
Declarative Encodings of Acyclicity Properties?

Martin Gebser??, Tomi Janhunen, and Jussi Rintanen? ? ?

Helsinki Institute for Information Technology HIIT
Department of Information and Computer Science
Aalto University, FI-00076 AALTO, FINLAND

Abstract. Many knowledge representation tasks involve trees or similar struc-
tures as abstract datatypes. However, devising compact and efficient declarative
representations of such structural properties is non-obvious and can be challeng-
ing indeed. In this paper, we take a number of acyclicity properties into consid-
eration and investigate various logic-based approaches to encode them. We use
answer set programming as the primary representation language but also consider
mappings to related formalisms, such as propositional logic, difference logic, and
linear programming. We study the compactness of encodings and the resulting
computational performance on benchmarks involving acyclic or tree structures.

1 Introduction
Numerous hard search tasks involve the construction of acyclic or tree structures. Con-
straint satisfaction and related methods are an important approach for solving many
of these problems. For instance, Bayesian network structure learning, where directed
acyclic graphs provide solution candidates, can be reduced to constraint optimization
[15, 10]. Furthermore, constraint-based methods can be used to infer phylogenetic trees
[4, 2], describing the evolution of living organisms, languages, and other evolving sys-
tems. Since acyclicity and the property of being a tree are no primitives in common
constraint-based representation formalisms, the challenge of formulating such condi-
tions in terms of more basic constraint expressions arises. Hence, in this work, we sys-
tematically investigate logic-based approaches to encode respective properties.

Although we rely on answer set programming (ASP) as the primary representation
language for encodings, respective formulations in related formalisms, such as propo-
sitional satisfiability (SAT), difference logic (DL), and linear programming (LP), can
be obtained through automatic polynomial translations from ASP. Linear translations
to SAT exist whenever ASP rules are tight [11], i.e., if there are no circular positive de-
pendencies through rules’ prerequisites on the ground level. In the non-tight case, level
mappings [16] can be used to bridge the semantic gap between ASP and SAT. Com-
pact linear representations of level mappings can be achieved by means of difference
constraints available in DL [21] or integer variables in LP [18].

The rest of this paper is organized as follows. After providing definitions of acyclic-
ity and tree properties, we present encoding approaches and corresponding first-order
? The support from the Finnish Centre of Excellence in Computational Inference Research

(COIN) funded by the Academy of Finland (under grant #251170) is gratefully acknowledged.
?? Also affiliated with the University of Potsdam, Germany.

? ? ? Also affiliated with Griffith University, Brisbane, Australia.

1

2 3

4 5

(a) Cyclic

1

2 3

4 5

(b) Acyclic

1

2 3

4 5

(c) Forest

1

2 3

4 5

(d) Tree
Fig. 1: Directed example graphs with five vertices each

ASP formulations in Section 3. In Section 4, we evaluate these encodings on synthetic
as well as application benchmarks, followed by conclusions in Section 5. The material
on directed acyclic graphs was also presented in a short paper [13], which did not cover
forests and trees. An extended draft (also treating chordal graphs) is available online.1

2 Acyclicity Properties
As usual, a directed graph G is a pair 〈V,E〉, where V is a finite set of vertices and E ⊆
V × V is a set of directed edges. For some v ∈ V , we denote the number of incoming
or outgoing edges, respectively, by deg−(v) = |{u | 〈u, v〉 ∈ E}| and deg+(v) = |{u |
〈v, u〉 ∈ E}|; v is a root (or leaf) of G if deg−(v) = 0 (or deg+(v) = 0). A path
of length k − 1 in G is a non-empty sequence v1, . . . , vk of vertices from V such that
〈vi, vi+1〉 ∈ E and vi 6= vj for all 1 ≤ i < j ≤ k. A sequence v0, v1, . . . , vk is a cycle
of length k in G if 〈v0, v1〉 ∈ E, v0 = vk, and v1, . . . , vk is a path in G.

A directed acyclic graph is a directed graph G such that there is no cycle in G. A
directed acyclic graph G = 〈V,E〉 is a directed forest if, for every vk ∈ V , there is
exactly one path v1, . . . , vk in G from a root v1 of G to vk. Given that any incoming
edge 〈vk−1, vk〉 can be extended to a path v1, . . . , vk−1, vk from a root v1, the former
condition is equivalent to requiring deg−(v) ≤ 1 for all vertices v ∈ V . Finally, a
directed tree is a directed forest G = 〈V,E〉 with a unique root, i.e., deg−(v) = 0
holds for exactly one v ∈ V . Some directed example graphs illustrating the introduced
acyclicity properties are depicted in Figure 1.

An undirected graph G = 〈V,E〉 consists of a finite set V of vertices and a
set E of undirected edges {u, v} such that u, v ∈ V and u 6= v. For some v ∈ V ,
deg(v) = |{u | {u, v} ∈ E}| denotes the number of edges including v; v is a leaf
of G if deg(v) ≤ 1. A path v1, . . . , vk in G is defined as in the directed case except
for replacing the requirement 〈vi, vi+1〉 ∈ E by {vi, vi+1} ∈ E for all 1 ≤ i < k. A
sequence v0, v1, . . . , vk is a cycle of length k ≥ 3 in G if {v0, v1} ∈ E, v0 = vk, and
v1, . . . , vk is a path in G. An undirected forest is an undirected graph G such that there
is no cycle in G. An undirected tree is an undirected forest G such that, for every pair
u, v ∈ V , there is some path from u to v in G.

3 Encodings
In the following, we gradually develop different encodings of the graph-theoretic con-
cepts introduced in the previous section in the first-order input language of the ASP
grounder GRINGO [14]. The underlying principles, however, are of general applicabil-
ity, and we outline particularities of respective SAT, DL, and LP formulations.

1 http://research.ics.aalto.fi/software/asp/etc/asp-acyclic.pdf

1 #const n=5.
2 node(1..n).
3 pair(X,Y) :- node(X;Y), X != Y.
4 { edge(X,Y) } :- pair(X,Y).

Fig. 2: Encoding part for generating directed graphs

5 order(X,Y) :- pair(X,Y), not edge(X,Y).
6 order(X,Y) :- pair(X,Y), order(Y).
7 order(X) :- node(X), order(X,Y) : pair(X,Y).

9 :- node(X), not order(X).

Fig. 3: Inductive bottom-up encoding of acyclicity test

3.1 Directed Acyclic Graphs

To begin with, we consider directed graphs and their properties, focusing on the dis-
tinction of cyclic and acyclic graphs like the ones depicted in Figure 1(a) and 1(b).

Rules describing the (non-deterministic) generation of directed graphs are shown
in Figure 2. The predicate node/1 provides the labels 1, . . . , n for vertices, where n is
an integer constant standing for the number of vertices, and the symmetric predicate
pair/2 represents the domain of directed edges given by all pairs of distinct vertices.
Any subset of these pairs can be generated via the choice rule in line 4, permitting in-
stances of edge/2 to hold without further preconditions. For example, the atoms char-
acterizing the directed graph in Figure 1(a) are edge(1,2), edge(1,3), edge(2,4),
edge(3,2), edge(4,5), and edge(5,3).

Acyclicity Checking To make sure that a generated directed graph 〈V,E〉 is acyclic,
we may check whether there is a strict partial order < over vertices in V such that
u < v if 〈u, v〉 ∈ E. The rules in Figure 3 encode this approach in an inductive fashion,
where ground instances of order(X,Y) and order(X) indicate the absence of cycles
through edge candidates or vertices, respectively.

Reconsidering the example graph in Figure 1(a), order(u,v) can be derived for
distinct vertices u and v such that 〈u, v〉 is not an edge. Since each vertex u has some
successor v, there still is some atom order(u,v) for u that cannot be concluded in
this way, e.g., order(5,3) for vertex 5. Hence, order(u) remains underivable for
all u ∈ {1, 2, 3, 4, 5}, and the cyclic graph in Figure 1(a) is rejected by means of the
rules in Figure 3. Unlike this, vertex 5 has no successor in the acyclic graph shown in
Figure 1(b), so that order(5,v) is derivable for v ∈ {1, 2, 3, 4}. This in turn yields
order(5), order(4,5), and order(4), given that 5 is the only successor of vertex 4.
Similarly, the derivation of order(2,4) leads to order(2), and the establishment of
order(3,2), order(3,4), and order(3,5) for the successors of vertex 3 allows
for deriving order(3). Finally, order(1) can be concluded in view of order(1,2)
and order(1,3). As derivable atoms comply with (ground instances of) the integrity
constraint in line 9 of Figure 3, the graph in Figure 1(b) passes the acyclicity test.

Encoding Variants The encoding in Figure 3 is non-tight, i.e., it relies on well-
foundedness in the presence of circular positive dependencies on the ground level. Level
mappings (cf. [16, 21, 18]) furnish an alternative mechanism to express well-founded
derivations, where difference constraints or integer variables allow for linear embed-

5 order(X,Y,1..n) :- pair(X,Y), not edge(X,Y).
6 order(X,Y,N-1) :- pair(X,Y), order(Y,N).
7 order(X,N) :- node(X), order(X,Y,N) : pair(X,Y), N = 2..n.
8 order(X) :- node(X), order(X,Y,1) : pair(X,Y).

Fig. 4: Unfolded bottom-up derivation of order/1

dings in DL and LP. A respective approach is taken by the tight ASP formulation of
the predicate order/1 in Figure 4. In order to eliminate circular positive dependen-
cies between rules’ prerequisites and conclusions, the auxiliary predicates order/3 and
order/2 include an additional argument for “step counting” that unfolds the derivation
of a partial vertex order < witnessing acyclicity. If such an order exists, its construction
must be completed in at most n steps. For instance, the (total) order 1 < 3 < 2 < 4 < 5

over vertices of the acyclic graph in Figure 1(b) is represented in terms of the atoms
order(5,2. . . 5), order(4,2. . . 4), order(2,2. . . 3), and order(3,2) along with
order(u) for u ∈ {1, 2, 3, 4, 5}. On the one hand, explicit step counting eliminates
the potential of circular derivations, so that straightforward translations like comple-
tion [7] can be used to map the encoding in Figure 4 to SAT, DL, or LP. In fact, the
tight ASP formulation of order/1 can be viewed as a directed counterpart of the SAT
encoding for the undirected case in [8]. On the other hand, the step argument introduces
an additional dimension increasing the number of atoms as well as constraints. For di-
rected graphs 〈V,E〉, the size of ground instances grows from O(|E|) for the encoding
in Figure 3 to O(|E|×|V |), thus shifting from linear to quadratic space.

Variants of the encodings presented so far can be obtained by replacing the uncon-
ditional generation of edges in line 4 of Figure 2 by the following choice rule:

{ edge(X,Y) } :- pair(X,Y), order(Y).

The additional prerequisite order(Y) necessitates the absence of cycles through a ver-
tex substituted for Y before admitting any edge from a predecessor substituted for X.
Hence, the generation of edges with the above choice rule progresses successively from
the leaves of a directed acyclic graph. Whether such conditional edge generation is ad-
vantageous or not is empirically investigated in Section 4. While the leaf encodings in
Figure 3 and 4 describe “bottom-up” traversals starting from the leaves of a directed
graph, acyclicity tests can likewise be performed “top-down” from roots, and a suc-
cessive choice rule similar to the one above can optionally be used in root encodings
instead of line 4 in Figure 2. Without other side constraints, bottom-up and top-down
traversals appear fully symmetric, but in the contexts of forests and trees, considered in
the following, the orientation of acyclicity tests may interact or interfere.

3.2 Directed Forests

In order to switch from directed acyclic graphs 〈V,E〉 to the more restrictive no-
tion of directed forests, we have to make sure that deg−(v) ≤ 1 holds for every
vertex v ∈ V . For instance, the acyclic graph shown in Figure 1(b) is not a for-
est because deg−(2) = deg−(4) = deg−(5) = 2. The (sub)graph in Figure 1(c),
however, is a forest with roots 1 and 3, given that deg−(1) = deg−(3) = 0 and
deg−(2) = deg−(4) = deg−(5) = 1.

Five alternative approaches to test the additional requirement of at most one in-
coming edge per vertex are encoded by the rules in Figure 5(a)–(e). The integrity con-

straint shown in Figure 5(a) checks pairwise mutual exclusion by, for every vertex, enu-
merating distinct predecessor candidates and denying the joint occurrence of incoming
edges for each pair of potential predecessors. While this approach is straightforward,
its cubic space complexity, i.e., O(|V |3), is a major bottleneck for scalability. The us-
age of one cardinality constraint per vertex in Figure 5(b) allows for a more compact
(quadratic) representation since pairs of predecessor candidates are not explicitly enu-
merated. However, cardinality constraints of arbitrary arity are not directly available in
SAT and DL input languages, and the rules in Figure 5(c)–(e) encode normalizations
(cf. [1]) for the purpose of checking mutual exclusion.

Bidirectional Traversal The basic idea of the encoding in Figure 5(c) is to traverse
the potential predecessors of a vertex from both ends of an (arbitrary) order. For con-
venience, we here rely on the natural order given by vertex indexes along with the
background information that any pair of distinct vertices may possibly be connected by
an edge (cf. line 3 of Figure 2). In case of a more restrictive predecessor selection, the
candidates to be traversed and the order among them can of course be localized. How-
ever, the entry points for traversing potential predecessors of a vertex substituted for X
are in line 10 and 11 of Figure 5(c) taken to be the vertices with the smallest and the
greatest label, i.e., 1 and the integer constant represented by n. Starting from them, the
rule in line 12 expresses that proceeding “upwards” or “downwards”, respectively, to
the next vertex in direction D is admissible if a current vertex substituted for Y does not
have an edge to X. That is, a vertex substituted for X has at most one incoming edge if
and only if some Y is encountered from both ends of the underlying order, as indicated
by the atoms unique(X,Y,1) and unique(X,Y,-1). Except for the corner case n=1,
a respective Y can be assumed to be different from X, which per X eliminates one ground
instance of the rule in line 13 for deriving unique(X). Finally, the integrity constraint
in line 14 requires ground instances of unique(X) for X=1, . . . , X=n to hold, thus
denying any graph with more than one incoming edge for some vertex.

The test based on bidirectional traversal filters the example graph in Figure 1(b)
as follows. While unique(1,u,d) for u ∈ {1, 2, 3, 4, 5} and d ∈ {1, -1},
unique(3,1,1), unique(3,1,-1), and thus unique(1) and unique(3) are deriv-
able, such atoms remain underivable for other vertices. For instance, traversing the
potential predecessors of vertex 2 yields unique(2,1,1) and unique(2,u,-1) for
u ∈ {3, 4, 5} only, so that unique(2) cannot be concluded from unique(2,Y,1)

and unique(2,Y,-1) for any common ground substitution of Y. Unlike this, the
test succeeds for the forest shown in Figure 1(c). In particular, unique(2) as
well as unique(v) for v ∈ {4, 5} are derived in view of unique(2,1,1) and
unique(2,1,-1) or unique(v,3,1) and unique(v,3,-1), respectively.

Linear Traversal The approach encoded in Figure 5(d) inspects potential predecessors
of a vertex substituted for X “downwards” from n while maintaining a counter flag in
the third argument of the predicate unique/3. The latter is unconditionally initialized
with 0 in line 10, and the rule in line 12 expresses that the flag can be decreased from 1

to 0 at any point (other than X) in traversing the indexes of vertices. Atoms of the
form unique(v,u,1) indicate the absence of edges leading to v for the vertices with
labels u, . . . , n, which is in line 11 checked for n, as well as when proceeding to any
predecessor candidate with the next smaller label by applying the rule in line 13. The

10 :- node(Z), edge(X;Y,Z), X < Y.

(a) Pairwise mutual exclusion
10 :- node(Y), 2 { edge(X,Y) }.

(b) Cardinality constraint
10 unique(X,1,1) :- node(X).
11 unique(X,n,-1) :- node(X).

12 unique(X,Y+D,D) :- unique(X,Y,D), node(Y+D), not edge(Y,X).
13 unique(X) :- unique(X,Y,1;-1), n-2 < n*|X-Y|.
14 :- node(X), not unique(X).

(c) Bidirectional traversal
10 unique(X,n,0) :- node(X).
11 unique(X,n,1) :- node(X), not edge(n,X).
12 unique(X,Y-1,0) :- unique(X,Y,1), node(Y-1), X != Y-1.
13 unique(X,Y-1,C) :- unique(X,Y,C), node(Y-1), not edge(Y-1,X).

14 :- node(X), not unique(X,1,0).

(d) Linear traversal
10 unique(X,n,Y,0) :- node(X;Y).

11 unique(X,n,Y,1) :- node(X;Y), not edge(Y,X).

12 unique(X,I,I,C) :- unique(X,J,J,C), I = (J+1)/2,
1 < J, J < 2*I.

13 unique(X,I,Y/2,C/2) :- unique(X,J,Y,C1), I = (J+1)/2, 0 < C,
unique(X,J,Y-1,C2), C = C1+C2, Y\2 == 0.

14 :- node(X), not unique(X,1,1,0).

(e) Tournament traversal
Fig. 5: Forest property tests for directed acyclic graphs

latter rule also forwards flag 0 to indicate the existence of at most one predecessor for
a vertex v among u, . . . , n, and requiring unique(v,1,0) to hold by means of the
integrity constraint in line 14 thus restricts the number of incoming edges per vertex
to one or none. Note that the encoding in Figure 5(d) provides an ASP formulation of
the well-known sequential counter approach from SAT [22] for the particular case of
cardinality limited to at most one (cf. [19, 12]).

Tournament Traversal While linear traversal inspects vertices in (lexicographical)
order, the encoding in Figure 5(e) aims at a symmetric partitioning of predecessor can-
didates. To this end, potential predecessors are viewed as leaves of a binary tree of depth
dlog2(n)e, where unique(X,n,Y,0) and unique(X,n,Y,1) in line 10 and 11 pro-
vide base cases indicating whether the vertex substituted for Y may have an edge to X

or not, respectively. The rule in line 13 then combines two such atoms, inspecting an
even label Y along with Y-1 to derive unique(X,(J+1)/2,Y/2,c) for c ∈ {0, 1}:
the numbers (J+1)/2 and Y/2 denote the round of traversal as well as the position
of an outcome, and c=0 or c=1 represents again that the investigated predecessor
candidates may have some or no edge to X. If the number of positions in a round
is odd, the rule in line 12 additionally forwards previous outcomes for the last po-
sition, lacking an even partner, to the next round. Considering for instance vertex 5

and its incoming edge from 3 in Figure 1(c), the atom unique(5,3,2,0) is derived
from unique(5,5,3,0) and unique(5,5,4,1). In addition, unique(5,3,1,0)

and unique(5,3,1,1) jointly indicate that the vertices with labels 1 and 2 have no
edge to 5. Further combining successive outcomes yields unique(5,2,1,0) as well as
unique(5,2,2,1) to eventually derive unique(5,1,1,0), expressing that (at most)
one edge to 5 has been encountered in traversing all candidates. In general, the integrity
constraint in line 14 checks the respective condition for every vertex to filter directed
acyclic graphs that are no forests. The presented tournament traversal approach to pair-
wisely compare elements as well as their aggregated outcomes resembles the so-called
“commander encoding” from SAT [17], which has been generalized to cardinality con-
straints with arbitrary bound in [12].

Finally, note that (ground instances of) the encoding variants in Figure 5 do not in-
volve circular positive dependencies, so that well-foundedness is not a bottleneck for
corresponding SAT, DL, and LP formulations. However, SAT and DL input languages
lack native support for cardinality constraints like the one in Figure 5(b),2 and the scala-
bility of explicit predecessor candidate pair enumeration, as in Figure 5(a), suffers from
(cubic) space complexity. The normalizations in Figure 5(c)–(e) exemplify ways to en-
code cardinality limitations to at most one compactly, where the linear and tournament
traversal formulations amount to ASP counterparts of respective approaches from SAT.

3.3 Directed Trees

Directed trees are directed forests 〈V,E〉 with one root. That is, all but one vertex in V
must have some incoming edge, and since there may be at most one incoming edge
per vertex, the number of edges must be |V |− 1. Hence, either condition is sufficient to
check that 〈V,E〉 is a tree. Moreover, |V |−1 edges are needed to connect the undirected
version 〈V, {{u, v} | 〈u, v〉 ∈ E}〉 of 〈V,E〉, so that connectedness provides a third
criterion to distinguish trees. Figure 6 displays encodings of these equivalent conditions.

Edge Counting The cardinality constraint in Figure 6(a) holds if a directed forest
〈V,E〉 includes |V | − 1 edges, and the (ground instance of the) integrity constraint
in line 15 checks this condition. In view of n=5, the three edges of the directed forest
shown in Figure 1(c) are insufficient to pass the test, whereas it succeeds for the directed
tree with four edges in Figure 1(d). Given that any pair of distinct vertices provides an
edge candidate according to the declaration in line 3 of Figure 2, a ground instance of
the cardinality constraint over edges involves |V |2 − |V | atoms, and the bound |V | − 1
goes beyond mutual exclusion testing, as encoded by the normalizations in Figure 5(c)–
(e). While generalizations of the linear and tournament traversal approaches allow for
dealing with greater cardinalities too, growing in space proportionally to the cardinality
bound (cf. [22, 12]), we omit them here for brevity. However, since the number of edges
cannot exceed |V | − 1, the following integrity constraint is valid as well (if V 6= ∅):

:- n { edge(X,Y) }.

This can be viewed as a redundant formulation of an implied property of directed
forests, and auxiliary atoms introduced in normalizations of the cardinality constraint in
line 15 of Figure 6(a) may be reused to redundantly test the implied condition too. The
effect of bounding the number of edges explicitly from above is assessed in Section 4.

2 Cardinality constraints can be linearly translated to DL, e.g., by adopting the mapping in [20].

15 :- not n-1 { edge(X,Y) }.

(a) Edge counting
15 child(Y) :- edge(X,Y).
16 :- 2 { not child(X) : node(X) }.

(b) Root counting
15 reach(1) :- 0 < n.
16 reach(X) :- reach(Y), edge(X,Y).
17 reach(Y) :- reach(X), edge(X,Y).
18 :- node(X), not reach(X).

(c) Connectedness
Fig. 6: Tree property tests for directed forests

Unique Root The second approach encoded in Figure 6(b) focuses on the uniqueness
of a root. To this end, the predicate child/1 is derived from edge/2 in line 15 to in-
dicate vertices targeted by some edge. The (ground instance of the) integrity constraint
in line 16 then denies graphs in which several vertices have no incoming edge, thus
limiting the number of roots to (at most) one. For instance, the atoms child(1) and
child(3) are not derived from edge(1,2), edge(3,4), and edge(3,5), represent-
ing the edges of the forest shown in Figure 1(c), so that it is rejected by means of

:- 2 { not child(1), not child(2),
not child(3), not child(4), not child(5) }.

For the tree in Figure 1(d), child(3) is additionally derivable from edge(1,3), and
thus the respective test succeeds. Similarly to the cardinality constraint in Figure 5(b),
limiting incoming edges to at most one per vertex, the requirement of a unique root ad-
dresses mutual exclusion. Hence, normalizations analogous to those in Figure 5(c)–(e)
are applicable. Notably, the auxiliary atoms introduced in either of the latter normaliza-
tions can also be explored to replace the rule in line 15 by these:

child(X) :- node(X), not unique(X,X, 1).
child(X) :- node(X), not unique(X,X,-1).

(1)

child(X) :- node(X), not unique(X,1,1). (2)

child(X) :- node(X), not unique(X,1,1,1). (3)

In combination with the bidirectional traversal encoding in Figure 5(c), the rules in (1)
conclude the existence of some edge to a vertex substituted for X from a predecessor
that blocks proceeding “upwards” or “downwards” to X along the order of candidates.
With the linear and tournament traversal approaches in Figure 5(d) and 5(e), vertex X

must have some predecessor if the counter flag 1 remains underivable as an outcome
of inspecting all predecessor candidates, which is checked in the prerequisite of the
rule in (2) or (3), respectively. Either of the alternative derivations preserves the role
of the predicate child/1 to indicate the vertices with some predecessor, so that the
integrity constraint in line 16 of Figure 6(b) or corresponding normalizations can be
used unmodified to test the uniqueness of a root.

Connectedness The encoding in Figure 6(c) checks that the undirected version of a
(directed) graph 〈V,E〉 is connected. As a matter of fact, |V | − 1 edges are necessary
to connect all vertices in V , so that connectness provides a criterion for testing whether

a forest is a tree. In order to inductively explore connected vertices, the rule in line 15
picks the vertex with label 1 (if V 6= ∅) as an (arbitrary) starting point to proceed in
either direction along edges by applying the rules in line 16 and 17. As a consequence,
the predicate reach/1 provides the vertices connected to 1, and (ground instances of)
the integrity constraint in line 18 require all vertices of a graph to be connected. Recon-
sidering the forest in Figure 1(c), disconnectedness is revealed by deriving reach(1)

and reach(2) but lacking reach(v) for v ∈ {3, 4, 5}. As the undirected versions of
the other three graphs depicted in Figure 1 are connected, such atoms reach(v) are
derivable in addition from the instances of edge/2 characterizing these graphs, so that
they are compatible with the integrity constraint in line 18. Like the inductive derivation
of order/1 in Figure 3, the connectedness encoding in Figure 6(c) induces circular pos-
itive dependencies, and a step argument ranging from 1 to n, similar to the one added in
Figure 4, can be introduced for obtaining a tight variant. Finally, note that the orthogo-
nal tests encoded in Figure 6 are not mutually exclusive but may be freely combined in
order to inspect several complementary properties of a directed tree at once.

3.4 Undirected Forests and Trees

When switching from directed to undirected edges {u, v}, several directed paths con-
necting two vertices yield an undirected cycle. Therefore, acyclic graphs coincide with
forests in the undirected case. However, given that roots cannot (necessarily) be identi-
fied unambiguously when edges lack orientation, only leaves v satisfying deg(v) ≤ 1
can be distinguished. For instance, the undirected version (ignoring edge orientation)
of the example graph in Figure 1(d) has the leaves 2, 4, and 5, whereas no unique root
can be determined among the inner vertices 1 and 3. In what follows, we focus on
the description of encoding modifications enabling a transition from directed to undi-
rected graphs.

As edge candidates represented by the atoms pair(u,v) and pair(v,u) refer to
the same set {u, v} of distinct vertices, first of all, a canonical edge representation is
established by replacing the rule in line 3 of Figure 2 as follows:

3 pair(X,Y) :- node(X;Y), X < Y.

In this way, redundant representations are resolved via labels of vertices, e.g., the atom
edge(1,2), but not edge(2,1), may be generated by applying the (non-deterministic)
choice rule in line 4 of Figure 2. Beyond that, checking that an undirected graph is
acyclic and thus a forest can be accomplished by rearranging the approach of the
bottom-up acyclicity test in Figure 3 to handling leaves of an undirected graph. The
basic idea of the encoding in Figure 7 is to successively derive order(v) for vertices v
that do not belong to any cycle, as witnessed by order(u) for all but (at most) one
vertex u in an edge {u, v}. Conversely, when each remaining vertex v has two or more
edges {u, v} such that order(u) does not hold, there must be some cycle through v.

Apart from line 8, the rules in Figure 7 are similar to the directed acyclicity test in
Figure 3. The additional case in line 6 takes care of asymmetric edge representation in
deriving an instance of order(X,Y) for an edge candidate {X, Y} when order(X) or
order(Y) indicates the absence of cycles involving {X, Y}. Given n-1 edge candidates
per vertex substituted for X, the rule in line 8 applies once the existence of a cycle
through X can be safely excluded. Its ground instance for n=5 and X=3 is as follows:

5 order(X,Y) :- pair(X,Y), not edge(X,Y).
6 order(X,Y) :- pair(X,Y), order(X).
7 order(X,Y) :- pair(X,Y), order(Y).

8 order(X) :- node(X), n-2 { order(X,Y) : pair(X,Y),
order(Y,X) : pair(Y,X) }.

9 :- node(X), not order(X).

Fig. 7: Inductive encoding of undirected acyclicity test

order(3) :- 3 { order(1,3), order(2,3),
order(3,4), order(3,5) }.

That is, when all but one among the edge candidates including vertex 3 do not belong
to any cycle, then 3 cannot be part of a cycle either. Corresponding ground instances
first allow for deriving order(2), order(4), and order(5) from instances of edge/2
characterizing the undirected version of the example graph in Figure 1(d). After con-
cluding that the leaves along with edges including them do not contribute to any cycle,
merely the atom order(1,3) remains open, so that order(1) and order(3) are de-
rived in turn. In general, instances of order/1 are derivable for all vertices, as required
in view of the integrity constraint in line 9, if and only if an undirected graph is acyclic.

Encoding Variants The cardinality constraint in line 8 of Figure 7 applies when all
but one edge candidate including a vertex substituted for X cannot belong to any cycle.
Given the uniqueness of a remaining edge candidate, normalizations analogous to those
in Figure 5(c)–(e) can be used again. To this end, a rule indicating the absence of an
edge for a candidate {X, Y} is augmented with a second case based on order(Y), ex-
pressing that there is no cycle through a vertex substituted for Y. In view of such positive
prerequisites, neither the rule in line 8 of Figure 7 nor normalizations of this non-tight
ASP formulation provide derivations of order(vi) for vertices in a cycle v0, . . . , vk,
since each vi is included in (distinct) edges connecting it to its predecessor and suc-
cessor along the cycle. However, an additional step argument like the one in Figure 4
allows for a tight encoding, simulating well-founded derivations without relying on cir-
cular positive dependencies, where dn/2e steps are sufficient in the undirected case. In
fact, in any but the final step of such a construction, the graph obtained by eliminat-
ing edges that include leaves from previous steps must yield at least two new leaves,
or there certainly is some cycle otherwise. Moreover, the unconditional choice rule in
line 4 of Figure 2 can likewise be replaced by the following two rules:

{ edge(X,Y) } :- pair(X,Y), order(Y).
{ edge(X,Y) } :- pair(X,Y), order(X).

The prerequisite order(Y) or order(X), respectively, directs the generation of edges
to proceed successively from leaves. As with respective encoding variants addressing
directed graphs, the effect of conditional edge generation is empirically assessed below.

Trees In order to distinguish undirected trees among forests, the approach to allow for
one root only, available in the directed case, is no longer applicable. To see this, note that
the undirected version of the tree depicted in Figure 1(d) has the inner vertices 1 and 3
along with the leaves 2, 4, and 5. However, when the edge {3, 4} is removed, the graph
becomes a disconnected forest with the same inner nodes and leaves. Hence, merely
counting inner nodes or leaves does not provide sufficient information to identify trees

directed leaf encoding root encoding
acyclic graphs non-tight tight non-tight tight
CLASP 0.26 — 0.27 —
CLASP/SAT 2.41 1.59 1.55 1.16
LINGELING 5.65 2.53 5.19 2.49
Z3 1.69 — 1.67 —
CPLEX 682.54 623.17 639.38 687.46

Table 1: Average runtimes for directed acyclic graphs

or disconnected forests, respectively. Unlike this, the fact that |V |−1 edges are required
to connect the vertices of a forest 〈V,E〉 applies both in the directed and the undirected
case. Therefore, edge counting or checking connectedness are adequate approaches to
distinguish undirected trees, and the respective encodings in Figure 6(a) and 6(c) as
well as variants thereof can be used unmodified for this purpose.

4 Evaluation
To test our encodings, we ran CLASP (2.1.3), both as an ASP and SAT solver, the SAT
solver LINGELING (ats-57807c8-131016), the DL solver Z3 (4.3.1), and the LP solver
CPLEX (12.5.0.0) on a cluster of Linux machines. We used GRINGO (3.0.5) to ground
first-order ASP formulations and the translators LP2SAT2 (1.18), LP2DIFF (1.33), and
LP2MIP (1.18) for converting ground instances to SAT, DL, or LP, respectively. Our
experiments took synthetic as well as application benchmarks into account.3

4.1 Synthetic Benchmarks

In the first series of experiments, we perturbed the search space for graphs with desired
properties by adding randomly generated XOR-constraints over edges, varying both
their length and number. The tables presented in the following provide average runtimes
in seconds for 25 instances with n=25 vertices. Runs exceeding 1000 seconds were
counted as 1000 seconds, and an entry “—” marks that no run completed in time.

Table 1 gives average runtimes for deciding whether there is a solution subject to
XOR-constraints, comparing the performance of the considered solvers on four differ-
ent encodings of directed acyclic graphs. The non-tight and tight variants of the leaf
encoding consist of the rules shown in Figure 2 along with the inductive or unfolded
bottom-up acyclicity test, respectively, encoded in Figure 3 and 4. Their counterparts
denoted by root encoding swap the orientation of acyclicity tests by traversing vertices
top-down from roots instead of bottom-up from leaves. The runtimes of CLASP on ASP
formulations in the first row exhibit no significant differences between the symmet-
ric leaf and root encodings. That is, instances relying on their non-tight variants were
solved easily by CLASP (with default settings), whereas all runs on the tight variants
timed out. Similar behavior is observed with the Z3 solver, for which non-tight instances
are mapped to DL and tight ones to plain SAT. However, LINGELING and CLASP, run as
a SAT solver, both perform well on the translations by LP2SAT2, where the tight ASP
formulations have some advantage over the level mappings introduced when translating
non-tight instances. The performance of the LP solver CPLEX (with default settings) is
rather unstable on all of our encoding variants. In particular, CPLEX does not seem to
profit from integer variables to represent level mappings for non-tight instances.

3 http://research.ics.aalto.fi/software/asp/bench/treebm.tgz

directed leaf encoding root encoding leaf encoding root encoding
forests trees non-tight tight non-tight tight non-tight tight non-tight tight
pairwise 10.38 13.30 9.53 12.03 8.78 184.16 12.31 14.12
cardinality 5.33 255.51 5.53 7.83 16.11 169.38 11.52 25.14
bidirectional 8.86 212.12 8.01 8.41 7.87 248.22 6.77 9.21
linear 3.86 365.09 4.48 6.57 5.33 221.69 7.08 8.02
tournament 6.39 256.61 6.62 8.99 7.14 219.01 7.48 6.44

counting 251.44 290.33 252.14 50.17
counting/ub 252.15 296.74 251.43 8.48
connectedness 6.63 58.74 8.47 18.09

Table 2: Average runtimes for directed forests and trees

Average runtimes of CLASP on ASP formulations of directed forests are shown on
the left-hand side of Table 2. We do not apply translators here because of their nonuni-
form treatment of cardinality constraints used in some encoding variants, whereas
CLASP handles cardinality constraints in ground instances of ASP rules natively. The
first five columns provide runtime results on the four previously considered encodings
of directed acyclic graphs augmented with either set of rules in Figure 5(a)–(e) for lim-
iting predecessors to at most one per vertex. Although switching to the more restrictive
notion of directed forests reduces the admissible outcomes and makes the search for
a solution harder, CLASP performs well on all non-tight encoding variants. However,
except for pairwise mutual exclusion encoded in Figure 5(a), the remaining approaches
still exhibit substantial difficulties with the tight variant of the leaf encoding to test
acyclicity in a bottom-up fashion. Interestingly, such problems disappear with the root
encoding swapping the orientation to top-down traversals. While this observation is cer-
tainly influenced by search heuristics of CLASP, it nonetheless demonstrates that subtle
encoding details can have a significant impact. In the context of directed forests, traver-
sals starting from roots rather than leaves may be more informative since the number of
roots can never exceed that of leaves. In view of interactions or interferences between
encoding parts and search heuristics, whether a particular modification is advantageous
is still hardly predictable in general, so that systematic empirical investigations seem
indispensable for fine-tuning encodings. Among the considered approaches to limit pre-
decessors to at most one per vertex, the linear traversal encoded in Figure 5(d) tends to
yield the best performance of CLASP. Only on the tight leaf encoding, checking mutual
exclusion by explicitly enumerating pairs of distinct predecessor candidates stands out,
even though the (cubic) space complexity of this approach is a bottleneck for scalability.

The right-hand side of Table 2 provides average runtimes for the encoding ap-
proaches in Figure 6(a)–(c) to distinguish directed trees among forests. Unless noted
otherwise, the investigated encoding variants rely on the cardinality constraint in Fig-
ure 5(b) to rule out directed acyclic graphs that are no forests. Although the approach
of counting over all edge candidates encoded in Figure 6(a) could be expected to yield
poor performance, the average runtimes of CLASP are surprisingly short on the tight
root encoding. In that context, the addition of a second cardinality constraint “ub” to
redundantly assert |V | − 1 as upper bound on the number of edges of a directed tree
〈V,E〉 turns out to be helpful too. However, checking the uniqueness of a root by means
of the same encoding approaches as presented for forests in Figure 5 leads to much
more robust performance. While mutual exclusion via the enumeration of pairs or a
cardinality constraint, respectively, rely on the rule in line 15 of Figure 6(b) to derive
edge targets, we used its dedicated variants in (1), (2), and (3) for the bidirectional, lin-

undirected unconditional edges conditional edges edge counting connectedness
forests trees non-tight tight non-tight tight non-tight tight non-tight tight
cardinality 781.77 707.37 762.71 617.64 924.50 820.39 801.23 854.45
bidirectional 761.62 812.74 693.47 840.39 885.49 992.43 810.68 924.88
linear 800.16 806.34 802.25 831.39 960.59 809.99 804.17 820.35
tournament 800.02 760.77 802.18 972.76 970.47 874.31 801.24 911.62

cardinality/ub 735.91 768.09 803.34 826.52
bidirectional/ub 913.29 908.34 912.84 964.84
linear/ub — 791.52 847.79 819.73
tournament/ub 803.75 689.36 826.86 829.45

Table 3: Average runtimes for undirected forests and trees

ear, and tournament traversal approaches. Apart from the tight leaf encoding on which
CLASP struggles, the three normalizations along with the reuse of their auxiliary atoms
yield some improvements in comparison to the first two approaches. The alternative
of checking the connectedness of a directed forest, as encoded in Figure 6(c) or un-
folded to a tight variant, respectively, also exhibits a robust performance of CLASP and
even compensates difficulties on the tight leaf encoding to some extent. In summary,
it appears promising to encode the properties of directed trees in terms of a limitation
to (at most) one root node and/or connectedness, where manifold combinations with
underlying encoding parts aiming at forests can in principle be conceived.

Turning from the directed case to undirected graphs, the left-hand side of Table 3
shows average runtimes of CLASP on several variants of the encoding in Figure 7. Since
there is no apparent way to perform an acyclicity test top-down from roots or inner
nodes, respectively, encoding variants are, for one, obtained by replacing the cardinality
constraint in line 8 of Figure 7 by normalizations analogous to those in Figure 5(c)–(e).
For another, we focus on conditional edge generation via choice rules requiring the ab-
sence of cycles through a vertex as a prerequisite for the addition of an edge including
the vertex. The comparably long runtimes point at increased difficulty of search for a
forest when edges lack orientation, and non-tight as well as tight encoding variants yield
timeouts on 15 or more of the 25 instances. While the bidirectional traversal approach
to check whether (at most) one edge including a vertex remains as yet unchecked to
not belong to any cycle leads to the best performance of CLASP on non-tight instances,
the use of cardinality constraints dominates on tight ones. Somewhat unexpectedly, the
shortest average runtime is observed with the tight acyclicity test based on cardinality
constraints. Moreover, both in the non-tight and the tight case, shortest runtimes are
obtained with conditional edge generation, where the prerequisites of choice rules for-
mulate the acyclicity requirement in a redundant fashion. However, the impact of such
redundancy on solving performance does not exhibit a clear trend, and thus we do not
additionally report respective runtime results for other graph structures.

The right-hand side of Table 3 provides average runtimes on encodings of undi-
rected trees, combining the previously considered acyclicity test approaches with edge
counting and/or connectedness checking, as encoded in Figure 6(a) and 6(c). Checking
for the existence of (at least) |V | − 1 edges of a tree 〈V,E〉 tends to work better with
tight than non-tight encoding variants to test acyclicity, where the addition of a redun-
dant cardinality constraint “ub” asserting |V | − 1 as an upper bound pays off as well.
In the absence of the latter, checking whether a forest is connected still yields more ro-
bust performance in combination with non-tight approaches to test acyclicity. Beyond
that, we investigated hybrid variants incorporating cardinality constraints asserting the

Bayesian network leaf encoding root encoding leaf encoding root encoding
CLASP CPLEX non-tight tight non-tight tight non-tight tight non-tight tight

asia 1000 0.01 0.02 0.01 0.03 0.80 8.97 0.79 8.81
asia 10000 0.08 0.11 0.09 0.14 2.69 24.01 2.02 54.35
hailfinder 100 1126.24 — 981.86 — 1.17 — 1.10 —
insurance 100 20.56 83.94 11.96 117.75 42.27 — 68.02 —
mildew 100 0.43 2.86 0.35 711.70 26.35 — 8.87 —
mildew 1000 0.94 6.27 0.67 33.06 0.63 2407.47 0.64 3296.95
water 100 387.78 — 597.15 — 179.06 — 215.45 —
water 1000 2269.31 — 2593.09 — 533.11 — 2154.65 —

Table 4: Runtimes for Bayesian network structure learning

existence of |V | − 1 edges as well as an encoding part for checking connectedness. The
respective runtimes of CLASP in the lower right quarter, however, indicate performance
declines due to crossing orthogonal formulations of the same property.

4.2 Application Benchmarks

Our second series of experiments deals with the application problem of Bayesian net-
work structure learning [9, 10], which can be expressed in terms of optimization rela-
tive to ASP, SAT, or LP formulations. Given a set V of vertices, directed edge candi-
dates C, and scores s(v, P) for vertices v ∈ V and parent sets P ⊆ {u | 〈u, v〉 ∈ C},
the task consists of finding a directed acyclic graph 〈V,E〉 such that E ⊆ C and∑

v∈V,P={u|〈u,v〉∈E} s(v, P) is maximal.
Among the considered solvers, CLASP and CPLEX support optimization, and Table 4

shows their runtimes on eight Bayesian network structure learning instances along with
encodings varying the acyclicity test for directed graphs as in Table 1. In view of the
increased hardness of performing optimization, we extended the time limit to 3600 sec-
onds per run. The runtimes of CLASP on the left-hand and of CPLEX on the right-hand
side indicate significant advantages of using non-tight encoding variants. Unlike with
the synthetic benchmarks investigated above, CPLEX here seems to benefit from integer
variables introduced by the translator LP2MIP to represent level mappings. Moreover,
CLASP and CPLEX both tend to perform better on the leaf than on the root encoding
variants, where differences are application-specific in view of the full symmetry of both
approaches to test acyclicity. Although ASP formulations are automatically translated
to LP, CPLEX yields comparable and on the hardest instances even better performance
than CLASP when using non-tight encoding variants. This observation points out the
potential behind translational approaches to solve ASP formulations.

5 Conclusions
Graphs satisfying acyclicity properties are frequent in knowledge representation tasks.
As these properties do not appear as basic primitives in common constraint-based rep-
resentation formalisms, formulating them compactly and efficiently is a recurring chal-
lenge. We investigated logic-based characterizations of acyclicity conditions and devel-
oped a systematic collection of encodings in the language of answer set programming.

While the size of ground instances is linear for the acyclicity test in Figure 3, en-
codings based on the full transitive closure of edges [4–6, 3] yield quadratic space com-
plexity, even for sparse graphs. Furthermore, the LP formulations of acyclicity in [15,
10] require exponential space, whereas ours are proportional to graph size. Also note
that the encoding variants for mutual exclusion testing in Figure 5 resemble diverse
approaches from SAT to formulate cardinality constraints [22, 17, 19, 12].

Experiments on synthetic as well as application benchmarks indicate the relevance
of representation approaches and constraint formulations, with particular emphasis on
well-foundedness and cardinality constraints. As the discovery of a single “universal”
encoding is highly unlikely, the alternatives investigated here provide a toolkit for rep-
resenting graph structures in different applications. In fact, we believe that effective
declarative means to specify such fundamental datatypes are important cornerstones for
the development of robust constraint-based solving methods.

References
1. J. Bomanson and T. Janhunen. Normalizing cardinality rules using merging and sorting

constructions. In Proc. LPNMR’13, pages 187–199, Springer, 2013.
2. M. Bonet and K. John. Efficiently calculating evolutionary tree measures using SAT. In

Proc. SAT’09, pages 4–17, Springer, 2009.
3. G. Brewka, T. Eiter, and M. Truszczyński. Answer set programming at a glance. Communi-

cations of the ACM, 54(12):92–103, 2011.
4. D. Brooks, E. Erdem, S. Erdogan, J. Minett, and D. Ringe. Inferring phylogenetic trees using

answer set programming. Journal of Automated Reasoning, 39(4):471–511, 2007.
5. M. Çaylı, A. Karatop, E. Kavlak, H. Kaynar, F. Türe, and E. Erdem. Solving challenging

grid puzzles with answer set programming. In Proc. ASP’07, pages 175–190, 2007.
6. M. Çelik, H. Erdoğan, F. Tahaoğlu, T. Uras, and E. Erdem. Comparing ASP and CP on four

grid puzzles. In Proc. RCRA’09, CEUR, 2009.
7. K. Clark. Negation as failure. In Logic and Data Bases, pages 293–322, Plenum Press, 1978.
8. J. Corander, T. Janhunen, J. Rintanen, H. Nyman, and J. Pensar. Learning chordal Markov

networks by constraint satisfaction. In Proc. NIPS’13, pages 1349–1357, 2013.
9. James Cussens. Bayesian network learning by compiling to weighted MAX-SAT. In Proc.

UAI’08, pages 105–112, AUAI Press, 2008.
10. James Cussens. Bayesian network learning with cutting planes. In Proc. UAI’11, pages

153–160, AUAI Press, 2011.
11. E. Erdem and V. Lifschitz. Tight logic programs. Theory and Practice of Logic Program-

ming, 3(4-5):499–518, 2003.
12. A. Frisch and P. Giannoros. SAT encodings of the at-most-k constraint. In Proc. ModRef’10,

2010.
13. M. Gebser, T. Janhunen, and J. Rintanen. ASP encodings of acyclicity properties. In Proc.

KR’14, AAAI Press, 2014.
14. M. Gebser, R. Kaminski, B. Kaufmann, and T. Schaub. Answer Set Solving in Practice.

Morgan and Claypool Publishers, 2012.
15. T. Jaakkola, D. Sontag, A. Globerson, and M. Meila. Learning Bayesian network structure

using LP relaxations. In Proc. AISTATS’10, JMLR.org, 2010.
16. T. Janhunen. Representing normal programs with clauses. In Proc. ECAI’04, pages 358–362,

IOS Press, 2004.
17. W. Klieber and G. Kwon. Efficient CNF encoding for selecting 1 from n objects. In Proc.

CFV’07, 2007.
18. G. Liu, T. Janhunen, and I. Niemelä. Answer set programming via mixed integer program-

ming. In Proc. KR’12, pages 32–42, AAAI Press, 2012.
19. J. Marques-Silva and I. Lynce. Towards robust CNF encodings of cardinality constraints. In

Proc. CP’07, pages 483–497, Springer, 2007.
20. M. Nguyen, T. Janhunen, and I. Niemelä. Translating answer-set programs into bit-vector

logic. In Proc. INAP/WLP’11, pages 105–116, Springer, 2013.
21. I. Niemelä. Stable models and difference logic. Annals of Mathematics and Artificial Intel-

ligence, 53(1-4):313–329, 2008.
22. C. Sinz. Towards an optimal CNF encoding of Boolean cardinality constraints. In Proc.

CP’05, pages 827–831, Springer, 2005.

