
“Are Preferences Giving You a Headache?”
“Take asprin!”

Gerhard Brewka1 James Delgrande2 Javier Romero3 Torsten Schaub3

1Universität Leipzig 2Simon Fraser University 3Universität Potsdam

Abstract. In this paper we introduce asprin1, a general, flexible, and extensible
framework for handling preferences among the stable models of a logic program.
We show how complex preference relations can be specified through user-defined
preference types and their arguments. We describe how preference specifications
are handled internally by so-called preference programs which are used for dom-
inance testing. We also give algorithms for computing one, or all, optimal stable
models of a logic program. Notably, the algorithms depend on the complexity of
the dominance tests and make use of incremental answer set solving technology.

1 Introduction

Preferences are pervasive. The identification of preferred, or optimal, solutions is indis-
pensable in many real-world applications. Often this involves the combination of var-
ious qualitative and quantitative preferences. Although preferences have been widely
studied in Answer Set Programming (ASP; [2]) in various contexts (cf. [3]), today’s
ASP systems are limited to optimization statements over sum or count aggregates, as
given by #minimize statements or weak constraints [4, 5].

We address this shortcoming and present asprin, a general and flexible framework
for implementing preferences among the stable models of logic programs. Our frame-
work captures numerous existing approaches to preference. Moreover, it allows for an
easy implementation of new or extended approaches to preference handling in a uni-
form setting. Our framework builds upon recent control capabilities for incremental
ASP solving. First, this technology allows us to direct the search for specific preferred
solutions without modifying the ASP solver. Second, its incrementality significantly
reduces redundancies found in an iterated setting. Finally, this technology paves the
way for the high customizability of our framework by offering an implementation of
preferences via ordinary ASP encodings.

From an abstract point of view, we are interested in distinguishing the preferred sta-
ble models of a logic program given an underlying preference relation. That is, we de-
termine a strict partial order � on the stable models of a logic program P , representing
a preference relation such that X � Y means that X is preferred to Y . Accordingly,
a stable model X of P is �-preferred, if there is no other stable model Y such that
Y � X . In other words, X is not �-dominated by any stable model Y . A preference
type is a class of preference relations. Restricting preferences to (strict) partial orders
has the advantage that a satisfiable program has preferred stable models.

1 asprin stands for “ASP for Preference handling”.

As a motivating example, consider the following statements:

#preference(costs, less(weight)){40 : sauna, 70 : dive} (1)
#preference(fun, subset){sauna, dive, hike,¬bunji} (2)
#preference(temps, aso){dive > sauna ‖ hot , sauna > dive ‖¬hot} (3)
#preference(all , pareto){name(costs),name(fun),name(temps)} (4)

#optimize(all)

The keyword #preference declares a preference while #optimize is the optimization
directive. A preference relation has an identifier, a type, and a set of arguments. The ar-
guments make use of weights (eg. 40), rankings (via >), conditionalization (via ‖), and
naming (via name). Terms like “fun” and “less(weight)” are user-defined preference
types and relations, respectively, similar to a term or atom in an ASP encoding. While
their implementation is given in terms of preference programs, their semantics, that is,
the underlying preference type or relation, lies with the user. We illustrate this via some
preference types and relations taken from the preference library of our system.

As with #minimize statements [4], preference types are instantiated to prefer-
ence relations by concrete arguments. Thus, applying #minimize to the set {40 :
sauna, 70 : dive} instantiates the (implicit) preference type to a preference relation
which prefers stable models with a smaller sum over those with a greater one. This is
similar to (1), except that we make the type and relation, viz. less(weight) and costs, ex-
plicit. Also, #minimize statements are always subject to optimization, while this must
be explicitly stated by an #optimize directive in our approach.

The combinations of problems, programs, and preference types result in a wide
range of possible computational complexities. For uniformly addressing this range of
problems, we use ASP’s meta interpretation capacities, and design computations in
a branch-and-bound manner by building upon the control capacities for incremental
ASP solving. The basic building block is the preference program, which allows for
testing whether a current optimal solution is dominated by a new one. While a simple
arithmetic comparison is sufficient for #minimize, a much more elaborate technique is
needed for complex preferences, such as the one shown above. We address this intricacy
by means of ASP: we encode the elementary dominance tests either as a standard or a
saturation-based ASP encoding, depending on the respective problem complexity.

We assume a general familiarity with ASP. For a comprehensive introduction, we
refer the reader to [6]. Our notation also follows that in [6]. Our ASP encodings rely
upon the new ASP language standard [7]. Other notation is introduced when first used.

2 Expressing Preferences

We provide a simple generic preference language for expressing a wide range of prefer-
ence relations. To keep our framework open for extensions, we do not fix a predefined
set of preferences. Rather we give some examples of how well-known preferences can
be expressed and implemented. Many of them are included in asprin’s preference li-
brary which provides basic building blocks for defining new preferences.

Syntax. Let A be a fixed alphabet. A weighted (propositional) formula is of the form2

w1, . . . , wl : φ where each wi is a term and φ is a Boolean expression over A with log-
ical connectives >, ¬, ∧, and ∨. We write φ whenever l = 0. For expressing composite
preferences, we use a dedicated unary naming predicate name that allows us to refer
to auxiliary preferences. That is, a naming atom name(s) refers to relations associated
with a preference statement s (see below).

A preference element is of the form3

Φ1 > · · · > Φm ‖ Φ (5)

where each Φr is a set of weighted formulas for r = 1, . . . ,m and m ≥ 1, and Φ is a
non-weighted formula. Intuitively, r gives the rank of the respective set of weighted for-
mulas. Preference elements provide a (possible) structure to a set of weighted formulas
by giving a means of conditionalization and a symbolic way of defining pre-orders (in
addition to using weights). For convenience, we usually drop the surrounding braces of
such sets and omit “‖Φ” if Φ is tautological. Also, we drop all “>” if m = 1. Hence
a,¬b, c stands for {a,¬b, c}‖>, and {a,¬b} > c ‖ ¬d stands for {a,¬b} > {c} ‖ ¬d.

A preference statement is of the form

#preference(s, t){e1, . . . , en} (6)

where s and t are ground terms giving the preference name and its type, respectively,
and each ej is a preference element. In what follows, we often identify a preference
statement with its identifier s and refer to its type by ts. The preference type determines
the set of admissible preference elements. For instance, subset in (2) is restricted to
(unweighted) literals, while aso in (3) takes general preference elements. Analogously,
a preference type may or may not require naming atoms, depending on whether it has a
composite or primitive nature. For instance, the preference type subset in (2) is primi-
tive, while pareto in (4) is composite.

As described in the next section, each preference statement s is associated with a
strict partial order�s. The relation�s is of the preference type denoted by ts. If s is not
subject to optimization, it may serve as an auxiliary element in a composite preference
statement. To this end, some preference types may belong to a preference library, and
provide definitions of the non-strict, equal, and inverse variants of the type at hand. In
such a case, a naming atom name(s) provides the importing preference statement also
with the non-strict, equal, and inverse counterparts of �s, namely, �s, =s, and ≺s,
�s. For instance, in (1)-(4), the preference relation�all relies on the auxiliary relations
�costs and �costs , among others. On the implementation side, this is reflected by the
distinction between a preference program and a preference module (see Section 3). The
former is importing preference implementations, while the latter is being imported.

A set of preference statements is accompanied by a single optimization directive
#optimize(s), telling a solver to restrict its reasoning mode to the preference relation
declared by s. A set of preference statements S is

– closed, if s ∈ S whenever name(s) occurs in S, and
2 This syntax follows that of aggregate elements [7, Section 1.3].
3 This syntax follows the one in [8].

– acyclic, if the dependency relation induced among preference statements in S by
naming atoms is acyclic (no s ∈ S refers directly or indirectly to itself via naming).

A preference specification is a set of preference statements S and a single directive
#optimize(s) such that S is an acyclic and closed, and s ∈ S. We call s the primary
preference statement in S and refer to all statements in S \ {s} as secondary ones.
Semantics. A preference statement as in (6) declares a preference relation obtained by
instantiating its preference type with a specific interpretation of the preference elements.
More formally, a preference type, t, is a function, mapping a set of preference elements,
E, to a preference relation, that is,

t : E 7→ {(X,Y) | deft(E,X, Y), X, Y ⊆ A}

where deft(E,X, Y) holds iff X is preferred to Y in the relation obtained by apply-
ing t to E; and dom(t) is the domain of t fixing admissible preference elements for t.
4 Accordingly, a preference statement #preference(s, t)E is said to be admissible, if
E ⊆ dom(t). In what follows, we assume that all preference statements (and so speci-
fications) are admissible. Note that each preference type comes implicitly with a recipe
for interpreting its preference elements, no matter how these elements are determined.
These details must be fixed and controlled for each type t by deft and dom(t).

As an example, we can define the preference type less(cardinality) by letting

– defless(cardinality)(E,X, Y) = |{` ∈ E | X |= `}| < |{` ∈ E | Y |= `}| and
– dom(less(cardinality)) = P({a,¬a | a ∈ A}), for P(S) the power set of S.

Our approach centers on the implementation of deft(E,X, Y), as described in Sec-
tion 3. The resulting algorithmic framework developed in Section 4 requires that the
induced preference relations be strict partial orders. We can still define strict preference
relations in terms of non-strict or other auxiliary preference relations, so long the pref-
erence relation subject to optimization is irreflexive and transitive. Let us illustrate this
with some examples from asprin’s preference library. First, we provide some examples
of primitive types and then show how composite types can be expressed via naming. In
turn, we illustrate below how preference types are used for defining specific preference
relations.

For two further examples, in asprin the preference type

– more(weight) is defined by
• defmore(weight)(E,X, Y) =

∑
(w:`)∈E,X|=` w >

∑
(w:`)∈E,Y |=` w

• dom(more(weight)) = P({w : a,w : ¬a | w ∈ Z, a ∈ A}); and
– subset is defined by
• defsubset(E,X, Y) = {` ∈ E | X |= `} ⊂ {` ∈ E | Y |= `}
• dom(subset) = P({a,¬a | a ∈ A}).

All previous preference types are primitive since they do not refer to auxiliary prefer-
ences. Such preferences are free of naming predicate name . Given that our optimization

4 Thus, dom(t) also delineates the sub-language of preference elements admissible for prefer-
ence statements of type t.

approach is centered upon strict preference relations, we only provide explicit defini-
tions of strict preference types, and omit explicit definitions of any variations.

Whereas less(cardinality) corresponds to the common #minimize directive applied
to (regular) literals, and more(weight) matches #maximize applied to weighted literals,
subset goes already beyond existing preferences in ASP solvers. Obviously many more
types of preferences can be defined.

Composite preferences are formed by aggregation. The naming predicate name is
used to refer to auxiliary preferences. For a naming atom name(s′), we let �s′ , �s′ ,
=s′ , ≺s′ , �s′ be the non-strict, strict, equal, and inverse preference relations associated
with preference statement s′.

For example, letting N be the set of naming atoms, in asprin the preference type

– neg is defined by
• defneg(E,X, Y) = (X ≺s Y) where E = {name(s)}
• dom(neg) = {{n} | n ∈ N};

– and is defined by
• defand(E,X, Y) =

∧
name(s)∈E(X �s Y)

• dom(and) = P({n | n ∈ N});
– pareto is defined by
• defpareto(E,X, Y) =

∧
name(s)∈E(X �s Y) ∧

∨
name(s)∈E(X �s Y)

• dom(pareto) = P({n | n ∈ N});
– lexico is defined by
• deflexico(E,X, Y)=

∨
w:name(s)∈E((X�sY)∧

∧
v:name(s′)∈E,v<w(X =s′ Y))

• dom(lexico) = P({n | n ∈ N}).

Many other composite preference types can be defined. For instance, we could define
a more symbolic lexicographic preference type by using a single preference element
name(s1) > · · · > name(sm) rather than m preference elements being weighted liter-
als 1 : name(s1), . . . ,m : name(sm).

Although the above preference types only accept sets of naming atoms, there is
no restriction on mixing them with weighted literals. However, care must be taken to
guarantee that the preference gives a strict partial order. For instance, we ignore plain
disjunctive preferences like

∨
s∈E(X �s Y) since they may yield non-strict partial

orders.
A preference relation is obtained by applying a preference type to an ad-

missible set of preference elements; thus, #preference(s, t)E declares the pref-
erence relation t(E). For simplicity, however, let us denote the resulting pref-
erence relation by �s rather than t(E). Accordingly, the preference statement
#preference(1, less(cardinality)){a,¬b, c}) declares

X �1 Y as |{` ∈ {a,¬b, c} | X |= `}| < |{` ∈ {a,¬b, c} | Y |= `}|

rather than less(cardinality)({a,¬b, c}).
For further illustration, consider the preference relations induced by the following

preference statements.

– #preference(2,more(weight)){1 : a, 2 : ¬b, 3 : c}) declares
X �2 Y as

∑
(w:`)∈{1:a,2:¬b,3:c},X|=` w >

∑
(w:`)∈{1:a,2:¬b,3:c},Y |=` w

– #preference(3, subset){a,¬b, c}) declares
X �3 Y as {` ∈ {a,¬b, c} | X |= `} ⊂ {` ∈ {a,¬b, c} | Y |= `}

– #preference(4, and){name(1),name(2),name(3)}) declares
X �4 Y as (X �1 Y) ∧ (X �2 Y) ∧ (X �3 Y)

– #preference(5, pareto){name(1),name(2),name(3)}) declares
X �5 Y as

(X �1 Y) ∧ (X �2 Y) ∧ (X �3 Y) and (X �1 Y) ∨ (X �2 Y) ∨ (X �3 Y)
– #preference(6, lexico){1:name(1), 2:name(2), 3:name(3)}) declares

X �6 Y as
(X �1 Y) ∨ (X =1 Y) ∧ (X �2 Y) ∨ (X =1 Y) ∧ (X =2 Y) ∧ (X �3 Y)

We note that preference relations of a primitive type are uniquely determined by their
type and the result of evaluating the underlying preference elements, whereas composite
ones additionally depend on the auxiliary preference relations. These must be provided
with an encompassing preference specification.

3 Handling Preferences

We consider logic programs over a set A of atoms and refer to them as base programs.
For implementing preferences among the stable models of base programs, we introduce
the notion of a preference program formed over a set E ∪ F of atoms disjoint from
A. While F provides a fixed set of internal atoms (formed from dedicated predicate
symbols), E can be customized as long as it complies with restrictions (see below).5

Instance format. A weighted formula of form w1, . . . , wl : φ occurring in some set Φr
of a preference element ej in a preference statement s as in (6) is represented as a fact

preference(s, j, r, for(tφ), (w1, . . . , wl)).

where each wi represents wi for i = 1, . . . , l and tφ is a term representing φ by using
function symbols neg/1, and/2, and or/2. For simplicity, we use indexes, r and j, for
identifying the respective structural components. For representing Condition C of ej ,
we set r to 0. A naming atom name(s) is represented analogously, except that for(tφ)
is replaced by name(s).

We let Fs,j denote the set of all facts obtained for all weighted formulas and
naming atoms contained in a preference element ej belonging to some prefer-
ence statement s. With this, we define the translation of a preference statement
#preference(s, t){e1, . . . , en} as

Fs = {preference(s, ts).} ∪
⋃
j=1,...,n Fs,j .

All atoms over predicates preference/n for n = 2, 5 are internal and so belong to F .
For example, the previous preference statements are translated as follows. 6

5 asprin makes all atoms in E ∪ F internal by adding a leading underscore “ ”.
Such atoms can be suppressed in the output via clingo’s option --outf.

6 The set of facts F3 and F4 are described below.

– #preference(1, less(cardinality)){a,¬b, c}) yields F1 containing
preference(1,less(cardinality)). preference(1,1,1,for(a),()).

preference(1,2,1,for(neg(b)),()).
preference(1,3,1,for(c),()).

– #preference(2,more(weight)){1 : a, 2 : ¬b, 3 : c}) yields F2 containing
preference(2,more(weight)). preference(2,1,1,for(a),(1)).

preference(2,2,1,for(neg(b)),(2)).
preference(2,3,1,for(c),(3)).

– #preference(5, pareto){name(1),name(2),name(3)}) yields F5 containing
preference(5,pareto). preference(5,1,1,name(1),()).

preference(5,2,1,name(2),()).
preference(5,3,1,name(3),()).

– #preference(6, lexico){1:name(1), 2:name(2), 3:name(3)} yields F6 containing
preference(6,lexico). preference(6,1,1,name(1),(1)).

preference(6,2,1,name(2),(2)).
preference(6,3,1,name(3),(3)).

A full preference specification S is represented as the set of facts FS =
⋃
s∈S Fs.

Encoding. We first consider a base program P over A along with a single primitive
preference statement as in (6) subject to an optimization directive. Later this will be
extended to composite preference statements. In both cases, the semantics of preference
statements is captured by ASP encodings.
Encoding primitive preference statements. For deciding whether one stable model is
preferable to another one, we implement each preference type t by an ASP encodingEt
over a set E ∪F of atoms disjoint fromA such that7 head(Et) ⊆ E \F . This encoding
is accompanied by the facts Fs representing preference statement s along with auxiliary
rules, A, furnishing basic internal concepts.8 Both Fs and A are programs over F .

For comparing stable models by means of such an ASP encoding, we rely on ASP’s
meta interpretation capacities and reify atoms to constants by using unary predicates
holds and holds ′. To this end, we define for X ⊆ A the following sets.

HX = {holds(a) | a ∈ X} and H ′X = {holds ′(a) | a ∈ X}
RX = {holds(a)← a | a ∈ X} and R′X = {holds ′(a)← a | a ∈ X}
GX = {{h} ← | h ∈ HX} and G′X = {{h′} ← | h′ ∈ H ′X}

Note that RX provides the dynamic counterpart of HX within an encompassing model
X . Atoms formed by using predicates holds and holds ′ are internal and thus belong to
F , that is, HA ∪H ′A ⊆ F .

The next definition captures the central building block of our approach.

Definition 1. Let s be a preference statement declaring preference relation �s and let
the programs Ets , Fs, and A be defined as above. We call Ets ∪ Fs ∪ A a preference
program for s, if for all sets X,Y ⊆ A, we have

X �s Y iff Ets ∪ Fs ∪A ∪HX ∪H ′Y is satisfiable.

7 head(P) gives the set of all atoms occurring in the heads of rules in P .
8 As shown below, this includes enabling optimization wrt primary preferences and satisfaction

of Boolean expressions.

Note that preference programs refer only to atom sets and are thus at first independent of
any base programs. This changes once a program P together with reifying or generating
rules, like RX or GX , is considered (instead of HX).

Base and preference programs are formed over disjoint sets of atoms. Interactions
among them are controlled by mapping atoms in A to HA and H ′A, respectively. The
next proposition makes precise how preference programs capture the semantics of pref-
erence statements.

Proposition 1. Let Ets ∪ Fs ∪A be a preference program for preference statement s.

1. If Z is a stable model of Ets ∪ Fs ∪A ∪GA ∪G′A,
then {a | holds(a) ∈ Z} �s {a | holds ′(a) ∈ Z}.

2. If X �s Y , then there is a stable model Z of Ets ∪ Fs ∪A ∪GA ∪G′A such that
X = {a | holds(a) ∈ Z} and Y = {a | holds ′(a) ∈ Z}.

The above implies that �s= {(X,Y) | X,Y ⊆ A, (Ets ∪ Fs ∪ A ∪ HX ∪
H ′Y) is satisfiable}.

Next, we show how preference programs can be used for deciding whether a stable
model of a base program is preferred, and how a dominating model is obtainable.

Proposition 2. Let P be a program over A and let s be a preference statement.

1. IfX is a stable model of P , thenX is�s-preferred iff
(
P∪Ets∪Fs∪A∪RA∪H ′X

)
is unsatisfiable.

2. If Y is a stable model of
(
P ∪ Ets ∪ Fs ∪ A ∪ RA ∪H ′X

)
for some X ⊆ A, then

Y ∩ A is a stable model of P such that (Y ∩ A) �s X .

We use (P ∪Ets∪Fs∪A∪RA∪H ′X) for checking whether there is a model dominating
X . Note how the usage of program P ∪ RA restricts candidates to stable models of P
(unlike arbitrary subsets of A as in Proposition 1).
Encoding composite preference statements. Both primitive and composite preference
statements are implemented by preference programs. Their difference boils down to
whether they rely upon secondary preferences or not.

For convenience, asprin allows us to expand the range of preference statements
from defining strict partial orders to the corresponding strict, non-strict, equal, and
inverse counterparts. The latter are not involved when optimizing wrt the preference
statement at hand but can be used for defining other preference relations. In this setting,
the concepts of preference types and relations are extended to families of preference
types and relations, and preference programs become preference modules. As before,
specific relations are obtained by instantiating the corresponding types with preference
elements. However, while a preference program for a preference statement s is used for
optimizing s, the preference module for s is added to a preference program of another
preference statement importing s’s family of relations via naming atom name(s). In
other words, a preference statement s induces both a preference program as well as a
preference module; the former is used when s is the primary statement in a preference
specification, the latter whenever s is a secondary one.
Implementation in asprin. Let us consider how our selected preference statements are
implemented in asprin. To begin with, we detail asprin’s auxiliary rules A.

First, the directive #optimize(s) is turned into a fact

1 optimize(s).

This fact enables optimization wrt the primary preference s together with the integrity
constraint, O0:

2 :- not better(P), optimize(P).

This is complemented by the following program H , used for implementing the satis-
faction of formulas.

3 formula(F) :- preference(_,_,_,for(F),_).
4 formula(F) :- formula(neg(F)).
5 formula(F) :- formula(and(F,G)). formula(G) :- formula(and(F,G)).
6 formula(F) :- formula(or(F,G)). formula(G) :- formula(or(F,G)).

8 holds(neg(F)) :- formula(neg(F)), not holds(F).
9 holds(and(F,G)) :- formula(and(F,G)), holds(F), holds(G).

10 holds(or(F,G)) :- formula(or(F,G)), 1 { holds(F); holds(G)}.

Looking at Line 3, we observe that the instantiation of the rules in H is driven by
the occurrence of formulas in Fs. The satisfaction of a formula is checked wrt to the
interpretation expressed by the set of atoms a for which holds(a) holds. The set H ′ is
obtained from H by replacing all occurrences of holds/1 by holds’/1. All atoms
formed by using predicates formula/1 (as well as holds/1 and holds’/1 applied
to composite terms) are internal and thus belong to F .

Next, we show how our selected preference types (and relations; marked with .) are
implemented in asprin. Each preference type is captured by a (non-ground) encoding.

– less(cardinality) is implemented by the rule, O�less(cardinality),

better(P) :- preference(P,less(cardinality)),
1 #sum { -1,X : holds(X), preference(P,_,_,for(X),_);

1,X : holds’(X), preference(P,_,_,for(X),_) }.

. #preference(1, less(cardinality)){a,¬b, c}
is implemented by program9 {O�less(cardinality)} ∪ F1 ∪ {O0} ∪H ∪H ′

– more(weight) is implemented by the rule, O�more(weight),

better(P) :- preference(P,more(weight)),
1 #sum { W,X : holds(X), preference(P,_,_,for(X),(W));

-W,X : holds’(X), preference(P,_,_,for(X),(W)) }.

. #preference(2,more(weight)){1 : a, 2 : ¬b, 3 : c})
is implemented by program {O�more(weight)} ∪ F2 ∪ {O0} ∪H ∪H ′

– subset is implemented by the rule, O�subset ,
better(P) :- preference(P,subset),

not holds(X) : preference(P,_,_,for(X),_), not holds’(X);
1 #sum { 1,X : not holds(X), holds’(X), preference(P,_,_,for(X),_)}.

. #preference(3, subset){a,¬b, c}
is implemented by program {O�subset}∪F3∪{O0}∪H∪H ′ and F3 is obtained from
F1 by replacing less(cardinality) by subset as well as the first argument
of all facts by 3.

– and is implemented by the rule, O�and ,
better(P) :- preference(P,and), better(P’) : preference(P,_,_,name(P’),()).

9 This is not yet a preference program since it lacks the fact optimize(1).

. #preference(4, and){name(1),name(2),name(3)}
is implemented by program {O�and}∪F4∪{O0}∪H∪H ′ and F4 is obtained from
F5 by replacing pareto by and as well as the first argument of all facts by 4.

Note that for the primitive preference statements s = 1, 2, 3, each program {O�ts}∪Fs∪
{O0} ∪H ∪ H ′ only becomes a preference program once the fact optimize(s) is
added. This activates the preference implementation via integrity constraint O0. Since
preference statement 4 relies on the composite type and, its implementation requires
in addition to optimize(4) all programs {O�ts} ∪ Fs for s = 1, 2, 3 to constitute a
preference program. This preference program nicely illustrates why the above programs
are at first free of any optimize facts. In this way, preference implementations can
be modularly activated and used for implementing composite preference statements. 10

Basic preference types as well as and only involve strict preference relations. Unlike
this, pareto and lexico also make use of non-strict and equal auxiliary relations. Such
auxiliary relations can either be found in the preference modules of asprin’s library or
are supplied by the user. In what follows, we omit explicit definitions of the various
counterparts of better/1, and refer to the definitions of bettereq/1, better/1,
equal/1, worse/1, and worseeq/1 by O�ts , O�ts , O=

ts , O≺ts , O�ts , respectively.

– pareto is implemented by the rule, O�pareto ,
better(P) :- preference(P,pareto);

bettereq(P’) : preference(P,_,_,name(P’),_);
better(P’’); preference(P,_,_,name(P’’),_).

. #preference(5, pareto){name(1),name(2),name(3)}
is implemented by program {O�pareto} ∪ F5 ∪ {O0} ∪H ∪H ′

– lexico is implemented by the rule, O�lexico ,
better(P) :- preference(P,lexico);

better(P’), preference(P,_,_,name(P’),(N)),
equal(P’’): preference(P,_,_,name(P’’),(M)), M < N.

. #preference(6, lexico){1 : name(1), 2 : name(2), 3 : name(3)}
is implemented by program {O�lexico} ∪ F6 ∪ {O0} ∪H ∪H ′

Note that in general the correctness of a preference program is the responsibility of
the implementer, just as with regular ASP encodings. However, for asprin’s preference
library, we can provide correctness results.

4 Computing Preferences

Our algorithms rely upon consecutive calls to an incremental ASP solver (viz. clingo 4).
For a (normal or disjunctive) program P , define

solve(P) =

{
X if X is (some) stable model of P
⊥ if P is unsatisfiable

Computing one preferred model. Given a program P and a preference statement s,
Algorithm 1 computes a �s-preferred stable model of P (and thus implicitly addresses

Algorithm 1: solveOpt(P, s)

Input : A program P over A and preference statement s.
Output : A �s-preferred stable model of P , if P is satisfiable, and ⊥ otherwise.

1 Y ← solve(P)
2 if Y = ⊥ then return ⊥
3 repeat
4 X ← Y
5 Y ← solve(P ∪ Ets ∪ Fs ∪RA ∪H ′

X) ∩ A
6 until Y = ⊥
7 return X

the decision problem). Note that we put no restrictions on the base program P or on the
preference program; we are even free to use disjunctive programs at both ends.

Algorithm 1 is a branch-and-bound algorithm implementing the non-dominance test
for candidate models as prescribed by Proposition 1. This is done in Line 5 where we
check whether there is a Y such that Y �s X . That is, given a candidate X , we let a
solver check whether X is �s-preferred. If this fails, we obtain with Y a counterexam-
ple dominating X . Then we proceed with Y as new candidate model.

Theorem 1. Given a program P and a preference statement s, Algorithm 1 computes
some �s-preferred stable model of P , if P is satisfiable, and ⊥ otherwise.

Computing all preferred models. Next, we address the problem of enumerating pre-
ferred models. While we still impose no restriction on base programs, we first limit
ourselves to preferences for which we can decide whether X � Y holds for sets X,Y
in polynomial time. Given this, we assume without loss of generality that preference
programs are stratified [9] because each problem decidable in polynomial time can be
represented as a stratified logic program.

Given a program P and a preference statement s, Algorithm 2 computes all �s-
preferred stable models of P . The idea is to collect preferred models computed in
analogy to Algorithm 1. To see this, observe that lines 3-8 correspond to lines 1-6 in
Algorithm 1.That is, starting from an initial model Y in Line 3 a preferred model, X ,
is obtained after the repeat loop via successive non-dominance tests. We accumulate
preferred models in an indexed set X of form {Xi | i ∈ I} and use the indices in I to
refer to different preferred models. The index set I grows with each addition to X in
Line 9 of Algorithm 2, where we add X indexed with |X |+ 1 to X , viz. X|X |+1.

The most intricate part of Algorithm 2 is clearly Line 3. The goal is to compute a
stable model of P that is neither dominated by nor equal to any preferred model in X .
Line 3 checks whether there is a stable model Y of P such that Xi 6= Y and Xi �s Y
for all i ∈ I . Note that we also have Y �s Xi because each Xi ∈ X is �s-preferred.

The condition “Xi 6= Y ” is guaranteed by the addition of an integrity constraint
NXi

of form NX = {← X ∪ {∼a | a ∈ A \ X}} for each i ∈ I . Although such
solution recording is exponential in space, it is non-intrusive to the solver.
10 Note that the addition of any other fact optimize(s) for s = 1, 2, 3 rather than s = 4 also

yields a preference program yet only for the indicated preference statement s.

Algorithm 2: solveOptAll(P, s)

Input : A program P over A and preference statement s.
Output : The set of all �s-preferred stable models of P .

1 X ← ∅
2 loop
3 Y ← solve

(
P ∪

⋃
Xi∈X

(
NXi ∪ (Ets ∪ Fs ∪HXi)

i ∪R′i
A
))
∩ A

4 if Y = ⊥ then return X
5 repeat
6 X ← Y
7 Y ← solve

(
P ∪ Ets ∪ Fs ∪RA ∪H ′

X

)
∩ A

8 until Y = ⊥
9 X ← X ∪ {X|X|+1}

For addressing condition “Xi �s Y ”, preference programs are not directly applica-
ble since they result in an unsatisfiability problem according to Definition 1. Unlike this,
we need to encode the condition as a satisfiability problem in order to obtain a stable
model as a starting point for the subsequent search. Due to our restriction to stratified
preference programs, this can be accomplished as follows: Given a program P , define
P as the program

(P \ {r ∈ P | head(r) = ∅}) ∪ {u← body(r) | r ∈ P, head(r) = ∅} ∪ { ← ∼u} ,

where u is a new atom. Now if program P is stratified, P is satisfiable iff P is unsatisfi-
able. Moreover, let Ets ∪Fs be a stratified preference program for preference statement
s. Then, for all sets X,Y of atoms over A, we have

X �s Y iff Ets ∪ Fs ∪HX ∪H ′Y is satisfiable.

The next result captures the essence of the non-dominance test in Line 3 of Algorithm 2.

Proposition 3. Let P be a program over A and let s be a preference statement with a
stratified preference program Ets ∪Fs. If Y is a stable model of

(
P ∪Ets ∪Fs∪HX ∪

R′A
)

for some X ⊆ A, then Y ∩ A is a stable model of P such that X �s (Y ∩ A).

Note that we also have (Y ∩ A) �s X whenever X is �s-preferred.
Given that X contains several preferred models, we need to accomplish the check

in Proposition 3 for each model in X . For this, we denote by P i the program obtained
from P by replacing each atom a in P by ai. Moreover, we generalise the definition of
R′X to R′iX = {holds ′(a)i ← a | a ∈ X}. With this, the next proposition captures the
functioning of Line 3 of Algorithm 2.

Proposition 4. Let {Xi | i ∈ I} be the value of X in Line 2 of Algorithm 2 and let Y
be the set of atoms subsequently returned in Line 3 of Algorithm 2. Then, Y is a stable
model of P such that Y 6= Xi, Y �s Xi, and Xi �s Y for all i ∈ I .

All in all, we obtain the following soundness and completeness result.

Theorem 2. Given a program P and a preference statement s, Algorithm 2 computes
the set of all �s-preferred stable models of P .

Computing all preferred models for complex preferences. We now remove the re-
striction of polynomially decidable preference relations, and consider preferences de-
cidable in NP. We thus allow for preference programs being normal because each prob-
lem decidable in NP can be represented as a normal logic program.

As above, the crucial point is to express the non-dominance test in Line 3 of Algo-
rithm 2 as a satisfiability problem. For addressing this in the case of normal programs,
Eiter and Gottlob invented in [10] the saturation technique. The idea is to re-express
the problem as a positive disjunctive logic program, containing a special-purpose atom
bot . Whenever bot is obtained, saturation derives all atoms (belonging to a “guessed”
model). Intuitively, this is a way to materialize unsatisfiability. For automating this pro-
cess, we build upon the meta-interpretation-based approach in [11]. The idea is to map
a program R onto a set R(R) of facts via reification. The set R(R) of facts is then
combined with a meta-encodingM from [11] implementing saturation.

We consider for a preference statement s the positive disjunctive logic program

R
(
Ets ∪ Fs ∪GA ∪G′A

)
∪M .

In analogy to Proposition 1, this program has a stable model (excluding bot) for each
pair X,Y ⊆ A such that X �s Y , and it has a saturated stable model (including bot) if
there is no such pair. Note thatX and Y are subsets ofA, not necessarily stable models.

Given this, it is sufficient to replace the program passed to solve in Line 3 of Algo-
rithm 2 by the following disjunctive logic program:(

P ∪
⋃
X∈X NX

)
∪
(
R(Ets ∪ Fs ∪GA ∪G′A) ∪M

)
∪NX ∪R′A ∪ {← ∼bot}

As above,
(
P ∪

⋃
X∈X NX

)
generates stable model candidates different from those in

X . The programs NX and R′A restrict the choices of GA and G′A, respectively. Note
that [11] represent an atom a as true(atom(a)) and ∼a as fail(atom(a)).

NX = {bot ←
⋃
Xi∈X {ui}} ∪

⋃
Xi∈X {ui ← fail(atom(holds(a))) | a ∈ Xi}

∪
⋃
Xi∈X {ui ← true(atom(holds(a))) | a ∈ A \Xi}

R′A = {true(atom(holds ′(a)))← a | a ∈ A} ∪ {fail(atom(holds ′(a)))← ∼a | a ∈ A}

While NX eliminates all non-preferred models (outside of X) from the candidate sets
generated by GA via saturation, program R′A maps all candidate models generated by
(P ∪

⋃
X∈X NX) toR(H ′A).

Computing preferred models by extension. The axiomatic way of computing pre-
ferred models is to extend a program so that the stable models of the extended program
correspond to the preferred stable models of the original program. In ASP, this extension
can be formulated via saturation (cf. [11]) because one has to combine the generation
of model candidates with the failure to generate dominating “counter”-models.

This is easily accomplished by means of the above building blocks. We consider for
a base program P and a preference statement s the positive disjunctive program

R
(
Ets ∪ Fs ∪ (P ∪RA) ∪G′A

)
∪M .

However, instead of generating arbitrary sets of atoms via GA as above, we now only
generate stable models of P . Hence, the above program has a stable model (excluding
bot) for each pair X,Y ⊆ A such that X �s Y and X is a stable model of P ; and it
has a saturated stable model (including bot) if there is no such pair.

This leads us to the following disjunctive logic program, E(P, s), extending P .

P ∪
(
R
(
Ets ∪ Fs ∪ P ∪RA ∪G′A

)
∪M

)
∪R′A ∪ {← ∼bot}

For computing one or all �s-preferred models of P , it is sufficient to pass E(P, s) to a
disjunctive ASP solver along with the appropriate option. Similarly, checking whether
a query is true in some �s-preferred model of P can be done by passing the program
E(P, s)∪{← ∼a} to the solver. To do the same with Algorithm 2, one had to enumerate
preferred models until one comprising a is found.

The major difference between the algorithmic and axiomatic approach is that the
former relies on a sequence of problems successively passed to a solver, while the latter
encapsulates all into solving a single problem. Hence, in ASP, the axiomatic approach
is restricted to problems at the second level of the polynomial hierarchy, while branch-
and-bound can go beyond this because only each solver invocation is restricted to such
problems. Also, the complete problem captured by E(P, s) is often more complex than
the successive problems considered in Algorithm 1 and 2. For instance, when consid-
ering a normal base program along with a stratified preference program, Algorithm 1
considers a suite of normal programs, while E(P, s) is a disjunctive program.

5 Discussion

We introduced in this paper a general, flexible and extendable framework for prefer-
ence handling in ASP. Our intention was not primarily to come up with new preference
relations on stable models that have not been studied before (although asprin certainly
allows one to introduce such new relations). Rather our goal was to provide ASP tech-
nology matching the substantial amount of research on preference handling in ASP and
beyond. In a nutshell, we want to put this research to practice. We believe that asprin
may play a similar role for answer set optimization as the development of efficient ASP
solvers had in boosting the basic answer set solving paradigm.

We expect two types of asprin users. Those who are happy with the preference
relations available in the asprin library, and those who want to benefit from the extend-
ability of the system and define their own domain-specific preference orderings. For
the former, much of the technical detail we described in this paper, e.g. the internal
representation of preference statements and the way preference programs work, are not
essential. In fact, they can use asprin as a ready to use preference handling framework
where all one needs to know are the available preference types and their arguments. For
the latter type of users, let’s call them preference engineers, the system provides all the
additional functionality to define interesting new preference orderings.

We already mentioned the large body of work on preferences in logic programming.
In fact, the literature is too large to be discussed here in detail and we refer the reader
to the article [3] for a detailed overview. However, we want to mention that our algo-
rithms are inspired by ideas in [12, 13, 11]. Moreover, we emphasize that the approaches

one typically encounters in the literature can be modelled in our system. Arguably, the
approach closest to ours is the one proposed in [14]. Therein, Brewka introduces a spe-
cific preference language with a predefined set of preference relations and combination
methods. He also uses preference programs to identify optimal stable models. However,
his preference language is fixed and does not have the flexibility of our approach. The
preference programs are somewhat “naive” and certainly not up to modern ASP solv-
ing technology. Moreover, the only reasoning problem addressed is computing a single
preferred model.

We are currently performing an empirical evaluation of our system. We report our
results at [1] once a more substantial amount of testing has been done.

The asprin system is freely available at [1].

References
1. asprin: http://potassco.sourceforge.net/labs.html#asprin
2. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press (2003)
3. Delgrande, J., Schaub, T., Tompits, H., Wang, K.: A classification and survey of preference

handling approaches in nonmonotonic reasoning. Computational Intelligence 20(2) (2004)
308–334

4. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

5. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Transactions on Computational
Logic 7(3) (2006) 499–562

6. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-
gan and Claypool Publishers (2012)

7. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T., Leone, N.,
Ricca, F., Schaub, T.: ASP-Core-2: Input language format. Available at https://www.
mat.unical.it/aspcomp2013/files/ASP-CORE-2.0.pdf (2012)

8. Bienvenu, M., Lang, J., Wilson, N.: From preference logics to preference languages, and
back. In Lin, F., Sattler, U., eds.: Proceedings of the Twelfth International Conference on
Principles of Knowledge Representation and Reasoning (KR’10), AAAI Press (2010)

9. Apt, K., Blair, H., Walker, A.: Towards a theory of declarative knowledge. In Minker, J., ed.:
Foundations of Deductive Databases and Logic Programming. Morgan Kaufmann Publishers
(1987) 89–148

10. Eiter, T., Gottlob, G.: On the computational cost of disjunctive logic programming: Proposi-
tional case. Annals of Mathematics and Artificial Intelligence 15(3-4) (1995) 289–323

11. Gebser, M., Kaminski, R., Schaub, T.: Complex optimization in answer set programming.
Theory and Practice of Logic Programming 11(4-5) (2011) 821–839

12. Brewka, G., Niemelä, I., Truszczyński, M.: Answer set optimization. In Gottlob, G., Walsh,
T., eds.: Proceedings of the Eighteenth International Joint Conference on Artificial Intelli-
gence (IJCAI’03), Morgan Kaufmann Publishers (2003) 867–872

13. Giunchiglia, E., Maratea, M.: Algorithms for solving satisfiability problems with qualitative
preferences. In Erdem, E., Lee, J., Lierler, Y., Pearce, D., eds.: Correct Reasoning: Essays
on Logic-Based AI in Honour of Vladimir Lifschitz. Springer-Verlag (2012) 327–344

14. Brewka, G.: Complex preferences for answer set optimization. In Dubois, D., Welty,
C., Williams, M., eds.: Proceedings of the Ninth International Conference on Principles of
Knowledge Representation and Reasoning (KR’04), AAAI Press (2004) 213–223

