights are allowed within weighted lit-
erals. Furthermore, we include default negation objects on
negative literals over atoms in order to account for double
negation. Though double negation is a syntactical feature
that increases neither computational complexity nor techni-
cal difficulties of ASP solving, somewhat astonishingly, it is
currently not supported by any ASP solver nor by accompa-
nying grounders. This is why default negation objects were
not permitted in previous normal forms. The following pro-
gram, comprising a single rule, uses the additional features:

sum[a=1, b=1l, c=1, d=-2] == -
2[a=-1, not b=2, not ¢=3]3, not not d.

This program can be represented in ASPils as follows:

3 1 "header, language version =: 1,
normal form =: 7" O

131700

31 "a=:1, b=:2, ¢c=:3, d=:4"0



4 21 a0

4 22 Db 0

4 2 3 c O

4 2 4dO0

31 "(a=1) =: 5, (b=1) =: 6, (c=1) =: 17,
(d=-2) =: 8" 0

d351 10

d3 62 10

d3 73 10

d384-20

3 1 "sum[a=1l, b=1, c=1, d=-2] =: 9" 0

£f5956 780

3 1 "(sum[a=1l, b=1, c=1, d=-2] == 0)
=: 10" 0

18 310 9 0 O

3 1 "2[a=-1, not b=2, not c¢=3]3 =: 11" O

c 911 231 -2-3-1230

3 1 "(not not d) =: 12" O

a2 12 -4 0

3 1 "(2[a=-1, not b=2, not c=3]3,

not not d) =: 13" O
8 3 13 11 12 O

3 1 "(sum[a=1, b=1, c=1, d=-2] == B
2[a=-1, not b=2, not c¢=3]3,
not not d.) =: 14" 0

53 14 10 13 O

"end of file" 0

00O

w
=

Discussion and Outlook

We have described language version 1 of ASPils (“ASP in-
termediate language standard”); full details can be found
in (Gebser ef al. 2008a). The primary motivation for this
work is making a step towards a standard input language
for ASP solvers to be generated by grounders, for which we
propose ASPils. The major design goals of ASPils are gener-
ality, by supporting language constructs processed by exist-
ing ASP grounders and solvers, and extensibility, by using
an object-based approach and including version information.
For solvers, parsing a problem description in ASPils should
still be reasonably simple, thus, ASPils defines a numerical
format not intended to be manually written by users. How-
ever, ASPils also provides means to specify symbolic in-
formation, enabling the reconstruction of a human-readable
format. Beyond that, via comments and meta-information,
arbitrary contents can be included in a problem description
without disturbing solvers. The current proposal of ASPils is
a good response to the recommendations presented in (Jan-
hunen 2007) as regards extensibility and support for com-
ments as well as symbolic information.

As a proof of concept, we are currently working on a
new version of grounder gringo (Gebser, Schaub, & Thiele
2007) able to output ASPils format and also on an ASPils
front-end for solver clasp (Gebser et al. 2007a). In the
course of this, we take advantage of the generic design of
ASPils allowing us to preserve the structure of ground logic
programs. For instance, gringo can output cardinality and
weight constraints specifying both a lower and a non-trivial
upper bound, and such constraints can occur both in the bod-
ies and in the heads of rules. In contrast, in Iparse’s out-
put format (Syrjinen), upper bounds (and in rule heads, also

lower bounds) have to be compiled away, introducing addi-
tional atoms and rules. Such structure-degrading transfor-
mations are performed by Iparse in order to match the inter-
nal data structures of smodels (Simons, Niemeld, & Soininen
2002), and in the past, tools (Liu & Truszczyniski 2005) were
particularly developed to undo such transformations. As re-
gards grounding, we think that the two tasks of a grounder
are, first, substituting constants for variables in an input pro-
gram and, second, presenting the grounding result to a solver
in some basic format that is easy to parse. Beyond these two
tasks, a grounder should keep the input program intact in
order to be solver-independent and to abolish the need of
applying structure-restoring tools. In particular, introduc-
ing additional atoms during the grounding phase ought to be
avoided, as it is very likely to spoil the desired equivalence
between the input program and the grounding result.

In long-term, we hope that our proposal of an intermedi-
ate language standard leads to the establishment of a com-
mon input format for ASP solvers, comparable to the role
of DIMACS format (DIMACS 1993) in SAT. On the one
hand, it would make ASP more user-friendly if solvers could
be interchanged without redoing problem encodings, given
that the two main input languages, the one of dlv (Leone
et al. 2006) and the one of Iparse (Syrjdnen), are incom-
patible with each other. A common intermediate language
would enhance the interoperability of other auxiliary tools
as well. Similarly, the assessment of ASP solvers would be
greatly facilitated, for instance, in future ASP solver com-
petitions. On the other hand, the non-availability of a stan-
dardized intermediate language (as dlv does not supply an
intermediate format and Iparse’s output language is not stan-
dardized) makes ASP solvers and related tools satellites of
particular grounders, addicted to their capabilities and sup-
ported language fragments. We think that the establishment
of an extensible intermediate language standard, not dic-
tated by the capabilities of grounders, might motivate future
works on knowledge representation for applications, invent-
ing new language constructs when they are useful and then
integrating them into the standard. At the moment, incor-
porating new language features would mean hacking one of
the few available grounding tools, making the broad accep-
tance and usage of the feature rather unlikely. However, the
establishment of an intermediate language standard must be
a community effort, requiring a representative standardiza-
tion committee and developers motivated to implement the
standard in their tools. In view of these requirements, our
proposal of ASPils can serve as a starting point for future
discussions within the community.

Let us note that the establishment of ASPils or a com-
parable intermediate language standard can only be a small
step in making ASP tools more general, more interopera-
ble, and thus more user-friendly. In fact, tools are needed
to perform various useful tasks on problem descriptions in
the new language, similar to what the Helsinki collection
(Janhunen) of tools offers for Iparse’s output format. Let us
give some examples. For the use in ASP system competi-
tions, solver inputs must contain neither meta-information
nor comments, thus, a (trivial to develop) tool to delete such
information would be needed. For benchmarking, a tool



like shuffle is desirable, in particular, considering that shuf-
fling ASPils sentences requires more care than needed with
Iparse’s output format as the order (Gebser et al. 2008a)
among object definitions and references has to be main-
tained. If a grounder generates ASPils output on-the-fly, it is
hard to predict the most restrictive normal form sufficient for
the input program, hence, a postprocessor calculating this
simplest normal form might be useful. As the last exam-
ple given here, a tool like Iplist should be made available
for reconstructing a symbolic representation from the inter-
mediate format. Finally, we note that ASPils or any other
intermediate language cannot establish compatibility among
the input languages of grounders or integrated ASP systems
(such as dIv). Furthermore, modular (Oikarinen & Janhunen
2006), incremental (Gebser et al. 2008b), or even systems
dealing with non-ground input programs are currently out of
the scope of our proposal. However, we think that the rela-
tively simple concept of an intermediate language provides
a good basis for standardization efforts, and more sophisti-
cated matters could be addressed in the future.
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