
A system for interactive query answering
with answer set programming

Martin Gebser, Philipp Obermeier, and Torsten Schaub?

Universität Potsdam, Institut für Informatik

Abstract. Reactive answer set programming has paved the way for incorporating
online information into operative solving processes. Although this technology
was originally devised for dealing with data streams in dynamic environments,
like assisted living and cognitive robotics, it can likewise be used to incorporate
facts, rules, or queries provided by a user. As a result, we present the design
and implementation of a system for interactive query answering with reactive
answer set programming. Our system quontroller is based on the reactive solver
oclingo and implemented as a dedicated front-end. We describe its functionality
and implementation, and we illustrate its features by some selected use cases.

1 Introduction

Traditional logic programming [1, 2] is based upon query answering. Unlike this, logic
programs under the stable model semantics [3] are implemented by model generation
based systems, viz. answer set solvers [4]. Although the latter also allows for checking
whether a query is entailed by some stable model, there is so far no way to explore a
domain at hand by posing consecutive queries without relaunching the solver. The same
applies to the interactive addition and/or deletion of temporary program parts that come
in handy during theory exploration, for instance, when dealing with hypotheses.

An exemplary area where such exploration capacities would be of great benefit is
bio-informatics (cf. [5–10]). Here, we usually encounter problems with large amounts
of data, resulting in runs having substantial grounding and solving times. Furthermore,
problems are often under-constrained, thus yielding numerous alternative solutions. In
such a setting, it would be highly beneficial to explore a domain via successive queries
and/or under certain hypotheses. For instance, for determining nutritional requirements
for sustaining maintenance or growth of an organism, it is important to indicate seed
compounds needed for the synthesis of other compounds. Now, rather than continu-
ously analyzing several thousand stable models (or their intersection or union), a biolo-
gist may rather perform interactive “in-silico” experiments by temporarily adding com-
pounds and subsequently exploring the resulting models by posing successive queries.

We address this shortcoming and show how recently developed systems for reactive
answer set programming (ASP) [11, 12] can be harnessed to provide query answering

? Affiliated with the School of Computing Science at Simon Fraser University, Burnaby, Canada,
and the Institute for Integrated and Intelligent Systems at Griffith University, Brisbane, Aus-
tralia.



and theory exploration capacities. In fact, reactive ASP was conceived for incorporat-
ing online information into operative ASP solving processes. Although this technology
was originally devised for dealing with data streams in dynamic environments, like as-
sisted living and cognitive robotics, it can likewise be used to incorporate facts, rules,
or queries provided by a user. As a result, we present the design and implementation of
a system for interactive query answering and theory exploration with ASP. Our system
quontroller1 is based on the reactive answer set solver oclingo and implemented as a
dedicated front-end. We describe its functionality and implementation, and we illustrate
its features on a running example.

2 Approach

In order to provide dedicated support for query answering, the quontroller encapsulates
oclingo along with its basic front-end for entering online progressions. The basic idea is
to condition the stable models of an underlying logic program via query programs, tem-
porarily asserting atoms to be contained in stable models of interest. For circumventing
restrictions due to the modularity requirement of reactive ASP (cf. [11, 12]) and en-
abling repeated assertions of an atom in a series of queries, the quontroller associates
query programs with sequence numbers and exploits oclingo’s step counter to auto-
matically map their contents. In the following, we detail this idea on the well-known
example of n-coloring.

To begin with, Listing 1 provides an ASP encoding of n-coloring. The encoding
applies to graphs represented by facts over predicate edge/2. Given such facts, the
nodes of the graph are extracted in Line 6–7, each node is marked with exactly one of n
colors in Line 10, and Line 11 forbids that connected nodes are marked with the same
color. In Line 14–15, stable models are projected onto atoms over predicate mark/2.

Unlike with one-shot ASP solving, we do not combine the encoding in Listing 1
with fixed facts, but rather aim at a selective addition as well as withdrawal of atoms
over edge/2. In order to prepare reactive ASP rules for this purpose, the instructions
in Listing 2 can be fed into the quontroller. They are then mapped to the language of
oclingo as shown in Listing 3. The resulting reactive ASP rules are divided into a static
#base part (Line 1–13), a stepwise #cumulative part (Line 15–25), and a stepwise
#volatile part (Line 27–34). The stepwise parts are instantiated for successive step
numbers replacing the constant t, where instances of #cumulative rules are gathered
over steps and #volatile ones are discarded when progressing to the next step.

In more detail, the #domain instructions in Line 2 and 3 of Listing 2 are mapped to
the static rules in Line 4 and 7 of Listing 3. They define the (quontroller-internal) predi-
cates _domain_edge/2 and _domain_mark/2, which provide the domains of instances
of edge/2 and mark/2 that can be asserted by query programs. In particular, the rule in
Line 4 expresses that edges may connect distinct nodes with labels running from 1 to 4,
and the rule in Line 7 declares that each node can be marked with the colors provided
by color/1. Furthermore, the instruction in Line 4 of Listing 2 is mapped to the static
choice rule in Line 10 of Listing 3. This rule compensates for the lack of facts over

1 To be pronounced ‘cointreau’-ler; URL: potassco.sourceforge.net/labs.html.



1 % n colors
2 #const n = 3.
3 color(1..n).

5 % extract nodes from edges
6 node(X) :- edge(X,_).
7 node(X) :- edge(_,X).

9 % generate n-coloring
10 1 { mark(X,C) : color(C) } 1 :- node(X).
11 :- edge(X,Y), mark(X;Y,C).

13 % display n-coloring
14 #hide.
15 #show mark/2.

Listing 1: ASP encoding of n-coloring (encoding.lp)

1 #setup.
2 #domain edge(X,Y) : X := 1..4, Y := 1..4, X != Y.
3 #domain mark(X,C) : X := 1..4, color(C).
4 #choose edge/2.
5 #define edge/2.
6 #query mark/2.
7 #show edge/2.
8 #endsetup.

Listing 2: quontroller setup instructions (setup.ini)

edge/2 and allows for instantiating the original encoding in Listing 1 relative to the do-
main given by _domain_edge/2. Again relying on _domain_edge/2, the instruction
in Line 7 of Listing 2 is mapped to the #show statement in Line 13 of Listing 3 for
including atoms over edge/2 (in addition to those over mark/2) in output projections.

The #cumulative and #volatile parts in Listing 3 deal with the instructions in
Line 5 and 6 of Listing 2. In particular, the #external statements in Line 18 and 23
of Listing 3 declare (quontroller-internal) instances of _assert_mark(X1,X2,t)

and _assert_edge(X1,X2,t) as potential online inputs from query programs,
where X1 and X2 are instantiated relative to domains given by static rules and the
constant t is added as an argument to distinguish separate queries. The rules in
Line 19–20 and 24–25 of Listing 3 further define the (quontroller-internal) predi-
cates _derive_mark/3 and _derive_edge/3 for indicating “active” assertions from
query programs. Given that such assertions may remain active over several queries,
the rules defining _derive_mark/3 and _derive_edge/3 include one case for re-
flecting current assertions (Line 19 and 24) and another for passing on former asser-
tions (Line 20 and 25). As a consequence, instances of _derive_mark(X1,X2,t) and
_derive_edge(X1,X2,t) capture active assertions regarding the original predicates



1 #base.

3 % #domain edge(X,Y) : X := 1..4, Y := 1..4, X != Y.
4 _domain_edge(X,Y) :- X := 1..4, Y := 1..4, X != Y.

6 % #domain mark(X,C) : X := 1..4, color(C).
7 _domain_mark(X,C) :- X := 1..4, color(C).

9 % #choose edge/2.
10 { edge(X1,X2) : _domain_edge(X1,X2) }.

12 % #show edge/2.
13 #show edge(X1,X2) : _domain_edge(X1,X2).

15 #cumulative t.

17 % #query mark/2.
18 #external _assert_mark(X1,X2,t) : _domain_mark(X1,X2).
19 _derive_mark(X1,X2,t) :- _domain_mark(X1,X2), _assert_mark(X1,X2,t).
20 _derive_mark(X1,X2,t) :- _domain_mark(X1,X2), _derive_mark(X1,X2,t-1).

22 % #define edge/2.
23 #external _assert_edge(X1,X2,t) : _domain_edge(X1,X2).
24 _derive_edge(X1,X2,t) :- _domain_edge(X1,X2), _assert_edge(X1,X2,t).
25 _derive_edge(X1,X2,t) :- _domain_edge(X1,X2), _derive_edge(X1,X2,t-1).

27 #volatile t.

29 % #query mark/2.
30 :- _domain_mark(X1,X2), _derive_mark(X1,X2,t), not mark(X1,X2).

32 % #define edge/2.
33 :- _domain_edge(X1,X2), _derive_edge(X1,X2,t), not edge(X1,X2).
34 :- _domain_edge(X1,X2), edge(X1,X2), not _derive_edge(X1,X2,t).

Listing 3: Mapping of quontroller setup instructions in setup.ini to reactive ASP rules

mark/2 and edge/2, and corresponding matches are established via #volatile in-
tegrity constraints. For one, the #query instruction in Line 6 of Listing 2 is mapped to
the integrity constraint in Line 30 of Listing 3, thus requiring mark(X1,X2) to hold at
any step where _derive_mark(X1,X2,t) indicates an active assertion, and the anal-
ogous integrity constraint in Line 33 is obtained in view of the #define instruction
in Line 5 of Listing 2. The latter is complemented by another integrity constraint in
Line 34, denying edge(X1,X2) to hold when _derive_edge(X1,X2,t) does not
indicate any active assertion. That is, a #query instruction expresses that assertions
may require atoms to belong to stable models of interest, and a #define instruction is
stronger by additionally claiming some active assertion for atoms to hold.

After launching oclingo with the encoding in Listing 1 and the reactive ASP
rules in Listing 3 (via ‘quontroller.py -o encoding.lp -c setup.ini’), the
quontroller is ready to process query programs provided by a user. An exemplary
stream of query programs is shown in Figure 1(a), and Figure 1(b) provides its
counterpart in the syntax of oclingo’s basic front-end. In fact, the quontroller maps
query programs to available stream constructs and automatically performs replace-
ments for interacting with reactive ASP rules. To begin with, the keywords ‘#query.’
and ‘#endquery.’, which encapsulate individual query programs, are mapped to
‘#step q : 0. #forget q-1.’ and ‘#endstep.’, where q is the sequence number



1 #query.
2 #assert : e(1).
3 edge(1,2).
4 edge(1,3).
5 edge(2,3).
6 edge(2,4).
7 edge(3,4).
8 #endquery.

10 #query.
11 #assert.
12 mark(1,1).
13 #endquery.

15 #query.
16 #assert : e(2).
17 edge(1,4).
18 #endquery.

20 #query.
21 #retract : e(2).
22 #assert.
23 mark(1,1).
24 mark(2,2).
25 #endquery.

27 #query.
28 #retract : e(1).
29 #endquery.

31 #stop.

(a) quontroller query stream

1 #step 1 : 0. #forget 0.
2 #assert : e(1).
3 _assert_edge(1,2,1).
4 _assert_edge(1,3,1).
5 _assert_edge(2,3,1).
6 _assert_edge(2,4,1).
7 _assert_edge(3,4,1).
8 #endstep.

10 #step 2 : 0. #forget 1.
11 #volatile : 1.
12 _assert_mark(1,1,2).
13 #endstep.

15 #step 3 : 0. #forget 2.
16 #assert : e(2).
17 _assert_edge(1,4,3).
18 #endstep.

20 #step 4 : 0. #forget 3.
21 #retract : e(2).
22 #volatile : 1.
23 _assert_mark(1,1,4).
24 _assert_mark(2,2,4).
25 #endstep.

27 #step 5 : 0. #forget 4.
28 #retract : e(1).
29 #endstep.

31 #stop.

(b) Mapping of quontroller query stream in (a)

Fig. 1: A quontroller query stream and its mapping to a reactive ASP online progression

of a query program and the #forget directive enables simplifications of reactive ASP
rules for yet undefined #external atoms introduced at step q-1. Also note that ‘: 0’
in #step directives tells oclingo not to increment the step counter on unsatisfiability.

Each query program may include labeled assertions, as declared via
‘#assert : e(1).’ in Line 2 of Figure 1(a) and 1(b). Such a construct ex-
presses that subsequently provided rules remain active until the labeled assertion is
explicitly retracted. In view of its reactive ASP rules, the quontroller however replaces
each head atom p(...) of a rule (or fact) to assert by its internal representation
_assert_p(...,q), where q is again the sequence number of the query program
at hand. For instance, ‘edge(1,2).’ is mapped to ‘_assert_edge(1,2,1).’ in
Line 3 of Figure 1(a) and 1(b). By means of reactive ASP rules capturing the #define



instruction in Line 5 of Listing 2, the instances of _assert_edge/3 provided by
facts in Line 3–7 of Figure 1(b) are matched with the original atoms over edge/2.
As a consequence, the first query program yields six stable models, in which the
unconnected nodes 1 and 4 share one of the colors 1, 2, or 3 and the nodes 2 and 3 are
marked with distinct remaining colors.

The second query program in Line 10–13 of Figure 1(a) includes ‘mark(1,1).’ as
an unlabeled assertion, indicated by the keyword ‘#assert.’ The latter is mapped to
the stream construct ‘#volatile : 1.’ (cf. Line 11 of Figure 1(b)), meaning that the
internal representation ‘_assert_mark(1,1,2).’ of the assertion expires “automati-
cally” in the next step. Technically, such expiration is implemented by adding assump-
tion literals to the bodies of transient rules, i.e. ‘_assert_mark(1,1,2).’ is internally
turned into ‘_assert_mark(1,1,2) :- _expire(3).’ and _expire(3) holds up
to step 3 where it is then permanently falsified. However, in the second step, the asser-
tion of color 1 for node 1 leads to two stable models of interest among the six obtained
in the first step. Also note that the quontroller language includes ‘#assert.’ in order
to indicate the beginning of query parts in which head atoms are replaced by internal
representations, so that any rules to be left untouched can still be provided beforehand.

Summarizing the remaining query programs, the labeled assertion e(2) in the third
query program turns the graph represented by atoms over edge/2 into a clique of four
nodes, so that no stable model is obtained in the third step. Hence, e(2) is retracted
in the fourth step (by discharging an assumption literal associated with e(2)), and the
additional unlabeled assertion of colors for the nodes 1 and 2 leads to a single stable
model of interest. Note that ‘mark(1,1).’ is turned into ‘_assert_mark(1,1,4).’
in Line 23 of Figure 1(b), while ‘_assert_mark(1,1,2).’ has been used in Line 12.
The rewriting by the quontroller thus avoids a clash with oclingo’s modularity require-
ment and enables repeated assertions of the “same” atom (in separate query programs).
Finally, the empty (projection of a) stable model is obtained after retracting all instances
of _assert_edge/3 in the last query program, and ‘#stop.’ afterwards signals the end
of the query stream to the quontroller.

3 Discussion

We presented a simple yet effective extension of reactive ASP that allows for interactive
query answering and theory exploration with ASP. This was accomplished by means of
a mapping scheme between queries and reactive ASP rules along with the assumption-
based solving capacities of oclingo. With it, programs can be temporarily added to the
solving process, either for an initially limited number of interactions or until they are
interactively withdrawn again. A typical use case of limited program parts are integrity
constraints, representing queries automatically vanishing after having been posed. Un-
like this, an assertion allows, for instance, for exploring the underlying domain under
user-defined hypotheses. All subsequent solving processes then include the asserted in-
formation until it is retracted by the user. The possibility of reusing ground rules as well
as recorded conflict information over a sequence of queries distinguishes reactive ASP
from ordinary one-shot reasoning methods. As future work, we want to study the per-
formance of query answering with the quontroller on challenging benchmark problems.



Acknowledgments This work was partially funded by DFG grant SCHA 550/9-1. We
are grateful to the anonymous reviewers for their suggestions.

References

1. Clocksin, W., Mellish, C.: Programming in Prolog. Springer (1981)
2. Lloyd, J.: Foundations of Logic Programming. Springer (1987)
3. Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. Proc. ICLP,

MIT (1988) 1070–1080
4. Gebser, M., Kaminski, R., Kaufmann, B., Schaub, T.: Answer Set Solving in Practice. Mor-

gan and Claypool (2012)
5. Baral, C., Chancellor, K., Tran, N., Tran, N., Joy, A., Berens, M.: A knowledge based ap-

proach for representing and reasoning about signaling networks. Proc. ISMB, (2004) 15–22
6. Erdem, E., Türe, F.: Efficient haplotype inference with answer set programming. Proc.

AAAI, AAAI (2008) 436–441
7. Gebser, M., Schaub, T., Thiele, S., Veber, P.: Detecting inconsistencies in large biological

networks with answer set programming. TPLP Journal 11(2-3) (2011) 323–360
8. Gebser, M., Guziolowski, C., Ivanchev, M., Schaub, T., Siegel, A., Thiele, S., Veber, P.:

Repair and prediction (under inconsistency) in large biological networks with answer set
programming. Proc. KR, AAAI (2010) 497–507

9. Ray, O., Whelan, K., King, R.: Logic-based steady-state analysis and revision of metabolic
networks with inhibition. Proc. CISIS, IEEE (2010) 661–666

10. Videla, S., Guziolowski, C., Eduati, F., Thiele, S., Grabe, N., Saez-Rodriguez, J., Siegel, A.:
Revisiting the training of logic models of protein signaling networks with ASP. Proc. CMSB,
Springer (2012) 342–361

11. Gebser, M., Grote, T., Kaminski, R., Schaub, T.: Reactive answer set programming. Proc.
LPNMR, Springer (2011) 54–66

12. Gebser, M., Grote, T., Kaminski, R., Obermeier, P., Sabuncu, O., Schaub, T.: Stream reason-
ing with answer set programming: Preliminary report. Proc. KR, AAAI (2012) 613–617


