
Shift Design with Answer Set Programming ?

M. Abseher1, M. Gebser2,3, N. Musliu1, T. Schaub3,4??, and S. Woltran1

1 TU Wien, Austria
2 Aalto University, HIIT, Finland

3 University of Potsdam, Germany
4 INRIA Rennes, France

Abstract. Answer Set Programming (ASP) is a powerful declarative program-
ming paradigm that has been successfully applied to many different domains. Re-
cently, ASP has also proved successful for hard optimization problems like course
timetabling. In this paper, we approach another important task, namely, the shift
design problem, aiming at an alignment of a minimum number of shifts in order
to meet required numbers of employees (which typically vary for different time
periods) in such a way that over- and understaffing is minimized. We provide an
ASP encoding of the shift design problem, which, to the best of our knowledge,
has not been addressed by ASP yet. Our experimental results demonstrate that
ASP is capable of improving the best known solutions to some benchmark prob-
lems. Other instances remain challenging and make the shift design problem an
interesting benchmark for solving methods based on ASP.

1 Introduction

Answer Set Programming (ASP) [11] is a declarative formalism for solving hard com-
putational problems. Thanks to the power of modern ASP technology [18], ASP was
successfully used in various application areas, including product configuration [29],
decision support for space shuttle flight controllers [25], team building and scheduling
[28], and bio-informatics [19]. Recently, ASP also proved successful for optimization
problems that had not been amenable to complete methods before, for instance in the
domain of timetabling [5].

In this paper, we investigate the application of ASP to another important domain,
namely, workforce scheduling [9]. Finding appropriate staff schedules is of great rele-
vance because work schedules influence health, social life, and motivation of employ-
ees at work. Furthermore, organizations in the commercial and public sector must meet
their workforce requirements and ensure the quality of their services and operations.
Such problems appear especially in situations where the required number of employ-
ees fluctuates throughout time periods, while operations dealing with critical tasks are
performed around the clock. Examples include air traffic control, personnel working in
emergency services, call centers, etc. In fact, the general employee scheduling prob-
lem includes several subtasks. Usually, in the first stage, the temporal requirements are

? A short version of this paper will appear at LPNMR’15.
?? Affiliated with Simon Fraser University, Canada, and IIIS Griffith University, Australia.

1



determined based on tasks that need to be performed. Further, the total number of em-
ployees is determined and the shifts are designed. In the last phase, the shifts and/or
days off are assigned to the employees. For shift design [24], employee requirements
for a period of time, constraints about the possible start and length of shifts, and lim-
its for the average number of duties per week are considered. The aim is to generate
solutions consisting of shifts (and the number of employees per shift) that fulfill all
hard constraints, while minimizing the number of distinct shifts as well as over- and
understaffing. This problem has been addressed by local search techniques, including a
min-cost max-flow approach [24] and a hybrid method combining network flow with
local search [14]. These techniques have been used to successfully solve randomly gen-
erated examples and problems arising in real-world applications.

Although the aforementioned state-of-the-art approaches for the shift design prob-
lem are able to provide optimal solutions in many cases, obtaining optimal solutions
for large problems is still a challenging task. Indeed, for several instances the best so-
lutions are still unknown. Therefore, the application of exact techniques like ASP is an
important research target. More generally, it is interesting to see how far an elaboration-
tolerant, general-purpose approach such as ASP can compete with dedicated methods
when tackling industrial problems. Our ASP solution is based on the first author’s mas-
ter thesis [1] and relies on sophisticated modeling and solving techniques, whose appli-
cation provides best practice examples for addressing similarly demanding use-cases.
On the one hand, we demonstrate how order encoding techniques [12] can be used
in ASP for modeling complex interval constraints. On the other hand, our empirical
evaluation contrasts traditional model-guided5 optimization techniques with orthogo-
nal core-guided techniques [21], revealing another case in which the latter have an edge
over the former. Although our experiments show that the shift design problem provides
challenging benchmarks for state-of-the-art ASP technology, we were able to identify
yet unknown global optima for some hard instances.

2 The Shift Design Problem

To begin with, let us introduce the shift design problem. Our problem formulation fol-
lows the one in [24]. As input, we are given the following:

– consecutive time slots sharing the same length. Each time slot is associated with a
number of employees that should be present during the slot.

– shift types with associated parameters min-start and max-start, representing the
earliest and latest start, and min-length and max-length, representing the minimum
and maximum length of a shift. An example of such shift types is given in Table 1.

The aim is to generate a collection of k shifts s1, . . . , sk. Each shift si is completely
determined by its start and length, which must belong to some shift type. Additionally,
each shift si is associated with parameters indicating the number of employees assigned
to si during each day of the planning period. Note that we consider cyclic planning
periods where the successor of the last time slot is equal to the first time slot.

5 That is, branch-and-bound based strategies; the term ‘model-guided’ was coined in [22, 2].

2



shift type min-start max-start min-length max-length

M 07:00 08:00 07:00 09:00
D 10:30 11:30 07:00 09:00
A 14:00 16:00 07:00 08:00
N 22:00 24:00 07:00 09:00

Table 1. Possible shift types

In analogy to [14], we investigate the optimization of the following criteria: sum of
shortages of workers in each time slot during the planning period, sum of excesses of
workers in each time slot during the planning period, and the number of shifts.6 Tra-
ditionally, the objective function is a weighted sum of the three components (although
this kind of aggregation is not mandatory with ASP).

Related work. Solving the shift design problem by local search has been thoroughly
investigated in [24], where a tabu search approach and several neighborhood relations
were proposed. The algorithms have been included in the scheduling system OPA (Op-
erating Hours Assistant), which is used for solving real-world shift design problems in
different companies. The complexity of the shift design problem was analyzed in [14],
where also an improved local search technique and a hybrid method combining a min-
cost max-flow approach with local search was introduced. The inclusion of breaks into
shift design was considered in [8, 7, 16, 33]. An detailed overview of previous work on
shift design and break scheduling is given in [15].

A related problem is shift scheduling. To solve this problem, mainly exact ap-
proaches based on Integer Programming have been applied. For instance, following
the set-covering formulation due to [13], several formulations were proposed in [4, 6,
27, 32]. Other approaches include large neighborhood search [26], tabu search [31],
etc. The original shift design problem differs in several aspects from the shift schedul-
ing problem. In our problem, shifts are constructed for the whole week and cyclicity is
taken into account. Furthermore, we consider the minimization of the number of shifts,
and both over- and understaffing are allowed.

Finally, there is also the area of workforce management where the focus is on the
allocation of employees of different qualifications to tasks requiring different skills.
Similar to shift design and scheduling problems, constraints concerning the workload
have to be taken into account. In [28], a concrete problem from this domain has been
tackled via ASP, and the resulting system is tailored to the specific needs of the seaport
of Gioia Tauro. From the conceptual point of view, the main difference is that the en-
coded problem of [28] is a classical allocation problem with optimization towards work
balance, while the problem we tackle here aims at an optimal alignment of shifts.

3 Shift Design in ASP

An instance like the one shown in Figure 1 is specified by facts as in Figure 2. Facts
of the form time(S ,T ) associate each slot S with a day time T . Our instance includes

6 In [24], additionally, the average number of duties per week is considered.

3



0 1 2 3 4 5 6 7

1

2

3

4

5

6

4 3

2 1

4 3

2 1

4 3

2 1

4 3

4 3

2

12

1

3 2

1

4

0 1 2 3 4 5 6 7

1

2

3

4

5

6

Fig. 1. Work demands over a day (left) and the unique optimal schedule (right) with shifts starting
at slot 2, 4, or 7, respectively, indicated by different boxes, while other kinds of shifts are unused



time(0, 0), time(1, 1), . . . , time(7, 7), next(0, 1), next(1, 2), . . . , next(7, 0),
work(0, 1),work(1, 1),work(2, 4),work(3, 3),work(4, 5),work(5, 5),
work(6, 2),work(7, 3), exceed(1), shorten(1), opt(shortage, 3, 1),
opt(excess, 2, 1), opt(select, 1, 1), range(2, 2, 1), . . . , range(2, 2, 4),
range(2, 3, 1), . . . , range(2, 3, 5), range(2, 4, 1), . . . , range(2, 4, 5),
range(4, 2, 1), . . . , range(4, 2, 5), range(4, 3, 1), . . . , range(4, 3, 5),
range(4, 4, 1), . . . , range(4, 4, 5), range(5, 2, 1), . . . , range(5, 2, 5),
range(5, 3, 1), . . . , range(5, 3, 5), range(5, 4, 1), . . . , range(5, 4, 5),
range(6, 2, 1), . . . , range(6, 2, 3), range(6, 3, 1), . . . , range(6, 3, 3),
range(6, 4, 1), . . . , range(6, 4, 3), range(7, 2, 1), . . . , range(7, 2, 3),
range(7, 3, 1), . . . , range(7, 3, 3), range(7, 4, 1), . . . , range(7, 4, 4)


Fig. 2. ASP facts specifying an instance of the shift design problem

one day, divided into eight slots denoted by the times 0, . . . , 7. Instances of next(S ′, S )
provide predecessor or successor slots, respectively, where S is usually S ′+1, except
for the last slot whose successor is 0. (When another day is added, the slots 8, . . . , 15
would also be mapped to day times 0, . . . , 7, next(7, 0) would be replaced by next(7, 8),
and next(15, 0) would connect the new last slot to 0 instead.) For each slot S , a
fact work(S ,N) gives the number N of desired employees, and exceed(E) as well as
shorten(F) may limit the amount of employees at duty to at most E+N or at least N−F,
respectively. For instance, we obtain the upper bound 4 and the lower bound 2 for em-
ployees engaged in slot 7. Facts of the form range(S , L, 1), . . . , range(S , L,M) provide
potential amounts of shifts of length L that can start from slot S , where M is the max-
imum number of desired employees over all slots within the horizon of the shift. For
shifts starting from slot 7, those of length 2 or 3 stretch to slot 0 or 1, respectively, and
the corresponding maximum number of desired employees is 3 in slot 7 itself; unlike
that, shifts of length 4 also include slot 2 in which 4 employees shall be at duty.

Moreover, facts opt(shortage, P,W), opt(excess, P,W), and opt(select, P,W) specify
optimization criteria in terms of a priority P and a penalty weight W incurred in case
of violations. The priorities in Figure 2 tell us that the desired number of employees
shall be present in the first place, then the amount of additional employees ought to be
minimal, and third the number of utilized shifts in terms of day time and length should
be as small as feasible. Given that the criteria are already distinguished by priority, the

4



{run(S , L, I)} ← range(S , L, I) (1)

run(S , L, I) ← run(S ′, L+1, I), next(S ′, S ), 0 < L (2)

run(S , L, I) ← run(S , L+1, I), 0 < L (3)

run(S , L, I+J) ← run(S , L+1, I), shift(S , L, J) (4)

← run(S , L, I+1), 0 < I,∼run(S , L, I) (5)

← work(S ,N), exceed(E), run(S , 1,N+E+1) (6)

← work(S ,N), shorten(F), F < N,∼run(S , 1,N−F) (7)

length(S , L, I, 1) ← range(S , L, I), run(S , L, I),∼run(S , L+1, I) (8)

length(S , L, I, J) ← length(S , L, I+1, J−1), 0 < I,∼run(S , L+1, I) (9)

shift(S , L, J) ← length(S , L, I, J) (10)

shift(S , L, J) ← shift(S ′, L+1, J), next(S ′, S ), 0 < L (11)

start(S , L, J) ← range(S , L, J), next(S ′, S ), shift(S , L, J),∼shift(S ′, L+1, J) (12)

W@P, S , I, shortage f opt(shortage, P,W),work(S ,N), I ∈ [1,N],∼run(S , 1, I) (13)

W@P, S , I, excess f opt(excess, P,W),work(S ,N), run(S , 1, I),N < I (14)

W@P, T, L, select f opt(select, P,W), start(S , L, J), time(S , T ) (15)

Fig. 3. ASP encoding of the shift design problem

penalty weight of a violation of either kind is 1, thus counting particular violations to
assess schedules.

Our ASP encoding of the shift design problem is shown in Figure 3. For a slot S , the
intuitive reading of the predicate run(S , L, I) is that at least I shifts including S and L−1
or more successor slots are scheduled. This is further refined by length(S , L, I, J), telling
that 1, . . . , J of the scheduled shifts of exact length L may start from S , where I−1
shifts that include at least L−1 successor slots are scheduled in addition. The predicate
shift(S , L, J) expresses that at least J of the scheduled shifts stretch to S and exactly
L−1 successor slots, and start(S , L, J) indicates that the J-th instance of such a shift
indeed starts from S . A schedule is thus characterized by the number of (true) atoms of
the form start(S , L, J), yielding the amount of shifts of length L starting from slot S .

For example, the schedule displayed in Figure 1 is described by a stable model
containing start(2, 4, 1), start(2, 4, 2), start(2, 4, 3), start(4, 4, 1), start(4, 4, 2), and
start(7, 4, 1). Respective residual lengths, 4 at the start of each instance of a shift and
then decremented at successor slots, are given in the center of boxes indicating the
scheduled shifts, and associated positions are reflected by the height at which boxes
are placed. At slots 2, 4, and 7, the positions happen to coincide with the number of
shifts starting from them, viz. three, two, or one instance of length 4, respectively.
In particular, atoms shift(2, 4, 1), shift(2, 4, 2), and shift(2, 4, 3), derived in view of
length(2, 4, 1, 3), length(2, 4, 2, 2), and length(2, 4, 3, 1), express that three shifts of ex-
act residual length 4 are scheduled at slot 2. After decreasing the residual length to 2
at slot 4, the information about scheduled shifts is used to relocate the three instances
to the positions 3, 4, and 5, as two shifts with a longer residual length than 2 start
from slot 4. In fact, the five shifts scheduled at slot 4 are represented by run(4, 4, 1),
run(4, 4, 2), run(4, 2, 3), run(4, 2, 4), and run(4, 2, 5) along with additional atoms ob-

5



tained by propagating residual lengths, 4 or 2, respectively, down to 1. Also note that
a comparison between shifts scheduled at slots 3 and 4 yields that only the instances
of residual length 4 start from 4. Indeed, the displayed schedule is the unique optimal
solution, given that it matches the desired employees and uses a minimum number of
shifts, viz. shifts of length 4 starting from slot 2, 4, or 7, respectively.

In more detail, the potential start of an instance I of a shift of length L from slot S is
reflected by the choice rule (1) in Figure 3. Rule (2) propagates the start of a shift to its
L−1 successor slots, where the residual length is decreased down to 1 in the last slot of
the shift. For shifts with longer residual length L, rule (3) closes the interval between 1
and L, thus overturning any choice rules for potential starts of shifts of shorter length.
Moreover, this allows for pushing the J-th instance of a shift stretching to slot S to the
position I+J when I instances of shifts longer than the residual length L are scheduled,
as expressed by rule (4). The integrity constraint (5) asserts that the positions associ-
ated with scheduled shifts must be ordered by residual length. This condition eliminates
guesses on instances I of starting shifts, and it also provides a shortcut making intercon-
nections between positions of scheduled shifts explicit, which turned out as effective to
improve search performance. The additional integrity constraints (6) and (7) are appli-
cable whenever the deviation from numbers of desired employees is bounded above or
below, respectively. Note that it is sufficient to inspect atoms of the form run(S , 1, I) for
appropriate positions I, given that residual lengths are propagated via rule (3).

In order to derive the amount of scheduled shifts of exact residual length L, rule (8)
marks positions I, where instances may start, with 1 when the length L matches. In-
stances associated with smaller positions then count on by means of rule (9) unless
their positions are occupied by shifts with longer residual length. By projecting the po-
sitions out, rule (10) yields that 1, . . . , J shifts of length L may start from slot S . In
addition, longer shifts whose residual length decreases to L in S are propagated via
rule (11). Finally, rule (12) compares instances that may start to propagated shifts and
indicates the ones that indeed start from S . As a consequence, a stable model represents
a schedule in terms of sequences of the form start(S , L,m), . . . , start(S , L, n), express-
ing that n+1−m instances of a shift of length L start from slot S . It remains to assess
the quality of a schedule, which is accomplished by means of the weak constraints (13),
(14), and (15) for the three optimization criteria at hand. The penalty for deviating from
a number of desired employees is characterized in terms of the priority P and weight W
given in facts, a position I pointing to under- or overstaffing in a slot S , and the corre-
sponding keyword shortage or excess, respectively, for avoiding clashes with penalties
due to the utilization of shifts. The latter include the keyword select and map the slot S
of a starting shift of length L to its day time T , so that the penalty W@P is incurred
at most once for a shift with particular parameters, no matter how many instances are
actually utilized.

A prevalent feature of our ASP encoding in Figure 3 is the use of closed intervals
(starting from 1) to represent quantitative values such as residual lengths or instances
of shifts. The basic idea is similar to the so-called order encoding [12], which has been
successfully applied to solve constraint satisfaction problems by means of SAT [30]. In
our ASP encoding, rule (4), (8), and (9) take particular advantage of the order encoding
approach by referring to one value, viz. L+1, for testing whether any shift with longer

6



residual length than L is scheduled. Likewise, the integrity constraints (6) and (7) as well
as the weak constraints (13) and (14) focus on value 1, standing for any residual length,
to determine the amount of employees at duty. That is, the order encoding approach
enables a compact formulation of existence tests and general conditions, which then
propagate to all target values greater or smaller than a certain threshold.

4 Experiments

In the following, we present the experimental evaluation of our approach. All bench-
mark results were obtained using a machine with two Intel(R) Xeon(R) E5-2637 v3
@ 3.50GHz processors and 256GB RAM running Debian 7.8 (wheezy). Each test
run, using Clingo 4.4.0 [17], was bound to a single core and 8GB RAM with a time
limit of 60 minutes. Preliminary tests showed best results with Clingo’s configuration
handy. Additionally, we also consider the configuration tweety as it is the default for
ASP problems. To support the search for optimal solutions, we use the two different
optimization strategies of Clingo: (i) Branch-and-bound based with hierarchical steps
(--opt-strategy=bb,1) and (ii) Unsatisfiable-core based with disjoint-core prepro-
cessing and implications instead of equivalences (--opt-strategy=usc,3). For strat-
egy (i), we also considered domain heuristics (--dom-mod=4,8) in order to accelerate
the process of convergence towards the optimum.

The traditional branch-and-bound strategy constitutes a model-guided approach that
aims at successively producing solutions of descending costs until an optimum is found
(by establishing the unsatisfiability of the problem with an even lower cost). In addition,
the hierarchical variant of Clingo allows for non-uniform descents during optimization.
For instance in multi-criteria optimization, this enables the consideration of criteria in
the order of significance, rather than producing spurious (intermediate) solutions.

Core-guided approaches originated in the area of MaxSAT [10]. They rely on suc-
cessively identifying and relaxing unsatisfiable cores until a solution that is guaranteed
to be optimal is obtained (see [21]). The (main) implementation in Clingo relies on
the core-guided optimization algorithm oll [3]. It can (optionally) be combined with
disjoint-core preprocessing [20], which as a side effect provides a quick approximation
of the optimum (otherwise no intermediate solutions are obtained).

Problem instances The benchmarks are grouped into three different sets of instances
of the shift design problem. Below we briefly explain their basic structure and most
important characteristics. All benchmark sets are publicly available under the address
http://www.dbai.tuwien.ac.at/proj/Rota/benchmarks.html.7 The data sets
were first described in [23, 24] and also used in [14] for evaluating hybrid solving ap-
proaches.

DataSet1 The first data set contains 30 instances that can be solved without any de-
viation, since they were generated by first constructing a feasible assignment of workers
to a selected number of shifts (also called the seed solution), and then the resulting val-
ues were used as requirements in respective instances.

7 Instances as facts and our ASP encoding are available at:
http://www.dbai.tuwien.ac.at/proj/Rota/DataSetASP.zip

7



DataSet2 The second data set contains 30 instances, which are quite similar to those
of the first data set, but here the seed solution was constructed in such a way that in-
stances 1–10 should need at least 12 shifts to be solved exactly. The instances 11–20
feature 16 shifts, and the remaining ten instances were constructed with a seed solution
using 20 shifts. Di Gaspero et al. [14] note that their heuristic could also find better
solutions for some of the problem instances. In our experimental evaluation, we thus
use their results for reference. The second data set was originally constructed with the
intention to study the impact of the number of shifts in the best known solution on
computation time.

DataSet3 Di Gaspero et al. [14] highlight that in cases where an exact solution ex-
ists, the behavior of heuristics could be biased in comparison to the general case that
there is no solution without deviation. To evaluate the solving efficiency on instances
that cannot be solved exactly, the third data set contains 30 instances that were con-
structed in the same way as the two previous data sets, but this time, invalid shifts were
added during the construction process. These invalid shifts cannot be selected in an op-
timal solution, so that it is unlikely that an instance of the third data set can be solved
without deviation. The instances 1–10 were constructed with a seed of 12 shifts (valid
and invalid ones), and also the remaining instances are generated using the same scheme
concerning the number of shifts as in the second data set.

DataSet4 The fourth set contains three advanced problem instances, among which
the first one is a complex real-world example to complement randomly generated in-
stances. The second instance is almost identical to the fifth one in DataSet3, but the
length of a time slot is halved. In this way, the second instance allows for investigat-
ing the impact of increasing the scheduling granularity. A similar approach is used for
the third instance, but here the requirements are doubled instead of the number of time
slots. Note that no best known fitness values have been published for the fourth data set.

Evaluation Tables 2, 3, and 4 illustrate the fitness values and runtimes for all data sets.
In the second column of the tables, the currently best known fitness values are provided,
and the columns to the right of it show the results we obtained using ASP.

All values in the tables represent the median for five test runs at the time of their
termination for each instance and configuration. The reference values in columns for
the best known fitness taken from [14] represent the mean over 10, for DataSet1 and
DataSet2, or 100, in case of DataSet3 and DataSet4, trials with incomplete methods.
An entry “> 1h” in a runtime column denotes that the corresponding instance could not
be solved within the time limit of one hour. A dash in a column for the fitness means
that Clingo did not produce any solution within one hour. Since all our experiments are
conducted without a limit on the maximum shortage and excess and because we also
do not restrict the maximum number of shifts, we can directly compare our results to
previous work on these instances, and we will provide formerly unknown global optima
for four instances. In fact, the fitness in [14] is based on a balanced sum penalizing
deviations and the utilization of shifts equitably, so that all weak constraints are of the
same priority and penalty weight.

In Table 2, we see that the branch-and-bound based optimization strategy (shown
in columns headed by --opt-strategy=bb,1) is outperformed by the unsatisfiable-
core based strategy (given in columns headed by --opt-strategy=usc,3). Non-

8



Instance Best --opt-strategy=bb,1 --opt-strategy=bb,1 --opt-strategy=usc,3
Fitness --dom-mod=4,8

[14] tweety handy tweety handy tweety handy

Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time
1 480 53640 > 1h 60960 > 1h 2820 > 1h 3780 > 1h 480 7.9 480 14.7
2 300 22410 > 1h 24990 > 1h 3000 > 1h 6000 > 1h 300 80.4 300 80.1
3 600 44280 > 1h 45840 > 1h 5160 > 1h 5460 > 1h 600 13.2 600 23.2
4 450 71370 > 1h 62160 > 1h 11730 > 1h 11310 > 1h 450 625.3 450 203.3
5 480 26340 > 1h 24300 > 1h 480 606.4 1500 > 1h 480 4.5 480 7.1
6 420 23160 > 1h 19620 > 1h 420 108.4 420 513.8 420 2.3 420 3.3
7 270 68880 > 1h 77670 > 1h 2640 > 1h 5040 > 1h 270 105.1 270 102.8
8 150 97590 > 1h 94560 > 1h 18015 > 1h 18735 > 1h — > 1h 150 3482.5
9 150 27075 > 1h 25995 > 1h 10155 > 1h 6525 > 1h 150 1731.2 150 1573.1
10 330 73680 > 1h 71310 > 1h 9390 > 1h 7800 > 1h 330 127.8 330 124.1
11 30 25575 > 1h 27375 > 1h 30 770.7 30 3351.8 30 208.0 30 211.4
12 90 47460 > 1h 49980 > 1h 4740 > 1h 2955 > 1h 90 884.4 90 922.0
13 105 53295 > 1h 51570 > 1h 8625 > 1h 7170 > 1h 105 1463.7 105 1528.5
14 195 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
15 180 6840 > 1h 180 543.6 180 3.6 180 11.3 180 0.5 180 0.6
16 225 70365 > 1h 71445 > 1h 17880 > 1h 19275 > 1h 225 3178.4 225 3281.4
17 540 88440 > 1h 90720 > 1h 11040 > 1h 9510 > 1h 540 295.7 540 306.7
18 720 42840 > 1h 42960 > 1h 7140 > 1h 7620 > 1h 720 12.7 720 22.5
19 180 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
20 540 42300 > 1h 30300 > 1h 540 3146.2 2580 > 1h 540 5.6 540 9.2
21 120 29910 > 1h 30540 > 1h 5640 > 1h 5430 > 1h 120 982.1 120 983.3
22 75 36420 > 1h 35550 > 1h 1500 > 1h 1455 > 1h 75 499.8 75 492.8
23 150 49530 > 1h 42645 > 1h 14100 > 1h 13245 > 1h 150 2210.8 150 2018.9
24 480 26940 > 1h 20940 > 1h 480 525.9 480 2942.7 480 3.4 480 5.5
25 480 94200 > 1h 86790 > 1h 11520 > 1h 11190 > 1h 480 348.9 480 307.9
26 600 41640 > 1h 23580 > 1h 1440 > 1h 3180 > 1h 600 7.1 600 12.1
27 480 51360 > 1h 52560 > 1h 6840 > 1h 5220 > 1h 480 11.8 480 20.6
28 270 18390 > 1h 22470 > 1h 2970 > 1h 2670 > 1h 270 25.4 270 37.5
29 360 62010 > 1h 56310 > 1h 10170 > 1h 9000 > 1h 360 128.7 360 141.7
30 75 16875 > 1h 17055 > 1h 1215 > 1h 2385 > 1h 75 308.4 75 326.5

Table 2. Fitness values and runtimes for DataSet1

surprisingly, we observed that using branch-and-bound based optimization leads to a
vast amount of intermediate, non-optimal solutions, so that fitness values are improved
rather slowly. In contrast, the unsatisfiable-core based approach consumes more time
to come up with intermediate solutions, but it produces much fewer of them before
converging to an optimum. An important point to mention is the fact that using do-
main heuristics in addition to the branch-and-bound approach (results given in columns
including --dom-mod=4,8) is significantly improving on branch-and-bound without
domain heuristics.

Apart from the fact that --opt-strategy=usc,3 delivers global optima for al-
most all instances of the first data set, another interesting observation is that the per-
formance of different configurations varies depending on the instance and the opti-
mization strategy used. Consider for example Instances 3 and 4 in Table 2, where the
tweety configuration turns out to be better than handy for Instance 3 with both opti-
mization strategies. On the other hand, for Instance 4, it leads to a three times longer
run with --opt-strategy=usc,3 and significantly deteriorates the fitness value with
--opt-strategy=bb,1. Due to the very similar nature of the second data set, we make
the same observations there, as shown in Table 3.

9



Instance Best --opt-strategy=bb,1 --opt-strategy=bb,1 --opt-strategy=usc,3
Fitness --dom-mod=4,8

[14] tweety handy tweety handy tweety handy

Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time
1 720 39540 > 1h 19680 > 1h 3120 > 1h 4020 > 1h 720 5.1 720 8.36
2 720 63240 > 1h 33600 > 1h 4680 > 1h 6180 > 1h 720 10.8 720 15.8
3 360 82560 > 1h 79620 > 1h 13320 > 1h 11730 > 1h 360 231.0 360 246.0
4 360 42780 > 1h 43140 > 1h 5880 > 1h 6540 > 1h 360 81.4 360 82.9
5 720 29820 > 1h 23100 > 1h 5220 > 1h 5340 > 1h 720 6.8 720 10.8
6 360 78750 > 1h 70500 > 1h 14160 > 1h 12630 > 1h 360 207.1 360 213.3
7 720 62880 > 1h 43200 > 1h 7500 > 1h 8460 > 1h 720 16.6 720 17.6
8 180 65505 > 1h 67200 > 1h 10845 > 1h 9480 > 1h 180 1729.4 180 1742.0
9 360 68130 > 1h 62880 > 1h 11340 > 1h 9570 > 1h 360 163.9 360 168.8
10 660 67320 > 1h 35340 > 1h 5580 > 1h 7560 > 1h 660 12.7 660 21.3
11 480 55830 > 1h 56280 > 1h 9750 > 1h 8250 > 1h 480 1012.5 480 1003.4
12 900 62940 > 1h 38400 > 1h 5460 > 1h 7320 > 1h 900 27.0 900 41.0
13 900 56820 > 1h 31980 > 1h 10620 > 1h 9900 > 1h 900 41.9 900 32.9
14 840 69060 > 1h 35460 > 1h 8040 > 1h 9420 > 1h 840 18.8 840 21.1
15 480 87450 > 1h 94380 > 1h 13620 > 1h 11070 > 1h 480 697.7 480 683.4
16 240 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
17 960 53820 > 1h 43860 > 1h 7320 > 1h 7860 > 1h 960 19.8 960 19.2
18 840 62040 > 1h 58200 > 1h 8760 > 1h 10560 > 1h 840 34.3 840 52.4
19 240 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
20 960 66600 > 1h 36600 > 1h 8280 > 1h 10140 > 1h 960 23.8 960 21.3
21 600 112530 > 1h 101460 > 1h 14940 > 1h 15030 > 1h 600 633.6 600 964.0
22 1080 105240 > 1h 60360 > 1h 11220 > 1h 11640 > 1h 1080 353.7 1080 128.1
23 300 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
24 600 119910 > 1h 113700 > 1h 12780 > 1h 11850 > 1h 600 1147.2 600 706.5
25 600 107970 > 1h 84750 > 1h 16410 > 1h 15060 > 1h 600 2297.1 600 974.6
26 1020 100440 > 1h 46860 > 1h 8340 > 1h 7800 > 1h 1020 42.3 1020 53.2
27 300 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
28 300 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
29 1140 76800 > 1h 31140 > 1h 10020 > 1h 11160 > 1h 1140 147.7 1140 77.8
30 1020 91620 > 1h 68640 > 1h 13260 > 1h 9960 > 1h 1020 1887.8 1020 2347.3

Table 3. Fitness values and runtimes for DataSet2

While these outcomes already show that at least --opt-strategy=usc,3 is a vi-
able choice for tackling the shift design problem, in Table 4, presenting our results for
the third and fourth data set, we see that our approach also works quite well on instances
having no solutions without deviation from the requirements. In particular, we want to
draw the reader’s attention to Instances 3, 4, 25, and 27 of the third data set. For these
four instances, our approach allows us to find formerly unknown global optima (high-
lighted in boldface), thus improving on results obtained with incomplete methods [14].
All in all, although the shift design problem turns out to be challenging for state-of-
the-art ASP solvers, our evaluation highlights the usefulness of ASP in the domain of
workforce scheduling.

5 Discussion

In this work, we presented a novel approach to tackle the shift design problem by us-
ing ASP. Finding good solutions for shift design problems is of great importance in
different organizations. However, such problems are very challenging due to the huge

10



Instance Best --opt-strategy=bb,1 --opt-strategy=bb,1 --opt-strategy=usc,3
Fitness --dom-mod=4,8

[14] tweety handy tweety handy tweety handy

Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time Fitness Time
DataSet3

1 2386.80 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
2 7672.59 60600 > 1h 63720 > 1h 21330 > 1h 18780 > 1h 12930 > 1h 12840 > 1h
3 9582.14 45840 > 1h 46110 > 1h 20640 > 1h 18780 > 1h 9540 3338.2 9540 1948.6
4 6634.40 87240 > 1h 91860 > 1h 18480 > 1h 17160 > 1h 8700 > 1h 6540 1680.9
5 9996.00 82020 > 1h 34920 > 1h 16800 > 1h 16140 > 1h 13500 > 1h 13380 > 1h
6 2076.75 57945 > 1h 59430 > 1h 9135 > 1h 9105 > 1h 5445 > 1h 6300 > 1h
7 6075.00 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
8 8860.50 64500 > 1h 64050 > 1h 19320 > 1h 19440 > 1h 12660 > 1h 12870 > 1h
9 6036.90 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h

10 2968.95 48240 > 1h 47100 > 1h 10500 > 1h 10140 > 1h 5940 > 1h 6810 > 1h
11 5490.90 97530 > 1h 79530 > 1h 21570 > 1h 20760 > 1h 9840 > 1h 10200 > 1h
12 4171.20 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
13 4662.00 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
14 9616.55 53520 > 1h 40020 > 1h 14820 > 1h 15480 > 1h 12900 > 1h 12720 > 1h
15 11445.00 72090 > 1h 69510 > 1h 24060 > 1h 24780 > 1h 13530 > 1h 13650 > 1h
16 10734.00 55200 > 1h 31740 > 1h 20460 > 1h 18120 > 1h 13800 > 1h 13560 > 1h
17 4729.05 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
18 6692.40 61890 > 1h 66300 > 1h 16650 > 1h 14280 > 1h 10440 > 1h 10950 > 1h
19 5157.45 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
20 9153.90 84420 > 1h 89250 > 1h 28110 > 1h 24420 > 1h 15540 > 1h 16920 > 1h
21 6053.55 — > 1h — > 1h — > 1h — > 1h — > 1h — > 1h
22 12870.30 94890 > 1h 97950 > 1h 29640 > 1h 26880 > 1h 15750 > 1h 15600 > 1h
23 8384.24 88440 > 1h 85680 > 1h 19440 > 1h 18840 > 1h 13320 > 1h 12660 > 1h
24 10417.80 66900 > 1h 63180 > 1h 23460 > 1h 22980 > 1h 13800 > 1h 15720 > 1h
25 13204.80 100560 > 1h 85740 > 1h 23520 > 1h 19740 > 1h 13020 41.2 13020 44.1
26 13117.80 95760 > 1h 94620 > 1h 37680 > 1h 33420 > 1h 22020 > 1h 20610 > 1h
27 10081.20 96360 > 1h 61440 > 1h 19020 > 1h 19200 > 1h 10020 101.4 10020 1138.5
28 10603.80 68040 > 1h 46200 > 1h 20160 > 1h 20040 > 1h 14580 > 1h 13800 > 1h
29 6690.00 89670 > 1h 92130 > 1h 21870 > 1h 22290 > 1h 11010 > 1h 10290 > 1h
30 13723.80 39480 > 1h 59520 > 1h 20820 > 1h 23400 > 1h 17460 > 1h 17520 > 1h

DataSet4
1 N/A 67920 > 1h 44700 > 1h 51600 > 1h 50040 > 1h 57600 > 1h 60060 > 1h
2 N/A 77010 > 1h 86880 > 1h 16860 > 1h 19320 > 1h 13260 > 1h 13170 > 1h
3 N/A 164760 > 1h 135780 > 1h 36360 > 1h 35280 > 1h 25980 > 1h 28560 > 1h

Table 4. Fitness values and runtimes for DataSet3 and DataSet4

search space and conflicting constraints. Our work contributes to better understanding
the strengths of ASP technology in this domain and extends the state of the art for the
shift design problem by providing new optimal solutions. Below we summarize the
main observations regarding the application of ASP to the shift design problem:

– ASP shows very good results for shift design problems that have solutions with-
out over- and understaffing. Our proposed ASP approach could provide optimal
solutions for almost all such benchmark instances.

– The first results for problems that do not have solutions without over- or under-
staffing are promising. Although our current approach could not reproduce best
known solutions for several problems, we were able to provide global optima for
four hard instances, not previously solved to the optimum.

11



– Our experimental evaluation indicates that our approach could also be used in com-
bination with other search techniques. For example, solutions computed by meta-
heuristic methods or min-cost max-flow techniques could be further improved by
ASP.

– In general, the computational results show that ASP has the potential to provide
good solutions in this domain. Therefore, our results open up the area of workforce
scheduling, which is indeed challenging for state-of-the-art ASP solvers. This is
most probably caused by the nature of the shift design problem, as there are few
hard constraints involved that could help to restrict the search space.

As future work, we plan to tackle the problem of optimization in shift design by
combining ASP with domain-specific heuristics in order to better guide the search, but
also exploiting Clingo’s integrated features is a promising target for further investiga-
tion. We are confident that ASP combined with heuristics is a powerful tool for tackling
problems in the area of workforce scheduling. This fact is already underlined by the
significantly improved results obtained for the branch-and-bound based approach when
activating Clingo’s integrated heuristics. By using customized heuristics, tailored to the
specific problem at hand, the chance for further improvements is thus high.

Acknowledgments. This work was funded by AoF (251170), DFG (550/9), and FWF
(P25607-N23, P24814-N23, Y698-N23).

References

1. Abseher, M.: Solving shift design problems with answer set programming. Master’s thesis,
Technische Universität Wien (2013)

2. Alviano, M., Dodaro, C., Marques-Silva, J., Ricca, F.: On the implementation of weak con-
straints in wasp. In: Proceedings of ASPOCP’14 (2014)

3. Andres, B., Kaufmann, B., Matheis, O., Schaub, T.: Unsatisfiability-based optimization in
clasp. In: Technical Communications of ICLP’12, pp. 212–221. LIPIcs (2012)

4. Aykin, T.: A comparative evaluation of modeling approaches to the labor shift scheduling
problem. European Journal of Operational Research 125(2), 381–397 (2000)

5. Banbara, M., Soh, T., Tamura, N., Inoue, K., Schaub, T.: Answer set programming as a
modeling language for course timetabling. Theory and Practice of Logic Programming 13(4-
5), 783–798 (2013)

6. Bechtold, S., Jacobs, L.: Implicit modeling of flexible break assignments in optimal shift
scheduling. Management Science 36(11), 1339–1351 (1990)

7. Beer, A., Gärtner, J., Musliu, N., Schafhauser, W., Slany, W.: Scheduling breaks in shift plans
for call centers. In: Proceedings of PATAT’08 (2008)

8. Beer, A., Gärtner, J., Musliu, N., Schafhauser, W., Slany, W.: An AI-based break-scheduling
system for supervisory personnel. IEEE Intelligent Systems 25(2), 60–73 (2010)

9. den Bergh, J., Beliën, J., Bruecker, P., Demeulemeester, E., Boeck, L.: Personnel scheduling:
A literature review. European Journal of Operational Research 226(3), 367–385 (2013)

10. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. IOS Press
(2009)

11. Brewka, G., Eiter, T., Truszczyński, M.: Answer set programming at a glance. Communica-
tions of the ACM 54(12), 92–103 (2011)

12



12. Crawford, J., Baker, A.: Experimental results on the application of satisfiability algorithms
to scheduling problems. In: Proceedings of AAAI’94, pp. 1092–1097. AAAI Press (1994)

13. Dantzig, G.: A comment on Eddie’s “Traffic delays at toll booths”. Journal of the Operations
Research Society of America 2(3), 339–341 (1954)

14. Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W.: The minimum
shift design problem. Annals of Operations Research 155(1), 79–105 (2007)

15. Di Gaspero, L., Gärtner, J., Musliu, N., Schaerf, A., Schafhauser, W., Slany, W.: Automated
shift design and break scheduling. In: Automated Scheduling and Planning, pp. 109–127.
Springer (2013)

16. Di Gaspero, L., Gärtner, J., Musliu, N., Schaerf, A., Schafhauser, W., Slany, W.: A hybrid
LS-CP solver for the shifts and breaks design problem. In: Proceedings of HM’10, pp. 46–61.
Springer (2010)

17. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Schneider, M.:
Potassco: The Potsdam answer set solving collection. AI Communications 24(2), 105–124
(2011)

18. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-
gan & Claypool Publishers (2012)

19. Guziolowski, C., Videla, S., Eduati, F., Thiele, S., Cokelaer, T., Siegel, A., Saez-Rodriguez,
J.: Exhaustively characterizing feasible logic models of a signaling network using answer set
programming. Bioinformatics 29(18), 2320–2326 (2014)

20. Marques-Silva, J., Planes, J.: On using unsatisfiability for solving maximum satisfiability.
Computing Research Repository (CoRR), 0712.1097 (2007)

21. Morgado, A., Heras, F., Liffiton, M., Planes, J., Marques-Silva, J.: Iterative and core-guided
MaxSAT solving: A survey and assessment. Constraints 18(4), 478–534 (2013)

22. Morgado, A., Heras, F., Marques-Silva, J.: Model-guided approaches for MaxSAT solving.
In: Proceedings of ICTAI’13, pp. 931–938. IEEE Computer Society (2013)

23. Musliu, N.: Intelligent search methods for workforce scheduling: New ideas and practical
applications. Ph.D. thesis, Technische Universität Wien (2001)

24. Musliu, N., Schaerf, A., Slany, W.: Local search for shift design. European Journal of Oper-
ational Research 153(1), 51–64 (2004)

25. Nogueira, M., Balduccini, M., Gelfond, M., Watson, R., Barry, M.: An A-Prolog decision
support system for the space shuttle. In: Proceedings of PADL’01, pp. 169–183. Springer
(2001)

26. Quimper, C., Rousseau, L.: A large neighbourhood search approach to the multi-activity shift
scheduling problem. Journal of Heuristics 16(3), 373–392 (2010)

27. Rekik, M., Cordeau, J., Soumis, F.: Implicit shift scheduling with multiple breaks and work
stretch duration restrictions. Journal of Scheduling 13(1), 49–75 (2010)

28. Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S., Leone, N.: Team-building
with answer set programming in the Gioia-Tauro seaport. Theory and Practice of Logic Pro-
gramming 12(3), 361–381 (2012)

29. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product
configuration. In: Proceedings of PADL’99, pp. 305–319. Springer (1998)

30. Tamura, N., Taga, A., Kitagawa, S., Banbara, M.: Compiling finite linear CSP into SAT.
Constraints 14(2), 254–272 (2009)

31. Tellier, P., White, G.: Generating personnel schedules in an industrial setting using a tabu
search algorithm. In: Proceedings of PATAT’06, pp. 293–302 (2006)

32. Thompson, G.: Improved implicit modeling of the labor shift scheduling problem. Manage-
ment Science 41(4), 595–607 (1995)

33. Widl, M., Musliu, N.: The break scheduling problem: Complexity results and practical algo-
rithms. Memetic Computing 6(2), 97–112 (2014)

13


