The Role of Default Logic in Knowledge Representation

James P. Delgrande (jim@@cs.sfu.ca)
Simon Fraser University

Torsten Schaub (torsten@@cs.uni-potsdam.de)
Universitat Potsdam

Abstract. Various researchers in Artificial Intelligence have advocated formal logic
as an analytical tool and as a formalism for the representation of knowledge. Our
thesis in this paper is that commonsense reasoning frequently has a nonmonotonic
aspect, either explicit or implicit, and that to this end Default Logic (DL) provides an
appropriate elaboration of classical logic for the modelling of such phenomena. That
is, DL is a very general, flexible, and powerful approach to nonmonotonic reasoning,
and its very generality and power makes it suitable as a tool for modelling a wide
variety of applications.

‘We propose a general methodology for using Default Logic, involving the naming
of default rules and the introduction of special-purpose predicates, for detecting
conditions for default rule applicability and controlling a rule’s application. This
allows the encoding of specific strategies and policies governing the set of default
rules. Here we show that DL can be used to formalise preferences among properties
and the inheritance of default properties, and so we essentially use DL to axiomatise
such phenomena.

1. Introduction

First-order logic (FOL) has long and often been advocated as an ap-
propriate tool for formalising knowledge about particular domains
and for the analysis of various systems and approaches. The role of
logic in Artificial Intelligence (AI) and Knowledge Representation is
discussed in, for example, (Moore, 1982; Hayes, 1985b); in addition,
many introductory Al texts assume or promote the centrality of for-
mal logic in Knowledge Representation and Reasoning. Among other
domains, logic has been used to formalise knowledge about liquids
(Hayes, 1985a), time (Allen and Hayes, 1989), actions and planning
(McCarthy and Hayes, 1969; Levesque et al., 1998), and concepts, as
well as modal notions concerning possible worlds, knowledge, belief,
etc. (McCarthy, 1979; Moore, 1980). It has been used to analyse, for
instance, relational database systems (Reiter, 1984) and assumption-
based truth maintenance systems (Reiter and de Kleer, 1987). Default
and diagnostic reasoners have been built via specifying how logic is to
be used (Poole, 1988).

';:‘ © 2000 Kluwer Academic Publishers. Printed in the Netherlands.

kluwerpaper.tex; 16/04/2000; 4:48; p.1

Our thesis in this paper is that commonsense reasoning frequently
has a nonmonotonic aspect, and that to this end Default Logic is
an appropriate elaboration of classical logic for the modelling of such
phenomena. As we discuss in the next section, Default Logic has found
wide application in AI, most obviously in the direct encoding of default
information, but also in areas ranging from database theory to natu-
ral language understanding. To some extent our theme that Default
Logic can be used as a general knowledge representation formalism is
implicit in the quantity and breadth of approaches that make use of it.
However we further argue this point by suggesting a methodology for
Default Logic in which Default Logic appears more broadly applicable
to various diverse phenomena than might be otherwise suspected.

The general framework is quite straightforward. We begin with a
language for expressing some phenomenon in which we are interested,
along with a notion of what inferences should obtain in this language.
A translation is given, such that the original theory is mapped into a
(standard, Reiter) default theory, wherein the desired inferences prov-
ably obtain. This translation serves two purposes. It provides a seman-
tics for the original theory, in that it demonstrates how the original
theory is expressible in Default Logic. Second, it provides a direction
for implementation: given a modular translation into Default Logic and
a (presumed) Default Logic theorem prover, it is straightforward to
implement the desired inferences of the original theory. In one example
developed here, we show how a preference ordering on properties can
be mapped into a (standard, Reiter) default theory, such that one can
determine the highest-ranked, consistently-assumable properties.

We do not provide a specific encoding and translation, but rather we
outline a methodology by means of which one may carry out such an
encoding and translation. To illustrate, consider a general default rule
@:8 with informal meaning that if « is true and (is consistent with a
set of beliefs then 7y is believed. Assume that constant n is associated
with this rule as its name in the object theory. Then the rule %
will be applied just when the original rule cannot be applied due to
its justification being not consistent with the set of beliefs. bl(n) is a
newly-introduced predicate; the concluding of bl(n) signals in the object
theory that the original rule is not applied. Similarly, if we replace the
rule 22 by M, where ok(-) is a newly-introduced predicate, then
application of this rule can be controlled in the object theory, in that the
rule cannot be applied unless ok(n) has been asserted. This notion of
adding “tags” to detect and control rule application yields surprisingly
powerful results. Using this technique, we have shown in (Delgrande
and Schaub, 1997a) how an ordered default theory, consisting of a

kluwerpaper.tex; 16/04/2000; 4:48; p.2

3

theory with a partial order on the default rules, can be translated into
a “standard” default theory in which the rule ordering is adhered to.
Hence, among other things, we show that an explicit ordering on a set
of default rules adds nothing to the overall expressibility of Default
Logic.

The paper is organized as follows. Following a brief introduction to
Default Logic and a discussion of approaches that have employed it, we
summarise the basic components of our approach. We then illustrate
the applicability of the approach in two “modelling exercises”. First, we
review our earlier and most basic approach to dealing with preferences
on rules. Second, we show how Default Logic can be used to implement
a mechanism for default property inheritance. The overall theme is that
by using Default Logic we can axiomatise various diverse phenomena.
Hence we suggest that, in addition to directly representing nonmono-
tonic theories, Default Logic is appropriate as a general AT formalism in
which specific phenomena may be encoded. Thus, via various examples
we show how Default Logic can be employed to provide a semantics
for such phenomena and, on the other hand, provide an encoding for
reasoning with such phenomena.

2. Default Logic

Default logic (Reiter, 1980) augments classical logic by default rules of
the form 2:8L=bn where a, B, .-, Pn, vy are sentences of first-order or
propositionalylogic. Here we deal with singular defaults for whichn = 1.
A singular rule is normal if § is equivalent to «; it is semi-normal if 8
implies . (Janhunen, 1999) shows that any default rule can be trans-
formed into a set of semi-normal defaults. We sometimes denote the
prerequisite o of a default § by Prereq(d), its justification 8 by Justif (§),
and its consequent vy by Conseq(d). Accordingly, Prereg(D) is the set
of prerequisites of all default rules in D; Justif (D) and Conseg(D) are
defined analogously. Empty components, such as no prerequisite or even
no justifications, are assumed to be tautological. Open defaults with
unbound variables are taken to stand for all corresponding instances.
A set of default rules D and a set of formulas W form a default theory
(D, W) that may induce a single, multiple, or even zero eztensions in
the following way.

DEFINITION 2.1. Let (D,W) be a default theory and let E be a set
of formulas. Define Eg =W and for ¢ > 0:

Dy = {2iftsbe e Dla € By~py ¢ B, ~fu ¢ E)

Eit1 = Th(E;) U {Conseq(d) | 6 € D;}

kluwerpaper.tex; 16/04/2000; 4:48; p.3

4
Then E is an extension for (D,W) iff E = U2, Ei.

Any such extension represents a possible set of beliefs about the world
at hand. The above procedure is not constructive since £ appears in
the specification of E;11. We define GD(D, E) = |J;2, D; as the set of
generating defaults of extension E. An enumeration (d;);c; of default
rules is grounded in a set of formulas W, if we have for every ¢ € I that
W U Conseq({do, - ..,0i—1}) F Prereg(é;).

2.1. APPLICATIONS OF DEFAULT LOGIC

The most obvious and direct use of Default Logic is in the “brute force”
encoding of default information. Thus “penguins normally do not fly”

may be represented by the rule % and “birds normally fly” may

be represented by ¥ Interactions between defaults are most directly
handled by encoding explicitly what happens in various cases (Reiter
and Criscuolo, 1981). Thus, we replace our second default above with
w so that if we know that some bird is also a penguin, only the
first default can be applied.

In (Etherington and Reiter, 1983) inheritance networks are trans-
lated into default theories. Strict links are mapped to universally quan-
tified material implications; default links are mapped to open normal
defaults. Exception links have the effect of providing exceptions to a
default link. Thus a default link from « to £, and with an exception link
from +y to this link maps onto the rule 2827 asserting that blocks
the default inference from « to 8. Consequently this approach provides
a semantics for these inheritance networks. In so doing it enables the
development of provably correct inference procedures, as well as proofs
of the existence of extensions in certain cases.

Default logic has also found application in a wide range of diverse
fields. It has been applied in natural language understanding, in speech
act theory (Perrault, 1987) and for deriving natural language presuppo-
sitions (Mercer, 1988), and in database systems (Cadoli et al., 1994). It
has been used to extend the expressive power of terminological logics
to handle default information (Baader and Hollunder, 1992; Baader
and Hollunder, 1993). In (Turner, 1997), in an approach similar to that
given here, a high-level language for describing the effects of actions
is defined, following which a provably-correct translation into Default
Logic is provided.

In (Gelfond and Lifschitz, 1990), extended logic programs under the
answer set semantics, are defined; it is also shown there that extended
logic programs correspond to the fragment of Default Logic in which
the justifications and consequents of default rules are literals and the

kluwerpaper.tex; 16/04/2000; 4:48; p.4

5

prerequisites are conjunctions of literals. We don’t discuss logic pro-
gramming here (but see (Lifschitz, 1996) for an introduction and sur-
vey); however this correspondence has a number of important results
for our purposes. First, the mapping of a logic program into a Default
Logic theory, essentially provides an alternative semantics for this ap-
proach to logic programming. Secondly, one can regard results involving
extended logic programs as applying to Default Logic. Thus, (Wang et
al., 1999) presents a compilation of defeasible inheritance networks into
(a subset of) extended logic programs and so into a fragment of Default
Logic. On the other hand, (Gelfond and Son, 1998) define a language for
strict and defeasible rules that (among other things) can encode inher-
itance networks; they show how this language can be “implemented”
using extended logic programs. Lastly, this correspondence suggests
an even stronger thesis than that presented here, that extended logic
programs (or the corresponding fragment of Default Logic) provides an
appropriate language for encoding commonsense notions. We return to
this point in the concluding section.

Finally, it should be noted that there are now comprehensive imple-
mentations of Default Logic available. DeReS (Cholewinski et al., 1999)
is a full implementation of Default Logic. XRay (Schaub and Nico-
las, 1997) provides an implementation platform for query-answering in
semi-monotonic default logics. Smodels (Niemeld and Simons, 1997) im-
plements the stable model semantics and well-founded semantics, while
DLV (Eiter et al., 1997) is able to handle disjunctive logic programming
with the answer set semantics.

3. A Methodology for the Use of Default Logic

In this section we outline the general approach. Our methodology in-
volves the appropriate “deconstruction” of default rules, so that one
can detect the application of default rules and control their application.
Fundamentally, we show how one can detect whether a default rule is
applicable or not, and how one can control the invocation of a default
rule within a (first-order) default theory. This is accomplished, first,
by associating a unique name with each default rule, so that it can
be referred to within a theory. Second, special-purpose predicates are
introduced for detecting conditions in a default rule, and for controlling
rule invocation.

This in turn allows a fine-grained control over what default rules are
applied and in what cases. By means of these named rules and special-
purpose predicates, one can formalise various phenomena of interest.
This is done as follows. We begin with a theory D expressed in some

kluwerpaper.tex; 16/04/2000; 4:48; p.5

6

language. In the examples presented here D is a (regular) default theory
but with an external order on default rules. In the first example, the
static order represents a notion of preference among the defaults and,
in the second, it represents a simplified version of default property
inheritance. One then provides a translation of the given theory into
a standard theory in Default Logic, 7 (D). Assuming that things have
been set up correctly, one can then show that the translated “standard”
default theory 7 (D) provably captures the phenomenon of interest
expressed in D.

3.1. THE APPROACH

We begin by extending the original language by a set of constants (as
is done in (Brewka, 1994b) for example), such that there is a bijective
mapping between these constants and the default rules.! Assume then
that we have a default theory (D, W) where each default rule % has
an associated name n. This can be written n : a—:ﬂ; the next section
describes naming in more detail. Consider though where we augment
our original language with three predicate symbols ap(-), blp(-), and

bly(-). Moreover each default rule n : aTﬂ is replaced by three rules:

[ﬂ 07 'ﬂﬂ :
v Aap(n)” blp(n)’ bly(n)

(1)

Call the resulting default theory (D', W). Any extension E of (D, W)
will have a corresponding extension E’ of (D', W), where E C E' and E'
informally consists of E along with ground instances of the introduced
predicates.

Moreover, we will have ap(n) € E' just if the default named n is one
of the generating defaults of the extension. We will have blp(n) € E' if
the default named by n failed to be applied by virtue of its prerequisite
being unproven, and we will have bly(n) € E’ if the default named by
n failed to be applied by virtue of its justification being inconsistent
with E'. We can go further (see the following section) and prove that
for every name n

ap(n) € E' iff (blp(n) € E' and bly(n) & E').

This is all relatively straightforward and of limited use. However, it can
be seen from (??) that via these introduced predicates we can detect
when a rule is or is not applied.

! In the case of open defaults, we associate names with individual rule instances.

kluwerpaper.tex; 16/04/2000; 4:48; p.6

7

Consider next another introduced predicate ok(-). If we replace a
rule n : "ﬂr—ﬁ by

aAok(n) : B
Y

then clearly the transformed rule can (potentially) be applied only if
ok(n) is asserted. More generally we can combine this with the pre-
ceding mapping and so have ok(n) appear in the prerequisite of each
rule in (??). We use a similar translation in the next section where, in
axiomatising preferences among default rules, we employ ok to “force”
a given order on default rules. That is, we ensure that, with respect to
the set of generating defaults, the most preferred rules are first flagged
as “ok”, then the next most preferred, and so on.

Similarly, one could imagine replacing a default n : av—ﬁ by
a : B A —ko(n)
5 :

Now the transformed rule behaves exactly as the original, except that
we can “knock out” this rule by asserting ko(n). This means of blocking
a rule’s application has of course appeared earlier in the literature,
where ko was most commonly called Ab (for “abnormal”).

There are obviously many other possibilities, and we don’t mean to
suggest that the above constitutes a complete survey. In (Delgrande and

Schaub, 1997c) for example we map a rule n : O‘Tﬁ onto (among other
rules) %. Notably the consequent of the original rule, -, is gone,

replaced by ap(n), recording just the fact that the rule is applicable.
We use this in (Delgrande and Schaub, 1997c) to axiomatise preferences
over sets of default rules, where the idea is to apply rules en masse. For
a set of rules, if all are found to be applicable, then and only then are
all the consequents asserted.

This use of introduced predicates is central to our approach, and
provides a means for modelling a very broad class of domains and
applications. In the following sections we provide two examples, or
“modelling exercises”, that illustrate this approach. In each case, we
fix the meaning of the phenomena in question by providing appropriate
translations (or compilations) that can be performed automatically by
appeal to this “tagging” technique. That is, we formalise preference and
inheritance by essentially providing an axiomatisation in (standard,
Reiter) Default Logic. Being a formalisation in Default Logic, we can
prove that things work out as expected, that for example, preference
among default rules works out correctly, that rules are applied in the
specified order, and so on.

kluwerpaper.tex; 16/04/2000; 4:48; p.7

4. Preference

The notion of preference is pervasive in Al. In reasoning about default
properties, one wants to apply defaults pertaining to a more specific
class. In decision making, one may have various desiderata, not all of
which can be simultaneously satisfied; in such a situation, preferences
among desiderata may allow one to come to an appropriate compromise
solution. In legal reasoning, laws may conflict. Conflicts may be resolved
by principles such as ruling that newer laws will have priority over less
recent ones, and laws of a higher authority have priority over laws of a
lower authority. For a conflict among these principles one may further
decide that the “authority” preference takes priority over the “recency”
preference. (Boutilier, 1992; Brewka, 1994a; Baader and Hollunder,
1993) consider adding preferences in Default Logic while (McCarthy,
1986; Lifschitz, 1985; Grosof, 1991) and (Brewka, 1996; Zhang and Foo,
1997; Brewka and Eiter, 1997) do the same in circumscription and
logic programming, respectively. In (Delgrande and Schaub, 1997a) we
address preference in the context of Default Logic.

For adding preferences between default rules, a default theory is
usually extended with an ordering on the set of default rules. In analogy
to (Baader and Hollunder, 1993; Brewka, 1994a), an ordered default
theory (D, W, <) is a finite set D of default rules, a finite set W of
formulas, and a strict partial order < C D x D on the default rules.
That is, < is a binary irreflexive and transitive relation on D. For
simplicity, in the following development we assume the existence of a
default 6+ = T—TT € D where for every rule § € D, we have § < 6t
if § # 61. This gives us a (trivial) maximally preferred default that is
always applicable.

Consider an example, where in the north of Québec the first language
is French, then English, then Cree. A useful preference ordering is as
follows.

NQue: Cree Can : Er.l,glish Que : French] (2)

Cree English French
In this case we obtain the correct result for the north of Québec; also we
obtain the correct result for the non-north of Québec (where the first
language is French followed by English), and for the rest of Canada,
where the first language is English. For a second example, one might
prefer something (say, a car) that is red, then green; this might be
expressed as

: G : Red
Gr::ienn Re(zl : (3)

2 To be sure, this is a naive encoding; see (Brewka and Gordon, 1994) for a more
realistic formalisation.

kluwerpaper.tex; 16/04/2000; 4:48; p.8

9

In (Delgrande and Schaub, 1997a) we show how an ordered de-
fault theory (D, W, <) can be translated into a regular default theory
(D', W') using the methodology outlined in Section 3 such that the
explicit preferences in < are “compiled” into D’ and W’. In the next
subsection we briefly review this approach.

4.1. STATIC PREFERENCES ON DEFAULTS

We begin with an ordered default theory (D, W, <). The relation §; <
02 has the informal interpretation that for 61,00 € D, do is to be
considered for application before §;. This theory is translated into a
regular default theory (D', W') such that the explicit preferences in <
are “compiled” into D’ and W', in the following manner.

First, a unique name is associated with each default rule. This is
done by extending the original language by a set of constants® N such
that there is a bijective mapping n : D — N. We write ng instead of
n(d) (and abbreviate ns, by n; to ease notation). Also, for default rule
0 with name n, we sometimes write n : § to render naming explicit. To
encode the fact that we deal with a finite set of distinct default rules,
we adopt a unique names assumption (UNAy) and domain closure
assumption (DCA y) with respect to N. That is, for a name set N =
{n1,...,nn}, we add axioms

UNApy: (n; #n) forall n;,n; € N with i #j.
DCAN: Vz. name(z) = (x=n1V--- VI =mny).

For convenience, we write Vo € N. P(z) instead of Vz. name(z) D
P(z).

Given d; < §;, we want to ensure that, before §; is applied, J; can be
applied or found to be inapplicable. More formally, we wish to exclude
the case where ¢; € D, and 6; € Dy, for n < m in Definition 2.1. For
this purpose, we need to be able to, first, detect when a rule has been
applied or when a rule is blocked, and, second, control the application of
a rule based on other antecedent conditions. For a default rule 222 there
are two cases for it to not be applied: it may be that the antecedent is
not known to be true (and so its negation is consistent), or it may be
that the justification is not consistent (and so its negation is known to
be true). For detecting this case, we introduce a new, special-purpose
predicate bl(-). Similarly we introduce a predicate ap(-) to detect when
a rule has been applied. To control application of a rule we introduce

3 (McCarthy, 1986) effectively first suggested the naming of defaults using a set of

aspect functions. Theorist (Poole, 1988) uses atomic propositions to name defaults.

kluwerpaper.tex; 16/04/2000; 4:48; p.9

10

predicate ok(-). Then, a default rule § = # is mapped to

aAok(ng) : B ok(ng) : ma B Aok(ng) :
v Aap(ng) bl(ns) ’ bl(ns)

(4)

These rules are sometimes abbreviated by g, dp, , 05, , respectively. While
0, is more or less the image of the original rule §, rules &, and dp,
capture the non-applicability of the rule.

None of the three rules in the translation can be applied unless
ok(ng) is true. Since ok(-) is a new predicate symbol, it can be ex-
pressly made true in order to potentially enable the application of the
three rules in the image of the translation. If ok(ng) is true, the first
rule of the translation may potentially be applied. If a rule has been
applied, then this is indicated by assertion ap(ng). The last two rules
give conditions under which the original rule is inapplicable: either the
negation of the original antecedent « is consistent (with the extension)
or the justification g is known to be false; in either such case bl(ns) is
concluded.

We can assert that default n; : o :B;

is preferred to n; : a’v—lm in the
object language by introducing a new predicate < and then asserting
that n; < n;. However, this translation so far does nothing to control
the order of rule application. Nonetheless, for §; < J; we can now
control the order of rule application: we can assert that if §; has been
applied (and so ap(n;) is true), or known to be inapplicable (and so
bl(n;) is true), then it’s ok to apply d;. The idea is thus to delay the
consideration of less preferred rules until the applicability question has
been settled for the higher ranked rules.

We obtain the following translation, mapping ordered default theo-
ries in some language £ onto standard default theories in the language
LT obtained by extending £ by new predicates symbols (- < -), ok(),
bl(-), and ap(-), and a set of associated default names:

DEFINITION 4.1. (Delgrande and Schaub, 1997a) Given an ordered
default theory (D, W, <) over L and its set of default names N = {ns |
§ € D}, define T((D,W, <)) = (D', W') over Lt by

r_ anok(n): B ok(n):—a —pBAok(n): L a:B
D= { yAap(n) ° bl(n) > bi(n) n: TED}UD<

W' = WUW<U{DCAy, UNAy}

kluwerpaper.tex; 16/04/2000; 4:48; p.10

11

where
_ [io(z=y)
Ds = {ﬁ(wa:y%
W, = {’n(j =< ng | (5, 5’) € <}

U {Ok(n‘r)}
U {Vz € N. [Vy € N.(z < y) D (bl(y) Vap(y))] D ok(z)}.

W' contains the prior world knowledge W, together with assertions
for managing the priority order < on defaults. The first part of W
specifies that < is a predicate whose positive instances mirror those
of the strict partial order <. ok(nT) asserts that it is ok to apply the
maximally preferred (trivial) default. The third formula in W~ controls
the application of defaults: for every n;, we derive ok(n;) whenever
for every n; with n; < nj, either ap(n;) or bl(n;) is true. This axiom
allows us to derive ok(n;), indicating that §; may potentially be applied
whenever we have for all §; with §; < J; that ¢; has been applied or
cannot be applied.

For the last formula in W to work properly we must have complete
information about <. This is addressed by the default rule in D..
With this rule we can generate the complement of W with a single
open default; an explicit encoding would likely have much larger size.
We also have (ns < nt) € W, for every rule § # d1 by the definition
of ordered default theories. Since < is a strict partial order, W also
includes the transitive closure of < and no reflexivities, such as n < n.

Note that the translation results in a manageable increase in the
size of the default theory. For ordered theory (D, W, <), the translation
T((D,W,<)) is only a constant factor larger than (D, W, <) (assuming
that we count the default in D as a single default).

As an example, consider the defaults:

. A1:B . As:B . A3:B LT T
n 1011’ . 2022’ . 3033’ nt =t
We obtain for i = 1,2, 3:
A;Nok(n;) : B; ok(n;): 1A; —B;Aok(n;) :
C;Aap(n;) 7 bi(n;) ’ bl(n;) ’

and analogously for 1 where A;, B;,C; are T. Given §; < o < d3,
we obtain ni; < no, no < ng, n1 < ng along with ny < nt for k €
{1,2,3} as part of W<. From D_ we get =(n; < n;) for all remaining
combinations of 7, j € {1,2,3, T}. It is instructive to verify that ok(ns),
along with

(ap(n3) V bl(ns)) D ok(ng), and
((ap(n2) V bl(n2)) A (ap(n3) V bl(n3))) D ok(n1)

kluwerpaper.tex; 16/04/2000; 4:48; p.11

12

are obtained after a few iterations in Definition 2.1 (see below); from
this we get that ng must be taken into account first, followed by n9 and
then n;.

The following theorem summarises the major technical properties of
our approach, and demonstrates that rules are applied in the desired
order:

THEOREM 4.1. (Delgrande and Schaub, 1997a) Let E be a consistent
extension of T((D,W,<)) for ordered default theory (D,W,<). We
have for all 6,0' € D that

1.ng<ng € Eiff 7(ns <ng) ¢ E
. ok(ns) € E
ng) € E iff bl(ns) ¢ E

(
(
. ok(ns) € E; and Prereq(6) € E; and —Justif () € E implies
(
(

2

3. ap(ng)

4)

ns) € Erax(i,j)+3
)

&

ok

6. ok(ns) € E; and —Justif(§) € E implies bl(ns) € E; for some
j>i+1

ng) € E; and Prereq(0) & E implies bl(ng) € E;11

7. ok(ng) & E;—1 and ok(ns) € E; implies ap(ns) € Ej for j < i+ 2
and bl(ns) &€ E; for j <i+1

Moreover, it turns out that our translation 7 amounts to selecting
those extensions of the original default theory that are in accord with
the provided ordering. This can be expressed in the following way.

DEFINITION 4.2. (Delgrande and Schaub, 1999a) Let (D,W) be a
default theory and let < C D x D be a strict partial order. An extension
E of (D,W) is <-preserving if there exists a grounded enumeration
(6;)ier of GD(D, E) such that for all i,5 € I and § € D\ GD(D, E),
we have that

1. if 6; < d; then 3 <1 and

2. if §; < & then Prereq(6) ¢ E or W U Conseq({dg,...,0i—1})
—Justif (9).

In the first condition above, applied rules are applied in the order
specified by <. Second, if a rule § is not applied but a less-highly
ranked rule is, then it must be the case that either the prerequisite of
d is not derivable (at all) or its justification is refuted by other, higher-
ranked rules. In any case, the applicability issue must first be settled
for higher-ranked default rules before it is for lower-ranked rules.

kluwerpaper.tex; 16/04/2000; 4:48; p.12

13

THEOREM 4.2. (Delgrande and Schaub, 1999a) Let (D, W) be a de-
fault theory and let < C D X D be a strict partial order. Let E be a set
of formulas.

E is an extension of T((D,W,<)) iff EN L is a <-preserving ez-
tension of (D, W).

Consequently, the notion of <-preservation can be seen as providing an
informal semantics for our approach.

One might expect that ordered default theories would enjoy the same
properties as standard Default Logic. This indeed is the case, but with
one important exception: in the instance of our approach described
here, normal ordered default theories do not guarantee the existence
of extensions. For example, the image of the ordered default theory
(under our translation)

({m : %, no : B—C:,C},@,{él < (52}) (5)

has no extension. Informally the problem is that our preference §; < do
conflicts with the normal order of rule application. If W = (), only ¢; is
applicable, but once it has applied, d2 becomes applicable. Thus we have
an ordering implicit in the form of the defaults and world knowledge,
but where this implicit ordering is contradicted by the assertion §; < do.
Not surprisingly then there is no extension.

4.2. EXTENSIONS

In (Delgrande and Schaub, 1997a) we also show that standard default
theories (D, W) over a language including a predicate expressing a
preference over (named) default rules can similarly be translated into
a default theory where no such mention of preferences is made. Thus
for example, let bf be the name of default %, asserting that birds fly
by default and bnf be the name of default B_:;,F . Further, let loc(NZ)
assert that the location is New Zealand. Then if we believed that birds
normally fly, but New Zealand birds don’t, we could encode this in the

object theory by

:=loc(NZ) loc(NZ):
bf<bnf bnf<bf -

This extension allows the expression of preference in a particular con-
text (as above), preferences applying by default, and preferences among
preferences (as in the legal reasoning example mentioned at the start
of this section).

Second, we show how a default theory, with an attendant ordering
on sets of defaults, can similarly be translated into a standard default

kluwerpaper.tex; 16/04/2000; 4:48; p.13

14

theory where no mention of preferences is made. In this case, we can
express that in buying a car one may rank price (E) of a car model
over safety features (S) over power (P), but safety features together
with power is ranked over price, as follows:

{#F) < g} <{F} < {# %) (6)

If we were given only that not all desiderata can be satisfied (and so W
contains =P V =SV —E) then intuitively we would want to apply the
defaults in the set {%, ?S} and conclude that P and S can be met.
On the other hand if we know that P and S are mutually exclusive
(and so W contains =P V —S) then intuitively we would want to apply
the defaults in the sets {?5} and {?E} and so conclude that S and
E can be met. Again we show how this can be expressed in a standard
default theory.

4.3. APPLICATION TO MODEL-BASED DIAGNOSIS

In (Reiter, 1987), Default Logic is used to provide an account of a theory
of diagnosis from first principles. Roughly, in this framework one has
an axiomatisation of a domain, or system description, in which there is
a distinguished set of components, given by a set of constants COMPS
that may be normal or abnormal. These components are assumed to be

normal by default, expressed by the rule ::fﬁ)b((f)). For example, in the

circuit domain the system description would include a description of
a circuit, while the set COMPS could represent specific gates. We can
express that an AND gate that is not abnormal has output on when
its inputs are on by:

(AndG(z) N ~Ab(z) A wvalue(in(l,z),on) A value(in(2,z),on))

D value(out(z), on).

As well there is a set of observations OBS, for example expressing
that both inputs of AND gate a; are on but the output is not on.
A diagnosis can be expressed by an extension of the resulting theory.
In an extension, one has complete information concerning all instances
of Ab; moreover the extension of Ab is minimal.

We can use our approach to incorporate further assumptions into
a theory of diagnosis. The original approach appeals to a principle of
parsimony, wherein a diagnosis is a conjecture that some minimal set of
components are faulty. This can be strengthened by preferring a single-
fault diagnosis over two-fault diagnosis, over three-fault diagnosis, etc.
Suppose we have three components whose normal behaviour is mod-

kluwerpaper.tex; 16/04/2000; 4:48; p.14

15

elled* by the rule ::/ﬁ]b((f)). In our extension to preference that allows

preferences among sets of defaults, we can model the strengthened
principle of parsimony by

10 Ab(cy) :0Ab(cy) :—Ab(co) :—Ab(cy) :—Ab(cg) :—Ab(cs)
{ —Ab(cr) } < { —Ab(er) S AB(es) } < { —Ab(er) S AB(ea) S AB(es) }

for every ¢, ca, c3 € COMPS. Suppose our system description entails
Ab(a) V (Ab(b) N Ab(c)). In standard Default Logic, we obtain two
extensions, which violates the strengthened principle of parsimony.
With the given preferences, however, we obtain only the single-fault
extension, containing Ab(a) along with =Ab(b) and —Ab(c).

In a second extension, we can model preferences for faults over types
of components. In the extension to our approach where preferences can
be expressed in the language, we can express the fact that an OR gate
is expected to fail over an AND gate as follows. For ¢ € COMPS let the

name of the rule %bb((cc)) be given by predicate AbRule(c). We assert:

Vz,y.(OrG(z) A AndG(y)) D (AbRule(y) < AbRule(z)).

Clearly other elaborations can be addressed within this framework. For
example, it would be an elementary extension to allow different types
of faults, and then assert, say, that an AND gate that is stuck on is to
be expected over an OR gate that negates its correct output.

5. Inheritance of Properties

5.1. PREFERENCE AND INHERITANCE OF PROPERTIES

A common problem in Knowledge Representation is the inheritance of
(default) properties. Informally, individuals may be expected to have
(or inherit) properties by virtue of being instances of particular classes.
Thus by default Sue will be assumed to be employed since Sue is an
adult and adults are normally employed. The principle of specificity
says (for our purposes) that properties are inherited from more specific
classes in preference to less specific classes. Thus if Sue is a student
also, and we know that students normally are not employed, then we
now can conclude nothing about Sue’s employment status. If we have
that adult students are normally employed, then this would be applied
in preference to the students-are-not-employed default.

It might seem that we could use the approach of the previous section
to implement inheritance of properties, and indeed many approaches

4 Note that we haven’t addressed the problem of preferences on open defaults. We
skirt any difficulties here by assuming complete knowledge of the (circuit) domain.

kluwerpaper.tex; 16/04/2000; 4:48; p.15

16

implement inheritance via a preference ordering. However an example
shows that this can lead to unfortunate results. Consider defaults con-
cerning primary means of locomotion: “animals normally walk”, “birds
normally fly”, “penguins normally swim”. This can be expressed in an
ordered default theory as follows:

ny: Ani%z:uIC/Valk < Ny : Bierl:yFly < ng : Penggqi&;rf'wim' (7)
If we learn that some thing is penguin (and so a bird and animal),
then we would want to apply the highest-ranked default and, all other
things being equal, conclude that it swims. However, if the penguin
in question is hydrophobic, and so doesn’t swim, preference tells us
that we should try to apply the next default and so, again all other
things being equal, conclude that it flies. This situation then is very
different from our example (??), and moreover in this instance gives us
an undesirable conclusion.

We can characterise this difference as follows. Let (D, W, <) be a
normal (i.e. the defaults in D are normal) ordered default theory. For
preference, as described in the previous section, we want to “apply”
defaults as constrained by <. For inheritance, we want to apply the
<-maximum defaults where the prerequisite is true, if possible. If a
<-maximum default is inapplicable, then no less specific default is
considered. In the next section we make these intuitions precise and
provide an axiomatisation in Default Logic.

5.2. EXPRESSING INHERITANCE

For default property inheritance, the ordering on defaults reflects a
relation of specificity among the prerequisites. For example, in the pre-
ceding, the class of penguins is strictly narrower than the class of birds.
As (?7?) and (?7) illustrate, this isn’t the case for preference. Informally,
for adjudicating among conflicting defaults, one determines the most
specific (with respect to rule prerequisite) defaults as candidates for
application. In approaches such as (Pearl, 1990; Geffner and Pearl,
1992), among many others, specificity is determined implicitly, emerg-
ing as a property of an underlying formal system. (Reiter and Criscuolo,
1981; Etherington and Reiter, 1983; Delgrande and Schaub, 1997b)
have addressed encoding specificity information in Default Logic. Here
we briefly provide an account of how a mechanism of inheritance may
be encoded.

To begin with, for simplicity, our account is incomplete. In particular
we ignore the fact that, in formulating an ordered default theory, the
specification of < must take into account the relevant properties (i.e.
consequents) of the default rules. For example, given defaults concern-

kluwerpaper.tex; 16/04/2000; 4:48; p.16

17
ing flight, and a rule that birds normally have wings (viz. %{f’y,

Bird: Wing Pengum:ﬁFly) we would assert Bzrgl:yFly < Peng:z?l:;ﬁFly'

Wing —Fly) /)
Obviously we would not want to assert Zrd:Wing Pe"gf;nl;my even

though Bird subsumes Penguin. So here we have nothing to say about
how the information concerning < is obtained.® Rather, we assume that
inheritance information has been appropriately captured in <, and our
task is to provide a semantic account of property inheritance via an
appropriate translation into Default Logic.

In the last section, our approach to preference used special purpose
predicates to detect when a rule in D was applied or blocked. A more
fine-grained approach would be to distinguish the source of blockage
by replacing &, and dp, by

ok(ng) : ma = Aok(ng) :
blp(ns) bl (r5)

That is, we replace bl by two new predicate symbols, blp and blj.
Accordingly, in Definition 4.1 the final formula in W would be

Vz € N.[Vy € N.(z <y) D (blp(y) V bly(y) Vap(y))] D ok(z) .
Interestingly, a generalisation of this axiom, namely
Vz € N.[Vy € N.((z <y) A(y #nT)) Dble(y)] Dok(z), (8)

allows us to specify inheritance. Given a chain of defaults d; < dy <
-+ < 0y, we apply 6;, if possible, where §; is the <-maximum default
such that for every default J;, j =i +1,...,m, the prerequisite of J; is
not known to be true. Otherwise no default in the chain is applicable.
Technically, the formula (?7) allows lower ranked default rules to be
applied only in case higher ranked rules are blocked because their pre-
requisite is not derivable. Otherwise, the propagation of ok(-)-predicates
is interrupted so that no defaults below §; are considered.

DEFINITION 5.1. Given an ordered default theory (D, W, <) over L
and its set of default names N = {ns | § € D}, define Z((D,W,<)) =
(D', W'") over LT by

1 _ aNok(n): B ok(n):-a L a:ff
D = { afMu):h oMuise |y, 08 e plyD,

W' = WUWZU{DCAN, UNAN}

% This issue is dealt with in (Delgrande and Schaub, 1997b).

kluwerpaper.tex; 16/04/2000; 4:48; p.17

18

where
_ Jio(z=y)
Dy = { —(z=<y) }
We = {ns <ny | (6,6) € <)

U {ok(nT)}
U {Vz € N.[Vy € N.((z < y) A (y #nT)) D blp(y)] D ok(z)}.

Consider the ordered defaults theory (D, W, <) where D and < are
as in (??), and where

W = {Penguin D Bird, Bird O Animal}.

We obtain ni < ne, ne < ng, n1 < ng along with ny < nt for k €
{1,2,3} as part of W<. From D_ we get —(n; < n;) for all remaining
combinations of 4,5 € {1,2,3, T}.

For the theory (D, W U {Bird}, <) it is useful to verify that one ex-
tension is obtained. Initially ok(ns) is obtained (in Definition 2.1) as is
blp(n3). Since we can deduce blp(n3) D ok(nz), the rule Birdnok(ny) : Fly

. Fly
W clearly cannot be applied,

we do not obtain blp(ng) and since this is the only way in which ok(n4)
can be obtained (from the (reduced) formula (blp(ng) A blp(ns)) D
ok(n1) in W) we do not obtain ok(ni). If instead we have the theory
(D, W U {Penguin, ~Swim}, <), we again obtain one extension, con-
taining Animal, Bird, Penguin, and ok(ns). However we do not obtain
ok(n1), ok(ng), nor blp(n1), blp(nsg).

The following theorem summarises the major technical properties of
our approach, and demonstrates that rules are applied in the desired
order:

can be applied. Since the rule

THEOREM 5.1. Let E be a consistent extension of Z((D,W, <)) for
ordered default theory (D, W, <). We have for all 6,8 € D that

1.ng<nyg € Eiff 7(ns <ng) ¢ E

2. ok(ns) € E; and Prereq(d) € E; and —Justif(§) ¢ E implies
ConSCQ((S) € Emax(i,j)+3

3. ok(ng) € E; and Prereq(0) ¢ E implies blp(ns) € E;j1q

4. Prereq(6) € E where § # 61 implies for every &' where §' < § we
have ok(ng) ¢ E

5. ok(ng) € E iff for every &' where § < &' we have ok(ng) € E and
blp(n,;) ckE

kluwerpaper.tex; 16/04/2000; 4:48; p.18

19

It follows immediately from the last two parts above that for 6 € D,
where ¢ # 67, if 6, € GD(D, E) then

— for every ¢’ where 6 < §' we have blp(ns) € E, and

— for every §' where §' < § we have ok(ng) ¢ E.

That is, if a non-trivial default is applied, then every <-greater de-
fault has an unprovable prerequisite, and every <-lesser default is not
considered.

6. Discussion

We have proposed and illustrated a general methodology for using
Default Logic as an analytical tool and as an underlying formalism for
the representation of knowledge. This role for Default Logic extends
that advocated for formal logic in Knowledge Representation. The
methodology involves the naming of default rules and the introduc-
tion of special-purpose predicates, for detecting conditions for default
rule applicability and controlling a rule’s application. This allows the
encoding of specific strategies and policies governing a set of default
rules. Given this, we present two examples, wherein Default Logic is
used to formalise preferences among properties and the inheritance of
default properties. In earlier work (Delgrande and Schaub, 1999b) we
have also shown how a notion of “similar individuals” can be encoded
so that default rules apply uniformly to such similar individuals.

Thus, in our examples we show how Default Logic can be em-
ployed to provide a semantics for such phenomena and, on the other
hand, provide an encoding for reasoning with such phenomena. Given
that there are now comprehensive implementations of Default Logic
available, it also becomes a straightforward matter to implement, for
example, preference or property inheritance: one needs just implement
the translation into Default Logic, and feed the result into a Default
Logic theorem prover.

These examples suggest that the general methodology proposed here
provides a general and useful approach to analyse and axiomatise vari-
ous diverse phenomena. For example, our translations demonstrate that
there are distinct notions having to do with preference and priority
on the one hand, and property inheritance on the other. Hence we
suggest that, in addition to directly representing nonmonotonic the-
ories, Default Logic is appropriate as a general Artificial Intelligence
formalism in which specific phenomena may be encoded. In fact, a
stronger, perhaps more pragmatic, thesis® can be advanced in view

5 We thank a reviewer for suggesting this.

kluwerpaper.tex; 16/04/2000; 4:48; p.19

20

of implemented reasoning systems such as Smodels (Niemeld and Si-
mons, 1997) (Eiter et al., 1997) and DLV: that a subset of Default
Logic, corresponding to extended logic programs under the answer set
semantics, might provide just the appropriate approach for encoding
and addressing such phenomena as advocated here.

References

J. Allen and P.J. Hayes. Moments and points in an interval-based temporal logic.
Computational Intelligence, 5(4):225-238, 1989.

F. Baader and B. Hollunder. Embedding defaults into terminological knowledge
representation formalisms. In B. Nebel, C. Rich, and W. Swartout, editors,
Proceedings of the Third International Conference on the Principles of Knowledge
Representation and Reasoning, pages 306-317, Cambridge, MA, October 1992.

F. Baader and B. Hollunder. How to prefer more specific defaults in terminological
default logic. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 669-674, Chambéry, France, 1993.

C. Boutilier. What is a default priority? In J. Glasgow and R. Hadley, editors,
Proceedings of the Ninth Canadian Conference on Artificial Intelligence, pages
140-147, Vancouver, B.C., 1992.

G. Brewka and T. Eiter. Preferred answer sets for extended logic programs. In
A. Cohn, L. Schubert, and S. Shapiro, editors, Proceedings of the Sizth Interna-
tional Conference on the Principles of Knowledge Representation and Reasoning,
pages 86—97. Morgan Kaufmann Publishers, 1997.

G. Brewka and T. Gordon. How to buy a porsche: An approach to defeasible decision
making. In AAAI-9} Workshop on Computational Dialectics, Seattle, WA, July
1994. AAAI Press.

G. Brewka. Adding priorities and specificity to default logic. In L. Pereira
and D. Pearce, editors, European Workshop on Logics in Artificial Intelligence
(JELIA’94), Lecture Notes in Artificial Intelligence, pages 247-260. Springer
Verlag, 1994.

G. Brewka. Reasoning about priorities in default logic. In Proceedings of the AAAI
National Conference on Artificial Intelligence, pages 940-945. AAAT Press/The
MIT Press, 1994.

G. Brewka. Well-founded semantics for extended logic programs with dynamic
preferences. Journal of Artificial Intelligence Research, 4:19-36, 1996.

M. Cadoli, T. Eiter, and G. Gottlob. Default logic as a query language. In J. Doyle,
P. Torasso, and E. Sandewall, editors, Proceedings of the Fourth International
Conference on the Principles of Knowledge Representation and Reasoning, pages
99-108. Morgan Kaufmann Publishers, 1994.

P. Cholewiriski, V. Marek, A. Mikitiuk, and M. Truszczyriski. Computing with
default logic. Artificial Intelligence, 112(1-2):105-146, 1999.

J.P. Delgrande and T. Schaub. Compiling reasoning with and about preferences
into default logic. In T. Dean, editor, Proceedings of the International Joint
Conference on Artificial Intelligence, pages 168-174, Nagoya, Japan, August
1997. Morgan Kaufmann Publishers.

J.P. Delgrande and T. Schaub. Compiling specificity into approaches to nonmono-
tonic reasoning. Artificial Intelligence, 90(1-2):301-348, 1997.

kluwerpaper.tex; 16/04/2000; 4:48; p.20

21

J.P. Delgrande and T. Schaub. Reasoning with sets of preferences in default logic. In
The Second IJCAI Workshop on Nonmonotonic Reasoning, Action and Change,
Nagoya, Japan, August 1997.

J. Delgrande and T. Schaub. Expressing preferences in default logic. Technical
report, Universitdt Potsdam, 1999. submitted for publication.

J.P. Delgrande and T. Schaub. The role of default logic in knowledge represen-
tation. In Workshop on Logic-Based Artificial Intelligence, Washington, D.C.,
June 1999.

T. Eiter, N. Leone, C. Mateis, G. Pfeifer, , and F. Scarcello. A deductive sys-
tem for nonmonotonic reasoning. In J. Dix, U. Furbach, and A. Nerode,
editors, Proceedings of the Fourth International Conference on Logic Program-
ming and Non-Monotonic Reasoning, volume 1265 of Lecture Notes in Artificial
Intelligence, pages 363-374. Springer Verlag, 1997.

D.W. Etherington and R. Reiter. On inheritance hierarchies with exceptions. In
Proceedings of the AAAI National Conference on Artificial Intelligence, pages
104-108. Morgan Kaufmann Publishers, 1983.

H. Geffner and J. Pearl. Conditional entailment: Bridging two approaches to default
reasoning. Artificial Intelligence, 53(2-3):209-244, 1992.

M. Gelfond and V. Lifschitz. Logic programs with classical negation. In David H. D.
Warren and Peter Szeredi, editors, Proceedings of the International Conference
on Logic Programming, pages 579-597. MIT, 1990.

M. Gelfond and T. C. Son. Reasoning with prioritized defaults. In Jiirgen Dix,
Luis Moniz Pereira, and Teodor C. Przymusinski, editors, Proceedings of the 3th
International Workshop on Logic Programming and Knowledge Representation
(LPKR-97), volume 1471 of LNAI, pages 164-223, Berlin, 1998. Springer.

B. Grosof. Generalizing prioritization. In J. A. Allen, R. Fikes, and E. Sandewall,
editors, Proceedings of the Second International Conference on the Principles of
Knowledge Representation and Reasoning, pages 289-300, San Mateo, CA, April
1991. Morgan Kaufmann.

P.J. Hayes. Naive physics I: Ontology for liquids. In J.R. Hobbs and R.C. Moore,
editors, Formal Theories of the Commonsense World, pages 71-108. Ablex, 1985.

P.J. Hayes. The second naive physics manifesto. In J.R. Hobbs and R.C. Moore,
editors, Formal Theories of the Commonsense World, pages 1-36. Ablex, 1985.

T. Janhunen. Classifying semi-normal default logic on the basis of its expressive
power. In M. Gelfond, N. Leone, and G. Pfeifer, editors, Proceedings of the Fifth
International Conference on Logic Programming and Nonmonotonic Reasoning
(LPNMR’99), volume 1730 of Lecture Notes in Artificial Intelligence, pages 19—
33. Springer Verlag, 1999.

H.J. Levesque, F. Pirri, and R. Reiter. Foundations for the situation calculus.
Linképing Electronic Articles in Computer and Information Science, 3(18), 1998.

V. Lifschitz. Closed-world databases and circumscription. Artificial Intelligence,
27:229-235, 1985.

V. Lifschitz. Foundations of logic programming. In G. Brewka, editor, Principle of
Knowledge Representation, pages 69-127. CSLI, 1996.

J. McCarthy and P.J. Hayes. Some philosophical problems from the standpoint of
artificial intelligence. In D. Michie and B. Meltzer, editors, Machine Intelligence
4, pages 463-502. Edinburgh University Press, 1969.

J. McCarthy. First order theories of individual concepts and propositions. In
D. Michie, editor, Machine Intelligence 9, pages 129-147. Edinburgh University
Press, 1979.

kluwerpaper.tex; 16/04/2000; 4:48; p.21

22

J. McCarthy. Applications of circumscription to formalizing common-sense knowl-
edge. Artificial Intelligence, 28:89-116, 1986.

R.E. Mercer. Using default logic to derive natural language suppositions. In
R. Goebel, editor, Proceedings of the Seventh Biennial Canadian Conference
on Artificial Intelligence, pages 14-21, 1988.

R.C. Moore. Reasoning about knowledge and action. Technical Report 181, SRI
International, 1980.

R.C. Moore. The role of logic in knowledge representation and commonsense reason-
ing. In Proceedings of the AAAI National Conference on Artificial Intelligence,
pages 428-433, Pittsburgh, PA, 1982.

I. Niemeld and P. Simons. Smodels: An implementation of the stable model and
well-founded semantics for normal logic programs. In J. Dix, U. Furbach, and
A. Nerode, editors, Proceedings of the Fourth International Conference on Logic
Programing and Nonmonotonic Reasoning, pages 420—429. Springer-Verlag, 1997.

J. Pearl. System Z: A natural ordering of defaults with tractable applications to
nonmonotonic reasoning. In R. Parikh, editor, Proc. of the Third Conference
on Theoretical Aspects of Reasoning About Knowledge, pages 121-135, Pacific
Grove, Ca., 1990. Morgan Kaufmann Publishers.

C.R. Perrault. An application of default logic to speech act theory. Technical Report
CSLI-87-90, Stanford University, 1987.

D.L. Poole. A logical framework for default reasoning. Artificial Intelligence,
36(1):27-48, 1988.

R. Reiter and G. Criscuolo. On interacting defaults. In Proceedings of the Inter-
national Joint Conference on Artificial Intelligence, pages 270-276, Vancouver,
B.C., 1981.

R. Reiter and J. de Kleer. Foundations for assumption-based truth maintenance
systems: Preliminary report. In Proceedings of the AAAI National Conference
on Artificial Intelligence, pages 183-188. Morgan Kaufmann Publishers, 1987.

. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.

. Reiter. Towards a logical reconstruction of relational database theory. In M.L.
Brodie, J. Mylopoulos, and J.W. Schmidt, editors, On Conceptual Modelling,
pages 191-233. Springer-Verlag, 1984.

R. Reiter. A theory of diagnosis from first principles. Artificial Intelligence, 32(1):57—

96, 1987.

T. Schaub and P. Nicolas. An implementation platform for query-answering in
default logics: The XRay system, its implementation and evaluation. In J. Dix,
U. Furbach, and A. Nerode, editors, Proceedings of the Fourth International
Conference on Logic Programming and Non-Monotonic Reasoning, volume 1265
of Lecture Notes in Artificial Intelligence, pages 442-453. Springer Verlag, 1997.

H. Turner. Representing actions in logic programs and default theories: A situation
calculus approach. Journal of Logic Programming, 31(1-3):245-298, 1997.

X. Wang, J. You, and L. Yuan. Compiling defeasible inheritance networks to general
logic programs. Artificial Intelligence, 113(1-2):247-268, 1999.

Y. Zhang and N. Foo. Answer sets for prioritized logic programs. In J. Maluszyn-
ski, editor, Proceedings of the International Symposium on Logic Programming
(ILPS-97), pages 69—-84. MIT Press, 1997.

==

kluwerpaper.tex; 16/04/2000; 4:48; p.22

