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Abstract

We elaborate upon techniques for unfounded set computa-
tions by building upon the concept of loops. This is driven
by the desire to minimize redundant computations in solvers
for Answer Set Programming. We begin by investigating
the relationship between unfounded sets and loops in the
context of partial assignments. In particular, we show that
subset-minimal unfounded sets correspond to active elemen-
tary loops. Consequentially, we provide a new loop-oriented
approach along with an algorithm for computing unfounded
sets. Unlike traditional techniques that compute greatest un-
founded sets, we aim at computing small unfounded sets
and rather let propagation (and iteration) handle greatest un-
founded sets. This approach reflects the computation of un-
founded sets employed in the nomore++ system. Beyond
that, we provide an algorithm for identifying active elemen-
tary loops within unfounded sets. This can be used by SAT-
based solvers, like assat, cmodels, or pbmodels, for optimiz-
ing the elimination of invalid candidate models.

Introduction
Search strategies of solvers for Answer Set Programming
(ASP) naturally decompose into a deterministic and a non-
deterministic part. While the non-deterministic part is real-
ized through heuristically driven choice operations, the de-
terministic one is based on advanced propagation operations,
often amounting to the computation of well-founded seman-
tics (van Gelder et al. 1991). The latter itself can be bro-
ken up into techniques realizing Fitting’s operator (Fitting
2002) and the computation of unfounded sets (van Gelder
et al. 1991). The notion of an unfounded set captures the
intuition that its atoms might circularly support themselves
but have no support from “outside.” Hence, there is no rea-
son to believe in the truth of an unfounded set, and the con-
tained atoms must be false. The opposites of unfounded sets
are externally supported sets (Lee 2005), their atoms have a
non-circular support.

While genuine ASP-solvers, like dlv (Leone et al. 2006)
and smodels (Simons et al. 2002), aim at determining
greatest unfounded sets, SAT-based ASP-solvers, like assat
(Lin & Zhao 2004), cmodels (Lierler & Maratea 2004), and
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pbmodels (Liu & Truszczyński 2005), use loops and associ-
ated loop formulas (Lin & Zhao 2004; Lee 2005) for elimi-
nating models containing unfounded sets. Both approaches
comprise certain redundancies: For instance, not all ele-
ments of a greatest unfounded set need to be determined
by special-purpose unfounded set techniques. Alternatively,
one may restrict attention to crucial unfounded sets and han-
dle the remaining ones via simpler forms of propagation and
iteration. In fact, we show that a subset of a program’s loops
grants the same propagation strength as obtained with great-
est unfounded sets. Further on, the problem with the stan-
dard concept of loops is that it tolerates the generation of
ineffective loop formulas within SAT-based solvers. That is,
unfounded subsets of a loop might recur, causing the need
to generate additional loop formulas. Both redundancy is-
sues are addressed by (active) elementary loops (Gebser &
Schaub 2005), on which the computational approaches pre-
sented in this paper build upon.

We consider two diametrical computational tasks deal-
ing with unfounded sets: first, falsification of greatest un-
founded sets and, second, identification of subset-minimal
unfounded sets. Greatest unfounded sets are worthwhile
when the aim is setting unfounded atoms to false, as done
within genuine ASP-solvers. Subset-minimal unfounded
sets can serve best when one needs to eliminate an unde-
sired model of a program’s completion (Clark 1978) by a
loop formula, which is important for SAT-based solvers.

First, we turn our attention to greatest unfounded sets
computed by genuine ASP-solvers. In dlv, operator RΠC ,I

is applied to so-called head-cycle-free components C of a
disjunctive program Π, where I is a (partial) interpretation
(Calimeri et al. 2001).1 The fixpoint, Rω

ΠC ,I(C), of this
operator is the greatest unfounded set with respect to I , re-
stricted to atoms inside C.2 Component-wise unfounded set
identification is in dlv achieved by computing complements,

1Such a component C is a strongly connected component of the
atom dependency graph, where positive as well as negative depen-
dencies (through not) contribute edges. Head-cycle-freeness addi-
tionally assures tractability of unfounded set checks, which other-
wise are intractable for disjunctive programs.

2Note that a “global” greatest unfounded set is not guaranteed
to exist for a disjunctive program (Leone et al. 1997). How-
ever, a head-cycle-free component always has a “local” greatest
unfounded set, which can be computed in linear time.



that is, C \ Rω
ΠC ,I(C). This set is externally supported, all

other atoms of C form the greatest unfounded set.
In smodels, unfounded set computation follows a similar

idea. The respective function, called Atmost, is based on
source pointers (Simons 2000). Each non-false atom has
a source pointer indicating a rule that provides an external
support for that atom. When some source pointers are inval-
idated (in effect of a choice), Atmost proceeds as follows:

Iterate over the strongly connected components of a pro-
gram’s (positive) atom dependency graph (see next sec-
tion). For the current component, do:

1. Remove source pointers that point to rules whose bod-
ies are false.

2. Remove further source pointers that point to rules
whose positive bodies contain some atoms currently
not having source pointers themselves.

3. Determine new source pointers if possible. That is,
re-establish source pointers of atoms that are heads of
rules with non-false bodies such that all atoms in the
positive parts have source pointers themselves.

4. All atoms without a new source pointer are unfounded.
Set them to false (possibly invalidating source pointers
of other components’ atoms) and proceed.

Essentially, Step 1 and 2 check for atoms that might be un-
founded due to rules whose bodies have recently become
false. Afterwards, Step 3 determines the atoms that are
still externally supported and, hence, not unfounded. Ob-
serve that the atoms to falsify as a result of Step 4 are pre-
cisely the ones that are not found externally supported in
the step before. Thus, both smodels and dlv compute great-
est unfounded sets as complements of externally supported
sets. Notably, computations are modularized to strongly
connected components of atom dependency graphs.

Having considered the falsification of greatest unfounded
sets, we now turn to the diametrical problem: determin-
ing subset-minimal unfounded sets. The ability to com-
pute subset-minimal unfounded sets is attractive for SAT-
based solvers, which compute (propositional) models of a
program’s completion. Whenever a computed candidate
model does not correspond to an answer set,3 a loop for-
mula that eliminates the model is added to the completion.
For the loop formula eliminating the model, the respective
loop must be unfounded. SAT-based solver assat determines
so-called terminating loops (Lin & Zhao 2004), which are
subset-maximal unfounded loops. Terminating loops are
easy to compute: They are strongly connected components
of the (positive) atom dependency graph induced by the
greatest unfounded set. Given that terminating loops are not
necessarily subset-minimal unfounded sets, their loop for-
mulas condense the reason why a model is invalid less pre-
cisely than the ones of subset-minimal unfounded sets.

In this paper, we present a novel approach to achieving the
aforementioned computational tasks. In fact, both tasks are
settled on the same theoretical fundament. On the one hand,
we can explain strategies of genuine ASP-solvers to handle

3Any answer set of a program is a model of the program’s com-
pletion, whereas the converse does generally not hold (Fages 1994).

greatest unfounded sets, also we present the strategy recently
implemented in nomore++ (Anger et al. 2005). On the
other hand, we point out how our approach can be exploited
by SAT-based solvers for determining more effective loop
formulas. The overall contributions are:

• We relate the notion of elementary loops to unfounded
sets in the context of partial assignments. Thereby, we
reveal unfounded sets that must intrinsically be consid-
ered by both SAT-based and genuine ASP-solvers. The
developed theoretical fundament fortifies new approaches
to computational tasks dealing with unfounded sets.

• We describe a novel algorithm for computing unfounded
sets in a loop-oriented way. The algorithm determines
unfounded sets directly, avoiding the complementation of
externally supported sets. This approach allows us to im-
mediately propagate falsity of atoms in a detected un-
founded set and to postpone unprocessed unfounded set
checks. We thereby achieve a tighter coupling of un-
founded set checks with simpler forms of propagation and
localize the causes and effects of operations. The algo-
rithm has recently been implemented in nomore++, but
may be integrated into other solvers, e.g., dlv, as well.

• We present an algorithm for extracting active elementary
loops from unfounded sets. The algorithm, which is the
first of its kind, exploits particular properties of active el-
ementary loops, building the “cores” of unfounded sets.
Active elementary loops can replace terminating loops in
SAT-based solvers. Note that a terminating loop is not
guaranteed to be elementary, hence, a respective loop for-
mula might be redundant (Gebser & Schaub 2005). Our
algorithm can be integrated in solvers like assat, cmodels,
and pbmodels. Such an integration could form the base
for an empirical evaluation of the effectiveness of active
elementary loops.

Background
Given an alphabet P , a (normal) logic program is a finite set
of rules of the form

p0 ← p1, . . . , pm,not pm+1, . . . ,not pn (1)

where 0 ≤ m ≤ n and each pi ∈ P (0 ≤ i ≤ n)
is an atom. A literal is an atom p or its negation not p.
For a rule r as in (1), let head(r) = p0 be the head
of r and body(r) = {p1, . . . , pm,not pm+1, . . . ,not pn}
be the body of r. Given a set X of literals, let X+ =
{p ∈ P | p ∈ X} and X− = {p ∈ P | not p ∈ X}.
For body(r), we then get body(r)+ = {p1, . . . , pm} and
body(r)− = {pm+1, . . . , pn}. The set of atoms occur-
ring in a logic program Π is denoted by atom(Π). The
set of bodies in Π is body(Π) = {body(r) | r ∈ Π}.
For regrouping rule bodies sharing the same head p, define
body(p) = {body(r) | r ∈ Π, head(r) = p}. A program Π
is called positive if body(r)− = ∅ for all r ∈ Π. Cn(Π)
denotes the smallest set of atoms closed under positive pro-
gram Π. The reduct, ΠX , of Π relative to a set X of atoms
is defined by ΠX = {head(r) ← body(r)+ | r ∈ Π,



body(r)− ∩ X = ∅}. A set X of atoms is an answer set
of a logic program Π if Cn(ΠX) = X .

An unfounded set is defined relative to an assignment.
In nomore++, values are assigned to both atoms and bod-
ies, whereas smodels and dlv explicitly assign values only
to atoms (from which the (in)applicability of rules is de-
termined). Note that an assignment to atoms and bodies
can reflect any state resulting from an assignment to atoms,
whereas the converse does not hold because a body might be
false without yet containing a false literal. Also, the restric-
tion of assignments to atoms limits search to branching on
atoms, which may lead to exponentially worse proof com-
plexity than obtained when branching on both atoms and
bodies (Gebser & Schaub 2006). Given that assignments
to both atoms and bodies provide extra value, we define an
assignment A for a program Π as a (total) function:

A : atom(Π) ∪ body(Π)→ {	,�,⊗,⊕}
The four values correspond to those used by dlv (Faber
2002); that is, 	 stands for false, � for undefined, ⊗ for
must-be-true, and ⊕ for true.4 We also assume that the ab-
stract ASP-solver, invoking the algorithms presented in the
following sections, propagates the four values like dlv ap-
plied to normal programs (which approximates propagation
within nomore++) and do not provide any details here.5 We
call an assignment A positive-body-saturated, abbreviated
pb-saturated, if for every B ∈ body(Π), A(B) = 	 if
A(p) = 	 for some p ∈ B+. An arbitrary assignment is
easily turned into a pb-saturated one by propagation.

What is important to note is the difference between ⊗
(must-be-true) and ⊕ (true). For our unfounded set check
to work, the following invariant must hold for any assign-
ment A:

{p ∈ atom(Π) | A(p) = ⊕} ∪
(⋃

B∈body(Π),A(B)=⊕B+
)

⊆ Cn({r ∈ Π | A(body(r)) = ⊕}∅) (2)
The invariant stipulates that all atoms and (positive parts of)
bodies assigned ⊕ are bottom-up derivable within the part
of Π assigned ⊕. This guarantees that no unfounded set
ever contains an atom assigned⊕, and we can safely exclude
such atoms as well as bodies assigned ⊕ from unfounded
set checks. Hence, the invariant helps in avoiding useless
work. It also allows for “lazy” unfounded set checks, on
which we will come back when discussing the relation of
our unfounded set algorithm to smodels. Invariant (2) can
be maintained by assigning⊕ to an atom, only if some of its
bodies is already assigned⊕, and to a body, only if all atoms
in the positive part are already assigned ⊕. Otherwise, ⊗
must be assigned instead of ⊕.

4Note that the concept of an assignment is to be understood in
the sense of a constraint satisfaction problem, rather than an inter-
pretation. This is because answer sets are defined as models that are
represented by their entailed atoms. By assigning values to bodies,
which can be viewed as conjunctions, we do not construct such a
model but deal with problem-relevant variables. For this reason,
we use symbolic values instead of ascribed truth values.

5When referring to propagation, we mean any technique that
deterministically extends assignments except for unfounded set
checks, to be detailed in the following sections.

We now come to unfounded sets. For a program Π, we
define a set U ⊆ atom(Π) as an unfounded set with respect
to an assignment A if, for every rule r ∈ Π, we have either

• head(r) 6∈ U ,

• A(body(r)) = 	, or

• body(r)+ ∩ U 6= ∅.
Our definition is close to the original one (van Gelder et
al. 1991), but differs regarding the second condition, which
aims at inapplicable rules. With the original definition, such
rules are determined from atoms, that is,

• {p ∈ body(r)+ | A(p) = 	} 6= ∅ or

• {p ∈ body(r)− | A(p) = ⊗ or A(p) = ⊕} 6= ∅.
The reason for not determining inapplicable rules from
atoms is that, with our definition of an assignment, a body
assigned 	 needs not necessarily contain a false literal.
Rather, a body might be inapplicable, that is, assigned 	,
due to any reason (such as a choice or an inference by looka-
head). Still it holds that normal programs (in contrast to dis-
junctive ones (Leone et al. 1997)) enjoy the property that
the union of distinct unfounded sets is itself an unfounded
set. Hence, there always is a greatest unfounded set, denoted
GUSΠ(A), for any program Π and any assignment A.

Finally, we come to loops, which are sets of atoms in-
volved in cyclic program structures. Traditionally, pro-
gram structure is described by means of atom dependency
graphs (Apt et al. 1987). When we restrict attention to un-
founded sets, it is sufficient to consider positive atom de-
pendency graphs. For a program Π, the (positive) atom de-
pendency graph is the directed graph (atom(Π), E) where
E = {(p, p′) | r ∈ Π, p = head(r), p′ ∈ body(r)+}. That
is, the head of a rule has an edge to each atom in the pos-
itive body. Following (Lee 2005), we define a loop L in a
program Π as a non-empty subset of atom(Π) such that, for
any two elements p ∈ L and p′ ∈ L, there is a path from p
to p′ in the atom dependency graph of Π all of whose ver-
tices belong to L. In other words, the subgraph of the atom
dependency graph of Π induced by L is strongly connected.
Note that each set consisting of a single atom is a loop, as
every atom is connected to itself via a path of length zero.

The significance of loops has first been recognized in (Lin
& Zhao 2002), where the concept was also originally de-
fined.6 In fact, program completion and loop formulas cap-
ture answer sets in terms of propositional models. The ad-
vantage of loops and their formulas, in comparison to other
SAT-reductions (e.g. (Janhunen 2003; Lin & Zhao 2003)),
is that the reduction can be done incrementally (SAT-based
solvers assat, cmodels, and pbmodels pursue this strategy);
the increase in problem size is very small in the best case.
The downside is that a program may yield exponentially
many loops, leading to exponential worst-case space com-
plexity of loop-based SAT-reductions (Lifschitz & Razborov
2006). Genuine ASP-solvers can, however, exploit loops

6Note that in (Lin & Zhao 2002) loops’ atoms must be con-
nected via paths of non-zero length. By dropping this requirement,
we can relate loops and unfounded sets more directly.



without explicitly representing loop formulas. In what fol-
lows, we relate loops to unfounded sets paving the way to
loop-oriented unfounded set computations. The difference
to SAT-based approaches is that we consider loops in the
context of partial assignments, and not with respect to total
(propositional) models.

Relating Unfounded Sets and Loops
Recall the definition of an unfounded set given in the pre-
vious section. It states that any rule whose head belongs to
an unfounded set is either inapplicable or contains an un-
founded atom in the positive part of the body. Since un-
founded sets are finite, the following is a consequence.
Proposition 1 Let Π be a logic program, A be an assign-
ment, and U be an unfounded set w.r.t. A.

If U 6= ∅, we have L ⊆ U for some loop L in Π that is
unfounded w.r.t. A.

This result establishes that any non-empty unfounded set
is a superset of some loop that is itself unfounded. Note
that Proposition 1 would not hold, if we had defined loops
according to (Lin & Zhao 2004), where the contained atoms
must be connected via paths of non-zero length. Omitting
this, a singleton unfounded set {p} such that all bodies in
body(p) are assigned 	 is a loop. Otherwise, some element
from an unfounded set U must be contained in B+, if B is
the body of a rule whose head is in U and not assigned 	.
The latter condition gives rise to inherent cyclicity.

When dealing with greatest unfounded sets, one usually
concentrates on the part of an assignment not assigned	. In
fact, for an atom p assigned	 and a set U of atoms such that
p ∈ U , any body B such that p ∈ B+ satisfies the condition
of containing an element from U as well as the condition of
containing a false literal. Since the latter condition is easy
to verify, it is reasonable to exclude atoms assigned 	 when
looking for the relevant part of a greatest unfounded set.

However, our definition of an unfounded set does not look
“through” bodies for determining inapplicability. As a min-
imum requirement, we thus need an assignment to be pb-
saturated, before a relevant unfounded set is determined.
Certainly this requirement is reasonable, while working on
“unsynchronized” assignments of atoms and bodies would
be rather weird. For a pb-saturated assignment, the non-false
part of the greatest unfounded set is an unfounded set.
Lemma 1 Let Π be a logic program and A be a pb-
saturated assignment.

Then, {p ∈ GUSΠ(A) | A(p) 6= 	} is an unfounded set
w.r.t. A.
Combining Proposition 1 and Lemma 1 yields the following.
Theorem 1 Let Π be a logic program, A be a pb-saturated
assignment, and U = {p ∈ GUSΠ(A) | A(p) 6= 	}.

If U 6= ∅, we have L ⊆ U for some loop L in Π that is
unfounded w.r.t. A.

The above result is the “partial assignment counterpart”
of (Lin & Zhao 2004, Theorem 2), where the latter refers to
total (propositional) models. Due to Theorem 1, we can con-
centrate greatest unfounded set computation on loops: By
successively falsifying the atoms of unfounded loops and

pb-saturating the resulting assignment, we eventually fal-
sify all atoms in a greatest unfounded set. Clearly, more
advanced propagation techniques (such as contraposition)
can be applied in addition to pb-saturation. Theorem 1 still
grants that there always is an unfounded loop whose atoms
are not assigned 	, as long as there are non-false atoms
left in the greatest unfounded set. Note that all answer set
solvers we know of apply propagation techniques that are at
least as strong as Fitting’s operator (Fitting 2002). Whenever
this operator has reached a fixpoint, all singleton loops {p}
such that all bodies in body(p) are assigned 	 are already
set to false. More sophisticated unfounded set checks can
thus concentrate on loops as defined in (Lin & Zhao 2004).

Up to now, we have considered loops, which are defined
by means of atom dependency graphs. Such graphs do not
reflect program-specific connection via the bodies of rules.
Given that we are interested in intrinsically relevant un-
founded sets, loops are not yet fine-grained enough. To see
this, consider the following programs:

Π1 = { a← b← a, c c← b }
Π2 = { a← b← a b← c c← b }

Though sharing the same atom dependency graph, the sin-
gle answer set of Π1 is {a}, whereas we obtain {a, b, c}
for Π2. The reason for this is that the apparently different
rules, b ← a, c in Π1 as well as b ← a and b ← c in Π2,
contribute the same edges to an atom dependency graph.
However, rule b ← a provides an external support for the
set {b, c}, whereas rule b← a, c does not.

For distinguishing between putative and virtual external
supports, we have to consider elementary loops (Gebser &
Schaub 2005). We define a loop L in a program Π as ele-
mentary if, for each non-empty proper subset K of L, there
is a rule r ∈ Π such that

• head(r) ∈ K,

• body(r)+ ∩K = ∅, and

• body(r)+ ∩ L 6= ∅.
In words, a loop is elementary if each of its non-empty
proper subsets has a rule whose head is in the subset and
whose body positively relies on the loop, but not on the sub-
set itself.7 A particular property of elementary loops, rather
than general ones, is that they potentially provide an exter-
nal support to any of their non-empty proper subsets, even
when they are unfounded. If such a situation arises, we say
that an elementary loop is active. Formally, an elementary
loop L in a program Π is active w.r.t. an assignment A if

• L is an unfounded set w.r.t. A and

• L is elementary in {r ∈ Π | A(body(r)) 6= 	}.
Due to the first condition, an active elementary loop always
is unfounded. The next result tells us that any non-empty
unfounded set contains an active elementary loop.

7In analogy to general loops, every singleton is an elementary
loop by definition. This is different from (Gebser & Schaub 2005),
where loops are defined according to (Lin & Zhao 2004).



Proposition 2 Let Π be a logic program, A be an assign-
ment, and U be an unfounded set w.r.t. A.

If U 6= ∅, we have L ⊆ U for some elementary loop L
in Π that is active w.r.t. A.

This result strengthens Proposition 1. For a pb-saturated
assignment, it together with Lemma 1 grants the existence
of an active elementary loop none of whose atoms is as-
signed	, whenever the greatest unfounded set contains non-
false atoms. It is thus sufficient to concentrate unfounded set
computations on active elementary loops. Going beyond is
impossible: Any non-empty proper subset of an active ele-
mentary loop is externally supported.

Proposition 3 Let Π be a logic program, A be an assign-
ment, and L be an active elementary loop in Π w.r.t. A.

Then, any non-empty proper subset of L is not unfounded
w.r.t. A.

The following is a “partial assignment counterpart” of re-
sults on total (propositional) interpretations in (Gebser et al.
2006).8 It is a consequence of Proposition 2 and 3.

Theorem 2 Let Π be a logic program, A be an assignment,
and L ⊆ atom(Π).

Then, L is an active elementary loop in Π w.r.t. A iff L is
a subset-minimal non-empty unfounded set w.r.t. A.

This result shows that active elementary loops form in fact
the “cores” of unfounded sets. Any proper superset of an
active elementary loop contains atoms that are unnecessary
for identifying (parts of) the set as unfounded. In turn, no
non-empty proper subset of an active elementary loop can
be identified as unfounded. Active elementary loops moti-
vate novel computational approaches in two aspects: First,
they can be used to make unfounded set computations less
exhaustive by not aiming at greatest unfounded sets; second,
they reveal intrinsically relevant unfounded sets and rule out
superfluous ones. In the next sections, we provide respective
computational approaches.

Greatest Unfounded Sets
We now exploit Theorem 1 and Proposition 2, granting the
existence of an active elementary loop as a subset of the non-
false part of a greatest unfounded set, and design an algo-
rithm aiming at such loops. In order to restrict computations
to necessary parts, we make the following assumptions:

• Invariant (2) on assignments holds. It guarantees that nei-
ther an atom assigned ⊕ nor an atom from the positive
part of a body assigned ⊕ is unfounded.

• If, for an atom, the bodies of all rules with the atom as
head are assigned 	, then the atom is assigned 	. Vice
versa, an atom is assigned ⊕ if it has a body assigned ⊕.

• A body is assigned	 if some of its literals is false, that is,
an atom from the positive part is assigned 	 or one from
the negative part is assigned either ⊗ or ⊕. Also, a body

8Please note that the reformulation of (active) elementary loops
provided here is inspired by the notion of an elementary set (Geb-
ser et al. 2006), for which similar results in the context of total
(propositional) interpretations were developed first.

is assigned ⊕ if all atoms in its positive part are assigned
⊕ and all atoms in the negative part 	.

Due to the first assumption, the external support of atoms
and bodies assigned ⊕ is granted. Furthermore, atoms and
bodies already assigned 	 need not be considered anyway.
We can thus restrict attention to atoms and bodies assigned
either � or ⊗. The second and third assumption grant that
anything decidable by Fitting’s operator is already assigned.
(Note that this implies assignments to be pb-saturated.) Fix-
points of Fitting’s operator are computed by dlv, smodels,
and nomore++ before an unfounded set check is initiated.

The unfounded sets we are aiming at are loops. Loops are
bound from above by the strongly connected components
of a program’s atom dependency graph. For conveniently
arranging both atoms and bodies into strongly connected
components, we extend dependency graphs to bodies. For a
program Π, we define the (positive) atom-body dependency
graph as the directed graph (atom(Π) ∪ body(Π), E ∪ E0)
where E = {(head(r), body(r)) | r ∈ Π} and E0 =
{(body(r), p) | r ∈ Π, p ∈ body(r)+}.9 The strongly
connected components of such graphs are understood in the
standard graph-theoretical sense, loops are the atoms con-
tained in strongly connected subgraphs.

We are now ready to describe our algorithm for computing
an unfounded set. It accesses the following global variables.

Π: The underlying logic program.
A: The current assignment.
SCC: The vertices of a strongly connected component of

the atom-body dependency graph of Π.
Set: A set of atoms such that Set ⊆ SCC ∩ atom(Π).
Ext: The set Ext =

⋃
p∈Set{B ∈ body(p) | B+ ∩ Set = ∅,

A(B) 6= 	} of bodies.
Source: A subset of body(Π).
Sink: A subset of atom(Π).
Variable Set contains the atoms to be extended to an un-
founded set. All atoms in Set belong to the same strongly
connected component: SCC. Set Ext of bodies can be
thought of as a todo list. It comprises bodies that provide ex-
ternal supports for the atoms in Set, hence, some atoms from
their positive parts must be added to Set. Synonymously
to smodels’ source pointers, set Source contains bodies for
which it is known that external supports for their positive
parts exist. Set Sink contains atoms some of whose non-false
bodies are in Source or in a different strongly connected
component; such atoms are not contained in any unfounded
set. A source pointer in smodels can be thought of as a link
from an atom in Sink to a body in Source or outside SCC.

Our unfounded set algorithm is shown in Algorithm 1.
The designated initial situation is that some atom, assigned
either � or ⊗, has been chosen to start an unfounded set
check from. This atom is initially contained in Set, its
“external bodies” in Ext. For the computation being rea-
sonable, each external body is supposed to be contained in

9So-called body-head graphs are used in (Linke & Sarsakov
2005) for describing isomorphisms between dependency graphs
and syntactically restricted program classes.



Algorithm 1: UNFOUNDED SET

while Ext 6= ∅ do1

Ext← Ext \ {B} for some B ∈ Ext2

if there is some p ∈ B+ ∩ SCC such that p 6∈ Sink and A(p) 6= ⊕ then3

J← {B ∈ body(p) | B 6∈ SCC, A(B) 6= 	} ∪
{B ∈ body(p) | B ∈ Source, A(B) 6= 	}4

if J = ∅ then5

Set← Set ∪ {p}6
Ext← Ext \ {B ∈ Ext | p ∈ B+}7
Ext← Ext ∪ {B ∈ body(p) | B+ ∩ Set = ∅, A(B) 6= 	}8

else9
Sink← Sink ∪ {p}10
Ext← Ext ∪ {B}11

else12
Source← Source ∪ {B}13
R← {p ∈ Set | B ∈ body(p)}14

while R 6= ∅ do15

Set← Set \ R16
Sink← Sink ∪ R17

J← {B ∈ body(Π) ∩ SCC | B+ ∩ R 6= ∅, A(B) 6= 	,

{p ∈ B+ ∩ SCC | p 6∈ Sink, A(p) 6= ⊕} = ∅}18

Source← Source ∪ J19
R← {p ∈ Set | body(p) ∩ J 6= ∅}20

Ext←
S

p∈Set{B ∈ body(p) | B+ ∩ Set = ∅, A(B) 6= 	}21

SCC \ Source. The outer while-loop from line 1 to 21 is
iterated as long as there are external bodies. Note that we
have Ext = ∅ whenever Set = ∅; in this case, the empty Set
indicates that no unfounded set contains any atom that has
temporarily been in Set.

If Ext 6= ∅, we select in line 2 an external body B from
whose positive part an atom should be added to Set next.
Such an atom p must be contained in SCC, but not in Sink,
and not be assigned ⊕ (line 3). If there is such an atom p,
we determine in line 4 all bodies of atom p that are not as-
signed 	 and either not contained in SCC or contained in
Source. If such bodies exist, that is, J 6= ∅, p is externally
supported, and we add it to Sink (line 10). Otherwise, we
can extend Set with atom p (line 6). All bodies that were
formerly external but positively rely on p are then removed
from Ext (line 7). Finally, we add bodies of rules with head p
to Ext if they do not positively rely on Set and are not as-
signed 	 (line 8).

From line 12 to 21, we handle the case that no atom from
the positive part of body B can be added to Set. Then, we
add B to Source as it is externally supported (line 13). In
line 14, we determine the atoms from Set that occur as heads
of rules with body B. These atoms are as well externally sup-
ported and must be removed from Set. Note that we always
have R 6= ∅ because B occurs as body of at least one atom
in Set. From line 15 to line 20, we remove atoms from Set
and add them to Sink as long as further bodies and associ-
ated head atoms are found externally supported. The crucial
line is 18: Here we determine bodies B from SCC, not as-
signed 	, such that some atoms in the positive part have
recently been removed from Set (B+ ∩R 6= ∅) and all other

atoms are either not contained in SCC, contained in Sink,
or assigned ⊕. In a bottom-up fashion, we derive such ex-
ternally supported bodies and add them to Source (line 19),
respective head atoms are successively removed from Set
and added to Sink (lines 16, 17, and 20). Finally, we update
in line 21 the external bodies of the atoms still in Set.

Like unfounded set detection algorithms of dlv and smod-
els, Algorithm 1 can be implemented such that it works in
linear time. The distinguishing element to other algorithms
is that it extends the set of considered atoms on demand,
that is, if there are bodies from whose positive parts no atom
is included yet. The algorithm stops and does not explore
any more atoms when such bodies do not exist. The aim
is to keep a computed unfounded set as small as possible.
This is motivated as follows: Propagation of single atoms
and bodies can be done very efficiently and does, in contrast
to unfounded set checks, not risk “wasted” work yielding
no inferences. Simpler forms of propagation, like Fitting’s
operator, are thus in nomore++ applied as soon as possi-
ble, in the hope that pending unfounded set checks can be
avoided in effect. For enabling such “early” propagation, it
is important that we compute unfounded sets directly, as it
is done by Algorithm 1, and do not complement externally
supported sets, as done within dlv and smodels.

Let us now consider ways of integrating Algorithm 1 into
solvers. Any solver using Algorithm 1 has to grant that po-
tential external support for bodies in Source and atoms in
Sink really exists, since the elements of these sets are not
examined by the algorithm. The same applies to atoms and
bodies assigned ⊕. Systems dlv and nomore++ assure the
latter by assigning must-be-true or ⊗, when later unfound-
edness of a true atom or body cannot be excluded. Detecting
unfoundedness of program parts that must be true leads to a
conflict, which has to be detected for soundness reasons.

The strategy of smodels is different, it does not use an ana-
log for ⊗. Unfounded program parts, whether they contain
true elements or not, are determined from source pointers.
Such source pointers correspond to elements of Source and
Sink. They are maintained during the solving process, and
invalid ones are removed during the “first stage” of function
Atmost, before it performs the actual unfounded set check.
For a true atom, the removal of its source pointer can be seen
as turning the value from ⊕ to ⊗, in order to make the atom
accessible to a pending unfounded set check.

In contrast to smodels’ Atmost, dlv and nomore++ do not
have a “first stage” for canceling outdated external support
information. They simply start their unfounded set compu-
tations from head atoms of rules whose bodies have become
false since the last unfounded set check. (Such atoms are
also the starting points for Atmost to remove source point-
ers.) Unfounded set checks are done locally for strongly
connected components of the respective dependency graphs.
After processing a component, no information is kept, and
no updates are necessary upon a revisit. Another parallel
between dlv and nomore++ is that the former propagates a
component’s greatest unfounded set before initiating further
unfounded set checks (Faber 2006). Though not the same,
this is quite similar to nomore++ immediately propagating
an unfounded set determined by Algorithm 1.



The discussion above shows that Algorithm 1 can poten-
tially be put into various contexts, using different strategies
to maintain acquired information and to combine unfounded
set checks with propagation. Concerning the latter, Algo-
rithm 1 is designed to stop as soon as an unfounded set is
detected. In this way, a solver can immediately propagate
falsity of the contained atoms. This allows unfounded set
checks to always work on an up-to-date assignment, possi-
bly reducing the overall efforts of a computation. Finally, let
us mention that Algorithm 1, though aiming at loops, only
guarantees that the atoms of a computed unfounded set be-
long to the same strongly connected component. They do
not necessarily form a loop because of the inherent sensitiv-
ity to the order in which atoms are assumed to belong to an
unfounded set (the order in which they are added to Set).

Subset-Minimal Unfounded Sets
Having considered the falsification of greatest unfounded
sets, we now turn to the diametrical problem: determin-
ing subset-minimal unfounded sets, which, by Theorem 2,
are active elementary loops. The ability to determine active
elementary loops is attractive for SAT-based ASP-solvers,
computing (propositional) models of a program’s comple-
tion and adding loop formulas to eliminate invalid candi-
date models. To this end, the SAT-based solver assat de-
termines terminating loops, which are subset-maximal un-
founded loops. Clearly, terminating loops are not neces-
sarily active elementary loops. However, the loop formula
of an active elementary loop eliminates an invalid candidate
model, like the one of a terminating loop. In addition, un-
desired models that are not eliminated by the loop formula
of a terminating loop might be excluded in future invoca-
tions of the underlying SAT-solver (cf. Section 5 in (Gebser
& Schaub 2005) for an example). In this section, we show
how an active elementary loop can be extracted from a given
unfounded set, which might be a terminating loop. Within
SAT-based solvers, active elementary loops can thus replace
terminating loops.

Though elementary loops, as defined before, suggest that
all subsets of a loop must be examined, deciding whether a
loop is elementary is tractable. Indeed, elementary loops
can also be characterized by elementary subgraphs of a
program’s atom-body dependency graph (Gebser & Schaub
2005). For a program Π and a set L ⊆ atom(Π), we define
B(L) = {body(r) | r ∈ Π, head(r) ∈ L, body(r)+ ∩ L 6=
∅} and E(L) = {(p, B) | p ∈ L,B ∈ B(L), p ← B ∈ Π}.
The elementary subgraph of L in Π is the directed graph
(L ∪B(L), E(L) ∪ EC (L)) where:

EC 0(L) = ∅
EC i+1(L) = EC i(L) ∪ {(B, p) | B ∈ B(L), p ∈ B+ ∩ L,

each p′ ∈ B+ ∩ L has a path to p
in (L ∪B(L), E(L) ∪ EC i(L))}

EC (L) =
⋃

i≥0EC i(L)

By (Gebser & Schaub 2005, Theorem 10), the elementary
subgraph allows for deciding elementariness.

Theorem 3 Let Π be a logic program and L ⊆ atom(Π).

If L 6= ∅, L is an elementary loop in Π iff the elementary
subgraph of L in Π is strongly connected.

If a loop is elementary, its elementary subgraph has the
following property (Gebser & Schaub 2005, Proposition 12).

Proposition 4 Let Π be a logic program, L be an elemen-
tary loop in Π, and (L ∪B(L), E(L) ∪ EC (L)) be the ele-
mentary subgraph of L in Π.

Then, every subgraph (L ∪B(L), E(L) ∪ EC ′(L)) such
that EC ′(L) ⊆ EC (L) and {B | (B, p) ∈ EC ′(L)} =
B(L) is strongly connected.

Due to the above property, considering only a single edge
from a body to a contained loop atom is sufficient for de-
ciding elementariness by elementary subgraph construction.
This “don’t care” character of elementary subgraphs greatly
facilities elementary loop computation: Instead of consid-
ering all edges in an atom-body dependency graph, we can
select one contained atom as a canonical representative to be
reached from a body. Considering the definition of elemen-
tary subgraphs, this representative should be a body atom
that is reached from all other body atoms under considera-
tion. Proceeding in this way, we can compute active elemen-
tary loops by implicitly constructing elementary subgraphs,
where bodies reach canonical representatives, reflecting the
single edges required to obtain a strongly connected graph.

We have now settled the fundament of Algorithm 2 for
extracting an active elementary loop from an unfounded set.
Algorithm 2 uses the global variable Set, containing the
atoms of an unfounded set. Initially, Set might be the re-
sult of Algorithm 1 (which is not necessarily a loop) or a
terminating loop. In effect of Algorithm 2, Set will contain
the atoms of an active elementary loop, obtained through re-
moving superfluous atoms. The variables Act, Q, and N are
local to Algorithm 2. Set Act contains the atoms that are
temporarily assumed to be elements of the final active ele-
mentary loop. Variable Q is a priority queue of atoms that
need to be visited. Each atom p has an associated id, ac-
cessible via p.id, atoms in Q are then sorted by their ids in
increasing order. Via operation Q.rem(), the first element
of Q is removed from Q and returned. Operation Q.add(p)
inserts an atom p into Q at the appropriate position, the oper-
ation has no effect if p is already contained in Q. Variable N
is a counter, used to assign an id to an atom when it is visited
for the first time. Besides the id, each atom p is associated
with two more variables: root and exp. Integer value root
stores the id of the first visited atom that positively depends
on p in the elementary subgraph of Set. The set exp corre-
sponds to a todo list of atoms that positively depend on p,
but have not yet been explored. Similar to p.id, we access
root and exp of an atom p via p.root and p.exp.

Before we start describing the algorithm, let us sketch its
fundamental idea. The initial value for N will be |Set|, and
we decrement N whenever an atom is visited for the first
time. That is, an atom with a greater id is visited before the
atoms with smaller ids. While exploring atoms, we make
sure that an atom with a smaller id reaches all atoms with
greater ids in the elementary subgraph of Set. In this way,
we can safely select the contained atom with the greatest id
to explore a body from. In fact, this atom is a canonical



Algorithm 2: ACTIVE ELEMENTARY LOOP

Act← ∅1
Q← ∅2
N← |Set|3

while N 6= 0 do4

p.id← 0 for some p ∈ Set5
Q.add(p)6

while Q 6= ∅ do7

p← Q.rem()8

if p.id = 0 then9

p.id← N10
p.root← N11
p.exp← ∅12
Act← Act ∪ {p}13
N← N− 114

foreach B ∈ body(Π) such that p ∈ B+, B+ ∩ Set ⊆ Act,15
and A(B) 6= 	 do

let p′ ∈ B+ ∩ Act such that
p′.id = max{p.id | p ∈ B+ ∩ Act}16

p′.exp← p′.exp ∪ {p ∈ Set | B ∈ body(p)}17
Q.add(p′)18

if p.exp 6= ∅ then19

Q.add(p)20
p.exp← p.exp \ {p′} for some p′ ∈ p.exp21

if p′ ∈ Act then p.root← max{p.root, p′.root}22
else if p′ ∈ Set then23

p′.id← 024
Q.add(p′)25

else26
if p.id = p.root then27

if Q 6= ∅ or N 6= 0 then28

Set← Set \ {p ∈ Act | p.id ≤ p.id}29
Act← Act \ {p ∈ Act | p.id ≤ p.id}30

else31
p′ ← Q.rem()32
p′.root← max{p.root, p′.root}33
Q.add(p′)34

representative, as discussed below Proposition 4. Whenever
an atom is not reached from any atom with a greater id in
the elementary subgraph of Set or there are unvisited atoms
in Set, we can safely remove all atoms with smaller ids than
that of the current atom from Set. The residual atoms in Set
still form an unfounded set. We are done when N reaches
zero, indicating that all atoms in Set have been inspected
and form an active elementary loop.

We now describe Algorithm 2. Given Set as global vari-
able, Act and Q are initialized to be empty, and N is set to
the cardinality of Set (lines 1 to 3). The outer while-loop
from line 4 to 34 is iterated until N reaches zero, indicating
that all atoms in Set have been inspected. As long as this is
not the case, we pick an arbitrary atom p from Set, assign
p.id zero, and add p to the front of Q (lines 5 and 6). The
atom p with the smallest id is removed from Q in line 8. In
line 9, we detect from p.id being zero that p is visited for

the first time. We then initialize p.id and p.root with N, and
p.exp with the empty set (lines 10 to 12). Adding p to Act
in line 13 indicates that p has been visited. In line 14, we
decrement N to the number of still unvisited atoms in Set.

Due to visiting an atom p for the first time, a body B such
that p ∈ B+ and B+ ∩ Set ⊆ Act becomes accessible, as
there is an atom in Act that is reached from all atoms of B+∩
Act in the elementary subgraph of Set. Of course, A(B)
must not be	 since we are interested in an active elementary
loop w.r.t. A. These conditions are checked in line 15. For
each body satisfying the conditions, some atom p′ ∈ B+ ∩
Act has the greatest id; this atom p′ is determined in line 16.
As discussed above, p′ is a canonical representative to reach
B from. Thus, we add the head atoms of body B that are in
Set to p′.exp and re-add p′ to Q (lines 17 and 18). Recall
that the latter has no effect if p′ is already contained in Q.

After having updated atoms to be explored, we process
p.exp for the current atom p from line 19 to 34. If p.exp is
non-empty, we re-add p to Q, making sure that p is re-visited
later on, and remove some element p′ to be processed next
from p.exp (lines 20 and 21). The atom p′ can be already
visited, in which case we maximize ids of atoms reaching
p among p.root and p′.root (line 22). If p′ is unvisited and
has not been removed from Set since it was added to p.exp,
we set p′.id to zero and add p′ to the front of Q (lines 24
and 25). On re-entering the outer while-loop from line 7, p′

is the atom visited next. The else-case from line 26 to 34 re-
flects that no more atom reaches p. If p is not reached from
an atom with a greater id (p.id = p.root in line 27) and there
are atoms not reaching p (Q 6= ∅ or N 6= 0 in line 28), we
remove all atoms in Act whose ids are not greater than p.id
from both Set and Act (lines 29 and 30). The residual atoms
of Set still form an unfounded set (otherwise some of them
would have reached one of the removed atoms), containing
an active elementary loop by Theorem 2. Finally, the else-
case from lines 31 to 34 applies when p is reached by some
atom with a greater id. In this case, we have Q 6= ∅, since
at least the atom picked in line 5 is still contained in Q. For
not mistakenly considering an atom unreached, we propa-
gate the greatest id of an atom reaching p to the atom p′

that succeeds p in Q (line 33). Atom p′, removed from Q in
line 32 and re-added in line 34, is then re-visited in the next
iteration of the outer while-loop from line 7.

Regarding complexity of Algorithm 2, note that a body
is explored only once, when the last of its atoms contained
in Set is visited for the first time. Also, atoms are added to
Act only once, upon re-visits only path information is ex-
changed via root. Visits of bodies and accompanying up-
dates of reached atoms are bound by the number of edges
in the part of the atom-body dependency graph that contains
atoms in Set and their connecting bodies.

Extracting active elementary loops from unfounded sets
might not be important for genuine ASP-solvers, like dlv,
smodels, and nomore++, only aiming at falsification of
unfounded sets. But active elementary loops can play a
role in SAT-based ASP-solvers, such as assat, cmodels,
and pbmodels, since their loop formulas eliminate undesired
completion models more effectively than those of terminat-
ing loops (Gebser & Schaub 2005).



Discussion
This paper contributes to computational approaches to un-
founded set handling, both theoretically and practically. Un-
like already done in the literature (cf. (Lin & Zhao 2004;
Lee 2005)), where loops are related to total propositional
models, we have put loops into the context of partial assign-
ments. The major result is that active elementary loops form
the “cores” of unfounded sets. Hence, they must intrinsi-
cally be dealt with by any ASP-solver.

Based on active elementary loops, traditional approaches
to unfounded set computation can be explained. Beyond
that, new algorithms exploiting active elementary loops are
fortified. We have presented an algorithm that allows for
computing unfounded sets directly, avoiding the comple-
mentation of externally supported sets. This approach is
currently implemented in the nomore++ system. However,
it can also be incorporated into other ASP-solvers. In fact,
using assignments to both atoms and bodies is not an obli-
gation for our theoretical results and algorithms to apply, it
merely allows us to state them in a way that accounts for
nomore++ as well. For brevity, we do not provide experi-
mental results and just report that the usage of Algorithm 1
has greatly improved the performance of the nomore++ sys-
tem. This improvement is of course of relative nature and
does not indicate any superiority of the approach.

Finally, we have provided an algorithm that exploits the
properties of elementary subgraphs to extract active elemen-
tary loops from unfounded sets. This algorithm, which is
the first of its kind, can be used by SAT-based ASP-solvers
to replace terminating loops with active elementary loops.
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