
Answer Set Programming for Stream Reasoning?

M. Gebser1, T. Grote1, R. Kaminski1, P. Obermeier2, O. Sabuncu1, and T. Schaub1??

1 Universität Potsdam, Germany
2 DERI Galway, Ireland

Abstract. The advance of Internet and Sensor technology has brought about new
challenges evoked by the emergence of continuous data streams. Beyond rapid
data processing, application areas like ambient assisted living, robotics, or dy-
namic scheduling involve complex reasoning tasks. We address such scenarios
and elaborate upon approaches to knowledge-intense stream reasoning, based on
Answer Set Programming (ASP). While traditional ASP methods are devised for
singular problem solving, we develop new techniques to formulate and process
problems dealing with emerging as well as expiring data in a seamless way.

1 Introduction

The advance of Internet and Sensor technology has brought about new challenges
evoked by the emergence of continuous data streams, like web logs, mobile locations,
or online measurements. While existing data stream management systems [4] allow
for high-throughput stream processing, they lack complex reasoning capacities [5]. We
address this shortcoming and elaborate upon approaches to knowledge-intense stream
reasoning, based on Answer Set Programming (ASP; [6]) as a prime tool for Knowl-
edge Representation and Reasoning (KRR; [7]). The emphasis thus shifts from rapid
data processing towards complex reasoning, as required in application areas like ambi-
ent assisted living, robotics, or dynamic scheduling.

In contrast to traditional ASP methods, which are devised for singular problem solv-
ing, “stream reasoning, instead, restricts processing to a certain window of concern,
focusing on a subset of recent statements in the stream, while ignoring previous state-
ments” [8]. To accommodate this in ASP, we develop new techniques to formulate and
process problems dealing with emerging as well as expiring data in a seamless way. Our
modeling approaches rely on the novel concept of time-decaying logic programs [1],
where logic program parts are associated with life spans to steer their emergence as
well as expiration upon continuous reasoning. Time-decaying logic programs are im-
plemented as a recent extension of the reactive ASP system oclingo [9], using the ASP
grounder gringo [10] for the recurrent composition of a static “offline” encoding with
dynamic “online” data into queries to the ASP solver clasp [11].

While oclingo makes powerful ASP technology accessible for stream reasoning, its
continuous query formulation and processing impose particular modeling challenges.

? This paper complements a short KR’12 paper [1]; an extended draft [2] is available at [3].
?? Affiliated with Simon Fraser University, Canada, and Griffith University, Australia.

First, re-grounding parts of an encoding wrt. new data shall be as economical as pos-
sible. Second, traditional modeling techniques, eg. frame axioms [12], need to be re-
considered in view of the expiration of obsolete program parts. Third, the re-use of
propositional atoms and rules shall be extensive to benefit from conflict-driven learning
(cf. [13]). We here tackle such issues in continuous reasoning over data from a sliding
window [4]. In a nutshell, we propose to encode knowledge about any potential win-
dow contents offline, so that dynamic logic program parts can concentrate on activating
readily available rules (via transient online data). Moreover, we show how default con-
clusions, eg. expressed by frame axioms, can be faithfully combined with transient data.

After providing the necessary background, we demonstrate modeling approaches
on three toy domains. The underlying principles are, however, of general applicability
and thus establish universal patterns for ASP-based reasoning over sliding windows.3

2 Background

We presuppose familiarity with (traditional) ASP input languages (cf. [14, 15]) and (ex-
tended) logic programs (cf. [16, 6]). They provide the basis of incremental logic pro-
grams [17], where additional keywords, “#base,” “#cumulative,” and “#volatile,”
allow for partitioning rules into a static, an accumulating, and a transient program part.
The latter two usually refer to some constant t, standing for a step number. In fact, when
gradually increasing the step number, starting from 1, ground instances of rules in a
#cumulative block are successively generated and joined with ground rules from pre-
vious steps, whereas a #volatile block contributes instances of its rules for the cur-
rent step only. Unlike accumulating and transient program parts, which are re-processed
at each incremental step, the static part indicated by #base is instantiated just once, ini-
tially, so that its rules correspond to a “0th” #cumulative block.

Application areas of incremental logic programs include planning (cf. [18]) and
finite model finding (cf. [19]). For instance, (a variant of) the well-known Yale shooting
problem (cf. [20]) can be modeled by an incremental logic program as follows:
#base.
{ loaded }.
live(0).
#cumulative t.
{ shoot(t+1) }.
ab(t) :- shoot(t), loaded.

live(t) :- live(t-1), not ab(t).
#volatile t.
:- live(t).
:- shoot(t+1).

The first answer set, containing loaded, live(0), live(1), shoot(2), and ab(2),
is generated from the following ground rules at step 2:
% #base.
{ loaded }.
live(0).

3 For formal details on time-decaying logic programs and a discussion of related work in stream
processing, we refer the interested reader to [1, 2].

% #cumulative 1. % #cumulative 2.
{ shoot(2) }. { shoot(3) }.
ab(1) :- shoot(1), loaded. ab(2) :- shoot(2), loaded.

live(1) :- live(0), not ab(1). live(2) :- live(1), not ab(2).
% #volatile 2.
:- live(2).
:- shoot(3).

Observe that the static #base part is augmented with rules from the #cumulative
block for step 1 and 2, whereas #volatile rules are included for step 2 only.

The reactive ASP system oclingo extends offline incremental logic programs by
functionalities to incorporate external online information from a controller, also distin-
guishing accumulating and transient external inputs. For example, consider a character
stream over alphabet {a, b} along with the task of continuously checking whether a
stream prefix at hand matches regular expression (a|b)∗aa. To provide the stream pre-
fix aab, the controller component of oclingo can successively pass facts as follows:
#step 1. read(a,1).
#step 2. read(a,2).
#step 3. read(b,3).

The number i in “#step i.” directives informs oclingo about the minimum step num-
ber up to which an underlying offline encoding must be instantiated in order to incorpo-
rate external information (given after a #step directive) in a meaningful way. In fact,
the following offline encoding builds on the assumption that values i in atoms of the
form read(a,i) or read(b,i) are aligned with characters’ stream positions:

#iinit 0.
#cumulative t.
#external read(a,t+1). #external read(b,t+1).
accept(t) :- read(a,t), read(a,t-1), not read(a;b,t+1).

The (undefined) atoms appearing after the keyword “#external” are declared as in-
puts to #cumulative blocks; that is, they are protected from program simplifications
until they become defined (by external rules from the controller). Observe that any in-
stance of the predicate read/2 is defined externally. In particular, future inputs that
can be provided at (schematic) step t+1 are used to cancel an obsolete rule defin-
ing accept(t), once it does no longer refer to the last position of a stream prefix.
Given that inputs are expected from step 1 = t+1 on, the directive “#iinit 0.”
specifies t = 0 as starting value to instantiate #cumulative blocks for, so that
read(a,1) and read(b,1) are initially declared as external inputs. In view of this, the
answer set obtained for stream prefix aa at step 2 includes accept(2) (generated via
“accept(2) :- read(a,2), read(a,1), not read(a,3), not read(b,3).”),
while accept(3) does not belong to the answer set for aab at step 3. Note that accep-
tance at different stream positions is indicated by distinct instances of accept/1; this
is important to comply with modularity conditions (cf. [1, 2]) presupposed by oclingo,
which essentially object to the (re)definition of (ground) head atoms at different steps.

Although the presented reactive ASP encoding correctly accepts stream prefixes
matching (a|b)∗aa, the fact that external instances of read/2 are accumulated over
time is a major handicap, incurring memory pollution upon running oclingo for a (quasi)

unlimited number of steps.4 To circumvent this, external inputs could be made transient,
as in the following alternative sequence of facts from oclingo’s controller component:
#step 1. #volatile. read(a,1,1).
#step 2. #volatile. read(a,1,2). read(a,2,2).
#step 3. #volatile. read(a,2,3). read(b,3,3).

Note that the first two readings, represented by read(a,1,1) and read(a,2,2) as
well as read(a,1,2) and read(a,2,3), are provided by facts twice, where the re-
spective (last) stream position is included as additional argument to avoid redefinitions.
In view of this, the previous offline encoding could be replaced by the following one:
#cumulative t.
#external read(a,t-1;t,t). #external read(b,t-1;t,t).
accept(t) :- read(a,t-1,t), read(a,t,t).

While the automatic expiration of transient inputs after each inquiry from the controller
(along with the possible use of “#forget i.” directives) omits a blow-up in space
as well as an explicit cancelation of outdated rules, it leads to the new problem that
the whole window contents (two readings in this case) must be passed in each inquiry
from the controller. This delegates the bookkeeping of sliding window contents to the
controller, which then works around limitations of reactive ASP as introduced in [9].

Arguably, neither accumulating inputs (that are no longer inspected) over time nor
replaying window contents (the width of the window many times) is acceptable in per-
forming continuous ASP-based stream reasoning. To overcome the preexisting limita-
tions, we introduced time-decaying logic programs [1] that allow for associating arbi-
trary life spans (rather than just 1) with transient program parts. Such life spans are
given by integers l in directives of the form “#volatile : l.” (for online data) or
“#volatile t : l.” (for offline encoding parts). With our example, stream readings
can now be conveniently passed in #volatile blocks of life span 2 as follows:
#step 1. #volatile : 2. read(a,1).
#step 2. #volatile : 2. read(a,2).
#step 3. #volatile : 2. read(b,3).

In view of automatic expiration in two steps (eg. at step 3 for read(a,1) provided at
step 1), the following stripped-down offline encoding correctly handles stream prefixes:

#cumulative t.
#external read(a,t). #external read(b,t).
accept(t) :- read(a,t-1), read(a,t).

Note that the embedding of encoding rules in a #cumulative block builds on auto-
matic rule simplifications relative to expired inputs. As an (equivalent) alternative, one
could use “#volatile t : 2.” to discard outdated rules via internal assumption lit-
erals (cf. [17]). However, we next investigate more adept uses of blocks for offline rules.

3 Modeling and Reasoning

The case studies provided below aim at illustrating particular features in modeling and
reasoning with time-decaying logic programs and stream data. For the sake of clarity,

4 Disposal of elapsed input atoms that are yet undefined, such as read(b,1), read(b,2),
and read(a,3) wrt. stream prefix aab, can be accomplished via “#forget i.” directives.
Ground rules mentioning such atoms are in turn “automatically” simplified by clasp (cf. [17]).

Listing 1. Stream of user accesses with life span of 3 steps
1 #step 1. #volatile : 3.
2 access(alice,granted,1).
3 #step 2. #volatile : 3.
4 access(alice,denied,3).
5 access(bob,denied,3).
6 #step 3. #volatile : 3.
7 access(alice,denied,2).
8 access(claude,granted,5).
9 #step 4. #volatile : 3.

10 access(bob,denied,2). access(bob,denied,4).
11 access(claude,denied,2).
12 #step 5. #volatile : 3.
13 access(alice,denied,4).
14 access(claude,denied,3). access(claude,denied,4).
15 #step 6. #volatile : 3.
16 access(alice,denied,6).
17 #step 7. #volatile : 3.
18 access(alice,denied,8).
19 #step 8. #volatile : 3.
20 access(alice,denied,7).

we concentrate on toy domains rather than any actual target application. We begin with
modelings of the simple task to monitor consecutive user accesses, proceed with an
overtaking scenario utilizing frame axioms, and then turn to the combinatorial problem
of online job scheduling; the corresponding encodings can be downloaded at [3].

3.1 Access Control

Our first scenario considers users attempting to access some service, for instance, by
logging in via a website. Access attempts can be denied or granted, eg. depending on
the supplied password, and a user account is (temporarily) closed in case of three access
denials in a row. A stream segment of access attempts is shown in Listing 1. It provides
data about three users, alice, bob, and claude. As specified by “#volatile : 3.”
(for each step), the life span of access data is limited to three incremental steps (which
may be correlated to some period of real time), aiming at an (automatic) reopening of
closed user accounts after some waiting period has elapsed. We further assume that time
stamps in the third argument of facts over access/3 deviate from i in “#step i.” by
at most 2; that is, the terms used in transient facts are coupled to the step number (in an
underlying incremental logic program). Given the segment in Listing 1, the following
table summarizes non-expired logged accesses per step, where granted accesses are
enclosed in brackets and sequences of three consecutive denials are underlined:

i 1 2 3 4 5 6 7 8

alice [1] [1] 3 [1] 2 3 2 3 2 4 4 6 4 6 8 6 7 8

bob 3 3 2 3 4 2 4 2 4

claude [5] 2 [5] 2 3 4 [5] 2 3 4 3 4

For instance, observe that the three denied accesses by bob logged in the second and
fourth step are consecutive in view of the time stamps 3, 2, and 4 provided as argument
values, eg. in access(bob,denied,3) expiring at step 5.

Listing 2. Cumulative access control encoding
1 #const window=3. #const offset=2. #const denial=3. #iinit 1-offset.

3 #base.
4 user(bob;alice;claude). % some users
5 signal(denied;granted). % some signals
6 { account(U,closed) : user(U) }.
7 account(U,open) :- user(U), not account(U,closed).

9 #cumulative t.
10 #external access(U,S,t+offset) : user(U) : signal(S).
11 denied(U,1, t) :- access(U,denied,t+offset).
12 denied(U,N+1, t) :- access(U,denied,t+offset),
13 denied(U,N,t-1), N < denial.
14 denied(U,denial,t) :- denied(U,denial,t-1).
15 :- denied(U,denial,t), not account(U,closed).

17 #volatile t.
18 :- account(U,closed), not denied(U,denial,t).

Our first offline encoding is shown in Listing 2. To keep the sliding window width,
matching the life span of stream transients, adjustable, the constant window is intro-
duced in Line 1 (and set to default value 3). Similarly, the maximum deviation of time
stamps from incremental step numbers and the threshold of consecutive denied accesses
at which an account is closed are represented by the constants offset and denial. After
introducing the three users and the possible outcomes of their access attempts via facts,
the static #base part includes in Line 6 a choice rule on whether the status of a user
account is closed, while it remains open otherwise. In fact, the dynamic parts of the in-
cremental program solve the task to identify the current status of the account of a user U
and represent it by including either account(U,closed) or account(U,open) in
an answer set, yet without redefining account/2 over steps. This makes sure that step-
wise (ground) incremental program parts are modularly composable (cf. [1, 2]), which
is required for meaningful closed-world reasoning by oclingo in reactive settings.

The encoding in Listing 2 (mainly) relies on accumulating rules given below
“#cumulative t.” (in Line 9), resembling incremental planning encodings (cf. [17])
based on a history of actions. In order to react to external inputs, the #external di-
rective in Line 10 declares (undefined) atoms as inputs that can be provided by the
environment, ie. the controller component of oclingo. Note that instances of access/3
with time stamp t+offset (where offset is the maximum deviation from t) are intro-
duced at incremental step t; in this way, ground rules are prepared for shifted access
data arriving early. The rules in Line 11–13 implement the counting of consecutive de-
nied access attempts per user, up to the threshold given by denial; if this threshold is
reached (wrt. non-expired access data), the account of the respective user is temporarily
closed. The “positive” conclusion from denial many denied access attempts to closing
an account is encoded via the integrity constraint in Line 15, while more care is needed
in concluding the opposite: the right decision whether to leave an account open can be
made only after inspecting the whole window contents. To this end, the rule in Line 14
passes information about the threshold being reached on to later steps, and the query

in Line 18, refuting an account to be closed if there were no three consecutive denied
access attempts, is included only for the (currently) last incremental step.

For the stream segment in Listing 1, in the fourth incremental step, we have that
denied(bob,3,4) is derived in view of (transient) facts access(bob,denied,3),
access(bob,denied,2), and access(bob,denied,4). Due to the integrity con-
straint in Line 15 of Listing 2, this enforces account(bob,closed) to hold.
Since access(bob,denied,3) expires at step 5, we can then no longer derive
denied(bob,3,4), and denied(bob,3,5) does not hold either; the query in Line 18
thus enforces account(bob,closed) to be false in the fifth incremental step. Simi-
larly, we have that account(claude,closed) or account(alice,closed) hold at
step 5, 6, and 8, respectively, but are enforced to be false at any other step. As one may
have noticed, given the values of constants in Listing 2, the consideration of atoms over
access/3 starts at t+offset = 3 for t = 1. To still initialize the first (two) windows
wrt. the “past,” an #iinit directive is provided in Line 1. By using 1-offset = −1
as starting value for t, once the first external inputs are processed, ground rules treating
access data with time stamps 1, 2, and 3 are readily available, which is exactly the range
admitted at the first step. Moreover, at a step like 6, the range of admissible time stamps
starts at 4, and it increases at later steps; that is, inputs with time stamp 3, declared at
step 1, are not anymore supposed to occur in stream data. To enable program simplifica-
tions by fixing such atoms to false, online data can be accompanied by “#forget i.”
directives, and they are utilized in practice to dispose of elapsed input atoms (cf. [3]).

In addition to the cumulative encoding in Listing 2, we also devised a volatile variant
(cf. extended draft [2]) in which outdated rules expire along with stream data. Both the
cumulative and the volatile encoding have the drawback that the knowledge-intensive
logic program part is (gradually) replaced at each step. While this is tolerable in the
simple access scenario, for more complex problems, it means that the internal problem
representation of a solving component like clasp changes significantly upon processing
stream data, so that a potential re-use of learned constraints is limited. In order to rein-
force conflict-driven learning, we next demonstrate a modeling approach allowing for
the preservation of a static problem representation in view of fixed window capacity.

At the beginning (up to Line 5), our static access control encoding, shown in List-
ing 3, is similar to the cumulative approach (Listing 2), while the #base part is signif-
icantly extended in the sequel. In fact, the constant modulo, calculated in Line 6, takes
into account that at most window many consecutive online inputs are jointly available
(preceding ones are expired) and that terms representing time stamps may deviate by up
to offset (both positively and negatively) from incremental step numbers. Given this,
window+2∗offset slots are sufficient to accommodate all distinct time stamps provided
as argument values in instances of access/3 belonging to a window, and one additional
slot is added in Line 6 as separator between the largest and the smallest (possibly) ref-
erenced time stamp. The available slots are then arranged in a cycle (via modulo arith-
metic) in Line 7, and the counting of denied access attempts per user, implemented in
Line 9–11, traverses consecutive slots according to instances of the predicate next/2.
Importantly, counting does not rely on transient external inputs, ie. access/3, but in-
stead refers to instances of baseaccess/3, provided by the choice rule in Line 8; in

Listing 3. Static access control encoding
6 #const modulo=window+2*offset+1. #iinit 2-modulo.
7 next(T,(T+1) #mod modulo) :- T := 0..modulo-1.
8 { baseaccess(U,denied,T) : user(U) : next(T,_) }.
9 denied(U,1, T) :- baseaccess(U,denied,T).

10 denied(U,N+1,S) :- baseaccess(U,denied,S), next(T,S),
11 denied(U,N,T), N < denial.
12 account(U,closed) :- denied(U,denial,T).
13 account(U,open) :- user(U), not account(U,closed).

15 #cumulative t.
16 #external access(U,S,t+offset) : user(U) : signal(S).
17 :- access(U,denied,T), T := t+offset,
18 not baseaccess(U,denied,T #mod modulo).

20 #volatile t : modulo.
21 :- baseaccess(U,denied,(T+modulo) #mod modulo),
22 not access(U,denied,T), T := t+offset.

this way, the atoms and rules in the #base program part can be re-used in determining
the status of user accounts wrt. transient access data from a stream.

To get decisions on closing accounts right (via the rules in Line 12–13), synchro-
nization between instances of baseaccess/3 and (transient) facts over access/3 is
implemented in the #cumulative and #volatile parts in Listing 3. Beyond declar-
ing inputs in the same way as before (cf. Line 10 in Listing 2), for any non-expired
online input of the form access(U,denied,t+offset), the integrity constraint in
Line 17–18 enforces the corresponding instance of baseaccess/3, calculated via
“(t+offset) #mod modulo,” to hold. Note that this constraint does not need to be
expired explicitly (yet it could be moved to the #volatile block below) because
elapsed input atoms render it ineffective anyway. However, the integrity constraint
in Line 21–22, enforcing baseaccess/3 counterparts of non-provided facts of the
form access(U,denied,t+offset) to be false, must be discharged once the slid-
ing window progresses (by modulo many steps). For instance, when offset = 2
and modulo = 8, input atoms of the form access(U,denied,3), introduced at the
first step, map to baseaccess(U,denied,3), and the same applies to instances of
access(U,denied,11), becoming available at the ninth incremental step. Since the
smallest time stamp that can be mentioned by non-expired inputs at the ninth step is 5
(inputs given before step 7 are expired), the transition of integrity constraints (mapping
time stamp 11 instead of 3 to slot 3) is transparent. In addition, as expired inputs with
time stamp 4 enforce atoms of the form baseaccess(U,denied,4) to be false (via
the integrity constraint in Line 21–22 instantiated for step 2), denial counting in Line 9–
11 stops at atoms baseaccess(U,denied,3), representing latest stream data at the
ninth step. Hence, denial many consecutive instances of baseaccess(U,denied,T),
needed to close the account of a user U, correspond to respective facts over access/3
in the current window. Finally, to avoid initial guesses over baseaccess/3 wrt. (non-
existing) denied accesses lying in the past, “#iinit 2-modulo.” is included in Line 6.
Then, instances of baseaccess/3 for (positive) values “(T+modulo) #mod modulo,”
calculated in Line 21, are (temporarily) enforced to be false when they match access/3
instances with non-positive time stamps.

Fig. 1. Automaton for recognizing overtaking maneuvers

∅start B N

F

“OT!”

behind
infront,nextto,ε

nextto
behind,ε

infront

infront

nextto,ε

behind

infront,nextto,ε
behind

3.2 Overtaking Maneuver Recognition

Our second scenario deals with recognizing the completion of overtaking maneuvers
by a car, eg. for signaling it to the driver. The recognition follows the transitions of the
automaton in Figure 1.5 Starting from state ∅, representing that a maneuver has not yet
been initiated, sensor information about being “behind,” “nextto,” or “infront” of an-
other car enables transitions to corresponding states B, N , and F . As indicated by the
output “OT!” in F , an overtaking maneuver is completed when F is reached from ∅ via
a sequence of “behind,” “nextto,” and “infront” signals. Additional ε transitions model
the progression from one time point to the next in the absence of signals: while such
transitions are neutral in states ∅, B, and N , the final state F is abandoned (after out-
putting “OT!”). For instance, the automaton in Figure 1 admits the following trajectory
(indicating a state at time point i by “@i” and providing signals in-between states):

(∅@0, behind, B@1, ε, B@2, nextto, N@3, infront, F@4, ε,

∅@5, nextto,∅@6, behind, B@7, nextto, N@8, ε,N@9).

Here, an overtaking maneuver is completed when F is reached at time 4, and ε transi-
tions preserveB andN , but not F . In the following, we consider overtaking maneuvers
that are completed in at most 6 steps; that is, for a given time point i, the automaton in
Figure 1 is assumed to start from ∅ at time i−6.

Similar to the static access control encoding in Listing 3, our encoding of overtaking
maneuver recognition, shown in Listing 4, uses modulo arithmetic to map time stamps
in stream data to a corresponding slot of atoms and rules provided in the #base pro-
gram part. In more detail, transient (external) facts of the form at(P,C,T) (in which
P is behind, nextto, or infront and C refers to a red, blue, or green car) are
matched with corresponding instances of baseat/3 by means of the #cumulative
and #volatile parts in Line 20–24. As before, these parts implement a transpar-
ent shift from steps i to i+modulo, provided that transient stream data is given in

5 Unlike in this simple example scenario, transition systems are usually described compactly
in terms of state variables and operators on them, eg. defined via action languages (cf. [21]).
The automaton induced by a compact description can be of exponential size, and an explicit
representation like in Figure 1 is often inaccessible in practice.

Listing 4. Static overtaking maneuver recognition encoding
1 #const modulo=6. #iinit 2-modulo.
2 #base.
3 position(behind;nextto;infront). % relative positions
4 car(red;blue;green). % some cars
5 time(0..modulo-1). % time slots

7 next(T,(T+1) #mod modulo) :- time(T), not now(T).
8 { now(T) : time(T) } 1.
9 { baseat(P,C,T) : position(P) : car(C) : time(T) }.

10 baseat(C,T) :- baseat(_,C,T).

12 state(behind, C,T) :- baseat(behind,C,T).
13 state(nextto, C,S) :- baseat(nextto,C,S), next(T,S),
14 1 { state(behind,C,T), state(nextto,C,T) }.
15 state(infront,C,S) :- baseat(infront,C,S), now(S),
16 next(T,S), state(nextto,C,T).
17 state(P, C,S) :- state(P,C,T), P != infront,
18 next(T,S), not baseat(C,S).

20 #cumulative t.
21 #external at(P,C,t) : position(P) : car(C).
22 :- at(P,C,t), not baseat(P,C,t #mod modulo).
23 #volatile t : modulo.
24 :- baseat(P,C,(t+modulo) #mod modulo), not at(P,C,t).
25 #volatile t.
26 :- not now(t #mod modulo).

“#volatile : modulo.” blocks. Then, the rules in Line 12–16 model state transi-
tions based on signals, and the one in Line 17–18 implements ε transitions (making
use of projection in Line 10) as specified by the automaton in Figure 1. In particular,
the completion of an overtaking maneuver in the current step, indicated by deriving
infront as state for a car C and a time slot S via the rule in Line 15–16, relies on
now(S) (explained below). Also note that state ∅ is left implicit, ie. it applies to a car C
and a slot T if baseat(P,C,T) does not hold for any relative position P, and that the
frame axioms represented in Line 17–18 do not apply to infront states.

While a next/2 predicate had also been defined in Listing 3 to arrange the
time slots of the #base program in a cycle, the corresponding rule in Line 7
of Listing 4 relies on the absence of now(T) for linking a time slot T to
“(T+1) #mod modulo.” In fact, instances of now/1 are provided by the choice rule
in Line 8 and synchronized with the incremental step counter t via the integrity con-
straint “:- not now(t #mod modulo).” of life span 1 (cf. Line 25–26). Unlike the
previous approach to access counting (introducing an empty slot), making the current
time slot explicit enables the linearization of a time slot cycle also in the presence
of frame axioms, which could propagate into the “past” otherwise. In fact, if prereq-
uisites regarding now/1 were dropped in Line 7 and 15, one could, beginning with
at(behind,C,7) as input and its corresponding atom baseat(behind,C,1), de-
rive state(infront,C,4) at step 7 for a car C subject to the trajectory given above.
Such a conclusion is clearly unintended, and the technique in Line 7–8 and 25–26,
using now/1 to linearize a time slot cycle, provides a general solution for this issue.
Finally, “#iinit 2-modulo.” is again included in Line 1 to avoid initial guesses over
baseat/3 wrt. (non-existing) past signals.

3.3 Online Job Scheduling

After inspecting straightforward data evaluation tasks, we now turn to a combinatorial
problem in which job requests of different durations must be scheduled to machines
without overlapping one another. Unlike in offline job scheduling [22], where requests
are known in advance, we here assume a stream of job requests, provided via (transient)
facts job(I,M,D,T) such that I is a job ID, M is a machine, D is a duration, and T is
the arrival time of a request. In addition, we assume a deadline T+max step, for some
integer constant max step, by which the execution of a job I submitted at step T must be
completed. For instance, an (initial) segment of a job request stream can be as follows:
#step 1 : 0. #volatile : 21. job(1,1,1,1).
job(2,1,5,1). job(3,1,5,1). job(4,1,5,1). job(5,1,5,1).
#step 21 : 0. #volatile : 21.
job(1,1,5,21). job(2,1,5,21). job(3,1,5,21). job(4,1,5,21).

That is, five jobs with ID 1 to 5 (of durations 1 and 5) are submitted at step 1 and
ought to be completed on machine 1 within the deadline 1+max step = 21 (taking
max step = 20). Four more jobs with ID 1 to 4 of duration 5, submitted at step 21,
also need to be executed on machine 1. As a matter of fact, a schedule to finish all jobs
within their deadlines must first launch the five jobs submitted at step 1, thus occupy-
ing machine 1 at time points up to 21, before the other jobs can use machine 1 from
time point 22 to 41. However, when a time-decaying logic program does not admit any
answer set at some step (ie. if there is no schedule meeting all deadlines), the default
behavior of oclingo is to increase the incremental step counter until an answer set is
obtained. This behavior would lead to the expiration of pending job requests, so that a
schedule generated in turn lacks part of the submitted jobs. Since such (partial) sched-
ules are unintended here, we take advantage of the enriched directive “#step i : δ.” to
express that increases of the step counter must not exceed i+δ, regardless of whether
an answer set has been obtained at step i+δ (or some greater step). In fact, since δ = 0
is used above, oclingo does not increase the step counter beyond i, but rather returns
“unsatisfiable” as result if there is no answer set.

In Line 1–4, our (static) job scheduling encoding, shown in Listing 5, defines the
viable durations, IDs of jobs requested per step, and the available machines in terms of
corresponding constants. Furthermore, deadlines for the completion of jobs are obtained
by adding max step (set to 20 in Line 2) to request submission times. As a consequence,
jobs with submission times i ≤ j such that j ≤ i+max step may need to be scheduled
jointly, and the minimum window width modulo required to accommodate the (maxi-
mum) completion times of jointly submitted jobs is calculated accordingly in Line 2.
Given the value of modulo, the time slots of the #base program part are in Line 5 again
arranged in a cycle (similar to access counting in Listing 3). The technique applied in
Line 15–19 to map job requests given by transient (external) facts over job/4 to corre-
sponding instances of basejob/4, provided by the choice rule in Line 7, remains the
same as in previous static encodings (cf. Listing 3 and 4). But note that job IDs can be
shared between jobs submitted at different steps, so that pairs (I,T) of an ID I and a
slot T identify job requests uniquely in the sequel.

The rules in Line 8–13 of the #base program accomplish the non-overlapping
scheduling of submitted jobs such that they are completed within their deadlines. In fact,

Listing 5. Static online job scheduling encoding
1 #const max duration = 5. #const max jobid = 5. #const num machines = 5.
2 #const max step = 20. #const modulo = 2*max step+1. #iinit 2-modulo.
3 #base.
4 duration(1..max duration). jobid(1..max jobid). machine(1..num machines).
5 next(T,(T+1) #mod modulo) :- T := 0..modulo-1.

7 { basejob(I,M,D,T) : jobid(I) : machine(M) : duration(D) : next(T,_) }.
8 1 { jobstart(I,T,(T..T+max step+1-D) #mod modulo) } 1 :- basejob(I,_,D,T).

10 occupy(M,I,T,D, S) :- basejob(I,M,D,T), jobstart(I,T,S).
11 occupy(M,I,T,D-1,S) :- occupy(M,I,T,D,R), next(R,S), D > 1.
12 occupy(M,I,T,S) :- occupy(M,I,T,_,S).
13 :- occupy(M,I1,T1,S), occupy(M,I2,T2,S), (I1,T1) < (I2,T2).

15 #cumulative t.
16 #external job(I,M,D,t) : jobid(I) : machine(M) : duration(D).
17 :- job(I,M,D,t), not basejob(I,M,D,t #mod modulo).
18 #volatile t : modulo.
19 :- basejob(I,M,D,(t+modulo) #mod modulo), not job(I,M,D,t).

the choice rule in Line 8 expresses that a job of duration D with submission time slot T
must be launched such that its execution finishes at slot “(T+max step) #mod modulo”
(at the latest). Given the slots at which jobs are started, the rules in Line 10–12 prop-
agate the occupation of machines M wrt. durations D, and the integrity constraint in
Line 13 makes sure that the same machine is not occupied by distinct jobs at the same
time slot. For instance, the following atoms of an answer set represent starting times
such that the jobs requested in the stream segment given above do not overlap and are
processed within their deadlines:
jobstart(1,1,1)
jobstart(2,1,2) jobstart(1,21,22)
jobstart(3,1,7) jobstart(2,21,27)
jobstart(4,1,12) jobstart(3,21,32)
jobstart(5,1,17) jobstart(4,21,37)

Note that the execution of the five jobs submitted at step 1 is finished at their common
deadline 21, and the same applies wrt. the deadline 41 of jobs submitted at step 21.
Since machine 1 is occupied at all time slots, executing all jobs within their deadlines
would no longer be feasible if a job request like job(5,1,1,21) were added. In such
a case, oclingo outputs “unsatisfiable” and waits for new online input, which may shift
the window and relax the next query due to the expiration of some job requests.

A future extension of oclingo regards optimization (via #minimize/#maximize)
wrt. online data, given that solutions violating as few (soft) constraints as possible may
be more helpful than just reporting unsatisfiability. In either mode of operation, the
static representation of problems over a window of fixed width, illustrated in Listing 3,
4, and 5, enables the re-use of constraints learned upon solving a query for answering
further queries asked later on.

Although oclingo is still in a prototypical state, we performed some preliminary ex-
periments in order to give an indication of the impact of different encoding variants. As
the first two example scenarios model pure data evaluation tasks (not requiring search),
experiments with them did not exhibit significant runtimes, and we thus focus on re-

Fig. 2. Experimental results for online job scheduling
(a) Comparison of encoding variants on data streams

Static Cumulative Relaunch
Stream #S #U ∅S ∅U ∅S ∅U ∅S ∅U
3x3x3 9 1 162 38 0.02 0.01 0.05 0.05 0.01 0.01
3x3x3 9 2 151 49 0.02 0.01 0.05 0.04 0.01 0.01
3x3x3 9 3 147 53 0.02 0.01 0.05 0.05 0.01 0.01
5x3x5 15 1 164 36 0.17 0.18 0.40 0.48 0.05 0.15
5x3x5 15 2 167 33 0.17 0.47 0.40 0.64 0.04 0.26
5x3x5 15 3 140 60 0.22 0.81 0.42 0.72 0.04 0.31
5x5x15 20 1 161 39 1.61 0.94 3.32 3.34 0.14 0.19
5x5x15 20 2 192 8 1.44 0.88 3.53 2.88 0.14 0.34
5x5x15 20 3 182 18 1.46 0.79 3.59 4.08 0.14 0.15
5x5x10 30 1 185 15 3.29 324.75 4.72 234.26 0.34 39.43
5x5x10 30 2 180 20 4.09 432.66 5.42 181.44 0.36 29.54
5x5x10 30 3 199 1 2.91 43.75 5.23 38.04 0.30 16.33
Total 2030 370 1.39 37.02 2.45 20.26 0.14 3.36

(b) Time plot for “5x3x5 15 1”

0

0.5

1

1.5

2

6.8

 0 20 40 60 80 100 120 140 160 180 200

T
im

e
(s

ec
.)

Step

Static
Cumulative

Relaunch

sults for online job scheduling. In particular, we assess oclingo on the static encoding
in Listing 5 as well as a cumulative variant (analog to the cumulative access control
encoding in Listing 2); we further consider the standard ASP system clingo, processing
each query independently via relaunching wrt. the current window contents. Table 2(a)
provides average runtimes of the investigated configurations in seconds, grouped by
satisfiable (∅S) and unsatisfiable (∅U) queries, on 12 randomly generated data streams
with 200 online inputs each. These streams vary in the values used for constants, eg.
max jobid = 5, max duration = 3, num machines = 5, and max step = 15 with the
three “5x3x5 15 n” streams, and the respective numbers of satisfiable (#S) and un-
satisfiable (#U) queries. First of all, we observe that the current prototype version of
oclingo cannot yet compete with clingo. The reason for this is that oclingo’s underlying
grounding and solving components were not designed with expiration in mind, so that
they currently still remember the names of expired atoms (while irrelevant constraints
referring to them are truly deleted). The resulting low-level overhead in each step ex-
plains the advantage of relaunching clingo from scratch. When comparing oclingo’s
performance wrt. encoding variants, the static encoding appears to be generally more
effective than its cumulative counterpart, albeit some unsatisfiable queries stemming
from the last three example streams in Table 2(a) are solved faster using the latter.

The plot in Figure 2(b) provides a more fine-grained picture by displaying runtimes
for individual queries from stream “5x3x5 15 1,” where small bars on the x-axis in-
dicate unsatisfiable queries. While the static encoding yields a greater setup time of
oclingo at the very beginning, it afterwards dominates the cumulative encoding vari-
ant, which requires the instantiation and integration of rules unrolling the horizons of
new job requests at each step. Unlike this, the static encoding merely maps input atoms
to their representations in the #base part, thus also solving each query wrt. the same
(static) set of atoms. As a consequence, after initial unsatisfiable queries (yielding spikes
in all configurations’ runtimes), oclingo with the static encoding is sometimes able to
outperform clingo for successive queries remaining unsatisfiable. In fact, when the ini-
tial reasons for unsatisfiability remain in the window, follow-up queries are rather easy

given the previously learned constraints, and we observed that some of these queries
could actually be solved without any guessing.

4 Discussion

We have devised novel modeling approaches for continuous stream reasoning based on
ASP, utilizing time-decaying logic programs to capture sliding window data in a natural
way. While such data is transient and subject to routine expiration, we provided tech-
niques to encode knowledge about potential window contents statically. This reduces
the dynamic tasks of re-grounding and integrating rules of an offline encoding in view
of new data to matching inputs to a corresponding internal representation. As a con-
sequence, reasoning also concentrates on a fixed propositional representation (whose
parts are selectively activated wrt. actual window contents), which enables the re-use
of constraints gathered by conflict-driven learning. Although we illustrated modeling
principles, including an approach to propagate frame axioms along time slot cycles, on
toy domains only, the basic ideas are of general applicability. This offers interesting
prospects for implementing knowledge-intense forms of stream reasoning, as required
in application areas like ambient assisted living, robotics, or dynamic scheduling.

Our approach to ASP-based stream reasoning is prototypically implemented as an
extension of the reactive ASP system oclingo, and preliminary experiments clearly
show the need of improved low-level support of data expiration. In fact, we plan to
combine the process of redesigning oclingo with the addition of yet missing function-
alities, such as optimization in incremental and reactive settings. Future work also re-
gards the consolidation of existing and the addition of further directives to steer in-
cremental grounding and solving. For instance, beyond step-wise #cumulative and
#volatile directives, we envisage #assert and #retract statements, as offered by
Prolog (cf. [23]), to selectively (de)activate logic program parts. As with traditional
ASP methods, the objective of future extensions is to combine high-level declarative
modeling with powerful reasoning technology, automating both grounding and search.
The investigation of sliding window scenarios performed here provides a first step to-
wards gearing ASP to continuous reasoning tasks. Presupposing appropriate technology
support, we think that many dynamic domains may benefit from ASP-based reasoning.

Acknowledgments We are grateful to the anonymous referees for helpful comments.
This work was partially funded by the German Science Foundation (DFG) under
grant SCHA 550/8-1/2 and by the European Commission within EasyReach (www.
easyreach-project.eu) under grant AAL-2009-2-117.

References

1. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream rea-
soning with answer set programming: Preliminary report. In Eiter, T., McIlraith, S., eds.:
Proceedings of the Thirteenth International Conference on Principles of Knowledge Repre-
sentation and Reasoning (KR’12), AAAI Press (2012) 613–617

2. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream reason-
ing with answer set programming: Extended version. Unpublished (2012), available at [3]

3. oclingo: http://www.cs.uni-potsdam.de/oclingo
4. Golab, L., Özsu, M.: Data Stream Management. Synthesis Lectures on Data Management,

Morgan and Claypool Publishers (2010)
5. Della Valle, E., Ceri, S., van Harmelen, F., Fensel, D.: It’s a streaming world! reasoning upon

rapidly changing information. IEEE Intelligent Systems 24(6) (2009) 83–89
6. Baral, C.: Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-

bridge University Press (2003)
7. Lifschitz, V., van Harmelen, F., Porter, B., eds.: Handbook of Knowledge Representation.

Elsevier Science (2008)
8. Barbieri, D., Braga, D., Ceri, S., Della Valle, E., Huang, Y., Tresp, V., Rettinger, A., Wermser,

H.: Deductive and inductive stream reasoning for semantic social media analytics. IEEE
Intelligent Systems 25(6) (2010) 32–41

9. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. [24]
54–66

10. Gebser, M., Kaminski, R., König, A., Schaub, T.: Advances in gringo series 3. [24] 345–351
11. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: Conflict-driven answer set solving.

In Veloso, M., ed.: Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence (IJCAI’07), AAAI Press/MIT Press (2007) 386–392

12. Lifschitz, V.: Answer set programming and plan generation. Artificial Intelligence 138(1-2)
(2002) 39–54

13. Biere, A., Heule, M., van Maaren, H., Walsh, T., eds.: Handbook of Satisfiability. Volume
185 of Frontiers in Artificial Intelligence and Applications, IOS Press (2009)

14. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: A user’s
guide to gringo, clasp, clingo, and iclingo. Available at http://potassco.
sourceforge.net

15. Syrjänen, T.: Lparse 1.0 user’s manual. Available at http://www.tcs.hut.fi/
Software/smodels

16. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2) (2002) 181–234

17. Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T., Thiele, S.: Engineering
an incremental ASP solver. In Garcia de la Banda, M., Pontelli, E., eds.: Proceedings of the
Twenty-fourth International Conference on Logic Programming (ICLP’08). Volume 5366 of
Lecture Notes in Computer Science, Springer-Verlag (2008) 190–205

18. Nau, D., Ghallab, M., Traverso, P.: Automated Planning: Theory and Practice. Morgan
Kaufmann Publishers (2004)

19. Gebser, M., Sabuncu, O., Schaub, T.: An incremental answer set programming based system
for finite model computation. AI Communications 24(2) (2011) 195–212

20. Baker, A.: A simple solution to the Yale shooting problem. In Brachman, R., Levesque, H.,
Reiter, R., eds.: Proceedings of the First International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’89), Morgan Kaufmann Publishers (1989) 11–20

21. Giunchiglia, E., Lee, J., Lifschitz, V., McCain, N., Turner, H.: Nonmonotonic causal theories.
Artificial Intelligence 153(1-2) (2004) 49–104

22. Brucker, P.: Scheduling Algorithms. Springer-Verlag (2007)
23. Kowalski, R.: Algorithm = logic + control. Communications of the ACM 22(7) (1979)

424–436
24. Delgrande, J., Faber, W., eds.: Proceedings of the Eleventh International Conference on

Logic Programming and Nonmonotonic Reasoning (LPNMR’11). Volume 6645 of Lecture
Notes in Artificial Intelligence, Springer-Verlag (2011)

