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Abstract. Computational approaches to Satisfiability Checking (SAT) and An-
swer Set Programming (ASP) have many aspects in common. In fact, the basic
algorithms of ASP solvers are very similar to the Davis-Logemann-Loveland pro-
cedure (DLL) for SAT. The major difference lies in the inference rules, which are
more complex in ASP. In this paper, we provide a generic framework, based on
concepts from Constraint Processing (CSP), which allows us to view ASP in-
ferences as forms of unit propagation. We develop declarative characterizations
of ASP solvers nomore++ and smodels in terms of constraints. By putting ASP
solving into a common context with SAT and CSP, we shed new light on ASP
solving techniques and their relationships to neighboring fields.

1 Introduction

Computational mechanisms of SAT and ASP solvers are closely related. This can, for
instance, be seen on the success of SAT-based ASP solvers assat [1] and cmodels [2].
Clearly, SAT-based ASP solvers benefit from the availability of highly efficient SAT
solvers, which they use as search engines. However, advanced techniques, such as
clause learning and restarts [3], that are now standard in state-of-the-art SAT solvers
are not yet exploited by genuine ASP solvers. The only exception to this, the smodelscc

system [4], relies on a solitary and rather involved theoretical fundament.
We believe that the putative gap between SAT and ASP solvers originates from

lacking declarativeness in the specification of ASP algorithms. In this paper, we address
this deficiency and specify the constraints underlying ASP solvers nomore++ [5] and
smodels [6].1 Our aims are twofold: First, we want to enhance the understanding of
existing algorithms, second, we want to reveal their shortcomings and indicate subjects
for possible improvements. Deeper insight into the nature of ASP solving, hopefully,
is fruitful for the design of new algorithms and technology transfer from SAT or, more
generally, CSP [8] to ASP.

Our goal is to compare computational approaches to SAT and ASP in terms of their
inferences rather than as regards logical equivalence in terms of models. In particular,
we are interested in the computational strength of different approaches, despite their
logical similarity or even equivalence. To this end, we appeal to the concept of nogoods,

? Affiliated with the School of Computing Science at Simon Fraser University, Canada, and the
Institute for Integrated and Intelligent Systems at Griffith University, Australia.

1 Our choice is motivated by the fact that both systems primarily address normal logic programs.
In contrast, dlv [7] is devised for dealing with disjunctive logic programs.



known from CSP, for capturing inferences in SAT as well as in different approaches
to ASP solving. While nogoods are explicitly used as clauses in SAT solvers, they
are only implicit in ASP solving. The usage of nogoods provides us with a uniform
characterization of inferences; it allows us to show that SAT as well as ASP inferences
constitute two different instances of the same CSP framework. Moreover, they make
explicit which constraints underlie propagation in (different) ASP solvers.

2 Background

We deal with propositional expressions over an alphabetA of atoms, denoted by lower-
case letters. We represent interpretations by subsets of A, consisting of all atoms being
true in the respective interpretation.

In the context of SAT, we are interested in finite sets of clauses, Γ , repre-
senting formulas in conjunctive normal form (CNF). Each clause γ ∈ Γ is a set
{p1, . . . , pm,¬pm+1, . . . ,¬pn} containing propositional literals, that is, atoms pi or
their negation ¬pi for 1 ≤ i ≤ n. The set of atoms occurring in a clause set Γ is
denoted by atom(Γ ).

Given a clause set Γ , the primary question is then whether it is satisfiable, that is,
whether it has a model. As an example, consider Γ1 = {{x,¬y}, {¬x, z}, {y, z}}. The
sets {z}, {x, z}, and {x, y, z} of true atoms are models of Γ1; hence, Γ1 is satisfiable.
By adding clause {¬z} to Γ1, we obtain an unsatisfiable set of clauses.

In ASP, we deal with sets of rules, Π , representing logic programs. Unlike clauses,
rules, like π, can be regarded as ordered pairs [9] of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn , (1)

where head(π) = p0 is referred to as the head of π and the set body(π) =
{p1, . . . , pm,not pm+1, . . . ,not pn} as the body of π. While head(π) is simply an
atom, body(π) comprises atoms pi or their default negation not pi; simply referred to
as body literals. Given a set X of body literals, let X+ = {p ∈ A | p ∈ X} and
X− = {p ∈ A | not p ∈ X}. For body(π), we then get body(π)+ = {p1, . . . , pm}
and body(π)− = {pm+1, . . . , pn}. The set of atoms occurring in a set of rules Π is
atom(Π), the set of bodies is body(Π) = {body(π) | π ∈ Π}. For regrouping rule
bodies sharing the same head p, define body(p) = {body(π) | π ∈ Π, head(π) = p}.

In ASP, we are interested in the stable models of a rule set Π . For coherence, we
give a definition in terms of clauses. For π as in (1), define the associated clause as

γ(π) = {p0,¬p1, . . . ,¬pm, pm+1, . . . , pn}

and Γ (Π) = {γ(π) | π ∈ Π}. The term stability means that the model is stable under
rule application. To this end, a rule set Π is reduced wrt an interpretation X:2

Γ (Π)X = {γ(π) | π ∈ Π, body(π)+ ⊆ X, body(π)− ∩X = ∅}

Then, an interpretation X is a stable model of Π , if it is a⊆-minimal model of Γ (Π)X .
We say that X is a model of Π , if X is a model of Γ (Π). In this way, every stable model
is a also model of Π . Stable models are also called answer sets.

2 This characterization traces back to [10]; meanwhile it has been adapted to ASP in [11, 12].



3 The Davis-Logemann-Loveland Procedure

Most complete state-of-the-art SAT solvers are (significantly improved) variants of the
Davis-Logemann-Loveland procedure (DLL) [13]. The solving strategy of DLL is not
restricted to SAT, but can be applied to other kinds of constraint satisfaction problems as
well. In fact, even ASP solvers like nomore++ and smodels follow the outline of DLL,
though they rely on different propagation schemes. To compare the problem settings in
SAT and ASP along with their solving algorithms, we first describe unit propagation
and DLL via generic CSP concepts. Later on, particular settings found in DLL for SAT,
nomore++, and smodels are mapped to these generic concepts. Hence, all problem
solving approaches considered in this paper are specific DLL instances.

3.1 Unit Propagation

Abstracting from problem representations, we apply generic CSP concepts, specialized
to variables over binary domains. In fact, a set Γ of clauses is a CSP: Its variables are
the elements of atom(Γ ), the domain of every variable is {true, false}, and each clause
γ = {p1, . . . , pm,¬pm+1, . . . ,¬pn} in Γ is a constraint, prohibiting that p1, . . . , pm

are all assigned false and pm+1, . . . , pn all true. While the embedding of clauses in
CSP is straightforward, it is more complex for logic programs. Still, such an embedding
is possible, and we will later on explain inferences in ASP solvers by their underlying
constraints and unit propagation on them.

We first introduce assignments over Boolean variables. An assignment A over a
domain, dom(A), is a sequence (σ1, . . . , σn) of signed literals3 σi (1 ≤ i ≤ n) of
form Tp or Fp for some p ∈ dom(A); Tp expresses that p is true and Fp that it is
false. We say that literals Tp and Fp are complementary, and denote the complement
of a literal σ by σ, that is, Tp = Fp and Fp = Tp. Sometimes we abuse notation and
write Tp ∈ A or Fp ∈ A, although A is a sequence and not a set. Given this notation,
we access true and false propositions in A via AT = {p ∈ dom(A) | Tp ∈ A} and
AF = {p ∈ dom(A) | Fp ∈ A}. Moreover, we write A ⊆ B to express that any literal
contained in A is also in B, where A and B are either assignments or sets of literals.
An assignment A is total, if AT ∪ AF = dom(A), and conflicting, if it contains a pair
of complementary literals, that is, AT ∩ AF 6= ∅. We let A ◦ B denote the sequence
obtained by concatenating assignments A and B. We denote the empty assignment, not
containing any literals, by ∅. Finally, we drop parentheses and write simply σ for a
singleton assignment (σ).

For a canonical representation of constraints, we use the generic concept of a no-
good, known from CSP. In our setting, it is sufficient to consider nogoods over literals:
We define a nogood as a set of signed literals {σ1, . . . , σn}. Given a set of nogoods ∆, a
solution A is a non-conflicting total assignment such that δ 6⊆ A for all nogoods δ ∈ ∆.
For instance, given clause {x,¬y}, the set {Fx,Ty} is a nogood: Its literals violate the
clause and cannot be jointly contained in a solution. For a nogood δ, a literal σ ∈ δ, and
an assignment A, we say that σ is unit-resulting for δ wrt A, if

1. δ \ {σ} ⊆ A and
3 We omit the attribute signed whenever clear from the context.



1 function DLL(∆, A)
2 B ← UP∗(∆, A)
3 if BT ∩BF 6= ∅ then return false
4 if BT ∪BF = dom(B) then return true
5 σ ← Select(∆, B)
6 return DLL(∆, B ◦ σ) ∨DLL(∆, B ◦ σ)

Fig. 1. Generic DLL algorithm.

2. σ 6∈ A.

By the first condition, all literals of δ other than σ are contained in A, hence, only
σ can be used to avert δ. The second condition ensures that unit-resulting literals are
not already contained in A. For illustration, consider the nogood {Fx,Ty}. Literal Fy
is unit-resulting wrt assignment Fx, but not wrt (Fx,Fy). Wrt assignment (Fx,Ty),
both literals Tx and Fy are unit-resulting. For 0 ≤ i < n, a literal σi+1 is implied by a
set of nogoods ∆ in an assignment (σ1, . . . , σi, σi+1, . . . , σn), if σi+1 is unit-resulting
for some δ ∈ ∆ wrt (σ1, . . . , σi).

We now come to unit propagation. For a set ∆ of nogoods and an assignment A,
we define:

UP(∆, A) =
{

A ◦ σ if there is a δ ∈ ∆ such that σ is unit-resulting for δ wrt A
A otherwise

Note that σ is not necessarily unique, as there might be several nogoods with distinct
unit-resulting literals in ∆. However, the order in which literals are assigned is imma-
terial when we consider fixpoints: By UP∗(∆, A), we denote an assignment C such
that C = A ◦ B, every literal in B is implied by ∆ in C, and UP(∆, C) = C. For
all possible orders of assigning literals, UP∗(∆, A) is conflicting or contains the same
literals. For instance, consider ∆ = {{Tx}, {Fx,Ty}, {Fx,Fz}}. We obtain either
UP∗(∆, ∅) = (Fx,Fy,Tz) or UP∗(∆, ∅) = (Fx,Tz,Fy). When we add {Fy,Tz}
to ∆, then UP∗(∆, ∅) is conflicting.

3.2 DLL Procedure

With unit propagation as defined above, we can describe DLL in a general way, not
restricted to SAT. To this end, we use nogoods instead of directly working on clauses.
(However, clauses can be viewed as syntactic representations of nogoods.) Figure 1
shows a generic DLL algorithm for a set ∆ of nogoods and an assignment A.

Applying generic DLL to SAT is straightforward. For a clause γ =
{p1, . . . , pm,¬pm+1, . . . ,¬pn}, we let δ(γ) = {Fp1, . . . ,Fpm,Tpm+1, . . . ,Tpn} be
the corresponding nogood. Given a set Γ of clauses, we let ∆(Γ ) = {δ(γ) | γ ∈ Γ}
be the corresponding set of nogoods, and let the domain of assignments be atom(Γ ).
Then, Γ is satisfiable iff DLL(∆(Γ ), ∅) returns true. Apart from the constraint-based
representation, the generic DLL algorithm in Figure 1 is in fact the same as the original
DLL procedure for SAT [13].4

4 Note that we omit the pure literal rule. Anyway, most SAT solvers do not apply it [3].



4 A Constraint Counterpart of nomore++

The nomore++ approach [5] to ASP solving works on logic programs and assignments
to programs’ atoms and bodies. For capturing this, we need some additional definitions.
In nomore++, the domain of an assignment A is for a program Π given by dom(A) =
atom(Π)∪body(Π). When looking at corresponding interpretations or clause sets, we
uniquely associate a body β with a new propositional atom pβ that does not occur in the
underlying program, that is, pβ 6∈ atom(Π). We identify β with pβ when comparing
an assignment of nomore++ with an assignment to propositional atoms of a clause set.

In what follows, we identify nogoods underlying inferences in nomore++. This al-
lows us to view nomore++’s inferences as unit propagation, according to Section 3.1.
The nogoods also yield a set of clauses that can be used for investigating the logical
contents of the underlying inferences. To extract these clauses from nogoods, we define
the following conversion: For a nogood δ = {Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}, de-
fine the corresponding clause as γ(δ) = {¬q1, . . . ,¬qm, qm+1, . . . , qn} where qi = pi

if pi ∈ atom(Π) and qi = pβ if pi = β ∈ body(Π) for 1 ≤ i ≤ n. For a set of
nogoods ∆, let Γ (∆) = {γ(δ) | δ ∈ ∆}.

In contrast to using a single inference rule, like unit propagation, ASP solvers apply
several ones, amounting to different semantic aspects of logic programs. For relating
inferences in nomore++ to unit propagation, we need to explicate the constraints un-
derlying the different inference rules. We first concentrate on tight programs [14] and
then extend the constraint characterization of nomore++ to the non-tight case.

4.1 Tight Programs

The particular property of tight programs is that the supported models of a program’s
completion [15] coincide with the program’s answer sets. The completion of a program
is a propositional formula, asserting that an atom is true iff the atom has a true body.
Tight programs can easily be reduced to SAT.

In [5], operators PΠ and BΠ are used for describing forward and backward propa-
gation in nomore++. We consider here the combined effect of both operators. It turns
out that one fraction of the inference rules applied by PΠ and BΠ allows for computing
the models of a program, while another one enforces support for true program parts.
Together, the inference rules allow for computing the supported models of a program.

Semantically, the body of a rule is a conjunction. Hence, it must be true if all its
literals are true. Conversely, some of its literals must be false if the body is false. For a
body β = {p1, . . . , pm,not pm+1, . . . ,not pn}, the following nogood captures this:

δ(β) = {Fβ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn}

As an example, consider body {x,not y}: We obtain δ({x,not y}) =
{F{x,not y},Tx,Fy} and γ(δ({x,not y})) = {p{x,not y},¬x, y}. Intuitively, δ(β)
gives a constraint enforcing the truth of body β or the falsity of a contained literal.

Additionally, a body must be false if one of its literals is false. And con-
versely, all contained literals must be true if the body is true. For a body β =
{p1, . . . , pm,not pm+1, . . . ,not pn}, this is reflected by the following set of nogoods:

∆(β) = { {Tβ,Fp1}, . . . , {Tβ,Fpm}, {Tβ,Tpm+1}, . . . , {Tβ,Tpn} }



Taking again body {x,not y}, we obtain ∆({x,not y}) = {{T{x,not y},Fx},
{T{x,not y},Ty}} and Γ (∆({x,not y})) = {{¬p{x,not y}, x}, {¬p{x,not y},¬y}}.

For the bodies of a logic program Π , we obtain the following correspondence.

Proposition 1. Let Π be a logic program.
The set of clauses

{ γ(δ(β)) | β ∈ body(Π) } ∪ { γ ∈ Γ (∆(β)) | β ∈ body(Π) }

and the propositional theory

{ pβ ≡ p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn | (2)
β ∈ body(Π), β = {p1, . . . , pm,not pm+1, . . . ,not pn} }

are logically equivalent.

This result captures the intuition that a body should be equivalent to the conjunction
of its literals. However, the respective clauses are not only obtained when one does a
propositional logic translation by hand. Below we show that one automatically ends up
with these clauses when describing nomore++’s inferences by unit propagation.

We now come to inferences primarily aiming at atoms. An atom p must be true if
some body in body(p) is true. Conversely, all elements of body(p) must be false if p is
false. For body(p) = {β1, . . . , βk}, we obtain the following set of nogoods:

∆(p) = { {Fp,Tβ1}, . . . , {Fp,Tβk} }

As an example, consider an atom x with body(x) = {{y}, {not z}}: We get ∆(x) =
{{Fx,T{y}}, {Fx,T{not z}}} and Γ (∆(x)) = {{x,¬p{y}}, {x,¬p{not z}}}.

Finally, an atom p must be false if all elements of body(p) are false. And conversely,
some body in body(p) must be true if p is true. For body(p) = {β1, . . . , βk}, this is
reflected by the following nogood:

δ(p) = {Tp,Fβ1, . . . ,Fβk}

For body(x) = {{y}, {not z}}, we obtain δ(x) = {Tx,F{y},F{not z}} and
γ(δ(x)) = {¬x, p{y}, p{not z}}.

Dually to Proposition 1, we get the following correspondence.

Proposition 2. Let Π be a logic program.
The set of clauses

{ γ ∈ Γ (∆(p)) | p ∈ atom(Π) } ∪ { γ(δ(p)) | p ∈ atom(Π) }

and the propositional theory

{ p ≡ pβ1 ∨ · · · ∨ pβk
| p ∈ atom(Π), body(p) = {β1, . . . , βk} } (3)

are logically equivalent.



Before we proceed with discussing further properties of the clauses associated with
atoms and bodies, let us demonstrate that unit propagation on the respective nogoods
truly corresponds to nomore++’s propagation operators PΠ and BΠ . Denoting the fix-
point obtained by propagating an assignment A via PΠ and BΠ by (PΠBΠ)∗(A), we
obtain the following one-to-one correspondence.

Theorem 1. Let Π be a logic program and A be an assignment over atom(Π) ∪
body(Π). Let

∆Π = { δ(β) | β ∈ body(Π) } ∪ { δ ∈ ∆(β) | β ∈ body(Π) } ∪
{ δ(p) | p ∈ atom(Π) } ∪ { δ ∈ ∆(p) | p ∈ atom(Π) } .

For B = UP∗(∆Π , A) and C = (PΠBΠ)∗(A), we have the following:

1. B is conflicting iff C is conflicting.
2. If neither B nor C is conflicting, then (BT, BF) = (CT, CF).

The above result tells us that the same nogoods are obtained either by analyzing the
behavior of PΠ and BΠ or by converting a program’s completion to CNF, when abbre-
viating bodies by new symbols (cf. Proposition 1 and 2). The latter is in fact done by
SAT-based ASP solvers, e.g., in cmodels [16], in order to keep the size of the clause
set polynomial. It is thus justified to say that, for tight programs, propagation within
SAT-based solvers and nomore++ averts (almost) the same nogoods, either expressed
by clauses or through connections between atoms and bodies in a program.

Next we consider the semantics of the clauses corresponding to the identified no-
goods. Models and supported models of a program can be characterized as follows.

Proposition 3. Let Π be a logic program and

ΓΠ = { γ(δ(β)) | β ∈ body(Π) } ∪ { γ ∈ Γ (∆(p)) | p ∈ atom(Π) } . (4)

Then, X ⊆ atom(Π) is a model of Π iff there is a model Y of ΓΠ such that
X = Y ∩ atom(Π).

Note that, for a body β = {p1, . . . , pm,not pm+1, . . . ,not pn}, clause γ(δ(β)) is
equivalent to p1 ∧ · · · ∧ pm ∧ ¬pm+1 ∧ · · · ∧ ¬pn → pβ . Similarly, for an atom p with
body(p) = {β1, . . . , βk}, the clauses in Γ (∆(p)) can be rewritten as pβ1 → p, . . . ,
pβk
→ p. So the clauses in (4) enforce truth of bodies and atoms, while support for

true bodies and atoms is not required. In order to also guarantee support, we can use the
clauses obtained from nogoods in ∆(β) and δ(p).

Proposition 4. Let Π be a logic program and

ΓΠ = { γ(δ(β)) | β ∈ body(Π) } ∪ { γ ∈ Γ (∆(β)) | β ∈ body(Π) } ∪
{ γ(δ(p)) | p ∈ atom(Π) } ∪ { γ ∈ Γ (∆(p)) | p ∈ atom(Π) } .

Then, X ⊆ atom(Π) is a supported model of Π iff there is a (unique) model Y of
ΓΠ such that Y ⊆ atom(ΓΠ) and X = Y ∩ atom(Π).



Given that for tight programs supported models and answer sets coincide [17], the
following is an immediate consequence of Proposition 4.

Theorem 2. Let Π be a tight logic program and ∆Π as in Theorem 1.
Then, X ⊆ atom(Π) is an answer set of Π iff X = AT ∩ atom(Π) for a (unique)

non-conflicting total assignment A over atom(Π)∪body(Π) such that, for any nogood
δ ∈ ∆Π , we have σ ∈ A for some σ ∈ δ.

4.2 Restricted Strategies and Exponential Blow-Ups

Characterizations of answer sets in terms of either only atoms or rules are sufficient
and produce equivalent results. However, we have shown in [18] that either restricted
approach yields an exponentially weaker proof system than obtained when using both
atoms and rule bodies. Looking at nogoods, we will see in Section 5 that even smodels,
assigning only atoms, does not truly restrict its inferences to atoms (the same accounts
for rules and noMoRe [19]). In this section, we describe the nogoods (or clauses, respec-
tively) of truly atom- or body-centered approaches. Both restrictions yield exponentially
more nogoods, which inevitably result in exponentially more branches that have to be
explored by DLL.5

The nogoods of atom- and body-centered approaches can be obtained in a natural
way using clauses and resolution. Let us recall the clauses reflecting the nogoods given
in the previous section. For a body β = {p1, . . . , pm,not pm+1, . . . , pn} and an atom
p such that body(p) = {β1, . . . , βk}, we have:

γ(δ(β)) = {pβ ,¬p1, . . . ,¬pm, pm+1, . . . , pn}
Γ (∆(β)) = { {¬pβ , p1}, . . . , {¬pβ , pm}, {¬pβ ,¬pm+1}, . . . , {¬pβ ,¬pn} }
Γ (∆(p)) = { {p,¬pβ1}, . . . , {p,¬pβk

} }
γ(δ(p)) = {¬p, pβ1 , . . . , pβk

}

For obtaining the nogoods of a purely atom- or body-centered approach, we can
resolve out either bodies or atoms from the above clauses. However, observe that re-
solving clause γ(δ(β)) against any clause in Γ (∆(β)) yields a tautology. The same
applies to clause γ(δ(p)) and clauses in Γ (∆(p)). For resolving out bodies in a rea-
sonable way, we thus have to resolve clauses in Γ (∆(p)) against clause γ(δ(β)), and
clause γ(δ(p)) against clauses in Γ (∆(β)). Similarly, we can eliminate atoms by re-
solving clause γ(δ(β)) against clauses in Γ (∆(p)) for positive body literals and against
γ(δ(p)) for negative body literals. With roles of positive and negative body literals in-
terchanged, clauses in Γ (∆(β)) can be resolved against γ(δ(p)) and Γ (∆(p)). This

5 Note that an exponential number of nogoods does not oblige exponential space complexity, as
nogoods need not necessarily be represented explicitly.



yields the following resolution transformations for eliminating either bodies or atoms:

Γα(Π) = { {p,¬p1, . . . ,¬pm, pm+1, . . . , pn} | π ∈ Π,

head(π) = p, body(π) = {p1, . . . , pm,not pm+1, . . . ,not pn} } (5)
∪ { {¬p, q1, . . . , qk} | p ∈ atom(Π), body(p) = {β1, . . . , βk},

qi = pi if pi ∈ β+
i or qi = ¬pi if pi ∈ β−i for 1 ≤ i ≤ k } (6)

Γβ(Π) = { {pβ ,¬pβ1 , . . . ,¬pβm , pβ1m+1
, . . . , pβkm+1

, . . . , pβ1n
, . . . , pβkn

} |
(β = {p1, . . . , pm,not pm+1, . . . ,not pn}) ∈ body(Π),
βi ∈ body(pi) for 1 ≤ i ≤ m,

body(pj) = {β1j , . . . , βkj} for m + 1 ≤ j ≤ n } (7)
∪ { {¬pβ , pβ1 , . . . , pβk

} | β ∈ body(Π), p ∈ β+, body(p) = {β1, . . . , βk} }(8)
∪ { {¬pβ ,¬pβ′} | β ∈ body(Π), p ∈ β−, β′ ∈ body(p) } (9)

Let us illustrate the above transformations on two examples. For Γα, consider an
atom x being the head of rules x ← y1,not y2 and x ← z1,not z2. Applying (5) for
both rules, we get two clauses: {x,¬y1, y2} and {x,¬z1, z2}. Applying (6) for x, we
obtain four clauses: {¬x, y1, z1}, {¬x, y1,¬z2}, {¬x,¬y2, z1}, and {¬x,¬y2,¬z2}.
Together, the above six clauses are equivalent to: x ≡ ((y1 ∧ ¬y2) ∨ (z1 ∧ ¬z2)). We
now consider Γβ . Let β = {x,not y} be a body, body(x) = {βx

1 , βx
2 }, and body(y) =

{βy
1 , βy

2}. By (7), we get the following two clauses for β: {pβ ,¬pβx
1
, pβy

1
, pβy

2
} and

{pβ ,¬pβx
2
, pβy

1
, pβy

2
}. For x ∈ β+, applying (8) gives clause: {¬pβ , pβx

1
, pβx

2
}. Two

more clauses are obtained by applying (9) for y ∈ β−: {¬pβ ,¬pβy
1
} and {¬pβ ,¬pβy

2
}.

Together, the above five clauses are equivalent to: pβ ≡ ((pβx
1
∨ pβx

2
)∧¬(pβy

1
∨ pβy

2
)).

For a program Π , Γα(Π) and Γβ(Π) correspond to the completion of Π , repre-
sented in CNF with propositional atoms for either only the atoms or the bodies of Π .
Hence, the nogoods expressed by Γα(Π) and Γβ(Π) correspond to truly atom- or body-
centered approaches. Note that (6) and (7) amount to distributivity. As a consequence,
both Γα(Π) and Γβ(Π) can yield an exponential blow-up. As mentioned above, expo-
nential space complexity can be omitted by implicitly constructing clauses in Γα(Π)
and Γβ(Π) from Π during propagation, instead of storing them explicitly. The above
transformations do thus correspond to restricted branching strategies, that is, restrictions
of Select in Figure 1 to either only atoms or rule bodies. Such restrictions are sound and
complete, given that the truth values of bodies can be determined from atoms’ values,
and vice versa (cf. Proposition 1 and 2). In fact, branching is restricted to atoms in
smodels, and in noMoRe to rule bodies. Note that neither smodels nor noMoRe exploit
their restricted branching strategies through corresponding constraints, such as Γα(Π)
and Γβ(Π) from which literals that can only be implied are removed.

In what follows, we show that eliminating “redundant” program objects (either
atoms or bodies) can lead to exponentially worse minimal run-times of computations.
The logic program families witnessing this behavior are also used in [18] in the context
of tableau proof systems. In contrast to [18], the results provided here are independent
from specific computation patterns, that is, the inference rules applied by a “prover”
are immaterial. In fact, inevitably exponential run-times result only from the analysis
of nogoods (or clauses) that have to be considered in computations. For demonstrating



the exponential behavior, we use the following programs:

Πn =
{

x1 ← not y1 y1 ← not x1 . . . xn ← not yn yn ← not xn

}
Πn

α =
{

w ← not w w ← not x1,not y1 . . . w ← not xn,not yn

}
Πn

β =
{

v ← z1, . . . , zn,not v
z1 ← not x1 z1 ← not y1 . . . zn ← not xn zn ← not yn

}
The programs of both families {Πn ∪ Πn

α} and {Πn ∪ Πn
β } have no answer sets.

Atoms xi and yi (1 ≤ i ≤ n) are mutually exclusive due to rules in Πn. For Πn
α ,

the body of any rule w ← not xi,not yi can thus not be true, leaving only the self-
contradictory rule w ← not w for atom w. For Πn

β , all atoms zi have to be true, making
rule v ← z1, . . . , zn,not v self-contradictory. Note that the nogoods associated with
atoms and bodies of Πn ∪Πn

α and Πn ∪Πn
β allow DLL to prove unsatisfiability with

only a linear number of calls to Select : Unit propagation yields an immediate conflict
when a literal of form T{not xi,not yi} is selected for Πn ∪Πn

α or of form Fzi for
Πn ∪Πn

β . Considering Γα(Πn ∪Πn
α) and Γβ(Πn ∪Πn

β ), the obtained sets of clauses
are isomorphic, that is, only the names of propositional atoms differ, while the structure
is the same. Omitting a complete description, we however mention that Γα(Πn ∪Πn

α)
contains 2n clauses of form {¬w,¬q1, . . . ,¬qn} such that qi ∈ {xi, yi} for 1 ≤ i ≤ n,
similarly, Γβ(Πn ∪Πn

β ) contains 2n clauses of form {p{z1,...,zn,not v},¬p1, . . . ,¬pn}
such that pi ∈ {p{not xi}, p{not yi}} for 1 ≤ i ≤ n. These clauses enable us to show
exponential minimal run-times of DLL computations by a semantic argument, eliding
the computation itself.

Proposition 5. Let Πn ∪Πn
α and Πn ∪Πn

β be as described above.

1. Γα(Πn ∪ Πn
α) \ {γ} is satisfiable for any clause γ = {¬w,¬q1, . . . ,¬qn} such

that qi ∈ {xi, yi} for 1 ≤ i ≤ n.
2. Γβ(Πn ∪ Πn

β ) \ {γ} is satisfiable for any clause γ =
{p{z1,...,zn,not v},¬p1, . . . ,¬pn} such that pi ∈ {p{not xi}, p{not yi}} for
1 ≤ i ≤ n.

The result shows that, for programs Πn ∪Πn
α and Πn ∪Πn

β , the exponentially many
nogoods associated with clauses in Γα(Πn ∪Πn

α) and Γβ(Πn ∪Πn
β ) must inevitably

be considered by DLL in order to verify unsatisfiability. Recall that the reason for this is
not an exponential space requirement. Rather, limited branching leads to exponentially
many (symmetric) cases that have to be analyzed.

4.3 Non-Tight Programs

For treating non-tight programs, we need to identify atoms lacking a non-circular sup-
port: For a program Π and a subprogram Π ′ of Π , we define the greatest unfounded
set [20], denoted GUSΠ(Π ′), as the ⊆-maximal subset U of atom(Π) such that, for
any rule π ∈ Π ′, we have either head(π) 6∈ U or body(π)∩U 6= ∅.6 Note that, for any
Π ′ ⊆ Π , GUSΠ(Π ′) exists and is unique.

6 For a partial interpretation (X, Y ) such that X contains the atoms that are true and Y the
atoms that are false, the original definition from [20] is obtained when we let Π ′ = {π ∈ Π |
body(π)+ ∩ Y = ∅, body(π)− ∩X = ∅}. We however leave the choice of Π ′ open here.



Given a non-tight program Π and an assignment A, nomore++’s operator UΠ [5]
handles greatest unfounded sets. That is, it falsifies all atoms in GUSΠ({π ∈ Π |
body(π) 6∈ AF}). Given that in principle any subset of body(Π) may induce an un-
founded set, we need nogoods for every possible subset Θ of body(Π). Any such Θ
might form the set body(Π) ∩ AF of false bodies wrt some assignment A. The re-
spective nogoods will contain Fβ for every body β ∈ Θ and Tp for every atom p ∈
GUSΠ({π ∈ Π | body(π) 6∈ Θ}). However, a nogood of form {Tp,Fβ1, . . . ,Fβk},
where Θ = {β1, . . . , βk}, would allow unit propagation to work in backward direc-
tion as well. That is, it would allow for deriving Tβi if A contains Tp and Fβj for
1 ≤ j ≤ k, j 6= i. Although this is logically correct, it is not done by operator
UΠ . Hence, for exactly characterizing the inference scheme of nomore++, we need
a mechanism for preventing backward propagation. The solution is to use extra propo-
sitions, µΘ and νΘ, that are uniquely associated with a set Θ of bodies. For Π and a set
Θ = {β1, . . . , βk} ⊆ body(Π), we then get the following nogoods:

∆(Θ) = { {Tp,TµΘ,TνΘ}, {FµΘ,Fβ1, . . . ,Fβk}, {FνΘ,Fβ1, . . . ,Fβk} |
p ∈ GUSΠ({π ∈ Π | body(π) 6∈ Θ}) }

This set of nogoods captures all possible inferences of UΠ falsifying unfounded sets.

Theorem 3. Let Π be a logic program and A be an assignment over atom(Π) ∪
body(Π). Let ∆U = { δ ∈ ∆(Θ) | Θ ⊆ body(Π) }.

For B = UP∗(∆U , A) and C = UΠ(A), we have the following:

1. B is conflicting iff C is conflicting.
2. If neither B nor C is conflicting, then BF = CF.

Of course, ∆U contains exponentially many nogoods since there are exponentially
many subsets Θ of body(Π). However, the nogoods need not be represented explicitly.
In fact, any genuine ASP solver propagates them by relying on their implicit represen-
tation by Π . The necessity to include additional propositions µΘ and νΘ in nogoods
reflects the restriction of unfounded set handling to forward propagation, cutting off
logically valid consequences. This is an obvious subject to future improvement.

Finally, we combine the results for tight and non-tight programs, for showing that
the provided nogoods do in fact characterize answer sets by unit propagation and DLL.

Theorem 4. Let Π be a logic program, ∆Π as in Theorem 1, and ∆U as in Theorem 3.
Then, X ⊆ atom(Π) is an answer set of Π iff X = AT ∩ atom(Π) for a

(unique) non-conflicting total assignment A over atom(Π) ∪ body(Π) ∪ {µΘ, νΘ |
Θ ⊆ body(Π)} such that, for any Θ ⊆ body(Π) such that Θ 6⊆ AF, we have
{µΘ, νΘ} ⊆ AF, and, for any nogood δ ∈ ∆Π ∪ ∆U , we have σ ∈ A for some
σ ∈ δ.

5 A Constraint Counterpart of smodels

The nogoods underlying smodels are very similar to the ones of nomore++, except that
bodies are considered rule-wise. This introduces redundancy because more than one



proposition might refer to the same body. For tight programs, similar results as ours
have been obtained in [21] in terms of clauses. We here only briefly provide the nogoods
describing propagation by smodels’ functions atleast and atmost [6]. As in [21], we
uniquely associate a new proposition βπ with each rule π. Such a proposition captures
the notion of an “(in)active rule” used in [22] for describing smodels’ implementation.

For a program Π and a rule π ∈ Π with head(π) = p and body(π) =
{p1, . . . , pm,not pm+1, . . . ,not pn}, let:

∆(π) = { {Fp,Tβπ}, {Fβπ,Tp1, . . . ,Tpm,Fpm+1, . . . ,Fpn} }

For an atom p such that {π ∈ Π | head(π) = p} = {π1, . . . , πk}, let:

∆(p) = { {Tp,Fβπ1 , . . . ,Fβπk
} } ∪⋃

1≤i≤k

(
{ {Tβπi ,Fp′} | p′ ∈ body(πi)

+ } ∪ { {Tβπi ,Tp′} | p′ ∈ body(πi)
− }

)
Observe that the above nogoods are quite similar to those of nomore++ in the tight
case. The difference is that propositions for bodies are introduced rule-wise. In fact, as
also observed in [21], the exclusion of body representatives in the corresponding no-
goods fails to capture smodels’ atleast . To see this, consider Π = {a ← not a} being
logically equivalent to clause {a}. Still, atleast does not derive Ta from the empty as-
signment. This shows that smodels’ propagation does in fact rely on the truth status of
rule bodies and does not go “through” them. By including rule bodies in nogoods, we
obtain the following correspondence to atleast .

Theorem 5. Let Π be a logic program and A be an assignment over atom(Π). Let

∆Π = { δ ∈ ∆(π) | π ∈ Π } ∪ { δ ∈ ∆(p) | p ∈ atom(Π) } .

For B = UP∗(∆Π , A) and C = atleast(Π,A), we have the following:

1. B is conflicting iff C is conflicting.
2. If neither B nor C is conflicting, then (BT ∩ atom(Π), BF ∩ atom(Π)) =

(CT, CF).

For a non-tight program Π and an assignment A over atom(Π), let ΠA = {π ∈
Π | body(π)+ ∩ AF = ∅, body(π)− ∩ AT = ∅}. That is, ΠA contains all rules whose
bodies are not already determined to be false by the literals in A. Then smodels’ function
atmost determines the set atom(Π)\(GUSΠ(ΠA)∪AF), containing all atoms that can
potentially be true in an extension of A. All other atoms must be false, so smodels adds
Fp to A for all atoms p ∈ GUSΠ(ΠA)\AF. In this respect, also unfounded set handling
of smodels and nomore++ is very similar. In contrast to nomore++ where bodies can
be assigned F, smodels however determines inapplicable rules with false bodies from
the literals in A. This gives us the choice to include either program atoms or additional
propositions βπ for rule bodies in nogoods reflecting unfounded set inference. Note that
a false rule body is sufficient to know that the rule is inapplicable and cannot support
the head atom; this is independent from which literal in the body is false. Thus, it makes
sense to reuse propositions βπ . For a program Π and a subset Ξ = {π1, . . . , πk} of Π ,
we then get similar nogoods as with nomore++:

∆(Ξ) = { {Tp,TµΞ ,TνΞ}, {FµΞ ,Fβπ1 , . . . ,Fβπk
},

{FνΞ ,Fβπ1 , . . . ,Fβπk
} | p ∈ GUSΠ(Π \Ξ) }



Again µΞ and νΞ are new propositions uniquely associated with set Ξ for inhibiting
backward propagation, which is not done by smodels via function atmost .

Finally, smodels’ function expand iterates propagation via atleast and atmost until
a fixpoint is reached. Combining the nogoods that describe atleast and atmost by unit
propagation, we have the following correspondence.

Theorem 6. Let Π be a logic program and A be an assignment over atom(Π). Let
∆Π as in Theorem 5 and ∆U = { δ ∈ ∆(Ξ) | Ξ ⊆ Π }.

For B = UP∗(∆Π ∪∆U , A) and C = expand(Π,A), we have the following:

1. B is conflicting iff C is conflicting.
2. If neither B nor C is conflicting, then (BT ∩ atom(Π), BF ∩ atom(Π)) =

(CT, CF).

Note that, regardless of the different use of propositions for bodies, all results
obtained in Section 4 carry over from nomore++ to smodels. While inferences in
nomore++ and smodels are semantically equivalent, both solvers differ in their selec-
tion of branching literals, and in their representation of bodies: explicit in nomore++,
while implicit and attached to rules in smodels.

6 Discussion

By characterizing inferences of ASP solvers nomore++ and smodels in terms of unit
propagation, we have not only revealed their structural similarity, but we have seen that
both ASP solvers inherently incorporate program atoms and rule bodies (rules must be
true anyway) into their solving process. The results in Section 4.2 and in [18] show
that this is a sensible design: Restricting attention completely to either only atoms or
bodies eliminates redundancy, but is payed with exponentially many cases to be an-
alyzed inevitably in the worst case. In this respect, nomore++’s approach to identify
both atoms and bodies of a program as equitable propositions adopts redundancy for
having at least the chance to select the “right” branching literals. Notably, incorporat-
ing bodies as unique entities yields a stronger unit propagation than found in smodels,
where bodies are attached to rules so that duplicate occurrences are not detected. To
see this, consider the rules x ← y, z and w ← y, z sharing body {y, z}. If x is false
in an assignment, then rule x ← y, z must not be applied. Even when y and z are yet
undefined, body {y, z} must be false. However, smodels is unable to detect this, so it
does not recognize that rule w ← y, z is inapplicable as well. In contrast, nomore++
assigns false to body {y, z}, and if {y, z} is the only body with head atom w, then,
unlike smodels, nomore++ derives that w must be false. In fact, propagation of smodels
is strictly weaker than the one of nomore++ without being “cheaper” to compute; as
shown in Section 5, we have to incorporate rule bodies in nogoods for an exact charac-
terization of smodels’ propagation. So the only real effect of excluding rule bodies from
assignments is that only atoms are branched upon. As we discussed before, this risks
exponentially worse minimal run-times compared to unrestricted branching.

Nogoods can be expressed as clauses in a straightforward manner, so it is interesting
to compare genuine ASP solvers with SAT-based ones, doing an explicit CNF conver-
sion. In order to avoid an exponential blow-up, cmodels introduces auxiliary proposi-
tional atoms abbreviating bodies [16]. Such auxiliary atoms are introduced rule-wise,



similar to the respective propositions in smodels’ nogoods (cf. Section 5). As shown
above, duplicated bodies might thus not be detected by cmodels, while nomore++ might
be able to apply unit propagation. However, cmodels’ CNF conversion tries to avoid in-
troducing auxiliary atoms if possible: The strategy is to only introduce an auxiliary
atom if a program atom is the head of more than one rule with more than one literal in
the body. When we consider an atom x being the head of the rules x← y, z and x← y,
then cmodels does not introduce auxiliary atoms and derives, from x being true in an
assignment, that y must be true as well. In contrast, nomore++ is not able to apply unit
propagation, as there are two bodies, {y, z} and {y}, for head atom x.7

In summary, atoms and bodies as explicit propositions are useful: They prevent an
exponential blow-up in CNF conversions and also avoid (unnecessary) exponential min-
imal run-times of DLL, as shown in Section 4.2. Assuming that neither atoms nor bodies
are eliminated, the propagation obtained for purely atom- or body-centered approaches
amounts to inferences going beyond unit propagation. Regarding nogoods and their cor-
responding clauses, considering exclusively atoms or bodies can be seen as a kind of
one-step resolution, resolving out program objects not under consideration. Such kind
of inference is possible, even without an exponential blow-up. It however means that
an ASP solver using such inference is not a DLL-like solver, as inferences go beyond
unit propagation and rather amount to a restricted form of resolution. It remains a sub-
ject for future research whether such extended inference patterns pay off. Finally, us-
ing atoms and bodies in nogoods greatly facilitates the description of solvers and their
proving strategies. Instead of multiple inference rules, we can use a uniform frame-
work based on unit propagation. Nogoods can easily be converted into clauses, which
can be used for analyzing the logical contents of inferences; e.g., Propositions 1 and 2
show that bodies correspond to conjunctions (of body literals) and atoms to disjunctions
(of bodies). The one-to-one correspondence between our framework and propositional
logic might enhance the understanding of ASP and corresponding solvers, and allow
for fruitful knowledge transfer. As direct applications, we can see the integration of
SAT solver techniques, like clause learning, into ASP solvers, and the emergence of
“serious” proof-theoretical investigations of ASP, similar to resolution for SAT.

In contrast to propositional CNF formulas containing an explicit clause for every
(known) nogood, atoms and rule bodies in logic programs are subject to rather implicit
nogoods, induced by the more intricate answer set semantics. Of course, these nogoods
might also be explicated as a CNF formula, but the logic program format is more suc-
cinct, similar to Boolean circuits compared to plain CNF. For tight programs, the CNF
conversion however is straightforward and reasonably economical regarding space, pro-
vided that extra propositional symbols are introduced for abbreviating rule bodies. With
non-tight programs, the situation is different, and the number of nogoods is inherently
exponential [24]. Thus, SAT-based solvers add respective clauses incrementally when-
ever a non-stable supported model needs to be eliminated, but not a priori. Genuine ASP
solvers also do not represent all nogoods explicitly, rather, they incorporate unfounded
set checks into their propagation. This takes advantage of the fact that the exponen-

7 However, a redundancy like a singleton body being contained in a non-singleton one could be
eliminated in preprocessing, using the NONMIN reduction [23].



tially many nogoods dealing with unfounded sets can be checked in polynomial (even
in linear) time.

However, the implicit nogoods underlying unit propagation for unfounded sets are
somewhat peculiar (cf. Section 4.3 and 5). This is because unfounded set inference
only works in forward direction, falsifying unfounded atoms. True atoms are however
not protected from becoming unfounded, so conflicts arising from such situations are
not prevented. In this respect, unfounded set propagation within genuine ASP solvers
is asymmetric. Such a kind of directional propagation does not exist in the context of
general CSP and constraint propagation. Thus, we require additional “intermediate”
propositions to disable backward propagation when we characterize unfounded set in-
ference in terms of nogoods and unit propagation. Clearly, doing “real” unit propagation
also for unfounded sets is a subject to future research.

Finally, let us comment on the logical fundament of unfounded set inference. The
nogoods describing the falsification of unfounded sets essentially result from loop for-
mulas [1, 25]. Greatest unfounded sets are not necessarily loops in the sense of [1], still
loop formulas can be constructed. As shown in [25], answer sets are exactly the models
of a program that satisfy the loop formulas of all nonempty subsets of the program’s
atoms. Hence, all loop formulas are implicitly checked by ASP solvers and must be
satisfied by solutions. For the characterization of answer sets, it suffices to concentrate
on loop formulas of crucial sets of atoms, namely loops. From this perspective, greatest
unfounded set falsification bears redundancy. On the implementation level, ASP solvers
partially address this redundancy [6, 26], but on the logical side inferences still amount
to greatest unfounded set falsification. Recent results show that even loops do not yet
render relevant unfounded sets precisely: Concentrating on elementary sets [27], which
form a subset of a program’s loops, is enough. Such advanced concepts are not yet
exploited by genuine ASP solvers and are another open issue for future research.
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